

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Mecanica de Rocas

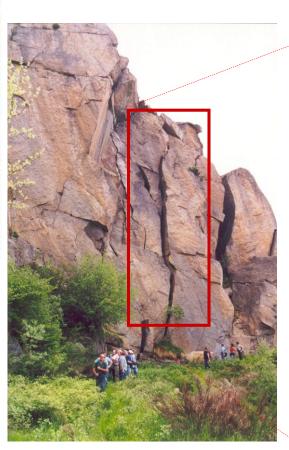
Tema 1: Introducción al Macizo Rocoso, Clasificaciones Geomecánicas

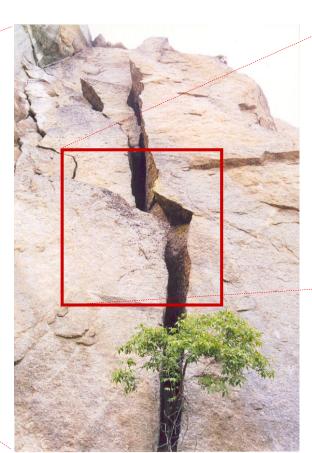
https://deca.upc.edu/es/el-departamento/secciones/itcg/docencia/asignaturas/gmcp

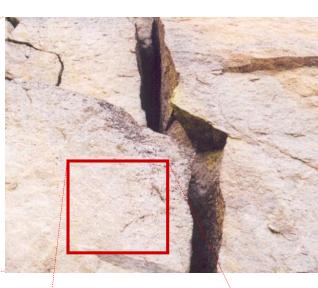
Tema I-a: Introducción al Macizo Rocoso, Clasificaciones Gomecánicas

- 1. INTRODUCCIÓN
 - 1.1 Naturaleza discontinua de las rocas
 - 1.2 Peculiaridades de los estudios en Mecánica de Rocas
 - 1.2 Método de trabajo en Mecánica de Rocas
- 2. DESCRIPCIÓN BÁSICA DE LAS ROCAS SEGÚN GOODMAN
 - 2.1 Clasificación
 - 2.2 Identificación básica. Índices
- 3. CLASIFICACIONES GEOMECÁNICAS" DE MACIZOS ROCOSOS
 - 3.1 RMR de Bieniawski
 - 3.2 Comentarios

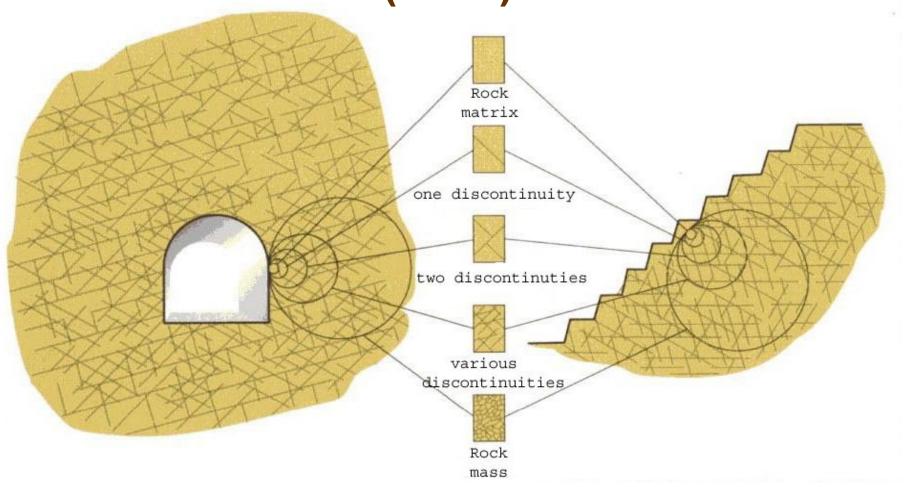
Bibliogr: - Hudson/Harrison capitulos 1, 2, 11 (en parte),12


- Goodman, capitulos 1, 2


1

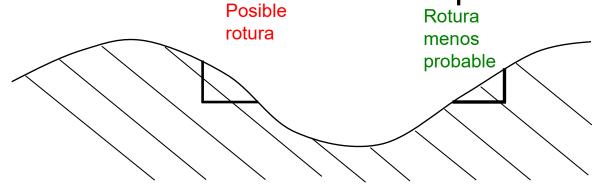

Introducción

1.1 Naturaleza discontinua de las rocas

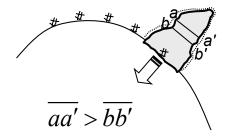


macizo rocoso = roca matriz + discontinuidades

Naturaleza discontinua de las rocas (cont)


escala de observación

Naturaleza discontinua de las rocas (cont)


- Las propiedades del macizo rocoso están casi siempre determinadas por las discontinuidades:
 - "Lo importante en mecánica de rocas es lo que no es roca"
- Excepciones:
 - Construcciones a gran profundidad (≈ 3000 m para rocas dura)
 - Rocas blandas (rocas salinas, yeso, argilitas, limolitas, depósitos terciarios que se comportan como suelos)

Naturaleza discontinua de las rocas (cont)

 Los bloques de roca se mueven más fácilmente en la dirección cinemáticamente posible

 Caida de bloques de roca rodeados por planos débiles de formas irregulares

Juntas en un túnel

Naturaleza discontinua de las roca(cont)

- Comparación de algunas propiedades (macizo rocoso vs roca matriz)
 - Resistencia:macizo rocoso < roca matriz
 - Deformabilidad:macizo rocoso > roca matriz
 - Permeabilidad:macizo rocoso > roca matriz

1.2 Peculiaridades de los estudios en MR (y en general en Geomecánica)

- Medio generalmente anisótropo y heterogéneo, con gran influencia de discontinuidades aisladas.
- Información (muy) limitada sobre geometría y propiedades del macizo
- Existencia de un estado inicial de tensiones, generalmente complejo y de importancia crucial (nuestro estudio es en general sobre las consecuencias de las perturbaciones que introducimos con la obra)
- Influencia de los procesos de flujo; a veces también puede ser importante/esencial el acoplamiento H-M
- Otros efectos que pueden ser importantes: el factor tiempo (visco-elast, visco-plast), o el efecto de tamaño ("size/scale effect", presente en grandes masas sujetas a peso propio, o en roturas governadas por principios de Mec. de Fractura)

1.3 Método de trabajo en Mecánica de Rocas

- Reconocimiento del terreno en Ing Civil: Identificación de estructuras geológicas, rocas, discontinuidades, etc. Toma de muestras. (SE DA POR CUBIERTO EN ASIGNATURAS ANTER.)
- Primera aproximación: clasificaciones geomecánicas Dimensionamiento inicial (proc. cualitativo)
- Más informacion en estudios geotécnicos o al desarrollarse la obra ⇒ Análisis cuantitativos más detallados basados en principios de mecánica ⇒ Corrección del dimensionamiento o diseño

USUALMENTE, APROXIMACIONES SUCESIVAS!

2

Descripción básica de las rocas según Goodman

an)

Clasificación (según Goodman)

- Desde el punto de vista de su origen
 - Sedimentarias
 - Metamórficas
 - Ígneas
- Desde el punto de vista de su textura (esta clasificación resulta más adecuada en ingeniería, por su relación con el comportamiento mecánico).
 - Textura cristalina
 - Textura clástica
 - Rocas de grano muy fino
 - Rocas orgánicas

I. Textura cristalina

Cristales fuertemente entrelazados, de silicatos, carbonatos, sulfatos u otras sales

Carbonatos y sales solubles	Caliza, dolomita, rocas salinas, mármol, yeso
Mica u otros minerales de forma plana en bandas continuas	Esquistos de mica, clorita, grafito
Silicatos formando bandas, sin láminas continuas de mica	Gneiss
Silicatos de tamaño de grano uniforme orientados y distribuidos aleatoriamente	Granito, diorita, gabro, sienita
Silicatos orientados y distribuidos aleatoriamente en una matriz de grano muy fino, con cavidades	Basalto, riolita, otras rocas volcánicas
Rocas que han soportado grandes esfuerzos de corte	Serpentinita, milonita

II. Textura clástica

Bloques de varios tipos y granos de minerales diversos, cuyas propiedades vienen determinadas por el tipo de cementación que une los distintos elementos

Cementación estable	Areniscas con matriz silícea y areniscas limosas
Cementación ligeramente soluble	Areniscas y conglomerados de matriz de calcita
Cementación altamente soluble	Areniscas y conglomerados con matriz de yeso
Cementación incompleta o débil	Arenisca desmenuzable, toba
Sin cementación	Areniscas de matriz arcillosa

III. Rocas de grano muy fino

Compuestas principalmente de arcillas o limos con deformabilidad, resistencia, durabilidad y tenacidad muy variable

resisiencia, aurabiliada y lenaciada muy variable				
Rocas duras, isótropas	Corneana, algunos basaltos			
Rocas duras, macroscópicamente anisótropas pero isótropas microscópicamente	Pizarras cementadas, rocas laminares			
Rocas duras microscópicamente anisótropas	Pizarras, filitas			
Rocas blandas, de características similares a los suelos	Creta, esquistos compactados, margas			

IV. Rocas orgánicas Pueden ser de comportamiento viscoso, plástico o elástico				
Carbón blando	Lignito, carbón bituminoso			
Carbón duro				
"Oil shale"				
Esquitos bituminosos				
Alquitrán arenoso				

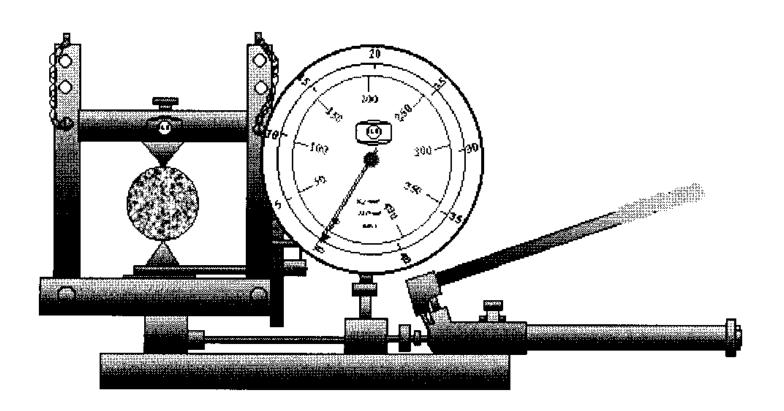
Identificación básica, ensayos normalizados, índices

- Las propiedades de las rocas son muy variables debido a la variedad de estructuras y componentes
- Interesa disponer de una descripción cuantitativa de las rocas con un cierto número de propiedades básicas
- Algunas propiedades no son tan fáciles de medir directamente indices (ojo terminología, origen etimológico indicar)
- Los índices se obtienen a partir de ensayos estandarizados y ofrecen valores que permiten la aplicación de métodos ingenieriles cuantitativos.
- A veces corresponden a propiedades concretas y a veces a una combinación de propiedades u otros (geometría muestras, etc.)
- Las propiedades o índices que se obtienen a partir de probetas de roca intacta, reflejan en general el comportamiento de la roca matriz sin juntas, (y no el del macizo rocoso en su conjunto – NO OLVIDAR!)

Propiedades básicas, ensayos e indices más comunes en MR

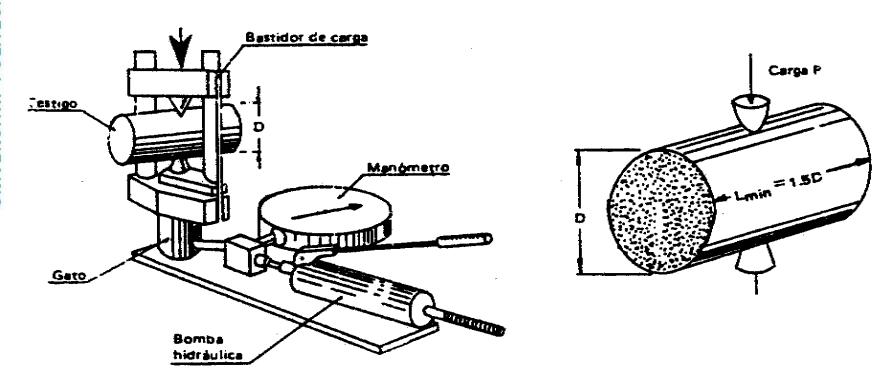
- Resistencia: relacionada con los enlaces entre los componentes de la roca. Propiedad esencial para el comportamiento mecánico del macizo
- Permeabilidad: relacionada con la interconexión relativa de los poros. Propiedad esencial en fenómenos de flujo
- Porosidad: proporción relativa del vol. de huecos en el material.
- Densidad: añade información acerca de la composición mineralógica
- Velocidad de transmisión de ondas: permite estimar propiedades como módulos, grado de fisuración (en combinación con un estudio petrográfico), etc.
- Durabilidad: índice que muestra la tendencia a la descomposición de los componentes o estructuras internas de la roca, con la consiguiente degradación de su calidad.

Resistencia



- La resistencia es una propiedad esencial desde el punto de vista mecánico (pero ojo si es de la roca matriz)
- La mejor medida: ensayo de compresión simple en laboratorio. O ensayo Brasileño para resist. a tracción
- · Sin embargo, para ello hay que trasladar muestras a laboratorio, y allí cortar, refrentar y ensayar probetas.
- Por ello resulta conveniente una forma mas simple/rápida de medida in situ que permita evaluar un índice (aunque sea una medida mas incierta):

Ensayo de carga puntual


- una muestra de roca se carga mediante dos conos de acero que provocan la rotura al desarrollarse fisuras paralelas al eje de carga
- probetas cilíndricas de Ø 50 mm, con una longitud al menos de 1.4 veces el diámetro

Prensa Franklin

Esquema del montaje

- Falta de material adecuado
- Necesidad de gran número de ensayos, a realizar in situ
- Índice de carga puntual:

$$I_{S} = \frac{P}{D_{e}^{2}}$$

$$D_e^2 = \frac{4}{\pi}WD$$

- P = fuerza necesaria para romper la muestra
- D_e = diámetro equivalente
- W = anchura media de la muestra
- D = distancia entre las puntas de los conos en el momento de rotura

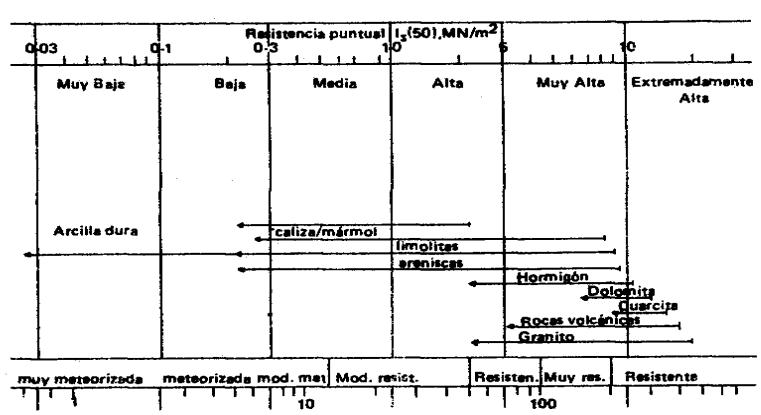
Typical Point Load Index Values^a

Material	Point Load Strength Index (MPa)		
Tertiary sandstone and claystone	0.05-1		
Coal	0.2-2		
Limestone	0.25-8		
Mudstone, shale	0.2-8		
Volcanic flow rocks	3.0–15		
Dolomite	6.0–11		

^a Data from Broch and Franklin (1972) and other sources.

- No es adecuado para rocas blandas
- Fácil de realizar in situ
- correlación entre I_s y la resistencia a la compresión:

DE POLITÈCNICA


Resistencia Ensayo de carga puntual

Correlación entre el índice de carga puntual y la resistencia a la compresión simple

Resistencia a compresión simple (MN/m²)

Clasificación de la roca a partir del ensayo de carga puntual

- Correlaciones:
 - Broch & Franklin (1972): $\sigma_c = 24I_s$
 - Brook (1993): $T_0 = 1.5I_S$

donde:

- σ_c = resistencia a la compresión
- T_0 = resistencia a la tracción
- Mucha dispersión

Permeabilidad

- Importante en casos prácticos:
 - Extracción por bombeo de agua, petróleo, gas, ...
 - Almacenaje de residuos en formaciones porosas
 - Almacenaje de fluidos en cavernas
 - Estimación de la capacidad de retención del agua en embalses
 - Eliminación de agua en cavernas profundas
 - Esencial en casos de acoplamiento Hidromecánico (e.g. Malpasset)
- La presencia de fisuras puede alterar radicalmente la permeabilidad de la roca matriz obtenida en el laboratorio → pueden ser necesarios ensayos de bombeo "in situ"

UPC

Permeabilidad

- El cambio en la permeabilidad ocasionado por cambios en las tensiones normales (especialmente compresión tracción) permite estimar el grado de fisuración (fisuras planas se ven afectadas, poros esféricos no)
- Ley de Darcy válida en la mayoría de los casos
- Ensayos de laboratorio:
 - Clásico
 - Flujo radial en muestras fisuradas, mucha influencia de la dirección del flujo (hacia dentro o hacia fuera)
- Ensayos de campo: bombeo

Porosidad:

 Es la proporción del volumen de huecos con relación al volumen total

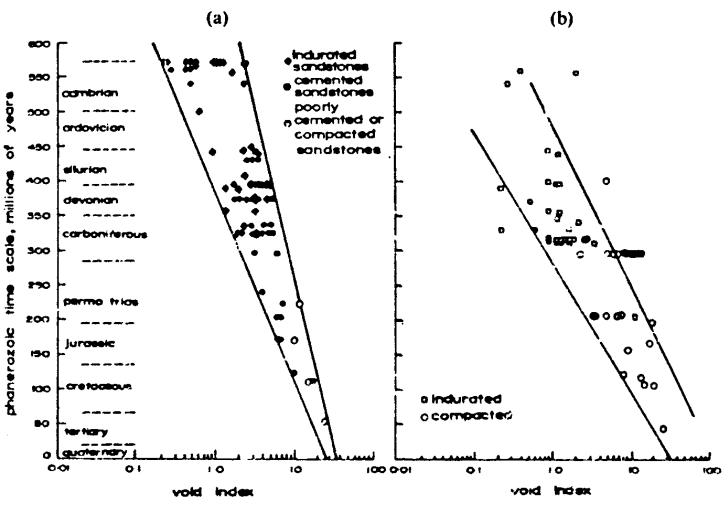
$$n = \frac{V_p}{V_t}$$

- La porosidad también representa un índicador de la calidad de la roca
- Típicamente, los valores son más bajos que en suelos

Porosidad

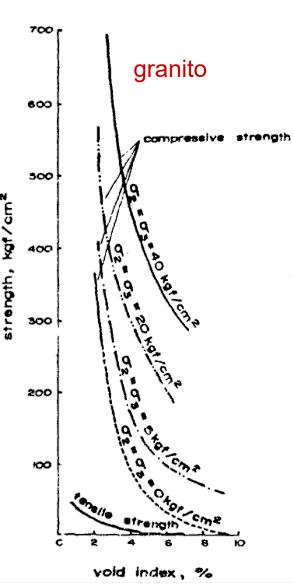
- Valores típicos:
 - Rocas sedimentarias:
 - → Factor responsable: poros
 - \rightarrow Puede oscilar entre: 0 < n < 90%
 - → Para una arenisca media, *n* ≈ 15%
 - →n disminuye con la profundidad
 - *→ n* disminuye con la edad (desgaste)
 - Rocas ígneas y metamórficas:
 - ---> Factor responsable: fisuras
 - → Normalmente, *n* < 1 a 2%
 - → *n* puede aumentar con la edad (desgaste) hasta *n* = 20% o más

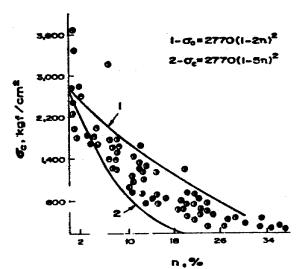
Porosidad – medida:


- Cambios de peso de probetas al pasar del estado seco al saturado, con inmersión en agua o con inyección de mercurio a presión
- Medida del volumen de materia sólida y del volumen de aire en los poros a través de la ley de Boyle (norma API PR-40)
- Correlaciones con otras propiedades mecánicas (resistencia a la compresión simple, módulo de elasticidad) — dispersión considerable

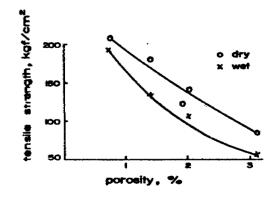
Rock	Age	Depth	Porosity (%)	
Mount Simon sandstone	Cambrian	13,000 ft	0.7	
Nugget sandstone (Utah)	Jurassic		1.9	
Potsdam sandstone	Cambrian	Surface	11.0	
Pottsville sandstone	Pennsylvanian		2.9	
Berea sandstone	Mississippian	0-2000 ft	14.0	
Keuper sandstone (England)	Triassic	Surface	22.0	
Navajo sandstone	Jurassic	Surface	15.5	
sandstone, Montana	Cretaceous	Surface	34.0	
Beekmantown dolomite	Ordovician	10,500 ft	0.4	
Black River limestone	Ordovician	Surface	0.46	
Niagara dolomite	Silurian	Surface	2.9	
limestone, Great Britain	Carboniferous	Surface	5.7	
chalk, Great Britain	Cretaceous	Surface	28.8	
Solenhofen limestone		Surface	4.8	
Salem limestone	Mississippian	Surface	13.2	
Bedford limestone	Mississippian	Surface	12.0	
Bermuda limestone	Recent	Surface	43.0	
Shale	Pre-Cambrian	Surface	1.6	
Shale, Oklahoma	Pennsylvanian	1000 ft	17.0	
Shale, Oklahoma	Pennsylvanian	3000 ft	7.0	
Shale, Oklahoma	Pennsylvanian	5000 ft	4.0	
Shale	Cretaceous	600 ft	33.5	
Shale	Cretaceous	2500 ft	25.4	
Shale	Cretaceous	3500 ft	21.1	
Shale	Cretaceous	6100 ft	7.6	
Mudstone, Japan	Upper Tertiary	Near surface	22–32	Mississippian ≡
Granite, fresh		Surface	0 to 1	Carbonífero inferior
Granite, weathered			15	
Decomposed granite (Saprolyte)			20.0	
Marble			0.3	Pennsylvanian ≡
Marble			1.1	•
Bedded tuff			40.0	Carbonífero superior
Welded tuff			14.0	
Cedar City tonalite			7.0	4000 ft - 000
Frederick diabase			0.1	1000 ft ≈ 300 m
San Marcos gabbro			0.2	

Relación porosidad – edad




areniscas

limolitas, margas, argilitas


Relación porosidad – resistencia

rocas carbonatadas

areniscas

Correlaciones:

Schiller

$$\sigma_{Cn} = \sigma_{C0} \left[1 - a \sqrt{\frac{n}{n_{cr}}} \right]$$

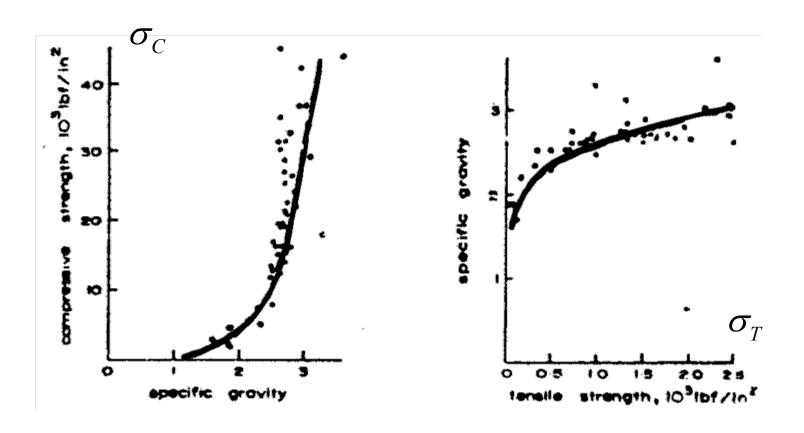
Kowalski

$$\sigma_C = d \left(\frac{n}{1-n} \right)^c$$

Smoridow

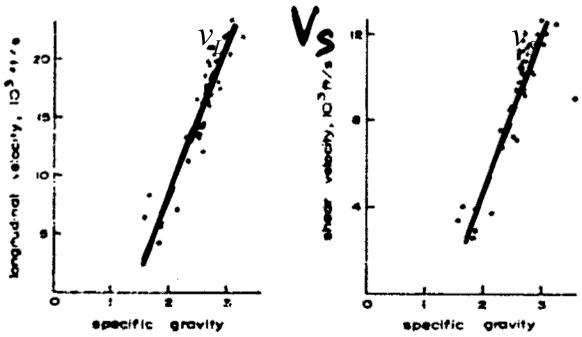
$$\sigma_C = 259e^{-0.09n}$$
(carbonaceas)
 $\sigma_C = 350e^{-0.108n}$
(cuarzosas)

Densidad



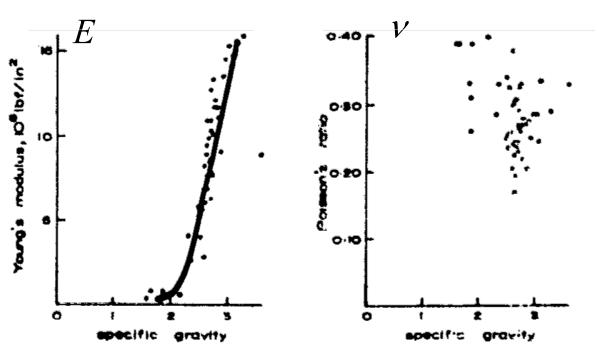
Densidad:

- El rango de variabilidad de la densidad de las rocas es mucho mayor que el de los suelos
- El conocimiento de la densidad es importante en ingeniería y minería para evaluar el peso propio, tensiones iniciales, etc.
- Existen correlaciones entre la densidad específica y:
 - la resistencia
 - la velocidad de transmisión de ondas
 - algunas constantes elásticas


Densidad

Relación entre la densidad específica y la resistencia a la compresión y a la tracción

DE UNIVERSITAT POLITÈCNICA

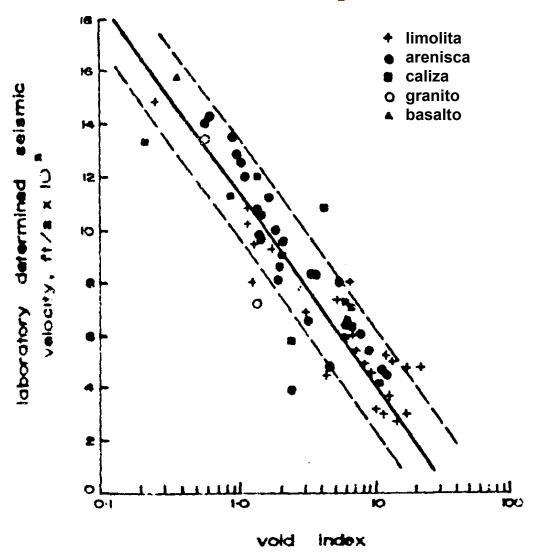

Densidad

Relación entre la densidad específica y la velocidad de transmisión de ondas

Densidad

Relación entre la densidad específica y las constantes elásticas

Densidades de rocas y minerales (kg/m³) 125


	range of density	mean density
Holocrystalline I	gneous Rocks	
Granite	2516-2809	2667
Granodiorite	2668-2785	2716
Syenite	2630-2899	2757
Quartz diorite	2680-2960	2806
Diorite	27212960	2839
Norite	2720-3020	2984
Gabbro	2850-3120	2976
Diabase	2804-3110	2965
Peridotite	3152-3276	3234
Dunite	3204-3314	3277
Pyroxenite	3100-3318	3231
Anorthosite	2640-2920	2734
Natural Gi	asses	
Rhyolite obsidian	2330-2413	2370
Trachyte obsidian	2435-2467	2450
Pitchstone	2321-2370	2338
Andesite glass	2400-2573	2474
Leucite tephrite glass	2520-2580	2550
Busalt glass	2704-2851	2772
Crystalline	Rocks	•
Tonalite		2765
Olivine dolerite		2889
Dolerite	2800-2925	2863
Eclogite		3415

	range of density	mean density
2	Sedimentary Rocks	
Sandstone	2170-2700	
Limestone	2370-2750	
Dolomite	2750-2800	
Chalk	2230	
Marble	2750	
Shale	2060-2660	
Sand	1920-1930	
!	Metamorphic Rocks	
Gneiss	2590-3060	2703
Schist	2700-3030	2790
Slate	2720-2840	2810
Amphibolite	2790-3140	2990
Granulite	2630-3100	2830
Eclogite	3338-3452	3392
	ineralic Aggregates	
Hortonolite dunite		3760
Pyroxenite	3250-3310	3280
Diopside		3240
Hornblendite	3120-3220	3170
Serpentine	2440~2650	2550
Talc		2790
Chlorite		2790
Hematite		4100
Magnetite		4600
Soapstone		2840
Grossularite		3490
Garnet		3930
Anhydrite	2820-2930	2887
Rocksalt	2100-2180	2140
Polyhalite		2760

Velocidad de transmisión de ondas

- Relativamente fácil de determinar, tanto ondas transversales como longitudinales
- La velocidad de transmisión depende, en teoría, únicamente de las propiedades elásticas y de la densidad
- Pero una red de poros o fisuras superpuesta a la roca matriz tiene un efecto predominante
- Por lo tanto, la velocidad de transmisión de ondas puede servir como índicador de la porosidad, o del grado de fisuración de una roca

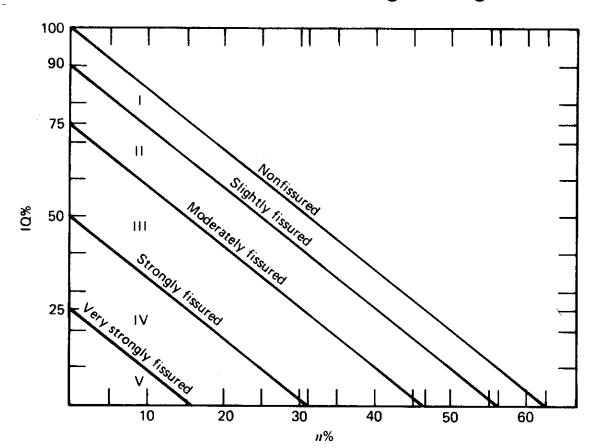
Velocidad de transmisión de ondas Relación con la porosidad

Velocidad de transmisión de ondas Relación con el grado de fisuración

• Índice de calidad:

$$IQ(\%) = \frac{V_l}{V_l^*} \times 100\%$$

siendo V_I la velocidad real de transmisión de ondas en la muestra, y V_l^* la velocidad de transmisión de ondas de una muestra del mismo material sin poros ni fisuras.


Typical Values of V_i^* for Rocks

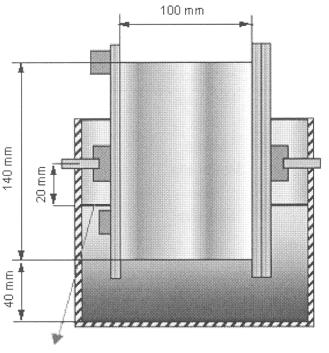
Rock	V _l * m/s	
Gabbro	7000	
Basalt	6500-7000	
Limestone	6000-6500	
Dolomite	6500-7000	
Sandstone and quartzite	6000	
Granitic rocks	5500-6000	

From Fourmaintraux (1976)

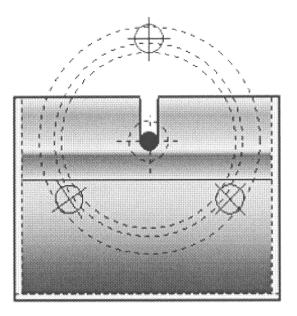
Velocidad de transmisión de ondas Relación con el grado de fisuración

Dado que el IQ depende mucho del grado de fisuración, se ha propuesto un ábaco IQ-porosidad que sirva de base para la clasificación de una muestra de roca según su grado de fisuración:

Durabilidad



- La durabilidad puede tener importancia en aplicaciones prácticas.
- Las propiedades de la roca se ven alteradas debido a exfoliación, hidratación, oxidación, abrasión, etc.
- Dada la variedad de posibles causas, cualquier indice es solo parcial e indicativo
- "Slake durability index", I_d (ensayo de durabilidad – mide la resistencia a la disgregación en ciclos de humedecimiento)
 - Ciclo:
 - secado en estufa a 105º
 - 200 vueltas en tambor en 10 min
 - Se suelen usar dos ciclos


Durabilidad

Ensayo de durabilidad ("Slake durability index")

Nivel de aqua

 $I_d = \% \frac{\text{peso retenido}}{\text{peso inicial}}$

- Tambor de 140 mm de diámetro y 100 mm de largo
- Paredes de un tamiz de 2 mm de apertura
- 500 g de roca en 10 piezas
- El tambor gira a 20 revoluciones por minuto durante 10 minutos en un baño de agua
- Se mide el porcentaje de roca retenida dentro del tambor

Durabilidad

Gamble's Slake Durability Classification

Group Name	% Retained After One 10-Minute Cycle (Dry Weight Basis)	% Retained After Two 10-Minute Cycles (Dry Weight Basis)
Very high durability	>99	>98
High durability	98-99	95–98
Medium high durability	95-98	85–95
Medium durability	85–95	60-85
Low Durability	60–85	30-60
Very Low Durability	<60	< 30

3

"Clasificaciones Geomecánicas" de macizos rocosos

- Rock Mass Rating
- Proporciona un índice RMR, indicador de la calidad de la masa rocosa, entre 0 y 100
- El cálculo del RMR se basa en cinco conceptos:
 - Resistencia de la roca matriz
 - Integridad de un testigo perforado (RQD)
 - Existencia de agua
 - Separación de juntas y fisuras
 - Características de las juntas

Clasificación RMR de Bieniawski (v.original-1976)

1. Resistencia de la roca matriz

Incrementos de RMR para la resistencia a la compresión de la roca

Resistencia a la compresión simple (MPa)	Contribución
>200	15
100–200	12
50–100	7
25–50	4
10–25	2
3–10	1
<3	0

2. Integridad de un testigo perforado

Incrementos de RMR para la calidad de un testigo perforado

RQD (%)	Contribución
91–100	20
76–90	17
51–75	13
25–50	8
<25	3

RQD: "Rock Quality Designation", es el porcentaje de longitudes del testigo superiores a dos veces el diámetro -- (Históricamente el RQD en por si mismo ha sido utilizado también como indice geomecánico)

3. Condiciones de agua en el terreno

Incrementos de RMR debidos a las condiciones de agua en el terreno

Caudal por cada 10 m de longitud de túnel ó (l/min)	Presión de agua en las juntas dividida por la tensión principal mayor	Ó	Condiciones Generales	Contribución
0	0		Completamente seco	10
25	0.0-0.2		Húmedo	7
25–125	0.2-0.5		Agua bajo presión moderada	4
125	0.5		Problemas severos debidos al agua	0

4. Separación de juntas y fisuras

Incrementos de RMR para la separación de juntas del sistema principal

Separación (m)	Contribución
>3	30
1–3	25
0.3–1	20
0.005-0.3	10
< 0.005	5

5. Características de las juntas (1)

Incrementos de RMR por la orientación de las juntas

Apreciación de la influencia de la orientación	Contribución para túneles	Contribución para cimentaciones
Muy favorable	0	0
Favorable	-2	-2
Moderada	-5	-7
Desfavorable	-10	-15
Muy desfavorable	-12	-25

5. Características de las juntas (2)

Incrementos de RMR para las condiciones de las juntas

Descripción	Contribución
Superficies muy rugosas de extensión limitada; roca dura	25
Superficies ligeramente rugosas; apertura menor a 1 mm; roca dura	20
Superficies ligeramente rugosas; apertura menor a 1 mm; roca blanda	12
Superficies lisas, ó con relleno de 1–5 mm, ó apertura de 1–5 mm; juntas de varios metros de longitud	6
Juntas abiertas rellenas con más de 5 mm, ó apertura mayor de 5 mm; juntas de varios metros de longitud	0

Clasificación geomecánica final

Clase	Descripción del macizo rocoso	RMR
I	Roca muy buena	81–100
II	Roca buena	61–80
III	Roca aceptable	41–60
IV	Roca mala	21–40
V	Roca muy mala	0–20

3.2 Comentarios finales

- Nueva v.corregida de 1989- cambian un poco los puntos.
- Recomendaciones de diseño basadas en RMR (p.ej sostenimiento de tuneles)
- Poca mecánica en general, métodos tipo "receta", muy útiles en primera aproximación, pero básicamente cualitativos (p.ej. el estado tensional no se tiene en cuenta de manera explícita)
- Correlaciones con parámetros de modelos de rotura/deformación (e.g. criterio de Hoek y Brown)
- Versiones del RMR modificadas para aplicaciones especificas (p.ej. "SMR" para taludes, propuesta por Romana, Tema 7)
- Otras clasificaciones, p.ej:
 - RQD mismo (representa menos informacion)
 - Sistema NGI o "Q de Barton": Q=(RQD/Jn)(Jr/Ja)(Jw/SRF),:

Jn: coef segun el no. de discontinuidades

Jr: coef segun la rugosidad de las disc.

Ja: coef segun la resistencia de la roca matriz o material de relleno

Jw: coef segun la existencia de agua

SRF= "stress reduction class" segun condiciones tensionales

- -- rango de Q de 0.01 a 1000 (frente 0-100 del RMR)
- Correlaciones entre ellas: p.ej RMR=9 logQ +44