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I. CODE_BRIGHT. FOREWORD 

I.1. INTRODUCTION 

The program described here is a tool designed to handle coupled problems in geological media. 

The computer code, originally, was developed on the basis of a new general theory for saline 

media. Then the program has been generalised for modelling thermo-hydro-mechanical (THM) 

processes in a coupled way in geological media. Basically, the code couples mechanical, 

hydraulic and thermal problems in geological media.  

The theoretical approach consists in a set of governing equations, a set of constitutive laws and 

a special computational approach. The code is written in FORTRAN and it is composed by 

several subroutines. The program does not use external libraries.  

CODE_BRIGHT uses GiD system for preprocessing and post-processing. GiD is developed by 

the International Center for Numerical Methods in Engineering (CIMNE). GiD is an interactive 

graphical user interface that is used for the definition, preparation and visualisation of all the 

data related to numerical simulations. This data includes the definition of the geometry, 

materials, conditions, solution information and other parameters. The program can also 

generate the finite element mesh and write the information for a numerical simulation program 

in its adequate format for CODE_BRIGHT. It is also possible to run the numerical simulation 

directly from the system and to visualize the resulting information without transfer of files.  

For geometry definition, the program works quite like a CAD (Computer Aided Design) 

system. The most important difference is that the geometry is developed in a hierarchical mode. 

This means that an entity of higher level (e.g. a volume) is constructed over entities of lower 

level (e.g. a surface); two adjacent entities (e.g. two volumes) will then share the same lower 

level entity (e.g. a surface).  

All materials, conditions and solution parameters can also be defined on the geometry without 

the user having any knowledge of the mesh. The meshing is performed once the problem has 

been fully defined. The advantages of doing this are that, using associative data structures, 

modifications can be made on the geometry and all other information will be updated 

automatically.  

Full graphic visualisation of the geometry, mesh and conditions is available for comprehensive 

checking of the model before the analysis run is started. More comprehensive graphic 

visualisation features are provided to evaluate the solution results after the analysis has been 

performed. This post-processing user interface is also customisable depending on the analysis 

type and the results provided.  

A query window appears for some confirmations or selections. This feature is also extended to 

the end of a session, when the system prompts the user to save the changes, even when the 

normal ending has been superseded by closing the main window from the Window Manager, 

or in most cases with incorrect exits.  

 

I.2. SYSTEM BASICS 

GiD is a geometrical system in the sense that, having defined the geometry, all the attributes 

and conditions (i.e., material assignments, loading, conditions, etc.) are applied to the geometry 

without any reference or knowledge of a mesh. Only once everything is defined, should the 

meshing of the geometrical domain be carried out. This methodology facilitates alterations to 
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the geometry while maintaining the attributes and conditions definitions. Alterations to the 

attributes or conditions can simultaneously be made without the need of reassigning to the 

geometry. New meshes or small modifications on the obtained mesh can also be generated if 

necessary and all the information will be automatically assigned correctly.  

The system does provide the option for defining attributes and conditions directly on the mesh 

once this has been generated. However, if the mesh is regenerated, it is not possible to maintain 

these definitions and therefore all attributes and conditions must be redefined. In general, the 

complete solution process can be described as:  

1. Define geometry - points, lines, surfaces, volumes. 

• Use other facilities.  

• Import from CAD.  

2. Define attributes and conditions. 

3. Generate mesh. 

4. Carry out simulation. 

5. View results. 

Depending upon the results in step (5) it may be necessary to return to one of the steps (1), (2) 

or (3) to make alterations and rerun the simulations.  

Building a geometrical domain in GiD is based on the 4 geometrical levels of entities: points, 

lines, surfaces and volumes. Entities of higher level are constructed over entities of lower level; 

two adjacent entities can therefore share the same level entity.  

All domains are considered in 3-dimensional space but if there is no variation in the third 

coordinate (into the screen) the geometry is assumed to be 2-dimensional for analysis and 

results visualisation purposes. Thus, to build a geometry, the user must first define points, join 

these to form lines, create closed surfaces from the lines and define closed volumes from the 

surfaces. Many other facilities are available for creating the geometrical domain; these include: 

copying, moving, automatic surface creation, etc.  

The geometrical domain can be created in a series of layers where each one is a separate part 

of the geometry. Any geometrical entity (points, lines, surfaces or volumes) can belong to a 

particular layer. It is then possible to view and manipulate some layers and not others. The main 

purpose of the use of layers is to offer a visualisation and selection tool, but they are not used 

in the analysis.  

The system has the option of importing a geometry or mesh that has been created by a CAD 

program outside GiD; at present, this can be done via a DXF, IGES or NASTRAN interface.  

Once the geometry and attributes have been defined, the mesh can be generated using the mesh 

generation tools supplied within the system. Structured and unstructured meshes containing 

triangular and quadrilateral surface meshes or tetrahedral and hexahedral volume meshes may 

be generated. The automatic mesh generation facility utilizes a background mesh concept for 

which the users are required to supply a minimum number of parameters.  

Simulations are carried out by using the calculate menu. The final stage of graphic 

visualisation is flexible in order to allow the users to critically evaluate the results quickly and 

easily. The menu items are generally determined by the results supplied by the solver module: 

this not only reduces the amount of information stored but also allows a certain degree of user 

customisation. The post solver interface may be included fully into the system so that it runs 

automatically once the simulation run has terminated. 
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I.3. USING THIS MANUAL 

This User Manual has been split into several differentiated parts. The part, THEORETICAL 

ASPECTS, contains the theoretical basis of CODE_BRIGHT, and the numerical solution. In 

CODE_BRIGHT. PREPROCESS. PROBLEM DATA, it is described how to enter the data 

of the problem, i. e. general data, constitutive laws, boundary conditions, initial conditions and 

interval data. The referred as CODE_BRIGHT. PROCESS is related to the calculation 

process. This part also contains the description of input files. The part, CODE_BRIGHT. 

CONSTITUTIVE LAWS contains a description of hydraulic, thermal and mechanical 

constitutive laws and phase properties. Finally, CODE_BRIGHT. TUTORIAL, introduces 

guided examples for a fast and easy familiarization with the system.  

___________________________________  
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II. CODE_BRIGHT. PRE-PROCESS. PROBLEM DATA. 

 

Problem data include all the parameters, conditions (see section Conditions), materials 

properties (see section Materials), problem data (see section Problem Data) and intervals data 

(see section Interval Data) that define the project. Conditions and materials should be assigned 

to geometrical entities.  

 

II.1. PROBLEM TYPE  

This option permits to select among all available problem types. When selecting a new problem 

type, all information about materials, conditions and other that has already been selected or 

defined will be lost. Select CODE_BRIGHT. If an existing project has been created with an old 

version of CODE_BRIGHT, use the option ‘Transform to new problem type’ and 

data will be converted to update the problem type. Be aware in some cases some information 

may be lost, which would be indicated in a window that appears in the screen. 

 

  

II.2. CODE_BRIGHT INTERFACE  

CODE_BRIGHT program reads data from two files: ROOT_GEN.DAT and ROOT_GRI.DAT. 

These files are identified by the ROOT argument (previously read in a file called ROOT.DAT). 

The information data files are structured in 'Cards' which are described in CODE_BRIGHT. 

PROCESS: ‘Data files’. Working into CODE_BRIGHT interface, the information needs to be 

introduced in a four concept scheme:  

Interface (inputs) 

CONDITIONS 

MATERIALS 

PROBLEM DATA 

INTERVAL DATA 

Information Data Files (numerical program) 

(File structure - obtained with CALCULATE) 

ROOT.DAT 

ROOT_GEN.DAT 

ROOT_GRI.DAT 

In order to build the data files ROOT_GEN.DAT and ROOT_GRI.DAT, data is introduced into 

several window statements associated with these concepts (interface inputs).  

Once the geometry has been prepared, it is necessary to go through the different Interface steps, 

i.e. PROBLEM DATA, MATERIALS, CONDITIONS, and INTERVAL DATA. See the 

tutorials for a guided introduction to the interface between GiD and CODE_BRIGHT. 

II.2.1. PROBLEM DATA  

Problem data include all data that is general to the problem. This means that it is not related to 

a geometrical entity and it does not change in every time interval. It can be entered with the 

command ProblemData or in the problem data window. If entered in a window, the data is 

not accepted until the button Accept is pressed. This data can be entered before or after 

meshing. A description of the problem data features can be found in the following tables:  
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GENERAL DATA  

Title of the problem Interface Default: Coupled problem in geological media 

Execution Only data file generation: ROOT_gen.dat and ROOT_gri.dat are built 

Full execution: Calculation with the finite element program 

CODE_BRIGHT is performed (default option) 

Backup 

(IMBACKUP in 

root_gen.dat) 

No Backup 

Save Last: Allows restart the calculation from the last time step computed. 

Information is saved in file root_save.dat 

Save All: Allows restart the calculation from any time step computed.  

Information is saved in different files root_tnum_save.dat for each interval data 

computed (tnum). To restart the calculation, rename the file root_tnum_save.dat 

to root_save.dat 

Axisymmetry 

(IAXISYM in 

root_gen.dat) 

No, Around y-axis 

In 2-D axisymmetry the principal stresses are: r (radial), y (axial),  

(circumferential) 

Gravity X (2-D and 3-D) component Interface Default: 0.0 

Gravity Y (3-D) component Interface Default: 0.0 

Gravity Y (2-D) or Z (3-D) component Interface Default: -9.81 

EQUATIONS SOLVED  

Stress equilibrium (unknown 

displacement u) (IOPTDISPL 

in root_gen.dat) 

Yes, No 

Updated lagrangian 

method (IUPDC in 

root_gen.dat) 

Yes, No. Updated lagrangian method, i.e. coordinates are modified after 

each time increment is solved. If deformations are very large, some 

elements may distort. If distortion is very large the volume of an element 

may become negative and the execution will terminate immediately. 

Mass balance of water (unknown liquid 

pressure Pl) (IOPTPL in root_gen.dat) 

Yes, No 

Constant Pl Constant liquid phase pressure for problems not including the 

mass balance of water equation 

Mass balance of air (unknown liquid 

pressure Pg) (IOPTPG in root_gen.dat) 

Yes, No 

Constant Pg Constant gas phase pressure for problems that do not include 

the equation of mass balance of air. Usually equal to 0.1 MPa. 

Dissolved air into liquid phase 

(IOPTXAL in root_gen.dat) 

Allowed, Not allowed 

Energy balance (unknown temperature)  

(IOPTTEMP in root_gen.dat) 

Yes, No 

Vapour into gas phase (IOPTXWG in 

root_gen.dat) 
Allowed, Not Allowed 

Constant Temp Constant temperature for problems that do not include the 

equation of energy balance. 

Mass balance of conservative species 

(unknown concentration) (IOPTXWS in 

root_gen.dat) 

Yes, No 
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Combinations of solving options are described below:  

Pl Pg T Variable 

1 0 0 Compressible water flow, one phase, one species, air is not considered. 

0 1 0 Compressible air flow, one phase, one species. 

0 0 1 Heat flow (only conduction). 

1 1 0 Two phase flow (liquid + gas), air dissolved permitted, vapour not permitted. 

1 0 1 Water two phase non-isothermal flow, vapour allowed, gas phase at constant 

pressure. 

0 1 1 Compressible non-isothermal gas flow, one phase, one species. 

1 1 1 Non-isothermal two phase (liquid + gas) flow, vapour and air dissolved are allowed. 

  

SOLUTION STRATEGY  

Epsilon (intermediate time for 

nonlinear functions) 

Position of intermediate time tk+ for matrix evaluation, i.e. the 

point where the non-linear functions are computed. (usual 

values: 0.5, 1). See details on Numerical Method. Default: 1.0 

Theta (intermediate time for 

implicit solution) 
Position of intermediate time tk+ for vector evaluation, i.e. the 

point where the equation is accomplished. Default: 1.0 

Time step control  

(ITIME in root_gen.dat) 

Default: 1 

0-4: Time step control based on N-R iterations: 

0: no time step prediction is performed. 

1: predicts time stepping according to a limit of 4 iterations. 

2: predicts time stepping according to a limit of 3 iterations. 

3: predicts time stepping according to a limit of 2 iterations. 

4: predicts time stepping according to a limit of 1 iteration. 

6-9: Time step control based on error estimation: 

6: controls time stepping by means of a prediction based on 

the relative error deviation in the variables (relative error 

lower than 0.01). 

7: same as 6 but with a tolerance equal to 0.001. 

8: same as 6 but with a tolerance equal to 0.0001. 

9: same as 6 but with a tolerance equal to 0.00001. 

Note: a time step control = 1 will always be considered for 

negative time. 

Max. number of iterations per 

time step  

(ITERMAX in root_gen.dat) 

Maximum number of Newton Raphson iterations per time 

step. If the prescribed value is reached, time step is reduced. 

Default: 10 

Solver type 

(ISOLVE in root_gen.dat) 

Direct: LU + BACK 

Iterative: Sparse + CGS 

Solver type = 

Iterative: Sparse + 

CGS 

Max number of solver iterations  Default: 5000 

Max abs solver error variable Default: 1.e-9 

Max abs solver error residual Default: 0 

Max rel solver error residual Default: 0 

Max threads parallel Default: 1 
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Elemental relative 

permeability 

computed from: 

(IOPTPC in 

root_gen.dat) 

Elemental suction (consistent approach) 

Average nodal degrees of saturation (default) 

Average nodal relative permeabilities 

Average nodal relative permeabilities (applies also for derivatives) 

Maximal nodal relative permeability 

Stress equilibrium 

(unknown 

displacement u) = yes 

Max Abs Displacement (m) 

(DELMXU in root_gen.dat) 

Maximum (absolute) displacement 
error tolerance (m). When correction 
of displacements (displacement 
difference between two iterations) is 
lower than this value, convergence has 
been achieved. Default: 1e-6 

Max Nod Bal Forces (MN) 

(DELFMX in root_gen.dat) 

Maximum nodal force balance error 
tolerance (MN). If the residual of 
forces in all nodes are lower than this 
value, convergence has been achieved. 
Default: 1e-10 

Displacement Iter Corr (m) 

(DUMX in root_gen.dat) 

Maximum displacement correction per 
iteration (m) (time increment is 
reduced if necessary). Default: 1e-1 

Mass balance of water 

(unknown liquid 

pressure Pl) = yes 

Max Abs Pl (MPa)  

(DELMXPL in root_gen.dat) 

Maximum (absolute) liquid pressure 
error tolerance (MPa). Default: 1e-3 

Max Nod Bal Forces (MN) 

(DELQWMX in root_gen.dat) 

Maximum nodal water mass balance 
error tolerance (kg/s). Default: 1e-10 

Pl Iter Corr (MPa)  

(DPLMX in root_gen.dat) 

Maximum liquid pressure correction 
per iteration (MPa) (time increment is 
reduced if necessary). Default: 1e-1 

Mass balance of air 

(unknown liquid 

pressure Pg) = yes 

Max Abs Pg (MPa) 

(DELMXPG in root_gen.dat) 

Maximum (absolute) gas pressure 
error tolerance (MPa). Default: 1e-3 

Max Nod Air Mass (kg/s) 

(DELQAMX in root_gen.dat) 

Maximum nodal air mass balance error 
tolerance (kg/s). Default: 1e-10 

Pg Iter Corr (MPa)  

(DPGMX in root_gen.dat) 

Maximum gas pressure correction per 
iteration (MPa) (time increment is 
reduced if necessary).  Default: 1e-1 

Energy balance 

(unknown 

temperature) = yes 

Max Abs Temp (C)  

(DELMXT in root_gen.dat) 

Maximum (absolute) temperature error 
tolerance (C). Default: 1e-3 

Max Nod Energy (J/s) 

(DELQMX in root_gen.dat) 

Maximum nodal energy balance error 
tolerance (J/s). Default: 1e-10 

Temp Iter Corr (C)  

(DTMX in root_gen.dat) 

Maximum temperature correction per 
iteration (C) (time increment is 
reduced if necessary). Default: 1e-1 

Mass balance of 

conservative species 

(unknown 

concentration) = yes 

Max Abs Solute  

(DELMXI in root_gen.dat) 

Maximum (absolute) concentration 
error tolerance. Default: 1e-3 

Max Nod Solute mass balance  

(DELIMX in root_gen.dat) 

Maximum nodal solute mass balance 
error tolerance. Default: 1e-10 

Solute Iter Corr  

(DIMX in root_gen.dat) 

Maximum solute concentration 
correction per iteration (time 
increment is reduced if necessary). 
Default: 1e-1   
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Comments regarding the use of tolerances 

In order to illustrate the use of tolerances the thermal problem is considered with the following 

tolerances: 

Max Abs Temp (C) T1 

Max Nod Energy (J/s) T2 

Temp Iter Corr (C) T3 

Convergence can be achieved in two ways: the one when T < T1 for all nodes (condition A) 

and the second when (qh < T2) also for all nodes (qh represents here the energy balance or 

residual at a node) (condition B). 

It is to be mentioned that convergence in terms of T and convergence in terms of qh should be 

reached simultaneously because the Newton - Raphson method is used. For this reason, the 

program stops the iteration process when one of the two conditions (A or B) is achieved.  

When more than one degrees of freedom are solved per node and one of the recomended options 

is used (convergence by variable OR residual), convergence in terms of variable or residual 

should be achieved by all the variables simultaneously. In other words, it is not possible that 

the mechanical problem converges by residual and the thermal problem converges by the 

variable.  

Finally, if (T > T3), time increment will be reduced. This parameter controls the accuracy of 

the solution in terms of how large time increments can be. A low value of T3 will force to use 

small time increments when large variations of temperature take place.  

 

 

OUTPUT  

Write 

numerical 

process 

information 

(IOWIT in 

root_gen.dat) 

Iteration information is written in file ROOT_GEN.OUT according to: 

NONE: no information about convergence is written. This option should be 

used if the user is very confident with the time discretization and not interested 

in details at every time step or problems with time increment reductions. 

Usually this happens when previous runs have shown that convergence and 

time discretization work very well. 

PARTIAL: partial information is written. Time intervals and time-values, 

number of iterations, CPU-time values, etc. are written. Convergence 

information (e.g. residuals) is only written if time increment reductions take 

place.  

ALL: all iteration information is written. Convergence information is written 

for all iterations and all time increments. This option may result in a very large 

file ROOT_GEN.OUT  
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Writing 

frequency 

(INTER in 

root_gen.dat) 

Writing results frequency in output files according to the number of time steps 

(positive integer value) or according to a given time increment (negative integer 

value). 

If it is positive, e.g. is set to 20, results for the complete mesh will be written 

only every 20 calculated time increments. 

If it is negative, then we can obtain the output values in a specified time: e.g. 

setting a value of -10 will produce output for 0, 10, 20, 30, … units of time. 

Note that you may need to set a suitable maximum time step in the interval data 

in order for this implementation to work well (the maximum time step should 

be around one order of magnitude lower than the writing time frequency). See 

Figures II.2.1a, b and c. 

  

 
Figure II.2.1a. Writing every 20 time steps (Writing frequency = 20). 

 
 

 
Figure II.2.1b. Writing every 100 time steps (Writing frequency = 100). 

Writing every  

20 time steps 

Writing every  

100 time steps 
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Figure II.2.1c. Writing every 10 days (Writing frequency = -10 and days selected  

in the interval data). 

 

 
 
 

OUTPUT 

(continuation) 

 

Write piezometric head  Yes, No 

Write boundary flow 

rates in additional file 

No (Defaul option) 

Use writing frequency 

Write all 

Write boundary 

reactions in additional 

file 

No (Defaul option) 

Use writing frequency 

Write all 

Output points 

(IOWCONTOURS in 

root_gen.dat) 

Nodes 

Gauss points: (Default option) 

Write all information 

(IWRALL in 

root_gen.dat) 

Yes (default option), No 

If No is selected, the following option appears: 

Separated output files (IPOLYFILES in root_gen.dat) : Yes, No 

and user go to Select output window.  

 

Writing every 10 days 

(input -10 as writting frequency  

when using days as time units) 
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SELECT OUTPUT  

(If Write all information=No) 

Select outputs option is necessary when working with complex problems in which separated output 

files are used to facilitate the post-processing. The following options are available: 

Write Displacements  

Write Liquid Pressure 

Write Gas Pressure 

Write Temperature 

Write solute concentration  

Write Halite Concentration  

Write Vapour Concentration  

Write Gas Density  

Write Dissolved air concentration  

Write Liq Density  

Write porosity   

Write Liquid Saturation Degree 

Write heat fluxes: qT   

Write liquid fluxes: qL   

Write gas fluxes: qG   

Write diffusive heat fluxes: iT   

Write diffusive water fluxes: iL   

Write diffusive air fluxes: iG   

Write diffusive solute fluxes: isolute   

Write Stresses   

Write Effective sStresses   

Write stress invariants 

Write strains   

Write strains invariants 

Write P0s TEP model 

History variables of Viscoplastic model 

History variables of Joint model  

History variables of Argillite model  

History variables of BExM model  

History variables of CASM model 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 

Yes, No 
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II.2.2. MATERIALS  

All materials must be defined from a generic material. The following steps show how to assign 

materials and do modifications:    

- Creating new materials: In order to create new materials, one should write a material 

name and complet the necessary constitutive laws and do an Accept Data to validate the 

data entered. It is necessary to create a material before assigning it on the geometry.  

- Assignment must respect hierarchical structure of entities (i.e. cannot assign a material 

on a line belonging to a surface that have just been identified with another material). This 

type of error may create conflicts.  

- Posterior modifications on the parameters of assigned materials do not require a re-

meshing process.  

- Material names: When introducing a name for a material, it is strongly recommended to 

avoid spaces or underscores (e.g. use mat1 instead mat_1 or mat 1). The use of spaces or 

underscores ( _ ) might create conflicts when the material is read. 

 

 

Constitutive Laws in CODE_BRIGHT 

Properties for materials can vary at each interval or mantain constant. Every constitutive law is 

defined with 3data types: 

• Number of intervals. A box near the constitutive law name should be used for this 

purpose. Usually parameters will be entered only for the first interval. 

• Each constitutive law is differentiated by the index ICL. For instance, ICL=6 is the 

retention curve. Groups of ICL are considered, for instance ICL=21 to 27 is used for the 

thermoelastoplastic model for unsaturated soils.   

• Parameters for constitutive law. A series of parameters should be entered for each 

constitutive law, these are: ITYCL, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10. The first one 

(ITYCL) is an integer that indicates which option among the available ones is used. For 

instance, thermal conductivity, permits different options depending the type of dependence of 

porosity and degree of saturation that is desired. P1 to P10 are numbers that correspond to 

parameters in a given equation.  

 

ITYCL P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

           

           

 

A number indicates the intervals where the law will be defined. This number fixes the number 

of lines for VALUES to be entered. Every Interval line assumes parameters of INTERVAL 

DATA according to the same order.  
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The following constitutive laws are available: 

HYDRAULIC AND 

THERMAL CONSTITUTIVE 

MODELS (a) 

RETENTION CURVE  

INTRINSIC PERMEABILITY  

LIQUID PHASE RELATIVE 

PERMEABILITY  

GAS PHASE RELATIVE 

PERMEABILITY  

DIFFUSIVE FLUXES OF MASS  

DISPERSIVE FLUXES OF 

MASS AND ENERGY  

CONDUCTIVE FLUX OF HEAT 

MECHANICAL CONSTITUTIVE MODELS 

 

ELASTICITY (b) 

NONLINEAR ELASTICITY (b) 

VISCOPLASTICITY FOR SALINE MATERIALS 

(b)  

VISCOPLASTICITY FOR SATURATED SOILS 

AND ROCKS (b) 

VISCOPLASTICITY - GENERAL (b) 

DAMAGE-ELASTOPLASTIC MODEL FOR 

ARGILLACEOUS ROCKS (c) 

THERMOELASTOPLASTIC MODEL FOR SOILS 

(d) 

BARCELONA EXPANSIVE MODEL FOR SOILS 

(e) 

CASM’s FAMILY MODELS (f) 

PHASE PROPERTIES (a) 

SOLID PHASE PROPERTIES 

LIQUID PHASE PROPERTIES 

GAS PHASE PROPERTIES 

EXCAVATION PROCESS (g) 

 

Description of each law is included in Chapter VI. 

Assign material  

With this instruction, the material is assigned to the selected entities. If assigning from a 

window, every time the assigned material changes, the button Assign must be pressed again.  

The user must select the entity on which to assign the materials, i.e.: line, surface or 

volume when working in geometry mode or directly over the elements when working in 

mesh mode. It is recommended to assign the materials on the geometry entities rather than on 

the elements. 

If assigning from the command line, option UnAssignMat erases all the assignments of this 

particular material.  

When a mesh has been already generated, and changes in the assigned materials are required, 

then it is necessary to re-mesh again or assign the materials directly on the mesh. 

 

Draw material  

Draws a color indicating the selected material for all the entities that have the required material 

assigned. It is possible to draw just one or draw all materials. To select some of them the users 

should use a:b and all material numbers that lie between a and b will be drawn.  

When drawing materials in 3 dimensions, it may be necessary to change the viewing mode to 

polygons or render (see section Render) to diferenciate the front and back of the objects. 

 

Unassign material  

Command Unassign unassigns all the materials from all the entities. For only one material, 

use UnAssignMat (see section Assign material). 
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New material  

When the command NewMaterial is used, a new material is created taking an existing 

one as a base material. Base material means that the new one will have the same fields as the 

base one. Then, all the new values for the fields can be entered in the command line. It is 

possible to redefine an existing material.  

To create a new material or redefine an existing one in the materials window, write a new name 

or the same one and change some of the properties. Then push the command Accept. 

Element types in CODE_BRIGHT  

When an element is selected to generate a finite element mesh it has to be available in 

CODE_BRIGHT. The types of elements available in CODE_BRIGHT are: 

DIM=2 

  

  

TYPE 1 

Linear triangle: mainly used in flow problems, i.e. when the 

mechanical problem is not solved. Linear triangles are not 

adequate for incompressible media. Analytical integration. 

TYPE 12 
Quadratic triangle. Corner nodes: 1, 2, 3; side nodes: 4, 5, 6. 

Numerical integration with 3 internal points. 

TYPE 5 

Linear quadrilateral. Selective integration by means the 

modification of the matrix B (Hughes, 1980). This avoids 

locking when the medium is highly uncompressible. Numerical 

integration with 4 points (recommended quadrilateral element). 

TYPE 16 Zero thickness or joint element. 

TYPE 8 
Segment with a default thickness of 0.001 m and a default 

porosity of 0.9. 

DIM=3 

TYPE 1 

Linear tetrahedron. Analytical integration. 

For n1 ≠ n2 ≠ n3 = n4 a triangular element is recovered.   

A default thickness of 0.001 m is considered. 

TYPE 26 Linear triangular prism. Numerical integration with 6 points. 

TYPE 3 
Linear quadrilateral prism element. Numerical integration 

(selective) with 8 points. 

 
TYPE 33 

Quadratic tetrahedron. Numerical integration with 4 integration 

points. 

These types of elements are assigned by the interface between GiD and CODE_BRIGHT. 

Note that linear triangular elements or linear tetrahedrons, which have been proven to be very 

adequate for flow problems, should be avoided for mechanical problems. This is because if the 

medium is nearly-incompressible (creep of rocks takes place with very small volumetric 

deformation), locking takes place (not all displacements are permitted due to element 

restrictions).  
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II.2.3. CONDITIONS 

 

Conditions are all the properties of a problem –excluding materials– that can be assigned to an 

entity. In this concept several types of conditions have been included: Force/displacement 

conditions, flux conditions, initial unknowns, porosity (and other variables), initial stress, joint 

element width, time evolution location, etc. The condition window permits to choose entities 

to assign on (Point, Line, Surface or Volume in geometry display mode; and Node or Element 

in mesh display mode) and select different types of conditions. It must be taken into account 

that conditions assigned in mesh display mode will be unassigned in every new meshing 

process.  

In addition, the following points should be taken into account:  

• Force/displacement conditions add up all conditions assigned at every node, except for 

variables Index (takes last value encountered) and Multiplier (takes the biggest).  

• Flux conditions, initial unknowns, porosity (and other variables), initial stress and joint 

element width are assigned with entities priority from lower to higher level i.e. in the following 

order: Points, Lines, Surfaces and Volumes (i.e. the node takes a Flux_Point_B.C. refusing a 

Line_Flux_B.C. assigned previously). 

• When dealing with nodes shared by entities of the same level (e.g. surfaces) with different 

initial values, it is recommended –especially in the case of thin interfaces– to assign initial 

conditions on the entities containing those shared nodes (e.g. lines), so we are able to effectively 

control the initial values on those nodes.  

If a mesh has already been generated, for any change in the condition assignments, it is 

necessary to re-mesh again to transfer these new conditions to the mesh.  

 

 
 

 

Conditions description 

II.2.3.1 Force/displacement conditions 

The mechanical boundary conditions only exist if the mechanical problem is solved (Solve 

displacement). For each time interval only the types that undergo changes should be read.  

 

X direction force/stress Value in MN or MN/m2 = MPa 

Y direction force/stress Value in MN or MN/m2 = MPa 

Z direction force/stress Value in MN or MN/m2 = MPa 
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X displacement rate prescribed Value in m/s 

Y displacement rate prescribed Value in m/s 

Z displacement rate prescribed Value in m/s 

X direction prescribed 

When selected, displacement rate will be 

prescribed in the X direction. Its value is 

given in the cells above. 

Y direction prescribed 

When selected, displacement rate will be 

prescribed in the Y direction. Its value is 

given in the cells above. 

Z direction prescribed 

When selected, displacement rate will be 

prescribed in the Z direction. Its value is 

given in the cells above. 

 (multiplier) 

The units of this parameter depend on 

whether force or stress is applied: 

When applying a force: 
 MN
 m 

 

When applying a stress: 
 MPa
 m 

 

fx
o obtained as ramp loading 

during the current interval. 
 

fy
o obtained as ramp loading 

during the current interval. 
 

fz
o obtained as ramp loading 

during the current interval. 
 

 

The general boundary condition is applied by means a forces/stresses computed as: 

( )

( )

( )

0

0

0

o

x x x x

o

y y y y

o

z z z z

f f u u t

f f u u t

f f u u t







= + − 

= + − 

= + − 

 

This condition incorporates a von Newman type boundary condition plus a Cauchy type 

boundary condition. A very large value of  can be used to impose a fixed displacement rate. If 

displacement rate is zero ( 0
0u = ) and  is very large, displacement is not permited in that 

direction.   

If  is insufficiently large, however, the prescription of the displacement rate will be inaccurate. 

On the contrary, extremely large values can cause matrix ill conditioning. Each specific 

problem requires an adjusted value if displacement rate should be prescribed. 

Depending on the geometric entity on which the condition should be applied, the following 

options are encountered: 

 

Points (2-D or 3-D) Lines (usually 2-D) Surfaces (usually 3-D) Volumes (3-D) 

Forces Forces 

Boundary stresses 

Forces 

Boundary stresses 

Forces 
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II.2.3.2 Flux Boundary Condition  

Mass or heat transport problems. These conditions only exist if any balance (water, air, energy 

flow) problem is solved. For each time interval, only the types that undergo changes need to be 

read. 

The boundary condition is incorporated by adding a flux or flow rate. The mass flux or flow 

rate of species i = w as a component of phase  = g (i.e. the inflow or outflow of vapour) is 

calculated as: 

( ) ( ) ( ) ( ) ( )j j P Pg

w

g

w

g g

w

g g g g g g

w

g g

w
= + − + −



 


       

0
0

0
0

0

  

where the superscript 0 stands for the prescribed values,  is mass fraction,  is density, Pg is 

gas pressure, jg
0 is a prescribed gas flow and g and g are two parameters of the boundary 

condition. Particular cases of this boundary condition are obtained for instance in the following 

way: 

Description (g
w)0 jg

0 
 g Pg0 

(g) g 

A prescribed mass flow rate of gas with 0.02 kg/kg of 

vapor and 0.98 kg/kg of air is injected 

0.02 1e-5 

kg/s 

    

If Pg < Pg0 = 0.1 => a variable mass flow rate of gas 

with 0.02 kg/kg of vapor and 0.98 kg/kg of air is 

injected.  

If Pg < Pg0 = 0.1 => a variable mass flow rate of gas 

with variable composition outflows. 

0.02  10 0.1   

Humidity in the boundary is prescribed to 0.0112 

kg/m3. This is equivalent to a relative humidity of 

0.0112/0.0255  = 0.44 = 44% 

0.01    1.12  10 

Vapour pressure at T = 27 oC is calculated as: 

136075exp( 5239.7 /(273 )) 0.003536 MPa = 3536 Pavp T= − + =  

and the corresponding density is: 

33536Pa 0.018 kg/mol
0.02551 kg/m

(273 ) 8.3143 J/mol/K (273 27)K

v
v

p M

R T


 = = =

+  +
 

Associated to the same parameters but for component air, the following equation can be written: 

( ) ( ) ( ) ( ) ( )( )
0 0 0

0 0a a a a a

g g g g g g g g g g g gj j P P=  +   − +    −     

where:  

( ) ( )
0 0

1
a w

g g = −   

which comes from the mass fraction definition. 

On the other hand, for liquid phase a similar set of equations can be considered. These are: 

( ) ( ) ( ) ( ) ( )( )
0 0 0

0 0a a a a a

l l l l l l l l l l l lj j P P=  +   − +    −    

( ) ( ) ( ) ( ) ( )( )
0 0 0

0 0w w w w w

l l l l l l l l l l l lj j P P=  +   − +    −    

( ) ( )
0 0

1
w a

l l
 = −   
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Positive values of mass flow rate indicate injection into the medium.   

For energy, the boundary condition has the general form: 

( ) ...)(
00

++−+=
w

g

w

geee jETTjj   

In other words, a von Newman type term plus a Cauchy type term and a series of terms that 

represent the energy transfer caused by mass inflow and outflow through the boundary. 

The set of parameters that are required for these equations are (note that the symbols used by 

Gerard et al., 2009, are not the same): 

 

g
w Prescribed mass fraction (kg/kg) 

jg Prescribed gas flow rate* 

 jg Prescribed increment of jg during the time step* 

Pg Prescribed gas pressure (MPa) 

 Pg Prescribed increment of Pg during the time step (MPa) 

g Parameter for gas pressure term* 

g  Parameter for humidity term* 

g Prescribed gas density (kg/m3) 

 

l 
h Prescribed solute concentration (kg/kg) 

l 
a Prescribed mass fraction of air (kg/kg) 

jl Prescribed liquid flow rate* 

 jl Prescribed increment of jl during the time step* 

Pl Prescribed liquid pressure (MPa) 

 Pl Prescribed increment of Pl during the time step (MPa) 

l Parameter needed to be  0 when Pl  is prescribed* 

l Parameter needed only when mass transport problem is considered* 

l Prescribed liquid density (kg/m3) 

 

je Prescribed heat flow rate* 

 je Prescribed increment of je
* 

T Prescribed temperature (C) 

 T Prescribed increment of T during the time step (C) 

e Parameter needed to be  0 when T  is prescribed* 

e Positive values: [ je = je  exp (-abs (e) t) ] is used (1/s).   

Negative values: [ je = je t
-abs(e) ] is used (1/s).  

 Parameter for smoothing the seepage condition (outflow of water 

only) boundary condition.  
 
* Units depend on problem dimension and parameter index. See Table II.2.1 (below) with a 

summary of the units for each case. 



22 

For a positive value of  a parabolic curve is used; for a negative value an exponentially 

decaying curve is used.  is the distance from the reference pressure to the point of change.  

 

Index 

(auxiliary 

index) 

→ +1.0 means that all flow rates are nodal values. For instance, 

a pumping well boundary condition. 

→ -1.0 means that all flow rates are per unit volume (3-D), area 

(2-D) or length (1-D) of medium (internal source or 

sink). For instance, a recharge due to rain in a 2-D case. 

→ +2.0 means that all flow rates are per unit area (3-D) or 

length (2-D) (lateral fluxes). For instance, lateral fluxes 

from neighbour aquifers.   

 

Prescribed gas, liquid and heat flows must be given in terms of flow units depending on the 

way these flows are considered, i.e., depending on the kind of element they pass through and 

on the problem dimension. The required units for each case are graphically specified below: 

INDEX 

PARAMETER 

PROBLEM 

DIMENSION 
ILLUSTRATION FLOW UNITS 

Index = 1.0 3-D  

 

 

 

Mass:             
kg

s
 

Heat:               
J

s
 

2-D 

 
Mass:             

kg

s
 

Heat:               
J

s
 

1-D  

 Mass:             
kg

s
 

Heat:               
J

s
 

Index = -1.0 3-D  

Mass:            
kg

m3 s
 

Heat:             
J

m3 s
 

2-D  
Mass:            

kg

m2 s
 

Heat:             
J

m2 s
 

1-D  

 Mass:             
kg

m s
 

Heat:              
J

m s
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Index = 2.0 3-D  

 Mass:          
kg

m2 s
 

Heat:           
J

m2 s
 

2-D  
Mass:            

kg

m s
 

Heat:             
J

m s
 

  

Table II.2.1. Summary of units used for different variables, 

depending on problem dimension and parameter index 

index 
Problem 

dimension 

Required units 

Gas 

flow 

rate jg 

Liquid 

flow 

rate jl 

Parameters 

g and l 

Parameters 

g and l 

Heat 

flow 

rate je 

Parameter 

e 

1.0 --- 
kg

s
 

kg

s
 

 kg 

 s MPa 
 

m3

 s 
 

J

s
 

 J 

 s C 
 

-1.0 

1D 
kg

m s
 

kg

m s
 

 kg 

m s MPa
 

m3

m s 
=

m2

 s 
 

J

ms
 

 J 

 m s C 
 

2D 
kg

m2 s
 

kg

m2 s
 

 kg 

m2 s MPa
 

m3

m2 s 
=

 m 

 s 
 

J

 m2 s
 

 J 

 m2 s C 
 

3D 
kg

 m3 s 
 

kg

 m3 s 
 

 kg 

m3 s MPa
 

m3

m3 s 
=

 1 

 s 
 

J

 m3 s 
 

 J 

 m3 s C 
 

2.0 

2D 
kg

m s
 

kg

m s
 

 kg 

m s MPa
 

m3

m s 
=

m2

 s 
 

J

m s
 

 J 

 m s C 
 

3D 
kg

m2 s
 

kg

m2 s
 

 kg 

m2 s MPa
 

m3

m2 s 
=

 m 

 s 
 

J

m2 s
 

 J 

 m2 s C 
 

The fact that units are different for 3D, 2D and 1D is due to the reduction of one dimension in 

2D and two dimensions in 1D. However, if a 2D model is considered to have 1 m associated 

thickness, then units would be identical as in 3D. Similarly, if a 1D model is considered to have 

1 m2 associated surface then units would be identical as in 3D. 

The above boundary conditions are rather general. They incorporate terms of von Newman type 

and Cauchy type. The equation includes three terms. The first one is the mass inflow or outflow 

that takes place when a flow rate is prescribed at a node. The second term is the mass inflow or 

outflow that takes place when a phase pressure is prescribed at a node. The coefficient  is a 

leakage coefficient. This variable allows prescribing a pressure with more or less strength. If  

is very large, pressure will tend to reach the prescribed value (see Figures II.2.2 and II.2.3). 

However, an extremely large value can produce matrix ill conditioning and a lower one can 

produce inaccuracy in prescribing the pressure. However, it is not difficult to guess adequate 
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values for a given problem simply by trial. The third term is the mass inflow or outflow that 

takes place when species mass fraction is prescribed at a node.  

A surface where seepage (only outflow for liquid phase is permitted) is a case that may be of 

interest. To indicate that only outflow is permitted l is entered with negative sign. This negative 

sign only indicates that nodes with this kind of boundary condition allow seepage (i.e. only 

outflow).  

If there is inflow of gas or liquid phase, it is very important to give values of the following 

variables: (g
w)

o
, (l

a)
o
, (l)

o
, (g)

o
 and T 

o
. Otherwise, they are assumed to be zero, which is 

not correct because they will be too far from equilibrium. If outflow takes place, this is not 

relevant because the values of the medium are used instead of the prescribed ones.  

 

  

qi 

Pi 

P
o
i 

i 

1.0 

outflow 

inflow 

i > 0 

Figure II.2.2 

Figure II.2.3 

qi 

Pi 

P
o
i 

outflow 

inflow 

i < 0 

 

i 

1.0 
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Boundary conditions variable with time. 

a) One boundary condition variable with time. 

It is possible to assign a flux condition varying with time using an auxiliary file. In this case, 

the user must assign a value of -999 to the particular variable for which a given variation wants 

to be assigned and include an ASCII file called “root_bcf.dat” in the GiD project folder with 

the variation with time of the given flux variable. The structure of the “root_bcf.dat” file is 

illustrated in Table II.2.2. Note that with root we mean the root name of the project: for example, 

if our project is DAM.gid then the file should be named DAM_bcf.dat. 

Table II.2.2. Illustration of the format of the root_bcf.dat file 

Number of data (N)     

Number of Flux 

variables (NF) 

Id. variable (1) Id. variable (2) … Id. variable (NF) 

Time (1) Value  Value  … Value  

Time (2) Value  Value  … Value  

… … … … … 

Time (N) Value  Value  … Value  

It should be noted that the first line of the root_bcf.dat file must contain the number of data (N) 

that has to be read. The first column of the second line refers to the number of flux variables 

(NF) for which a given variation with time want to be assigned. The other columns of the second 

line contain a special flag (or indicator) of the flux variables to be changed. This indicator is 

shown in Table II.2.3. The following lines (from third to N) contain the time in the same unit 

considered at the interval data (in the first column) and the values of the flux variables assigned 

to the specific time (in the other columns). 

Table II.2.3. Identification number (Id.) of the flux variables 

Id. Flux variable 

1 g
w prescribed mass fraction (kg/kg) 

2 jg  prescribed gas flow rate (units in Table II.2.1) 

3 Pg  prescribed gas pressure (MPa) 

4 g  parameter for gas pressure term (units in Table II.2.1) 

5 g  parameter for humidity term (units in Table II.2.1) 

6 g prescribed gas density (kg/m3) 

7 l
w prescribed mass fraction of solute (kg/kg) 

8 l
a prescribed mass fraction of air (kg/kg) 

9 jl  prescribed liquid flow rate (units in Table II.2.1) 

10 Pl  prescribed liquid pressure (MPa) 

11 l parameter needed to be  ≠ 0 when Pl is prescribed (units in Table II.2.1) 

12 l parameter needed only when mass transport problem is considered (Table II.2.1) 

13 l prescribed liquid density (kg/m3) 

14 je prescribed heat flow rate (units in Table II.2.1) 

15 T prescribed temperature (C) 

16 e parameter needed to be ≠ 0 when T is prescribed (units in Table II.2.1) 
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b) Multiple boundary conditions variable with time. 

For a value in a flux boundary condition that varies with time according to a function of time 

(list of values) the following actions have to be taken: 

• Set de value of the variable equal to -99901.  

• If you have more values for the same boundary condition or in another boundary condition, 

use the values -99902, -99903 up to -99999 if necessary. 

• Prepare a file (root_bcf.dat) with the following structure: 

- First row: m, number of data values to be read (lines). 

- Second row:  –n  1   2   3  …  n  where n ≤ 99 number of variables that change with time. 

- m rows with time_1  value_1    time_2  value_2  …  time_n  value_n. 

 

II.2.3.3 Atmospheric boundary conditions module in CODE_BRIGHT 

Introduction 

Within Flux Boundary conditions in CODE_BRIGHT, the particular case of atmospheric 

boundary conditions1 is eligible. These conditions encompass mass and heat conditions (in 

terms of atmospheric data) and supposes that mass and heat transport problems are to be solved. 

Atmospheric conditions are accessible from the “Flow rate” combo box in GiD or setting 

index=5 (and giving the parameters as described in Table II.2.4) in CardGroup 20. 

Atmospheric boundary condition option allows to impose boundary conditions in terms of 

evaporation, rainfall, radiation and heat exchanges thus simulating the complex soil-atmosphere 

interactions. These phenomena are expressed as flux boundary conditions for the three 

components (water, air and energy) as functions of the state variables (liquid pressure, gas 

pressure and temperature of the soil) or dependent variables (liquid saturation degree, fraction 

of water in the gas phase) and meteorological data that vary in time (atmospheric temperature 

and pressure, relative humidity, solar radiation, cloud index, rainfall and wind velocity). 

Conventions used in this paper are: 

• a filename is typed in an italic shaped font, 

• a subroutine name or a variable is typed using Courier font, 

• a filename in parentheses after a subroutine name refers to the file in which the subroutine 

is implemented. 

 

 

Overview of the module 

The file bcond_atmos.f  contains 3 subroutines: 

• atmosferic_boundary_condition 

• get_atm_data 

• sun 

Figure 4 presents a general algorithm of atmosferic_boundary_condition 

subroutine. 

 

                                                 

1The first implementation of this module is due to Maarten Saaltink. 
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The calls to atmosferic_boundary_condition subroutine appear in the following 

subroutines: 

• atm_boundary_conditions (bcond_flow.f) itself called by newton_raphson 

(nr.f) 

• write_boundary_flows (write.f) itself called by main_calculate 

(code_bright_main.f) 

Running atmosferic_boundary_condition needs index=52 as boundary condition 

type, this latter being passed in FLUX(20). FLUX vector is read from file root_gen.dat by 

read_boundary_conditions (read_general.f). The index of this file is iin1 (the 

concerned card is numbered 20). 

It should be noted that flow rates computed by the atmosferic_boundary_condition 

subroutine are then treated as if index = 2.0 (used in classic flux boundary conditions) 

were set i.e. as if flow rates are per unit area. 

 

 

Figure II.2.4: General algorithm of atmosferic_boundary_condition. 

 

(*) Subroutine sun is called if and only if ISUN 1. 

 

 

                                                 
2This variable is locally called ICON. 

call get_atm_data 

flux of gas 

flux of water 

evaporation 

vapour via gas 

vapour via liquid flux of air 

energy flux 

per radiation 

per advection 

per convection 

call sun write to output 

BEGIN 

END 

(*) 
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Input data 

Problem data definition file (root_gen.dat) 

When atmospheric boundary conditions are considered, the parameters presented in Table II.2.4 

have to be entered in CardGroup 20 in file root_gen.dat. These conditions are activated via 

FL20, which should be set to 5. In Table II.2.4, latitude, time when autumn begins, time at 

noon, dry and wet albedos are used for calculating radiation when radiation type is lower than 

3. 

Roughness length, screen height and stability factor are used for evaporation estimation and for 

estimation of the advective energy flux.  

Table II.2.4: Parameters to be entered in CardGroup 20. 

FL1 Latitude (rad), λ 

FL2 Time when autumn starts (s), ts 

FL3 Time at noon (s), tm 

FL4 Roughness length (m), z0 

FL5 Screen height (m), za 

FL6 Stability factor (-),  

FL7 Atmospheric gas density (kg.m-3), ga 

FL8 Dry albedo (-), Ad 

FL9 Wet albedo (-), Aw 

FL10 Gas leakage coefficient (kg.m-2.s-1.MPa-1), γg 

FL11 Liquid leakage coefficient (kg.m-2.s-1.MPa-1), γl 

FL12 Factor with which rain is multiplied (-), krain 

FL13 Factor with which radiation is multiplied (-), krad 

FL14 Factor with which evaporation is multiplied (-), kevap 

FL15 Dip (rad) 

FL16 Strike (rad) 

FL17 Unused 

FL18 Unused 

FL19 = 0.0: radiation is calculated (see section 0) 

= 3.0: radiation data are read from input file root_atm.dat 

FL20 index=5 means atmospheric boundary conditions 

 

Table II.2.5 presents ranges of roughness lengths for different types of surfaces from which 

evaporation has to be calculated. 

Table II.2.5: Roughness lengths for different types of surfaces after Chow et al. (1988). 

Type of surface Height main roughness (m) 

Ice, mud flats 1.10-5 

Water 1.10-4 – 6.10-4 

Grass (up to 10 cm high) 1.10-3 – 2.10-2 

Grass (10 to 50 cm high) 2.10-2 – 5.10-2 

Vegetation (1–2 m) 0.2 

Trees (10 – 15 m) 0.4 – 0.7 
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Atmospheric data input file (root_atm.dat) 

General parameters are to be entered in the problem data file (see CardGroup 20 description 

here above) but time varying atmospheric data which are required to compute mass and heat 

fluxes should be entered within an ASCII file called root_atm.dat3. Data that can be read is 

summarized in Table II.2.6. 

For each variable, the pair of columns containing available data is organised is the way 

schematically presented in Table II.2.4. More details about this file and time varying 

atmospheric data are given is section 0, dedicated to get_atm_data subroutine.  

 

Figure II.2.5: Screenshot of GID atmospheric boundary conditions window. 

                                                 
3The file root_atm.dat is read with a free format. A dedicated tool developed by J.M. Pereira 

(atmdata.exe) can be used to check its general format. 

4In this table, light grey and bold grey cells respectively identify measured data and unused data 

(the former being constituted of time (ti) and corresponding values (xi) pairs for each quantity). 
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Table II.2.6: Time varying atmospheric data to be provided in file root_atm.dat. 

Data Unit 

Atmospheric temperature, Ta °C 

Atmospheric gas pressure, Pga MPa 

Relative humidity, Hr - 

Radiation5, Rm J m-2 s-1 

Cloud index6, In - 

Rainfall, P kg m-2 s-1 

Wind velocity, va m s-1 

Long wave Radiation7, Rl J m-2 s-1 

Atmospheric transmissivity8, a  - 

Table II.2.7: Illustration of the format of root_atm.dat file (excluding first line). 

 Ta Pga Hr Rm In P va  Rl  a 

Flag 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Annual mean 0 x_am 0 x_am 0 x_am 0 x_am 0 x_am 0 x_am 0 x_am 0 x_am 0 x_am 

Annual ampl 0 x_aa 0 x_aa 0 x_aa 0 x_aa 0 x_aa 0 x_aa 0 x_aa 0 x_aa 0 x_aa 

Annual gap (s) 0 x_ag 0 x_ag 0 x_ag 0 x_ag 0 x_ag 0 x_ag 0 x_ag 0 x_ag 0 x_ag 

Daily ampl 0 x_da 0 x_da 0 x_da 0 x_da 0 x_da 0 x_da 0 x_da 0 x_da 0 x_da 

Daily gap (s) 0 x_dg 0 x_dg 0 x_dg 0 x_dg 0 x_dg 0 x_dg 0 x_dg 0 x_dg 0 x_dg 

Unused 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Measures… ti xi ti xi ti xi ti xi ti xi ti xi ti xi ti xi ti xi 

Measures… ti xi ti xi ti xi ti xi ti xi ti xi ti xi ti xi ti xi 

Measures… ti xi ti xi ti xi ti xi ti xi ti xi ti xi ti xi ti xi 

Measures… ti xi ti xi ti xi ti xi ti xi ti xi ti xi ti xi ti xi 

Measures… … … … … … … … … … … … … … … … … … … 

 

                                                 
5Radiation data will be used only if “Radiation type” is different from ‘0’ or ‘1’ in the boundary 

conditions parameters.  Rm will be the net radiation measurements if “Radiation type” is set 

“3”, otherwise, if “Radiation type” is set to 2, 4 or 5 Rm will be the short wave (solar) radiation 

measurements. 

6Cloud index allows to account for a cloudy sky in the radiation computation (In = 1 for a clear 

sky and In = 0 for a completely cloudy sky). 

7Long wave (atmospheric) radiation data will be used only if “Radiation type” is set to 4 in the 

boundary conditions parameters.  

8Atmospheric transmissivity data will be used only if “Radiation type” is set to 0 or 1, or the 

atmospheric boundary condition is apply to a inclined surface (dip > 0, FLUX(15)).  

Atmospheric trasnmisivity expresses the amount of external radiation that is absorved by the 

atmosphere, it can be estimated from the relative sunshine hours as 𝜏𝑎 = 0.25 + 0.50 𝑛 𝑁⁄  , 

where n is the hours of sunshine and N the hours of daylinght. Or, 𝜏𝑎 can be estimated from the 

maximal (𝑇𝑎
𝑚𝑎𝑥) and minimal (𝑇𝑎

𝑚𝑖𝑛) daily temperatrure as 𝜏𝑎 = 𝐾ℎ√𝑇𝑎
𝑚𝑎𝑥 − 𝑇𝑎

𝑚𝑖𝑛 , where 

Kh is an empirical constant, Kh = 0.16 for interior and Kh = 0.19 for coastal regions. 
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It should be noted that the first line of the file root_atm.dat must contain the number of lines 

(excluding this one) and number of columns that has to be read. The second line refers to 

interpolation or simulation option: it corresponds to a special flag allowing the user to simulate 

the atmospheric data on the base of annual and daily characteristics that are furnished (see eq. 

(23)). This simulation will be processed if, for a given quantity, its flag is set to ‘0’. The values 

necessary to proceed to this simulation are provided in the 5 following lines and correspond to 

annual mean, amplitude and gap and daily amplitude and gap. On the contrary, if this flag is set 

to ‘1’, CODE_BRIGHT will use the measured data provided in the rest of the lines of the data 

file and process to linear interpolations in order to obtain the value of a quantity for a given 

calculation time. 

For atmospheric subroutines description, take a look at APPENDIX II.A. ATMOSPHERIC 

SUBROUTINES DESCRIPTION 

 

II.2.3.4 Initial Unknowns  

Initial values of the unknowns can be assigned on surfaces/volumes on the geometry. A constant 

or linear distribution is available. 

Distribution:   Constant / Linear 

Ux displacement  Value in m 

Uy displacement Value in m 

Uz displacement Value in m 

Liquid pressure: Pl Value in MPa 

Gas pressure: Pg Value in MPa 

Temperature: T Value in ºC 

Concentration  Value in kg/kg 

If distribution is linear, information about unknowns’ values at final point and the coordinates 

of the initial and final points are required. 

In case of nodes with multiple initial conditions assigned, the ones assigned into entities of 

higher levels prevail. It is recommended to assign the materials on the geometry entities, but 

it is also possible to assign them directly into mesh elements in case is needed. 

II.2.3.5 Initial porosity  

A constant initial value of porosity can be assigned on surfaces/volumes on the geometry. 

Porosity value should be less than 1. 

 

II.2.3.6 Initial stress 

Initial values of the stresses and history variables (depends on the type of mechanical 

constitutive model) can be assigned on surfaces/volumes on the geometry. A constant or linear 

distribution is available. 

Distribution:   Constant / Linear 

X stress Value in MPa 

Y stress Value in MPa 

Z stress Value in MPa 
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XY stress Value in MPa 

XZ stress Value in MPa 

YZ stress Value in MPa 

History variable 1 (depend on the constitutive model) 

History variable 2 (depend on the constitutive model) 

In chapter VI, the description of history variables required for elastoplastic and viscoplastic 

models is included. 

If distribution is linear, information about stresses and history variables values at final point 

and the coordinates of the initial and final points are required. 

 

II.2.3.7 Initial anisotropy. 

Transverse isotropy can be assigned on surfaces/volumes in a hydraulic, thermal and/or 

mechanical problem. The direction of orthotropic axis is indicated by the two angles shown in 

Figure II.2.9. Transformation is done from physical plane (global axes) to anisotropy directions 

(local axes). First rotation is around z axis and the second rotation is around the new y’ axis. 

For further help on how to model anisitropic properties please visit CODE_BRIGHT-Tutorial 

XVII in the Tutorial Manual. 

 
 

 
Figure II.2.9: Convention of reference axes for transverse isotropic material. 

First rotation: 

 (around z) 

 > 0 if directed from x to y 

 is the orientation of the dip with 

respect to y (usually the North) 

Second rotation: 

 (around y’) 

 > 0 if directed from z’ to x’ 

 is the inclination of dip with respect to 

the horizontal plane 
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Parameters of elastic transverse isotropy can be assigned trough the Damage-elastoplastic 

model for argillaceous rocks (ICL=71 to 79; see chapter VIc), while parameters of hydraulic 

transverse isotropy can be assigned trough the intrinsic permeability law (ICL=7; see chapter 

VIa). 

 

II.2.3.8 Time Evolution  

CODE_BRIGHT offers the user the possibility of registering the evolution with time of 

specified problem variables either at specific points and surfaces/volumes on the geometry, or 

at specific nodes and elements on the mesh. In case that nodes and elements are specified by 

the user, special care must be taken when remeshing, yet information regarding time evolution 

will be lost.  

The program does not admit more than 10 nodes and 10 elements (or, if the case, points and 

surfaces/volumes) for time evolution registration, whatever could be read from the introduced 

time evolution data. These data, on the other hand, have to be given to the program as referring 

to the first time interval of the problem.  

However, Post–process interface in GID has available the information of problem variables in 

all points/lines/surfaces/volumes of the geometry and nodes/elements of the mesh. Post–process 

offers the option to draw graphs of specified problem variables. Several graph types are 

available: point evolution against time, result 1 vs. result 2 over points, and result along a 

boundary line (see View results/graphs option of Post-process). It is possible to save or read a 

graph (see Files menu of Post-process). These advanced options of Post-process avoid the need 

to select specific points/surfaces/volumes in conditions for the time evolution, before to run the 

problem. 

Assigning priorities 

Conditions assigned on the geometry are distributed over the mesh with priorities. In general 

points have priority over lines, lines over surfaces and surfaces over volumes. At mesh level, 

nodes have priority over elements. 

Mechanical boundary conditions on high entities are superimposed when they are applied to a 

lower entity. This means, for instance in a 2-D case, that a point that belongs to two lines will 

have the combination of boundary conditions coming from these two lines. 

 

Assign condition 

A condition is assigned to the entities with the given field values. If assigning from the 

command AssignCond, the option Change allows the definition of the field values. Do not 

forget to change these values before assigning. Option DeleteAll erases all the assigned 

entities of this particular condition. Conditions can be assigned both on the geometry and on 

the mesh but it is convenient to assign them on the geometry and the conditions will then be 

transferred to the mesh. If conditions are assigned on the mesh, any remeshing will cause the 

conditions to be lost.  

Conditions that are to be attached to the boundary of the elements, are assigned to the elements 

and GiD searches the boundaries of the elements that are boundaries of the total mesh. Option 

Unassign inside AssignCond, permits to unassign this condition. It is also possible to 

unassign from only certain entities.  

If a mesh has already been generated, for any change in the condition assignments, it is 

necessary to re-mesh again.  
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Draw condition  

Option Draw all draws all the conditions assigned to all the entities in the graphical window. 

This means to draw a graphical symbol or condition number over every entity that has this 

condition. If one particular condition is selected, it is possible to choose between Draw and one 

of the fields. Draw is like Draw all but only for one particular condition. If one field is 

chosen, the value of this field is written over all the entities that have this condition assigned.  

When the condition has any field referred to the type of axes, the latters can be visualized by 

means of Draw local axes. 

 

Unassign condition  

In window mode, command UnAssign lets the user to choose between unassigning this 

condition from the entities that owe it or unassigning all the conditions or select some entities 

to unassign. In command mode UnAssing, do it for all the conditions. For only one condition, 

use command Delete All (see section Assign condition).  

 

Entities  

Create an information window with all entities assigned including values at every one. 
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II.2.4. INTERVALS DATA  

Intervals are a way to change some conditions and, eventually, material properties.  

Properties for materials can vary at each interval or remain constant. For a problem with several 

intervals, a window with more than one row can be used for each constitutive law (see figure 

below). Each row represents the properties for each interval. If the number of the current 

interval is higher than the number of rows, then the material will keep the properties of the last 

row. Usually, only the first line should be filled. The following lines may be left in blank if 

material properties are unchanged. 

ITYCL P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

           

           

 

Boundary conditions may vary at each interval or remain constant. For conditions the correct 

way to proceed is to define all the invariable conditions first (i.e. those that remain unchanged 

during all intervals). Then, it is allowed to define as many intervals as desired with the command 

NewInterval or update the conditions in different intervals using the command 

ChangeInterval. It is possible to define as many conditions as necessary into particular 

intervals. The conditions which have not been duplicated when creating new intervals, are only 

considered for their interval.  

Interval data parameters, decribe temporal limits and time steps for each interval. They can be 

entered with the command IntervalData or in the intervals data window. If entered in a 

window, the data is not accepted until button Accept is pressed. This data can be entered 

before or after meshing. 

Description  

INTERVAL DATA  

Units of time discretization 

 

Time units for defined interval. Options: Seconds, 

Minutes, Hours, Days, Weeks, Months, Years 

Initial Time (interval starts) 

(TIMEI in root_gen.dat) 

Initial time for the defined interval. 

Initial Time Step 

(DTIME in root_gen.dat) 

Initial time step for this time interval. 

Final Time (interval ends) 

(TIMEF in root_gen.dat) 

Final time for the defined interval. 

Intermediate Time  

(TIME1 in root_gen.dat) 

Time from which time increment is kept below the 

maximum allowed (advanced option). 

Maximum Time Step 

(DTIMEC in root_gen.dat) 

Maximum allowed time step constant value. 

Reset displacements to zero Yes / No 

This option puts displacement to zero at the first 

time step of the next time interval.  
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Using the advanced options, there is also possible to change the values of ‘epsilon’ or ‘time 

step control’ for a given interval (these two variables have been explained in chapter II.2.1). 

These changes will be mantained during the following intervals, unless the user explicitly 

change them. 

In 'Writing results frequency', the intermittence for writing results is defined, i.e. only after a 

given number of time steps the results will be written. This may cause inconveniences if the 

user desires the results at precisely fixed times (for instance: 6 months, 1 year, 2 year, etc.). 

Moreover, if something changes between two runs (e.g. boundary conditions) and any time 

increment should be modified, the value of the times in which results are output will not be 

identical between these two runs. In this case, it would be difficult to make a comparison of the 

two analyses because the output results correspond to different times.  

However, it is possible to decide the values of the times for output using a sequence of 

consecutive intervals. In this way, the results will be output for all 'Final time' defined, and if 

the user is only interested in these fixed times a very large value may be used for 'Writing results 

frequency' to avoid output at other times. Alternatively, this could be solved using a negative 

‘writing frequency’ (see section II.2.1). 

 

_________________________________ 
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III.CODE_BRIGHT. PROCESS 

III.1. CALCULATE  

This part deals with the stage of the process that solves the numerical problem. The system 

would allow calling the Finite Element program without necessity of leaving from the work 

environment. Pressing Calculate the user can see a Process window, and clicking on Start 

the solver module runs.  

The option Calculate from the beginning is useful in case that you need to calculate 

the project from the beginning (without using the saved files created in a previous calculate 

process). WARNING: Calculate from the beginning option will erase all the save 

type files from the working directory. 

III.2. DATA FILES  

If the solver program is required to be run outside GiD enviroment, i.e. in another computer or 

the user needs to check the data input for calculations; it is posible to see the data files. In the 

work directory there are the followings files:  
• Root.dat 
• ROOT_GEN.DAT 
• ROOT_GRI.DAT 

from which the program CODE_BRIGHT reads all the necessary data.   

The name of these two files is composed by the extension .DAT which indicates that these files 

contain input data, a suffix (_GEN or _GRI) that follows the ROOT and which indicates a file 

with general information and a file with grid information, and a ROOT which is a name assigned 

by the user. The ROOT is previously read in a file called ROOT.DAT. For a run with another 

problem only this ROOT.DAT file must be changed and the files of the new problem will be 

used.  

III.3. GENERAL INFORMATION FILE ‘ROOT_GEN.DAT’ 

See APPENDIX III.A. 

 

III.4. GEOMETRICAL DESCRIPTION FILE: ROOT_GRI.DAT  

See APPENDIX III.B.  
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III.5. SUMMARY-LIST OF CARDS  

This section contains the list of Cards with the variables that are read in each one.  

 

File ROOT_GEN.DAT 

Card 1. Problem HEAD 

Card 2. Dimensions and 

options 

NUMNP, NUMEL, NDIM, IAXISYM, NUMMAT, NHV 

Card 3.  Dimensions and 

options 

MXDIFN, MBANDT, MFRONTH, NDF, MNVAL, ISOLVE 

Card 4. Dimension 

boundary conditions 

NFDTYPE, NFLUXTYPE 

Card 5. Options. 

Unknowns to be calculated 

IOPTDISPL, IOPTPL, IOPTPG, IOPTTEMP, IOPTXWS 

Card 6. Other options IOPTXHL, IUPDPOR, IOPTXWG, IOPTXAL, IOPTPC, 

IOPTHYS, IUPDC 

Card 7. Flags. Auxiliary 

options 

IFLAG1, IFLAG2, IFLAG3, IFLAG4, IFLAG5 

Card 8. Constants EPSILON, THETA, PGCONS, TCONS, PLCONS 

Card 9. Void  

Card 10. Options IOWIT, INTER, ITERMAX, IOWCONTOURS, 

ITERMAXS, ITIME, IMBACKUP, IWRALL, IPOLYFILES 

CardGroup 11. 

Convergence parameters 

DELMXU, FACU, DELFMX, DUMX (Omit if 

IOPTDISPL=0)    

DELMXPL, FACPL, DELQWMX, DPLMX (Omit if 

IOPTPL=0)    

DELMXPG, FACPG, DELQAMX, DPGMX (Omit if 

IOPTPG=0)    

DELMXT, FACT, DELQMX, DTMX (Omit if 

IOPTTEMP=0)    

DELMXI, FACI, DELIMX, DIMX (Omit if IOPTXWS=0)    

DXS,DRS,DRSREL (Omit if ISOLVE not equal 5) 

This group ends with -1  

Card 12. Gravity GRAVITY(1), ..., GRAVITY(NDIM) 

Card 13. Interval time 

variables 

TIMEI, DTIME, TIME1, DTIMEC, TIMEF, FACTTIME 

Card 14. Number of 

material 

IMAT 
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Card 15. Number and 

name of constitutive law 

ICL, TIT, ITYCL 

CardGroup 16. 

Parameters constitutive 

law 

TIT, PARCL(1,ICL,IMAT) TIT, PARCL(6,ICL,IMAT)    

TIT, PARCL(2,ICL,IMAT) TIT, PARCL(7,ICL,IMAT)    

TIT, PARCL(3,ICL,IMAT) TIT, PARCL(8,ICL,IMAT)    

TIT, PARCL(4,ICL,IMAT) TIT, PARCL(9,ICL,IMAT)    

TIT, PARCL(5,ICL,IMAT) TIT, PARCL(10,ICL,IMAT)  

(group of Cards from IMAT=1 to NUMMAT and for every IMAT value from ICL=1 to 

NCL (not all ICL are required) )    

This group ends with -1 (ICL loop)    

This group ends with -1 (IMAT loop) 

Card 17. Type of 

boundary condition 

(Mechanical problem) 

IF 

CardGroup 

18.Force/displacement 

prescribed 

TIT, FORDISP(1,IF)    

TIT, FORDISP(2,IF)    

TIT, FORDISP(...,IF) 

(group of Cards from IF=1 to NFDTYPE ) (Omit if IOPTDISPL=0)    

This group ends with -1   

Card 19. Type of 

boundary condition. Mass 

or heat transport problems 

IF 

CardGroup 20. Flux 

problem boundary 

condition 

TIT, FLUX(1,IF), TIT, FLUX(21,IF)  

TIT, FLUX(2,IF), TIT, FLUX(22,IF)    

TIT, FLUX(...,IF, TIT, FLUX(...,IF))    

TIT, FLUX(20,IF), TIT, FLUX(40,IF)  

(group of Cards from IF=1 to NFLUXTYPE ) (Omit if IOPTPL + IOPTPG +IOPTTEMP = 

0)    

This group ends with –1 

     

The group of Cards from 13 to 20 can be repeated in order to make a simulation with several 

time intervals in which the boundary conditions and material properties are not the same. If any 

parameter is not read, the value in the previous interval is used. If a '-1' is read with IMAT, ICL 

and IF, then no change takes place in material properties and boundary conditions. 
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File ROOT_GRI.DAT 

Card 1. Grid writing index IOWGRI, IOFILE, IFMT 

CardGroup 2. Node co-

ordinates and boundary 

condition type 

N, COORD(1, N), ..., COORD(NDIM, N), IFORDISP(1,N), 

IFORDISP(2,N), IFORDISP(3,N), IFLUXTYPE(1,N), 

IFLUXTYPE(2,N), IFLUXTYPE(3,N), WIDTH(N) 

(group of Cards from N=1 to NUMNP) 

CardGroup 3. Node 

connectivities, material, 

element type,... 

L, MTYPE, LTYPE, KXX(1,L),..., KXX(MNNEL,L) 

(group of Cards with L=1 to NUMEL) 

CardGroup 4. Initial 

values of unknowns 

N, XOLD(1,N), ..., XOLD(NDF,N) 

(group of Cards with N=1 to NUMNP) 

CardGroup 5. Initial 

values of stresses 

L, STRESSOLD(1, 1, L), ..., STRESSOLD(NSTREC, 1, L) 

(group of Cards with L=1 to NUMEL) (Omit if IOPTDISPL=0)  

CardGroup 6. Other 

element wise properties 

L, POROSITY(L), (FK(I, L), I=1,NDIM), ANISOTPER(1, 

L), ..., ANISOTPER(NISOT, L), THICKNESS (L), 

(FK(I,L), I=NDIM+1, NDIM+3) 

(group of Cards with L=1 to NUMEL) 

Card 7. Time evolution of 

state or dependent variables 

at nodes 

NOUTOT, IVOU(1), ..., IVOU(10), INTERNODE 

Card 8. Nodes for time 

evolution 

NODOUT(1), ..., NODOUT(NOUTOT) 

Card 9. Piezometric head 

map 

IWHEAD, NWHEAD 

Card 10. Nodal flows IWNFLOW 

Card 11. Time evolution of 

dependent variables at 

elements 

LOUT, IELVOUT(1), ..., IELVOUT(10), 

INTERELEMENT 

Card 12. Element numbers 

for time evolution of 

element-wise variables 

NELOUT(1), ..., NELOUT(LOUT) 

_________________________________ 
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IV. CODE_BRIGHT. POSTPROCESS. 

IV.1. POST-PROCESSING TOOLS: SHORT DESCRIPTION  

The different results that the system allows to display are the following ones:  

• Geometry: GiD displays the whole volumetric mesh, surface sets and boundary surfaces. It 

can also cut and divide them, in its original state as well as also in its deformed state, and 

switch them on and off. GiD displays how the meshes/sets will be deformed according to a 

certain vectorial variable. GiD provides two representations: on the first one all the results 

will then be drawn on these original or deformed meshes (Main Geometry); on the second 

one, a superimposed representation (Show Geometry) is provided, that can be also deformed, 

but the results will still be drawn on the main representation. The user can compare the main 

original/deformed meshes/sets with the second representation, which can also be deformed 

with the same or another vector deformation, or with no deformation at all. The scaling of 

all the displays can be modified interactively.  

• Show minimum and maximum: The minimum and maximum values of the variable for 

the currently viewed meshes/sets can appear, pointing all the nodes where these limits are 

computed, in dark blue the minimum values and in red the maximum ones.  

• Vectors: GiD presents a vector distribution according to the vectorial or matrix variables on 

each node, showing their magnitudes and directions. The scaling of the vectors can be 

modified interactively.  

• Contour fields: GiD represents the variables through isosurfaces or contours that comprise 

all the values between two given values. GiD takes advantage of the graphical capabilities 

of the machine, allowing a smoothing of the results when a high number of colors is used.  

• Contour lines: This representation is quite similar to the last one, but the uniform bands are 

substituted here by isolines, where each one ties several points with the same value.  
 

IV.2. READ POST-PROCESSING 

GiD displays a ̀ File Open Dialog Box' and asks the user for a file. Afterwards, it looks 

for the files filename.msh, filename.bon and filename.res. The description of 

what is found and being read, sorted (if necessary) and built appears on the message bar. 

Sometimes, it may be useful to use the visualization options to center and zoom the drawing on 

the screen, especially when the different scales affect the post-processing. All the post-

processing facilities can be used for this new project, jump to the pre-processing, if desired, or 

go back to the previous or another project post-processings.  

Other details on post-processing information are available from the GiD manual. 
 

IV.3. POST PROCESS FILES FORMAT 

In some cases the user needs to interact with the results given by the CODE_BRIGHT process 

in order to obtain different variables that are function of the variables considered as a result. 

The information needed to do that is stored in the post-process files, which are saved in the 

work directory. These files are: 

• root.post.res 

• root.post.msh 
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The file root.post.msh contains information about the mesh, like the coordinates of the nodes, 

and the coordinates of the elements, while the file root.post.res presents the information of the 

results and the variation in time of different variables in the nodes or Gauss points. To create 

the program it is important to take into account the format of these files, specially the 

root.pos.res file. Note that with root we mean the root name of the project: for example, if our 

project is DAM.gid then the post process files will be DAM.post.res and DAM.post.msh. 

The first lines of the file root.pos.res are the header, which contains information about the Gauss 

points. Based on the type of element employed, this header may have 5 or 10 lines: 5 lines for 

triangular elements and 10 lines for quadrilateral elements. See Figure IV.3.1. 

 
Header for quadrilateral elements 

 
Header for triangular elements 

Figure IV.3.1. Header format for quadrilateral and triangular elements 

The results of the process appear in the next lines. The results are divided by time, which means 

that are presented for variable 1 in time 1, then variable 2 in time 1, until the last variable, and 

then start again for all the variables in time 2 and so on. 

The line 6 −or 11, depending on the element employed− presents the header for the results of 

variable 1 in time 1, which has the following format: 

Result “Variable”     Isochrones    “time”   “type”      “set” 

Variable: Ex. Temperature, liquid pressure, stress 

Type: Vector, scalar or matrix. 

Set:  Nodes (onNodes) or Gauss points (GP) depending of the variable. 

For example: Result Temperature      Isochrones     0.549584E-06 Scalar          onNodes 

The next line has the text “Values”. In the following lines 2 columns for scalar type variables 

appear, 3 columns for variable type vector or 6 columns for matrix type, as it is shown in Figure 

IV.3.2. The first column presents the number of the node or Gauss point, whose coordinates are 

presented in the file root.post.msh. After the last value, the line “end values” appears and in the 

succeeding line the header for the next variable appears. 
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Result format for a scalar variable. 

 
Result format for a vector variable. 

 
Result format for a matrix variable. 

Figure IV.3.2. Results 

If the user needs to create another file type root.post.res to visualize the results in the GID 

interface, it is important to consider the format presented before, and take into account that the 

header of the values has the following format: 

‘Result’,1x,a15,1x,’Isochrones   `,e12.6,1x,a15,1x,a30 
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V. CODE_BRIGHT. THEORETICAL ASPECTS 

In porous media, subjected to thermal, hydraulic, and mechanical conditions, relevant thermo-

hydro-mechanical (THM) phenomena takes place. In fact, there exist a number of mutual 

interactions that must be taken simultaneously into account in analyses. For instance, strains 

due to thermal loading will induce stress variations and changes in mass storage terms and 

hydraulic conductivity. The thermal expansion of the water in the pores itself causes changes 

in the degree of saturation or, if the material is saturated or quasi-saturated, increases of water 

pressure. Thermal induced vapor diffusion and the dependence of water viscosity on 

temperature also affect significantly the water transfer process.  

On the other hand, changes in hydraulic conditions influence the temperature field via variations 

of thermal conductivity and affect the stress/strain field due to pore water pressure and pore gas 

pressure changes. Gas pressure is affected by the increase in vapour pressure with temperature. 

This may lead to further changes in the pattern of gas and water flow. Finally, porosity changes 

due to volumetric strain influence pore pressure distributions because of associated variations 

in storage terms and hydraulic conductivity. The effect on temperature is less important as the 

variations of thermal conductivity with porosity are relatively small. In APPENDIX V.A. the 

most significant interactions between the various phenomena are presented in a systematic 

manner.  

An unavoidable consequence of all those phenomena interacting simultaneously is the need to 

carry out coupled THM analysis in which all the main aspects of the problem can be considered 

in an integrated way. Such a formulation and the numerical approach adopted to solve the 

governing equations are presented in the following sections.  

 

V.1. BASIC FORMULATION FEATURES 

A porous medium composed by solid grains, water and gas is considered. Thermal, hydraulic 

and mechanical aspects will be taken into account, including coupling between them in all 

possible directions. As illustrated in Figure V.1.1, the problem is formulated in a multiphase 

and multispecies approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gas phase: dry air + water 

vapour 

Solid phase 

Liquid phase: 

water + 

dissolved air 

Figure V.1.1. Schematic representation of an unsaturated porous material 
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The three phases are: 

• solid phase  (s) : mineral 

• liquid phase (l) : water + air dissolved  

• gas phase (g) : mixture of dry air and water vapour  

The three species are:  

• solid (-) : the mineral is coincident with solid phase  

• water (w) : as liquid or evaporated in the gas phase 

• air (a) : dry air, as gas or dissolved in the liquid phase  

The following assumptions and aspects are taken into account in the formulation of the problem:  

• Dry air is considered a single species and it is the main component of the gaseous 

phase. Henry's law is used to express equilibrium of dissolved air.  

• Thermal equilibrium between phases is assumed. This means that the three phases are 

at the same temperature  

• Vapour concentration is in equilibrium with the liquid phase. Psychrometric law 

expresses its concentration.  

• State variables (also called unknowns) are: solid displacements, u (three spatial 

directions); liquid pressure, Pl; gas pressure, Pg; and temperature, T.  

• Balance of momentum for the medium as a whole is reduced to the equation of stress 

equilibrium together with a mechanical constitutive model to relate stresses with 

strains. Strains are defined in terms of displacements.  

• Small strains and small strain rates are assumed for solid deformation. Advective terms 

due to solid displacement are neglected after the formulation is transformed in terms 

of material derivatives (in fact, material derivatives are approximated as eulerian time 

derivatives). In this way, volumetric strain is properly considered.  

• Balance of momentum for dissolved species and for fluid phases are reduced to 

constitutive equations (Fick's law and Darcy's law).  

• Physical parameters in constitutive laws are function of pressure and temperature. For 

example: concentration of vapour under planar surface (in psychrometric law), surface 

tension (in retention curve), dynamic viscosity (in Darcy's law), strongly depend on 

temperature. 
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V.2. GOVERNING EQUATIONS  

The governing equations for non-isothermal multiphase flow of water and gas through porous 

deformable saline media have been presented by Olivella et al. (1994). A detailed derivation is 

given there, and only a brief description is included here. 

The equations that govern this problem can be categorised into four main groups. These are: 

balance equations, constitutive equations, equilibrium relationships and definition constraints. 

Equations for mass balance were established following the compositional approach. That is, 

mass balance is performed for water, air and salt species instead of using solid, liquid and gas 

phases. Equation for balance of energy is established for the medium as a whole. The equation 

of momentum balance for the porous medium is reduced to that of stress equilibrium. 

The following notation will be used in writing balance equations:  

𝜙: porosity b: body forces, 

𝜌: density 𝜔: mass fraction, 

𝐣: total mass flux 𝜌: mass content per unit volume of phase,  

𝐢: non-advective mass flux e: specific internal energy 

𝐪: advective flux 𝐢𝒄: conductive heat flux 

𝐮: solid displacements 𝐣𝑒: energy fluxes due to mass motion 

𝛔: stress tensor  

𝑆𝑙, 𝑆𝑔: degree of saturation of liquid and gaseous phases i.e., fraction of pore volume occupied 

by each phase. 

Superscripts w and a refer to water and air, respectively  

Subscripts s, l and g refer to solid, liquid and gas phase, respectively. 

 

V.2.1. Balance Equations 

The compositional approach is adopted to establish the mass balance equations. Volumetric 

mass of a species in a phase (e.g. water in gas phase 𝜌𝑔
𝑤 is the product of the mass fraction of 

that species (𝜔𝑔
𝑤) and the bulk density of the phase (𝜌𝑔), i.e. 𝜌𝑔

𝑤 = 𝜔𝑔
𝑤𝜌𝑔. 

The total mass flux of a species in a phase (e.g. flux of air present in gas phase 𝐣𝑔
𝑤 is, in general, 

the sum of three terms:  

• the nonadvective flux: 𝐢𝑔
𝑤, i.e. diffusive/ dispersive, 

• the advective flux caused by fluid motion: 𝜔𝑔
𝑤𝜌𝑔𝐪𝑔, where 𝐪𝑔 is the Darcy's flux,  

• the advective flux caused by solid motion: 𝜔𝑔
𝑤𝜌𝑔𝑆𝑔𝜙

𝑑𝒖

𝑑𝑡
 where 

𝑑𝒖

𝑑𝑡
 is the vector of solid 

velocities, 𝑆𝑔 is the volumetric fraction of pores occupied by the gas phase and 𝜙 is 

porosity.  

The sum of the nonadvective and fluid motion advective fluxes is separated from the total flux 

in order to simplify algebraic equations. This flux is relative to the solid phase and is denoted 

by 𝐣′𝑔
𝑤. It corresponds to the total flux minus the advective part caused by solid motion. When 

solid deformation is negligible, then j’ = j. The relative contribution of each flux term to the 

total flux is not always the same. For instance, diffusion will become more important if 

advection is small.  
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Mass balance of solid  

Mass balance of solid present in the medium is written as: 

𝜕(𝜌𝑠(1 − 𝜙))

𝜕𝑡
+ ∇ ∙ (𝐣𝑠) = 0 

(1) 

where s is the mass of solid per unit volume of solid and js is the flux of solid. From this 

equation, an expression for porosity variation was obtained as: 

𝐷𝑠𝜙

𝐷𝑡
=
(1 − 𝜙)

𝜌𝑠

𝐷𝑠𝜌𝑠
𝐷𝑡

+ (1 − 𝜙)∇ ∙
𝑑𝐮

𝑑𝑡
 

(2) 

The material derivative with respect to the solid has been used and its definition is: 

𝐷𝑠(∎)

𝐷𝑡
=
𝜕(∎)

𝜕𝑡
+
𝑑𝐮

𝑑𝑡
∙ ∇(∎) 

(3) 

Equation (2) expresses the variation of porosity caused by volumetric deformation and solid 

density variation.  

Mass balance of water  

Water is present in liquid and gas phases. The total mass balance of water is expressed as: 

𝜕 ((𝜔𝑔
𝑤𝜌𝑔 𝑆𝑔 + 𝜔𝑙

𝑤𝜌𝑙 𝑆𝑙)𝜙)

𝜕𝑡
+ 𝛻 ∙ (𝐣𝑔

𝑤 + 𝐣𝑙
𝑤) = 𝑓𝑤 

(4) 

where f w is an external supply of water. An internal production term is not included because 

the total mass balance inside the medium is performed. The use of the material derivative leads 

to: 

𝜙
𝐷𝑠(𝜔𝑙

𝑤𝜌𝑙 𝑆𝑙 + 𝜔𝑔
𝑤𝜌𝑔 𝑆𝑔)

𝐷𝑡
+ (𝜔𝑙

𝑤𝜌𝑙 𝑆𝑙 + 𝜔𝑔
𝑤𝜌𝑔 𝑆𝑔)

𝐷𝑠𝜙

𝐷𝑡
+ 

+(𝜔𝑙
𝑤𝜌𝑙 𝑆𝑙 + 𝜔𝑔

𝑤𝜌𝑔 𝑆𝑔)𝜙𝛻 ∙
𝑑𝐮

𝑑𝑡
+ 𝛻 ∙ (𝐣𝑙

′𝑤 + 𝐣𝑔
′𝑤) = 𝑓𝑤 

(5) 

The final objective is to find the unknowns from the governing equations. Therefore, the 

dependent variables will have to be related to the unknowns in some way. For example, degree 

of saturation will be computed using a retention curve which should express it in terms of 

temperature, liquid pressure and gas pressure.  

Porosity appears in this equation of water mass balance not only as a coefficient, but also in a 

term involving its variation caused by different processes. It is also hidden in variables that 

depend on porosity (e.g. intrinsic permeability). The way of expressing the derivative term as a 

function of the state variables is via the solid mass balance equation. This allows to consider 

correctly the influence of porosity variation in the balance equation for water.  

It should be noted that in the last equation the material derivatives can be approximated as 

eulerian if the assumption of small strain rate is performed while the volumetric change 

(porosity derivative and volumetric strain) is not neglected. This is the classical way of 

obtaining the coupled flow-deformation equations. 
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Mass balance of air 

Once the other mass balance equations have been written it is straightforward to obtain the mass 

balance of air taking into account that air is the main component of the gas phase and that it 

may be also present as air dissolved in the liquid phase. 
 

𝜙
𝐷𝑠(𝜔𝑙

𝑎𝜌𝑙 𝑆𝑙 + 𝜔𝑔
𝑎𝜌𝑔 𝑆𝑔)

𝐷𝑡
+ (𝜔𝑙

𝑎𝜌𝑙 𝑆𝑙 + 𝜔𝑔
𝑎𝜌𝑔 𝑆𝑔)

𝐷𝑠𝜙

𝐷𝑡
+ 

+(𝜔𝑙
𝑎𝜌𝑙 𝑆𝑙 + 𝜔𝑔

𝑎𝜌𝑔 𝑆𝑔)𝜙𝛻 ∙
𝑑𝐮

𝑑𝑡
+ 𝛻 ∙ (𝐣𝑙

′𝑎 + 𝐣𝑔
′𝑎) = 𝑓𝑎 

  

(6) 

 

 

 

Momentum balance for the medium  

The momentum balance reduces to the equilibrium of stresses if the inertial terms are neglected:  

 + = b 0    (7) 

where  is the stress tensor and b is the vector of body forces.  

 

Internal energy balance for the medium 

The equation for internal energy balance for the porous medium is established taking into 

account the internal energy in each phase (es, el, eg) or enthalpy (hs, hl, hg): 
 

𝜕(𝑒𝑔𝜌𝑠 (1 − 𝜙) + 𝑒𝑔𝜌𝑔 𝑆𝑔𝜙 + 𝑒𝑙𝜌𝑙 𝑆𝑙𝜙)

𝜕𝑡
−
𝜙𝑆𝑔𝑝𝑔

𝜌𝑔

𝜕𝜌𝑔

𝜕𝑡
+ 

+𝛻 ∙ (𝐢𝑐 + 𝐣𝑒𝑠 + 𝐣𝑒𝑔 + 𝐣𝑒𝑙) = 𝑓𝑄 

 

𝜕(ℎ𝑠𝜌𝑠 (1 − 𝜙) + ℎ𝑔𝜌𝑔 𝑆𝑔𝜙 + ℎ𝑙𝜌𝑙 𝑆𝑙𝜙)

𝜕𝑡
− 𝜙𝑆𝑔

𝜕𝑝𝑔

𝜕𝑡
+ 

+𝛻 ∙ (𝐢𝑐 + 𝐣ℎ𝑠 + 𝐣ℎ𝑔 + 𝐣ℎ𝑙) = 𝑓
𝑄

 

 

 

 

 

 

(8) 

 

where 𝐢𝑐 is energy flux due to conduction through the porous medium, the other fluxes (𝐣𝑒𝑠, 𝐣𝑒𝑙, 

𝐣𝑒𝑔, 𝐣ℎ𝑠, 𝐣ℎ𝑙, 𝐣ℎ𝑔) are advective fluxes of energy or enthalpy caused by mass motions and 𝑓𝑄 is 

an internal/external energy supply (heat supply). In this case this term accounts, for instance, 

energy dissipation due to medium deformation which is not explicit because it is negligible in 

most cases. The use of the material derivative allows obtaining an equation formally similar to 

the mass balance of water. The reason for the similarity is that both water and internal energy, 

are considered present in the three phases.  

Hence, only one equation is required which expresses the balance of internal energy in the 

porous medium as a whole. The enthalpy equation is obtained using the definition of enthalpy 

as ℎ = 𝑒 + 𝑝𝑣. The density time derivative or the pressure time derivative terms in energy or 

enthalpy balance are sometimes neglected.   

The fluxes in the divergence term include conduction of heat and advection of heat caused by 

the motion of every species in the medium. A non-advective mass flux causes an advective heat 
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flux because a species inside a phase moves and transports energy. Contrary to what happens 

with the movement of a contaminant in a groundwater system, the diffusive term for heat 

transport (conduction of heat) is much larger than the term concerning hydromechanical 

dispersion (non-advective flux caused by the velocity of fluids). For this reason, this term is 

sometimes neglected.  

V.2.2. Constitutive equations and equilibrium restrictions  

Associated with this formulation there is a set of necessary constitutive and equilibrium laws. 

Table V.2.1 is a summary of the constitutive laws and equilibrium restrictions that should be 

incorporated in the general formulation. The dependent variables that are computed using each 

of the laws are also included.  

Table V.2.1. Constitutive equations and equilibrium restrictions 

EQUATION VARIABLE NAME VARIABLE 

Constitutive equations   

Darcy's law liquid and gas advective flux 𝐪𝑙,  𝐪𝑔 

Fick's law vapour and air non-advective fluxes 𝐢𝑔
𝑤,  𝐢𝑙

𝑎 

Fourier's law conductive heat flux 𝐢𝒄  

Retention curve Liquid phase degree of saturation 𝑆𝑙, 𝑆𝑔 

Mechanical constitutive model Stress tensor 𝛔 

Phase density liquid density 𝜌𝑙 

Gases law gas density 𝜌𝑔 
   

Equilibrium restrictions   

Henry's law Air dissolved mass fraction 𝜔𝑙
𝑎 

Psychrometric law Vapour mass fraction 𝜔𝑔
𝑤 

The constitutive equations establish the link between the independent variables (or unknowns) 

and the dependent variables. There are several categories of dependent variables depending on 

the complexity with which they are related to the unknowns. The governing equations are 

finally written in terms of the unknowns when the constitutive equations are substituted in the 

balance equations.   

Another type of relationships that relate dependent variables with unknowns are the equilibrium 

restrictions. They are obtained assuming chemical equilibrium for dissolution of the different 

species (air and vapour) in phases (liquid, gas). This assumption is sufficiently adequate 

because these chemical processes are fast compared to the transport processes that take place 

in porous media and, for this reason, they are not rate controlling.   
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V.2.3. Boundary conditions  

Application of the Green's theorem to the divergence term (both in the balance or equilibrium 

of stresses equations) produces terms which represent fluxes or stresses across or on the 

boundaries. These terms are substituted by nodal flow rates or forces in the discretized form of 

the equations. For the mechanical problem, the classical approach is followed to impose 

external forces. Imposing displacements is made by means of a Cauchy type boundary 

condition, i.e. a force computed as the stiffness of a spring times the displacement increment. 

The boundary conditions for balance equations are incorporated by means the simple addition 

of nodal flow rates. For instance, the mass flow rate of water as a component of gas phase (i.e. 

vapour) is: 

( ) ( ) ( ) ( ) ( )j j P Pg

w

g

w

g g

w

g g g g g g

w

g g

w
= + − + −



 


       

0
0

0
0

0

    
(9) 

where the superscript ()0 stands for prescribed values. This general form of boundary condition, 

includes three terms. The first one is the mass inflow or outflow that takes place when a flow 

rate of gas (jg
0) is prescribed. The second term is the mass inflow or outflow that takes place 

when the gas phase pressure (Pg
0) is prescribed at a node. The coefficient g is a leakage 

coefficient, i.e., a parameter that allows a boundary condition of the Cauchy type. The third 

term is the mass inflow or outflow that takes place when vapour mass fraction is prescribed at 

the boundary. This term naturally comes from the nonadvective flux (Fick's law). Mass fraction 

and density prescribed values are only required when inflow takes place. For outflow, the values 

in the medium are considered. For the energy balance equation, the boundary condition has a 

similar form. 

 

V.2.4. Summary of governing equations 

As stated above the governing equations for non-isothermal multiphase flow of liquid and gas 

through porous deformable saline media have been established by Olivella et al. (1994). A 

detailed derivation is presented there. The theoretical work briefly presented above has been 

used as a basis for the development of the computer program CODE_BRIGHT, which stands 

for COupled DEformation, BRIne, Gas and Heat Transport problems. 

Table V.2.2.: Equation and variable summary 

EQUATION VARIABLE NAME VARIABLE 

equilibrium of stresses displacements u 

balance of water mass liquid pressure Pl 

balance of air mass gas pressure Pg 

balance of internal energy temperature T 
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V.3. NUMERICAL APPROACH  

V.3.1.  Introduction 

The system of PDE's (Partial Differential Equations) is solved numerically. The numerical 

approach can be viewed as divided into two parts: spatial and temporal discretizations. Finite 

element method is used for the spatial discretization while finite differences are used for the 

temporal discretization. The discretization in time is linear and the implicit scheme uses two 

intermediate points, tk+ and tk+ between the initial tk and final tk+1 times. Finally, since the 

problem presented here is non-linear, the Newton-Raphson method was adopted to find an 

iterative scheme.  

 

 

 

 

 

 

 

 

 

Figure V.3.1. Concept of cell in a finite element mesh. 

 

Once the solid balance is substituted in the other balance equations, computation of porosity at 

an intermediate point is not necessary because its variation is expected to occur at slow rates. 

For this reason, porosity is integrated explicitly, that is, the values at tk are used. Since the 

variation of porosity is expressed by the solid mass balance equation, this assumption leads also 

to some advantages for the iterative scheme. After the spatial discretization of the partial 

differential equations, the residuals that are obtained can be written (for one finite element) as:  
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(10) 

where r are the residuals, dd/dt are the storage or accumulation terms, a are the conductance 

terms, and b are the sink/source terms and boundary conditions. After time discretization a more 

compact form can read as:  

r X
d d

A X X b X 0( ) ( ) ( )
k

k k

k

k k k

t

+

+

+ + +
=

−
+ + =

1

1



  
  

(11) 
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en 
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where k is the time step index, : X=[(ux,uy,uz,Pl,Pg,T)(1), ..., (ux,uy,uz,Pl,Pg,T)(n)], is the vector of 

unknowns (i.e. a maximum of seven degrees of freedom per node), A represents the 

conductance matrix. The Newton-Raphson scheme of solution for this non-linear system of 

AE's is: 





r X

X
X X R X

( )
( ) ( )

, , ,

k

k

k l k l k l

+

+

+ + + +
− = −

1

1

1 1 1 1
    

(12) 

where l indicates iteration.  

In the present approach, the standard Galerkin method is used with some variations in order to 

facilitate computations. General aspects related to numerical solution of hydrogeological 

problems can be found in Huyakorn and Pinder (1983). As shown in the preceding section, in 

the mass and energy balance equations the following terms may be distinguished: 

• Storage terms. These terms represent the variation of mass or energy content and therefore, 

they are calculated by means of variables such as degree of saturation, density, porosity, 

mass fraction and specific energy. 

• Advective fluxes. The advective fluxes caused by motion of fluids computed using Darcy's 

law and, except for the coefficients, they are explicit in terms of pressure gradients.  

• Nonadvective fluxes. These terms, computed through Fick's law, are proportional to 

gradients of mass fractions which do not belong to the set of unknowns. Fourier's law is used 

for the conductive heat flux and it expresses proportionality to temperature gradients. 

• Volumetric strain terms. In fact, these terms are also storage terms. They are proportional to 

du/dt which is equivalent to the volumetric strain rate. 

• Sink/source terms.  

Each of these terms requires specific treatment. This is described in detail in Olivella et al 

(1996). 

In order to explain the treatment of the different terms and equations the following notation is 

introduced: 

• node i: node in a finite element mesh  

• e1,e2,...,em: elements that contain node i, i.e. a cell centered in node i is composed by a 

fraction of these elements. m is variable from node to node and it is not related to the number 

of nodes per element.  

• nem: number of nodes in element em. For example, nem=3 for triangles, nem=4 for 

quadrilaterals, nem=4 for tetrahedrons, etc.  

• ()k: the quantity is computed at time tk of the temporal discretization. The same for tk+1, tk+ 

or tk+ 

• ()em: the quantity is computed in element em. This means at the center of the element or, in 

other words, using the average of nodal unknowns.  

• ()i: the quantity is computed in node i as a function of the unknowns in that node. \item--}  

• ()i,em: the quantity is computed in node i but with the material properties corresponding to 

element em.  

• Vem: volume of element em. 

• i: shape function for node i. 
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V.3.2. Treatment of different terms  

Treatment of storage terms 

In this sub-section we refer to terms not related to volumetric strain or porosity variation. The 

storage or accumulation terms are computed in a mass conservative approach (Allen and 

Murphy, 1986; Celia et al., 1990; Milly, 1984). The conservative approach discretizes directly 

the accumulation terms while the capacitative approach uses the chain rule to transform time 

derivatives in terms of the unknowns. Milly (1984) proposes modifications of the capacitative 

approach in order to conserve mass. It seems reasonable that the mass conservative approach 

should give a more accurate solution than the capacitative approach.  

Mass conservation in time is achieved if the time derivatives are directly approximated by a 

finite difference in time. Finite element method for the space discretization conserves mass 

(Milly, 1984).  

A typical storage term is (from Eq. 5) the variation of water in the gas phase:  

𝜙
𝐷𝑠(𝜔𝑔

𝑤𝜌𝑔𝑆𝑔)

𝐷𝑡
≅ 𝜙

𝜕(𝜔𝑔
𝑤𝜌𝑔𝑆𝑔)

𝜕𝑡
 (13) 

where the material derivative with respect to the solid is approximated as an eulerian derivative 

because the small strain rate assumption. The weighted residual method is applied to the 

governing equations and, for node i, (13) is transformed into: 

∫ 𝑁𝑖𝜙
𝜕(𝜔𝑔

𝑤𝜌𝑔𝑆𝑔)

𝜕𝑡
𝑑𝑣

𝑣

=∑∫ 𝑁𝑖𝜙
𝜕(𝜔𝑔

𝑤𝜌𝑔𝑆𝑔)

𝜕𝑡
𝑑𝑣

𝑒𝑚𝑒𝑚

 (14) 

At this point of the development we assume that porosity is defined element-wise. An element-

wise variable (Voss, 1984) is space-constant over every element, but different from element to 

element. We will use em
k for porosity in element em at time tk. Similarly, a cell-wise variable 

(Voss, 1984) is space constant over the cell centered in the node. It would be very easy to 

compute (14) if the time derivative could be computed in a cell-wise way, because one value 

would be sufficient for node i and (14) would be transformed into a very simplified form. 

However, the degree of saturation is not only a function of nodal unknowns but also of material 

properties such as porosity or retention parameters. To overcome this difficulty, the time 

derivative in (14) is computed from nodal unknowns but with material properties of every 

element in contact with the node. Hence m values are necessary in node i. Obviously if part of 

this time derivative is not material dependent (density and concentration are only function of 

temperature and pressure) then the corresponding variables are only computed in the node. This 

leads to a kind of modified cell-wise variables.  

Making use of these approximations, we finally obtain, for example for any integral in (14): 

∫ 𝑁𝑖𝜙
𝜕(𝜔𝑔

𝑤𝜌𝑔𝑆𝑔)

𝜕𝑡
𝑑𝑣

𝑒𝑚

≅ 𝜙𝑒𝑚
𝑘 (

(𝜔𝑔
𝑤𝜌𝑔𝑆𝑔)𝑖,𝑒𝑚

𝑘+1
− (𝜔𝑔

𝑤𝜌𝑔𝑆𝑔)𝑖,𝑒𝑚

𝑘

𝑡𝑘+1 − 𝑡𝑘
)∫ 𝑁𝑖𝑑𝑣

𝑒𝑚

 (15) 

where a simple finite difference is used for the time discretization. This approximation allows 

us to make the space integration independently of the physical variables. Therefore, 

computation of geometrical coefficients is necessary only once for a given finite element mesh. 

The integral of the shape function over an element is equal to Vem/nem for the case of linear 

shape functions. These geometrical coefficients are also called influence coefficients. Without 

loss of generality, they can be computed either analytically or numerically. Finally, it should be 
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pointed out that this formulation gives rise to a concentrated scheme, which means that the 

storage term in node i is only a function of unknowns in node i. This is clearly advantageous 

from a computational point of view (Huyakorn and Pinder, 1983). 

 

Treatment of advective terms 

The weighted residual method is applied to each balance equation. Then Green's theorem allows 

one to reduce the order of the derivatives and the divergence of flows is transformed into two 

terms, one of them with the gradient of the shape function. Hence, after that, in the water balance 

equation of node i we find, the following advective term: 

−∫ (𝛻𝑡𝑁𝑖)𝜔𝑔
𝑤𝜌𝑔𝐪𝑔𝑑𝑣

𝑣

= (∫ (𝛻𝑡𝑁𝑖)𝜔𝑔
𝑤𝜌𝑔

𝐤𝑘𝑟𝑔

𝜇𝑔
(𝛻𝑁𝑗)𝑑𝑣

𝑣

) (𝑝𝑔)𝑗
− 

−(∫ (𝛻𝑡𝑁𝑖)𝜔𝑔
𝑤𝜌𝑔

𝐤𝑘𝑟𝑔

𝜇𝑔
𝜌𝑔𝐠𝑑𝑣

𝑣

) 

(16) 

where the subscript j indicates summation over element nodes. Pg is a node-wise (Voss, 1984) 

variable, which means that it is defined by its nodal values and interpolated on the elements 

using the shape functions. Generalised Darcy's law has been used to compute the flux of the 

gas phase:  

( )  g
k

qg gg

g

rg
P

k



−−=  

(17) 

where k is the tensor of intrinsic permeability, krg is the relative permeability of the gas phase, 

g is the dynamic viscosity of gas and g is a vector of gravity forces. For node i the volume v 

over which the integrals in (16) have to be performed is composed by the elements e1, e2, ..., 

em. In this way, the advective terms (16) represent the lateral mass fluxes to cell associated to 

node i from contiguous cells. The pressure term is considered first. The contribution of element 

em to the total lateral flux towards node i is approximated as: 

(∫ (𝛻𝑡𝑁𝑖)𝜔𝑔
𝑤𝜌𝑔

𝐤𝑘𝑟𝑔

𝜇𝑔
(𝛻𝑁𝑗)𝑑𝑣

𝑒𝑚

) (𝑝𝑔)𝑗
≈ 

≈ (𝜔𝑔
𝑤𝜌𝑔

𝑘𝑟𝑔

𝜇𝑔
)
𝑒𝑚

𝑘+𝜀

(∫ (𝛻𝑡𝑁𝑖)𝐤𝑒𝑚
𝑘 (𝛻𝑁𝑗)𝑑𝑣

𝑒𝑚

) (𝑝𝑔)𝑗
𝑘+𝜃

 

(18) 

where three different intermediate points may be used, one for the pressure (tk+), another for 

the intrinsic permeability (tk) and yet another for the remaining coefficients (tk+) including the 

relative permeability. The intrinsic permeability remains in the integral because it is a tensorial 

quantity, but if its product with the shape function gradients is split, then its coefficients can be 

taken off from the integral. It should be noticed that intrinsic permeability is handled explicitly 

(i.e. evaluated at time tk) because it is a function of porosity structure, which we assume to vary 

slowly. Since all physical variables can appear outside the integral because they are considered 

element-wise, the integrals of products of shape function gradients are also considered influence 

coefficients (Huyakorn et al., 1986). They have to be computed for each element, but only once 

for a given mesh. 
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A similar approximation is used for the gravity term in (16). Evaluation of density element-

wise is convenient in order to balance correctly pressure gradients with gravity forces at element 

level. 

Treatment of nonadvective terms (diffusive/dispersive) 

In the balance equation of node i we find, typically, the following diffusive term: 

−∫ (𝛻𝑡𝑁𝑖)𝐢𝑔𝑑𝑣
𝑣

= (∫ (𝛻𝑡𝑁𝑖)𝜙𝜏𝜌𝑔𝑆𝑔𝐷𝑔
𝑤𝐈(𝛻𝑁𝑗)𝑑𝑣

𝑣

) (𝜔𝑔
𝑤)

𝑗
 

(19) 

where the subscript j indicates summation over the nodes. g
w is considered a node-wise 

variable. Fick's law has been used to compute the diffusive flux: 

      
w

g

w

ggg DS  −= Iig  (20) 

where  is a tortuosity coefficient, Dg
w is the molecular diffusion coefficient which is a function 

of temperature and gas pressure and I is the identity matrix. The contribution of element em to 

the total lateral diffusive flux towards node i is approximated as: 

(∫ (𝛻𝑡𝑁𝑖)𝜙𝜏𝜌𝑔𝑆𝑔𝐷𝑔
𝑤𝐈(𝛻𝑁𝑗)𝑑𝑣

𝑒𝑚

) (𝜔𝑔
𝑤)

𝑗
≈ 

≈ (𝜙𝜏)𝑒𝑚
𝑘 (𝜌𝑔𝑆𝑔𝐷𝑔

𝑤)
𝑒𝑚

𝑘+𝜀
(∫ (𝛻𝑡𝑁𝑖)𝐈(𝛻𝑁𝑗)𝑑𝑣

𝑒𝑚

) (𝜔𝑔
𝑤)

𝑗

𝑘+𝜃
 

(21) 

where various time intermediate points have been used similarly to what was explained for the 

advective terms. The treatment of these diffusive terms also takes advantage of the fact that the 

Newton-Raphson method is used to obtain the iterative scheme. We directly interpolate mass 

fractions (e.g. g
w) and compute gradients.  

The dispersive term is treated in a similar way as the diffusive. In this case dispersivities are 

element-wise dependent variables. In principle, the liquid and gas fluxes, used to compute the 

dispersion tensor, are also computed element-wise. 

 

Treatment of volumetric strain terms  

If equation of balance of solid (2) is substituted in all other balance equations, the variations of 

porosity are not explicit in them. In this way porosity only appears as parameter or coefficient 

and terms of volumetric strain remain in the balance equations. In equation for node i these 

terms are of the type:  

∫ 𝑁𝑖𝛼𝛻 ∙
𝑑𝐮

𝜕𝑡
𝑑𝑣

𝑒𝑚

= ∫ 𝑁𝑖𝛼𝐦
𝑡𝐁
𝑑𝐮

𝜕𝑡
𝑑𝑣

𝑒𝑚

 
(22) 

where  is defined from de equations and du/dt is the vector of solid velocities, mt =(1,1,1,0,0,0) 

is an auxiliary vector and B is the matrix used in the finite element approach for the mechanical 

problem. The coefficients of B are gradients of shape functions (Zienkiewick and Zaylor, 1989). 

In (22), du/dt is transformed from a continuous vectorial function to a nodal-discrete vectorial 

function, although the same symbol is kept (i.e. ux= Nj uxj},..., where j indicates summation). 

Following the same methodology as for the other terms we have approximated the integral 

given above. The contribution of element em to cell i is: 
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∫ 𝑁𝑖𝛼𝐦
𝑡𝐁
𝑑𝐮

𝜕𝑡
𝑑𝑣

𝑒𝑚

≈ 𝛼𝑒𝑚
𝑘+𝜀 [∫ 𝑁𝑖𝐦

𝑡𝐁𝑗𝑑𝑣
𝑒𝑚

] (
𝐮𝑗
𝑘+1 − 𝐮𝑗

𝑘

𝑡𝑘+1 − 𝑡𝑘
) 

(23) 

where j indicates summation over element nodes, u is the vector of nodal displacements and Bj 

is the j-submatrix of B. 

Treatment of mechanical equilibrium equations  

The weighted residual method is applied to the stress equilibrium equation [6] followed by the 

Green's theorem. This leads to the equation 

( )  =−=
+++

v

kkk
dv  

111
0fBr

t  (24) 

where r(k+1) represents the residual corresponding to the mechanical problem and k+1 is the 

stress vector. Matrix B (composed by gradients of shape functions) is defined in such a way 

that stress is a vector and not a tensor. The body force terms and the boundary traction terms 

are represented together by fk+1. The constitutive model relates stresses with strains, with fluid 

pressures and with temperatures at a point in the medium. Only if elasticity is included, the total 

strain rate is decomposed in the following way: 

𝑑𝛆

𝑑𝑡
=
𝑑𝜺𝑒

𝑑𝑡
= (𝐃𝑒)−1

𝑑𝛔′

𝑑𝑡
+ 𝐈𝑎𝑠

𝑑𝑠

𝑑𝑡
+ 𝐈𝑎𝑇

𝑑𝑇

𝑑𝑡
,   𝐈 or 𝐦 

(25) 

where De is the elasticity matrix, 𝑎𝑠 and 𝑎𝑇 are coefficients for elastic dilation. ’ is the net 

stress tensor defined as ’=  + m Pg (compression negative). On the other hand, strain will be 

written in terms of displacements because  = B u. The last equation (25) must satisfy at every 

point in the medium. Space and time discretization lead to: 

𝐡𝑘+1 = −𝐃𝑒𝐁(𝐮𝑘+1 − 𝐮𝑘) + (𝛔𝑘+1 − 𝛔𝑘) + 𝐈(𝑝𝑔
𝑘+1 − 𝑝𝑔

𝑘) + 𝐃𝑒𝐈𝑎𝑠(𝑠
𝑘+1 − 𝑠𝑘)

+ 𝐃𝑒𝐈𝑎𝑇(𝑇
𝑘+1 − 𝑇𝑘) 

(26) 

where h is the residual of stresses at every point. If stress can be obtained in an explicit way 

from (26), it is simply substituted in (24). However, when nonlinear models are introduced a 

substitution of the differential or incremental forms is necessary.  

For the mechanical problem, the approximations that should be made are different from the 

ones used for flow problems. According to the numerical approximations proposed for the flow 

problems (hydraulic and thermal), we would tend to use element-wise matrices. However, the 

mechanical problem has some peculiarities which do not allow this kind of simplified treatment.  

First, linear triangular elements (the simplest element in two dimensional analyses), which have 

been proven to be very adequate for flow problems, should be avoided for mechanical problems. 

This is because if the medium is nearly-incompressible (creep of rocks takes place with very 

small volumetric deformation), locking takes place (not all displacements are permitted due to 

element restrictions). Second, linear quadrilateral elements with element-wise variables (this is 

equivalent to one integration point) lead to hour-glassing (uncontrolled displacement modes 

appear).  
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In order to overcome these difficulties, the selective integration (B-bar) method is used. It 

consists in using a modified form of matrix B which implies that the volumetric part of 

deformation and the deviatoric part are integrated with different order of numerical integration 

(Hughes, 1980). For linear quadrilateral elements, four integration points are used to integrate 

the deviatoric part while one is used for volumetric strain terms. Although this approximation 

is different from what is proposed for the flow problem, element-wise variables or parameters 

are maintained (porosity, saturation,...). Stress is not element-wise and it must be computed at 

the integration points.  
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V.4. THEORETICAL APPROACH SUMMARY 

The governing equations include: stress equilibrium equations (1, 2 or 3 according to the 

dimensions of the problem), mass balance equations (different species) and internal energy 

balance equation for the medium as a whole (thermal equilibrium is assumed). 

The stress equilibrium equations are a simplified form of the balance of momentum for the 

porous medium. Mass balance of water, solid and air are established. Since the assumption of 

equilibrium is made, the mass of each species as present in any phase (solid, liquid or gas) is 

balanced for the porous medium as a whole. In this way, one equation for each species is 

obtained. The equilibrium assumption implies that partition functions are required to compute 

the fraction of each species in each phase.  

Each partial differential equation is naturally associated to an unknown. These unknowns can 

be solved in a coupled way, i.e., allowing all possible cross coupling processes that have been 

implemented, or, on the contrary, any uncoupled problem to obtain a single unknown can be 

solved.   

The balance equations that CODE_BRIGHT solves are compiled here: 

 

Equation: mechanical equilibrium equations (1, 2 or 3 dimensions): 

divergence 
tensor of

total stress
+

vector of

body forces
= vector 

0

0

0

 




































  + = b 0

 

Unknown: 

displacements, 

u=(ux,uy,uz) 

 

Equation: water mass balance: 

 

𝜕 ((𝜔𝑔
𝑤𝜌𝑔 𝑆𝑔 + 𝜔𝑙

𝑤𝜌𝑙 𝑆𝑙)𝜙)

𝜕𝑡
+ 𝛻 ∙ (𝐣𝑔

𝑤 + 𝐣𝑙
𝑤) = 𝑓𝑤 

Unknown: 

liquid pressure, 

Pl (MPa) 

 

Equation: air mass balance: 

 

𝜕 ((𝜔𝑔
𝑎𝜌𝑔 𝑆𝑔 + 𝜔𝑙

𝑎𝜌𝑙 𝑆𝑙)𝜙)

𝜕𝑡
+ 𝛻 ∙ (𝐣𝑔

𝑎 + 𝐣𝑙
𝑎) = 𝑓𝑎 

Unknown: 

gas pressure, 

Pg (MPa) 
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Equation: internal energy balance: 

 

𝜕(𝑒𝑔𝜌𝑠 (1 − 𝜙) + 𝑒𝑔𝜌𝑔 𝑆𝑔𝜙 + 𝑒𝑙𝜌𝑙 𝑆𝑙𝜙)

𝜕𝑡
−
𝜙𝑆𝑔𝑝𝑔

𝜌𝑔

𝜕𝜌𝑔

𝜕𝑡
+ 

+𝛻 ∙ (𝐢𝑐 + 𝐣𝑒𝑠 + 𝐣𝑒𝑔 + 𝐣𝑒𝑙) = 𝑓
𝑄

 

Unknown: 

tempera-

ture, T (o) 

 

Equation: solid mass balance: 

𝜕(mass of solid)

𝜕𝑡
+ divergence(flux of solid) = 0 

𝜕(𝜌𝑠(1 − 𝜙))

𝜕𝑡
+ ∇ ∙ (𝐣𝑠) = 0 

Unknown: 

porosity, 

(-) 

 

The definition of a problem (which of the above described equations should be solved) is 

achieved by means of a set of general options (IOPTDISPL, IOPTPL, IOPTPG, IOPTTEMP).  

These general options indicate whether one equation is included or not. For instance a 

mechanical problem would require IOPTDISPL=1 and the other indexes equal to 0. Other 

secondary options allows to include or not any of the possible processes. Specific indexes are 

used to decide if the solid is soluble (i.e. the medium is saline), if the air solubility in liquid 

phase is taken into account and if vapour is considered. Vapour transfer can only be considered 

if the thermal problem is solved.  
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V.5. FEATURES OF CODE-BRIGHT 

The implementation of a coupled non-linear approach requires some especific developments 

and approximations. In this section the main aspects of the numerical approximation are 

reviewed. The program CODE_BRIGHT uses the finite element method to solve the coupled 

equations presented above. The main features of the numerical approach are: 

• Linear interpolation functions on segments, triangles, quadrilaterals, tetrahedrons, 

triangular prisms and quadrilateral prisms (regular). Analytical integration is used for 

segments, triangles and tetrahedrons. Numerical integration is used for quadrilateral, 

arbitrary triangular prisms (6 points) and quadrilateral prisms (8 points). For the 

mechanical problem selective integration is used for quadrilateral and quadrilateral 

prisms (this means that the volumetric part is integrated with a reduced quadrature of 

1 point). Finally, for all elements the flow equations are solved using element-wise 

and cell-wise approximations. This approximation is independent of the type of 

integration performed.  

• Finite differences and implicit scheme are used for time integration. Two intermediate 

points are defined between the two ends of the time interval (tk, tk+1). One represents 

the point where the equation will be accomplished (tk+) and the other is the point 

where the non-linear functions are computed (tk+). For instance =0 and =1 states for 

a linearised problem with a fully implicit scheme of integration. 

• Newton-Raphson method for solution of the non-linear system of algebraic equations 

that results once the space and time discretizations are applied.   

• LU decomposition and backsubstitution (non-symmetric matrix) or conjugate 

gradients squared to solve the system of linear equations that result from the Newton-

Raphson application.  

• Automatic discretization of time. Increase or reduction of time increment according to 

convergence conditions or output requirements. Reduction of time increment may be 

caused by: excessive variation of unknowns per iteration, excessive number of 

iterations to reach convergence and correction larger than in the previous iteration.  

The main features of the program CODE_BRIGHT are: 

• Options that allow to solve uncoupled and coupled problems. For instance:  Hydro-

mechanical, Thermo-mechanical, Hydro-thermal problems can be solved if the 

physical situation requires one of these approaches. 

• Types of analysis: One dimension (uni-axial confined strain and axi-symmetric). Two 

dimension (plane strain and axi-symmetric). Three dimensions. 

• Several element types. 

• Constitutive laws: each law defined as a set of parameters. Different types of 

relationships can be chosen in some cases.  

• Boundary conditions: 

• Mechanical problem: forces and displacement rate in any spatial 

direction and at any node 

• Hydraulic problem: mass flow rate of water and air prescribed and 

liquid/gas pressure prescribed at any node  

• Thermal problem: heat flow rate prescribed and temperature 

prescribed at any node 
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• Convergence criteria: Tolerances for absolute and relative error independent for 

each unknown. Tolerance for residual convergence of each problem (mechanical, 

hydraulic, etc). The node under worse conditions is used to verify the convergence 

condition.  

• Forces/flows = →0 

• Absolute variable correction = x→0 

• Variable correction / variable increment = x/x→0 

• Output options: Time evolution of variables in nodes or elements. The user should 

decide 'a priori' the nodal or element variables that will be output at all times 

(absolutely all computed times will be output for a few variables). Contour maps in 

the solution domain. Nodal or element variables can be used to draw contour maps. 

However, in the second case it is required to perform an interpolation that may be 

difficult due to the lack of continuity of the element variables.  

 

  



62 

V.6. SOLUTION OF SYSTEM OF EQUATIONS IN CODE_BRIGHT 

As described in the preceding chapters, CODE_BRIGHT is a FE-three dimensional code that 

solves the following equations: 

• equilibrium of stresses (displacements) 

• mass balance of water (liquid pressure) 

• mass balance of air (gas pressure) 

• balance of energy (temperature) 

Associated to every equation there is a variable, i.e. the unknown that is obtained by solving 

the corresponding equation. The code can be used to solve problems that need only some of the 

equations in the list. The equations are solved together in a monolithic way. Usually problems 

require variable time stepping and an iterative method for the solution of non-linearities. 

Usually the resulting system of equations is non-symmetric.  

V.6.1. Matrix storage mode in CODE_BRIGHT.  

Originally, a solver using LU decomposition was implemented in the program together with a 

band storage mode. This alternative is still available but obviously the band storage mode is not 

very efficient. This is especially dramatic when more than one degrees of freedom are 

considered.  

In principle, two possible alternatives could be considered for a more efficient storage of the 

matrix coefficients. These are skyline mode and sparse mode. The skyline mode seems adequate 

for LU-solvers because in such case filling of the matrix is important (the decomposed matrices 

contain more non-zero coefficients than the original matrix but the skyline structure is 

maintained).  

A sparse storage mode (only the non-zero values are stored) is 100% efficient and it is very 

convenient for using an iterative algorithm for solution of the system of equations.  

The mode used is referred as CSR format (Compressed Sparse Row format). It consists in the 

following scheme for a matrix A(N,N) with NZ non-zero coefficients: 

( )

( )

( )9641  :IA

41 / 321 / 32  / 431  :JA

aa/ a  a  a/ a  a / aaa :AN

tscoefficien zero-non NZ with  =A :matrix NN

10987654321

109

876

54

321























aa

aaa

aa

aaa

 

where AN (dimension NZ) is a real array that contains the non-zero values of the matrix, JA 

(dimension NZ) is an integer array that contains the column indices of the coefficients and IA 

(dimension N) contains the positions in AN where begins every row.  

In order to deal with several degrees of freedom per node (NDF>1, NDF=number of degrees of 

freedom per node), this storage mode is adapted and AN is a (NDF, NZ*NDF) array where NZ 

is the number of non-zero sub-matrices of (NDF, NDF) in the original matrix, i.e. the number 

of non-zero values if NDF was equal to 1. With this storage mode, the vectors JA and IA can 

maintain the same size as would be required for NDF=1. 
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V.6.2. Iterative solver for nonsymmetrical linear systems of equations.  

There are several alternatives for solving linear systems in an iterative way. It should be 

considered that the matrix is non-symmetric. Perhaps one of the simplest algorithms that can 

be used is the conjugate gradients squared method (CGS) which has been proposed by 

Sonneveld, 1989 and van der Vorst, 1990. This CGS method is a modification of the conjugate 

gradients for non-symmetric matrices. Iterative methods require some extra space and a pre-

conditioner. In order to facilitate parallelism, the simplest pre-conditioner that can be used is 

the inverse of the diagonal of the matrix (diagonal scaling). Of course, this is the less efficient 

pre-conditioner from the point of view of a scalar machine. However, Pini and Gambolatti 

(1990) have shown that in vectorial machines, diagonal scaling was the most efficient pre-

conditioner in the majority of the applications they compared. A block diagonal scaling consists 

in the inversion of the NDFxNDF block corresponding to each node (block in the matrix 

diagonal).  

Using CRS storage mode plus CGS iterative method plus block-diagonal scaling produces a 

quite simple structure of the solver. In fact, only vector-vector products, matrix-vector products 

and inversion of NDFxNDF matrices have to be performed. The requirements of extra space 

are only 8*N*NDF where N is the number of nodes and NDF the number of degrees of freedom 

per node. It should be mentioned that the matrix-vector products are easily performed with the 

CRS storage mode because the matrix is stored by rows. The CGS algorithm is described as: 

( )

( )

( )

x x

r b Ax

r r r r r

r r p q 0

K

u r q

p u q p

q Kq p

v Aq

r v

q u v

v Kv u q

u Av

x

:

: ;

~ , ~ ~ );

, ~ ; ; ;

: ;

: ( );

;

: ;

/ ~, ;

: ;

;

: ;

:

=

= −

 =

= = = =

= +

= + +

=

=

=

= −

= +

=

=

0

0 0 0

0

 (intial guess);

 is an arbitrary vector such that  (e.g.  

 is a preconditioner matrix;

for i = 0,1,2,...

   

   

   Solve  from 

   

   

   

   Solve  from 

   

   

  



 

 



i

i i

i i

i

( )

x v

r r u

x A b

r r

+

= −

=

=

−

+

+







  

i

i

i

i i

;

: ;

, ~ ;

/ ;

   

   if  close enough to  then quit;

   

   

end i

i+1

1

1

1

 

where it can be seen that two matrix - vector products should be performed per iteration, two 

vector-vector products (indicated by (,)), and the remaining operations are vector updates. 
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VI. CODE_BRIGHT. CONSTITUTIVE LAWS 

This chapter contains the different models available and the corresponding parameters required 

by each model. The following constitutive laws are available 

HYDRAULIC AND 

THERMAL CONSTITUTIVE 

MODELS (a) 

RETENTION CURVE  

INTRINSIC PERMEABILITY  

LIQUID PHASE RELATIVE 

PERMEABILITY  

GAS PHASE RELATIVE 

PERMEABILITY  

DIFFUSIVE FLUXES OF MASS  

DISPERSIVE FLUXES OF 

MASS AND ENERGY  

CONDUCTIVE FLUX OF HEAT  

MECHANICAL CONSTITUTIVE MODELS 

 

ELASTICITY (b) 

NONLINEAR ELASTICITY (b) 

VISCOPLASTICITY FOR SALINE MATERIALS 

(b)  

VISCOPLASTICITY FOR SATURATED SOILS 

AND ROCKS   (b) 

VISCOPLASTICITY - GENERAL (b) 

DAMAGE-ELASTOPLASTIC MODEL FOR 

ARGILLACEOUS ROCKS (c) 

THERMOELASTOPLASTIC MODEL FOR SOILS 

(d) 

BARCELONA EXPANSIVE MODEL FOR SOILS 

(e) 

CASM’s FAMILY MODELS (f) 

PHASE PROPERTIES (a) 

SOLID PHASE PROPERTIES 

LIQUID PHASE PROPERTIES 

GAS PHASE PROPERTIES 

EXCAVATION PROCESS (g) 

 

 

 

 

 

VI.a HYDRAULIC AND THERMAL CONSTITUTIVE LAWS. PHASE PROPERTIES  
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HYDRAULIC AND THERMAL LAWS 

ICL NAME ITYCL DESCRIPTION 

6 Retention curve 1 
2 
4 
9 
 

12 
18 

Van Genuchten model 
Linear model 
Square law 
Van Genuchten model with asymptotic branch to 
negative capillary pressures 
Van Genuchten model modified for FEBEX project 
Van Genuchten model modified for freezing model 

66 Retention curve 2 12 Van Genuchten model modified for FEBEX project 

7 Intrinsic permeability 1 
2 
4 
 

5 
 

15 
 

16 

Kozeny's model 
Exponential law 
Kozeny's model for matrix + cubic law for discontinuity 
(normal strain is used to calculate aperture) 
Kozeny's model for matrix + cubic law for discontinuity 
(volumetric strain is used to calculate aperture) 
Same as 5 but with different relative permeability for 
matrix and discontinuity 
Barton's law – Joint element 

14 Liquid phase relative 
permeability 

1 
5 
6 
8 

12 

Van Genuchten model 
Liquid perfectly mobile 
Generalized power 
Power with initial cut off 
Van Genuchten model for freezing model 

19 Gas phase relative 
permeability 

1 
5 
6 

12 

Default law 
Gas perfectly mobile 
Generalized power 
Van Genuchten Mualem model 

11 Diffusive flux of vapor 1 
2 

Molecular diffusion of vapour or air 
Molecular diffusion of vapour or air + tortuosity is 
variable with gas pressure (Pg) 

12 Diffusive fluxes of 
dissolved salt and air 

1 Molecular diffusion of dissolved salt and dissolved air 

8 Dispersive fluxes of 
mass and energy 

1 Fick's law (mass flux) and Fourier's law (heat flux) 

9 Conductive flux of heat 
(1) 

1 
 

2 
 

3 
 

Thermal conductivity dependence on porosity 
(geometric weighted mean) 
Thermal conductivity dependence on porosity 
(weighted arithmetic mean) 
Thermal conductivity dependence on porosity 
(nonlinear function of porosity) 

20 Conductive flux of heat 
(2) 

1 
2 
4 
5 
6 

Dependence on degree of saturation 
Dependence on degree of saturation 
Dependence on degree of saturation 
Dependence on water/ice content 
Dependence on degree of saturation (Chen & Ledesma, 
2009) 
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PHASE PROPERTIES 

ICL NAME ITYCL DESCRIPTION 

10 Solid phase properties 1 
2 

Solid specific heat, density and expansion coefficient 
Solid specific heat, density and expansion coeff. 
(variation of solid phase specific heat) 

15 Liquid phase properties: 
density 

1 
2 
4 
5 
 

6 

Liquid density (exponential variation) 
Liquid density (linear variation) 
Liquid density (CO2) 

Liquid density (linear dependency of the thermal 
expansion coefficient with temperature) 
Liquid density adjustment for a wide temperature 
range (-30ºC—300ºC) 

16 Liquid phase properties: 
viscosity 

1 Liquid viscosity 

17 Gas phase properties: 
density 

1 
 

2 
 

3 
 

4 

Dry air density. Law of ideal gases and Henry's law for 
dry air 
Usually used to consider a second liquid phase instead 
of the gas phase 
Like ITYCL=1 but with user defined values for gas 
molecular mass and Henry's constant 
Gas density CO2 

18 Gas phase properties: 
viscosity 

1 
2 
4 

Gas viscosity 
Gas viscosity (exponential law) 
Gas viscosity CO2 
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RETENTION CURVE 

  

CODES in 
ROOT_gen.dat 

ICL = 6        ITYCL = 1, 2, 4, 9, 12, 18 

(See ICL = 66 for ITYCL = 1, 9, 12, 18) 

DESCRIPTION Curve capillary pressure versus degree of saturation. 

EQUATIONS ITYCL = 1: Van Genuchten model: 

𝑺𝒆 =
𝑺𝒍−𝑺𝒓𝒍

𝑺𝒍𝒔−𝑺𝒓𝒍
= (𝟏 + (

𝑷𝒈−𝑷𝒍

𝑷
)

𝟏

𝟏−𝝀
)

−𝝀

         with    𝑷 = 𝑷𝒐
𝝈

𝝈𝒐
 

ITYCL = 2: Linear model:   S
S S

S S

P P

Pe

l rl

ls rl

g l

o

=
−

−
= −

−
1  

ITYCL = 4: Square law:    S
S S

S S P P

P

e

l rl

ls rl g l

o

=
−

−
=

+
−

1

1

 

ITYCL = 9: Van Genuchten model with asymptotic branch that goes to 

negative capillary pressures. 

( )

1

1

2

1

               

g ll rl o

e g l o

ls rl o

l ls g l

g l

P PS S P
S P P a P P

S S P f

b
S S P P a

P P a c



 



−

−
 

− −  = = + −  = =  −   
 

= − − 
− − −

where b, c are internal smoothing functions. 

ITYCL = 12: FEBEX model: 

1

1

1

1

d

g ll rl
e d

ls rl

g l

o d

o d

P PS S
S f

S S P

P P
P P f

P










−

−
 

− −  
= = +   −   

 

− 
= = − 

 
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RETENTION CURVE (ICL = 6). PARAMETERS FOR ITYCL = 1 (Van Genuchten model; 

see ICL=66 for additional parameters): 

P1 Po MPa Measured P at certain temperature  

P2 o N m-1 
Surface tension at temperature in which Po was measured 

(usually o = 0.072 N/m at 20ºC) 

P3   Shape function for retention curve 

P4 Srl  Residual saturation 

P5 Sls  Maximum saturation 

P6 a  
Parameter for porosity influence on retention curve: 

Po() = Po exp(a(−) 

P7 b  
Parameter for porosity influence on retention curve: 

() =  exp(b(−)) 

P8 Void   

P9   
Reference porosity for porosity influence on retention 

curve 

 

RETENTION CURVE (ICL = 6). PARAMETERS FOR ITYCL = 2 (linear model): 

P1 Po MPa Measured P at certain temperature  

P2 Void   

P3 Void   

P4 Srl  Residual saturation 

P5 Sls  Maximum saturation 

 

  

EQUATIONS ITYCL = 18: Freezing model: 

-
1

1-

i l i

1 ;   

 Clausius Clayperon 
273

where  is the ice pressure, 0.91,  306 ,

 temperature in K

Ice volumetric fraction: 1

l

l rl i l

e

ls rl

i

i i

l

i

i l

S S P P
S

S S P

T
P P l

T

P l MPa

T

S S




 

− −  = = +   −  
 


= − 

 +

  =  =

= −
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RETENTION CURVE (ICL = 6). PARAMETERS FOR ITYCL = 4 (square law): 

P1 Po MPa Measured P at certain temperature  

P2 Void   

P3 Void   

P4 Srl  Residual saturation 

P5 Sls  Maximum saturation 

RETENTION CURVE (ICL = 6). PARAMETERS FOR ITYCL = 9 (Van Genuchten model 

with asymptotic branch that goes to negative capillary pressures; see ICL=66 for additional 

parameters): 

P1 Po MPa Measured P at certain temperature  

P2 o N m-1 
Surface tension at temperature in which Po was measured 

(usually o=0.072 N/m at 20ºC) 

P3   Shape function for retention curve 

P4 Srl  Residual saturation 

P5 Sls  Maximum saturation 

P6 f  Used for the asymptotic branch 

RETENTION CURVE (ICL = 6). PARAMETERS FOR ITYCL = 12 (FEBEX model; see 

ICL=66 for additional parameters): 

P1 Po MPa Measured P at certain temperature  

P2 o N m-1 
Surface tension at temperature in which Po was measured 

(usually o=0.072 N/m at 20ºC) 

P3   Shape function for retention curve 

P4 Srl  Residual saturation 

P5 Sls  Maximum saturation 

P6 a  

Parameter for porosity influence on retention curve: 

Po()=Po exp(a(−)) Pd()=Pd exp(a(−)) 

See Retention curve 2 (ICL=66) for additional parameters. 

P7 b  

Parameter for porosity influence on retention curve: 

() =  exp(b(−)) d () = d exp(b(−)) 

See Retention curve 2 (ICL=66) for additional parameters. 

P8   
Reference porosity for porosity influence on retention 

curve 

P9 Pd MPa 
Pressure related with the suction at zero degree of 

saturation 

P10 d  Model parameter 
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RETENTION CURVE (ICL = 6). PARAMETERS FOR ITYCL = 18 (freezing model; see 

ICL=66 for additional parameters): 

P1 Po MPa Measured P at certain temperature  

P2 o N m-1 
Surface tension at temperature in which Po was measured 

(usually o = 0.072 N/m at 20ºC) 

P3   Shape function for retention curve 

P4 Srl  Residual saturation 

P5 Sls  Maximum saturation 

P6 a  
Parameter for porosity influence on retention curve: 

Po() = Po exp(a(−) 

P7 b  
Parameter for porosity influence on retention curve: 

() =  exp(b(−)) 

P8 Void   

P9   
Reference porosity for porosity influence on retention 

curve 

P10 i_stress  

Flag to indicate stress concept for use in the mechanical 

model: 

i_stress = 0 : Net stress (n =  - Pi) 

i_stress = -1: Bishop’s stress (b =  - Pi  + Sr (Pi-Pl)) 

Srl and Sls are lower and upper bounds of saturation. Effective saturation Se is defined in such a 

way that ranges between 0 and 1. 
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RETENTION CURVE 2 

RETENTION CURVE (ICL = 66). PARAMETERS FOR ITYCL = 1, 9, 12, 18 

P1* 𝐴 𝐶−1 

Parameter 𝐴 for temperature influence on capillary 

pressure parameter P:  

𝑃 = 𝑃0
𝜎

𝜎0
exp(𝐴(𝑇 − 𝑇0)) 

P2* 𝑇0 𝐶 

Parameter 𝑇0 for temperature influence on capillary 

pressure parameter P:  

𝑃 = 𝑃0
𝜎

𝜎0
exp(𝐴(𝑇 − 𝑇0)) 

* Note that to be able to use the function 𝑃 = 𝑃0
𝜎

𝜎0
exp(𝐴(𝑇 − 𝑇0)), it is required to input a 

value for 𝜎0 (usually 0.072 N/m at 20ºC) in ICL = 6 (retention curve). 

RETENTION CURVE (ICL = 66). PARAMETERS FOR ITYCL = 12 (FEBEX model): 

P6 ad  
Parameter for porosity influence on retention curve:  

Pd () = Pd exp(ad (−)) 

P7 bd  
Parameter for porosity influence on retention curve:  

d () = d exp(bd (−)) 

 

 

  

CODES in 

ROOT_gen.dat 

ICL = 66        ITYCL = 1, 9, 12, 18 

DESCRIPTION Curve capillary pressure versus degree of saturation. Additional 

parameters for retention curve ICL = 6. 

EQUATIONS ITYCL = 1, 9, 12, 18: Temperature influence on capillary pressure 

parameter P:  

𝑃 = 𝑃0
𝜎

𝜎0
exp(𝐴(𝑇 − 𝑇0)) 

 

ITYCL = 12: FEBEX model: 

1

1

1

1

d

g ll rl
e d

ls rl

g l

o d

o d

P PS S
S f

S S P

P P
P P f

P










−

−
 

− −  
= = +   −   

 

− 
= = − 

 
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INTRINSIC PERMEABILITY 

CODES in 

ROOT_gen.dat 
ICL = 7         ITYCL = 1, 2, 4, 5, 6, 15, 16 

DESCRIPTION Intrinsic permeability 

EQUATIONS ITYCL = 1: For a continuum medium (Kozeny’s model): 
23

2 3

(1 )
:  reference porosity

(1 )

:  intrinsic permeability for matrix 

o

o o

o

o o

− 
= 

−  



k k

k

 

which is used in Darcy’s law:   ( )q
k

g





 
= −  −

k
P

r
 

where viscosity, density and relative permeability are defined in other laws. 

ITYCL = 2: Exponential law:    ( ) exp
o o

b=  − k k  

ITYCL = 4, 5: Intrinsic permeability depending on an embedded aperture: 
3

12
matrix

b

a
= +k k          o

b b b= +         ( )  for  
o o

b a a =  = −       

where matrixk : reference intrinsic permeability of the rock matrix or 

porous material (without fractures). 

a: spacing of the fracture. 

b: variable aperture as a function of normal or volumetric strains. 

b0: minimum aperture. 

Using this option, the capillary pressure P of the retention curve (ICL=6) 

varies as:  

                                    
3

0

3oP P=
k

k
 

where Po is the capillary pressure for a reference permeability ko, which 

can be the initial permeability. 

ITYCL = 6: Postfailure model:  o
=k k  (pre-failure) 

 3
exp 1 exp v B

o c

B

   − 
= + −   −     

k k k  (post-failure) 

ITYCL = 15: This model is similar to option ITYCL=5 except that: 

𝐤𝑘𝑟𝑔 = 𝐤𝑚𝑎𝑡𝑟𝑖𝑥𝑘𝑟𝑔
𝑚𝑎𝑡𝑟𝑖𝑥 + 𝐤𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝑘𝑟𝑔

𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦
 

where relative permeability is split into two functions depending if the 

intrinsic permeability corresponds to the matrix or the discontinuity: 

𝑘𝑟𝑔
𝑚𝑎𝑡𝑟𝑖𝑥 is calculated normally, and   𝑘𝑟𝑔

𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦
= 𝑆𝑔 = (1 − 𝑆𝑙) 
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 ITYCL = 16: Zero thickness element 

Barton’s law: Longitudinal intrinsic permeability 
2

2 2

2.5

1

12 12
l

e a
k

JRC

 
= =  

 
            

:  Opening of the joint
:  Joint Roughness Coefficient

a
JRC  

Transversal intrinsic permeability tk  is considered to be equal to the 

continuum media.  

For the retention curve (ICL=6), air entry value depends on joint aperture, 

as:   
0

0

0

l

l

k
P P

k


=


 

INTRINSIC PERMEABILITY (ICL = 7). PARAMETERS FOR ITYCL = 1 

P1 (k11)o m2 Intrinsic permeability, 1st principal direction. 

P2 (k22)o m2 Intrinsic permeability, 2nd principal direction. 

P3 (k33)o m2 Intrinsic permeability, 3rd principal direction.  

P4 o  
Reference porosity for read intrinsic permeability.  

If o=0, permeability will be constant. 

P5 min  Minimum porosity (porosity will not be lower than this value). 

To use ITYCL = 4, 5, 15, the reference porosity (P4) needs to be greater than zero.  

INTRINSIC PERMEABILITY (ICL = 7). PARAMETERS FOR ITYCL = 2 

P1-P5 The same as in ITYCL=1 

P6 b - Parameter. 

INTRINSIC PERMEABILITY (ICL = 7). PARAMETERS FOR ITYCL = 4, 5 

P1-P5 The same as in ITYCL=1 

P6 b - 
Parameter. If abs (b) > 0, exponential law is used for matrix 

permeability. Otherwise, Kozeny’s law is used. 

P7 bo m Minimum aperture to calculate a variable aperture as: o
b b b= +   

P8 a m 
Spacing of the fractures:    

3

12
matrix

b
k k

a
= +  

Permeability of the matrix is obtained as usual in porous media. 

P9 o - 

Reference strain to calculate aperture variations: 
( )  for  

o o
b a a =  = −       

If this value is negative, the initial aperture is larger than the 

minimum aperture (discontinuity is open). 

If this value is zero or positive, the discontinuity cannot close. 

P10 bmax m Maximum aperture. Upper bound of aperture. 
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For ITYCL = 4, the normal strain to the discontinuity is used. 

For ITYCL = 5, 15 the volumetric strain is used. 

INTRINSIC PERMEABILITY (ICL = 7). PARAMETERS FOR ITYCL = 15 

P1-P5 The same as in ITYCL=1 

P6   Power for gas relative permeability that applies to cubic law 

P7 bo m Minimum aperture to calculate a variable aperture as: o
b b b= +   

P8 a m Spacing of the fractures:    

3

12
matrix

b
k k

a
= +  

Permeability of the matrix is obtained as usual in porous media. 

P9 o - 

Reference strain to calculate aperture variations: 
( )  for  

o o
b a a =  = −       

If this value is negative, the initial aperture is larger than the 

minimum aperture (discontinuity is open). 

If this value is zero or positive, the discontinuity cannot close. 

P10 bmax m Maximum aperture. Upper bound of aperture. 

INTRINSIC PERMEABILITY (ICL=7). PARAMETERS FOR ITYCL=6 

P1-P5 The same as in ITYCL = 1 

P6 γ MPa-1 Dilatability 

P7 B - Maximum volumetric strain 

P9 Kc - Permeability at zero minor principal stress 

INTRINSIC PERMEABILITY (ICL=7). PARAMETERS FOR ITYCL=16 

P1 (k11)o m2 

Longitudinal intrinsic permeability, 1st principal direction. 

If (k11)0 = 1, the intrinsic permeability, lk ,  is calculated with Barton’s 

law. Permeability and air entry value depends on joint aperture. 

P2 (k22)o m2 Transversal intrinsic permeability, 
tk ,  2nd principal direction. 

P4-P5 The same as in ITYCL = 1 

P6 JRC - Joint Roughness Coefficient. 
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LIQUID PHASE RELATIVE PERMEABILITY 

CODES in 

ROOT_gen.dat 

ICL = 14       ITYCL = 1, 5, 6, 8, 12 

DESCRIPTION By default, the consistent form of relative permeability with van 

Genuchten model is used. In this case, this ICL=14 can be ignored.  

EQUATIONS ITYCL = 1: Van Genuchten - Mualem model:       

( )( )k S Srl e e= − −1 1
1

2
/



 

ITYCL = 5: Liquid perfectly mobile:    k rl = 1  

ITYCL = 6: Generalized power:            k ASrl e=


 

ITYCL = 8: Power with initial cut off 

         
1

0         otherwise

e eo
rl e eo

eo

rl

S S
k A S S

S

k



 −
= = 

− 

=

 

ITYCL = 12: Van Genuchten model for freezing model 

( )( )k S Srl e e= − −1 1
1

2
/



 

(Se from ICL = 6; ITYCL = 18) 

The effective liquid saturation is calculated as: 

𝑆𝑒 =
𝑆𝑙 − 𝑆𝑟𝑙
𝑆𝑙𝑠 − 𝑆𝑟𝑙

 

Liquid phase relative permeability (ICL = 14). Parameters for ITYCL = 1 (Van Genuchten 

model): 

P1 Void   

P2 Void   

P3   Power 

P4 Srl  Residual liquid saturation (default = same value as for retention curve) 

P5 Sls  Maximum liquid saturation (default = same value as for retention curve) 

Liquid phase relative permeability (ICL = 14). Parameters for ITYCL = 5 (liquid perfectly 

mobile): None. 
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Liquid phase relative permeability (ICL = 14). Parameters for ITYCL=6 (generalized power): 

P1 Void   

P2 A  Constant 

P3   Power (typically 3) 

P4 Srl  Residual liquid saturation (default = same value as for retention curve) 

P5 Sls  Maximum liquid saturation (default = same value as for retention curve) 

Liquid phase relative permeability (ICL = 14). Parameters for ITYCL = 8 (power with initial 

cut off):  

P1 Seo  Parameter 

P2 A  Constant 

P3   Power 

P4 Srl  Residual liquid saturation (default = same value as for retention curve) 

P5 Sls  Maximum liquid saturation (default = same value as for retention curve) 

Liquid phase relative permeability (ICL = 14). Parameters for ITYCL = 12 (Van Genuchten 

model for freezing model): 

P1 Void   

P2 Void   

P3   Power 

P4 Srl  Residual liquid saturation (default = same value as for retention curve) 

P5 Sls  Maximum liquid saturation (default = same value as for retention curve) 

Srl and Sls are lower and upper bounds of liquid saturation. Effective liquid saturation Se is 

defined in such a way that ranges between 0 and 1. In principle, the same values Srl and Sls 

should be defined for liquid and gas relative permeability and for retention curve. However, 

different values can be used to define a maximum saturation of liquid with possibility of 

remnant gas flow or vice-versa. 
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GAS PHASE RELATIVE PERMEABILITY 

CODES in 

ROOT_gen.dat 

ICL = 19      ITYCL = 1, 5, 6, 12 

DESCRIPTION Relative permeability of the gas phase 

EQUATIONS ITYCL = 1: Default law:          k krg rl= −1  

ITYCL = 5: Gas perfectly mobile:   k rg = 1  

ITYCL = 6: Generalized power:    k ASrg eg=


 

The effective gas saturation is calculated as: 

𝑆𝑒𝑔 =
𝑆𝑔 − 𝑆𝑟𝑔

𝑆𝑔𝑠 − 𝑆𝑟𝑔
 

ITYCL = 12: Van Genuchten-Mualem 

𝑘𝑟𝑔 = (1 − 𝑆𝑒𝑙)
𝛾 (1 − 𝑆𝑒𝑙

1

𝜆 )

2𝜆

 

The effective liquid saturation can be calculated as: 

𝑆𝑒𝑙 = 1 − 𝑆𝑒𝑔 = 1 −
𝑆𝑔 − 𝑆𝑟𝑔

𝑆𝑔𝑠 − 𝑆𝑟𝑔
 

GAS PHASE RELATIVE PERMEABILITY (ICL = 19). PARAMETERS FOR ITYCL = 1 

(default law): 

P1-P3 Void   

P4 Srg - Residual gas saturation (default = 1-Sls in retention curve) 

P5 Sgs - Maximum gas saturation (default = 1-Srl in retention curve) 

GAS PHASE RELATIVE PERMEABILITY (ICL = 19). PARAMETERS FOR ITYCL = 5 

(gas perfectly mobile): None 

GAS PHASE RELATIVE PERMEABILITY (ICL = 19). PARAMETERS FOR ITYCL = 6 

(generalized power): 

P1 Void   

P2 A  Constant 

P3   Power 

P4 – P5  The same as in ITYCL = 1 

GAS PHASE RELATIVE PERMEABILITY (ICL = 19). PARAMETERS FOR ITYCL = 12: 

P1 Void   

P2   Power 

P3 – P5 The same as in ITYCL = 6 
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DIFFUSIVE FLUXES OF VAPOUR 

CODES in 

ROOT_gen.dat 

ICL = 11   ITYCL = 1, 2 

DESCRIPTION Diffusion coefficients 

EQUATIONS Fick's law for molecular diffusion is written as: 

( )i i i
S D

    
= −  i I  

where  is porosity,  is density, S is degree of saturation,  is 

mass fraction and D
i is the diffusion coefficient of species i in 

phase  in m2/s. 

The non-advective flux of a species in a phase is composed by 

molecular diffusion and mechanical dispersion (dispersion is 

defined in another set of parameters).  

 

ITYCL = 1: Molecular diffusion of vapour or air in the gas phase: 

( )273.15
n

i

g

T
D D

P


 +
=  

 
 

 

where Pg is the gas pressure in Pa, and D and n are parameters. 

Tortuosity coefficient is defined as a constant value in this case: 

0
constant =  =   

 

ITYCL = 2: Molecular diffusion of vapour or air in the gas 

phase: 

( )273.15
n

i

g

T
D D

P


 +
=  

 
 

 

where Pg is the gas pressure in Pa, and D and n are parameters. 

Tortuosity coefficient is defined in this case as: 

( )0

m

g
S =   

where 0 and m are parameters. 

 

DIFFUSIVE FLUXES OF VAPOUR (ICL = 11). PARAMETERS FOR ITYCL = 1: 

P1 D m2 s-1 K-n Pa Default value = 5.910-6 

P2 n  Default value = 2.3 

P3 0  Coefficient of tortuosity; default = 1.0 

 

DIFFUSIVE FLUXES OF VAPOUR (ICL = 11). PARAMETERS FOR ITYCL = 2: 

P1 – P3  The same as in ITYCL = 1 

P4 m  Power for tortuosity function of saturation 
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DIFFUSIVE FLUXES OF DISSOLVED SALT AND AIR 

CODES in 

ROOT_gen.dat 

ICL = 12   ITYCL = 1 

DESCRIPTION Diffusion coefficients 

EQUATIONS Fick's law for molecular diffussion is written as: 

( )i i i
S D

    
= −  i I  

where  is porosity,  is density, S is degree of saturation,  is 

mass fraction and Dm
i is the diffusion coefficient of species i in 

phase  in m2/s. 

 

ITYCL = 1: Molecular diffusion of dissolved salt and/or 

dissolved air in the liquid phase: 

( )
exp

273.15

i Q
D D

R T


 −
=   + 

 

where D and Q are parameters and  is the coefficient of 

tortuosity. 

 

DIFFUSIVE FLUXES OF DISSOLVED SALT AND AIR (ICL = 12). PARAMETERS FOR 

ITYCL = 1: 

P1 D m2 s-1 Default value = 1.110-4 

P2 Q J mol-1 Default value = 24530 

P3   Coefficient of tortuosity; default=1.0 

P4 – P10 Void   
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DISPERSIVE FLUXES OF MASS AND ENERGY 

CODES in 

ROOT_gen.dat 

ICL = 8   ITYCL = 1 

DESCRIPTION Dispersivities for vapour, dissolved air and heat. 

EQUATIONS Mechanical dispersion mass flux is computed by means Fick's 

law written as: 

( )i D   
i i

= − '  

where the mechanical dispersion tensor is defined as: 

D q I
q q

q
' ( ) 

 



= + −d d dt l t

t

 

where dl is longitudinal dispersivity and dt is transversal 

dispersivity. 

Mechanical dispersion heat flux is computed by means Fourier's 

law written as: 

( )i Dh c T= −    '  

where c  is the specific heat of the  phase, and the mechanical 

dispersion tensor is defined in the same way as before but using 

the corresponding dispersivities for heat dispersion (only the 

contribution due to liquid phase dispersion, i.e.  =l has been 

implemented). Heat conduction is defined in another set of 

variables. 

DISPERSIVE FLUXES OF MASS AND ENERGY (ICL=8). PARAMETERS FOR ITYCL=1: 

P1 dl m Longitudinal dispersivity for solutes in liquid phase 

P2 dt m Transverse dispersivity for solutes in liquid phase 

P3 Void   

P4 dl m Longitudinal dispersivity for heat 

P5 dt m Transverse dispersivity for heat 

P6 dl m Longitudinal dispersivity for vapour, default: P1 

P7 dt m Transverse dispersivity for vapour, default: P2 
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CONDUCTIVE FLUX OF HEAT (1) 

CODES in 

ROOT_gen.dat 

ICL = 9   ITYCL = 1, 2, 3 

DESCRIPTION Dependence on porosity and temperature. 

EQUATIONS Thermal conductivity is used in Fourier's law to compute conductive 

heat flux, i.e.: 

ic T= −  

There are two possibilities to solve conductive flux of heat through this 

law:  

a) Giving directly dry and sat. These values can be measured in the 

laboratory. They will be used in law ICL=20.  

b) Giving the conductivity of the phases of the soil, i.e. (solid)o, liquid, 

gas and a1, a2, a3. In this case, dry and sat are calculated according 

to the laws given below. 

 

ITYCL = 1: Thermal conductivity dependence on porosity. Geometric 

weighted mean. 

     
   

dry solid gas sat solid liq= =
− −( ) ( )1 1

                               

 solid solid o a T a T a T= + + +( ) 1 2

2

3

3
 

𝜆(𝑇) = 𝐶 × (𝑇 + 273.15)𝑛    if    C, n  > 0 

 

ITYCL = 2: Thermal conductivity dependence on porosity. Weighted 

arithmetic mean. 

         dry

n

solid

n

gas sat

n

solid

n

liq= − + = − +( ) ( )1 1              

 

ITYCL = 3: Thermal conductivity dependence on porosity. Nonlinear 

function of porosity. 

( )

( )

   

 

n

dry solid dryo solid

o

n

sat solid sato solid

o

 
 =  +  −   

 

 
 =  +  −   

 
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CONDUCTIVE FLUX OF HEAT 1 (ICL = 9). PARAMETERS FOR ITYCL = 1 (geometric 

weighted mean): 

P1 dry W m-1 K-1 Thermal conductivity of the dry porous medium 

P2 sat W m-1 K-1 Thermal conductivity of the water saturated porous medium 

P3 (solid)o W m-1 K-1 Solid phase thermal conductivity (ignored if dry, sat>0) 

P4 gas W m-1 K-1 Gas phase thermal conductivity (ignored if dry, sat>0) 

P5 liq W m-1 K-1 Liquid phase thermal conductivity (ignored if dry, sat>0) 

P6 a1  Ignored if dry, sat 0 

P7 a2  Ignored if dry, sat 0 

P8 a3  Ignored if dry, sat 0 

P9 C  Constant in 𝜆(𝑇) = 𝐶 × (𝑇 + 273.15)𝑛 (ignored if C = 0) 

P10 n  Power in 𝜆(𝑇) = 𝐶 × (𝑇 + 273.15)𝑛 (ignored if n = 0) 

CONDUCTIVE FLUX OF HEAT 1 (ICL = 9). PARAMETERS FOR ITYCL = 2 (weighted 

arithmetic mean): 

P1 – P8  The same as in ITYCL = 1 

P9 Void   

P10 n  
Power of porosity function (default value = 1, so linear 

dependence with porosity) 

CONDUCTIVE FLUX OF HEAT 1 (ICL = 9). PARAMETERS FOR ITYCL = 3 (nonlinear 

function of porosity): 

P1 – P2 Void   

P3 (solid)o W m-1 K-1 Solid phase thermal conductivity  

P4 (dry)o W m-1 K-1 Dry thermal conductivity for reference porosity  

P5 (sat) o W m-1 K-1 Saturated thermal conductivity for reference porosity 

P6 – P8 Void   

P9 o  Reference porosity 

P10 n  Power of porosity 

Heat dispersion is defined in the constitutive law ICL = 8, ITYCL = 1 (Dispersive fluxes of 

mass and energy). 
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CONDUCTIVE FLUX OF HEAT (2) 

CODES in 

ROOT_gen.dat 
ICL = 20   ITYCL = 1, 2, 4, 5, 6, 7 

DESCRIPTION Dependence on water content. 

EQUATIONS Thermal conductivity is used in Fourier's law to compute conductive heat flux, 

i.e.: 

ic T= −  

Dependence of thermal conductivity on degree of saturation can be considered 

in the following ways: 

 

ITYCL = 1: Linear with the square root of saturation 

( )  = + −sat l dry lS S1  

ITYCL = 2: Geometric mean:       ( )  =
−

sat

S

dry

Sl l1  

ITYCL = 4: Linear with saturation:      ( )1dry l sat lS S =  − +   

ITYCL = 5: Geometric mean for frozen soil 

Dependence on water/ice content. Activating this option permits to have 

different values for thermal conductivity depending if the soil is frozen or 

unfrozen. 

( )1 ll
SS

unfrozen frozen

−
 =    

frozen = dry   and  unfrozen = sat, are introduced in ICL = 9, ITYCL = 1.  

The thermal conductivity of phases can be introduced to determine the 

thermal conductivity of the frozen and unfrozen soil. In such case the solid 

and liquid water are input as usual, and the ice thermal conductivity should 

be input in the same place as the gas thermal conductivity 

 

ITYCL = 6: Dependence of thermal conductivity on degree of saturation 

(Chen & Ledesma, 2009): 

2 2
sin cos

2 2

l l
sat dry

S S    
 =  +    

   
 

ITYCL = 7: S-shaped function  

λ =
A1 − A2

1 + 𝑒[
(𝑆𝑟−𝑆𝑟∗)

𝑏⁄ ]
+ A2 

Where A1 represents the value of  for 𝑆𝑟 = 1, A2 the value of  for 𝑆𝑟 = 0, 

𝑆𝑟∗ the degree of saturation for which thermal conductivity is the average of 

the two extreme values and b is a parameter. In some cases, A1 and A2 are 

equivalent to sat and dry, respectively. A1 and A2 are introduced as sat and 

dry in ICL = 9, ITYCL = 1: Conductive flux of heat (1). 

 

Parameters are not necessary for ICL = 20 and ITYCL = 1, 2, 4, 5, 6.  

dry  and  sat   are introduced in ICL = 9: Conductive flux of heat (1). 
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CONDUCTIVE FLUX OF HEAT 2 (ICL = 20). PARAMETERS FOR ITYCL = 7 (S-shaped 

function): 

P1 𝑏 - 
Parameter (since  𝐴1 > 𝐴2 , this parameter is negative for the 

equation written above, so it must be input as a negative value). 

P2 𝑆𝑟∗ - 
Degree of saturation corresponding to a value of thermal 

conductivity that is the average between the extreme values 

 

 

CONDUCTIVE FLUX WITH ANISOTROPY: 

CONDUCTIVE FLUX OF HEAT 1 (ICL = 9): leave all parameters void. 

CONDUCTIVE FLUX OF HEAT 2 (ICL = 20): ITYCL = 1: 

P6 λ11 W/(mK) Thermal conductivity in 1st principal direction 

P7 λ22 W/(mK) Thermal conductivity in 2nd principal direction 

P8 λ33 W/(mK) Thermal conductivity in 3rd principal direction 

 

Note this option does not allow using porosity, degree of saturation or temperature 

dependencies. 
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PHASE PROPERTIES 

SOLID PHASE PROPERTIES 

CODES in 

ROOT_gen.dat 

ICL = 10              ITYCL = 1, 2 

DESCRIPTION Solid specific heat, density and expansion coefficient  

SOLID PHASE PROPERTIES (ICL = 10). PARAMETERS FOR ITYCL = 1: 

P1 Cs J kg-1 K-1 Solid phase specific heat (default: 1000) (**) 

P2 s kg m-3 Solid phase density (default: 2700) 

P3 s C-1 

Linear thermal expansion coefficient for grains (not 

volumetric) (positive value; default = 1E-5). This does not 

produce thermal expansion of the medium. (*) 

P4 To C Reference temperature for thermal expansion (default: 40) 

P5 – P6 void   

P7 1/Ks MPa-1 
Compressibility of solid phase against mean stress changes 

(positive value; default = 3E-5) 

P8 po MPa 
Reference pressure for solid compressibility (default: 0.1 

MPa) 

SOLID PHASE PROPERTIES (ICL = 10). PARAMETERS FOR ITYCL = 2: 

P1 cs J kg-1 K-1 Solid phase specific heat for T = 0 (default: 1000) 

P2 – P5 The same as in ITYCL = 1 

P6 dcs/dt  Variation of solid phase specific heat 

P7 – P8 The same as in ITYCL = 1 

(*) Thermal expansion coefficient for grains should be equal to the bulk value if thermal 

expansion of the porous medium does not produce porosity variations.  

(**) Specific heat for water and air are internal values.  

Note that, in the case of parameters with default values, when setting them to zero –or to a value 

lower than 10-25– automatically takes the default value. Hence, if the user actually wants to set 

a parameter to zero, a low value but greater than 10-25 should be input. 
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LIQUID PHASE PROPERTIES. LIQUID DENSITY. 

CODES in 

ROOT_gen.dat 

ICL = 15   ITYCL = 1, 2, 3, 4, 5, 6 

DESCRIPTION Liquid density 

EQUATIONS ITYCL = 1: Exponential variation (default): 

                   0
exp( ( ) )

h

l l l lo l
P P T =   − +  +    

ITYCL = 2: Linear variation: 

                   0
(1 ( ) )

h

l l l lo l
P P T =  + − +  +   

ITYCL = 4: CO2 

   ( )( )( )2

0 0
exp 1

h CO

l l l l l l
P P T =   − +  +  +   

( )
2

2 4 2 7 3 6 3

1

37.51 9.585 10 8.740 10 5.044 10 10  m /mol

l

CO

V

M

V T T T



− − − −



                   = − 

= −  +  −  

 

(Garcia, 2003) 

ITYCL = 5: Linear dependency of the thermal expansion 

coefficient with temperature: 

( ) h

l l l lo lP P A T T =   − + + 0 exp( ( ) )  

( )A T T
− −

= −  − 
6 5

3.5 10 7.49 10  

ITYCL = 6: Liquid density adjustment for a wide temperature 

range (-30ºC—300ºC): 

                 ( ) h

l l l lo lP P A T =  +  − + + 0 (1 ( ) )

( ) TT T TA − + − +=
2

( 288.9414)( 3.9863) /(508929.2( 68.12963))  

(McCutcheon et al., 1993). 

l =
3

0 1000 kg/m (note that in this case l0 is not user defined as 

it corresponds to the maximum density of water at 4ºC). 

 

Note: the thermal expansion coefficient would be expressed by: 

                             ( ) l

l

T
T


 =

 

1
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LIQUID PHASE DENSITY (ICL = 15). PARAMETERS FOR ITYCL = 1, 2: 

P1 lo kg m-3 Reference density (default* = 1002.6 kg m-3)  

P2  MPa-1 Compressibility (default* = 4.510-4)  

P3  C-1 
Volumetric thermal expansion coefficient for water  

(default* = -3.410-4)  

P4   Solute variation (default* = 0.6923) 

P5 Plo MPa Reference pressure (default* = 0.1)  

LIQUID PHASE DENSITY (ICL = 15). PARAMETERS FOR ITYCL = 4 (CO2): 

P1 – P3 The same as in ITYCL = 1 

P4 void   

P5 The same as in ITYCL = 1 

P6 MCO2 kg mol-1 Molecular mass of CO2 (0.044 kg mol-1) 

LIQUID PHASE DENSITY (ICL = 15). PARAMETERS FOR ITYCL = 5: 

P1 – P2 The same as in ITYCL = 1 

P3 void   

P4 – P5 The same as in ITYCL = 1 

LIQUID PHASE DENSITY (ICL = 15). PARAMETERS FOR ITYCL = 6: 

P1 void   

P2 The same as in ITYCL = 1 

P3 void   

P4 – P5 The same as in ITYCL = 1 

 
 

* Note that, in the case of parameters with default values, when setting them to zero –or to a 

value lower than 10-25– automatically takes the default value. Hence, if the user actually wants 

to set a parameter to zero, a low value but greater than 10-25 should be input. 

 

In APPENDIX VI.A. , it is explained how to model a porous material under TM conditions to 

get realistic and comparable results with THM.  
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LIQUID PHASE PROPERTIES. LIQUID VISCOSITY. 

CODES in 

ROOT_gen.dat 

ICL = 16   ITYCL = 1 

DESCRIPTION Liquid viscosity 

EQUATIONS 
ITYCL = 1:           l A

B

T
=

+









exp

.27315
 

LIQUID PHASE VISCOSITY (ICL=16). PARAMETERS FOR ITYCL=1: 

P1 A MPa s Pre-exponential parameter (default* = 2.110-12)  

P2 B K 
Exponential parameter; default* = 1808.5 (only used 

if A = B = 0, but not used if A > 0 and B = 0) 

 

Remark: liquid and gas density and viscosity are not material dependents. For this reason, 

values should be prescribed only once. If these are multiplied defined, the code will use the 

values it reads first. 

 
* Note that, in the case of parameters with default values, when setting them to zero –or to a 

value lower than 10-25– automatically takes the default value. Hence, if the user actually wants 

to set a parameter to zero, a low value but greater than 10-25 should be input. 
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GAS PHASE PROPERTIES. GAS DENSITY. 

CODES in 

ROOT_gen.dat 

ICL = 17   ITYCL = 1, 2, 3, 4 

DESCRIPTION Gas density. 

EQUATIONS ITYCL = 1: law of ideal gases and Henry's law for dry air (as 

ITYCL = 3 with Ma = 0.02895 and H = 10000 MPa) 
 

ITYCL = 2: ( )a a

g g g goo
P P T =   − + exp( ( ) )  

Usually used to consider a second liquid phase instead of the 

gas phase (in that case do not consider vapour in gas phase) 

 

ITYCL = 3: law of ideal gases and Henry’s law for any dry gas 

species (as ITYCL=1, but with user defined values for gas 

molecular mass and Henry’s constant: 

                                                    
dgs dgsdgs

l

w

P M

H M
 =  

where Pdgs is dry gas species pressure (air pressure in the 

formulation), Mw is molecular mass of water and Mdgs is 

molecular mass of dry gas species.  

 

ITYCL = 4: law for CO2 with the values adjusted by Spycher 

et al., 2003. 


 2

2

CO

CO

M
=  

5 3

6 0.5 2

2

1 2

1

3

2

2

2.78 10     m /mol

     m PaK /mol

7.54         0.0041

0

8.314 J/m

3

olK

b

a

RT RTb a ab
v v b v

P P P T

a a

P T

R

T

a a

−

    
− − − + − =     

     

=

= −

=



= + 

=

 

 

GAS PHASE PROPERTIES (ICL = 17). PARAMETERS FOR ITYCL = 2: 

P1 (g
a)o kg m-3 Reference density for T = 0 C 

P2  MPa-1 Compressibility (default = 0.0) 

P3  C-1 Volumetric thermal expansion coefficient for water (default = 0.0) 

P4 Void   

P5 Pgo MPa Reference pressure (default = 0.0) 
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GAS PHASE PROPERTIES (ICL = 17). PARAMETERS FOR ITYCL = 3 (gases law with 

modified molecular mass and Henry’s constant): 

P1 M kg mol-1 Molecular mass 

P2 H MPa Henry’s constant 

GAS PHASE PROPERTIES (ICL = 17). PARAMETERS FOR ITYCL = 4 (law for CO2 with 

the values adjusted by Spycher et al., 2003): 

P1 MCO2 kg mol-1 Molecular mass of CO2 (0.044 kg mol-1) 

P2 H MPa Henry’s constant 

P8  
 

Alternative CO2 density function at 

T=320 K adjusted from Span and Wagner 

(1996) tables. To use it write: -777 
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GAS PHASE PROPERTIES. GAS VISCOSITY. 

CODES in 

ROOT_gen.dat 

ICL = 18   ITYCL = 1, 2, 4 

DESCRIPTION Gas viscosity 

EQUATIONS ITYCL = 1: 

ty)permeabili intrinsic :(

1

1

273
1

273

k

DkCb

P

b

T

B

TA

k

g

k
g

−=

+








+
+

+
=

 

ITYCL = 2:          








+
=

T

B
Ag

15.273
exp  

 

ITYCL = 4: Viscosity function for CO2 (Altunin and 

Sakhabetdinov, 1972) 














= 

= =

4

1

1

0

0 exp
i j

j

R

i

Rij

g
T

a 
  









+−=

2

5.0

0

66920556.46346068.16
2246461.27

RR

R
TT

T  

c

R
T

T
T = ,  304=cT  K        

c

CO

R



 2= ,  468=c  kg/m3 

  248566120.010 =a           004894942.011 =a  

373300660.020 −=a        22753488.121 =a  

363854523.030 =a          774229021.031 −=a  

   0639070755.040 −=a      142507049.041 =a  
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GAS PHASE VISCOSITY (ICL = 18). PARAMETERS FOR ITYCL = 1: 

P1 A MPa s default* = 1.48  10-12  

P2 B C 
default* = 119.4 (only used if A = B = 0, 

but not used if A > 0 and B = 0) 

P3 C  default* = 0.14 

P4 D  default* = 1.2  1015 

GAS PHASE VISCOSITY (ICL = 18). PARAMETERS FOR ITYCL = 2: 

P1 A MPa s Pre-exponential parameter 

P2 B C 
Exponential parameter (only used if A = B = 0, 

but not used if A > 0 and B = 0) 

GAS PHASE VISCOSITY (ICL = 18). PARAMETERS FOR ITYCL = 4: Not necessary 

 

Gas phase properties can be used to consider a second liquid in the case of a two immiscible 

phase flow problem in a porous medium. In this case, water vapour and air dissolved must not 

be considered, hence, VAPOUR NOT PERMITTED and DISSOLVED AIR NOT 

PERMITTED should be used to avoid the species to be mixed. 

 
* Note that, in the case of parameters with default values, when setting them to zero –or to a 

value lower than 10-25– automatically takes the default value. Hence, if the user actually wants 

to set a parameter to zero, a low value but greater than 10-25 should be input. 
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CODE_BRIGHT. CONSTITUTIVE LAWS 

This chapter contains the different models available and the corresponding parameters required 

by each model. The following constitutive laws are available: 

HYDRAULIC AND THERMAL 

CONSTITUTIVE MODELS (a) 

RETENTION CURVE  

INTRINSIC PERMEABILITY  

LIQUID PHASE RELATIVE 

PERMEABILITY  

GAS PHASE RELATIVE 

PERMEABILITY  

DIFFUSIVE FLUXES OF MASS  

DISPERSIVE FLUXES OF MASS 

AND ENERGY  

CONDUCTIVE FLUX OF HEAT  

MECHANICAL CONSTITUTIVE MODELS 

ELASTICITY (b) 

NONLINEAR ELASTICITY (b) 

VISCOPLASTICITY FOR SALINE MATERIALS (b)  

VISCOPLASTICITY FOR SATURATED SOILS AND 

ROCKS   (b) 

VISCOPLASTICITY - GENERAL (b) 

DAMAGE-ELASTOPLASTIC MODEL FOR 

ARGILLACEOUS ROCKS (c) 

THERMO-ELASTOPLASTIC MODEL FOR SOILS (d) 

BARCELONA EXPANSIVE MODEL (e) 

CASM’s FAMILY MODELS (f) 

PHASE PROPERTIES (a) 

SOLID PHASE PROPERTIES 

LIQUID PHASE PROPERTIES 

GAS PHASE PROPERTIES 

EXCAVATION PROCESS (g) 

 

VI.b. ELASTIC AND VISCO-PLASTIC MODELS 

ICL NAME ITYCL DESCRIPTION 

1 
Linear Elasticity 

1 

2 

5 

6 

16 

Linear elasticity model 

Bi-linear elasticity model 

Tri-linear elasticity model 

Anisotropic elastic model  

Elasticity – Zero thickness element 

5 1 Linear expansion coefficients induced by temperature and suction changes 

4 Nonlinear Elasticity 

1 

2 

5 

 

Volumetric strain is calculated in a reversible way 

Nonlinear elasticity model with micro-macro interaction 

Volumetric strain is calculated in a reversible way with two independent 
coupling terms 

2 Viscoelasticity - creep 1 Parameters for linear viscous deformation model 

3 Viscoplasticity - creep 1 Creep of porous salt aggregates (nonlinear dependences on stresses) 

33 
Viscoplasticity for saturated soils and 
rocks (VPSSR) 

1,2 

3 

4,5 

9 

11 

12 

15 

20 

21 

Yield function and flow rule 

Cam-Clay 

Drucker-Prager –based on Mohr-Coulomb parameters 

For rock salt with dilatancy 

Mohr-Coulomb model with dilatancy  

Mohr-Coulomb model with dilatancy and strain-softening 

Mohr-Coulomb model with anisotropic behaviour 

Hoek-Brown model with dilatancy  

Hoek-Brown model with dilatancy and strain-softening 

34 

Viscoplasticity for unsaturated soils 
and rocks (VPUSR) 

1 

16 

Viscoplasticity (general model based on Desai and Perzyna theory) 

Viscoplasticity – Zero thickness element 

35 
1 

16 

Parameters for yield function and plastic potential 

Viscoplasticity – Zero thickness element 

36 

1 

2,3 

16 

Parameters for LC curve 

Parameters for LC curve for rockfill materials 

Viscoplasticity – Zero thickness element 
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LINEAR ELASTICITY 1 (Mechanical data 1) 

CODES in 

ROOT_gen.dat 

ICL = 1      ITYCL = 1, 2, 5, 6, 16 

DESCRIPTION Elastic parameters (linear elasticity model). Linear elasticity with 

parameters E and . Young modulus can be variable.  

EQUATIONS ITYCL = 1: Linear elasticity model 

This is the standard linear elasticity with Young’s Modulus and 

Poisson’s ratio.  

It is also possible to consider the variation of Young’s Modulus with 

porosity, according to: 

min
( )

o o

dE
E E E

d
= +  −  


 

If heterogeneity and anisotropy are considered simultaneously, the 

pore shape should be considered. The compliance tensors 𝐶𝑖𝑗𝑘𝑙 and 

𝐻𝑖𝑗𝑘𝑙 are functions of porosity (𝜙) and aspect ratio (𝛾), respectively. 

Porosity governs heterogeneity, while anisotropy arises due to the 

aspect ratio. For more details, please refer to Section 3.5 of Zhou Y, 

Rodriguez-Dono A, Olivella S. A spatially correlated heterogeneous 

anisotropic model for simulation of gas flow in Callovo-Oxfordian 

claystone[J]. Computers and Geotechnics, 2024, 173: 106570. 

𝜀𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜎𝑖𝑗
0 + Δ𝜀𝑖𝑗 = (𝐶𝑖𝑗𝑘𝑙 + 𝐻𝑖𝑗𝑘𝑙)𝜎𝑖𝑗

0  

ITYCL = 2:  Bi-linear elasticity model  

 
Compression is positive for this plot. 

ITYCL = 5:  Tri-linear elasticity model 

ITYCL = 6:  Anisotropic elastic model 

 

 

 

v 

𝜎 

v limit 

Eo 

Ec 
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CODES in 

ROOT_gen.dat 

ICL = 1      ITYCL = 1, 2, 5, 6, 8, 16 

DESCRIPTION Elastic parameters (linear elasticity model). Linear elasticity with 

parameters E and . Young modulus can be variable.  

EQUATIONS ITYCL = 6:  Anisotropic elastic model (continuation) 

The generalized Hooke's Law could be used to describe the elastic 

constitutive relationship of transversely isotropic rock in the local 

coordinate system (x'', y'', z'') according to:   
'' '' ''

S =   

where:   '' = [𝑥
′′, 𝑦

′′, 𝑧
′′, 

𝑦𝑧
′′ , 

𝑧𝑥
′′ , 

𝑥𝑦
′′ ]T,  

            '' = [𝑥
′′,𝑦

′′,𝑧
′′, 𝑦𝑧

′′ , 𝑧𝑥
′′ , 𝑥𝑦

′′ ] T, 

and S''=
( )

1 1 1 2 2

1 1 1 2 2

2 2 2 2 2

1 1

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 2 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

E E E

E E E

E E E

E

G

G

 

 

 



 − −
 
− − 

 − −
 

+ 
 
 
 
 

. 

ITYCL = 8: Elastic modulus related to deviatoric stress 

The elastic modulus ( eE ) is related to the deviatoric stress ( q ), the 

strain is a nonlinear function of deviatoric stress in the Burger's 

model. 

0

e e e e e

0

exp
q

E E a b c
q

 
 
 

 
= + +

   
   

where eE  has a minimum value, not unlimited reduction. 

This model is based on: 

Duan G, Wang H, Song F, Rodriguez-Dono A. Stability analysis of 

unsaturated loess slopes subjected to extreme rainfall incorporating 

creep effects [J]. Computers and Geotechnics, 2024, 169: 106231. 

ITYCL = 16:  Elasticity – Zero thickness element 

The elastic behaviour of the joint relates to the normal effective stress 

( '  ) and the tangential stress ( ) to the normal ( nu ) and the tangential 

( su ) displacement of the joint element using normal ( nK ) and 

tangential ( sK ) stiffness, respectively, as: 

min

0'

0

n n
n

ss

K u m
K

uK a a





    
= =    

−    
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PARAMETERS LINEAR ELASTICITY 1 (Mechanical data 1; ICL=1)   

LINEAR ELASTICITY 1. ITYCL = 1 (Linear elasticity model) 

P1 E MPa Young Modulus 

P2 dE/d MPa Variation of Young modulus with porosity 

P3  - Poisson’s Ratio 

P4 o - Reference porosity 

P5 min - Minimum porosity 

P6 Emin MPa Minimum elastic modulus 

P7 b - Biot coefficient (default value = 1) 

Note: It is possible to uncouple the hydraulic effects on mechanics (H → M) by using a very 

small value of Biot’s coefficient (e.g. b = 10-10; it cannot be exactly 0 because then 

CODE_BRIGHT uses the DEFAULT = 1.0).  

If the file "Eani.dat" is created in the root folder, containing a value (typically ranging from 0 

to 1 to represent the horizontal bedding plane), anisotropy in linear elasticity will be considered. 

LINEAR ELASTICITY 1. ITYCL = 2 (Bi-linear elasticity model) 

P1 Ec MPa Young Modulus for closed gap (if v > v limit) 

P2 Eo MPa Young Modulus for open gap (if v < v limit)  

P3  - Poisson’s Ratio 

P4 v limit - 
Volumetric strain limit to change elastic modulus (positive 

value for an open gap) 

LINEAR ELASTICITY 1. ITYCL = 5 (Tri-linear elasticity model) 

P1 E3 MPa Young Modulus if v > v limit 2 

P2 E2 MPa Young Modulus if v < v limit 2 

P3  MPa Young Modulus if v < v limit 1 

P4  - Poisson’s Ratio 

P5 v limit 1 - 
First volumetric strain limit to change elastic modulus 

(positive value) 

P6 v limit 2  
Second volumetric strain limit to change elastic modulus 

(positive value; v limit 2 > v limit 1) 
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LINEAR ELASTICITY 1. ITYCL = 6 (Anisotropic elastic model) 

P1 E
1
 MPa Young Modulus in the horizontal direction 

P2 E
2
 MPa Young Modulus in the vertical direction 

P3 
1
 - 

Poisson’s Ratio for the effect of horizontal stress on the 

horizontal strain 

P4 
2
 - 

Poisson’s Ratio for the effect of vertical stress on the 

horizontal strain 

P5 min - Minimum porosity 

P7 b - Biot coefficient (default value = 1) 

P8 G MPa Shear modulus in the vertical plane 

LINEAR ELASTICITY 1. ITYCL = 8 (Elastic modulus related to deviatoric stress) 

P1 
0

e
E  MPa 

Young Modulus corresponding to reference deviatoric 

stress 

P2 
0

e
  - Poisson’s Ratio 

P3 e
a  - Parameter: 

e e e

0

exp
q

a b c
q

 
+ + 

 
 

P4 e
b  - Parameter: 

e e e

0

exp
q

a b c
q

 
+ + 

 
 

P5 Void 

P6 e
c  - Parameter: 

e e e

0

exp
q

a b c
q

 
+ + 

 
 

P7 Void 

P8 0
q  MPa Reference deviatoric stress (default value = 1) 

P9 
min

e
E  MPa Minimum value of Young modulus 
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LINEAR ELASTICITY 1. ITYCL = 16 (Elasticity – Zero thickness element) 

P1 m MPa Model parameter 

P2 Ks MPa m-1 Shear stiffness 

P3 E MPa m-1 Out of plane stiffness 

P4 amin m Minimum aperture 

P5 a0 m Initial aperture of the joint 

Note: Joint element should be created in GiD using the option: Geometry/create/contact 

surface.  

Contact surfaces are defined as being between two lines that are physically in the same place, 

but which have different line and point entities. Choose the Contact surface option from the 

menu, and then select some lines on both bodies. Using contact surface entities is like a meshing 

specification.  In this way, equal meshes will be generated for the two lines, ensuring a one-to-

one relationship between nodes. You can also select no mesh for the contact entity.  This makes 

it possible to have exactly the same mesh for both lines but without any additional element 

between them. 
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LINEAR ELASTICITY 2 (Mechanical data 1) 

CODES in 

ROOT_gen.dat 

ICL = 5   ITYCL = 1 

DESCRIPTION Linear expansion coefficients induced by temperature and suction 

changes 

EQUATIONS ( )3 3
v s s g l

b T a P P =  −  −         0 v , extension  

                                 0 v , compression 

PARAMETERS LINEAR ELASTICITY 2 (Mechanical data 1; ICL=5) 

LINEAR ELASTICITY 2. ITYCL = 1 

P1 as MPa-1 Swelling coefficient for changes in suction (positive value) 

P2 void   

P3 bs C-1 
Linear thermal expansion coefficient for the 

medium (positive value) 

P4 Void   

P5 Void   
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NONLINEAR ELASTICITY (Mechanical data 1) 

CODES in 

ROOT_gen.dat 

ICL = 4    ITYCL = 1, 2, 5 

DESCRIPTION Nonlinear elasticity model 

EQUATIONS ITYCL = 1: Volumetric strain is calculated in a reversible way, 

according to: 

( ) ( )1 2 3

0.1 0.1
ln ' ln ln ' ln

1 0.1 0.1

e s s
a p a a p

e

 +  +    
=  − +  +  −    

+     
 

where p' is the mean effective stress (mean stress plus maximum of 

liquid and gas pressure) and s is suction (gas pressure minus liquid 

pressure). Shear strain is linearly elastic with modulus G or, 

alternatively, a constant value of the Poisson’s ratio can be used.  

 

ITYCL  = 2: Nonlinear elasticity model with micro-macro 

interaction: 

( ) ( )

( )

( )

1 2 3

1 2

3

0.1 0.1
ln ' ln ln ' ln

1 0.1 0.1

0.1
ln ' ln

0.1

0.1
ln ' ln

0.1

micro

micro micro

micro

micro

e s s
a p a a p

e

s
a p a

s
a p

 +  +    
=  − +  +  − +    

+     

+ 
+  − +  + 

 

 +  
+  −   

  

 

where smicro is suction in the microstructure. A minimum bulk modulus 

Kmin =10 MPa is considered internally to avoid tractions. 

 

ITYCL = 5: Volumetric strain is calculated in a reversible way 

with two independent coupling terms: 

( )

( ) ( )

1 2

3 4

0.1
ln ' ln

1 0.1

0.1
ln '/ ln ln '

0.1
ref

e s
a p a

e

s
a p p a s p

 + 
=  +  + 

+  

+ 
+  +  

 

 

For further reference, in APPENDIX VI.B.1 it is explained the analogy between this nonlinear 

elastic model and the BBM model. And in APPENDIX VI.B.2 the correspondence between 

nonlinear elasticity and linear elasticity parameters is described. 
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PARAMETERS NONLINEAR ELASTICITY (Mechanical data 1; ICL=4) 

NONLINEAR ELASTICITY. ITYCL = 1 (volumetric strain is calculated in a reversible way): 

P1 a1 - 
= - /(1+e), where  is the slope of the unload/reload curve in the (e - lnp') 

diagram 

P2 a2 - 
= - s/(1+e), where s is the slope of the unload/reload curve in the (e - 

ln((s+0.1)/0.1)) diagram 

P3 a3 - Coupling term 

P4 G MPa Shear modulus (P4 > 0 requires P5 = 0) 

P5  - Poisson’s ratio (P5 > 0 requires P4 = 0) 

P6 tens MPa Tension term to avoid tractions (p’- tens  0) 

P7 Kmin MPa Minimum bulk modulus 

NONLINEAR ELASTICITY. ITYCL = 2 (nonlinear elasticity with micro-macro interaction) 

P1 – P5 The same as in ITYCL = 1 

P6 a1micro - Volumetric deformation associated to microstructure 

P7 a2micro - Volumetric deformation associated to microstructure 

P8 a3micro - Volumetric deformation associated to microstructure 

P9   
Term of interchange of water between micro and macro 

structures of deformation 

P10 Initial smicro MPa Initial suction of the micro structure 

Suction micro is used as history variable and, therefore, the model cannot be combined with 

viscoplastic models. 

NONLINEAR ELASTICITY. ITYCL = 5 (with two independent coupling terms) 

P1 – P7 The same as in ITYCL = 1 

P8 a4 MPa-1 Coupling term 

P9 pref MPa Reference pressure 
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VISCOELASTICITY - CREEP (Mechanical data 1) 

CODES in 

ROOT_gen.dat 

ICL = 2      ITYCL = 1, 2, 4, 6, 11, 12, 16 

DESCRIPTION Parameters for linear viscous deformation model. 

EQUATIONS ITYCL = 1: FADT for saline materials 

The deformation mechanism fluid assisted diffusional transfer 

(FADT) was applied to develop an equation for creep of salt under 

wet conditions. 

Strain rate for a linear viscoelasticity is computed as: 

d

dt
 =  

1

2
( - p ) +

1

3
p   

FADT

FADT

d

FADT

v







  I I  

where  ’ is the effective stress tensor ( ’ =  + Pf, where Pf = 

max(Pg, Pl)), p’ is the mean effective stress (p' = p + Pf), I is the 

identity tensor.  

Volumetric and deviatoric viscosities are defined as: 

1 16

1

2

16

0

3

0

3





FADT

v

l

FADT

v

FADT

d

l

FADT

d

B T S

d
g e

B T S

d
g e

=

=

( )
( )

( )
( )

 

where gFADT
d(e) and gFADT

v(e) are internal nonlinear functions of 

void ratio (e), and Sl is degree of saturation.  

B T
A

RT

Q

RT

B B
( ) exp=

−







  

g e
g e

e
g e

g

eFADT

v

FADT

d
( )

( )
( )

( )

/

=
+

=
+

3

1 1

2 3 2 2

    
 

 
 )1)(1(3

2
      

)1(

1
2/32

ee

e
f

f
g

+−
=

−
=  

ITYCL = 2, 4: Constant viscosity plus degree of saturation effect 

Strain rate for a linear viscoelasticity is computed as: 

𝑑𝛆

𝑑𝑡
= (

1

2𝜂𝑑
(𝜎′ − 𝑝′𝐈) +

1

3𝜂𝑣
𝑝′𝐈) 𝑓(𝑆𝑙) 

where  ’ is the effective stress tensor ( ’ =  + Pf, where Pf = 

max(Pg, Pl)), p’ is the mean effective stress (p' = p + Pf), I is the 

identity tensor. For ITYCL=2 the degree of saturation function is 

calculated as 𝑓(𝑆𝑙) = √𝑆𝑙 while for ITYCL=4 the degree of 

saturation is not considered, i.e. 𝑓(𝑆𝑙) = 1. 
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CODES in 

ROOT_gen.dat 

ICL = 2      ITYCL = 1, 2, 4, 6, 11, 12, 16 

DESCRIPTION Parameters for linear viscous deformation model. 

EQUATIONS ITYCL = 6:  Secondary consolidation for unsaturated soils 

Strain rate for a linear viscoelasticity is computed as: 

𝑑𝛆

𝑑𝑡
= (

1

2𝜂𝑑
(𝜎′ − 𝑝′𝐈) +

1

3𝜂𝑣
𝑝′𝐈) 

where 

1

𝜂𝑣
= 𝐴(1 − 𝛽 log (

𝑠 + 0.1

0.1
))

1

𝑡 − 𝑡0
𝜂𝑑 = 𝐵𝜂𝑣 

where t is time in seconds, 𝑡0 is a reference time and s is suction. 

ITYCL = 11:  Kelvin model 

The Kelvin viscoelastic model can simulate the primary creep stage 

of rocks. The strain rate for linear viscoelasticity using the Kelvin 

model is computed as: 

𝑑𝛆

𝑑𝑡
= 𝐂v (− ) 

 

where C
v
 represents the compliance matrix of the viscous dashpot. 

The Kelvin model can be combined with the elastic model, to be the 

Generalized Kelvin model. 

ITYCL = 12:  Viscous dashopt combined with Kelvin model 

This model can simulate the primary and secondary creep stages of 

rocks. Strain rate this model is computed as: 

𝑑𝛆

𝑑𝑡
=  




M

+ 𝐂v (− ) 

 

 
This model can be combined with the elastic model, to become the 

Burgers model. 

The two latter models (ITYCL=11, 12) are based on: 

Song F, Rodriguez-Dono A, Olivella S, et al. Coupled solid-fluid 

response of deep tunnels excavated in saturated rock masses with a 

time-dependent plastic behaviour [J]. Applied Mathematical 

Modelling, 2021, 100: 508-535. 
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CODES in 

ROOT_gen.dat 

ICL = 2      ITYCL = 1, 2, 4, 6, 11, 12, 16 

DESCRIPTION Parameters for linear viscous deformation model. 

EQUATIONS ITYCL = 16: Kelvin elastic model on deviatoric stress 

 

The elastic modulus ( eE ) is related to the deviatoric stress ( q ) in 

viscous dashopt combined with Kelvin model. 

0

Ke Ke Ke Ke Ke

0

exp
q

E E a b c
q

 
 
 

 
= +



  

+  

where eE  has a minimum value, not unlimited reduction. 

This model is based on: 

Duan G, Wang H, Song F, Rodriguez-Dono A. Stability analysis of 

unsaturated loess slopes subjected to extreme rainfall incorporating 

creep effects [J]. Computers and Geotechnics, 2024, 169: 106231. 

 

PARAMETERS FOR ITYCL = 1 (Mech. data 1 ─ Viscoelasticity - Creep ─ ICL=2) 

P1 do m Grain size 

P2 AB m3 s-1 MPa-1 Pre-exponential parameter 

P3 QB J mol-1 Activation energy 

If the pre-exponential parameter is set to zero (AB = 0.0) the viscous counterpart of the model 

does not work. In this way the parameter acts as option because the value of these pre-

exponential parameter is checked to decide if this mechanism is considered.  

This viscoelastic model (corresponding to FADT mechanism of deformation) requires that the 

liquid pressures are computed or, alternatively, a value of PLCONS greather that -10-12 MPa. 

Otherwise, liquid is considered inexistent and the mechanism FADT remains inactive.  

 

PARAMETERS FOR ITYCL = 2, 4 (Mech. data 1 ─ Viscoelasticity - Creep ─ ICL=2) 

P1 𝜂𝑣 MPa s Volumetric viscosity 

P2 𝜂𝑑 MPa s Deviatoric viscosity 

Note that a linear creep equation with a constant parameter 𝐴 can be considered using 

Viscoelasticity-Creep (see APPENDIX VI.B.3 for the relation between deviatoric viscosity and 

A). 
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PARAMETERS FOR ITYCL = 6 (Mech. data 1 ─ Viscoelasticity - Creep ─ ICL=2) 

P1 𝐴 MPa-1 s-1 Parameter for volumetric viscosity 

P2 𝛽 (-) Parameter for suction dependence 

P3 𝑡0 s Reference time  

P4 Void   

P5 B  (-) 
Parameter for deviatoric viscosity (infinity for no deviatoric 

viscous deformation) 

PARAMETERS FOR ITYCL = 11 (Mech. data 1 ─ Viscoelasticity - Creep ─ ICL=2) 

P1 E
K
 MPa Elastic modulus of the elastic spring 

P2 
K
 (-) Possion’s ratio of the elastic spring 

P3 
K
v  MPa s Volumetric viscosity of the viscous dashpot 

P4 
K
d  MPa s Deviatoric viscosity of the viscous dashpot 

PARAMETERS FOR ITYCL = 12 (Mech. data 1 ─ Viscoelasticity - Creep ─ ICL=2) 

P1 
M
v  MPa s Volumetric viscosity of the viscous dashpot (

M
𝑣 ) 

P2 
M
d  MPa s Deviatoric viscosity of the viscous dashpot (

M
𝑑 ) 

P3 E
K
 MPa Same as P1 of ITYCL = 11 

P4 
K
 (-) Same as P2 of ITYCL = 11 

P5 
K
v  MPa s Same as P3 of ITYCL = 11 

P6 
K
d  MPa s Same as P4 of ITYCL = 11 

PARAMETERS FOR ITYCL = 16 (Mech. Data 1 ─ Viscoelasticity - Creep) 

P1 
v

M  MPa s  Same as P1 of ITYCL = 12 

P2 
d

M  MPa s  Same as P2 of ITYCL = 12 

P3 
0

KeE  MPa  Young Modulus corresponding to reference deviatoric stress 

P4 min

KeE  MPa  Minimum value of Young modulus 

P5 
v

Ke


 MPa s  Same as P3 of ITYCL = 11 

P6 
d

Ke
  MPa s  Same as P4 of ITYCL = 11 

P7 Kea  - Coefficient: 
Ke Ke Ke

0

exp
q

a b c
q

 
+ + 

 
 

P8 
Keb  - 

Coefficient: 
Ke Ke Ke

0

exp
q

a b c
q

 
+ + 

 
 

P9 Kec  - Coefficient: Ke Ke Ke

0

exp
q

a b c
q

 
+ + 

 
 

P10 0q  MPa  Reference deviatoric stress (default value = 1) 
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VISCOPLASTICITY - CREEP (Mechanical data 1) 

CODES in 

ROOT_gen.dat 

ICL = 3       ITYCL = 1 

DESCRIPTION The deformation mechanism referred as dislocation creep (DC) 

has been applied to develop an equation for creep of porous salt 

aggregates. This mechanism leads to nonlinear dependences on 

stresses.  

EQUATIONS Strain rate for a nonlinear viscoelasticity is computed as: 

d

dt
 =  

1

d
(F)

G
  

DC

DC



 




 
 

where G is a flow rule, F is a stress function and  is a scalar 

function. These functions are defined as: 
12

1
2

         ( )          =  
v n+

n DC
p d

p DC

p
F G q F F

   −
= = +  =        

1
( ) ( )

v

DCv

DC

A T g e


=
1

( ) ( )
d

DCd

DC

A T g e


=  

where n is the power that comes from the rock power law and 

gDC
d(e) and gDC

v(e) are internal nonlinear functions of void ratio 

(e) defined as follows: 

( ) 3( 1)             
v n

DCg e g f= −  

g
f

ggg
eg

n

d
DC

1

3

12

3

1
)(

1
2

+






 +













 ++
=

−

 

where f and g are functions of the void ratio (see expression in 

the constitutive law Viscoelasticity for saline materials). 

The temperature dependence is considered as: 

A T A
Q

RTA

A
( ) exp=

−







  

PARAMETERS FOR ITYCL = 1 (Mech. data 1 ─ Viscoplasticity - Creep ─ ICL=3) 

P1 AA s-1 MPa-n Pre-exponential parameter 

P2 QA J m-1 Activation energy 

P3 n - Stress power 

P4 – P10 Void     

If the pre-exponential parameter is set to zero the viscous counterpart of the model does not 

work. In this way the parameter acts as option because the value of this pre-exponential 

parameter is checked to decide if this part of the model is operating.  
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CODES in 

ROOT_gen.dat 

ICL = 3       ITYCL = 3 

DESCRIPTION Viscoplastic constitutive equation based on a single internal state 

variable which is a function of plastic work are used to calculate the 

response of copper to change of strain rate over a range of temperatures. 

EQUATIONS Starting with the Prandtl-Reuss-Von Mises law of isotropic plasticity:  

                   
p

ij ij
s =        (1) 

Where 𝜀�̇�𝑗
𝑝

 and Sij are the deviatoric plastic strain rate and the stress, 

respectively. Squaring equation (1) gives: 

                                    2

2 2

p

JD =  

2

2 0

2
1

exp

23

n

p n

n

z
D D

J

  
 +  

=    
   

  

 
− 

 

          (2) 

Where 𝐷2
𝑃 is the second invariant of the plastic strain rate, and J2

 is the 

second invariant of the stress deviator. 

Combining equation 1 and 2, the plastic strain takes the form:  

0

2

2
1

exp
2

23

n

p ij

ij

n

n

z S
D

JJ


 
+  

= −  
  

 

 
 
 

 

𝑛 = (835 + 5𝑇(𝐾))/𝑇(𝐾) 

𝑇(𝐾) = 𝑇(𝐶) + 273.15 

The parameter Z in the equation can be interpreted as an internal state 

variable which provides a measure of the overall resistance to plastic 

flow, and n is a strain rate sensitivity parameter.  

( )1 1 0
( ) exp

p
Z Z Z Z mw= − − −      ( )0 1

exp
p

m m m w= + −     

The corresponding form is then based on the concept that plastic work, 

𝑤𝑝, controls the hardening process, and that the plastic work and its time 

derivative are function of  𝜎𝑖𝑗 and 𝜀�̇�𝑗
𝑝

.    

 
p

p ij ijw =             

 

PARAMETERS FOR ITYCL = 3 (Mech. data 1 ─ Viscoplasticity - Creep ─ ICL=3) 

P1 D0 s-1 Limiting strain rate (usually D0 = 104 s-1 for copper) 

P2 Z0 MPa Initial value of the internal state variable Z (typically Z0 = 31 MPa) 

P3 Z1 MPa 
Saturated value of the internal state variable Z (typically Z0 = 237 

MPa for copper) 

P4 mo (MPa)-1 
Initial value of hardening parameter (typically mo = 0.15 MPa for 

copper) 

P5 m1 (MPa)-1 
Saturated value of hardening parameter (typically m1 = 0.25 MPa for 

copper) 

P6 α (MPa)-1 A material constant (typically α = 0.5 MPa for copper) 
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VISCOPLASTICITY FOR SATURATED SOILS AND ROCKS – VPSSR 

CODES in 

ROOT_gen.dat 

ICL = 33   ITYCL = 1, 2, 3 

DESCRIPTION Viscoplasticity (general model for saturated soils and rocks) 

EQUATIONS Viscoplastic constitutive model:   
d

dt
F

G 


=  ( )         

and the stress function adopted is:    𝛷(𝐹) = 𝐹𝑚  

where the yield function and the flow rule are defined as:  

ITYCL = 1:     G F q p p p
n n

o= = − +
+2 1

 ( ' ) ( ' ) /  

ITYCL = 2:     G F q p p po

n n
= = − +

+2 1
 ( ' ) ( ' )  

ITYCL = 3 (Cam-Clay):   G F q p p po= = − −
2 2 2

 ( ' ' )  

The fluidity (invers of viscosity) can be written as a function of temperature 

as:  =
−







o

Q

RT
exp  

The hardening laws are expressed in general as: 

𝑑𝑝𝑜 = 𝐷𝑑(𝜀𝑣
𝑙 ) + 𝑝𝑜

1 + 𝑒

𝜆 − 𝜅
𝑑𝜀𝑣 = (𝐷𝑙𝜀𝑣

𝑙−1 + 𝑝𝑜
1 + 𝑒

𝜒
)𝑑𝜀𝑣 

where D  0 or (-)  0 permit to use each one of the two possibilities.  

𝑑𝛿 = 𝐸𝑑(𝜀𝑣
𝑙 ) = 𝐸𝑙𝜀𝑣

𝑙−1𝑑𝜀𝑣 

where po and  are parameters in the yield surface and flow rule.  

Invariants used in the models are defined as: 

( )

( ) ( ) ( )

p I

q

oct x y z

oct x y y z z x xy yz zx

= = = + +

= = − + − + − + + +

   

         

1

3

1

3

3

2

1

2
6

1

2 2 2
2 2 2

( )

 

PARAMETERS FOR ITYCL = 1 and 2 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 m  Power of the stress function (integer value; typical value = 3) 

P2 o =1/ 
s-1

 MPa-m 

(*) 

Fluidity = 1/viscosity (for plasticity use a sufficiently large value) 

(*) Units valid for F and G in units of stress. For other cases (e.g. 

units of stress squared) then the units are different. 

P3 Q J mol-1 Activation energy (= 0 for temperature independent model) 

P4 D MPa Constant in hardening law 

P5 po MPa Initial value of po (positive) 

P6 l - Power of hardening laws 

P7  - Parameter in hardening law 

P8 n - Power in F and G 

P9 E - Constant for hardening law 

P10  - Initial value of  
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PARAMETERS FOR ITYCL = 3 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 – P7; P9 – P10 Same as in ITYCL = 1 

P8 Void 

 

 

________________________________ 

 

 

 

 

CODES in 

ROOT_gen.dat 

ICL = 33   ITYCL = 4, 5 

DESCRIPTION Viscoplasticity (general model for saturated soils and rocks) 

EQUATIONS Viscoplastic constitutive model:          
d

dt
F

G 


=  ( )  

and the stress function adopted is:     ( )
m

F F =  

where the yield function and the flow rule are defined as:  

ITYCL = 4, 5 (Drucker-Prager –based on Mohr-Coulomb parameters): 

'F q p c= −  −   

'G q p c= −  −   

6sin '

3 sin '
M


 = =

− 
 

6 cos '

3 sin '


 =

− 
 

For this model, equations 

are written assuming p > 0 

compression, but the 

program uses the standard 

sign criteria for continuum mechanics). 

The fluidity (invers of viscosity) can be written as a function of 

temperature as:  =
−







o

Q

RT
exp  

Invariants used in the models are defined as: 

( )

( ) ( ) ( )

p I

q

oct x y z

oct x y y z z x xy yz zx

= = = + +

= = − + − + − + + +

   

         

1

3

1

3

3

2

1

2
6

1

2 2 2
2 2 2

( )
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PARAMETERS FOR ITYCL = 4 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 m  Power of the stress function (integer value; typical value = 3) 

P2 o =1/ 
s-1

 MPa-m 

(*) 

Fluidity = 1/viscosity (for plasticity use a sufficiently large 

value) 

(*) Units valid for F and G in units of stress. For other cases 

(e.g. units of stress squared) then the units are different. 

P3 Q J mol-1 Activation energy (= 0 for temperature independent model) 

P4 b - Cohesion: ( ) ( ) ( ) ( )' ;   / 2c a bs g g f f= +   = +  

P5 a MPa Cohesion: ( ) ( ) ( ) ( )' ;   / 2c a bs g g f f= +   = +  

P6 n  Porosity function: ( ) ( )1
n

oo
f  = −    

P7  (0 - 1)  
Parameter to reduce dilatancy. 0: no volumetric plastic strain; 1 

(default*): associative plasticity. 

P8 oo - Reference porosity 

P9 Void 

P10  - Equivalent to M 

* Note that, in the case of parameters with default values, when setting them to zero –or to a 

value lower than 10-25– automatically takes the default value. Hence, if the user actually wants 

to set a parameter to zero, a low value but greater than 10-25 should be input. 

PARAMETERS FOR ITYCL = 5 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 – P3, P7, P10 Same as in ITYCL = 4 

P4, P6, P8, P9 Void 

P5 c MPa Cohesion 

 

________________________________ 
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CODES in 

ROOT_gen.dat 

ICL = 33   ITYCL = 9 

DESCRIPTION Viscoplasticity (general model for saturated soils and rocks) 

EQUATIONS ITYCL = 9: For rock salt with dilatancy:  

( ) ( )

1 1

  for 0    0  for 0
m

F a q bp G a q bp

F F F F F

= − = − 

 =   = 
 

( )
0.250.25

3 2 4 0

2

5 6 7 0

d d d

d d d d d

b a a W a W W

a a W a W W dW qd

= + − −

 = + + − = 
 

From a numerical point of view, it is set 6 7
a a=  

PARAMETERS FOR ITYCL = 9 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 m  Power of the stress function (integer value; typical value = 3) 

P2 o =1/ 
s-1

 MPa-m 

(*) 

Fluidity = 1/viscosity (for plasticity use a sufficiently large 

value) 

(*) Units valid for F and G in units of stress. For other cases 

(e.g. units of stress squared) then the units are different. 

P3 Q J mol-1 Activation energy (= 0 for temperature independent model) 

P4 a6   

P5 Wd0   

P6 a1   

P7 a2   

P8 a3   

P9 a4   

P1

0 

a5   
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CODES in 

ROOT_gen.dat 

ICL = 33   ITYCL = 11, 12, 15, 16 

DESCRIPTION Viscoplasticity (general model for saturated soils and rocks) 

EQUATIONS 
ITYCL = 11: Mohr-Coulomb (MC) model with dilatancy:  

2

1
sin (cos sin sin ) cos

3
F p J c    =  + −   −   

2

1
sin (cos sin sin ) cos

3
G p J c=   + −   −        

( ) ( )  for  0     0  for 0
m

F F F F F =   =   

This model uses the standard sign criteria for continuum mechanics, 

and equations are written assuming p>0 tension.  is the dilatancy 

angle and   is a parameter for the plastic potential. 

Invariants used in the models are defined as: 

( )

( ) ( ) ( )

1

2 2 2 2 2 2

2

1 3

3

2

1 1

3 3

1 1
6( )

2 6

1 3 3
sin ( ), 30 30

3 2

x y z

ij ij x y y z z x xy yz zx

p I

J S S

J

J

−

= = + +

= = − + − + − + + +

= − −  

  

        

 

Where
2 2 2

3
2

x y z xy yz zx x yz y xz z xy
J S S S S S S     = + − − − . 

To avoid numerical issues, the corners of the MC yield surface are 

rounded by introducing T
 . The rounded yield surface is as follows: 

( )2
sin cos

F
F p J K c  =  +  −   

( )

sin 3 ,                 

1
cos sin sin ,    

3

T

F

T

A B

K

  


    

 +  


= 
−   



 

( )

( )

1
3 tan tan 31

3cos
3

tan 3 3 tan sin

T T

T

T T

sign
A

  


  

 
+  +  

=   
 −
 

 

( )
1 1

sin sin cos
3 cos3 3

T T

T

B sign    


 
= − +  

  
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( )
1,   0

1,   0
sign






+ 
= 

− 
 

For the numerical calculation, a hyperbolic yield surface is 

adopted, as follows: 

( )2 2 2

2
sin sin cos

F
F J K a p c   =  +  +  −   

Where: cot
mc

a m c =    

The closer to 0 is the value of mmc, the closer would be the 

hyperbolic surface to the actual MC surface, as shown in the 

following figure: 

 

This model is based on: 

Song F, Rodriguez-Dono A, Olivella S, et al. Analysis and 

modelling of longitudinal deformation profiles of tunnels 

excavated in strain-softening time-dependent rock masses [J]. 

Computers and Geotechnics, 2020, 125: 103643. 

Song F, Rodriguez-Dono A, Olivella S, et al. Coupled solid-fluid 

response of deep tunnels excavated in saturated rock masses with 

a time-dependent plastic behaviour [J]. Applied Mathematical 

Modelling, 2021, 100: 508-535. 
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CODES in 

ROOT_gen.dat 

ICL = 33   ITYCL = 11, 12, 15, 16 

DESCRIPTION Viscoplasticity (general model for saturated soils and rocks) 

EQUATIONS ITYCL = 12: MC model with dilatancy and strain-softening:  

( ) ( ) ( ) ( )2

1
sin cos sin sin cos

3
F p J c

 
=  + −   −  

 
        

( ) ( )2

1
sin (cos sin sin ) cos

3
G p J c=   + −   −          

Φ(𝑭) = 𝑭𝒎    for   𝑭 ≥ 𝟎                 Φ(𝑭) = 𝟎    for   𝑭 < 𝟎 

Similar model to ITYCL=11, but in this case both the cohesion and the 

friction angle depend on the softening parameter 𝜂, where kpeak and kres 

are peak and residual values of k, respectively; k represents both cohesion 

c and friction angle 𝜑. 𝜂∗  is defined as the value of the softening 

parameter controlling the transition between the softening and residual 

stages.  

𝑘(𝜂) =

{
 
 

 
 𝑘

𝑝𝑒𝑎𝑘
,                                   𝜂 ≤ 0                 

𝑘
𝑝𝑒𝑎𝑘

+ (
𝑘𝑟𝑒𝑠 − 𝑘

𝑝𝑒𝑎𝑘

𝜂∗
) ⋅ 𝜂,   0 ≤ 𝜂 ≤ 𝜂∗  

𝑘𝑟𝑒𝑠,                                     𝜂∗ ≤ 𝜂              

 

 

The expression of the softening parameter is the following: 

𝜂 = √
3

2
⋅ [

(𝜀𝑥
𝑝
− 𝜀𝑚

𝑝
)
2
+ (𝜀𝑦

𝑝
− 𝜀𝑚

𝑝
)
2
+ (𝜀𝑧

𝑝
− 𝜀𝑚

𝑝
)
2

+(
1

2
𝛾𝑥𝑦
𝑝
)
2

+ (
1

2
𝛾𝑦𝑧
𝑝
)
2

+ (
1

2
𝛾𝑧𝑥
𝑝
)
2 ] 

Where ( )
1

3

p p p p

m x y z
   = + + . 

The corners of MC yield surface are rounded by introducing T
 . The 

rounded method is the same as in ITYCL=11, but the rounded parameters 

T
  and mc

m  are fixed at 25∘  and 0.25 in this model. 

This model is based on: 

Song F, Rodriguez-Dono A, Olivella S, et al. Coupled solid-fluid 

response of deep tunnels excavated in saturated rock masses with a time-

dependent plastic behaviour [J]. Applied Mathematical Modelling, 2021, 

100: 508-535. 

Song F, Rodriguez-Dono A, Olivella S, et al. Analysis and modelling of 

longitudinal deformation profiles of tunnels excavated in strain-

softening time-dependent rock masses [J]. Computers and Geotechnics, 

2020, 125: 103643. 
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CODES in 

ROOT_gen.dat 

ICL = 33   ITYCL = 11, 12, 15, 16 

DESCRIPTION Viscoplasticity (general model for saturated soils and rocks) 

EQUATIONS ITYCL = 15: MC model with anisotropic behaviour: 

The stress space in the global coordinate system (
global

) can be transferred 

to the local one (
local

), using the transformation matrix a. Moreover, the 

anisotropic stress space (
ani

) can be obtained by introducing the stresses 

scaling factor (C
N
 and C

T
):    local global T

σ aσ a=  

local local local

11 N 12 T 13

ani local local local

12 22 N T 23

local local local

T 13 T 23 N 33

C C

C C

C C C

            

σ            

        

  

  

  

 
 

=  
 
 

 

where a = 

cos cos sin cos sin

sin cos cos sin sin

sin 0 cos

      

         

                        

    

    

 

 −  
 

 
 
 − 

  

with  [deg] rotating around z-axis, and then,  [deg] rotating around the 

y-axis. 

Then, the anisotropic Mohr-Coulomb failure behaviour model can be 

expressed in the anisotropic stress space (
ani

): 

ani ani ani ani ani

MC 2

1
sin cos sin sin cos

3
F p J c    

 
= + −  − 

 

ani ani ani ani ani

MC 2

1
sin cos sin sin

3
G p J    

 
= + − 

 
 

No dilatation is considered (i.e.  = 0) because of the adopted perfectly-

plastic post-failure behaviour model.  is a parameter for the plastic 

potential. 

Invariants used in the models are defined as: 

( )

( ) ( ) ( )

ani ani ani ani

x y z

ani ani ani

2

2 2 2
ani ani ani ani ani ani ani ani ani ani ani ani ani

3

ani

ani 1 3

3
ani

2

1

3

1

2

2

1 3 3
sin ( )

3 2

ij ij

x y z xy yz zx x yz y xz z xy

p

J S S

J S S S S S S

J

J

  

     

 −

= + +

=

= + − − −

= −

  

This model is based on: 

Song F, González-Fernández M A, Rodriguez-Dono A, et al. Numerical 

analysis of anisotropic stiffness and strength for geomaterials [J]. Journal 

of Rock Mechanics and Geotechnical Engineering, 2023, 15(2): 323-338. 
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CODES in 

ROOT_gen.dat 

ICL = 33   ITYCL = 11, 12, 15, 16 

DESCRIPTION Viscoplasticity (general model for saturated soils and rocks) 

EQUATIONS ITYCL = 16: MC model with suction and porosity affecting 

cohesion:  

( ) ( )2 c c

1
' sin (cos sin sin ) cos

3
F p J a b s g     =  + −   − +    

( ) ( )2 c c

1
' sin (cos sin sin ) cos

3
G p J a b s g      =   + −   − +    

Φ(𝑭) = 𝑭𝒎    for   𝑭 ≥ 𝟎                 Φ(𝑭) = 𝟎    for   𝑭 < 𝟎 

( ) ( ) / 2g f f = +  

( ) ( )00
1

n

f   = −  

Similar model to ITYCL=11, but the cohesion depends on the matrix 

suction and porosity. 

This model is based on: 

Duan G, Wang H, Song F, Rodriguez-Dono A. Stability analysis of 

unsaturated loess slopes subjected to extreme rainfall incorporating 

creep effects [J]. Computers and Geotechnics, 2024, 169: 106231. 

 

PARAMETERS FOR ITYCL = 11 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 m  
Power of the stress function (integer value; typical value = 

3) 

P2 o =1/ 
s-1 MPa-m 

(*) 

Fluidity = 1/Viscosity (for plasticity use a sufficiently large 

value) 

(*) Units valid for F and G in units of stress. For other cases 

(e.g. units of stress squared) then the units are different. 

P3 Q J mol-1 Activation energy (= 0 for temperature independent model) 

P4 Void 

P5 c MPa Cohesion 

P6   º Friction angle 

P7 
T

  º 
Lode angle value at which the corner smoothing function 

starts (typical value –default*– = 25º) 

P8 
mc

m  (0 - 1)  
Hyperbolic parameters for the yield surface. If mc

m =0 then 

the failure surface would be the actual Mohr-Coulomb 

failure surface (typical value –default*– = 0.25) 

P9  (0 - 1)  Parameter for the plastic potential (default* = 1) 

P10   º Dilatancy angle (default* value = friction angle).  
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PARAMETERS FOR ITYCL = 12 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 – P3 Same as in ITYCL = 11 

P4  *  
Critical value of the softening parameter (corresponding to 

the transition between softening and residual stages) 

P5 cpeak MPa Peak cohesion 

P6 peak
  º Peak friction angle 

P7 cres MPa Residual cohesion (default* = peak cohesion) 

P8 
res

  º Residual friction angle (default* = peak friction angle) 

P9  (0 - 1)  Parameter for the plastic potential (default* = 1) 

P10   º Dilatancy angle (default* value = peak friction angle) 

* Note that, in the case of parameters with default values, when setting them to zero –or to a 

value lower than 10-25– automatically takes the default value. Hence, if the user actually wants 

to set a parameter to zero, a low value but greater than 10-25 should be input. 

PARAMETERS FOR ITYCL = 15 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 – P3 Same as in ITYCL = 11 

P4, P10 Void 

P5 c MPa Cohesion 

P6   º Friction angle 

P7 C
N
  Stress scaling factor 

P8 C
T
  Stress scaling factor 

P9  (0 - 1)  Parameter for the plastic potential (default = 1) 

PARAMETERS FOR ITYCL = 16 (Mech. data 1 ─ VPSSR) 

P1 – P3 Same as in ITYCL = 11 

P4 c
b  - Cohesion: ( ) ( ) ( ) ( )c c

;   / 2c a b s g g f f = + = +  

P5 c
a  MPa Cohesion: ( ) ( ) ( ) ( )c c

;   / 2c a b s g g f f = + = +  

P6   º Friction angle 

P7 
T

  º 
Lode angle value at which the corner smoothing function 

starts (typical value –default*– = 25º) 

P8 
mc

m  (0 - 1) - 
Hyperbolic parameters for the yield surface. If mc

m =0 

then the failure surface would be the actual Mohr-

Coulomb failure surface (typical value –default*– = 0.25) 

P9 n  - Porosity function: ( ) ( )00
1

n

f   = −  

P10 00
  º Reference porosity  



118 

CODES in 

ROOT_gen.dat 

ICL = 33   ITYCL = 20, 21, 22, 23, 24, 25 

DESCRIPTION Viscoplasticity (general model for saturated soils and rocks) 

EQUATIONS ITYCL = 20: Hoek-Brown (HB) model with dilatancy: 

2

2 2

4 2
cos cos

63

hb ci

hb hb

ci hb

s
F J m J m p

m

    
=  +   +  −  − +   

    


 



2

1
sin (cos sin sin )

3
G p J    =   + −    

Φ(𝑭) = 𝑭𝒎    for   𝑭 ≥ 𝟎                 Φ(𝑭) = 𝟎    for   𝑭 < 𝟎 

This model uses the standard sign criteria for continuum mechanics, and 

equations are written assuming p>0 tension; hb
m  and hb

s  are parameters 

of HB failure criterion. ci
 is the compressive strength of intact rock 

mass. is the dilatancy angle and   is a parameter for the plastic 

potential. 

For this model, the corners of HB yield surface are rounded by 

introducing T
 . The rounded yield surface is as follows: 

( ) 2

hb ci

F hb

hb

s
F K J m p

m

 
=  −  − + 

 


  

( ) 2

2

sin 3 , 30

4 2
cos cos ,

63

sin 3 , 30

T

F hb T T

ci

T

A B

K J m

A B

+ +

− −

 +  

  

=  +   + −    
 

 − −   −

  


     



  

 

where: 

2

2

2

sin cos 1
cos sin tan 3

33 3 3

4 cos 8 sin cos tan 3

3

8 sin cos cos
sin

3 cos3 3cos3 3

T T
hb T T T

T T T T

ci ci

hbT T T
T

ci T T

A m

J

m
B J

+

+

    
=  − + +    

    

  
+  + 

 

   
=  − −  +   

  

 
  

   

 

  


  

 

2

2

2

sin cos 1
cos sin tan 3

33 3 3

4 cos 8 sin cos tan 3

3

8 sin cos
sin

3 cos3 3cos3 3

T T
hb T T T

T T T T

ci ci

hbT T
T

ci T T

A m

J

m
B J

−

−

    
=  + − −    

    

  
+  + 

 

   
= −  +  −   

  

 
  

   

 

 


  
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CODES in 

ROOT_gen.dat 

ICL = 33   ITYCL = 20, 21, 22, 23, 24, 25 

DESCRIPTION Viscoplasticity (general model for saturated soils and rocks) 

EQUATIONS ITYCL = 21: HB model with dilatancy and strain-softening: 

( )

( )
( )

( )

2

2 2

4 2
cos cos

63

      

hb

ci

hb ci

hb

hb

F J m J

s
m p

m

  
=  +   +   

  

 
−  − +  

 


  



 




2

1
sin (cos sin sin )

3
G p J    =   + −    

Φ(𝑭) = 𝑭𝒎    for   𝑭 ≥ 𝟎                 Φ(𝑭) = 𝟎    for   𝑭 < 𝟎 

Similar model to ITYCL=20, but in this case both the parameters of 

Hoek-Brown failure criterion, ( )hb
m   and ( )hb

s  , are functions of the 

softening parameter  : 

𝑘(𝜂) =

{
 
 

 
 𝑘

𝑝𝑒𝑎𝑘
,                                   𝜂 ≤ 0                 

𝑘
𝑝𝑒𝑎𝑘

+ (
𝑘𝑟𝑒𝑠 − 𝑘

𝑝𝑒𝑎𝑘

𝜂∗
) ⋅ 𝜂,   0 ≤ 𝜂 ≤ 𝜂∗  

𝑘𝑟𝑒𝑠,                                     𝜂∗ ≤ 𝜂              

 

 

Where 
peak

k  and 
res

k  are peak and residual value of k, respectively; k 

represents both mhb and shb. 

is defined as the value of the softening 

parameter controlling the transition between the softening and residual 

stages. The expression for the softening parameter is: 

𝜂 = √
3

2
⋅ [

(𝜀𝑥
𝑝
− 𝜀𝑚

𝑝
)
2
+ (𝜀𝑦

𝑝
− 𝜀𝑚

𝑝
)
2
+ (𝜀𝑧

𝑝
− 𝜀𝑚

𝑝
)
2

+(
1

2
𝛾𝑥𝑦
𝑝
)
2

+ (
1

2
𝛾𝑦𝑧
𝑝
)
2

+ (
1

2
𝛾𝑧𝑥
𝑝
)
2 ] 

Where ( )
1

3

p p p p

m x y z
   = + + . 

The corners of strain-softening HB yield surface are rounded by 

introducing T
 . The rounded method is the same as in ITYCL=20, but 

the rounded parameter T
  is fixed at 25  in this model. 

These two models (ITYCL=20, 21) are based on: 

Song F, Rodriguez-Dono A, Olivella S, et al. Analysis and modelling of 

longitudinal deformation profiles of tunnels excavated in strain-

softening time-dependent rock masses [J]. Computers and Geotechnics, 

2020, 125: 103643. 
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CODES in 

ROOT_gen.dat 
ICL = 33   ITYCL = 20, 21, 22, 23, 24, 25 

DESCRIPTION Viscoplasticity (general model for saturated soils and rocks) 

EQUATIONS ITYCL = 22: HB model with dilatancy:  

2

2 2

4 2
cos cos

63

      

hb

ci

hb ci

hb

hb

F J m J

s
m p

m

  
=  +   +   

  

 
−  − + 

 


 





2

2 2

4 2
cos cos

63

      

hb

ci

hb ci

hb

hb

G J m J

s
m p

m

  
=  +   +   

  

 
−   − + 

 


 






 

Φ(𝑭) = 𝑭𝒎    for   𝑭 ≥ 𝟎                 Φ(𝑭) = 𝟎    for   𝑭 < 𝟎 

Similar model to ITYCL=20, except for the form of the plastic potential 

G. In this model, the expression forthe plastic potential is related to the 

yield surface. It is considered an associated flow rule, i.e. F=G, when   

equal to 1. 

 

ITYCL = 23: HB model with dilatancy and strain-softening: 

( )

( )
( )

( )

2

2 2

4 2
cos cos

63

      

hb

ci

hb ci

hb

hb

F J m J

s
m p

m

  
=  +   +   

  

 
−  − +  

 


  



 




 

( )

( )
( )

( )

2

2 2

4 2
cos cos

63

      

hb

ci

hb ci

hb

hb

G J m J

s
m p

m

  
=  +   +   

  

 
−   − +  

 


  



 
 



 

Similar model to ITYCL=21, except for the form of the plastic potential 

G. In this model, the expression of the plastic potential is related to the 

yield surface. It is considered an associated flow rule, i.e. F=G, when   

equal to 1. In this model, both the yield surface and the plastic potential 

depend on the softening parameter . 
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CODES in 

ROOT_gen.dat 
ICL = 33   ITYCL = 20, 21, 22, 23, 24, 25 

DESCRIPTION Viscoplasticity (general model for saturated soils and rocks) 

EQUATIONS ITYCL = 24: 3D Pan-Hudson simplified HB model (Pan & 

Hudson, 1988): 

2

2 2

3 3

2
hb hb hb ci

ci

F m p J m J s=  +  +   − 


2

2 2

3 3

2
hb hb hb ci

ci

G m p J m J s=   +  +   −  


 

Φ(𝑭) = 𝑭𝒎    for   𝑭 ≥ 𝟎                 Φ(𝑭) = 𝟎    for   𝑭 < 𝟎 

This model uses the standard sign criteria for continuum mechanics, 

and equations are written assuming p>0 tension; 
hb

m  and 
hb

s  are 

parameters of the HB failure criterion. 
ci

 is the compressive strength 

of the intact rock mass.  is the the dilatancy angle and   is a 

parameter for the plastic potential. It is considered associated flow 

rule, when   equal to 1. 

 

ITYCL = 25: 3D Pan-Hudson simplified HB model (Pan & 

Hudson, 1988) with strain-softening: 

( ) ( ) ( ) 2

2 2

3 3

2
hb hb hb ci

ci

F m p J m J s=  +  +   −    


 

( ) ( ) ( ) 2

2 2

3 3

2
hb hb hb ci

ci

G m p J m J s=   +  +   −     


 

Φ(𝑭) = 𝑭𝒎    for   𝑭 ≥ 𝟎                 Φ(𝑭) = 𝟎    for   𝑭 < 𝟎 

Similar model to ITYCL=24, but in this case both the parameters 

of 3D Pan-Hudson simplified Hoek-Brown failure criterion, ( )hb
m   

and ( )hb
s  , are dependent on the softening parameter  , following 

the same relationships as in ITYCL=21. 
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PARAMETERS FOR ITYCL = 20 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 – P3 Same as in ITYCL = 11 

P4 Void 

P5 mhb MPa Hoek-Brown parameter m 

P6 shb  Hoek-Brown parameter s 

P7 
ci

  MPa Compressive strength of the intact rock mass 

P8 
T

  º 
Lode angle value at which the corner smoothing function 

starts (typical value –default– = 25º) 

P9  (0 - 1)  Parameter for the plastic potential (default = 1) 

P10   º Dilatancy angle 

PARAMETERS FOR ITYCL = 21 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 – P3 Same as in ITYCL = 11 

P4  *  
Critical value of the softening parameter (corresponding 

to the transition between softening and residual stages) 

P5 
peak

hb
m  MPa Hoek-Brown parameter m (peak value) 

P6 
peak

hb
s   Hoek-Brown parameter s (peak value) 

P7 
res

hb
m  MPa Hoek-Brown parameter m (residual value) 

P8 
res

hb
s   Hoek-Brown parameter s (residual value) 

P9 
ci

  MPa Compressive strength of the intact rock mass 

P10   º Dilatancy angle 

PARAMETERS FOR ITYCL = 22, 24 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 – P9 Same as in ITYCL = 20 

P10 Void 

PARAMETERS FOR ITYCL = 23, 25 (Mech. data 1 ─ VPSSR ─ ICL=33) 

P1 – P9 Same as in ITYCL = 21 

P10  (0 - 1)  Parameter for the plastic potential (default = 0) 
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HISTORY VARIABLES: 

The VPSSR (ICL = 33) requires four history variables: 

Hist_var 1 Po MPa Evolution of preconsolidation mean stress  

Hist_var 2 0  Evolution of  (parameter of the flow rule) 

Hist_var 3 EDP  Plastic deviatoric strain 

Hist_var 4 EVP  Plastic volumetric strain 

The first two variables can be assigned as initial conditions on surfaces/volumes if an initial 

particular distribution on the geometry is required. The procedure is the same as followed by 

initial stresses as was described in chapter II. PREPROCESS, PROBLEM DATA, section 

II.2.3.5.  

If no value is assigned for the first two variables in conditions, internally, the program sets the 

input parameters P5 (for Po*) and P10 (for 0) of the ICL = 33 (ITYCL = 1, 2 or 3), as initial 

values. 

The evolution of the four history variables can be visualized as an output in Post-process GID 

interface. 
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VISCOPLASTICITY FOR UNSATURATED SOILS AND ROCKS - VPUSR 

CODES in 

ROOT_gen.dat 

ICL = 34, 35 and 36   ITYCL = 1, 16 

DESCRIPTION Viscoplasticity (general model based on Desai and Perzyna theory) 

EQUATIONS ITYCL = 1:  Viscoplastic constitutive model 

( )            ( )
'

N

o

d G F
F F

dt F

  
=    =  

  

 

where the yield function is defined as:  ( ) 2

1 2 3 2
, , ,

D D D b s
F J J J s aJ F F= −  

with the following additional functions: 

  ( )( ) ( ) ( ) ( )
2 20 0

1 2 4 1 1 4 1 1 4 3 1

n n

b
F J s k s k J k s k J k s k k sJ s

− =  − + + + + + + + −
  

 

( ) ( )
( )3/ 2

3 2

27
1         

2

m

s s D D
F S S J J

−
= − =  

The viscoplastic potential is defined similarly as: 

( ) 2

1 2 3 2
, , ,

D D D b s
G J J J s aJ b F F= −   

where b is a non-associativity parameter. 

Hardening is described with the following function, which is equivalent to 
the BBM model: 

 
( ) ( ) ( ) ( )0 1 exps r s r =  − − +    

Suction and net stress are defined as: 

                
And the invariants are: 

        ( ) 1

1
' ' ' ' max( , ) / 3 max( , )

3
x y z g l g l

p p p p J p p=  +  +  = − = −    

             
2

2

2 2 2

3

1 1
( : ) =                        ' '

2 3

2  

D

D x y z xy yz zx x yz y xz z xy

J trace q p

J s s s s s s

= =  −

= +    −  −  − 

s s s I
 

Hardening depends on viscoplastic volumetric strains according to: 

( )( ) ( )( ) ( )

*

0* * * *

1 1 *

1 1 1

00 0

o vp vp vpo

v o o v v

o

dpe e e
dJ J d dp p d d

p

+ + +
=   =   = 

 −   − 
 

which is equivalent to BBM model as shown. 

Note that, using k1 = 3k, k2 = 3k, k3 = 0, k4 = 0, and Fs = 1: 

     2 2 2 2 21
( , , ) 3 ( ( ) ) ( ) ( )

3

n n

o
F q p s a q p s ks p ks p ks

− = −   − + + + + 
 

In the same way, the viscoplastic potential is described as: 

     2 2 2 2 21
( , , ) 3 ( ( ) ) ( ) ( )

3

n n

o
G q p s a q b p s ks p ks p ks

− = −   − + + + + 
 

which incorporates a parameter to allow for non-associativity conditions. 

Strength can be considered also a function of suction: 

          ( ) ( ) ( )                    

s

sat

dry dry sat sat dry

dry

s
 

 =  −  −     
  

 

(0)
0* ( )

0 01
1 1

( ) 3             ( ) ( ) / 3
3

s
c

oc

J
J s p p s J s

p

 −

 − 
= = 

 

( )( )max ,0g ls P P= − max( , )
total

n n g lP P =  −



125 

PARAMETERS FOR ITYCL=1 

ICL = 34 (Mechanical data 1 → VPUSR 1) ITYCL = 1 

P1  s-1 MPa-1 Fluidity = 1/Viscosity (for plasticity use a sufficiently 

large value) 

P2 N  Power of the stress function (integer value) 

P3 Fo MPa2 Fo = 1 MPa2 

P4    =  exp(s) 

P5 b  Non-associativity parameter.  

ICL = 35 (Mechanical data 1 → VPUSR 2) ITYCL = 1 

P1 n - Power in F and G (integer value) 

P2  - Parameter in F and G 

P3 s - Typical value 0 (then Fs = 1, and J3D is not considered) 

P4 m - Typical value -0.5, only required if s  0 

P5 DRY - For some cases,  = MDRY, corresponding 

approximately to Cam-Clay model.  

P6 - -  

P7 (J1
o*)F MPa Positive value, initial size of F (note that this is the 1s 

invariant) 

P8 (J1
o*)G MPa Positive value, initial size of G (note that this is the 1st 

invariant) 

P9 a - Parameter in F and G 

P10 SAT - For some cases,  = MSAT, corresponding 

approximately to Cam-Clay model.  

ICL = 36 (Mechanical data 1 → VPUSR 3) ITYCL = 1 

P1   - Elastic compression parameter 

P2 () - Viscoplastic compression parameter 

P3 r - Parameter in LC curve 

P4  - Parameter in LC curve 

P5 pc MPa Parameter in LC curve  

P6 k1 -  

P7 k2 -  

P8 k3 -  

P9 k4 -  
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This model has the following case that can be used: 

 Cam-Clay model Cap models  

n 1 3,5,7,9 P1 in VPUSSR 2 

 −1/9 = −0.111111 +1/9 = +0.111111 P2 in VPUSSR 2 

a 3 3 P9 in VPUSSR 2 

 M M P10 in VPUSSR 2 

k1  +3k P6 in VPUSSR 3 

k2 −3k +3k P7 in VPUSSR 3 

k3 +3k 0 P8 in VPUSSR 3 

k4 +3ps0 +3ps0 P9 in VPUSSR 3 

M: slope of critical state line. 

Parameters k, ps0 (see BBM). 

     - k: Parameter that takes into account increase of tensile strength due to suction. 

     - ps0: Tensile strength in saturated conditions. 
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VISCOPLASTICITY FOR UNSATURATED SOILS AND ROCKS - VPUSR 

CODES in 

ROOT_gen.dat 

ICL = 34, 35, 36 (continued) 

DESCRIPTION Viscoplasticity (general model for unsaturated soils based on Desai and 

Perzyna theory).  

EQUATIONS ICL = 36 (VPUSR 3), ITYCL = 2: 

The LC curve is defined in the following way: 

          
( ) ( )

( )
( )

*

1 *

1 1

3 (0)
( ) 3 3

( )

d o i

yo o

y yi d

p s J
J s J J J

s s

 +  −    − 
= = + − 

 +  −   −  
 

and the form of the compressibility is:   ( ) ( ) ( ) ( )0 1 exps r s r =  − − +    

Hardening depends on viscoplastic volumetric strains according to: 

0*

1

1
3

(0)

vp

v

io

dJ d
k

 
=  

 − 

 

ICL = 36 (VPUSR 3), ITYCL = 3: 

The LC curve is defined in the following way: 

( ) ( )
( ) ( )

( )
0*

1 0*

1 1

3
( ) 3 3

d i i
yo

y yi d i d

p s J
J s p J p

s s

 +  −    − 
= = + −   +  −   +  −  

  and the 

form of the compressibility is: ( )
0.1

( );  ( ) ln
0.1

i d d d s

s
s s s

+ 
 =  +   =  −   

 
 

Hardening depends on viscoplastic volumetric strains according to: 

0*

1

1
3

vp

v

i io

dJ d
k

 
=  

 − 

 

For more details see Oldecop & Alonso, 2001. 

ICL = 36 (Mechanical data 1 → VPUSR 3); ITYCL = 2 

P1 void -  

P2 ()− = () - Viscoplastic compression parameter 

P3 r - Parameter in LC curve 

P4  - Parameter in LC curve 

P5 Jy
 MPa Parameter in LC curve  

P6 k1 -  

P7 k2 -  

P8 k3 -  

P9 k4 -  

P10 aa  - 
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ICL = 36 (Mechanical data 1 → VPUSR 3); ITYCL = 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1 void -  

P2 i-  - Viscoplastic compression parameter 

P3 d - Viscoplastic compression parameter 

P4 s - Parameter (s) curve 

P5 py MPa Parameter in LC curve  

P6 k1 -  

P7 k2 -  

P8 k3 -  

P9 k4 -  
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VISCOPLASTICITY FOR UNSATURATED SOILS AND ROCKS - VPUSR 

 
See the APPENDIX VI.B.4. ZERO THICKNESS for more information. 

CODES in 
ROOT_gen.dat 

ICL = 34, 35, 36 (continued) 

DESCRIPTION Viscoplasticity – Zero thickness element 

EQUATIONS ICL = 34, 35, 36; ITYCL = 16 

Viscoplastic constitutive model: 

                 

( )            ( )
'

N

o

d G F
F F

dt F

  
=    =  

    
- The yield function is defined as: ( )

22
' ' tan 'F c=  − −   , where   is the 

shear stress; 'c  is the effective cohesion, '  is the net normal stress, tan '

is the tangent or internal friction angle and  is the tensile strength. 

- Evolution of strength parameters with suction: 

                      
( ) ( ) ( ) ( )2 tan'

0 0 1 0 1,
1 a

a

b
c c c b b e

− 

 
= +  + +  −  

                      
( ) ( ) ( )'

0 0 1 0 1,
tan tan tan

a
a

t d d
 

 =  +  + +    

where ( )
'

0 , a
c

  is the effective initial cohesion that changes with suction (  ) 

and the asperity roughness angle (
a

 ) (Figure VIb.1); c0 is the value of 
cohesion for 0º = and 0º

a
 = , c1 is the slope of the cohesion-suction fit 

line for 0º
a

 =  (Figure VIb.2). b0 is an average value of cohesion for 

15º ,30º ,45º
a

 =  and b1 is a parameter of the model that controls the 
increment of cohesion with suction for 15º ,30º ,45º

a
 = . The term 

( )2 tan
1 ab

e
− 

−  controls the sharp increment of cohesion with 
a

 and b2 is a 

parameter that controls the shape of the cohesion-
a

 curve. ( )
'

0 ,
tan

a 
  is the 

tangent of the internal friction effective initial angle that depends of   and 

a
 (Figure VIb.3); 

0
tan   is the value of '

0
tan   for 0 =  and 0º

a
 = ; t1 is 

the slope of the '

0
tan  -  fit line for 0º

a
 =  (Figure VIb.4); d0 and d1 are 

model parameters that control the increment of '

0tan  with suction for 

5º ,15º ,30º ,45º
a

 = and tan
a

  is the geometric tangent of the asperity 
roughness angle. 
- The softening is defined as: 

                '

0 *
' 1

vp

s

c

u
c c

u

 
= − 

 
( )' ' '

0 0 *
tan ' tan tan tan

vp

s

res

u

u


 =  −  −   

where vp

s
u  is the visco-plastic shear displacement; *

c
u is the critical value for 

shear displacement when c’=0; '
tan

res
 is the tangent of internal friction 

effective residual angle and *
u


 is the critical value of shear displacement 

when ' '
tan tan

res
 =  . 

- The viscoplastic potential is defined as: 

              ( )2 tan ' ' ' tan ' , 2
T

dil dil

c

G
c f f




 =  −    

 

              
' '

tan 1 exp
dil

d a d

u u

f
q q



    
=   − −   

  
'

0

'dil

c

c
f

c
=  

where, qu is the compression strength at which dilatancy vanishes; 
d

 and 

d
 are model parameters. 
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Figure VIb.1.  Effective cohesion vs. 

a
  (Zandarin, 2010) 

 

 
Figure VIb.2.  Effective cohesion vs. suction (Zandarin, 2010) 

 

 
Figure VIb.3.  Effective tangent of the internal friction angle vs.

a
 (Zandarin, 2010) 

 

 
Figure VIb.4.  Effective tangent of the internal friction angle vs.suction (Zandarin, 2010) 
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PARAMETERS FOR ITYCL=16 

ICL = 34 (Mechanical data 1 → VPUSR 1); ITYCL = 16 

P1 c0 MPa Initial cohesion 

P2 0 º Initial friction angle 

P3 -   

P4 res º Residual friction angle 

P5 *

c
u  m Critical value of shear displacement for cohesion 

P6 
*

u


 m Critical value of shear displacement for friction 

P7 d
  - Model parameter for dilatancy function 

P8 d
  - Model parameter for dilatancy function 

P9 a
  º Joint asperity angle 

P10 qu MPa Compression strength for which dilatancy vanishes 

ICL = 35 (Mechanical data 1 → VPUSR 2); ITYCL = 16 

P1-P2 -   

P3  1/s Fluidity 

P4 N  Power of the stress function (integer value) 

P5 F0 MPa F0=1 MPa (Default value) 

ICL = 36 (Mechanical data 1 → VPUSR 3); ITYCL = 16 

P1 c1 MPa Model parameter for evolution of cohesion with suction 

P2 b0 MPa Model parameter for evolution of cohesion with suction 

P3 b1 - Model parameter for evolution of cohesion with suction 

P4 b2 - Model parameter for evolution of cohesion with suction 

P5 t1 - Model parameter for evolution of friction angle with suction 

P6 d0 - Model parameter for evolution of friction angle with suction 

P7 d1 - Model parameter for evolution of friction angle with suction 

P8 a
  º Joint asperity angle 
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HISTORY VARIABLES: 

The VPUSR model (ICL = 34, 35, 36) requires four history variables: 

Hist_var 1 (J1
o*)F MPa Evolution of size of F (note that this is the 1s invariant) 

Hist_var 2 (J1
o*)G MPa Evolution of size of G (note that this is the 1st invariant) 

Hist_var 3 EDP  Plastic deviatoric strain 

Hist_var 4 EVP  Plastic volumetric strain 

The first two variables can be assigned as initial conditions on surfaces/volumes if an initial 

particular distribution on the geometry is required. The procedure is the same followed by initial 

stresses as was described in chapter II. PREPROCESS, PROBLEM DATA, section II.2.3.5.  

If no value is assigned for the first two variables in conditions, internally, the program sets the 

input parameters P7 (for (J1
o*)F)  and P8 (for (J1

o*)G) of the ICL=35 (ITYCL=1), as initial 

values. 

The evolution of the four history variables can be visualized as an output in Post-process GID 

interface. 

Note: Effective stresses plotted in the Post-process GID interface correspond with net stresses 

for unsaturated conditions and Terzaghi's effective stresses for saturated conditions. Stress and 

strain invariants follow the soil mechanics notation (positive for compression). 

 

An example of use of the elastic and viscoplastic models in presented in APPENDIX VI.B.5 
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CODE_BRIGHT. CONSTITUTIVE LAWS 

This chapter contains the different models available and the corresponding parameters required 

by each model. The following constitutive laws are available: 

HYDRAULIC AND 

THERMAL CONSTITUTIVE 

MODELS (a) 

RETENTION CURVE  

INTRINSIC PERMEABILITY  

LIQUID PHASE RELATIVE 

PERMEABILITY  

GAS PHASE RELATIVE 

PERMEABILITY  

DIFFUSIVE FLUXES OF MASS  

DISPERSIVE FLUXES OF 

MASS AND ENERGY  

CONDUCTIVE FLUX OF HEAT  

MECHANICAL CONSTITUTIVE MODELS 

 

ELASTICITY (b) 

NONLINEAR ELASTICITY (b) 

VISCOPLASTICITY FOR SALINE MATERIALS 

(b)  

VISCOPLASTICITY FOR SATURATED SOILS 

AND ROCKS (b) 

VISCOPLASTICITY - GENERAL (b) 

DAMAGE-ELASTOPLASTIC MODEL FOR 

ARGILLACEOUS ROCKS (c) 

THERMO-ELASTOPLASTIC MODEL FOR SOILS 

(d) 

BARCELONA EXPANSIVE MODEL FOR SOILS 

(e) 

CASM’s FAMILY MODELS (f) 

PHASE PROPERTIES (a) 

SOLID PHASE PROPERTIES 

LIQUID PHASE PROPERTIES 

GAS PHASE PROPERTIES 

EXCAVATION PROCESS (g) 

 

 

VI.c. DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 

ICL NAME ITYCL DESCRIPTION

70 DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 1,2,3
Damage orthotropic elastic model for the bonded material (1:linear damage law; 

2:exponential damage law; 3:logarithmic damage law)

71 DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 1,2,3
Linear Orthotropic elastic model parameters for the soil matrix. (1; MC; 2:HB, 

3:Camclayl)

72 DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 1 Coupling behaviour. ITYCL = 0: bond behaviour is not activated

73 DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 1,2,3 MC or  HB or BBM for the clay matrix - shape in p-q diagram

74 DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 1,2,3 MC or  HB or BBM for the clay matrix - shape in deviatoric plane

75 DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 1,2,3 MC or  HB or BBM potential for the clay matrix - shape in p-q diagram

76 DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 1,2,3 MC or  HB or BBM plastic potential for the clay matrix - shape in the deviatoric plane

77 DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 1,2,3
MC or  HB or BBM Hardening law for clay matrix, used only if bond behaviour is not 

activated

78 DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 1 Rate dependency parameters

79 DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 1 Control parameters for SPA (Backward euler scheme)

MECHANICAL CONSTITUTIVE LAWS (part c)
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DAMAGE-ELASTOPLASTIC MODEL FOR ARGILLACEOUS ROCKS 

CODES ICL = 70 to 79             ITYCL = see below 

DESCRIPTION Damage-elastoplastic model for argillaceous rock This model considers 

the argillaceous rock as a composite material made of a clay matrix 

interlocked by bond. Clay matrix behaviour is modeled through an 

elastoplastic constitutive law, typical of soils. Bonds are modeled 

through a damage elastic law (Carol et al., 2001), typical of quasi-brittle 

materials. A coupling parameter gives the relative importance of clay and 

bond response for the composite material. This law applies to material 

having a response transitional between that of a soil and a rock. 

EQUATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this model, equations are written assuming Soils Mechanics 

convention (p > 0, v> 0, compression). p is the mean effective stress, J 

the square root of the second invariant of deviatoric stress tensor,  the 

Lode’ angle (-30º in triaxial compression, +30º in triaxial extension) (see 

ICL 21 to 27 for their definition).  

 

Clay matrix behaviour 

Elastic law: M eM M p

ij ijkl kl kl klM

s

ds
d D d d

K
   

 
= − − 

 

 

M

ij
 are the stresses prevailing at clay particles contact, 

eM

ijkl
D  is the 

mechanical elastic stiffness matrix of the clay, M

kl
d are the strains 

corresponding to the clay matrix deformation (equal to the external 

strains), 
M

s
K  is the bulk modulus against suction changes (if any), 

p

kl
d  

are the plastic strains of the clay matrix. 

2 elastic laws are considered:  

Orthotropic linear elasticity (ITYCL = 1, 2, 5, or 6): 

eM

ijkl
D  is defined by clay matrix Young’s moduli EM

h  and EM
v and 

Poisson’s ratio M
h, G

M
v, M

hv and M
vh. M

s
K  is taken constant. Subscript 

h indicate value in the direccion orthogonal to the orthotropy axis, 

subscript v along the orthotropy axis (and not necessarily along the 

horizontal plane and the vertical axis). The direction of orthotropy axis 

is indicated for each element in the file <root>_gri.dat by the two angles 

shown in the figure below. 

 

Value of EM
h is computed as: 

 EM
h = max(EM

h0, E
M

h1 p
M + EM

h2) 

vhere EM
h0, E

M
h1 and EM

h2 are parameters of the model. 
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Camclay type orthotropic elasticity (ITYCL = 3): 

eM

ijkl
D is defined by clay matrix bulk modulus KM

h and KM
v and clay matrix 

Poisson’s ratio M
h, M

v, M
hv and M

vh. Bulk modulus against stress 

changes is linearly dependent of the mean stress following the 

relationship: 

                        
( )

M

M

hM

h

e
K



+
=

1
                         

( )
M

M

vM

v

e
K



+
=

1
 

 

Bulk modulus against suction changes is linearly dependent of the mean 

stress following the relationship: 

                         
( ) ( )1

atmM

s M

s

e s p
K



+ +
=  

e is the void ratio, M  and M

s
  the slopes of the unloading/reloading and 

drying/wetting lines in the planes e-lnpM and e-ln(s + patm), respectively. 

patm  is the atmospheric pressure and is taken equal to 0.1 MPa. 

 

Yield function: 5 yield criteria are considered: 

Mohr-Coulomb (ITYCL = 1): 

1
cos sin sin ' sin '( ) 0

3

p M M M M M M

t
F J p p   

 
= + − +  

 
 

' cot '
M M M

t
p c = is clay matrix tensile strength, c’M  clay matrix cohesion, 

’M  clay matrix friction angle. 

Cohesion depends on suction following the law: 

                                 ( ) ( )' ' 0 tan
M M M

b
c s c s = +  
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Hoek & Brown (1980) (ITYCL = 2): 

     

2

2

4sin
2 sin6

( ) 0
3

M

M M
p M M M M M

tM

c

m
F J J m p p

R






 
− 

 
= − − +   

/
M M M

t c
p R m=  is clay matrix tensile strength, Rc

M clay matrix uniaxial 

compressive strength, mM  a parameter defining the shape of the parabolic 

yield criterion. 

M

c
R depends on suction following the law: 

                               ( ) ( ) ( )0 (1 )exp
M M M M M

c c
R s R r s r = − − +

 
 

BBM model  (ITYCL = 3): 

                ( )
2

2

0
( ) 0

3

M
p M M M M M

t

M
F J p p p p= − + −   

where 
M

t
p is the clay matrix tensile strength, 0

M
p  the clay matrix 

isotropic yield locus and M the slope of the critical state line in the pM – 

vqM diagram. The following dependencies on suction are considered: 

                                             
M M

t
p k s=  

   

( )

( )

( ) ( ) ( )

0

*

0

0
with s 0 1

M M

M M
M

M s
M M M M M s

c M

c

p
p p r re

p

 

 
 

−

−
−

 
 = = − +   

 
 

Anisotropic Mohr-Coulomb (ITYCL = 5): 

𝐹𝑝 = (cos 𝜃∗
𝑀
+
1

√3
sin 𝜃∗

𝑀
sin𝜙′𝑀) 𝐽∗𝑀 − sin𝜙′𝑀 (𝑝∗

𝑀
+ 𝑝𝑡

𝑀) ≥ 0 

 

' cot '
M M M

t
p c = is clay matrix tensile strength, c’M  clay matrix cohesion, 

and ’M  clay matrix friction angle.  

 

In this case the invariants 𝑝∗
𝑀

, 𝐽∗𝑀, and 𝜃∗
𝑀

 are computed from the 

rotated and scaled anistropic stress tensor defined as: 

 

  
 

where 𝑐𝑁 and 𝑐𝑆 are scaling factors and 𝛼 and 𝛽 the two angles defining 

the direction of the orthotropy axis. 
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Hyperbolic Mohr-Coulomb (ITYCL = 6): 

𝐹𝑝 = √
𝐽𝑀

𝑓2(𝜃𝑀)
+ (𝑐′𝑀 + 𝑝𝑡

𝑀 tan𝜙′𝑀)2 − (𝑐′𝑀 + 𝑝𝑀 tan𝜙′𝑀) ≥ 0 

𝑓2(𝜃
𝑀) = 𝛼𝜃(1 + 𝛽𝜃 𝑠𝑖𝑛 3𝜃𝑀)

𝑛𝜃

 

 

𝑝𝑡
𝑀 is clay matrix tensile strength, c’M  clay matrix cohesion, and ’M  clay 

matrix friction angle.  

 

Strength anisotropy is included by assuming that 𝑐′𝑀 and 𝑝𝑡
𝑀 depend on 

the relative orientation between bedding and principal effective stress 

(𝛿): 

𝑐′𝑀 =  𝛺(𝛿) 𝑐0
′𝑀 

𝑝𝑡
𝑀 =  𝛺(𝛿)𝑝𝑡 0

𝑀  

 
where 𝑐0

′𝑀 and 𝑝𝑡 0
𝑀  are the values measured with the major principal 

stress normal to bedding, and  𝛿 is the angle between the normal to 

bedding and the major principal stress. The function proposed by Conesa 

et al. (2018) is used for 𝛺(𝛿), defined as (with 𝛺90, 𝛺𝑚, 𝛿𝑚, and �̂� 

material parameters): 

 
where: 
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Deviatoric plane: Mohr Coulomb and Hoek & Brown yield criteria 

present corners in the deviatoric plane. They are smoothed using Sloan 

& Booker (1986) procedure. Lode’s angle t at which smoothing starts 

must be defined (see ICL = 74). 

 

Rate dependency: Rate dependency is introduced as a visco-plastic 

mechanism. Plastic multiplier p is expressed as a function of the distance 

between the current clay matrix stress point and the inviscid plastic locus: 

                                     p p

M

dt
d F


=  

where dt is the time increment, M
 is the clay matrix viscosity and  are 

the Macauley brackets. Inviscid plastic locus takes the form: 

                                 0
M

p p p
F F d

dt


= −   

where F
p
 can be either the Mohr Coulomb or Hoek & Brown yield 

criterion. 

 

Plastic potential: A non associated plastic potential in the p-q diagram 

is defined for each yield criterion. In the deviatoric plane, plastic 

potential is considered associated. 

 

Mohr-Coulomb  (ITYCL = 1): 

          
1

cos sin sin ' sin '( )
3

p M M M M M M M

t
G J p p    

 
= + − + 

 
 

pt
M, c’M and ’M are parameters defining the yield criterion.  is a 

parameter defining the non associativity of the flow. It takes a value equal 

to 1 when associated and equal to 0 for null dilatancy.  

 

Hoek & Brown  (ITYCL = 2): 

2

2

4sin
2 sin6

( )
3

M

M M
p M M M M M

tM

c

m
G J J m p p

R






 
− 

 
= − − +  

pt
M, Rc

M and mM  are parameters defining the yield criterion. M is a 

parameter defining the non associativity of the flow. It takes a value equal 

to 1 when associated and equal to 0 for null dilatancy.  
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Barcelona Basic Model (ITYCL = 3): 

( )
2

2

0
( )

3

M
p M M M M M M

t

M
G J p p p p= − + −  

pt
M, p0

M and MM are parameters defining the yield criterion. M is a 

parameter defining the non associativity of the flow. It takes a value equal 

to 1 when associated and equal to 0 for null dilatancy. To respect the 

condition of null lateral strain during K0–loading, M must be set to: 

( )( )
( ) ( )

9 3 1

1 09 6

M M M

M

M MM

M M M

M


 

− −
=

−−
 

Anisotropic Mohr-Coulomb (ITYCL = 5): 

𝐺𝑝 = (cos 𝜃∗
𝑀
+
1

√3
sin 𝜃∗

𝑀
sin 𝜙′𝑀) 𝐽∗𝑀 − 𝜔𝑀 sin𝜙′𝑀 (𝑝∗

𝑀
+ 𝑝𝑡

𝑀) 

 

pt
M, c’M and ’M are parameters defining the yield criterion.  is a 

parameter defining the non associativity of the flow. It takes a value equal 

to 1 when associated and equal to 0 for null dilatancy.  

 

Hyperbolic Mohr-Coulomb (ITYCL = 6): 

𝐺𝑝 = √
𝐽𝑀

𝑓2(𝜃
𝑀)
+ (𝑐′𝑀 + 𝑝𝑡

𝑀 tan𝜙′𝑀)2 − 𝜔𝑀(𝑐′𝑀 + 𝑝𝑀 tan𝜙′𝑀) 

 

pt
M, c’M and ’M are parameters defining the yield criterion.  is a 

parameter defining the non associativity of the flow. It takes a value equal 

to 1 when associated and equal to 0 for null dilatancy.  

Hardening law: 

Mohr-Coulomb (ITYCL = 1): 

A softening law is introduced through the following dependency of the 

tensile strength on the plastic strain: 

M
' cotan '

M M

t
p c =  

with 
M

peak
' =c'
M

c     if 0

pM M

eq rc
   

( )
( )

( )
M

peakM

peak 0

0

c' 1
' =c'

M

M pM M

eq rcM M

rc rc

c


 
 

−
+ −

−

 if 0

M pM M

rc eq rc
     

M

peak
' = c'
M M

c     if 
M pM

rc eq
   

and 
M

peak
' = '
M      if 0

pM M

eq r   
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( )
( )

( )
M

peakM

peak 0

0

' 1
' = '

M

M pM M

eq rM M

r r



 

 
   

 

−
+ −

−

 if 0

M pM M

r eq r      

M

peak
' = '
M M       if 

M pM

r eq   

 = c’res
M / c’peak

M is a brittleness parameter for the cohesive 

component,  = ’res
M / ’peak

M is a brittleness parameter for the 

frictional component,  eq
pM is the equivalent plastic strain, rc0

M the 

accumulated equivalent plastic strain at which the cohesion starts to 

degrade, rc
M the accumulated equivalent plastic strain at which the 

residual cohesion cres’
M is reached, r0

M the accumulated equivalent 

plastic strain at which the friction angle starts to degrade, r
M the 

accumulated equivalent plastic strain at which the residual friction angle 

’res’
M is reached.  =  = 1 means perfect plasticity,  =  = 0, 

total strength degradation (residual cohesion and friction angle equal to 

0).  

 

Hoek & Brown (ITYCL = 2): 

A softening law is introduced through the following dependency of the 

tensile strength on the plastic strain: 
2

0 1
max( , )

1-(1 )
M pM M

M Mc r
t M M

r

R
p

m

 




 
= − 

 
 

Rc0
M is the intact strength,  a brittleness parameter, pM

1 is the major 

principal plastic strain, r
M the accumulated major principal plastic strain 

at which the residual strength 2Rc0
M is reached.  is related to the 

intact and residual uniaxial compressive strength Rc0
M and Rcres

M by the 

formula: 
2

0 0

2

3

M M

M Mcres cres

M M

c c

R R
m

R R


 
= + 

 
 

 = 1 means perfect plasticity,  = 0, total degradation (residual 

strength equal to 0).    > 1 means hardening plasticity while   < 1 

means softening plasticity. 

 

Barcelona Basic Model (ITYCL = 3): 

The hardening/softening law is introduced through the following 

dependency of the saturated isotropic yield locus on the plastic strain: 
*

0

*

0

(1 )
M

pM

vM M M

dp e
d

p


 

+
=

−
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Anisotropic Mohr-Coulomb (ITYCL = 5): 

A hardening-softening law is introduced through the following 

dependency of cohesion and friction angle on the plastic strain: 

 

𝜙′𝑀 = 𝜙𝑖 + 𝜀𝑒𝑞
𝑝 𝑀

 [𝑎ℎ +
𝜀𝑒𝑞
𝑝 𝑀

𝜉1
 (

𝜉1
𝜙𝑝 − 𝜙𝑖

− 𝑎ℎ)]

−1

                           𝑖𝑓    𝜀𝑒𝑞
𝑝 𝑀

≤ 𝜉1 

𝜙′𝑀 = 𝜙𝑝                                                                                                      𝑖𝑓    𝜉1 < 𝜀𝑒𝑞
𝑝 𝑀

≤ 𝜉2 

𝜙′𝑀 = 𝜙𝑝 − (𝜀𝑒𝑞
𝑝 𝑀

− 𝜉2) [𝑎𝑠 +
𝜀𝑒𝑞
𝑝 𝑀

− 𝜉2

𝜉3 − 𝜉2
 (
𝜉3 − 𝜉2
𝜙𝑝 − 𝜙𝑟

− 𝑎𝑠)]

−1

   𝑖𝑓    𝜉2 < 𝜀𝑒𝑞
𝑝 𝑀

≤ 𝜉3 

𝜙′𝑀 = 𝜙𝑟                                                                                                      𝑖𝑓    𝜀𝑒𝑞
𝑝 𝑀

> 𝜉3 

 

and 

𝑐′𝑀 = 𝑐𝑝  
tan 𝜙′𝑀

tan𝜑𝑝
 

where 𝜙𝑖, 𝜙𝑝, and 𝜙𝑟 are the initial, peak, and residual friction angles, 𝑐𝑝 

is the peak cohesion, 𝜉1, 𝜉2, and 𝜉3 are the equivalent plastic strains at 

which the maximum strength is reached, the softening begins, and the 

residual strength is reached respectively, and 𝑎ℎ and 𝑎𝑠 are parameters 

controlling the curvature of the hardening and softening branches. 

 

Hyperbolic Mohr-Coulomb (ITYCL = 6): 

A hardening-softening law is introduced through the following 

dependency of the strength parameters on the plastic strain: 

tan𝜙′𝑀 = tan𝜙𝑖 + 𝜀𝑒𝑞
𝑝 𝑀

 [𝑎𝜙 +
𝜀𝑒𝑞
𝑝 𝑀

𝜉𝑝
 (

𝜉𝑝

tan𝜙𝑝 − tan𝜙𝑖
− 𝑎𝜙)]

−1

       𝑖𝑓    𝜀𝑒𝑞
𝑝 𝑀

≤ 𝜉𝑝 

tan𝜙′𝑀 = tan𝜙𝑝 − (tan𝜙𝑝 − tan𝜙𝑟) [1 − 𝑒
−𝑏𝜙 (𝜀𝑒𝑞

𝑝 𝑀
−𝜉𝑝)]                  𝑖𝑓    𝜀𝑒𝑞

𝑝 𝑀
> 𝜉𝑝 

𝑐0
′𝑀 = 𝑐0 𝑖𝑛𝑖                                                                                                             𝑖𝑓    𝜀𝑒𝑞

𝑝 𝑀
≤ 𝜉𝑝 

𝑐0
′𝑀 = (𝑐0 𝑖𝑛𝑖 − 𝑐0 𝑝𝑜𝑠𝑡)𝑒

−𝑏𝑝𝑜𝑠𝑡(𝜀𝑒𝑞
𝑝 𝑀

−𝜉𝑝)  + 𝑐0 𝑝𝑜𝑠𝑡  𝑒
−𝑏𝑟𝑒𝑠(𝜀𝑒𝑞

𝑝 𝑀
−𝜉𝑝)          𝑖𝑓    𝜀𝑒𝑞

𝑝 𝑀
> 𝜉𝑝 

𝑝𝑡 0
𝑀 = 𝑝𝑡0 𝑖𝑛𝑖                                                                                                            𝑖𝑓    𝜀𝑒𝑞

𝑝 𝑀
≤ 𝜉𝑝 

𝑝𝑡 0
𝑀 = (𝑝𝑡0 𝑖𝑛𝑖 − 𝑝𝑡0 𝑝𝑜𝑠𝑡)𝑒

−𝑏𝑝𝑜𝑠𝑡(𝜀𝑒𝑞
𝑝 𝑀

−𝜉𝑝)  + 𝑝𝑡0 𝑝𝑜𝑠𝑡  𝑒
−𝑏𝑟𝑒𝑠(𝜀𝑒𝑞

𝑝 𝑀
−𝜉𝑝)    𝑖𝑓    𝜀𝑒𝑞

𝑝 𝑀
> 𝜉𝑝 

where 𝜙𝑖, 𝜙𝑝, and 𝜙𝑟 are the initial, peak, and residual friction angles, 𝑐0 𝑖𝑛𝑖 

and 𝑐0 𝑝𝑜𝑠𝑡 are the initial and post-rupture cohesion, 𝑝𝑡0 𝑖𝑛𝑖 and 𝑝𝑡0 𝑝𝑜𝑠𝑡 are 

the initial and post-rupture tensile strength, 𝜉𝑝 is the equivalent plastic 

strains at which the maximum strength is reached, and 𝑎𝜙,  𝑏𝜙, 𝑏𝑝𝑜𝑠𝑡, and 

𝑏𝑟𝑒𝑠 are parameters controlling the curvature of the hardening and 

softening branches. 

A post-rupture ratio is defined so that the post-rupture parameters are a 

function of the initial ones: 

𝑟𝑝𝑜𝑠𝑡 =
𝑐0 𝑝𝑜𝑠𝑡
𝑐0 𝑖𝑛𝑖

=
𝑝𝑡0 𝑝𝑜𝑠𝑡
𝑝𝑡0 𝑖𝑛𝑖
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A nonlocal regularization can be employed to simulare localised 

deformations. The local state variable 𝜀𝑒𝑞
𝑝 𝑀

 is replaced by its nonlocal 

counterpart, computed as: 

𝜀𝑒𝑞
𝑝 �̃�

= ∫ 𝜔(𝑿, 𝜿) 𝜀𝑒𝑞
𝑝 𝑀

𝑉

(𝜿) 𝑑𝜿 

where 𝑉 stands for volume and 𝜔 is a weighting function controlling the 

importance of neighbouring points as a function of its position (𝜿) 
relative to the position of the actual point under consideration (𝑿). The 

weighting function is defined in the following normalised form: 

𝜔(𝑿, 𝜿) =
𝜔0(‖𝑿 − 𝜿‖)

∫ 𝜔0(‖𝑿 − 𝜰‖)𝑉
𝑑𝜰

 

where 𝜔0 is caractherized by the expression proposed by Galavi and 

Schweiger (2010): 

𝜔0 =
‖𝑿 − 𝜿‖

𝑙𝑠
𝑒
−(

‖𝑿−𝜿‖

𝑙𝑠
)
2

 

where 𝑙𝑠 is a material parameter introducing an internal length scale to 

the material behaviour. 

 

Creep deformations: 3 different additional time-dependent creep 

models can be defined in ICL = 77.  

 

For ITYCL=1, or 2, creep strains are computed explicity at the beginning 

of the time step and they are not coupled in the hardening-softening law. 

The additional creep model can be used with any of the yield criteria 

described before.  

 

For ITYCL=3, creep strains are coupled with the plastic component, and 

can mobilise the strength. This is achivied by computing the equivalent 

plastic strain 𝜀𝑒𝑞
𝑝

 as the sum of the plastic and creep strains. Only 

available for the Hyperbolic Mohr-Coulomb yield criteria 

Creep model 1 (ITYCL = 1): 

Creep strains increments are computed as: 

𝑑𝜺𝒄 = 𝜺�̇� 𝑑𝑡                           𝜺�̇� =
2

3
 𝛾
𝑐

〈𝑞 − 𝑞
𝑡ℎ𝑟
〉

𝑞

𝑛𝑐

(1 − 𝜖𝑒𝑞
𝑐 )

𝑚𝑐
  𝒔   

where 𝑑𝑡 is the time increment, 𝜺�̇�  is the creep strain rate tensor, 𝒔 is the 

deviatoric stress tensor, 𝑞 = (
3

2
𝒔: 𝒔)

1/2

, 𝜀𝑒𝑞
𝑐  is the state variable for the 

creep component (𝜀𝑒𝑞𝑐  = (
2
3
 𝜺𝒄: 𝜺𝒄)

1/2

), 𝛾𝑐, 𝑛𝑐  and 𝑚𝑐 are material 

parameters, and 𝑞𝑡ℎ𝑟 is a deviatoric stress threshold at which creep strains 

are activated. 

 



143 

Creep model 2 (ITYCL = 2): 

Creep strains increments are computed as: 

𝑑𝜺𝒄 = 𝜺�̇� 𝑑𝑡 

 

𝜺�̇� = {
            0               𝑖𝑓   𝜀𝑒𝑞

𝑝 ≤ 𝜖𝑡ℎ𝑟

 𝛾𝑐𝑒−𝑎
𝑐𝜀𝑒𝑞
𝑐
 (𝒔 + 𝜓𝑐𝑝𝑀𝑰)            𝑖𝑓     𝜀𝑒𝑞

𝑝 > 𝜖𝑡ℎ𝑟)
   

where 𝑑𝑡 is the time increment, 𝜺�̇�  is the creep strain rate tensor, 𝒔 is the 

deviatoric stress tensor, 𝜀𝑒𝑞
𝑐  is the state variable for the creep component 

(𝜀𝑒𝑞𝑐  = (𝜺𝒄: 𝜺𝒄)1/2), 𝛾𝑐, 𝑎𝑐 and 𝜓𝑐 are material parameters, and 𝜖𝑡ℎ𝑟 is a 

threshold defining the level of non-elastic deformation at which creep 

deformations are activated. 

Creep model coupled with Hyperbolic Mohr-Coulomb (ITYCL = 3): 

Creep strains increments are computed as in ITYCL=2. 

 

 

Bond behaviour 

Elastic law:  

( )b eb b d

ij ijkl kl kl
d D d d  = −  

eb

ijkl
D is the secant damaged elastic matrix. It is related to the secant 

undamaged elastic tensor 
0eb

ijkl
D by 

0eb L eb

ijkl ijkl
D e D

−
= . L is the damage 

variable, related to the ratio of bond mickocraks area over the whole bond 

area. 
0eb

ijkl
D  is defined by the undamaged bond Young’s modulus Eb and 

bond Poisson’s ratio b through the classical linear orthotropic elasticity. 

Damage locus: Damage locus is defined as an energy threshold 

1
( )

2

d b b b

ij ij
F r s = −  

rb is the value of energy threshold that depends on suction following: 

0
( )

b b b

s
r s r r s= +  

0

b

s
r  is a parameter which controls the change of bond damage locus with 

suction. 
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Rate dependency: Rate dependency is introduced as a delayed 

microcracking and use the visco-damage formalism. Damage variable is 

expressed as a function of the distance between the current bond stress 

point and the infinitely slow damage locus: 

d

b

dt
dL F


=  

where dt is the time increment, b is the bond viscosity and  are the 

Macauley brackets. Infinitly  low damage locus takes the form: 

0
b

d d
F F dL

dt


= −   

Damage rule: Damage rule gives the evolution of damage strain d

kl
d  

with damage variable L. This relation is constrained by bond elastic 

moduli evolution and must take the form: 
d b

kl kl
d dL =  

Damage evolution law: It gives the evolution of damage locus rb with 

damage variable L. Three different expressions may be considered: 

a) linear:   
0 1

b b b
r r r L= +  

a) exponential:  1

0 exp
b

r Lb b
r r=  

a) logarithm:   
0 1 ln

b b b
r r r L= +  

r0 is the damage of the intact material and r1 a parameter giving the rate 

of evolution (higher value of r1 gives lower damage rate). r1 is taken 

function of suction following: 
1 10 1

b b b

s
r r r s= +  

10

b
r is a parameter which controls the damage evolution rate for the 

saturated bond material and 1

b

s
r  is a parameter which controls the change 

of damage evolution rate with suction. 

Coupling behaviour: Coupling comes from the restrictions that local 

strain 
M

ij
 and 

b

ij
 must be compatible with the external strain ij

 and 

local stresses
M

ij
 and 

b

ij
 must be in equilibrium with external stresses 

ij
 . These restrictions read:   

M b

ij ij ij
d d d  = +  

      ( )1
M b

ij ij ij
   = + +           with        

2

0

L
e

−
=   

L is the damage variable and 0 a coupling parameter that gives the 

relative importance of bond and clay matrix behaviour in the overall 

response of the composite material. 0
0    . 
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Since this model requires a substantial number of parameters, several ICL's are included in 

Mechanical Data 3: 

Argillite Bonding (ICL = 70) contains elastic parameters for the bonding.  

Argillite Matrix (ICL = 71) contains elastic parameters for the soil matrix. 

Argillite – Coupling (ICL = 72) contains parameters for the coupling between bonding and 

soil matrix. 

Argillite – Yield vol (ICL = 73) contains parameters for the shape of the yield function in the 

p-q plane (soil matrix). 

Argillite – Yield dev (ICL = 74) contains parameters for the shape of the yield function in the 

deviatoric plane (soil matrix). 

Argillite – Plastic vol (ICL = 75) contains parameters for the shape of the plastic potential in 

the p-q plane (soil matrix). 

Argillite – Plastic dev (ICL = 76) contains parameters for the shape of the plastic potential in 

the deviatoric plane (soil matrix). 

Argillite – Hardening (ICL = 77) contains parameters for the hardening law (soil matrix). 

Argillite – Visco (ICL = 78) contains parameters for the viscoplastic model (bonding and soil 

matrix) and the additional time-dependent creep models (soil matrix). 

Argillite – Control parameters (ICL = 79) contains parameters to control the integration of 

the constitutive law. 

PARAMETERS FOR ARGILLITE BONDING ICL = 70 (Damage orthotropic elastic model 

for the bond material). ITYCL = 1: Linear damage evolution law.  ITYCL = 2: exponential 

damage evolution law. ITYCL = 3: logarithm damage evolution law. 

P1 Eb
h MPa 

Young’s modulus for the bond material in the plane orthogonal 

to the direction of orthotropy 

If P6 = 0 or 1 (no anisotropy), isotropic Young’s modulus 

P2 b
h - 

Poisson’s ratio for the bond material in the plane orthogonal to 

the direction of orthotropy 

If P6 = 0 or 1 (no anisotropy), isotropic Poisson’s ratio 

P3 rb
10 MPa Damage evolution rate for the saturated bond material 

P4 rb
0s MPa Change of bond damage locus with suction 

P5 rb
1s MPa Change of bond damage evolution rate with suction 

P6 
Eb

h / E
b

v = 

b
hv / b

vh 
- 

Ratio of anisotropy (ratio between the value of Young’s 

modulus for bond material in the direction perpendicular and 

parallel to the orthotropy axis). 

If P6 = 0, a default value equal to 1 (no anisotropy) is assigned 

to this parameter. 

P7 b
hv - Cross Poisson’s ratio of the bond material (b

hv = db
h / db

v) 

P8 Gv MPa 
Shear modulus of the bond material along the axis of orthotropy 

(ratio dh / dv) 

P9 Kb
s MPa 

Bulk modulus against suction changes for the bond material 

(considered isotropic) 
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PARAMETERS FOR ARGILLITE MATRIX ICL = 71; ITYCL = 1, 2, 5, or 6 (Linear 

orthotropic elastic model for the soil matrix) 

P1 EM
h* MPa 

Young’s modulus for the saturated matrix in the plane 

orthogonal to the direction of orthotropy. 

If P6 = 0 or 1 (no anisotropy), isotropic Young’s modulus. 

P2 M
h - 

Poisson’s ratio in the plane orthogonal to the direction of 

orthotropy. 

If P6 = 0 or 1 (no anisotropy), isotropic Poisson’s ratio. 

P3 KM
s MPa Bulk modulus against suction changes (considered isotropic). 

P4 EM
s - 

Coefficient setting the change of E with suction according to 

the equation EM
h  = EM

h* + EM
s s 

P5 - - Void 

P6 
EM

h / E
M

v = 

M
hv / 

vh 
- 

Ratio of anisotropy (ratio between the value of Young’s 

modulus in the direction perpendicular and parallel to the 

orthotropy axis). 

If P6 = 0, a default value equal to 1 (no anisotropy) is 

assigned to this parameter. 

P7 M
hv - Cross Poisson’s ratio (M

hv = dM
h / dM

v) 

P8 GM
vh = GM

hv MPa Cross shear modulus (GM
vh = dvh / dvh) 

P9 EM
1h - 

Coefficient giving the change of the Young’s modulus with 

the stress in the plane orthogonal to the direction of 

orthotropy. 

P10 EM
2h MPa 

Value of Young modulus in the plane orthogonal to the 

direction of orthotropy at null mean (net or effective) stress. 
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PARAMETERS FOR ARGILLITE MATRIX ICL = 71 (Elastic model for the soil matrix); 

ITYCL = 3 (Orthotropic Camclay type elastic model for the soil matrix) 

P1 M  
Slope of the unloading-reloading line in the e –ln(h) model 

If P6 = 0 or 1 (no anisotropy), Slope of the unloading-reloading 

line in the e –ln(p) model. 

P2 M
h - 

Poisson’s ratio in the plane orthogonal to the direction of 

orthotropy. 

If P6 = 0 or 1 (no anisotropy), isotropic Poisson’s ratio. 

P3 M
s MPa 

Slope of the wetting-redrying line in the e –ln(s + patm) model 

(considered isotropic). 

P4  - Void 

P5 - - Void 

P6 
KM

h / K
M

v = 

M
hv / 

vh 
- 

Ratio of anisotropy (ratio between the value of bulk modulus in 

the direction perpendicular and parallel to the orthotropy axis). 

If P6 = 0, a default value equal to 1 (no anisotropy) is assigned 

to this parameter. 

P7 M
hv - Cross Poisson’s ratio (M

hv = dM
h / dM

v) 

P8 Gvh MPa Cross shear modulus GM
vh = dvh / dvh 

PARAMETERS FOR ARGILLITE – COUPLING ICL = 72; ITYCL = 1 (Coupling behaviour). 

P1 0 - Coupling parameter between bond and matrix. 

P2 B - Biot coefficient 

P3 - - void 

P4 - - void 

P5 iunsat - 

Flag to indicate stress concept in unsaturated conditions: 

0 – Biot stress pb = p –B pl 

1 – Biot/Bishop stress pb = p – [1 – Sr + B Sr] p
l 

P6 b - 

Parameter to compute porosity as a function of damage multiplier (d) 

as ( )0 1 exp
b d

b   = +   − −  

This porosity is then used to compute intrinsic permeability of 

Kozeny's model (ICL=7, ITYCL=1). 

P7  - 

Parameter to compute intrinsic permeability as a function of plastic 

multiplier (p) as 𝒌 = 𝒌exp[𝛼(𝜆𝑝 − 𝜆𝑡ℎ𝑟
𝑝 )]  

k : intrinsic permeability computed in ICL = 7 

P8 𝜆𝑡ℎ𝑟
𝑝

 - 

Parameter to compute intrinsic permeability as a function of plastic 

multiplier (p) as 𝒌 = 𝒌exp[𝛼(𝜆𝑝 − 𝜆𝑡ℎ𝑟
𝑝 )]  

k : intrinsic permeability computed in ICL = 7 

P9 b
s //

 C-1 
Linear thermal expansion coefficient for the medium (isotropic or 

parallel, positive value). 

P10 b
s ⊥

 C-1 
Linear thermal expansion coefficient for the medium (perpendicular, 

positive value). 
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PARAMETERS FOR ARGILLITE – COUPLING ICL = 72; ITYCL = 2 (Coupling behaviour). 

P1 – P6 Same as in ICL = 72; ITYCL = 1 

P7 
k
 - 

Parameter to compute intrinsic permeability as a function of 

equivalent plastic strains (eq
p

) as  𝒌 = 𝒌 [1 + 𝛽𝑘(eq
p
− 𝑡ℎ𝑟

p
)] 

P8 𝑡ℎ𝑟
p

 - 
Parameter to compute intrinsic permeability as a function of 

equivalent plastic strains (eq
p

) as  𝒌 = 𝒌 [1 + 𝛽𝑘(eq
p
− 𝑡ℎ𝑟

p
)] 

P9 – P10 Same as in ICL = 72; ITYCL = 1 

PARAMETERS FOR ARGILLITE – YIELD VOL ICL = 73; ITYCL = 1 (Mohr Coulomb 

criterion for the soil matrix – shape in pM-qM diagram). 

P1 ’M º Friction angle 

P2 c’ M
 MPa Cohesion 

P3  bM
 º 

Coefficient setting the change in cohesion with suction following: 

c’M = s tan(bM) 

P4  M MPa-1 Coefficient setting the change in friction angle with suction. 

PARAMETERS FOR ARGILLITE – YIELD VOL ICL = 73; ITYCL = 2 (Hoek & Brown 

criterion for the soil matrix – shape in pM-qM diagram). 

P1 m M - Ratio of uniaxial compressive strength divided by tensile strength. 

P2 Rc
 M

 MPa 
Uniaxial compressive strength at the reference temperature (P8 

field). 

P3 r M
 - Coefficient setting the change in cohesion with suction. 

P4  M MPa-1 Coefficient setting the change in cohesion with suction. 

P5 - - Void 

P6 - - Void 

P7 kT
M  

Coefficient setting the decrease of uniaxial compressive strength 

with temperature. 

P8 T0  Reference temperature. 

PARAMETERS FOR ARGILLITE – YIELD VOL ICL = 73; ITYCL = 3 (Basic Barcelona 

model criterion for the soil matrix – shape in pM-qM diagram). 

P1 M M - Slope of the critical state line. 

P2 - - Void 

P3 r M
 - Coefficient setting the change in cohesion with suction. 

P4  M MPa-1 Coefficient setting the change in cohesion with suction 

P5 pc
 M MPa Reference pressure 

P6 ks
M - Coefficient setting the increase of tensile strength with suction. 
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PARAMETERS FOR ARGILLITE – YIELD VOL ICL = 73; ITYCL = 5 (Anisotropic Mohr 

Coulomb criterion for the soil matrix – shape in pM-qM diagram). 

P1 𝜙𝑝 º Friction angle (peak) 

P2 𝑐𝑝 MPa Cohesion (peak) 

P3 - - Void 

P4 - - Void 

P5 cN - Stress tensor scaling factor 

P6 cS - Stress tensor scaling factor 

PARAMETERS FOR ARGILLITE – YIELD VOL ICL = 73; ITYCL = 6 (Hyperbolic Mohr 

Coulomb criterion for the soil matrix – shape in pM-qM diagram). 

P1 𝜙𝑖 º Friction angle (initial) 

P2 𝜙𝑝 º Friction angle (peak) 

P3 𝜙𝑟 º Friction angle (residual) 

P4 𝑐0 𝑖𝑛𝑖 MPa Cohesion (initial) 

P5 𝑝𝑡0 𝑖𝑛𝑖  MPa Tensile strength (initial) 

P6 - - Void 

P7  - Strength anisotrpy parameter 

P8  m - Strength anisotrpy parameter 

P9 �̂� - Strength anisotrpy parameter 

P10 𝛿𝑚 º Strength anisotrpy parameter 

PARAMETERS FOR ARGILLITE – YIELD DEV ICL = 74; ITYCL = 1, 2, 3, 5 (Mohr 

Coulomb, Hoek & Brown, Basic Barcelona model, Anisotropic Mohr Coulomb, or Hyperbolic 

Mohr Coulomb criteria for the soil matrix – shape in deviatoric plane). 

P1 t
 M

 º 
Lode angle value at which corner smoothing function is tangent 

to Mohr Coulomb envelope (typical value – not default – 25º). 

PARAMETERS FOR ARGILLITE – YIELD DEV ICL = 74; ITYCL = 6 (Hyperbolic Mohr 

Coulomb criterion for the soil matrix – shape in deviatoric plane). 

P1 𝛼𝜃  - Parameter to compute 𝑓2(𝜃
𝑀) 

P2 𝛽𝜃 - Parameter to compute 𝑓2(𝜃
𝑀) 

P3 𝑛𝜃 - Parameter to compute 𝑓2(𝜃
𝑀) 

PARAMETERS FOR ARGILLITE – PLASTIC VOL ICL = 75; ITYCL = 1, 2, 3, 5, 6 (Mohr 

Coulomb, Hoek & Brown, Basic Barcelona model, Anisotropic Mohr Coulomb, or Hyperbolic 

Mohr Coulomb plastic potential for the soil matrix – shape in pM-qM diagram). 

P1  - 
Coefficient of non-associativity (0: no volumetric plastic strain, 

1: full volumetric plastic strain –associative plasticity). 
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PARAMETERS FOR ARGILLITE – PLASTIC DEV ICL = 76; ITYCL = 1, 2, 3, 5, 6 (Mohr 

Coulomb, Hoek & Brown, Basic Barcelona model, Anisotropic Mohr Coulomb, or Hyperbolic 

Mohr Coulomb plastic potential for the soil matrix – considered associated in the deviatoric 

plane).  

P1 - P10 Void 

PARAMETERS FOR ARGILLITE – HARDENING ICL = 77; ITYCL = 1 (Mohr Coulomb 

hardening law for clay matrix). 

P1  - 
Cohesion brittleness index: '

'

M

M res

M

peak

c

c
 =  

P2 rc0
M - Equivalent plastic strain at which c’M starts to degrade. 

P3 rc
M - Equivalent plastic strain at which c’res

M is reached. 

P4 
 - 

Friction angle brittleness index: '

'

M

M res

M

peak





=  

P5 r0
M - Equivalent plastic strain at which ’M starts to degrade. 

P6 r
M - Equivalent plastic strain at which ’res

M is reached. 

PARAMETERS FOR ARGILLITE – HARDENING ICL = 77; ITYCL = 2 (Hoek & Brown 

hardening law for the soil matrix). 

P1  - Brittleness index: 
2

0 0

2

3

M M

M Mcres cres

M M

c c

R R
m

R R


 
= + 

 

 

P2 r
M - 

Brittleness interval: xir is the major compressive plastic strain 

value (|1
pM|) at which 

M

cres
R is reached. 

PARAMETERS FOR ARGILLITE – HARDENING ICL = 77; ITYCL = 3 (Basic Barcelona 

model does not need additional parameter for the hardening law for clay matrix). 

P1  M(0) - Slope of the virgin loading line in the e-ln(pM) diagram. 

PARAMETERS FOR ARGILLITE – HARDENING ICL = 77; ITYCL = 5 (Anisotropic Mohr 

Coulomb hardening law for clay matrix). 

P1 ini - Initial to peak friction angle ratio: 𝛽𝑖𝑛𝑖 =
𝜙𝑖

𝜙𝑝

 

P1 res - Residual to peak friction angle ratio: 𝛽𝑟𝑒𝑠 =
𝜙𝑟

𝜙𝑝

 

P3 𝑎ℎ - Parameter controlling the curvature of the hardening branche. 

P4 𝑎𝑠 - Parameter controlling the curvature of the softening branche. 

P5 1 - Equivalent plastic strain at which the maximum strength is reached. 

P6 2 - Equivalent plastic strain at which the softening begins. 

P7 3 - Equivalent plastic strain at which the residual strength is reached. 
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PARAMETERS FOR ARGILLITE – HARDENING ICL = 77; ITYCL = 6 (Hyperbolic Mohr 

Coulomb hardening law for clay matrix). 

P1 𝜉𝑝 - 
Equivalent plastic strain at which the maximum strength is 

reached. 

P1 𝑎𝜙 - Parameter controlling the curvature of the hardening branche. 

P3 𝑏𝜙 - Parameter controlling the curvature of the softening branche. 

P4 𝑏𝑟𝑒𝑠  - Parameter controlling the curvature of the softening branche. 

P5 𝑏𝑝𝑜𝑠𝑡 - Parameter controlling the curvature of the softening branche. 

P6 𝑟𝑝𝑜𝑠𝑡 - Post-rupture ratio: 𝑟𝑝𝑜𝑠𝑡 =
𝑐0 𝑝𝑜𝑠𝑡

𝑐0 𝑖𝑛𝑖
=

𝑝𝑡0 𝑝𝑜𝑠𝑡

𝑝𝑡0 𝑖𝑛𝑖
  

P7-P9 - - Void 

P10 𝑙𝑠 m Non-local internal length (if = 0, non-local model deactivated) 

PARAMETERS FOR ARGILLITE – VISCO ICL = 78; ITYCL = 1 (Rate dependency 

parameters – Creep model 1). 

P1 b MPa.s Bond viscosity 

P2  MPa.s Matrix viscosity 

P3 𝑞𝑡ℎ𝑟 MPa Deviatoric stress threshold at which creep strains are activated. 

P4 𝛾𝑐 day -1 Creep strain rate parameter 

P5 𝑛𝑐 - Creep strain rate parameter 

P6 𝑚𝑐 - Creep strain rate parameter 

PARAMETERS FOR ARGILLITE – VISCO ICL = 78; ITYCL = 2 (Rate dependency 

parameters – Creep model 2). 

P1 b MPa.s Bond viscosity 

P2  MPa.s Matrix viscosity 

P3 𝜖𝑡ℎ𝑟 - 
Threshold defining the level of non-elastic deformation at 

which creep deformations are activated. 

P4 𝛾𝑐 MPa-1 s -1 Creep strain rate parameter 

P5 𝑎𝑐 - Creep strain rate parameter 

P6 𝜓𝑐 - Creep strain rate parameter 

PARAMETERS FOR ARGILLITE – VISCO ICL = 78; ITYCL = 3 (Rate dependency 

parameters – Creep model 2 coupled with Hyperbolic Mohr Coulomb). 

P1 – P6 Same as in ICL = 78; ITYCL = 2 
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PARAMETERS FOR ARGILLITE – CONTROL PARAMETERS ICL = 79; ITYCL = 1 

(Control parameter for the Stress Point Algorithm – Backward-Euler scheme is used). 

P1 tol - Tolerance over SPA residual (typical value – not default – 1.e-8) 

P2 itmax - 
Number of SPA Newton Raphson iterations at which local 

subincrementation is performed (typical value – not default – 30) 

P3 isubmax - 
Maximum number of local (SPA) subincrementations by global 

iteration (typical value – not default –500) 

P4 iJac - 

Flag to define the type of F.E. elementary tangent matrix to use:  

1 – elastic matrix 

-1 – elastoplastic tangent matrix (typical  value –not default) 

 

Important notes:  

1. Damage only, elasticity only, elastoplasticity only or coupled damage-elastoplasticity 

can be defined depending on the combinations of ITYCL used. They are: 

 ICL = 70 ICL = 71 ICL = 73 

Damage 

only 

ITYCL = 1, 

2, or 3 
ITYCL = 0 ITYCL = 0 

Elasticity 

only 
ITYCL = 0 

ITYCL = 1, 

2, 3, 5, or 6 
ITYCL = 0 

Plasticity 

only 
ITYCL = 0 

ITYCL = 1, 

2, 3, 5, or 6 

ITYCL = 1 for Mohr Coulomb  

ITYCL = 2 for Hoek & Brown  

ITYCL = 3 for Basic Barcelona model 

ITYCL = 5 for Anisotropic Mohr Coulomb  

ITYCL = 6 for Hyperbolic Mohr Coulomb  

Coupled  

damage-

elasto-

plasticity 

ITYCL = 1, 

2, or 3 

ITYCL = 1, 

2, 3, 5, or 6 

ITYCL = 1 for Mohr Coulomb  

ITYCL = 2 for Hoek & Brown  

ITYCL = 3 for Basic Barcelona model 

ITYCL = 5 for Anisotropic Mohr Coulomb  

ITYCL = 6 for Hyperbolic Mohr Coulomb 

2. Inviscid damage or elastoplasticity can be defined by setting b = 0 and M = 0 (or 

ITYCL = 0 for ICL = 78) 

3. ITYCL for ICL = 74 to 77 are automatically set to the value of ITYCL for ICL = 73. 
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HISTORY VARIABLES 

Argillite model requires in total 35 history variables. They are listed in the following table.  

Variable 1 is the history variable of the elastoplastic model for the matrix. In the most general 

case, value for this variable need to be specified in the input file (see format in the Part III). 

In the case of Mohr Coulomb model (ITYCL(73) = 1), variable 1 corresponds to the tensile 

strength of the material pt. If a null value is specified in the input file for this variable, the 

program will compute the value of the tensile strength for each element from the cohesion and 

the friction angle of the material assigned to the element. The expression used to compute the 

default value is: pt = c’ cotan’. 

In the case of Hoek & Brown model (ITYCL(73) = 2), variable 1 corresponds to the tensile 

strength of the material pt. If a null value is specified in the input file from this variable, the 

program will compute the value of the tensile strength for each element from the uniaxial 

compressive strength Rc and the parameter m of the material assigned to the element. The 

expression used to compute the default value is: pt = Rc / m. 

In the case of Cam clay model (ITYCL(73) = 3), variable 1 corresponds to the preconsolidation 

pressure of the material p0*. IF A NULL VALUE IS SPECIFIED IN THE INPUT FILE FOR 

THIS VALUE, THE PROGRAM WILL ABORT DUE TO A MATH ERROR (this ellipse of 

Cam clay model degenerates into a point). 

Variable 2 is the history variable of the damage model for the bond. In the most general case, 

value for this variable need to be specified in the input file (see format in the Part III). However, 

in many cases, this value can be set to 0. It means that damage will start for any stress changes.  

Variable 3 is used internally to keep memory of the type of constitutive matrix (elastic, tangent 

elastoplastic, tangent damage or tangent damage elastoplastic) used to build the global tangent 

stiffness. No input from the user is associated to this variable.  

Variable 4 is the plastic multiplier of the matrix. This variable measures the amount of plastic 

strain. It is usually set to 0 at the beginning of the computation and updated within the argillite 

subroutine. This variable is used only by the user for output visualization purposes (it provides 

the spatial distribution of plastic strain intensity within the mesh at any output time). 

Variable 5 is the damage multiplier of the bonds. This variable measures the amount of 

damage. It is usually set to 0 at the beginning of the computation and updated within the argillite 

subroutine. This variable is used by the user for output visualization purposes only (it provides 

the spatial distribution of damage intensity within the mesh at any output time). 

Variables 6 to 11 are the current stresses within the bonds. Variables 12 to 17 are the stresses 

within the matrix at time of bond formation.  In the most general case, all these variables have 

to be specified in the input file*. However, from a practical point of view, most of the problems 

can be run setting these values to 0 at the beginning of the computation (in this case, the damage 

locus is centered on the initial stress state at the beginning of the computation). 

Variables 18 to 35 contain the total, plastic and damage strain tensor components. They are 

usually set to 0 at the beginning of the computation and updated within the argillite subroutine. 

These variables are used by the user for output visualization purposes only (they provide the 

spatial distribution of the total, plastic and damage strain within the mesh at any output time).  
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A summary of the different options for history variables input is summarized in the following 

table. 
 

Type of 

input of 

history 

variables 

Characteristics of the problem 

All variables 

= 0 

Mohr Coulomb  

ITYCL(73) = 1 

Tensile strength is 

constant within each 

material and 

computed from 

cohesion and friction 

angle 

Hoek & Brown 

ITYCL(73) = 2 

Tensile strength is 

constant within each 

material and computed 

from uniaxial 

compressive strength and 

parameter m 

Cam clay model 

ITYCL(73) = 3 

NOT POSSIBLE 

Damage locus is centred on the initial stress state of the problem. Material 

is not damaged at time 0 of the computation. 

From t=0, damage occurs for any stress changes 

Variable 1  

0 

Variable 2 = 

0 

Variable 6 to 

17 = 0 

Mohr Coulomb  

ITYCL(73) = 1 

Tensile strength can 

vary from element to 

element and is equal 

to the specified value 

for Variable 1 

Hoek & Brown 

ITYCL(73) = 2 

Tensile strength can vary 

from element to element 

and is equal to the 

specified value for 

Variable 1 

Cam clay model 

ITYCL(73) = 3 

Preconsolidation 

pressure can vary from 

element to element and 

is equal to the specified 

value for Variable 1 

Damage locus is centred on the initial stress state of the problem. Material 

is not damaged at time 0 of the computation. 

Damage occurs for any stress changes 

Hist var  Symbol Unit Description Type 

1 

pt 

 

p0* 

MPa 

Matrix Tensile strength (Mohr Coulomb or Hoek & Brown 

models, ITCL(73)=1,2).  
Isotropic yield point (Camclay model, ITYCL(73)=3) 

Input 

2 r0 MPa Bond damage locus Input 

3 flag – Type of tangent matrix Internal 

4 p
 – Plastic multiplier Output 

5 d
 – Damage multiplier Output 

6 to 11 
b MPa Initial bond stress vector  

(b
x, 

b
y, 

b
z, 

b
xy, 

b
xz, 

b
yz) 

Input 

12 to 17 
0 MPa Matrix stress vector at time of bond formation  

(0
x, 

0
y, 

0
z, 

0
xy, 

0
xz, 

0
yz) 

Input 

18 to 23   Strain vector (x, y, z, xy, xz, yz) Output 

24 to 29 p  Plastic strain vector (p
x, 

p
y, 

p
z, 

p
xy, 

p
xz, 

p
yz) Output 

30 to 35 d  Damage strain vector (d
x, 

d
y, 

d
z, 

d
xy, 

d
xz, 

d
yz) Output 
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Variable 1  

0 

Variable 2  

0 

Variable 6 to 

17  0 

Mohr Coulomb  

ITYCL(73) = 1 

Tensile strength can 

vary from element to 

element and is equal 

to the specified value 

for Variable 1 

Hoek & Brown 

ITYCL(73) = 2 

Tensile strength can vary 

from element to element 

and is equal to the 

specified value for 

Variable 1 

Cam clay model 

ITYCL(73) = 3 

Preconsolidation 

pressure can vary from 

element to element and 

is equal to the specified 

value for Variable 1 

Damage locus is centred on the stress state at time of bond stress state of 

the problem. It reflects the history of damage previous to time 0 of the 

computations. 

Damage occurs only when the energy input to the material is equal to the 

specified value for Variable 2 

 

Variables 3, 4 and 18 to 35 can be specified in the input file when the history of plastic and 

damage strain previous to the current computations is wanted to be reproduced (particularly in 

case of restart).  
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CODE_BRIGHT. CONSTITUTIVE LAWS 

This chapter contains the different models available and the corresponding parameters required 

by each model. The following constitutive laws are available: 

 

HYDRAULIC AND 

THERMAL CONSTITUTIVE 

MODELS (a) 

RETENTION CURVE  

INTRINSIC PERMEABILITY  

LIQUID PHASE RELATIVE 

PERMEABILITY  

GAS PHASE RELATIVE 

PERMEABILITY  

DIFFUSIVE FLUXES OF MASS  

DISPERSIVE FLUXES OF 

MASS AND ENERGY  

CONDUCTIVE FLUX OF HEAT  

MECHANICAL CONSTITUTIVE MODELS 

 

ELASTICITY (b) 

NONLINEAR ELASTICITY (b) 

VISCOPLASTICITY FOR SALINE MATERIALS 

(b)  

VISCOPLASTICITY FOR SATURATED SOILS 

AND ROCKS (b) 

VISCOPLASTICITY - GENERAL (b) 

DAMAGE-ELASTOPLASTIC MODEL FOR 

ARGILLACEOUS ROCKS (c) 

THERMO-ELASTOPLASTIC MODEL FOR SOILS 

(d) 

BARCELONA EXPANSIVE MODEL FOR SOILS 

(e) 

CASM’s FAMILY MODELS (f) 

PHASE PROPERTIES (a) 

SOLID PHASE PROPERTIES 

LIQUID PHASE PROPERTIES 

GAS PHASE PROPERTIES 

EXCAVATION PROCESS (g) 

 

VI.d. THERMO-ELASTOPLASTIC MODEL 

 

 

  

ICL NAME ITYCL DESCRIPTION

21 THERMOELASTOPLASTIC MODEL FOR UNSATURATED SOILS 1 Contain elastic parameters

22 THERMOELASTOPLASTIC MODEL FOR UNSATURATED SOILS 1 Contain parameters for the thermal terms

23 THERMOELASTOPLASTIC MODEL FOR UNSATURATED SOILS 1 Contain plastic parameters

24 THERMOELASTOPLASTIC MODEL FOR UNSATURATED SOILS 1 Contain plastic parameters (2)

25 THERMOELASTOPLASTIC MODEL FOR UNSATURATED SOILS 1,2,3
Contain parameters for the function gy (Mohr-Coulomb function, van Eeckelen function, 

Von mises)

26 THERMOELASTOPLASTIC MODEL FOR UNSATURATED SOILS 1,2,3
Contain parameters for the function gp (Mohr-Coulomb function, van Eeckelen function, 

Von mises)

27 THERMOELASTOPLASTIC MODEL FOR UNSATURATED SOILS 1 Contain parameters for the integration of the model

MECHANICAL CONSTITUTIVE LAWS (part d)



157 

THERMO-ELASTOPLASTIC MODEL FOR SOILS 

CODES in 

ROOT_gen.dat 

ICL = 21 to 27             ITYCL = see below 

DESCRIPTION Thermo-elastoplastic model for unsaturated soils  

EQUATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this model, equations are written assuming Soils Mechancis 

compression (p > 0, v > 0, compression). 

The mechanical constitutive equation takes the incremental general form: 

d d ds '= +D h  

This equation is derived from: 1
( ) '

'

e p e G
d d d d ds

− 
= + = +  + 


D    


 

where an elasto-plastic constitutive law has been selected that is based on 

a generalized yield surface that depends not only on stresses but on suction 

as well: ( )', ,
p

vF F s=    

Volumetric strain is defined as:    v x y z= + +  

and v
p is the plastic volumetric strain. 

Using stress invariants this equation depends on: ( )F F p J sv

p
= ' , , , ,   

where           

( )

( )1 3

1
' ' ' ' max( , )

3

1
( : )                         ' '

2

1
sin 1.5 3 det    (Lode's angle)

3

x y z g l
p p p p

J trace p

J
−

=  +  +  = −

= =  −

 = −

s s s I

s

 

where I is the identity tensor.  

For simplicity, a form of the classical Modified Cam-Clay model is taken 

as the reference isothermal saturated constitutive law: 

( ) ( )
2

2

2

3
' ' 0y s o

y

J
F L p p p p

g
= − + − =  

where gy is a function of the Lode angle and 
/ 6

/y yL M g
=−

=  

Po, is considered dependent on suction: 
( )

( )*

* *

1 3

( )

( ) 2( )

o kio

s kio
c o

o c

o o

p T
p p

p

p T p T T T

 −

 − 
=  

 

= +   +   

 

( ) ( ) ( ) ( )   s o r s r= − − +1 exp  

0
exp ( )

s s
p p k s T= + −  , refTTT −=  

Hardening depends on plastic volumetric strain according to: 

( )
* *1

0

p

o o v

io

e
dp p d

k

+
= 

 −
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Since this model requires a substantial number of parameters, several ICL's are included: 

TEP – Elastic parameters (ICL = 21) contains elastic parameters (ITYCL = 1). 

TEP – Thermal and other parameters (ICL = 22) contains other parameters (ITYCL = 1). 

EQUATIONS 

(continuation) 

The plastic potential is taken as: 

( ) ( )
2

2

2

3
' '

p s o

p

J
G L p p p p

g
=  − + −  

where gp is a function of the Lode angle and 

/ 6
/p pL M g

=−
=  

 is a non-asociativity parameter.  

The variation of stress-stiffness with suction and, especially, the variation 

of swelling potential with stress and suction have been considered. Elastic 

component of the model (volumetric strains):  

d
k s

e

dp

p

k p s

e

ds

s
T dTv

e i s

o  =
+

+
+ +

+ +
( ) '

'

( ' , )

.
( )

1 1 01
2 2   

where:                   
0.1

( ) 1 ln
0.1

i io i il

s
k s k s 

 +  
= + +   

  

( ) ( )( ', ) 1 ln ' exp
s so sp ref s s

k p s k p p s= +    

Moreover, if sp = 777 (flag), then: 

𝜅𝑠 = 𝑘𝑠0 exp(𝛼𝑠𝑠𝑠) ln (
𝑝

𝑝𝑟𝑒𝑓
) ln (

𝑝𝑠𝑤𝑒𝑙𝑙
𝑝𝑟𝑒𝑓

)⁄  

𝑝𝑠𝑤𝑒𝑙𝑙(MPa) =
10𝑐0+𝑐1𝜌𝑑𝑟𝑦+𝑐2𝜌𝑑𝑟𝑦

2

1000
 

For deviatoric elastic strains, a constant Poisson’s ratio is used.  

Strain-dependent shear modulus model (for small strains) 

Evolution of the small-strain shear stiffness G with shear strain: 

( )
G

G

a

 =


+


0

0.7

1
              

n

ref p
G G

 
=  

 
0 0

0.1
 

Where 
ref

G0 is the initial shear modulus at a reference mean stress (p) of 

0.1 MPa (default = 0),  is the invariant of the deviatoric strain tensor and 

 0.7 is the shear strain at which the modulus G is 0.722·G0 (approximately 

0.7·G0).  

In order to “activate” this model, then 
ref

G0 (ICL=22; ITYCL=1; P7) and 

 0.7 (ICL=22; ITYCL=1; P8) must be greater than 0. 
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TEP – Plastic parameters 1 (ICL = 23) contains plastic parameters (ITYCL = 1). 

TEP – Plastic parameters 2 (ICL = 24) contains parameters for different aspects (ITYCL = 1). 

TEP – Parameters Shape Yield Surf. (ICL = 25) contains parameters for the function gy (ITYCL 

= 1, 2, 3). 

TEP – Parameters Shape Plastic Pot. (ICL = 26) contains parameters for the function gp (ITYCL 

= 1, 2, 3). 

TEP – Integration Control Parameters (ICL = 27) contains parameters for the integration of the 

model (ITYCL = 1). 

PARAMETERS FOR ICL = 21 (TEP Elastic Parameters); ITYCL = 1 

P1 io - Initial (zero suction) elastic slope for specific volume-mean stress. 

P2 so - Initial (zero suction) elastic slope for specific volume-suction. 

P3 Kmin MPa Minimum bulk module. 

P4 - -  

P5   -  Poisson’s ratio (-1 <  < 0.5). 

P6 ss - Parameter for s (only for expansive material). 

P7 il - Parameter for i (only for expansive material). 

P8 i - Parameter for i (only for expansive material). 

P9 sp - Parameter for s (only for expansive material). 

P10 pref MPa Reference mean stress (only for expansive material). 

PARAMETERS FOR ICL = 22 (TEP Thermal and Other Parameters); ITYCL = 1 

P1  o C-1 Parameter for elastic thermal strain 

P2  1 MPa C-1 Parameter for plastic thermal strain 

P3  2 C-2 Parameter for elastic thermal strain 

P4  3 MPa C-2 Parameter for plastic thermal strain 

P5  Tref C Reference temperature 

P6  b - Biot coefficient (default value = 1) 

P7 
ref

G0  MPa Initial shear modulus at a reference mean stress (p) of 0.1 MPa 

(default = 0). 

If P7 = 0 => G obtained from bulk modulus and Poisson’s ratio. 

If P8 = 0 =>
ref

G G= 0  (default = 0). 

If P8 > 0 => Strain-dependent shear modulus model is used.   

P8  0.7  - Shear strain at which the modulus G is 0.722·G0 

P9  a - Parameter (default value = 0.385) 

P10  n - Parameter (default value = 0.2) 
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PARAMETERS FOR ICL = 23 (TEP Plastic Parameters 1); ITYCL = 1 

P1 (0)   Slope of void ratio - mean stress curve at zero suction 

P2 r   Parameter defining the maximum soil stiffness  

P3   MPa-1 Parameter controlling the rate of increase of soil stiffness with suction  

P4   C-1 Parameter that takes into account decrease of tensile strength due to 

temperature 

P5 k   Parameter that takes into account increase of tensile strength due to suction 

P6 ps0  MPa Tensile strength in saturated conditions 

PARAMETERS FOR ICL = 24 (TEP Plastic Parameters 2); ITYCL = 1 

P1 pc MPa Reference pressure 

P2 M  Critical state line parameter  

P3   Non-associativity parameter 

P4 eo  Initial void ratio  

P5 po
* MPa Initial preconsolidation mean stress for saturated soil  

P8 𝑐0   Parameter in the swelling pressure function 

P9 𝑐1   Parameter in the swelling pressure function 

P10 𝑐2   Parameter in the swelling pressure function 

Note P8-P9-P10 are taken into account only if sp = 777 (ICL = 21; ITYCL = 1; P9) 

PARAMETERS FOR ICL = 25 (TEP Parameters Shape Yield Surf.); ITYCL = 1 

Mohr Coulomb function: gy () = sin / (cos + 0.577sin sin) 

P1   deg  

PARAMETERS FOR ICL = 25 (TEP Parameters Shape Yield Surf.); ITYCL = 2  

van Eeckelen function: gy () = X/Y sin3-Z 

P1 X   

P2 Y   

P3 Z   

PARAMETERS FOR ICL = 25 (TEP Parameters Shape Yield Surf.); ITYCL = 3 

Von Mises (default option): gy () = 1 

PARAMETERS FOR ICL = 26 (TEP Parameters Shape Plastic Pot.); ITYCL = 1 

 Mohr Coulomb function: gp () = sin / (cos + 0.577sin sin) 

P1   deg  



161 

PARAMETERS FOR ICL = 26 (TEP Parameters Shape Plastic Pot.); ITYCL = 2  

van Eeckelen function: gp () = X/Y sin3-Z 

P1 X   

P2 Y   

P3 Z   

PARAMETERS FOR ICL = 26 (TEP Parameters Shape Plastic Pot.); ITYCL = 3 

Von Mises (default option): gp () = 1 

PARAMETERS FOR ICL = 27 (TEP Integration Control Parameters); ITYCL = 1  

P1 Tole1 Yield surface tolerance (typically 1.e-8). 

P2 Tole2 Elastic integration tolerance (typically between 1.e-4 and 1.e-6). 

P3 Tole3 Plastic integration tolerance (typically between 1.e-4 and 1.e-2). 

P4  Integration weight (ranges from 0 to 1) (typically 1). 

P5 Index -1 elastoplastic matrix (typical value). 

+1 elastic matrix. 

P6 Itermaxc Maximum allowed subincrementations. When this value is reached, the 

execution continues even if stress errors are large. Default=100.  

Note that if Itermaxc > Itermaxs this condition is not used. 

P7 Itermaxs Maximum allowed subincrementations. When this value is reached, the 

stress and stiffness matrices calculation stops and the time step is reduced. 

A message about the type of problem encountered appears. Default=10. 

P10 Index2 Indicator of stress option: (0: net stress; 1: Bishop’s stress) 

The integration procedure is based on an incremental scheme. A second-order integration 

procedure is used in order to obtain an integration error estimation.  is considered as a weight 

in the evaluation of second-order integration matrix and vectors.  

 

HISTORY VARIABLES: 

The Thermo-elastoplastic (ICL = 21 to 27) model requires two history variables: 

Hist_var 1 Po* MPa Evolution of preconsolidation mean stress for saturated soil  

Hist_var 2 eo  Evolution of void ratio  

 

These variables can be assigned as initial conditions on surfaces/volumes if an initial particular 

distribution on the geometry is required. The procedure is the same as followed by initial 

stresses as was described in chapter II. PREPROCESS, PROBLEM DATA, section II.2.3.5.  

If no value is assigned for these variables in conditions, internally, the program sets the input 

parameters P4 (for e0) and P5 (for Po*) of the ICL=24, as initial values. 
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The evolution of Po* can be visualized as an output in Post-process GID interface. 

 

Note: Effective stresses plotted in the Post-process GID interface correspond with net stresses 

for unsaturated conditions and Terzaghi's effective stresses for saturated conditions. Stress and 

strain invariants follow the soil mechanics notation (positive for compression). 

______ 
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CODE_BRIGHT. CONSTITUTIVE LAWS 

This chapter contains the different models available and the corresponding parameters required 

by each model. The following constitutive laws are available: 

 

HYDRAULIC AND 

THERMAL CONSTITUTIVE 

MODELS (a) 

RETENTION CURVE  

INTRINSIC PERMEABILITY  

LIQUID PHASE RELATIVE 

PERMEABILITY  

GAS PHASE RELATIVE 

PERMEABILITY  

DIFFUSIVE FLUXES OF 

MASS  

DISPERSIVE FLUXES OF 

MASS AND ENERGY  

CONDUCTIVE FLUX OF 

HEAT  

MECHANICAL CONSTITUTIVE MODELS 

ELASTICITY (b) 

NONLINEAR ELASTICITY (b) 

VISCOPLASTICITY FOR SALINE MATERIALS (b)  

VISCOPLASTICITY FOR SATURATED SOILS AND 

ROCKS   (b) 

VISCOPLASTICITY - GENERAL (b) 

DAMAGE-ELASTOPLASTIC MODEL FOR 

ARGILLACEOUS ROCKS (c) 

THERMO-ELASTOPLASTIC MODEL FOR SOILS 

(d) 

BARCELONA EXPANSIVE MODEL FOR SOILS (e) 

CASM’s FAMILY MODELS (f) 

PHASE PROPERTIES (a) 

SOLID PHASE PROPERTIES 

LIQUID PHASE PROPERTIES 

GAS PHASE PROPERTIES 

EXCAVATION PROCESS (g) 

 

VI.e. BARCELONA EXPANSIVE MODEL 

MECHANICAL CONSTITUTIVE LAWS (part e) – Mechanical data 4 

ICL NAME ITYCL DESCRIPTION 

80 Barcelona Expansive Model BExM - 
Inactive 

1 Inactive 

81 Barcelona Expansive Model BExM - 
Elastic 

1 Elastic model 

82 Barcelona Expansive Model BExM - 
Coupling 

1 Coupling behavior – Interaction functions 

83 Barcelona Expansive Model BExM - 
Yield surface 

1 BBM – shape in p-q diagram 

84 Barcelona Expansive Model BExM - 
Inactive2 

1 Inactive 

85 Barcelona Expansive Model BExM - 
Plastic potential 

1 BBM plastic potential – shape in p-q diagram 

86 Barcelona Expansive Model BExM - 
Macro-micro interaction  

1 Macro-micro interaction  

87 Barcelona Expansive Model BExM - 
Hardening 

1 BBM Hardening law 

88 Barcelona Expansive Model BExM - 
Convergence 

1 Control parameters for the integration of the 
model 
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BARCELONA EXPANSIVE MODEL FOR SOILS (BExM)  

CODES ICL = 80 to 88 (Mechanical data 4)            ITYCL = 1 

DESCRIPTION Elastoplastic constitutive law for expansive soils (BExM by Alonso et al., 

1999). 

EQUATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this model, equations are written assuming Soils Mechanics convention 

(p > 0, v> 0, compression). p is the mean effective stress, J the square root 

of the second invariant of deviatoric stress tensor,  the Lode’ angle (-30º 

in triaxial compression, +30º in triaxial extension) (see ICL 21 to 27 for 

their definition).  

Two levels of soil structure are defined: macrostructural level (Macro) 

and microstructural level (micro) (see APPENDIX VI.E): 

 

where: 

Total volume

Volume of macropores
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Micropores are assumed saturated. 

The following definitions are stablished: 

Total porosity over total volume:
p

T

V
n

V
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Macro porosity over total volume:
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Micro porosity over total volume: 
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Total void ratio: 
p

s

V
e

V
=  

Macro void ratio: 
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V
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V
=  

Micro void ratio: 
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V
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These definitions lead to the following relationships: 
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( )1
m M m

e e e e= + +           M m
n n n= +  

( )1
m m M

n n n= −                   ( )1
M m M

n n n n= + −  

The following additive equation for the total strain rate holds: 

𝑑𝜀𝑘𝑙 = 𝑑𝜀𝑘𝑙
𝑀𝑎𝑐𝑟𝑜 + 𝑑𝜀𝑘𝑙

𝑚𝑖𝑐𝑟𝑜 

where  

𝑑𝜀𝑘𝑙 is the total strain rate: 𝑡𝑟(𝜀𝑘𝑙) =
𝑑𝑒

1+𝑒
; 

𝑑𝜀𝑘𝑙
𝑀𝑎𝑐𝑟𝑜  is the macrostructural strain rate, associated to the 

macroskeleton:    𝑡𝑟(𝜀𝑘𝑙
𝑀𝑎𝑐𝑟𝑜) =

𝑑𝑒𝑀

1+𝑒𝑀
;  

𝑑𝜀𝑘𝑙
𝑚𝑖𝑐𝑟𝑜 is the microstructural strain rate (only volumetric behaviour is 

considered at this level): 𝑡𝑟(𝜀𝑘𝑙
𝑀𝑖𝑐𝑟𝑜) =

𝑑𝑒𝑚

1+𝑒𝑚
 

Elastic law:  

𝑑𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙
𝑀𝑎𝑐𝑟𝑜 (𝑑𝜀𝑘𝑙

𝑀𝑎𝑐𝑟𝑜 − 𝛿𝑘𝑙
𝑑𝑠𝑀𝑎𝑐𝑟𝑜

3𝐾𝑠
𝑀𝑎𝑐𝑟𝑜 − 𝑑𝜀𝑘𝑙

𝐿𝐶 − 𝑑𝜀𝑘𝑙
𝑆𝐷 − 𝑑𝜀𝑘𝑙

𝑆𝐼) 

𝑑𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙
𝑚𝑖𝑐𝑟𝑜 (𝑑𝜀𝑘𝑙

𝑚𝑖𝑐𝑟𝑜 − 𝛿𝑘𝑙
𝑑𝑠𝑚𝑖𝑐𝑟𝑜

3𝐾𝑠
𝑚𝑖𝑐𝑟𝑜

) 

𝐷𝑖𝑗𝑘𝑙
𝑀𝑎𝑐𝑟𝑜 is the mechanical elastic stiffness matrix which relates stress and 

elastic deformation at macro level (𝑑𝜀𝑘𝑙
𝑀𝑎𝑐𝑟𝑜); 

𝐷𝑖𝑗𝑘𝑙
𝑚𝑖𝑐𝑟𝑜is the mechanical elastic stiffness which relates stress and elastic 

deformation at micro level (𝑑𝜀𝑘𝑙
𝑚𝑖𝑐𝑟𝑜). 

𝐾𝑠
𝑀𝑎𝑐𝑟𝑜 is the bulk modulus against macro suction changes and 𝐾𝑠

𝑚𝑖𝑐𝑟𝑜 the 

bulk modulus against micro suction changes. 

𝑑𝜀𝑘𝑙
𝐿𝐶 are the macro plastic strains if LC is activated.  

𝑑𝜀𝑘𝑙
𝑆𝐷 and 𝑑𝜀𝑘𝑙

𝑆𝐼 are the macro plastic strains if SD and SI are activated, 

respectively.  
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Linear elasticity (Camclay type elasticity): 

𝐷𝑖𝑗𝑘𝑙
𝑀𝑎𝑐𝑟𝑜 is defined by the bulk modulus KMacro and Poisson’s ratio at macro 

level M.  

𝐷𝑖𝑗𝑘𝑙
𝑚𝑖𝑐𝑟𝑜 is defined by the bulk modulus Kmicro. 

Macro bulk modulus against net stress changes is linearly dependent of the 

logarithmic mean net stress (p) following the relationship: 

𝐾𝑀𝑎𝑐𝑟𝑜 =
(1 + 𝑒𝑀)𝑝

𝜅𝑀𝑎𝑐𝑟𝑜
 

Micro bulk modulus against effective stress changes is linearly dependent 

of the logarithmic effective net stress (p+s) following the relationship: 

𝐾𝑚𝑖𝑐𝑟𝑜 =
(1 + 𝑒𝑚)(𝑝 + 𝑠)

𝜅𝑚𝑖𝑐𝑟𝑜
 

where 𝜅𝑀𝑎𝑐𝑟𝑜 and 𝜅𝑚𝑖𝑐𝑟𝑜 the slopes of the unloading/reloading lines in the 

plane eMacro-lnp and emicro-ln(p+s), respectively. Note that the behaviour of 

the microstructure is formalized by means of an effective stress concept 

generalized for unsaturated conditions (effective stress is recovered). 

Bulk modulus against suction changes is linearly dependent of the 

logarithmic suction following the relationship: 

𝐾𝑠
𝑀𝑎𝑐𝑟𝑜 =

(1 + 𝑒𝑀)(𝑠 + 𝑝𝑎𝑡𝑚)

𝜅𝑠
 

where 𝜅𝑠 is the slope of the drying/wetting line in the plane eM-ln(s+patm). 

patm   is the atmospheric pressure and is taken equal to 0.1 MPa by default. 

Yield function 

𝐹𝐿𝐶 = 𝐽2 −
𝑀2

3
⥄ (𝑝 + 𝑝𝑡)(𝑝0 − 𝑝) ≤ 0 

where t
p is the clay tensile strength, 

0
p the clay matrix isotropic yield 

locus and M the slope of the critical state line in the p–q diagram. The 

following dependencies on suction are considered: 

𝑝𝑡 = 𝑘𝑠𝑠 

𝑝0 = 𝑝𝑐 (
𝑝0
∗

𝑝𝑐
)

𝜆(0)−𝜅𝑀𝑎𝑐𝑟𝑜

𝜆(𝑠)−𝜅𝑀𝑎𝑐𝑟𝑜

 with 𝜆(𝑠) = 𝜆(0)[(1 − 𝑟)𝑒−𝛽𝑠 + 𝑟] 

 

𝐹𝑆𝐷 = 𝛾𝑆𝐷 − 𝑝 − 𝑠              𝐹𝑆𝐼 = 𝑝 + 𝑠 − 𝛾𝑆𝐼 
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Rate dependency 

Rate dependency is introduced as a visco-plastic mechanism. Plastic 

multiplier p is expressed as a function of the distance between the current 

stress point and the inviscid plastic locus: 

𝑑𝜆𝑝 =
𝑑𝑡

𝜂
⟨𝐹⟩ 

where dt is the time increment,   is the clay viscosity and   are the 

Macauley brackets. Inviscid plastic locus takes the form: 

�̄� = 𝐹 −
𝜂

𝑑𝑡
𝑑𝜆𝑝 ≤ 0 

where F can be either the LC, SD or SI yield criterion 

Plastic potential 

𝐺𝑝 = 𝐽2 − 𝜔
𝑀2

3
⥄ (𝑝 + 𝑝𝑡)(𝑝 − 𝑝0) 

𝑝𝑡,  𝑝0 and 𝑀 are parameters defining the yield criterion.  is a parameter 

defining the non associativity of the flow. It takes a value equal to 1 when 

associated and equal to 0 for null dilatancy. To respect the condition of null 

lateral strain during K0–loading,  must be set to: 

𝜔 =
𝑀(𝑀 − 9)(𝑀 − 3)

9(6 − 𝑀)

1

1 −
𝜅

𝜆(0)

 

In the deviatoric plane, plastic potentials are considered associated. 

An associated plastic potential in the p - q diagram is defined for SD and 

SI. 

 

Hardening law: 

The hardening/softening law is introduced through the following 

dependency of the saturated isotropic yield locus on the plastic strain: 

𝑑𝑝0
∗

𝑝0
∗ =

(1 + 𝑒)

𝜆 − 𝜅
(𝑑𝜀𝑣𝑜𝑙

𝐿𝐶 + 𝑑𝜀𝑣𝑜𝑙
𝑆𝐷 + 𝑑𝜀𝑣𝑜𝑙

𝑆𝐼 ) 

𝑑𝛾𝑆𝐷 =
𝐾𝑚𝑖𝑐𝑟𝑜

𝑓𝑆𝐷
𝑑𝜀𝑣𝑜𝑙

𝑆𝐷 +
𝐾𝑚𝑖𝑐𝑟𝑜

𝑓𝑆𝐼
𝑑𝜀𝑣𝑜𝑙

𝑆𝐼  

𝑑𝛾𝑆𝐼 =
𝐾𝑚𝑖𝑐𝑟𝑜

𝑓𝑆𝐷
𝑑𝜀𝑣𝑜𝑙

𝑆𝐷 +
𝐾𝑚𝑖𝑐𝑟𝑜

𝑓𝑆𝐼
𝑑𝜀𝑣𝑜𝑙

𝑆𝐼  

where 𝑓𝑆𝐷 and 𝑓𝑆𝐼 are the micro-macro interaction functions defined as 

follow: 

𝑓𝑆𝐷 = 𝑓𝑆𝐷0 + 𝑓𝑆𝐷1 (1 −
𝑝

𝑝0
)
𝑛𝑆𝐷

 and  𝑓𝑆𝐼 = 𝑓𝑆𝐼0 + 𝑓𝑆𝐼1 (
𝑝

𝑝0
)
𝑛𝑆𝐼
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Model parameters should be introduced in the following ICL:  

       BExM – Inactive (ICL = 80) VOID 

       BExM – Elastic (ICL = 81) contains parameters of elastic model 

       BExM – Coupling (ICL = 82) contains parameters of coupling 

       BExM – Yield surface (ICL = 83) contains parameters for the shape of the yield function 

in the p-q plane  

       BExM – Inactive2 (ICL = 84) VOID  

       BExM – Plastic potential (ICL = 85) contains parameters for the shape of the plastic 

potential in the p-q plane 

       BExM – Macro-micro interaction (ICL = 86)  

       BExM – Hardening (ICL = 87) contains parameters for the hardening law  

       BExM – Convergence (ICL = 88) contains parameters to control the integration of the 

constitutive law 

PARAMETERS FOR BEXM – INACTIVE ICL = 80; ITYCL = 1 (INACTIVE) 

PARAMETERS FOR BEXM – ELASTIC ICL = 81; ITYCL = 1 (Elastic model) 

P1 𝜅𝑀𝑎𝑐𝑟𝑜 - 
Matrix elastic stiffness parameter at macro level for changes in 

mean stress (𝑝) 

P2 𝜅𝑚𝑖𝑐𝑟𝑜 - 
Matrix elastic stiffness parameter at micro level for changes in 

mean effective stress (𝑝 + 𝑠𝑚𝑖𝑐𝑟𝑜) 

P3 void -  

P4 void -  

P5 𝜅𝑠 - 
Elastic macro stiffness parameter for changes in macro suction  

(𝑠𝑀𝑎𝑐𝑟𝑜)  

P6 M - Poisson’s ratio  

P7 𝐾𝑚𝑖𝑛
𝑀𝑎𝑐𝑟𝑜 MPa Minimum bulk modulus at macro level 

P8 𝐾𝑚𝑖𝑛
𝑚𝑖𝑐𝑟𝑜

 MPa Minimum bulk modulus at micro level 

P10 If P10 ≠ 0 ⇒ total porosity is used instead of macroporosity 

PARAMETERS FOR BEXM – COUPLING ICL = 82; ITYCL = 1 (Coupling behaviour). 

P1 void -  

P2 void -  

P3 𝑓𝑠𝑑0 - Parameter micro-macro coupling functions when SD is active 

P4 𝑓𝑠𝑑1 - Parameter micro-macro coupling functions when SD is active  

P5 𝑛𝑠𝑑 - Parameter micro-macro coupling functions when SD is active  

P6 𝑓𝑠𝑖0 - Parameter micro-macro coupling functions when SI is active  

P7 𝑓𝑠𝑖1 - Parameter micro-macro coupling functions when SI is active  

P8 𝑛𝑠𝑖 - Parameter micro-macro coupling functions when SI is active  
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PARAMETERS FOR BEXM – YIELD SURFACE ICL = 83; ITYCL = 1 (Basic Barcelona 

model criterion for the clay – shape in p-q diagram). 

P1 M - Slope of the critical state line  

P2 void - - 

P3 r - Coefficient setting the change in cohesion with suction 

P4  MPa-1 Coefficient setting the change in cohesion with suction 

P5 pc MPa Reference pressure 

P6 ks - Coefficient setting the increase of tensile strength with suction 

P7 𝑝𝑡0 MPa Cohesion corresponding to suction equal to zero 

 

PARAMETERS FOR BEXM – INACTIVE2 ICL = 84; ITYCL = 1  (INACTIVE)  

PARAMETERS FOR BEXM – PLASTIC POTENTIAL ICL = 85; ITYCL = 1 (Basic 

Barcelona model plastic potential for the clay– shape in p-q diagram). 

P1  - 
Coefficient of non-associativity (0: no volumetric plastic strain, 

1: full volumetric plastic strain –associative plasticity) 

 

PARAMETERS FOR BEXM – MACRO-MICRO INTERACTION ICL = 86; ITYCL = 1  

P6 𝜙𝑚𝑖𝑐 - Micro-porosity 

P7   Retention curve parameter for micro 

P8 𝑃0  Retention curve parameter for micro 

P9 𝛼 kg MPa-1 m-3 Interchange of water coefficient 

P10 𝑠𝑚𝑖𝑐 MPa Initial suction micro 

PARAMETERS FOR BEXM – HARDENING ICL = 87; ITYCL = 1 (Basic Barcelona model 

does not need additional parameter for the hardening law for clay). 

P1 (0) - Slope of the virgin loading line in the e-ln(p) diagram 

P2  MPa.s Clay viscosity parameter 

PARAMETERS FOR BEXM – CONVERGENCE ICL = 88; ITYCL = 1 (Control parameter 

for the Stress Point Algorithm – Backward-Euler scheme is used). 

P1 tol - 
Tolerance over SPA residual  

(typical value – not default – 1.e-8) 

P2 tol_for_subin - 
Tolerance over the elastic subincrementation  

(typical value 1e-4) 

P3 void -  

P4 toler_ini_SI_SD MPa 
Initial separation between SI and SD  

(typical value 1.e-4) 
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HISTORY VARIABLES: 

The Barcelona Expansive Model (BExM) (ICL = 80 to 88) model requires the following 

history variables: 

Hist_var 1 P0
* MPa Initial preconsolidation mean stress for saturated soil  

Hist_var 2 SD MPa Initial value of the parameter that defines the position 

of SD yield surface 

Hist_var 3 SI MPa Initial value of the parameter that defines the position 

of SI yield surface 

Hist_var 4 nm  Initial microstructural porosity  

(micropore volume Vp
m / total volume VT)  

 

These variables can be assigned as initial conditions on surfaces/volumes if an initial particular 

distribution on the geometry is required. The procedure is the same as followed by initial 

stresses as was described in chapter II. PREPROCESS, PROBLEM DATA, section II.2.3.5.  

Initial values of P0
* defining the initial position of LC surface are required.  

By default, initial position of the surfaces SD and SI is fixed using the initial stress state 

involving no elastic region between SD and SI surface. To do this, first SI is computed as SI = 

p+smicro, then, the position of SD is computed using an initial separation between SI and SD 

surfaces which is prescribed as an input parameter in P4 of the ICL=88. If user wants to control 

the initial position of SD and SI, then, specific values should be introduced as initial conditions 

on surfaces/volumes, otherwise, these values should be keep as zero. 

The evolution of history variables can be visualized as an output in Post-process GID interface. 

Note: Effective stresses plotted in the Post-process GID interface correspond with net stresses 

for unsaturated conditions and Terzaghi's effective stresses for saturated conditions. Stress and 

strain invariants follow the soil mechanics notation (positive for compression). 
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CODE_BRIGHT. CONSTITUTIVE LAWS 

This chapter contains the different models available and the corresponding parameters required 

by each model. The following constitutive laws are available: 

 

HYDRAULIC AND 

THERMAL CONSTITUTIVE 

MODELS (a) 

RETENTION CURVE  

INTRINSIC PERMEABILITY  

LIQUID PHASE RELATIVE 

PERMEABILITY  

GAS PHASE RELATIVE 

PERMEABILITY  

DIFFUSIVE FLUXES OF MASS  

DISPERSIVE FLUXES OF 

MASS AND ENERGY  

CONDUCTIVE FLUX OF HEAT  

MECHANICAL CONSTITUTIVE MODELS 

 

ELASTICITY (b) 

NONLINEAR ELASTICITY (b) 

VISCOPLASTICITY FOR SALINE MATERIALS 

(b)  

VISCOPLASTICITY FOR SATURATED SOILS 

AND ROCKS (b) 

VISCOPLASTICITY - GENERAL (b) 

DAMAGE-ELASTOPLASTIC MODEL FOR 

ARGILLACEOUS ROCKS (c) 

THERMO-ELASTOPLASTIC MODEL FOR SOILS 

(d) 

BARCELONA EXPANSIVE MODEL FOR SOILS 

(e) 

CASM’s FAMILY MODELS (f) 

PHASE PROPERTIES (a) 

SOLID PHASE PROPERTIES 

LIQUID PHASE PROPERTIES 

GAS PHASE PROPERTIES 

EXCAVATION PROCESS (g) 

 

 

VI.f. CASM’s FAMILY MODELS  

 

 

  

ICL NAME ITYCL DESCRIPTION

90 Clay and Sand model (CASM): GENERAL 1 Contain general parameters for CASM (saturated)

91 Clay and Sand model (CASM):SPECIFIC 2 Contain parameters for Unsaturated CASM model

3 Contain parameters for Cemented CASM model

4 Contain parameters for Doble hardening CASM model

MECHANICAL CONSTITUTIVE LAWS (part f)
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CASM's FAMILY MODELS 

CODES in 

ROOT_gen.dat 

ICL = 90, 91 (Mechanical data 3)       ITYCL = 1, 2 ,3, 4 

DESCRIPTION Clay and Sand model for soils (CASM) 

EQUATIONS ICL = 90 (CASM – General); ITYCL = 1: Saturated CASM model  

Yield function: 

The yield function for CASM (Yu, 1998) expressed for a general stress state 

is:     𝑓 = (
√3𝐽

𝑀𝜃𝑝′
)
𝑛

+
1

𝑙𝑛 𝑟
𝑙𝑛

𝑝′

𝑃0
′  

where:     p’ is the mean effective stress 

𝐽 = (
1

2
𝑡𝑟𝑎𝑐𝑒(𝜎𝑖𝑗 − 𝑝′𝛿𝑖𝑗))

1/2

 (for axi-symmetric conditions: 𝑞 = √3𝐽) 

𝑃0
′  is the preconsolidation pressure.  

𝑀𝜃 is the slope of the critical state line.    

 n is a constant used to specify the shape of the yield surface. 

 r is a spacing ratio introduced to control the location of the intersection of 

the critical state line with the yield surface. 

 

𝑀𝜃, is expressed as a function of Lode’s angle 𝜃, and determines the shape 

of the failure surface in the deviatoric plane. The relationship proposed by 

Sheng et al (2000), to approximate a hexagonal Mohr-Coulomb failure 

surface is adopted: 

𝑀𝜃 = 𝑀(
2𝛼4

1 + 𝛼4 + (1 − 𝛼4) 𝑠𝑖𝑛 3 𝜃
)

1/4

 

where M is the slope of the CSL under triaxial compression (𝜃 = −30º). 

The parameter 𝛼 controls the difference of the strengths between the triaxial 

compression and extension. Often, 𝛼 is taken as: 𝛼 =
3−𝑠𝑖𝑛𝜑𝑐𝑠

3+𝑠𝑖𝑛𝜑𝑐𝑠
  where 𝜑𝑐𝑠 

denotes the friction angle of the soil at the critical state.  
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EQUATIONS ICL = 90 (CASM – General); ITYCL = 1: Saturated CASM model 

(continued) 

Hardening parameter: 

Similar to the Cam-clay models, in CASM the change in size of the yield 

surface (𝑑𝑃0
′ ) is assumed to be related to the incremental plastic volumetric 

by: 

𝑑𝑃0
′ =

𝑃0
′

𝜆∗ − 𝜅∗
𝑑𝜀𝑣

𝑝
 

where:  𝜆∗ =
𝜆

1+𝑒0
  and   𝜅∗ =

𝜅

1+𝑒0
 are the modified compression index and 

modified elastic swelling index. 

 

Plastic potential: 

The plastic potential for CASM follows the stress-dilatancy relation of 

Rowe (1962). 

𝑔 = 3𝑀𝜃 𝑙𝑛
𝑝′

𝜁
+ (3 + 2𝑀𝜃) 𝑙𝑛 (

2√3𝐽

𝑝′
+ 3) − (3 −𝑀𝜃) 𝑙𝑛 (3 −

√3𝐽

𝑝′
) 

Where 𝜁 is a size parameter, which can be determinate easily for any given 

stress state (p’, J) by solving the above equation and it is internally 

computed. 

 

Elastic behaviour: 

The elastic behaviour of this critical state model is the same as in the Cam 

–clay models with the tangent modulus (K) and shear modulus (G) being 

defined by the following expressions (a constant Poisson’s ratio () is 

assumed): 

𝐾 =
𝑝′

𝜅∗
 𝐺 =

3(1−2𝜐)𝐾

2(1+𝜐)
 

 

Undrained analysis in terms of the undrained shear strenght parameter 

(Su) (Optional case): 

When this option is activated, the desired undrained shear strength Su of the 

material will be fitted and is not more a result of the constitutive model. To 

do this, the spacing ratio r is calculated as a function of the undrained shear 

strength Su (which is a input parameter in this case) to obtain a yield surface 

shape that will result in the desired Su , as, 

𝑟 = (
𝑀𝜃 𝑐𝑜𝑠 𝜃

√3

𝑃𝑒
′

𝑆𝑢
)

1

𝛬

𝑃𝑒
′ = 𝑝′ (

𝑝′

𝑃𝑜′
)

𝜅

𝜆

 

This expression links a total stress characteristic of the soils, the undrained 

shear strength, with effective stress parameters and the consolidation history 

of the soil.   
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EQUATIONS ICL = 91 (CASM – Specific); ITYCL = 2: Unsaturated CASM model 

This model requires P1 to P9 parameters of the ICL=90 and ICL=91.  

Model follows the Barcelona Basic Model (BBM) characteristics. The 

model is formulated using two alternative options for the constitutive stress 

variables: Net stress and Bishop’s or average stress, which can be selected 

using an indicator parameter. 

- Bishop’s stress: 𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 − 𝑃𝑔𝛿𝑖𝑗 + 𝑆𝑟𝑠𝛿𝑖𝑗 

- Net stress: �̄�𝑖𝑗 = 𝜎𝑖𝑗 −𝑚𝑎𝑥(𝑃𝑔, 𝑃𝑙) 𝛿𝑖𝑗 

- Suction: 𝑠 = 𝜎𝑖𝑗 −𝑚𝑎𝑥 ((𝑃𝑔 − 𝑃𝑙), 0) 

ij is the total stresses, Pg the gas pressure, Pl the liquid pressure, Sr the 

degree of saturation and ij the Kroneckers’s delta. 

Yield function: 

In terms of Bishop’s stress: 

𝑓 = (
√3𝐽

𝑀𝜃𝑝′
)

𝑛

+
1

𝑙𝑛 𝑟
𝑙𝑛
𝑝′

𝑃𝑐
 

In terms of Net stress: 

𝑓 = (
√3𝐽

𝑀𝜃(�̄� + 𝑝𝑠)
)

𝑛

+
1

𝑙𝑛 𝑟
𝑙𝑛 (

�̄� + 𝑝𝑠
𝑃𝑐 + 𝑝𝑠

) 

p’ is the mean Bishop stress, �̄� is the mean net stress, 𝑝𝑠 is a tensile strength 

due to suction, J is the square root of the second stress invariant of 

deviatoric stress tensor and 𝑀𝜃 is the slope of the critical state line 

expressed as a function of Lode’s angle (see ICL=90). 

 

Preconsolidation pressure Pc is assumed to vary with suction and define the 

yield curve denoted as LC (loading–collapse), 

𝑃𝑐 = 𝑝𝑟 (
𝑃0
𝑝𝑟
)

𝜆0−𝜅

𝜆𝑠−𝜅

 

P0 is the yield surface location at zero suction and is also the hardening 

parameter, pr is a reference mean stress, 0 is the slope of the saturated 

virgin consolidation line, s is the slope of the virgin consolidation line for 

a specific value of suction and  is the slope of the unloading-reloading line 

(assumed independent of suction). s is assumed to vary with the suction 

according to, 

𝜆𝑠 = 𝜆𝑜[(1 − 𝑟
∗) 𝑒𝑥𝑝(−𝛽𝑠) + 𝑟∗] 

where, r* and  are material parameters. The first is related to the maximum 

stiffness of the soil (for an infinite suction): 𝑟∗ = 𝜆𝑠(𝑠 → ∞)/𝜆𝑜 and the 

second controls the rate of increase of soil stiffness with suction. 

Net stress formulation requires an explicit variation of apparent cohesion 

with suction. The increase in cohesion follows a linear relationship with 

suction, 
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𝑝𝑠 = 𝑘𝑠𝑠 
where 𝑘𝑠 is a scalar variable. 

 

Plastic potential: 

Three options are available for the flow rule. A scalar variable is introduced 

to select a particular option as follow, 

 

Flow_rule = 1. Non-associated flow rule following the stress-dilatancy 

relation of Rowe (see ICL=90 ITYCL=1) 

 

Flow_rule = 2. Non-associated flow rule to fit a one-dimensional 

consolidation stress path (K0) 

𝑔 = (
 𝛼√3𝐽

𝑀𝜃𝑝′
)

𝑛

+
1

𝑙𝑛 𝑟
𝑙𝑛
𝑝′

𝑃𝑐′
 

with 𝛼 =
2

3

[𝑀𝜃(6−𝑀𝜃)]
𝑛−(3𝑀𝜃)

𝑛

(6−𝑀𝜃)(3𝑀𝜃)
𝑛−1

𝜆∗

𝜆∗−𝜅∗
 

 

Flow_rule = 3. Associated flow rule (f=g) 

 

Hardening parameter: 

Isotropic hardening is controlled by the plastic volumetric strains (𝑑𝜀𝑣
𝑝
) 

through,  

𝑑𝑃𝑜 =
𝑃𝑜(1 + 𝑒)

𝜆𝑜 − 𝜅
𝑑𝜀𝑣

𝑝
 

 

Elastic behaviour: 

Elastic behaviour is the same as defined in ICL=90 ITYCL=1. However, 

net stress formulation requires an explicit relation to consider the effect of 

suction on volumetric elastic strains, through the incorporation of the 

elastic compressibility parameter for changes in suction, 𝜅𝑠,  

𝑑𝜀ij
e,s =

𝜅𝑠
(1 + 𝑒)(𝑠 + 𝑝𝑎𝑡𝑚)

𝑑𝑠 δ𝑖𝑗 =
1

3𝐾𝑠
𝑑𝑠 δ𝑖𝑗 

Where 𝐾𝑠 is the Bulk modulus for changes in suction. If Bishop’s stress is 

configured, the effect of suction on volumetric elastic strains is accounted 

for via the variation in Bishop’s stress with suction. Elastic strain 

increments are computed using the following equations for Net stress 

approach and Bishop’s stress approach, respectively. 

𝑑𝜀𝑖𝑗
𝑒 =

2𝐺 − 3𝐾

6𝐾𝐺
𝑑�̄�𝛿𝑖𝑗 +

1

2𝐺
𝑑�̄�𝑖𝑗 +

1

3𝐾𝑠
𝑑𝑠𝛿𝑖𝑗 

𝑑𝜀𝑖𝑗
𝑒 =

2𝐺 − 3𝐾

6𝐾𝐺
𝑑(�̄� + 𝑆𝑟 ⋅ 𝑠)𝛿𝑖𝑗 +

1

2𝐺
𝑑𝜎′𝑖𝑗 

CODES in 
ROOT_gen.dat 

ICL = 90, 91 (Mechanical data 3)       ITYCL = 1, 2 ,3, 4 
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DESCRIPTION Clay and Sand model for soils (CASM) 

EQUATIONS ICL = 91 (CASM – Specific); ITYCL = 3: Cemented CASM model 

This model requires P1 to P9 of ICL = 90 and P1 to P7 of ICL = 91 

Cemented CASM model is based on the formulation for cemented soils 

proposed by Gens & Nova (1993), in which a new state variable denoted 

as ‘bonding’ b is incorporated. 

Yield function: 

𝑓 = (
√3𝐽

𝑀𝜃(𝑝′+𝑝𝑡)
)
𝑛

+
1

𝑙𝑛 𝑟
𝑙𝑛

(𝑝′+𝑝𝑡)

(𝑃𝑐
′+𝑝𝑡)

( )

( )

c o

t o t

P P b

p P b

= +

=

' '

' '

1
 

Where, b is a non-dimensional variable that represents the degree of 

bonding. 𝑃𝑜
′  is the preconsolidation pressure of the unbonded material. 𝑃𝑐

′ 

controls the yielding of the bonded soil in isotropic compression and 𝑝𝑡
′  is 

related to the cohesion and tensile strength of the material; αt is a parameter. 

Both 𝑃𝑐
′ and 𝑝𝑡 increase with the magnitude of bonding. The unbonded 

behaviour is recovered when b goes to zero. 

The function defining the reduction of bonding (b) with increased 

degradation and the relationship controlling the evolution of degradation in 

response to plastic strains, are: 

𝑏 = 𝑏0𝑒
−(ℎ−ℎ0) 

𝑑ℎ = ℎ1|𝑑𝜀𝑣
𝑝| + ℎ2|𝑑𝜀𝑞

𝑝| 

The above expressions ensure that degradation increases monotonically, 

independently of the sign of the plastic strains. h1 y h2 are material 

parameters (greater than zero) defining the rate of degradation. 𝑑𝜀𝑣
𝑝
 and 

𝑑𝜀𝑞
𝑝

 are the plastic volumetric strain increment and plastic deviatoric strain 

increment, respectively. 

The three options for the plastic potential used in the ICL = 91 ITYCL = 2 

(Unsaturated model) are also available for this model.  

Hardening parameter: 

Either a volumetric hardening law or a combined volumetric and shear 

hardening law can be used for this propose. If a combined hardening is 

adopted, then:            
𝑑𝑃0

′

𝑃0
′ =

1

𝜆∗−𝜅∗
[𝑑𝜀𝑣

𝑝
+ 𝜔𝑑𝜀𝑞

𝑝
] 

which reduces to the usual volumetric hardening law if it set 𝜔 = 0. 𝜔 is a 

new constant introduced to control the relative contribution of the 

incremental plastic deviatoric strain (𝑑𝜀𝑞
𝑝
) to the rate of change of the 

hardening parameter (𝑃0
′ ). 

Elastic behaviour is the same as defined in ICL = 90; ITYCL = 1. 

CODES in 

ROOT_gen.dat 

ICL = 90, 91 (Mechanical data 3)       ITYCL = 1, 2 ,3, 4 
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DESCRIPTION Clay and Sand model for soils (CASM) 

EQUATIONS 
ICL = 91 (CASM – Specific); ITYCL = 4: Double hardening soil model 

(DHSM) 

This model requires P1 to P9 of ICL = 90 and P1 to P8 of ICL = 91 

The model involves two plastic mechanisms: a plastic volumetric-driven 

mechanism with isotropic hardening, by means of the use of the CASM 

yield surface (ICL=90), and a plastic shear-driven mechanism that gives 

rise to a nonlinear stress-strain relationship of a hyperbolic type, by the use 

of a shear yield surface based on the Hardening Soil Model (HSM) (Schanz 

et al., 1999). 

Yield functions: 

- Volumetric yield surface: CASM surface (see ICL = 1; ITYCL = 1) 

- Shear yield surface: 

𝑓𝑠 =
1

𝐸50

𝐽

(1 −
𝐽

𝐽𝑎
)
−
2𝐽

𝐸𝑢𝑟
− 𝛾𝑝 

with: 𝐽𝑎 =
𝐽𝑓

𝑅𝑓
=

(𝑝′+𝑐′𝑐𝑜𝑡 𝜑′)𝑔(𝜃)

𝑅𝑓
    and    𝑔(𝜃) =

𝑠𝑖𝑛𝜑′

𝑐𝑜𝑠 𝜃+
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑′

√3

 

𝐽𝑎 is the asymptotic value of the shear strength, Rf stands for the relation 

between the ultimate deviatoric stress, 𝐽𝑓, and the asymptotic stress, a 

standard setting is Rf = 0.9.
p is the hardening parameter of the shear yield 

surface and corresponds to the plastic deviatoric strain (𝜀𝑑
𝑝
), as is described 

in the next section. 

 

𝐸50 is a secant stiffness modulus for primary loading and 𝐸𝑢𝑟 is a secant 

stiffness modulus for elastic unloading and reloading, these modulus are 

computed as: 

𝐸50 = 𝐸50
𝑟𝑒𝑓

(
𝑝′+ 𝑐′ 𝑐𝑜𝑡 𝜑 ′

𝑝𝑟𝑒𝑓 + 𝑐′ 𝑐𝑜𝑡 𝜑 ′
)
𝑚

    and    𝐸𝑢𝑟

= 𝐸𝑢𝑟
𝑟𝑒𝑓

(
𝑝′+ 𝑐′ 𝑐𝑜𝑡 𝜑 ′

𝑝𝑟𝑒𝑓 + 𝑐′ 𝑐𝑜𝑡 𝜑 ′
)
𝑚

   

 

   p'

J

P'o

Elastic Region

CASM yield surface

Shear yield surface

Mohr-Coulomb failure line

f
s

f
c

p
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𝐸50
𝑟𝑒𝑓

is a reference stiffness modulus corresponding to a reference confining 

pressure 𝑝𝑟𝑒𝑓, usually taken equal to the atmospheric pressure (100 kPa) 

and 𝐸𝑢𝑟
𝑟𝑒𝑓

is the secant reference modulus for unloading and reloading. The 

amount of stress dependency is given by the power m, for soft clays m 

usually is taken equal to 1.0 and for sand, m lies in the range between 0.35 

and 0.65. 

Plastic potentials: 

A non-associative flow rule is used for the shear yield surface which has 

the following form, 

𝑑𝜀𝑣
𝑝 = 𝑔(𝜓𝑚)𝑑𝛾

𝑝 

where 𝑔(𝜓𝑚) is a function of mobilized dilatancy angle, 𝜓𝑚, and Lode’s 

angle,  , as: 

𝑔(𝜓𝑚) =
𝑠𝑖𝑛𝜓𝑚

𝑐𝑜𝑠 𝜃 +
𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛𝜓𝑚

√3

 

The mobilized dilatancy angle, 𝜓𝑚, is defined as, 

𝑠𝑖𝑛𝜓𝑚 =
𝑠𝑖𝑛𝜑𝑚−𝑠𝑖𝑛𝜑𝑐𝑠
1 − 𝑠𝑖𝑛𝜑𝑚 𝑠𝑖𝑛𝜑𝑐𝑠

 

𝜑𝑐𝑠 is the friction angle at the critical state and 𝜑𝑚 is the mobilized friction 

angle. Material contracts for small stress ratios 𝜑𝑚 < 𝜑𝑐𝑠, while dilatancy 

occurs for high stress ratios 𝜑𝑚 > 𝜑𝑐𝑠. Considering dense materials 

contraction is excluded by taking 𝜓𝑚 = 0 for a mobilized friction angle 

𝜑𝑚 < 𝜑𝑐𝑠. 

The volumetric surface uses a non-associated flow rule, the plastic potential 

is defined in the ICL = 90; ITYCL = 1. 

Hardening parameters: 

The hardening parameter of the shear surface, 𝛾𝑝, is the plastic deviatoric 

strain 𝛾𝑝 = 𝜀𝑑
𝑝
. The plastic deviatoric strain rate is calculated as, 

𝑑𝜀𝑑
𝑝
= 2√𝑑𝐽2

𝜀 

Axial strain 
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PARAMETERS FOR CASM – GENERAL ICL = 90; ITYCL = 1 (General: required for     

ICL = 91, ITYCL = 2, 3, 4) 

P1  - Poisson ratio 

P2  - Slope of unload/reload compression curve 

P3  - Slope of the normal compression curve 

P4 r - Spacing ratio 

P5 n - Shape parameter  

P6 M - Slope of Critical State Line 

P7 cs º 
Friction angle at CS (computed as a function of M). If cs=0, 

the shape of the YS plots as a circle in the deviatoric plane) 

P8-P9 - -  

P10 Su MPa Undrained shear strength (optional). By default = 0 

PARAMETERS FOR CASM – SPECIFIC ICL = 91; ITYCL = 2 (Unsaturated) 

P1 Pr MPa Reference mean stress (LC curve) 

P2 r  Parameter to control infinite suction (LC curve) 

P3  MPa-1 Parameter to control stiffness (LC curve) 

𝑑𝜀𝑑
𝑝
= {

2

3
[(𝑑𝜀𝑥

𝑝
− 𝑑𝜀𝑦

𝑝
)
2
+ (𝑑𝜀𝑥

𝑝
− 𝑑𝜀𝑧

𝑝
)
2
+ (𝑑𝜀𝑦

𝑝
− 𝑑𝜀𝑧

𝑝
)
2
] + [𝑑𝛾𝑥𝑦

2 + 𝑑𝛾𝑥𝑧
2 + 𝑑𝛾𝑦𝑧

2 ]}
1/2

 

where, 𝐽2
𝜀 is the second strain invariant of deviatoric strain tensor, 𝛾𝑝 is the 

integral of plastic deviatoric strain rates.  

The hardening parameter of the volumetric yield surface is the so-called 

preconsolidation pressure (𝑃0
′ ) defined in the ICL = 90; ITYCL = 1. 

The two surfaces can be activated simultaneously and move together as in 

a multi-surface plasticity problem, if the stress path reaches the intersection 

between both surfaces. 

Elastic behaviour of the DHSM is the same as in basic CASM model 

defined in the ICL = 90; ITYCL = 1. 

 

Enhanced model (E –DHSM): 

For stiff materials an enhanced model (E-DHSM) can be used, which 

allows the evolution of the shear yield surface until the volumetric yield 

surface is engaged on the dry side of the critical state, providing the 

simulation of softening controlled by the hardening/softening law of the 

CASM. In this case, a simple linear variation of the strength parameters 

with plastic deviatoric strain, 𝜀𝑑
𝑝
, is employed, as: 

𝜑′ = 𝐴𝜑𝜀𝑑
𝑝
+ 𝜑𝑐𝑠

′            𝑐′ = 𝐴𝑐𝜀𝑑
𝑝
+ 𝑐𝑟𝑒𝑠

′  

where, 𝐴𝜑 and 𝐴𝑐 are two input parameters. If these parameters are zero 

the basic DHSM is recovered. 
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P4 s  Elastic stiffness due to suction 

P5 ks - Parameter to account tensile strength due to suction 

P6 iunsat - Indicator of stress option: (0: net stress; 1: Bishop’s stress) 

P7 pt MPa Tensile strength for saturated conditions 

P8 flow_rule - 

Flow rule indicator: 

1: Non-associated: Rowe 

2: Non-associated: K0 fit. Parameter  is required 

3: Associated 

P9  -  Non-associated parameter in case of flow_rule option equal to 2. 

  

PARAMETERS FOR CASM – SPECIFIC ICL = 91; ITYCL = 3 (Cemented) 

P1 b0 - Initial bonding. Evolution of bonding is stored as a history variable 

P2 h0 - Degradation threshold 

P3 h1 - Degradation rate for compression 

P4 h2 - Degradation rate for shear 

P5 t - Parameter for tensile strength 

P6  - Contribution of the plastic deviatoric strain to hardening parameter 

P7 Flow_rule - 

Flow rule indicator: 

1: Non-associated: Rowe 

2: Non-associated: K0 fit. Parameter  is required  

3: Associated 

P8  -  Non-associated parameter in case of flow_rule option equal to 2. 

 

PARAMETERS FOR CASM – SPECIFIC ICL = 91; ITYCL = 4 (Double hardening) 

P1  º Peak friction angle 

P2 c MPa Cohesion 

P3  º Peak dilatancy angle 

P4 E_ref_50 MPa Reference secant stiffness 

P5 m - Power stress-level dependency of stiffness 

P6 Rf - Failure ratio 

P7 pref MPa Reference stress for stiffness 

P8 E_ref_ur MPa Unloading/reloading stiffness 

P9 A - Rate of evolution of friction angle with 
p

d
 . Required by E-DSHM 

P10 Ac - Rate of evolution of cohesion with 
p

d
 . Required by E-DSHM 

HISTORY VARIABLES: 

The CASM’s family of constitutive models (ICL = 90, 91) use the following history variables. 

Output variables can be visualized in the Post-process interface of GID. 

Model Hist_var Description Type  
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ICL = 90  

(ITYCL 1) 

General 

CASM 

model 

1 P0 (MPa): Evolution of preconsolidation pressure Input/Output 

2 F: Value of the yield function Internal 

3 e: Void ratio Internal 

4 Id_F1: Indicator of plasticity Internal 

ICL = 91  

(ITYCL 2) 

Unsaturated 

CASM 

model 

1 P0 (MPa): Evolution of preconsolidation pressure Input/Output 

2 s: Suction Output 

3 e: Void ratio Internal 

4 
Pc (MPa): Evolution of preconsolidation 

pressure due to suction 
Output 

5 
ps (MPa): Evolution of tensile strength due to 

suction 
Output 

5 F: Value of the yield function Internal 

6 Id_F1: Indicator of plasticity Internal 

ICL = 91  

(ITYCL 3) 

Cemented 

CASM 

model 

1 P0 (MPa): Evolution of preconsolidation pressure Input/Output 

2 
Pc (MPa): Evolution of preconsolidation 

pressure due to bond 
Internal 

3 
pt (MPa): Evolution of tensile strength due to 

bond 
Output 

4 b: Evolution of bonding Input/Output 

5 h: Evolution of degradation rate Output 

6 F: Value of the yield function Internal 

7 e: Void ratio Internal 

8 Id_F1: Indicator of plasticity Internal 

ICL = 91  

(ITYCL 4) 

Double 

hardening 

CASM 

model 

1 
P0 (MPa): Evolution of preconsolidation pressure 

(volumetric surface) 
Input/Output 

2 
p : Evolution of plastic shear strain  

(deviatoric surface) 
Output 

3 F1: Value of the volumetric yield function Internal 

4 F2: Value of the shear yield function Internal 

5 c: Evolution of cohesion with plastic strain Internal 

6 : Evolution of friction angle with plastic strain Internal 

7 e: Void ratio Internal 

8 
Id_F1: Indicator of plasticity (volumetric 

surface) 
Internal 

9 Id_F2: Indicator of plasticity (deviatoric surface) Internal 

The input variable (P0) is introduced as initial condition on surfaces/volumes in the conditions 

window of GiD. Void ratio (e) is computed internally as a function of porosity. 
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Hist_var 1 Po MPa Evolution of preconsolidation mean stress for 

saturated soil  

 

The evolution of some history variables can be visualized as an output in Post-process GID 

interface. 

 

Note: Effective stresses plotted in the Post-process GID interface correspond with Terzaghi's 

effective stresses for saturated conditions (ITYCL = 1, 3, 4). For ITYCL = 2 (Unsaturated 

CASM model) if the indicator iunsat (P6 of ICL = 91; ITYCL = 2) is equal to 0, net stress are 

plotted, if iunsat = 1, Bishop’s effective stresses are plotted. Stress and strain invariants follow 

the soil mechanics notation (positive for compression). 

 

_________ 
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CODE_BRIGHT. CONSTITUTIVE LAWS 

This chapter contains the different models available and the corresponding parameters required 

by each model. The following constitutive laws are available: 

 

HYDRAULIC AND 

THERMAL CONSTITUTIVE 

MODELS (a) 

RETENTION CURVE  

INTRINSIC PERMEABILITY  

LIQUID PHASE RELATIVE 

PERMEABILITY  

GAS PHASE RELATIVE 

PERMEABILITY  

DIFFUSIVE FLUXES OF MASS  

DISPERSIVE FLUXES OF 

MASS AND ENERGY  

CONDUCTIVE FLUX OF HEAT  

 

MECHANICAL CONSTITUTIVE MODELS 

 

ELASTICITY (b) 

NONLINEAR ELASTICITY (b) 

VISCOPLASTICITY FOR SALINE MATERIALS 

(b)  

VISCOPLASTICITY FOR SATURATED SOILS 

AND ROCKS (b) 

VISCOPLASTICITY - GENERAL (b) 

DAMAGE-ELASTOPLASTIC MODEL FOR 

ARGILLACEOUS ROCKS (c) 

THERMOELASTOPLASTIC MODEL FOR SOILS 

(d) 

BARCELONA EXPANSIVE MODEL FOR SOILS 

(e) 

CASM’s FAMILY MODELS (f) 

PHASE PROPERTIES (a) 

SOLID PHASE PROPERTIES 

LIQUID PHASE PROPERTIES 

GAS PHASE PROPERTIES 

EXCAVATION PROCESS (g) 
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VI.g. EXCAVATION/CONSTRUCTION PROCESS 

EXCAVATION/CONSTRUCTION 

CODES ICL = 50              ITYCL = 1 

DESCRIPTION Flag for excavation and construction process  

EQUATIONS Options: 

- Active material (default option) →  P1 = 0 

- Inactive material: material that has not yet been constructed or material 

that has been excavated →  P1 = -1 

- Construction: the material is constructed with its gravity increased 

linearly during the interval →  P1 = 1 

After the construction interval is finished, the constructed material 

automatically will be considered active in the next interval →  P1 = 0 

- Smooth excavation (P1 = 2): the material excavated becomes elastic 

and its stress is relaxed smoothly according to the following equation: 

𝜎𝑡 = 𝜎𝑡𝑖𝑚𝑒𝑖 (𝑨 − 𝑩 [
𝑡 − 𝑡𝑖𝑚𝑒𝑖

𝑡𝑖𝑚𝑒𝑓 − 𝑡𝑖𝑚𝑒𝑖
]
𝒏

) 

where:  timei = interval initial time 

             timef = interval final time 

             t = current time 

             𝜎𝑡 = stress in time t 

             𝜎𝑡𝑖𝑚𝑒𝑖 = stress at the initial time of the interval 

             A is a user-defined parameter taking values between 0 and 1 

             B is a user-defined parameter taking values between 0 and 1 

             n is a user-defined exponent 

If A = 1 (default value), then the excavated material is relaxed from its 

current stress (recommended). If A < 1, then the excavated material is 

relaxed from a lower stress level.  

If B = 1 (default value), then the excavated material is relaxed until zero 

(usual case). If B < 1, then the excavated material is relaxed until a 

stress level higher than zero (useful in some cases, like e.g. installing 

support in a 2D model after a given relaxation). 

If n = 1 (default value), then the excavated material is relaxed linearly 

(recommended), but it could also be relaxed in an accelerated (n > 1) or 

decelerated manner (n < 1) during the interval. 

After the excavation interval is finished, the excavated material 

automatically will be considered inactive in the next interval, and thus 

will not be considered in the calculation process. 

Finally, if P7 = 1, then volumetric deformation effects on hydraulics are 

neglected. As a consequence, the numerical performance of the model is 

better, especially during excavation.  
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PARAMETERS FOR ITYCL = 1 

P1 Option 

-1: material is inactive. 

0: material is active (default option). 

1: material is constructed (during the current time interval 

with gravity increasing linearly with time). After construction 

interval, P1 is set to 0 internally. 

2: material is excavated smoothly (during the current time 

interval). After excavation interval, P1 is set to -1 internally. 

P2 Properties 

IMATEQ: Material index (integer) of the material 

(previously defined) that has the same properties as the 

current one. Normally, some construction or excavation 

layers may have the same properties. 

P2 = 0, properties should be given for the current material. 

P2 = IMATEQ, properties from the material 

IMAT = IMATEQ will be copied for this material. 

P3 Smoothing exponent n May be used when P1 = 2. Default value = 1 

P4 Smoothing parameter A May be used when P1 = 2. Default value = 1 

P5 Smoothing parameter B May be used when P1 = 2. Default value = 1 

P7 M→H uncoupled 
If P7=1, then volumetric deformation effects on hydraulics 

are neglected. 

 

By default (P1 = 0), the material is active and all the parameters read are used by the 

programme. When P1 = -1, elements having the material number are not assembled.  

As an example, Figure VIg.1 show the two main steps followed in an excavation problem 

(tunnel). In the first interval time is necessary to impose the initial conditions before excavation. 

In this time interval, the material is active (P1 = 0). In the second interval time, the relaxation 

of stresses occurs due to excavation of the material, parameter P1 is equal to -1 (or alternatively 

P1=2 using the smooth excavation feature).  

 

During the excavation interval, it is necessary to impose the ambient conditions in the tunnel, 

namely, pore water pressure in equilibrium with atmospheric pressure, pore air phase in 

equilibrium with the relative humidity and temperature equilibrium. When setting these 

ambient conditions during excavation, it is recommended to use a ramp and/or a small value of 

the corresponding gamma parameter, to avoid numerical issues. 
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Figure VIg.1. Illustration of the two main steps followed during excavation problem 
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VI.h. THM DISCONTINUITIES 

Equivalent parameters for discontinuities discretized as thin elements of thickness t 

Conditions Equation for elastic parameters Other 

Normal and shear 

stiffness of the rock 

are known 

𝜈𝑑 =
𝑘𝑛 − 2𝑘𝑠
2𝑘𝑛 − 2𝑘𝑠

 

𝐸𝑑 =
(1 + 𝜈𝑑)(1 − 2𝜈𝑑)

(1 − 𝜈𝑑)
𝑘𝑛𝑡 

 

Normal and shear stiffness of 

the rock are defined as: 

∆𝜎𝑛 = 𝑘𝑛∆𝑢𝑛 

∆𝜏 = 𝑘𝑠∆𝑢𝑠 

t is the element thickness 

Shear stiffness of 

the rock (𝐺) is 

known and fracture 

does not deform in 

volume 

𝐺𝑑 = 𝑅2𝐺 

𝜈𝑑 = 0.45 

𝐸𝑑 = 2(1 + 𝜈𝑑)𝐺𝑑 

 

R is a parameter for reduction 

of strength (see below) 

 

Bulk modulus can be 

calculated as well: 

𝐾𝑑 =
2𝐺𝑑(1 + 𝜈𝑑)

3(1 − 2𝜈𝑑)
 

Discontinuity 

assumed like clay 

without swelling 

𝐾𝑑 = 𝐾 =
𝑝′(1 + 𝑒)

𝜅
 

𝐺𝑑 = 𝑅2𝐺 

 

Where 𝜅 is the elastic 

compression index in CamClay 

model 

Young and Poisson can be 

calculated as well: 

𝜈𝑑 =
3𝐾𝑑 − 2𝐺𝑑
2(3𝐾𝑑 + 𝐺𝑑)

 

 

𝐸𝑑 =
9𝐾𝑑𝐺𝑑
3𝐾𝑑 + 𝐺𝑑

 

 

Discontinuity 

assumed like clay 

without swelling 

𝐾𝑑 = 𝐾 =
𝑝′(1 + 𝑒)

𝜅
 

 

𝜈𝑑 =
1 + 𝜈 − 𝑅2(1 − 2𝜈)

2(1 + 𝜈 + 𝑅2(1 − 2𝜈))
 

 

Young and shear modulus 
can be calculated as: 

 

𝐸𝑑 = 3𝐾𝑑(1 − 2𝜈𝑑) 

𝐺𝑑 =
𝐸𝑑

2(1 + 𝜈𝑑)
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Conditions Equation for plastic parameters  

Cohesion and 

friction angle are 

known 

𝑐𝑑
′ = 𝑅𝑐′𝑠𝑜𝑖𝑙 

𝜙𝑑
′ = atan(𝑅 tan𝜙′𝑠𝑜𝑖𝑙) 

R is a reduction factor for 

strength properties 

Slope of critical state 

and cohesion term 

are known 

𝑀𝑑 = 𝑅𝑀 

𝑝𝑠𝑑 = 𝑅(𝑝𝑠0 + 𝑘𝑠) 

 

 

In general, the corresponding intrinsic permeability is easy to calculate from transmissivity, if 

this later is known. 

For soils, both intrinsic permeability and retention curve depend on porosity. If permeability 

and retention curve depend on porosity, it is sufficient to consider a larger porosity for the 

interface in order to increase permeability and reduce air entry value. The following options 

can be used: 

• Exponential equation. In the case presented here, increasing porosity of the interface 

zone by 50% may be sufficient to produce this effect. 

• Kozeny equation. It is also a function of porosity but it does not include parameters 

except a value of permeability for a given porosity.  

Other alternatives can be considered if variation should be larger (cubic law) and more 

information of the discontinuity. 
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APPENDIX II.A. ATMOSPHERIC SUBROUTINES DESCRIPTION 

Subroutine atmosferic_boundary_condition 

General description 

This subroutine is the core of the atmospheric boundary condition module. It computes 

atmospheric boundary conditions, including evaporation, rain, radiation, advective and 

convective energy fluxes. Those are expressed in terms of fluxes of water, air and energy as 

functions of the state variables (liquid pressure, gas pressure and temperature of the soil).  

Moreover, the subroutine calculates the derivatives of these three fluxes with respect to the state 

variables. Positive values always mean entering the system. Negative values always mean 

leaving the system e.g. evaporation is negative. 

It first calls get_atm_data to read atmospheric data which is stored in a matrix named 

atmosferic9 (see subroutine get_atm_data for more information on the format of this 

file). Some general parameters (like for instance dry and wet albedos) are read from FLUX, an 

argument passed to the main subroutine (which corresponds to CardGroup 20 of the problem 

data file root_gen.dat). 

It then computes water flux (through gas and liquid phases, due to evaporation and rain), air 

flux and energy flux (radiation, advective and convective energy fluxes). Optionally, it can 

write these fluxes to files depending upon the presence of surveyed nodes or not. The general 

equations for calculating these fluxes are now presented. 

Fluxes of mass 

- Flux of gas: The flux of the gas phase qg is given by the following equation, in which Pga is 

the atmospheric pressure and g is a leakage coefficient: 

( )
gaggg PPq −=     (1) 

- Flux of air: For the flux of air ja only the advective part is considered: 

( ) g

w

gg

a

ga qqj  −== 1   (2) 

- Flux of water: Evaporation E is given by an aerodynamic diffusion relation: 
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z
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
 = −

 
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  (3) 

where va and v respectively are the absolute humidity (mass of vapour per volume of gas, 

which can be calculated from relative humidity Hr and temperature) of the atmosphere and at 

the node of the boundary condition, k is the von Karman’s constant (often taken as 0.4),  is a 

stability factor, va the wind velocity, z0 is the roughness length, za is the screen height at which 

va and va are measured. In theory, v must be the value at roughness length (z0). Instead, it is 

                                                 
9Matrix atmosferic is stored in bb(n74). 
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calculated from the state variables at the node of the boundary condition. Hence, a constant 

profile for v is assumed between this node and height z0. 

 

The advective flux of vapour by the gas phase jg
w is given by: 

 

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ga

vaw
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w
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if

if




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 (4) 

where ρga is the atmospheric gas density and qg is the flux of the gas phase given by equation 

(1). 

 

Surface runoff jsr (which corresponds to the flow rate of water through the liquid phase jl
w) is 

written as: 

 
( )





=

−=

galsr

galgalwsr

PPj

PPPPj

if0

if
 (5) 

where γw is another leakage coefficient. It must be said that ponding is not explicitly simulated, 

that is, CODE_BRIGHT does not have a special element representing storage of water in a 

pond. When one assumes no ponding, a very high value for γw can be used (but not to high to 

avoid numerical instabilities). Then, if the soil is saturated (Pl  > Pga) all rainfall that cannot 

infiltrate will runoff. 

 

The flux of water jw is the sum of rainfall P, evaporation E and advective flux of vapour gas 

phase jg
w and of surface runoff jsr: 

 sr

w

gevaprainw jjEkPkj +++=  (6) 

where coefficients krain and kevap are input data passed through FLUX and may be used to disable 

their respective flux. 

 

 

 

Flux of energy 

- Radiation 

Several options are available to evaluate radiation –using ISUN which is passed to the 

subroutine by FLUX(19)–: 0 for horizontal plane, 1 for vertical cylinder,  2 for measured sun 

radiation (only short wave radiation is considered), 3 for measured net radiation (short + long 

wavelength radiations), 4 for measured atmospheric and solar radiation and 5 for measured sun 

radiation (long and short wave radiations are considered). SUN subroutine is called only10 if 

ISUN is lower or equal to 1. 

                                                 
10 For other cases (ISUN = 2, 3, 4 or 5), RAD_DIR is set to values read from root_atm.dat by 
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The radiation Rn can be given as a measured data or it can be calculated, depending on the value 

of ISUN: 

{
 

 
𝑅𝑛 = (1 − 𝐴𝑙)𝑅𝑠 + 𝑅𝑎 − 𝜀𝜎𝑇

4              If ISUN ≤ 1 
  𝑅𝑛 = 𝑅𝑚                                                 If ISUN = 2 or 3

𝑅𝑛 = (1 − 𝐴𝑙)𝑅𝑚 + 𝑅𝑙 − 𝜀𝜎𝑇
4              If  ISUN = 4

𝑅𝑛 = (1 − 𝐴𝑙)𝑅𝑚 + 𝑅𝑎 − 𝜀𝜎𝑇
4             If  ISUN = 5

         (7) 

where Rs is the direct solar short wave radiation, Ra is the long wave atmospheric radiation, Al 

is the albedo, ε is the atmospheric emissivity, σ is the Stefan-Boltzman constant (5.67×10-8 J s-

1 m-2 K-4) Rm represents the values of measured radiation (net or solar according to the radiation 

type) and Rl represents the values of measured atmosferic radiation (log wave). Rm and Rl are 

read from file root_atm.dat by subroutine get_atm_data. 

Both the albedo and emissivity are considered function of the liquid saturation Sl: 

 ( )( )llwddl SSAAAA 2
2

−−+=  (8) 

 lS05.09.0 +=  (9) 

where Ad and Aw are the dry and wet albedos. 

The long wave atmospheric radiation Ra depends on the atmospheric temperature and absolute 

humidity according to an empirical relation: 

 ( )
vaaa TR  1370048.0605.0

4
+=  (10) 

The calculation of the solar radiation Rs depends on the value of ISUN. Only the case of a 

horizontal surface (ISUN=0) will be presented here. Rs for horizontal surface is simplified by: 

{
𝑅𝑠,ℎ𝑜𝑟 = 𝑆0𝑓𝑒𝜏𝑎(cos 𝛿 cos 𝜆 cos 𝜃 + sin 𝛿 sin 𝜆)     𝑖𝑓 𝑆𝑢𝑝 > 0

𝑅𝑠,ℎ𝑜𝑟 = 0                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (11) 

Where, a is the atmospheric transmissivity,  the latitude, S0 the sun costant (=1367 J m-2 S-1), 

fe the correction factor related to the eccentricity of the earth’s orbit,  the earth declination and 

 the solar angle.   

fe can be calculated from (Allen et all., 1998) as: 

𝑓𝑒 = 1 + 0.033 cos (
𝑡−𝑡𝑝ℎ

𝑑𝑎
)                                                    (12) 

where, da is the year duration (= 365.241 days = 3.15568×107 s), tph is the time at perihelion 

(January 3d)  

 

The sun declination (δ) is the angle between the direction of the sun and the equator. It can be 

calculated by a yearly sinusoidal function: 

𝛿 = 𝛿𝑚𝑎𝑥 sin (2𝜋
𝑡−𝑡𝑠

𝑑𝑎
)                                                    (13) 

where max is the maximum sun declination (= 0.4119 rad = 23.26°), ts is time at September 

equinox (September 21st for the northern hemisphere). 

                                                 

subroutine get_atm_data. 
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The solar angle (θ) describes the circular movement of the sun during a day. It equals 0, when 

the sun is at its zenith and can be estimated as: 

𝜃 =
𝑡−𝑡𝑚−𝑡𝑐

𝑑𝑑
2𝜋                                                    (14) 

where, tm is the time at noon for an arbitrary day, dd is the day duration (= 86400 s) and tc is the 

equation of time, used to correct the variations on the hour of zenith during the year, and defined 

as: 

 𝑡𝑐 =
𝛿𝑚𝑎𝑥𝑑𝑑

8𝜋
sin (

𝑡−𝑡𝑠

𝑑𝑎
4𝜋) −

𝑒𝑑𝑑

𝜋
sin (

𝑡−𝑡𝑝ℎ

𝑑𝑎
2𝜋)                             (15) 

where, e is the eccentricity to the earth’s orbit (=0.0167)  

Subequations 2 to 5 in Eq. (7) use data read from root_atm.dat file. ISUN=2 suppose that only 

radiation considered is measured solar radiation (short wave), ISUN=3, assumes that measured 

data corresponds to net radiation (short + long wave length i.e. solar + atmospheric – surface), 

ISUN=4, considers that data available are solar radiation (Rm in root_atm.data file) and 

atmospheric radiation (Rl in root_atm.data file), while ISUN=5 considers that only data 

available are solar radiation (short wave length, Rm in root_atm.data file) 

Solar radiation (short wave) is measured or calculate on a horizontal surface, when an inclined 

surface is considered this value must be corrected. The atmosphere scatters the sunlight, so the 

surface receives part of the sun radiation directly from the sun and another part in a diffusive 

form. An inclined surface in the shade does not receive the direct part but only the diffusive 

solar radiarion.  

Therefore, for an inclined surface the real solar radiation perceived can be obtained by the next 

expression: 

𝑅𝑠 = 𝑅𝑠,ℎ𝑜𝑟 [(1 − 𝑓𝑑𝑖𝑓)
max (𝑃𝑇𝑠,0)

𝑆𝑢𝑝
+ 𝑓𝑑𝑖𝑓]                                        (16) 

where, Rs,hor is the solar radiation on a horizontal surface (measured or calculated),  fdif  the 

fraction of diffusive solar radiation over the total solar radiation, defined as: 

𝑓𝑑𝑖𝑓 = 
1

1+exp (8.6𝜏𝑎−5)
                                                       (17) 

Vectors P and S, are unitary length vectors that define the position of Sun and Zenith. P is 

orthogonal to the earth surface pointing outwars and S points to the Sun, they are defined as 

follows: 

𝑃 = (

𝑃𝑒𝑎𝑠𝑡
𝑃𝑛𝑜𝑟𝑡ℎ
𝑃𝑢𝑝

) = (−

cos𝛼 sin 𝛽
sin 𝛼 sin 𝛽
cos 𝛽

)                                    (18) 

𝑆 = (

𝑆𝑒𝑎𝑠𝑡
𝑆𝑛𝑜𝑟𝑡ℎ
𝑆𝑢𝑝

) = (
cos 𝛿 sin 𝜃

sin 𝛿 cos 𝜆 − cos 𝜃 cos 𝛿 sin 𝜆
cos 𝛿 cos 𝜆 cos 𝜃 + sin 𝛿 sin 𝜆

)                   (19) 

 

where,  and  are the surface strike and dip, respectively The product of both vectors (PTS) 

equals the cosine of the angle between them. For horizontal surface ( =0) the vector 

PT=(0,0,1) and PTS = Sup. At night Sup < 0, at daylight Sup > 0 and during the sunrise and 

sunset Sup = 0.  
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- Advective energy flux 

The sensible heat flux Hs is, like evaporation, calculated through an aerodynamic diffusion 

relation:  

 ( )
2

2

0

a

z
ln

z

a

s ga a a

k v
H C T T


= −

 
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 (20) 

where Ca is the specific heat of the gas. 

 

- Convective energy flux 

The convective or latent heat flux Hc is calculated taking into account the internal energy of 

liquid water, vapour and air: 

 ( ) ( ) aa

l

wla

g

wvc jhjPhjEhH 0++++=  (21) 

where hv, hla and ha0 are the free energy of vapour, liquid water and air, respectively. These 

three properties depend on the temperature: temperatures used are the temperature at the node 

of the boundary for hv, and ha0 and the dew point temperature, which depends on the 

atmospheric vapour pressure, for hla. 

 

- Total energy flux 

The total energy flux je thus writes as follows: 

 csnrade HHRkj ++=  (22) 

where krad is an input parameter passed through FLUX and may be used to disable radiation 

flux. 

 

Results output 

If values are surveyed at a given node, the following variables are written to files 

200+nodout: t+t, P, E, jw
g, jw

l, jw, ja, Rn, Hs, Hc, je. 

 

Subroutine get_atm_data 

This subroutine computes atmospheric data at time t+dt either by simulation or by interpolation 

of input data. In both cases, returned values are summarized in Table II.2.8. This table also 

mentions implemented names for these variables and columns concerned in the matrix 

atmosferic, where all data needed for simulations or interpolations are stored. 

Two options can be used to compute atmospheric data: interpolation and simulation. 

Interpolation uses a simple linear interpolation of the specified parameters versus time. 

Simulation uses the following sinusoidal expression: 
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where x is the value of the parameter, xm is its mean value, aa is its annual amplitude, ad its daily 

amplitude, ta is the start of the annual variation, td is the start of the daily variation, da is the 

duration of a year and dd is the duration of a day (= 86400 s). 

Table II.2.8: Atmospheric data taken into account in the boundary conditions module. 

Atmospheric variable Unit Implemented name Columns used 

Atmospheric temperature, Ta °C TEMP_ATM 1 – 2 

Atmospheric gas pressure, Pga MPa PG_ATM 3 – 4 

Relative humidity, Hr – RELHUM 5 – 6 

Solar radiation, Rn J/m²/s RAD_DIR 7 – 8 

Insolation fractions, In – FRACINS 9 – 10 

Rain, P kg/m²/s RAIN 11 – 12 

Wind velocity, va m/s WIND 13 – 14 

Matrix atmosferic is read from file root_atm.dat (or root_atm.inp) which index is iin3  

=103. This file is opened by read_assign_files subroutine (read_grid.f) and read by 

read_atm_bc (read_general.f) subroutine which assigns atmosferic its values and is 

called by main_initialize (code_bright_main.f). 

Note that atmosferic dimensions also are read from iin3 and that this instruction is present 

in read_assign_dim_opt_2 (code_bright_main.f). 

Data simulation 

If a simulation is performed, a sinus shape function with annual and daily variations is used. 

The daily variation is only taken into account if the time increment is lower than one day. Input 

data (for each variable) needed for each variable is (Unit represents the unit given in Table 

II.2.8): 

• annual mean (Unit), xm,  
• annual amplitude (Unit), xa,  
• annual gap (s), ta,  
• daily amplitude (Unit), xd, 
• daily gap (s), td. 

For a given variable, the simulated value a time t+dt is obtained according to the following 

relation11: 

                                                 
11 This expression cancels out daily variations if the time increment dt is higher than dd, 

duration of one day. 
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Figure II.2.6 and Figure II.2.7 show the simulation of the annual variation of an atmospheric 

variable (case of temperature). 

Data interpolation 

Interpolation concerns all available data for discrete times ti satisfying t < ti+1 and t + dt > ti 

until condition t + dt < ti+1 is satisfied. If code time t is lower (resp. bigger) than lowest (resp. 

highest) discrete time, the subroutine is stopped. 

 

 

Figure II.2.6: Simulation of annual variation of an atmospheric variable (case of temperature). 
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Figure II.2.7: Simulation of annual variation of an atmospheric variable (case of temperature; 

close view). 

Subroutine SUN 

This routine calculates the direct solar radiation. Calculation type (ISUN) is passed through 

FLUX vector in atmosferic_boundary_condition. The different values for ISUN 

that imply a call to SUN subroutine are: 

• 0 -  horizontal plane, 

• 1 - vertical cylinder. 

However, ISUN=0 is the unique option proposed in the manual of Retraso. 

This calculation takes into account sun distance and declination (function of date from 1st 

January), solar day duration (function of latitude and declination). All this data together with 

insolation fraction allow computing daily radiation (equations where presented in section 0). 

If time increment is bigger than a day, direct radiation directly uses daily radiation. Otherwise, 

time with respect to night is taken into account and the direct radiation is calculated. 

Figure II.2.8 shows the simulated daily radiation versus time in both cases. 
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Figure II.2.8: Daily radiation as a function of time according to ISUN option. 
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APPENDIX III.A. GENERAL INFORMATION FILE: ROOT_GEN.DAT 

Card 1. Problem 

Variables: HEAD 

Format: (A40): Fixed format 

-999: Free format 

Card 2. Dimensions and options 

Variables: NUMNP, NUMEL, NDIM, IAXISYM, NUMMAT, NHV 

Format: (10I5). It is not required if free format is used 

NUMNP: Number of nodes 

NUMEL: Number of elements 

NDIM: Space dimensions (1,2,3) 

IAXISYM: Axisymmetric option: 0-no axisymmetry, 1-yes (around y-axis),  

• NDIM=2. The principal stresses are: r  (radial), y  (axial),   (circunferential) 
• NDIM=1. The principal stresses are: r  (radial),   (circumferential), z  (axial) 

NUMMAT: Number of materials 

NHV: Number of history variables (depends on the type of mechanical constitutive 

model used).  This variable is checked internally. 

Card 3. Dimensions and options 

Variables: NZ1, NZ2, MFRONTH, NDF, MNVAL, ISOLVE  

Format: (10I5). It is not required if free format is used 

NZ1:  = MXDIFN: maximum difference between connected nodes, this variable 

is read for dimensioning purposes. The node numeration of the grid is 

assumed to have been optimised in order to reduce the matrix band width. 

If  =  = 0 are used in a non-mechanical problem, then MXDIFN can be 

0 because a quasi-explicit approximation will be used, i.e. only a NDF-

diagonal matrix is solved which contains derivatives of the storage terms. 

(See below for NZ = NZ1 * NZ2). 

NZ2:  = MBANDT: total band width (geometrical for 1 variable), (MBANDT = 

2 (MXDIFN+1) - 1, the user should provide a value but the code checks 

this value. So this entry is redundant. 

NZ= 

NZ1*NZ2: 

Used only for ISOLVE = 5. It is the number of nonzero-blocks in the 

jacobian (i.e. the number of nonzeros for NDF = 1). This variable is 

computed as NZ = NZ1*NZ2. Since this variable is checked internally, if 

the number of nonzeros is not known a priori, a guess can be used and the 

code automatically checks its validity. Otherwise, the required value is 

output. 

MFRONTH: void 

NDF: Number of degrees of freedom per node. For instance a 2-dimension 

thermomechanical analysis requires NDF = 3. 

MNVAL: Maximum number of integration points in an element (default = 1). For a 

two-dimensional analysis with some (not necessarily all) quadrilateral 

elements, MNVAL = 4. For a three-dimensional analysis with some (not 

necessarily all) quadrilateral prism elements, MNVAL = 8. 
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ISOLVE: Solve the system of equations according to different algorithms.  

 ISOLVE = 3: LU decomposition + backsubstitution (NAG 

subroutines, fonts available). Recommended option for direct solution. 

 ISOLVE = 5: Sparse storage + CGS (conjugate gradients squared).  

 

 

Card 4. Dimension boundary conditions 

Variables: NFDTYPE, NFLUXTYPE  

Format: (5I5). It is not required if free format is used 

NFDTYPE: Number of prescribed force/displacement boundary condition types.  

NFDTYPE <= NUMNP because the maximum types that can be 

defined is limited by one per node.  

If IOPTDISPL > 0 then NFDTYPE >= 1. 

NFLUXTYPE: Number of flux boundary condition types. NFLUXTYPE <= NUMNP. 

Boundary conditions for mass and energy balance problems are 

grouped in a single type due to practical reasons. See Cards 17 to 20 

for information about the form of boundary conditions. 

Boundary conditions can be applied at all nodes, even in the internal nodes. 

Card 5. Options. Unknowns to be calculated. 

Variables: IOPTDISPL, IOPTPL, IOPTPG, IOPTTEMP, IOPTXWS 

Format: (10I5). It is not required if free format is used 

IOPTDISPL: = 1,  solving for NDIM displacements (ux,uy,uz) 

IOPTPL: = 1,  solving for liquid pressure (Pl) (see IOPTPC) 

IOPTPG: = 1,  solving for gas pressure (Pg) 

IOPTTEMP: = 1,  solving for temperature (T) 

IOPTXWS: = 2,  solving for a solute in liquid phase (c) 

 

Card 6. Other options. 

Variables: IOPTXHL, IUPDPOR, IOPTXWG, IOPTXAL, IOPTPC, IOPTHYS, IUPDC   

Format: (10I5). It is not required if free format is used 

IOPTXHL: = 1, halite is soluble in liquid phase. l
h (the mass fraction of salt in liquid) is 

non-zero and considered a dependent variable on temperature. For isothermal 

problems this option is not very relevant because solubility has only been 

considered a function of temperature and not on pressure, however IOPTXHL = 

1 can still be used in order that the liquid phase is considered a saturated brine 

instead of pure water. In this case, properties of liquid phase are computed 

according to the concentration obtained as a function of TCONS (Card 8) 

IUPDPOR: = 1, porosity is updated including not only volumetric strain, but also 

dissolution/precipitation (see IOPTXHL). 

If IUPDPOR = 0 and IOPTXHL is non zero a warning message is given because 

variations of porosity caused by other than deformation will be neglected. 

IUPDPOR = 1 only makes sense for IOPTXHL = 1. 



204 

IOPTXWG: = 1, water vapour is NOT permitted even if the problem is non-isothermal and 

unsaturated. If IOPTXWG = 0, water vapour is permitted and its concentration 

computed through psychrometric law, vapour pressure and gases law. 

Using IOPTXWG = 1 (i.e. vapour concentration is not computed) is convenient 

when the problem is nonisothermal but the whole medium will remain saturated 

during the entire simulation. 

IOPTXAL: = 1, air dissolved is NOT permitted even if the problem is two phase (liquid and 

gas) flow. If IOPTXAL = 0, air dissolved is permitted and its concentration 

computed through Henry's law. 

IOPTPC: index to modify some aspects related to capillary pressure, saturation and 

relative permeability. 

IOPTPC = 0, Sl-element is computed as a function of the capillary pressure Pg-

Pl-element. (Consistent approximation, not recommended).  

IOPTPC = -1, Sl -element is computed by averaging Sl -nodal values.  krl-element 

and krg-element are computed as a function of Sl-element (recommended option). 

IOPTPC = -2, krl-element and krg-element are computed by averaging nodal 

values of relative permeabilites. 

IOPTPC = -3, krl-element and krg-element are computed by averaging nodal 

values. Derivatives of relative permeabilities are also averaged.   

IOPTPC = -4, krl-element and krg-element are set equal to the maximum nodal 

value.  

IOPTPC = 1: capillary pressure is used (Pc = Pg - Pl) as state variable instead of 

Pl. If IOPTPC = 1 then it is necessary to use IOPTXAL = 1 and IOPTXWG = 1, 

and IOPTDISPL = 0 and IOPTTEMP = 0. That is, IOPTPC = 1 is only available 

for two phase immiscible fluids. 

IOPTHYS: = 1: option for hysteretic behaviour of retention curve (currently not available). 

IUPDC: = 1: updated lagrangian method, i.e., co-ordinates are modified after each time 

increment is solved. If deformations are very large, some elements may distort. 

If distortion is very large the volume of an element may become negative and 

the execution would terminate immediately. 

Remarks: vapour and air dissolved are considered automatically depending on options in Card 

5. However, if for any reason they want not to be considered, then the auxiliary indexes 

IOPTXWG = 1 or IOPTXAL = 1 can be used.  

 

Card 7. Flags. Auxiliary options. 

Variables: IFLAG1, IFLAG2, IFLAG3, IFLAG4, IGLAG5 

Format: (10I5). It is not required if free format is used 

IFLAG1: 0 

IFLAG2: 0 

IFLAG3: 0 

IFLAG4: 0 

IFLAG5:  0 

These options have been introduced for programming purposes. In general users should not use 

them.  
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Card 8. Constants. 

Variables: EPSILON, THETA, PGCONS, TCONS, PLCONS 

Format: (6F10.0). It is not required if free format is used 

EPSILON: Position of intermediate time tk+ for matrix evaluation, i.e. the point where 

the non-linear functions are computed.  (frequent values: 0.5, 1) 

THETA: Position of intermediate time tk+ for vector evaluation, i.e. the point where 

the equation is accomplished.  (frequent values: 0.5, 1) 

PGCONS: Constant gas phase pressure for solving with IOPTPG = 0, otherwise 

ignored. (frequent value: 0.1 MPa = atmospheric pressure). 

TCONS: Constant temperature for solving with IOPTTEMP = 0, otherwise this 

value is ignored.  

PLCONS: Constant liquid phase pressure for solving with IOPTPL = 0, otherwise 

ignored. (if PLCONS is greater than -1.0 x 1010 then wet conditions are 

assumed for computing viscous coefficients in creep laws. (Otherwise the 

medium is considered dry.) 

 

Card 9. Void. 

This line should be left blank. 

 

Card 10. Options. 

Variables: IOWIT, INTER, ITERMAX, IOWCONTOURS, ITERMAXS, ITIME, 

IMBACKUP, IWRALL, IPOLYFILES 

Format: (10I5). It is not required if free format is used 

IOWIT: Iteration information is written in file ROOT_GEN.OUT according 

to: 

IOWIT = 0, no information about convergence is written. This 

option should be used if the user is very confident with the time 

discretization and not interested in details at every time step or 

problems with time increment reductions. Usually this happens 

when previous runs have shown that convergence and time 

discretization work very well.  

IOWIT = 1, partial information is written. Time intervals and 

time-values, number of iterations, CPU-time values, etc. are 

written. Convergence information is only written if time 

increment reductions take place.   

IOWIT = 2, all iteration information is written. Convergence 

information is written for all iterations and all time increments. 

This option may result in a very large file ROOT_GEN.OUT 

INTER: Writing results frequency in ROOT_OUT.OUT or in 

ROOT.FLAVIA.RES. For instance, if INTER = 20 results will be 
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written only every 20 time increments, results at intermediate points 

will be lost, except the values at few nodes or elements that may be 

requested in the ROOT_GRI.DAT file (see below). 

ITERMAX: Maximum number of iterations per time increment 

IOWCONTOURS: Option for writing results in files GID post processor.  

IOWCONTOURS = 2 then files of nodal values for GiD are 

generated. These are ROOT.flavia.dat and ROOT.flavia.res.  

IOWCONTOURS = 5 or 6 then files for new GiD output (nodal 

variables at nodes, Gauss point variables at Gauss points without 

smoothing) are generated. These are ROOT.post.msh and 

ROOT.post.res. If IOWCONTOURS = 5, only one Gauss point of 

each element is printed (average value). IF IOWCONTOURS = 6, all 

Gauss points are printed for all elements. 

ITERMAXS: Maximum number of iterations for the solver, i.e. for Conjugate 

Gradients Squared solution (this variable is only required for ISOLVE 

= 5). 

 

ITIME (see table): 0 No time step prediction 

1 Time step prediction according to a limit of 4 iterations. 

2 Time step prediction according to a limit of 3 iterations. 

3 Time step prediction according to a limit of 2 iterations. 

4 Time step prediction according to a limit of 1 iteration. 

6 A new time step is predicted from the relative error in variables of 

the previous time increment. If this relative error is lower than dtol 

= 0.01, time increment is reduced according to error deviation. 

7 The same as 6, but with dtol = 0.001. 

8 The same as 6, but with dtol = 0.0001. 

9 The same as 6, but with dtol = 0.00001. 

ITIME = 0 
TIME STEP FACTOR IS 1.4 ALWAYS 

DTIMEC is the upper bound of time step 

NUMBER OF NR ITERATIONS AS A MEASURE OF ERROR 

ITIME = 1 

0.25
4

0.5f
iter

 
=  

 
 

ITIME = 2 

0.25
3

0.5f
iter

 
=  

 
 

ITIME = 3 

0.25
2

0.5f
iter

 
=  

 
 

ITIME = 4 

0.25
1

1.05 0.5f
iter

 
=  

 
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RELATIVE ERROR CONTROL 

First Order Approach         
0.5

0.1 0.8
DTOL

f pdfmax
error

 
 =  

 
 

ITIME = 6 DTOL = 0.01 

ITIME = 7 DTOL = 0.001 

ITIME = 8 DTOL = 0.0001 

ITIME = 9 DTOL = 0.00001 

In the upper Table, f is the factor for time step reduction and pdfmax 

is set to 1.4. 
 

IMBACKUP: 0 No Backup. 

1 Backup only for the last time step. 

2 Backup for all time steps. 

IWRALL: 1   Write all information for output. 

0   Write partial information for output. 

IPLOYFILES: 1   Write in separated output files (select variables in output 

window). Two files are generated by each variable selected:  

     ROOT_variable.post.msh and  ROOT_variable.post.res   

0   If IWRALL = 1 

CardGroup 11. Convergence parameters 

Variables: 

Displacements:  DELMXU, FACU, DELFMX, DUMX       

 (Omit this line if IOPTDISPL = 0)       

Liquid pressure:  DELMXPL, FACPL, DELQWMX, DPLMX       

 (Omit this line if IOPTPL = 0)  

Gas pressure:  DELMXPG, FACPG, DELQAMX, DPGMX       

 (Omit this line if IOPTPG = 0) 

Temperature:  DELMXT, FACT, DELQMX, DTMX      

 (Omit this line if IOPTTEMP = 0)    

Inclusions conc.:  DELMXI, FACI, DELIMX, DIMX      

  (Omit this line if IOPTXWS = 0)  

Format: (5F10.0). It is not required if free format is used 

 

Each computed unknown requires a line with its associated parameters. In this way each 

equation has different tolerances. If IOPTDISPL = 1, only one line with DELMXU, FACU, 

DELFMX, DUMX should be read regardless whether the problem is one, two or three 

dimensional.  

 

DELMXU: Maximum (absolute) displacement error tolerance (m). When correction of 

displacements (displacement difference between two iterations) is lower than 

DELMXU, convergence has been achieved. 

FACU: Maximum (relative) displacement error tolerance (-).When correction of 

displacements (displacement difference between two iterations) divided by 
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displacement variation during the time interval is lower than FACU, 

convergence has been achieved. 

These two conditions (DELMXU and FACU should be satisfied 

simultaneously. If one of them is not desired, a large value of DELMXU or 

FACU can be used. 

DELFMX: Maximum nodal force balance error tolerance (MN). If the residual of forces 

in all nodes is lower than DELFMX, convergence has been achieved. 

DUMX: Maximum displacement correction per iteration (m) (time increment is reduced 

if necessary). If correction of displacements (displacement difference between 

two iterations) is greater than DUMX then, time increment will be reduced until 

this condition is satisfied. For lower values of DUMX the time step used for 

the calculations will be small. For larger values of DUMX time step may be 

larger but errors will increase and convergence problems may appear. 

DELMXPL: Maximum (absolute) liquid pressure error tolerance (Mpa) 

FACPL: Maximum (relative) liquid pressure error tolerance (-) 

DELQWMX: Maximum  nodal water mass balance error tolerance (kg/s) 

DPLMX: Maximum liquid pressure correction per iteration (MPa) (time increment is 

reduced if necessary) 

DELMXPG: Maximum (absolute) gas pressure error tolerance (MPa) 

FACPG: Maximum (relative) gas pressure error tolerance (-) 

DELQAMX: Maximum  nodal air mass balance error tolerance (kg/s) 

DPGMX: Maximum gas pressure correction per iteration (MPa) (time increment is 

reduced if necessary). 

DELMXT: Maximum (absolute) temperature error tolerance (oC) 

FACT: Maximum (relative) temperature error tolerance (-) 

DELEMX: Maximum nodal energy balance  error tolerance (J/s) 

DTMX: Maximum temperature correction per iteration (oC) (time increment is reduced 

if necessary). 

DELMXI: Maximum (absolute) water in inclusion mass fraction error tolerance (-) 

FACI: Maximum (relative) water in inclusion mass fraction error tolerance (-) 

DELIMX: Maximum nodal inclusions balance  error tolerance (kg/s) 

DIMX: Maximum  mass fraction in solid correction per iteration (-) (time increment is 

reduced if necessary) 

 

Relative error is defined as the ratio between variable correction (x) and variable increment 

(x).  

Convergence criteria are as follows (only convergence on the equation of energy balance is 

illustrated, but the same applies for the other equations): 

If (T < DELMXT + FACT.T) for all nodes, then convergence has been achieved (condition 

A). T is the value of the variable temperature. 

If (qh < DELEMX) for all nodes (qh represents here the energy balance or residual in a node), 

then convergence has been achieved (condition B).  
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It should be mentioned that convergence in terms of T and convergence in terms of qh should 

be reached simultaneously because the Newton - Raphson is used. For this reason the program 

stops the iteration process and looks for another time step when one of the two conditions (A 

or B) is achieved. For instance if the user decides that convergence should be imposed because 

the residual has reached a tolerance then, DELMXT and FACT should be set to very low values.  

When more than one degree of freedom is solved per node and the last option is used, 

convergence in terms of variable or residual should be achieved by all the variables 

simultaneously. In other words, it is not possible that the mechanical problem converges by 

residual and the thermal converges by the variable. 

If (T > DTMX), time increment will be reduced. This parameter controls the accuracy of the 

solution in terms of how large can be the time increments. A low value of DTMX will force to 

small time increments when large variations of temperature take place. 

Usually, it is difficult to guess the values of the tolerances that should be used in a problem. 

The convergence criterion in terms of absolute terms is linked with the unknowns, and hence it 

also depends on the range of variation of the variable. In this case the user decides the degree 

of accuracy that is needed for each variable. The tolerances in relative terms are usually larger 

than the values for absolute.  

Finally, the tolerance values for residual convergence are more difficult to guess because 'a 

priori' it is difficult to know the values of forces or flows equilibrating at nodes. Again the user 

should reach a compromise between a very strict value and a less severe condition. 

Convergence parameters for Conjugate Gradients Squared method of solution (Omit this 

CARD if ISOLVE is not equal to 5). 

Variables:  DXS,DRS,DRSREL 

Format: (5F10.0). It is not required if free format is used 

This Card is only required for ISOLVE=5. 

DXS:  Maximum abs. correction for solver (usually a very low value) 

DRS: Maximum abs. residual for solver (< min(DELFMX, DELQWMX, DELQAMX, 

DTMX, DELIMX)) assuming all them > 0 

DRSREL: Maximum relative residual for solver. The solver residual is normalised with the 

RHS of the system of equations to be solved. 

This group of Cards ends with '   -1' (forma I5).  

Card 12. Gravity  

Variables: GRAVITY(1), ..., GRAVITY(NDIM) 

Format: (3F10.0). It is not required if free format is used. 

GRAVITY(NDIM):  gravity vector (m/s2), usually (0,0,-9.81) for three dimensions, (0,-9.81) 

for two dimensions and (-9.81) for one dimension.   

The following group of Cards, beginning with time interval definition can be repeated several 

times to define intervals with different material properties and/or boundary conditions. For the 

first interval all information should be read and for the subsequent intervals only modifications 

are required.  
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Card 13. Interval time variables  

Variables: TIMEI, DTIME, TIME1, DTIMEC, TIMEF, FACTTIME  

Format: (5F10.0), It is not required if free format is used 

TIMEI: Initial time. If TIMEI is not equal to final time of the last increment (TIME), 

then it is assumed TIMEI = TIME. Exception is made if TIMEI = 0.0, in which 

case, 0.0 is kept as a new origin of times. 

DTIME: Initial time increment for each time interval. If DTIME = 0, last DTIME value 

is used or, if it is the first time increment of the calculation, a small value is 

considered. 

TIME1: Time from which an upper bound is prescribed for the time increment.  

If TIME1 = 0, then TIME1 is considered equal to TIMEI (the upper bound is 

prescribed during all the time step). 

DTIMEC: Upper bound value for the time increment used from TIME1 to TIMEF.  

If found to be equal to zero, no maximum time increment value is prescribed. 

TIMEF: Final time. 

FACTTIME: Factor for converting seconds (input time units) into another output time units. 

(Example: FACTTIME = 86400. for output in days). 

Time increments during time step [TIMEI1, TIMEF] are adapted by the code according to flag 

control ITIME (see Card 10). This may cause inconveniences if the user desires the results at 

precisely fixed times (for instance: 6 months, 1 year, 2 year, etc.). However, this could be solved 

using a negative ‘writing frequency’ (see section II.2.1).  

Moreover, if something changes between two runs (e.g. boundary conditions) and any time 

increment should be modified, the value of the times in which results are output will not be 

identical between the two runs. In this case, it would be difficult to make a comparison of the 

two analyses because we would not have the same times for output.  

A first way to overcome this inconvenience is to prescribe an upper bound for the time 

increment, reflected in the variable DTIMEC. If convergence requires time increments smaller 

than DTIMEC, time increment is reduced. But, if convergence is easy and the current time 

increment becomes higher than DTIMEC, it is fixed to DTIMEC. Variable TIME1 allows for 

setting an intermediate time between TIMEI and TIMEF from which the upper bound for the 

increment becomes active, as represented below: 

 

 

 

 

 

Another way to set fixed times for output results is to use a sequence of Cards number 13 

separated by two (only flow or only mechanical problem) or three (flow and mechanical 

problem) lines with '-1' (format I5) indicating that nothing changes in the new time interval, 

except the time discretization. In this way, results will be output for all TIMEF's, and if the user 

is only interested in these fixed times a very large value may be used for INTER (see Card 10) 

to avoid output at other times.  

 TIME TIME1 TIMEF 

Variable DTIME DTIMEDTIMEC 
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Example: 

-1 indicates no change in material properties 

-1 indicates no change in mechanical boundary conditions 

-1 indicates no change in flow boundary conditions 

350000. 0.0 0.0 10000. 360000. 86400. 

-1 indicates no change in material properties 

-1 indicates no change in mechanical boundary conditions 

-1 indicates no change in flow boundary conditions 

360000. 0.0 0.0 10000. 370000. 86400. 

-1 indicates no change in material properties 

-1 indicates no change in mechanical boundary conditions 

-1 indicates no change in flow boundary conditions 

In this case for the times 350000, 360000 and 370000 the results would be written. Time step 

in this case would be lesser or equal than 10000.  

It is is possible to define at the beginning of the calculation a step for equilibration of the initial 

stress state. This is done by defining a time step starting from a negative value (TIMEI <0) and 

ending at 0 (TIMEF = 0). During this step, gravity is applied as a ramp. Greater is time step 

(TIMEF – TIMEMAX), smoother is the gravity ramp. 

Card 14. Number of material 

Variables: IMAT       

Format: (I5). It is not required if free format is used 

IMAT:  index of material (<= NUMMAT)  

(if '-1' (format I5) is read, no more materials are read, and hence, parameters will be zero (or 

default values when defined) or the value read in a former time interval) 

Card 15. Number and name of constitutive law  

Variables: ICL, TIT, ITYCL      

Format: (I5, A20; I5). It is not required if free format is used 

ICL:  index of constitutive law  (if '-1' (format I5) is read, no more constitutive laws 

are read for this material). Each process considered needs one or more ICL's.  

TIT:  text to identify (by the user) the constitutive law (ex: Retention curve), this text 

will be reproduced on output only for the user reference but will not be used by 

the program.   

ITYCL:  type of constitutive law. For each value of ICL several relationships (different 

values of ITYCL) may be available.  
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CardGroup 16. Parameters constitutive law  

Variables: TIT, PARCL(1,ICL,IMAT)=P1, TIT, PARCL(6,ICL,IMAT)=P6    

TIT, PARCL(2,ICL,IMAT)=P2, TIT, PARCL(7,ICL,IMAT)=P7         

TIT, PARCL(3,ICL,IMAT)=P3, TIT, PARCL(8,ICL,IMAT)=P8       

TIT, PARCL(4,ICL,IMAT)=P4, TIT, PARCL(9,ICL,IMAT)=P9            

TIT, PARCL(5,ICL,IMAT)=P5, TIT, PARCL(10,ICL,IMAT)=P10         

Format: (A20, F10.0, A20, F10.0) . It is not required if free format is used 

TIT: text to identify (by the user) the parameter (ex: Young 

modulus (E)), this text will be reproduced on output only 

for user reference but will not be used by the program 

PARCL(MNP,NCL,NUMM

AT): 

parameters of constitutive laws (MNP=10, NCL is the 

maximum number of existing constitutive laws) 

The matrix PARCL(MNP,NCL,NUMMAT) contains all information of parameters for the 

constitutive laws. A maximum of 10 parameters for each constitutive law is considered. These 

parameters are read in 2 columns, i.e., 5 lines are required to read each PARCL as indicated 

above. This is represented as: 

Text Parameter 1 Value for P1 Text Parameter 6 Value for P6 

Text Parameter 2 Value for P2 Text Parameter 7 Value for P7 

Text Parameter 3 Value for P3 Text Parameter 8 Value for P8 

Text Parameter 4 Value for P4 Text Parameter 9 Value for P9 

Text Parameter 5 Value for P5 Text Parameter 10 Value for P10 

A20 F10.0 A20 F10.0 

Card 17. Type of Boundary Condition (Mechanical Problem) 

Variables: IF      

Format: (I5) . It is not required if free format is used 

(Omit Card 17 if IOPTDISPL=0) 

IF:  index of boundary condition (IF <= NFDTYPE)  

(if '   -1' (format I5) is read, no more boundary condition types are expected)  

CardGroup 18. Force/displacement prescribed   

Variables: TIT, FORDISP(1,IF)=FD1, TIT, FORDISP(NPFD/2+1,IF)=FD$, 

TIT, FORDISP(2,IF)=FD2, TIT, FORDISP(NPFD/2+2,IF)=FD$, 

TIT, FORDISP(3,IF)=FD3, TIT, FORDISP(NPFD/2+3,IF)=FD$, 

             etc. according to NPFD=2*(NDIM*(NDIM+2)+1). 

Format: (A20, F10.0, A20, F10.0) . It is not required if free format is used 



213 

(Omit CardGroup 18 if IOPTDISPL=0) 

TIT: title for each value 

FORDISP(NPFD,NFDT

YPE): 
array containing prescribed forces or prescribed 

displacements. NPFD=2*(NDIM*(NDIM+2)+1). This is read 

by means of two columns. 

TIT for FD1 Value for FD1 TIT for FD$ Value for FD$ 

TIT for FD2  Value for FD2 TIT for FD$ Value for FD$ 

TIT for FD3 Value for FD3 TIT for FD$ Value for FD$ 

TIT for FD4 Value for FD4 TIT for FD$ Value for FD$ 

 ...  etc. according to NPFD=2*(NDIM*(NDIM+2)+1). 

A20 F10.0 A20 F10.0 

For NDIM=3 these columns are composed by:  

FD1: x direction force applied fx
o FD17 fx

o obtained as ramp loading 

during TIMEI and TIMEF 

FD2 y direction force applied fy
o FD18 fy

o obtained as ramp loading 

during TIMEI and TIMEF 

FD3 z direction force applied fz
o FD19 fz

o obtained as ramp loading 

during TIMEI and TIMEF 

FD4 displacement rate, first direction u1
o FD20  

FD5 displacement rate, second direction u2
o FD21  

FD6 displacement rate, third direction u3
o FD22  

FD7 cos(1), first direction FD23  

FD8 cos(1), first direction FD24  

FD9 cos(1), first direction FD25  

FD10 cos(2), second direction FD26  

FD11 cos(2), second direction FD27  

FD12 cos(2), second direction FD28  

FD13 cos(3), third direction FD29  

FD14 cos(3), third direction FD30  

FD15 cos(3), third direction FD31  

FD16  FD32 index 

For a one dimensional problem the general boundary condition is applied by means a force 

computed as: 

( )( )f f u u tx x

o

x= + − cos  
1 1

0
  
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where u1 is the computed displacement along the first direction. Obviously, for a one-

dimensional problem cos1 can only be equal to zero or one. 

For a two dimensional problem the general boundary condition is applied by means a force 

computed as: 

( )( ) ( )( )

( )( ) ( )( )

f f u u t u u t

f f u u t u u t

x x

o

y y

o

= + − + −

= + − + −

   

   

cos   cos  

cos   cos  

1 1

0

1 2 2

0

2

1 1

0

1 2 2

0

2

 

 
 

where: 

  cos( )  cos( )

  cos( )  cos( )

u u u

u u u

x y

x y

1 1 1

2 2 2

= +

= +

 

 
 

A very large value of  can be used to impose a fixed displacement rate. If  is insufficiently 

large, the prescription of the displacement will be inaccurate. On the contrary, extremely large 

values can cause matrix ill conditioning. Each specific problem requires an adjusted value.  

If index is equal to 0, the values of forces calculated above are directly incorporated at the nodal 

force balance. If index is equal to 1 then, the forces are considered stresses on the boundary, 

and therefore the forces to be applied at nodes are internally obtained by the product with the 

lateral areas of elements.   

For three dimensional problems, for instance, it is possible to prescribe displacement rate for 

three different directions, without any other restriction. In this way, any kind of displacement 

boundary condition (ex: displacement zero along a direction 45 degrees with respect to the 

vertical, etc) can be imposed.  For a constant force applied on the boundary, the three 

components along x,y,z axes should be given.  

This is a loop for IF=1, NFDTYPE. For each IF, I=1, NPFD. This variable is (NPFD=5 

NDIM+1) the number of parameters for mechanical boundary condition. 

The last Card of this group must be always '   -1' (format I5) regardless of the number of types 

read.  

This group of Cards (Card 17 and CardGroup 18) (mechanical boundary conditions) only 

exists if the mechanical problem is solved. For each time interval, only the types that change 

need to be read.  

 

 

Card 19. Type of Boundary Condition. Mass or heat transport problems. 

Variables: IF                        

Format: (I5). It is not required if free format is used 

(Omit Card 19 if IOPTPL + IOPTPG + IOPTTEMP = 0) 

IF:  index of flux boundary condition (<= NFLUXTYPE)  

(if '   -1' (format I5) is read, no more boundary condition types are expected. 
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CardGroup 20. Flux problem boundary condition  

Variables:      TIT, FLUX(1,IF), TIT, FLUX(21,IF),  

TIT, FLUX(2,IF),  TIT, FLUX(22,IF),      

TIT, FLUX(3,IF),   TIT, FLUX(23,IF), 

TIT, FLUX(4,IF), TIT, FLUX(24,IF),    

  ... 

TIT, FLUX(20,IF), TIT, FLUX(40,IF),    

Format: (A20, F10.0, A20, F10.0). It is not required if free format is used 

(Omit CardGroup 20 if IOPTPL + IOPTPG + IOPTTEMP =0) 

TIT:    title for each value (ex: liquid pressure) 

FLUX(20,IF):  array containing parameters for boundary conditions 

TIT for FL1 Value for  FL1 TIT for FL1 Value for  FL1 

TIT for FL2 Value for FL2 TIT for FL2 Value for FL2 

...  ...  

TIT for FL20 Value for FL20 TIT for FL20 Value for FL20 

A20 F10.0 A20 F10.0 

FL1 g
w prescribed mass fraction (kg/kg) FL21  

FL2 jg prescribed gas flow rate (units in Table II.2.1) FL22 increment of jg during time 

step (units in Table II.2.1) 

FL3 Pg  prescribed gas pressure (MPa) FL23 increment of Pg during 

time step (MPa) 

FL4 g  (units in Table II.2.1) FL24  

FL5 g  (units in Table II.2.1) FL25  

FL6 g prescribed gas density (kg/m3) FL26  

FL7 l 
w prescribed mass fraction of solute (kg/kg) FL27  

FL8 l 
a prescribed mass fraction of air (kg/kg) FL28  

FL9 jl  prescribed liquid flow rate (units in Table II.2.1) FL29 increment of jl during time 

step (units in Table II.2.1) 

FL10 Pl  prescribed liquid pressure (MPa) FL30 increment of Pl during 

time step (MPa) 

FL11 l (see comments for negative value; units in Table 

II.2.1)  

FL31  

FL12 l (units in Table II.2.1) FL32  

FL13 l prescribed liquid density (kg/m3) FL33  

FL14 je prescribed heat flow rate (units in Table II.2.1) FL34 increment of je during time 

step (units in Table II.2.1) 

FL15 T prescribed temperature (C) FL35 increment of T during time 

step (C) 
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FL16 e (units in Table II.2.1) FL36  

FL17 e (positive values):  

[ je = je * exp (-abs(e) t )] (units: 1/s) 

e (negative values): [ je = je t
-abs(e)] 

FL37  

FL18  FL38  

FL19 : parameter for smoothing curve the seepage 

(outflow of water only) boundary condition. For a 

positive value a parabolic curve is used; for a 

negative value an exponentially decaying curve is 

used.  is the distance from the reference pressure 

to the point of change 

FL39  

FL20 index: auxiliary index. 

index = +1.0 means that all flow rates are nodal 

values  

index = -1.0 means that all flow rates are per unit 

volume (3-D), area (2-D) or length (1-D) of 

medium (internal source or sink)  

index = +2.0 means that all flow rates are per unit 

area (3-D) or  length (2-D) (lateral fluxes).  

FL40  

The boundary condition is incorporated by adding a flux. The mass flux of species i=w as a 

component of phase =g (i.e. the inflow or outflow of vapour) is: 
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where the superscript ()o stands for the prescribed values, dt is the current time increment and 

t the current time step. Terms (.) dt/t allow for imposing a linear variation of the variable 

(.) during the time step. Mass fraction and density prescribed are only required for inflow 

because for outflow the values in the medium are automatically considered.  

Positive values of mass flow rate indicate injection to the medium.  

This general form of boundary condition, includes three terms. The first one is the mass inflow 

or outflow that takes place when a flow rate is prescribed at a node. The second term is the mass 

inflow or outflow that takes place when a phase pressure is prescribed at a node. The coefficient 

 is a leakage coefficient, that is, a constant that allows to prescribe a pressure with more or less 

strength. If  is large pressure will tend to reach the prescribed value. However, an extremely 

large value can produce matrix ill conditioning and a lower one can produce inaccuracy in 

prescribing the pressure. However, it is not difficult to guess adequate values for a given 

problem simply by trial. The third term is the mass inflow or outflow that takes place when 

species mass fraction is prescribed at a node.  

A surface where seepage (only outflow for liquid phase is permitted) is possible has a boundary 

condition of prescribed liquid pressure. However, only liquid outflow is permitted. To 

recognize this fact, l must be negative. This negative sign only indicates that nodes with this 

kind of boundary condition allow seepage.  
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Another situation occurs when an internal source or sink should be imposed. In this case it is 

preferable to use index = -1.0 and the program automatically considers that the nodal flows are 

per unit volume and will be multiplied by the volume associated to the cell centered in the node.  

If there is inflow of gas or liquid phase, it is very important to give values of the following 

variables: l
h, g

w, l
a, l, g and T. Otherwise they are assumed zero which is not correct 

because they will be far from the equilibrium. If outflow takes place, this is not relevant because 

the values of the medium are used.  

For energy the boundary condition has the general form: 
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In other words, the last terms imply that mass inflow and outflow through the boundary induces 

energy transfer. 

In general, this is a loop for IF=1, NFLUXTYPE. For each IF, I=1,NPFLUX.  

The last Card of this group must be always '   -1' (format I5).  

This group of Cards (Card 19 and CardGroup 20) only exists if any balance (water, air, 

energy flow) problem is solved. For each time interval, only the types that change need to be 

read. 
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APPENDIX III.B. GEOMETRICAL DESCRIPTION FILE: ROOT_GRI.DAT  

 

Card 1. Grid writing index 

Variables: IOWGRI, IOFILE, IFMT             

Format: (5I5). It is not required if free format is used 

IOWGRI: =1, a ROOTMSH.DAT file is created on output 

IOFILE: =1, four (4) names are read in the following four lines for files containing, respectively,  

FILE1: nodes (Card 2),  

FILE2: connectivities (Card 3),  

FILE3: initial conditions (Card 4) and  

FILE4: element-wise variables (stresses and porosities) (Card 5).  

IFMT: =1, to read connectivities according to old format 

 

 

CardGroup 2. Node co-ordinates and boundary condition type  

Variables: N,COORD(1,N),..., COORD(NDIM,N), IFORDISP(1,N), IFORDISP(2,N), 

IFORDISP(3,N), IFLUXTYPE(1,N), IFLUXTYPE(2,N), IFLUXTYPE(3,N), WIDTH(N) 

Format: (I5, (NDIM)F10.0, 3I3, 3I3, F10.0). It is not required if free format is used 

N: Node number 

COORD(NDIM,NUMNP): Nodal coordinates 

IFORDISP(I,NUMNP): Integer matrix containing prescribed Force/displacement 

Boundary Condition code (0=no boundary condition; 

IFORDISP  (1,12) = 17, node 12 has, as first boundary 

condition, the Force/displacement condition numbered 17 

in file ROOT_GEN.DAT. Up to 3 force/displacement 

conditions can be assigned to each node (typically used for 

corner nodes). 

FLUXTYPE(NUMNP): Integer matrix containing prescribed Flux Boundary 

Condition code (0 = no boundary condition; 

FLUXTYPE(2,40) = 8, node 40 has, as second boundary 

condition, the Flux Condition numbered 8 in file 

ROOT_GEN.DAT. Up to 3 Flux Boundary Conditions can 

be assigned to each node (typically used for corner nodes). 

WIDTH(NUMNP): Initial nodal joint width (it is only necessary if node 

belongs to a joint element). 
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CardGroup 3. Node connectivities, material, element type, ... 

Variables: L, MTYPE, LTYPE, KXX(1,L), ..., KXX(MNNEL,L)  

Format: ((3+MNNEL)I5). It is not required if free format is used 

L: Element number 

MTYPE(L): Material type 

LTYPE(L): Element type 

KXX(MNNEL,L): Global conectivities (the maximum number of connectivities 

is 2 (ndim=1), 6 (ndim=2), and 8 (ndim=3), 

MNNEL is the maximum number of nodes that may have a possible element in the finite 

element grid that is used in a problem. With the elements that are implemented at present the 

following values are internally assigned to MNNEL:  for NDIM=1 is MNNEL=2, for NDIM=2 

is MNNEL=6, and for NDIM=3 is MNNEL=8.  

 

CardGroup 4. Initial values of unknowns 

Variables: N, X(1,N), ..., X(NDF, N)        

Format: (I5, 10F15.0). It is not required if free format is used 

N: Node number 

X: Array containing old values of unknowns 

Here, the initial values of the unknowns are read and stored as the OLD values to begin time 

marching calculations.  

In general, the following variables should be read: 

n ux uy uz Pl Pg T 

I5 F15.0 F15.0 F15.0 F15.0 F15.0 F15.0 

 

CardGroup 5. Initial values of stresses  

Variables: L, STRESS(1,L), ..., STRESS(6,L) , HISTVAR(1,L), HISTVAR(2,L)   

Format: (I5, 10F15.0). It is not required if free format is used    

(Omit if IOPTDISPL = 0)    

L: Element number 

STRESS: Array containing the stress tensor at integration points (if the element uses several 

integration points, only 1 value per element is read and assumed initially the same 

in all integration points) 

HISTVAR: Array containing history variables for elastoplastic and viscoplastic models 
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CardGroup 6. Other element wise properties. 

Variables: L, POROSITY(L), (FK(I,L),I=1,NDIM),     ANISOTPER(1, 

L), ..., ANISOTPER(NISOT, L), THICKNESS (L),   (FK(I, L), I=NDIM+1,NDIM+3) 

Format: (I5, 10F15.0). It is not required if free format is used 

L: Element number. 

POROSITY(L): Initial porosity of element L 

FK(I,L): Element-wise multiplying factor for intrinsic permeability 

ANISOTPER(1,L): Angle of direction of anisotropy  

ANISOTPER(NISOT,L): (NISOT =1 for NDIM=1 OR 2 ; NISOT =3 for NDIM=3) 

THICKNESS (L):  (only for segment in 2-D or 3-D, LTYPE=8) 

FK(I,L): Element-wise multiplying factor for retention curve 

parameters  

Card 7. Time evolution of state or dependent variables at nodes  

Variables: NOUTOT, IVOU(1), ..., IVOU(10), INTERNODE 

Format: (16I5). It is not required if free format is used 

NOUTOT: Number of nodes for which time evolution is required 

IVOU: Variable required at these nodes. IVOU can range from 1 (first 

unknown) to NDF (last unknown), and from NDF+1 (first nodal 

dependent variable (DEPVARN vector)) to NDF+NDVN (last nodal 

dependent variable). 

INTERNODE: Frequency for output (=1 implies all time steps). 

 

Card 8. Nodes for time evolution  

Variables: NODOUT(1), ..., NODOUT(NOUTOT)    

Format: (16I5). It is not required if free format is used 

NODOUT(1,..,10): Node number of nodes for which time evolution is required. Time 

evolution is written at file 'FOR050.DAT' for time steps according 

to INTERNODE. 
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Card 9. Piezometric head map 

Variables: IWHEAD, NWHEAD       

Format: (16I5). It is not required if free format is used 

IWHEAD: =1, Piezometric heads are written at file 'FOR060.DAT' or 'FOR061.DAT', 

depending whether liquid and/or gas phase is considered. Values for all 

nodes are written at times according to INTER frequency. 

NWHEAD: Number of head contours that will be necessary in a plot. This value can be 

changed when drawing them. 

The use of this option is restricted to problems of constant density for liquid and/or gas phases.  

Card 10. Nodal flows   

Variables: IWNFLOW         

Format: (16I5). It is not required if free format is used. 

IWNFLOW: =1, Different flow values at boundary nodes are written at file 

'FOR070.DAT'.Values are written at times according to INTER 

frequency. The nodal flows have units of kg/s for mass and J/s for energy. 

 =2, the same, but values for all time steps are written. 

 =3, the same, but values for times according to INTERNODE frequency 

(see Card 7). 

Card 11. Time evolution of dependent variables at elements 

Variables: LOUT, IELVOUT(1), ..., IELVOUT(10), INTERELEM   

Format: (16I5). It is not required if free format is used. 

LOUT: Number of elements for which time evolution is required. 

IELVOUT: Variable required at these elements. IELVOUT can range from 1 to 2 

(DEPVARE vector, i.e. degree of saturation and/or porosity), or, from -

1 to -6 (stress vector) and from -7 to (-7 - nhv/2)  (history variables). 

INTERELEM: Frequency for output (=1 implies all time steps). 

 

Card 12. Element numbers for time evolution of element-wise variables}     

Variables: NELOUT(1), ..., NELOUT(LOUT)              

Format: (16I5). It is not required if free format is used 

NELOUT(10): Element number of elements for which time evolution is required. Time 

evolution is written in file 'FOR080.DAT' for time steps according to 

INTERELEMENT 
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APPENDIX V.A. THERMO-HYDRO-MECHANICAL INTERACTIONS 

In this Appendix the main interactions between the various thermo-hydro-mechanical processes 

are presented in a synthetic and systematic manner.  

 

THERMAL PHENOMENA 

Heat storage 

Effects from: 

• Thermal phenomena 

− Heat storage proportional to temperature 

• Hydraulic phenomena 

− Liquid flow modifies the amount of water and air present 

− Gas flow modifies the amount of air and water present 

− Phase changes modifies heat storage through the latent heat of vapour 

• Mechanical phenomena 

− Porosity changes modify the amount of space left for fluids 

Heat conduction 

Effects from: 

• Thermal phenomena 

− Heat conduction driven by temperature gradients (Fourier’s law) 

• Hydraulic phenomena 

− Liquid flow modifies thermal conductivity 

− Gas flow modifies thermal conductivity 

• Mechanical phenomena 

− Porosity changes modifies thermal conductivity 

Heat advection by liquid flow 

Effects from: 

• Hydraulic phenomena 

− Heat transport by liquid flow 

Heat advection by air flow 

Effects from: 

• Hydraulic phenomena 

− Heat transport by gas flow 

Heat advection by vapour flow 

Effects from: 

• Hydraulic phenomena 

− Heat transport by vapour diffusion 

− Heat transport by gas flow 

Phase changes 

Effects from: 

• Thermal phenomena 
− Vapour pressure affected by temperature (water phase diagram and 

psychrometric law) 

• Hydraulic phenomena 
− Vapour pressure affected by liquid flow through suction changes 

(psychrometric law) 
−   Vapour pressure affected by gas flow through suction changes (psychrometric 

law) 
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HYDRAULIC PHENOMENA 

Water storage 

Effects from: 

• Thermal phenomena 

− Liquid density changes with temperature 

− Vapour density changes with temperature 

− Phase change modifies the amount of water in liquid and gas phases 

• Hydraulic phenomena 

− Liquid density changes with liquid pressure 

− Vapour density changes with suction and gas pressure 

• Mechanical phenomena 

− Porosity changes affect the space available for liquid and gas 

 

Air storage 

Effects from: 

• Thermal phenomena 

− Gas density changes with temperature 

− Amount of dissolved air changes with temperature 

• Hydraulic phenomena 

− Gas density changes with gas pressure 

− Amount of dissolved air depends on gas pressure 

• Mechanical phenomena 

− Porosity changes affect the space available for liquid and gas 

 

Liquid water transfer 

Effects from: 

• Thermal phenomena 

− Hydraulic conductivity affected by liquid viscosity that diminishes with 

temperature.  

− Degree of saturation varies with temperature in unsaturated conditions 

(thermal expansion and phase changes) 

− Pore water pressure increases with temperature in saturated and quasi-

saturated conditions 

− Liquid density variation with temperature gives rise to convective flow 

• Hydraulic phenomena 

− Liquid flow controlled by liquid pressure gradients (Darcy’s law) 

− Hydraulic conductivity affected by degree of saturation, in turn controlled by 

the value of suction (retention curve) 

• Mechanical phenomena 

− Porosity changes modifies the value of hydraulic conductivity 
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Gaseous air transfer 

Effects from: 

• Thermal phenomena 

− Hydraulic conductivity affected by gas viscosity that increases with 

temperature.  

− Degree of saturation varies with temperature (thermal expansion and phase 

changes) 

− Temperature variations influence gas density 

• Hydraulic phenomena 

− Gas flow controlled by gas pressure gradients (Darcy’s law) 

− Hydraulic conductivity affected by degree of saturation, in turn controlled by 

the value of suction (retention curve) 

• Mechanical phenomena 

− Porosity changes affect the value of hydraulic conductivity 

− Porosity changes vary the pore space volume available for gas 

 

Water vapour transfer 

Effects from: 

• Thermal phenomena 

− Vapour pressure is affected by temperature (water phase diagram and 

psychrometric law) 

− Degree of saturation varies with temperature. Vapour diffusion depends on 

degree of saturation. 

• Hydraulic phenomena 

− Vapour diffusion controlled by gradients of vapour concentration    (Fick’s 

law) 

− Vapour advection controlled by gas flow 

− Vapour pressure affected by liquid flow through suction changes 

(psychrometric law) 

− Vapour pressure affected by gas flow through suction changes (psychrometric 

law) 

• Mechanical phenomena 

− Porosity changes affect the vapour diffusion coefficient 

 

 

Dissolved air transfer 

• Thermal phenomena 

− Diffusion coefficient affected by temperature  

• Hydraulic phenomena 

− Dissolved air transfer controlled by diffusion (Fick’s law) 

− Advection of dissolved air by liquid flow 

• Mechanical phenomena 

− Diffusion coefficient affected by porosity 
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MECHANICAL PHENOMENA 

Stress/strain field 

Effects from: 

• Thermal phenomena 

− Thermal expansion of materials 

− Dependence of constitutive laws on temperature 

• Hydraulic phenomena 

− Dependence of constitutive laws on suction 

• Mechanical phenomena 

− Stress/strain constitutive laws 

_________________________________ 

 

 

 

For the representation of a metal canister, in the following table some specific properties are 

recommended for numerical efficiency to solve THM problems: 

 

 
 

Note that, in the case of the thermal expansion of the solid, if zero –or a value lower than 10-

25– is input, then automatically takes the default value. Hence, if the user actually wants to set 

it to zero, a low value but greater than 10-25 should be input (e.g. 10-20). 
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APPENDIX VI.A. EQUIVALENT DENSITY AND SPECIFIC HEAT FOR A TM 

PROBLEM. 

Temperature distribution and evolution in a porous medium is strongly affected by the specific 

heat of the water. When a porous material is modelled under TM conditions, equivalent 

parameters should be used in order to get realistic and comparable results with THM. Hence, it 

is explained here how to calculate those equivalent parameters. 

 

Heat capacity of porous medium for a THM problem in a saturated porous medium: 

𝜌𝑠𝑐𝑠(1 − 𝜙) + 𝜌𝑙𝑐𝑙𝜙 

Where phase densities, phase specific heats and porosity can be used with their realistic value. 

 

Heat capacity for a TM problem in an equivalent medium:   (𝜌𝑠)𝑒𝑞(𝑐𝑠)𝑒𝑞(1 − 𝜙) 
 

To obtain the same stresses induced by weight, an equivalent density for a TM problem in a 

saturated porous medium can be calculated as: 

(𝜌𝑠)𝑒𝑞 = 
𝜌𝑠(1 − 𝜙) + 𝜌𝑙𝜙

(1 − 𝜙)
 

 

And to obtain the same temperature, an equivalent specific heat for a TM problem in a 

saturated porous medium can be calculated as: 

(𝑐𝑠)𝑒𝑞 = 
𝜌𝑠𝑐𝑠(1 − 𝜙) + 𝜌𝑙𝑐𝑙𝜙

(𝜌𝑠)𝑒𝑞(1 − 𝜙)
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APPENDIX VI.B.1. ANALOGY BETWEEN NONLINEAR ELASTICITY AND BBM 

 

Elastic part of BBM (isothermal): 

( ) ( ', )'

1 ' 1 0.1

e i s

v

s p sdp ds
d

e p e s

 
    = +

 + + +
 

 

where: 

( )( ) 1
i io i

s s =  +            ( )( ) ( )( ', ) 1 ln ' exp
s so sp ref s s

p s p p s =  +    

 

For a3 = 0, the model (ITYCL=1) coincides with the elastic part of BBM for constant 

coefficients: 

( ) ( )0 0

1 2

0.1 0.1
ln ' ln ln ' ln

1 0.1 1 1 0.1

i se s s
a p a p

e e e

− − + +      
=  − +  =  − +       

+ + +      
 

 

For a3 different from zero the equation ( ITYCL=1) can be expanded in the following way.  

( ) ( )

( ) ( )

( ) ( )

1 2 3

1 3 2 3

3 3

1 2

1 2

0.1 0.1
ln ' ln ln ' ln

1 0.1 0.1

0.1 0.1
ln ln ' ln ' ln

0.1 0.1

0.1 0.1
1 ln ln ' 1 ln ' ln

0.1 0.

e s s
a p a a p

e

s s
a a p a a p

a as s
a p a p

a a

 +  +    
=  − +  +  − =    

+     

 +  +   
= +  − + + −  =       

    

   + + 
= +  − + + −     

     1

 
 
 

 

Depending on the values of the parameters, negative compressibility can be obtained. This 

can be limited with the Kmin indicated above.  

For a3 and a4 different from zero the equation (ITYCL=5) can be transformed in the following 

way.  

( ) ( ) ( )

  ( ) ( )

( ) ( )

1 2 3 4

1 4 2 3

34
1 2

1 2

0.1 0.1
ln ' ln ln '/ ln ln '

1 0.1 0.1

0.1
ln ' ln ' ln

0.1

0.1
1 ln ' 1 ln '/ ln

0.1

ref

ref

e s s
a p a a p p a s p

e

s
a a s p a a p
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a s p a p p

a a

 +  +    
=  +  +  +  =       +     

+ 
= +  + +     

 

    + 
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      
0 0
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1 1
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APPENDIX VI.B.2. CORRESPONDENCE BETWEEN NONLINEAR ELASTICITY 

AND LINEAR ELASTICITY PARAMETERS 

Linear elasticity using volumetric and shear moduli: 

𝑑𝜀𝑣 =
𝑑𝑝′

𝐾
                       𝑑𝜀𝑑 =

𝑑𝑞

2𝐺
 

 

Bulk and shear elastic parameters as a function of Young and Poisson parameters:  

𝐾 =
𝐸

3(1 − 2𝜈)
                  𝐺 =

𝐸

1 + 𝜈
 

 

A typical non-linear elasticity model proportional to mean effective stress, can be compared 

with linear elasticity if the tangent moduli are calculated (for compression negative): 

𝑑𝜀𝑣
𝑑𝑝′

=
𝑎1 + 𝑎3 ln(𝑠)

𝑝′
=
1

𝐾
          ⇒           𝐾 =

𝑝′

𝑎1 + 𝑎3 ln(𝑠)
> 𝐾𝑚𝑖𝑛 

For constant Poisson ratio 𝜈 the following equivalences can be used: 

𝐸 = 3𝐾(1 − 2𝜈) = 3(1 − 2𝜈)
𝑝′

𝑎1 + 𝑎3 𝑙𝑛(𝑠)
> 3(1 − 2𝜈)𝐾𝑚𝑖𝑛 

𝐺 =
3(1 − 2𝜈)

1 + 𝜈

𝑝′

𝑎1 + 𝑎3 𝑙𝑛(𝑠)
>
3(1 − 2𝜈)

1 + 𝜈
𝐾𝑚𝑖𝑛 

In case that a constant shear modulus G is given instead of 𝜈, then: 

𝜈 =
3𝐾 − 2𝐺

2(3𝐾 + 𝐺)
=

3
𝑝′

𝑎1+𝑎3 𝑙𝑛(𝑠)
− 2𝐺

2(3
𝑝′

𝑎1+𝑎3 𝑙𝑛(𝑠)
+ 𝐺)

>
3𝐾𝑚𝑖𝑛 − 2𝐺

2(3𝐾𝑚𝑖𝑛 + 𝐺)
 

𝐸 =
9𝐾𝐺

3𝐾 + 𝐺
=

9
𝑝′

𝑎1+𝑎3 𝑙𝑛(𝑠)
𝐺

3
𝑝′

𝑎1+𝑎3 𝑙𝑛(𝑠)
+ 𝐺

>
9𝐾𝑚𝑖𝑛𝐺

3𝐾𝑚𝑖𝑛 + 𝐺
 

In case that a material with a Young’s Modulus changing with stress has to be modelled, the 

following equation can be used (without suction effects): 

𝐸 =
3(1 − 2𝜈)𝑝′

𝑎1
              and              𝐸𝑚𝑖𝑛 = 3𝐾𝑚𝑖𝑛(1 − 2𝜈) 

Note that in this model implementation, 𝑎1 must be input as a negative value. 

 

_______________________________________ 
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APPENDIX VI.B.3. ANALOGY BETWEEN LINEAR CREEP AND 

VISCOELASTICITY 

 

Linear viscoelasticity can be expressed as (in analogy with linear elasticity): 
𝑑𝛆

𝑑𝑡
=

1

2𝜂𝑑
(𝛔 − 𝐈𝑝)+

1

3𝜂𝑣
𝐈𝑝   

In absence of volumetric deformations (𝜂𝑣 → ∞), it leads to: 

𝑑𝛆

𝑑𝑡
=

1

2𝜂𝑑
(𝛔− 𝐈𝑝) 

And for uniaxial compression (σ1 > 0 and σ2 = σ3 = 0), it is: 
𝑑𝜀1
𝑑𝑡

=
1

2𝜂𝑑
(σ1 −

1

3
σ1) =

1

3𝜂𝑑
σ1  

This equation can be compared with the simple linear creep equation:  
𝑑𝜀1
𝑑𝑡

= 𝐴σ1 

And therefore: 

𝜂𝑑 =
1

3𝐴
 

Where 𝐴 is the creep constant in MPa-1s-1 and 𝜂𝑑 is the deviatoric viscosity in MPa.s 

________________ 

 

How this can be compared with elasticity? Elasticity can be written as (total, increments or 

rates): 

𝛆 =
1

2𝐺
(𝛔 − 𝐈𝑝) +

1

3𝐾
𝐈𝑝   

Then, for incompressible: 

𝛆 =
1

2𝐺
(𝛔 − 𝐈𝑝)   

Then, for uniaxial compression: 

𝜀1 =
1

2𝐺
(σ1 −

1

3
σ1) =

1

3𝐺
σ1  

Then, comparing with Young modulus definition: 

𝜀1 =
σ1
𝐸

 

It results in: 

𝐺 =
𝐸

3
 

And this is consistent with the definition of 𝐺 because for incompressible conditions (𝜈 =
0.5): 

𝐺 =
𝐸

2(1 + 𝜈)
=

𝐸

2(1 + 0.5)
=
𝐸

3
 

Where 𝐸 is the Young modulus MPa and 𝐺is the shear modulus in MPa 

___________________ 
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APPENDIX VI.B.4. ZERO THICKNESS  

MECHANICAL PROBLEM 

The mechanical behaviour of the joint elements is defined by the relation between stress and 

relative displacements of the joint element (Figure VIb.5) calculated on the mid-plane. The 

mid-plane relative displacements are interpolated using the nodal displacements and the shape 

functions. 

 
Figure VIb.5. Joint element with double nodes. a) Stress state on the mid-plane of the joint 

element. b) Relative displacement defined at mid plane. 

The normal and shear displacement increment calculated on the midplane is defined as: 

 4 4

n u

mp mp j

s mp

u

u

 
= = − 

 
w r N I I u   

where un and us are the normal and tangential relative displacements, r is a rotation matrix, Nmp
u 

is a matrix of shape functions, I4 is an identity matrix of 4th order, uj is the vector of nodal 

displacements. 

The stress tensor on the mid-plane is calculated as a function of displacement components, 

normal and shear:  
'

'

mp mp

mp





 
= = 

 
σ D w   

where ’mp is the net effective stress on the mid-plane of the element and it is defined as ’mp 

= mp- max(Pg; Pl) mp;  ( is total mean stress;  Pg is the gas pressure and Pl is the liquid 

pressure, both interpolated to the mid-plane of the element);  is the tangential stress on the 

mid-plane; D is the stiffness matrix which relate relative displacements with the stress state. 

MECHANICAL MODEL BASED ON ELASTO-VISCOPLASTIC FORMULATION 

An elasto-viscoplastic formulation is proposed to model the mechanical behaviour of joints. 

This formulation based on the development done by Perzyna (1963), Zienkiewicz et al. (1974), 

Lorefice et al., (2007) allows the treatment of non-associated plasticity and strain softening 

behaviour of joints subjected to shear displacements. More over, using the viscoplasticity it is 

possible considered the variation of the strain rate with time.  

The total displacements w are calculated by addition of reversible elastic displacements, we, 

and viscoplastic displacements wvp, which are zero when stresses are below a threshold value 

(the failure surface): w = we + wvp 

The displacements are represented by a vector of two quantities in two-dimensional case and 

have the following components: 

 ,
T

n s
u u=w  3.22 

 

1 2

3 4

mp1 mp2


 ut

dl

a0
a

un
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ELASTIC BEHAVIOUR 

The elastic behaviour of the joint is established as a relationship between the normal-tangencial 

effective (’,) and the normal-tangential (un, us) relative displacement of the joint element. 

This is established using a normal (Kn) and a tangential stiffness (Ks) coefficients. The normal 

stiffness depends on the opening of the joint.   

0'

0

n n

s s

K u

K u





    
=    

     

              constant   ,
min

=
−

= sn K
aa

m
K   

where m is a parameter of the model; a is the opening or aperture of the element and amin is 

the minimum opening or aperture of the element. 

 
Figure VIb.6. Elastic constitutive law of the joint element. Normal stiffness depends on joint 

opening. 

 

VISCO-PLASTIC BEHAVIOUR 

The constitutive behaviour for the mechanical of rough rock joint was developed based on the 

formulations proposed by Gens, et al. (1985) and Carol, et al, (1997). According to these 

theories, it is necessary to define a yield surface, a plastic potential and a softening law to 

mathematical model the shear behaviour of a joint.  

The visco-plastic displacements occur when the stress state of the joint reaches a failure 

condition. The failure surface can be defined linearly (the one implemented in 

CODE_BRIGHT): 

( )
22

' ' tan 'F c   − −   

Or with hyperbolic shape (based on work done by Gens et al., (1990)): 

( ) ( )222
'tan''tan'' −+−−= ccF   

where  is the shear stress; c’ is the effective cohesion; ’is the net normal stress and tan’ is 

the tangent of effective angle of internal friction.  is a parameter. 

'

amin a
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Figure VIb.7. Hyperbolic (continuous) and linear (dashed) failure surface and strength 

parameters 

SOFTENING LAW 

The strain-softening behaviour of the joint subjected to shear stress is modelled considering the 

degradation of the strength parameters tan’ and c’.  

The degradation of the parameters tan’ and c’ is considered dependent on the accumulated 

viscoplastic shear displacement. This is based on the slip weakening model introduced by 

Palmer & Rice (1973). In this way the tangent of the friction angle decays from the peak (intact 

material) to the residual value and the cohesion from the value c to zero. Two different values 

u* permit to define the decrease of cohesion (u*c’) and friction angle (u*tanФ’). The 

mathematical expressions are:  

0 *

u
' ' 1

u

vp

s

c

c c
 

= − 
 

  

where c’ is the effective cohesion that corresponds to the visco-plastic shear displacement usvp; 

c’0  is the initial value of the effective cohesion; u*c is a parameter. 

( )0 0 *

u
tan ' tan ' tan ' tan '

u

vp

s
res



   = − −   

tan’ is the  tangent of effective angle of internal friction that corresponds to the visco-plastic 

shear displacement usvp; tan’0,  tan’res  and u* are parameters. 

 
Figure VIb.8 a) Evolution of the failure surface during softening. b) Softening law of cohesion. 

c) Softening law of tan.  
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VISCO-PLASTIC DISPLACEMENTS 

A viscoplastic yield surface implies that when F < 0 the stress state of the element falls inside 

of the elastic region. In contrast, if F >= 0 the displacements of the element undergo a visco-

plastic component. The viscoplastic displacements are calculated as: 

0

vp
d F G

dt F


  
=    

 

w

σ
  

where  is a fluidity parameter. The visco-plastic displacement rate is given by a power of 

law considered for the function : 

vp N

n

G
u F t




 =  


                       vp N

s

G
u F t




 =  


 

 

PLASTIC POTENTIAL SURFACE AND DILATANCY 

To calculate the direction of displacements it is necessary to define the derivatives of G with 

respect to stresses:  

( )2 tan ' ' ' tan ' , 2
T

dil dil

c

G
c f f   


 = − σ

 

This is a non-associated flow rule, because of the inclusion of both parameters fdil and fcdil 

which consider the dilatant behaviour of the joint with shear stresses (Lopez, et al. 1999).  The 

amount of dilatancy depends on the level of the normal stress and on the degradation of the 

joint surface.  

The following expressions describe these effects: 

' '
1 exp

dil

d

u u

f
q q



 


   
= − −   

   
                         

0

'

'

dil

c

c
f

c
=   

Where qu, d are model parameters, c’ is the cohesion value that correspond to the visco-plastic 

shear displacement us
vp ; and c0’  is the initial value of the cohesion. 

Then, the tangent visco-plastic compliance matrix is calculated as:  

vp vp

n n

vp

vp vp

s s

u u

C
u u

 

 

  
 

  =
  
 
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2
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N dil diln

c

N dil dil

c

u
N F f f c t

F f f t





  




−
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( )1
2 2 tan ' ' ' tan '
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N dil diln
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u
N F f f c t   



−
 =  −  
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( )1
2 2 tan ' ' ' tan '

vp
Nsu

N F c t   


−
 =  −  

       

1
2 2

vp
N Nsu

N F t F t


−
=   +  


 

 

Finally, the elasto-viscoplastic mechanical model of the joint is expressed by the tangent 

stiffness matrix:  

1
evp e vp

−

 = + D C C  

 

More information about this joint element can be found in Zandarin (2010) –see References. 



235 

APPENDIX VI.B.5. EXAMPLE OF USE OF THE ELASTIC AND VISCO-PLASTIC 

MODELS 

The use of the BBM model can be achieved by combination of the non-linear elasticity and the 

viscoplasticity for unsaturated soils.  

total elastic viscoplastic
 =  +   

The elastic part can be linear or nonlinear and may depend on suction and temperature. The 

viscoplastic part can also be a function of suction.   

The following parameters are required and example values are given: 

NONLINEAR ELASTICITY. ITYCL = 1 

P1 a1 - 
 = - /(1+e), where  is the slope of the unload/reload 

curve in the (e - lnp') diagram.    

-0.05 

P2 a2 - 
 = - s/(1+e), where s is the slope of the unload/reload 

curve in the (e - ln((s+0.1)/0.1)) diagram. 

-0.05 

P3 a3 - Coupling term +0.01 

P4 G MPa Shear modulus (P4>0 requires P5=0) 10 

P5   - Poisson’s ratio (P5>0 requires P4=0) - 

P6 tens MPa Tension term to avoid tractions (p’- tens  0) 0.1 MPa 

P7 Kmin MPa Minimum bulk modulus 1 MPa 

The parameter P7 limits the stiffness coefficient, so it cannot go beyond a certain value. A value 

in the range of 1 MPa to 20 MPa is normally required. The parameter P6 limits the possibility 

of tensions. The model may use Poisson (P5) or shear stiffness (P4) alternatively. The use of 

one of them implies the other is variable as they are related.  

The so-called state surface is an old model for unsaturated soils is based on reversibility. The 

volumetric strain is calculated in a reversible way according to: 

( ) ( )1 2 3

0.1 0.1
ln ' ln ln ' ln

1 0.1 0.1

e s s
a p a a p

e

 +  +    
=  +  +     

+     
 

where p' is mean effective stress (mean stress plus maximum of liquid and gas pressure) and s 

is suction (gas pressure minus liquid pressure). Shear strain is linearly elastic with modulus G 

or, alternatively, a constant value of the Poisson’s ratio can be used. 

For a3 = 0, the model coincides exactly with the elastic part of BBM for constant coefficients: 

( ) ( )0 0

1 2

0.1 0.1
ln ' ln ln ' ln

1 0.1 1 1 0.1

i se s s
a p a p

e e e

− − + +      
=  +  =  +       

+ + +        

For a3 different from zero the equation can be expanded in the following way: 
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( ) ( )

( ) ( )

( ) ( )

1 2 3

1 3 2 3

3 3

1 2

1 2

0.1 0.1
ln ' ln ln ' ln

1 0.1 0.1

0.1 0.1
ln ln ' ln ' ln

0.1 0.1

0.1 0.1
1 ln ln ' 1 ln ' ln

0.1 0.1

e s s
a p a a p

e

s s
a a p a a p

a as s
a p a p

a a

 +  +    
=  +  +  =    

+     

 +  +   
= +  + +  =       

    

   + +   
= +  + +      

      


 

Depending on the values of the parameters, negative compressibility can be obtained. This can 

be limited with the Kmin indicated above.  

NONLINEAR ELASTICITY. ITYCL = 5 

P1 a1 - 
 = - /(1+e), where  is the slope of the unload/reload 

curve in the (e - lnp') diagram.    

-0.05 

P2 a2 - 
 = - s/(1+e), where s is the slope of the unload/reload 

curve in the (e - ln((s+0.1)/0.1)) diagram. 

-0.05 

P3 a3 - Coupling term +0.01 

P4 G MPa Shear modulus (P4 > 0 requires P5 = 0) 10 

P5  - Poisson’s ratio (P5 > 0 requires P4 = 0) - 

P6 tens MPa Tension term to avoid tractions (p’- tens  0) 0.1 MPa 

P7 Kmin MPa Minumum bulk modulus 1 MPa 

P8 a4 MPa-1 Coupling term 0.01 

P9 pref MPa Reference pressure 1.0 

Which correspond to (ITYCL = 5):   

( ) ( ) ( )

( ) ( )

1 2 3 4

34
1 2

1 2

0.1 0.1
ln ' ln ln '/ ln ln '

1 0.1 0.1

0.1
1 ln ' 1 ln '/ ln

0.1

ref

ref

e s s
a p a a p p a s p

e

aa s
a s p a p p

a a

 +  +    
=  +  +  +  =       +     

    + 
= +  + +      

      

With the following equivalence with BBM original parameters: 

0 0

1 2 4 1 3 2
                      

1 1

i s

i sp
a a a a a a

e e

 
= − = − =  = 

+ +  
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VPUSR 1 (ICL = 34). ITYCL = 1 

P1  1/s Fluidity 1  

P2 N  Power of the stress function (integer value) 5 

P3 Fo MPa Fo=1 MPa 1.0 

P4   = exp(s) − 

P5 b  Non associativity parameter.  0.3 

VPUSR 2 (ICL = 35). ITYCL = 1 

P1 n - Power in F and G (integer value) 1 

P2  - Parameter in F and G -1/9 = -0.1111111 

P3 s - 0 (then Fs=1, and J3D is not considered) - 

P4 m - Typical value -0.5, only required if s0 - 

P5 DRY -  =MDRY  1.2 

P6 - -  - 

P7 (J1
o*)F MPa Positive value, initial size of F  1.2 (=3*0.4) 

P8 (J1
o*)G MPa Positive value, initial size of G 1.2 (=3*0.4) 

P9 a - Parameter in F and G 3 

P10 SAT -  =MSAT  1.2 

P7 and P8 describe the size of F and G. This parameter is 3 times the preconsolidation mean 

stress for saturated conditions. P10 is the slope of the critical state line. This parameter can be 

related to the friction angle of the material 6sin '

3 sin '
M


=

− 
.  

VPUSR 3 (ICL = 36). ITYCL = 1 

P1  - Elastic compression parameter 0.07 

P2 () - Viscoplastic compression 

parameter 

0.19 

P3 r - Parameter in LC curve 0.5 

P4  - Parameter in LC curve 1  

P5 pc MPa Parameter in LC curve  0.1 

P6 k1 -  - 

P7 k2 -  -0.03 = -3*0.01 

P8 k3 -  +0.03 = + 3*0.01 

P9 k4 -  0.12 = 3*0.04 

P10 -   - 

The viscoplastic part is independent on the elastic part. What produces irreversible 

deformations is the plastic or viscoplastic part of the model. P2 is the viscoplastic compression 

parameter. P3, P4 and P5 describe the LC curve.  
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APPENDIX VI.E. ABOUT THE NOTIONS OF MICRO- AND MACRO-STRUCTURES 

IN THE DOUBLE-STRUCTURE MODEL IMPLEMENTED IN CODE_BRIGHT 

The double structure models have been historically developed in order to reproduce the 

behavior of unsaturated expansive clays (Gens & Alonso, 1992; Alonso et al., 1999). In this 

seminal model, two levels of structure are considered (see Figure ): 

1. The microstructure, corresponding to the clay particles made of active minerals take 
place. As such, the microstructure is provided with a reversible strain-stress 
relationship derived from considerations about double-layer theory: 

dϵv = 𝛽𝑚𝑒
𝛼𝑚𝑝𝑑𝑝 

2. Macrostructure: Responsible of the structural rearrangements. At this level the 
response of collapse and loading occur. The relation of stress and strains is defined by 
the BBM model (Alonso et al. 1990). 

 

Figure VIe.1. Structural levels considered (Sánchez et al. 2005) 

A clear picture of what is the micro and macro-structure can be illustrated by looking at the 

pore size distribution obtained in FEBEX bentonite (Figure VIe.2). Macropores corresponds in 

this case to voids with entrance radii close to 30 m while the microstructure has radii around 

70 Å. 

Even so, this model does not refer to unique process, or size of pores. The model is able to 

reproduce other types of problems. The mathematical formulation for double structure soils 

presented by Sánchez et al. 2005, is referred to the FEBEX bentonite, which present a clear 

double structure evidenced by the pore size distribution test presented in Figure VIe.2. 

Formulation can be also used to model types of materials, provided two main pores families 

can be observed in the pore size distribution curve.   An example is for example provided by 

the work on compacted silty clay. In this case, the macrostructure refers to the arrangement of 

silt particles and the large pores between them with entrance radii of order of 10 m. The 

microstructure refers to the clay particles and with entrance radii close to 1 mm. 
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Figure VIe.2 Pore Size Distribution of FEBEX Bentonite (Sánchez et al. 2005) 

 

Figure VIe.3 Pore Size Distribution of compacted Jossigny silt (Casini et al. 2012) 

Double-structure model can be used in this case to reproduce the fact that the stress dependency 

of microstructure is much lower than that of macrostructure. In this case, as the scale of the 

microstructure corresponds to the size of clay particles, the phenomenological law considered 

is taken from classical expression for soils: 

dϵv =
(1 + 𝑒𝑚)𝑑𝑝

𝜅𝑚
 

Model can be also used to model three-level structures materials as, for example, a mixture of 

bentonite powder with high density bentonite pellets. Three main pore families have been 

detected in these types of materials, as shown in Figure VIe.4. 
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Figure VIe.4. Pore Size Distribution of mixture Bentonite powder/high density bentonite 

pellets (Alonso et al., 2011) 

In this case, the use of the double structure model needs an arbitrary split of the pore size 

distribution into two pore family, according to the requirements of the modelling 

(compressibility, permeability changes, …). 

As a conclusion, concepts of micro and macro-structure define essentially two different levels 

of scale within the material, not related to absolute value of pore size. For this reason, this type 

of models can also be used to model fissured materials when the upper scale corresponds to 

fissures and the lower scale to matrix. 

 


