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I ESTRATEGIES TO REPRESENT DISCONTINUITIES WITH BBM
MODEL

1.1 Discontinuities with mechanical coupling

Programs that solve only water and heat flow and transport, usually use lower dimension
elements to calculate flow (i.e. triangles combined with tetrahedral elements). CODE_BRIGHT
has specific implementation for segments in 2D and triangles in 3D. This can be used as well in
a hydro-mechanical coupled problem also if mechanical deformations of the discontinuity are
not significant and therefore its transmissivity will remain constant (for instance for rock
fractures with constant transmissivity).

When a discontinuity needs to be represented with its mechanical properties and the
geometrical representation is finite, properties have to be calculated taking into account the
thickness of the finite zone representing the discontinuity.

The particular case of discontinuities generated by bentonite based materials (contacts with
rock and canister and contacts between blocks) requires specific attention as it is desirable
that the discontinuity evolves in a way that its properties remain similar to the clay based
materials.

1.2 Strength estimation from soil properties

Strength is different in a discontinuity as compared to a soil. If there are direct measurements
of cohesion and friction angle of the discontinuity, they can be used directly for interface
elements simulated with finite thickness or zero thickness. If these interface properties are not
known, they can be reduced accordingly by using a reduction factor R. In practice, for
geotechnical models, Mohr-Coulomb parameters for discontinuities can be estimated as:

¢’ =c'souR (1)
¢' = atan(R tan ¢'s,;;) (2)
Where R <1 is a reduction coefficient that represents the different strength of

discontinuities.

The correspondence of BBM parameters for cohesion and friction angle is (see Appendix
BBM):

psdiscontinuity = R(pSO + ks)soil (3)

Mdiscontinuity = RMg,y (4)
Therefore what has to be done is to reduce BBM parameters (M, pgo, k) by application of a

reduction factor R in the same way as would be done for Mohr-Coulomb in the case of
retaining walls or other geotechnical applications. As plastification is related with stress level it
does not matter if a contact or a continuum element is considered.

1.3 Stiffness estimation from discontinuity properties

The question of deformability is different, as it is desirable that deformations do not depend
on the thickness of the continuum element with finite thickness considered.



It is assumed that a discontinuity can be characterized by the following relationships:

Aoy, = kpAu, (5)
At = k Aug (6)

With normal and shear stiffness parameters defined with displacements instead of
deformations.

From these parameters, the following elastic parameters can be used for a zone of equivalent
thickness (t):

Gd = kst (7)
_ 1+v) (8)
=30
. A+v)A-2v)  (1+v)(1-2v) (9)
TTTa-w T a-wn
E,—2Gy  k,— 2k, (10)
Va =

" 2E,—2G; 2k, — 2k
Derivation of these equations is done in an Appendix. This is an interesting option for rock
discontinuities which are well characterized by normal and shear stiffness.

1.4 Stiffness estimation from soil properties

If the discontinuity properties (k,, kg) are not known, then it is necessary to derive them from
soil properties.

Here, 3 alternatives to estimate elastic properties for the discontinuities are proposed:

a) REDUCED SHEAR STIFFNESS AND INCOMPRESSIBILITY: The elastic parameters can be
estimated as according to what is proposed in Plaxis:

Gq = R*G (11)
vg = 0.45 (12)
From which Young and Bulk modulus can be calculated:
E; =2(1+v,)Gy (13)
47301 - 2vy)

This is interesting for soil-concrete interfaces for which volumetric deformation can be
neglected (i.e. Poisson Ratio near to 0.5).

b) NON-LINEAR COMPRESSIBILITY AND REDUCED SHEAR STIFFNESS: If interface
volumetric stiffness K, is considered in the same range as the bentonite and shear
modulus is assumed constant, the following parameters can be used:

K _K_p’(1+e) (15)
a-" K

Gy = R%G (16)
In addition to modifying shear modulus, it is convenient to remove swelling
parameters for the interface (k;, = 0).



c) NON-LINEAR COMPRESSIBILITY AND MODIFIED POISSON RATIO: If interface volumetric
stiffness Kj; is considered in the same range as the bentonite and, Poisson ratio is used
to calculate a nonlinear shear modulus G (K, v), the following parameters can be used:

Kd:K:p(1K+e) (17)
3K(1 —2v) (18)
_p2p _ p220N A
Ga =R°G=R 2(1+v)

Both, K and G are non-linear as compressibility of soils depends on effective stress (and
Poisson ratio was considered constant). Poisson ratio for the discontinuity can be
calculated independently:

3K(1 —2v) (19)
2
. _ 3Ka=26s _ K —2R" =3y 1+v-R*(1-2v)
d— — p—tg
2(3Kq + Gg) 2(3K+R2312<((11;5;/)) 2(1+v+R2(1-2v))

Equations (17), (18) and (19) permit to use BBM model with the same parameters as
for the bentonite except for shear modulus G or Poisson ratio.

For instance if R=0.6 and v=0.3, it results in a Poisson ratio for the discontinuity equal
to 0.4. In addition to modifying Poisson ratio, it is important to remove swelling
parameters for the interface (1 = 0).

Alternatives a), b), c) permit to use an interface with finite thickness to model a clay — solid
interface.

1.5 Stiffness scaling for different finite thickness elements

Finally, if the thickness changes from laboratory scale to in situ scale, the following relations

can be used:
sample in situ
insitu _ jrsample t in situ _ ,.sample t (20)
K =K or K =K
d d tinsitu d d tsample
sample
Ginsitu — sample Lo (21)
d d tin situ
insitu __ ,,sample
vt = v3 (22)
tsample (23)

insitu _ psample
Ed - Ed tin situ

Note that Poisson Ratio (see equation (19) does not depend on the equivalent thickness
considered. Note also that, if G changes with the finite thickness element to be used, R is not
going to coincide with R used to reduce strength parameters.



1.6 Hydraulic and thermal properties

Both intrinsic permeability and retention curve depend on porosity as indicated in an
Appendix. If permeability and retention curve depend on porosity, it is sufficient to consider a
larger porosity for the interface in order to increase permeability, reduce air entry value and
decrease thermal conductivity. The following options can be used:

e Exponential equation. In the case presented below, increasing porosity of the interface
zone by 50% may be sufficient to produce this effect.

e Kozeny equation. It is also a function of porosity but it does not include parameters
except a value of permeability for a given porosity.

e For thermal conductivity, the function of porosity available may be a good option.

e Other alternatives can be considered if variation should be larger (cubic law) and more
information of the discontinuity is available.



IT INTERFACE REPRESENTATION IN 2D. APPLICATION

Description

Four models are presented, two with interface and two without interface. The two
models with interface are based, respectively, on BBM with modified properties and
on a combination of non-linear elasticity plus Mohr-Coulomb (friction).

The models with interface use the following parameter modification (the following
applies to BBM and to non-linear elasticity plus Mohr-Coulomb.

e Friction parameter M has been reduced by a factor R=0.6

e Poisson ratio has been recalculated to 0.4 instead of 0.3 using the same factor.

e Swelling parameters for the interface are set to 0 (BBM model).

e Porosity has been increased to 0.6 (instead of 0.43) at the interface zone which
increases permeability and reduces capillary pressure at the initial conditions.

e Parameters for hydraulic laws are the same as for the buffer.

Compression of the interface element during clay swelling produces a reduction of
porosity and leads to permeability in the range of bentonite permeability.

The four models that are presented are:

Interface with BBM
Interface with nonlinear elasticity + Mohr Coulomb

No interface and fixed displacement on boundary all directions

No interface and fixed displacement on boundary along normal direction



Results

step 100
Contour Fill of Displacements, |Displacements|.

|Displacements|
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step 100
Contour Fill of Displacements, |Displacements|.
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Non-linear elasticity + Mohr Coulomb

step 100
Contour Fill of Displacements, |Displacements|.
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step 100
Contour Fill of Displacements, |Displacements|.

|Displacements|
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No interface, fixed

No interface, sliding

Figure 1.1 Displacements at the end of hydration
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Figure 11.2 Displacements at the end of hydration
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Figure 1.3 Mean effective stress at the end of hydration
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IT INTERFACE REPRESENTATION IN 3D. APPLICATION

Description
Three models are presented with interface:

e 2D model with quadrilateral elements
e 3D model with hexahedral elements
¢ 3D model with tetrahedral elements

The models with interface are based, respectively, on BBM with modified properties.

e Friction parameter M has been reduced by a factor R=0.6.

e Poisson ratio has been recalculated to 0.4 instead of 0.3 using the same factor.

e Swelling parameters for the interface are set to 0 (BBM model).

e Porosity has been increased to 0.6 (instead of 0.43) at the interface zone which
increases permeability and reduces capillary pressure at the initial conditions.

e Parameters for hydraulic laws are the same as for the buffer.

Compression of the interface element during clay swelling produces a reduction of
porosity and leads to permeability in the range of bentonite permeability.



Results
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Figure Il.1 Displacements at the end of hydration
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Figure 1.4 Mean effective stress evolution at the sample centre
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Appendix ELD Elasticity for discontinuities
Elastic properties of a layer of finite thickness under normal and shear deformation

A discontinuity is considered a layer of material that can be characterized by Normal Stiffness
or Normal Deformation Modulus (E,,) and Poisson ratio (v). Normal Stiffness or Deformation
Modulus is defined by the ratio between normal stress and normal deformation, assuming that
axial deformation only takes place along the normal direction.

The Normal Deformation Modulus can be referred to as Oedometric Modulus by analogy with
the vertical deformation of a soil layer.

A Normal Deformation Modulus in a discontinuity of finite thickness without lateral
deformation can be derived from elasticity. The following equations represent deformation,
normal and parallel to the plane of a fracture (see figure):

0, v

&y = F” —z(op+0y) (ELD.1)
(o v

&p = E” — 5 (o0 +0) (ELD.2)

Assuming that deformation parallel to the plane of the discontinuity is zero, it follows:

g”:%_%(%"‘%):o_’ap: -

This is the same result obtained when a lateral stress has to be calculated in a soil or rock with

T 0n (ELD.3)

horizontal surface assuming elastic response and no tectonic effects, i.e. oedometric
conditions.

Substitution of (ELD.3) in (ELD.1), results in:



o, V o, v< 2v ) o, 2v?
am=p gt a) =551 5%)=F 1—v
o (1+v)(1—2v)
T E 1-v
From this equation, a deformation modulus for the normal direction under zero lateral

(ELD.4)

deformation can be easily determined defined as follows ((E,,), Normal Deformation Modulus
or Normal Stiffness):

_@(1+v)(1—2v)_@

ELD.5
;T 1—v E, (ELD.5)
Finally, elastic modulus and normal modulus can be related:
1+ 1-2
_d+nad-2v) . (ELD.6)
(1-v)
Introducing the bulk modulus K = E/(3(1 — 2v)) in (ELD.6) it follows:
1+
_a+v) ; (ELD.7)
3(1—v)
In addition, the shear modulus, G = E/(2(1 + v)), can be introduced in (ELD.6) resulting in:
21—-v) E 2(1-v)
E = = G ELD.8
" @-2v2@+v) (@(1-2v) ( )
From this, Poisson ratio can be solved for:
1—2v)E, = 2(1-v)G Ln 26 (ELD.9)
—_ el —_ e d = .
(1= 20)Ey =201 =6 > v =0

As a summary, it has been shown that a layer of finite thickness under Oedometric
deformation can be described by any of the following pairs of elastic parameters:

E, | E,|K|E|K
v |G |G|lv]v

An example is that, if E,, and G were known, the elastic parameters Young and Poisson would
be calculated as:

E,—2G 1+ 1-2
yofnz26 o A4+nA-2v) . (ELD.10)
2E, — 2G (1-v)
Or inversely, if Young and Poisson are known, then it follows that:
1—-v)E E
E, ( v) (ELD.11)

“arvna-» "T2a+v

This will be used in what follows to propose equivalent material parameters for discontinuities.



Equivalence of stress strain parameters in a discontinuity when using a finite
thickness representation

If a zone of thickness t is used to represent a discontinuity, equivalent parameters are
required. The objective is to propose parameters for discontinuities when a finite thickness
representation is considered. Form discontinuity parameters (k,,, k) and a finite thickness(t),
equivalent parameters can be determined. It will be assumed that a

Ao, =k, Au, (ELD.12)
At = k Aug (ELD.13)

For the case of shear deformation, the following relationship can be written based on a
discontinuity having an arbitrary thickness of t:

G = kgt (ELD.14)
This can be shown easily because substitution of (ELD.14) in equation (ELD.13) leads to:

(ELD.15)

Us

GA
At = k Aug = P GAgg

The implication of this is that G can be calculated for a zone of given thickness representing

the discontinuity. However, it should be modified if the thickness of the equivalent continuum
zone is modified. So, it depends on the thickness.

For the case of normal deformations, the normal deformation modulus can be calculated as:

E, = kyt (ELD.16)
This can be shown easily because substitution of (ELD.16) in equation (ELD.12) leads to:

(ELD.17)

E,Au,

Aoy, = k,Au, = ra E,Ae,




The Normal Deformation modulus E,, can be related to Young’s modulus through the following
equation (Equation ELD.6):

(1 +v)(1—-2v) (ELD.18)
O
This result can be deduced from elastic equations simply by imposing that deformation is zero

in the transversal two directions (see equations All.1 to All.5). The parameter E,, can be called
oedometric modulus (Plaxis use this name) because it is obtained in the same way. Poisson
ratio can be obtained (see equations All.8, All.9):

= E, —2G (ELD.19)
"~ 2E,—-2G
Finally, if the elastic properties of a discontinuity (k,, ks) are known, the following elastic
parameters can be used for a zone of equivalent thickness (t):

G =kt (ELD.20)
o En—26 _ k, — 2k (ELD.21)
2E, — 2G 2k, — 2k,
1+ e (ELD.22)
S 31-v) "
_@+v)A-2v)  (1+v)(1-2v) (ELD.23)
T a-w T T a-wn ™

Any of the pairs (E,v), (K,G) or (K,v) can be used for the equivalent discontinuity. All
parameters, except Poisson ratio, depend of the thickness chosen.

Note that for the case of normal stiffness very high (k,, > k) equation (ELD.21) implies
v — 0.5 i.e. incompressible material. In this case, the elastic modulus should be calculated
using E = G/(2(1 + v)) because All.23 give indetermination.




Appendix BBM. Equations for BBM and parameters considered in

this study

BBM parameters for Buffer

Parameter Symbol MX-80
Poisson ratio (-) 1% 0.3
Minimum bulk module (MPa) Knin 10
Reference mean stress (MPa) Pref 0.01
Parameters for elastic volumetric compressibility against mean net Ko 0.09
stress change (-)
Parameters for elastic volumetric compressibility against suction Ko 0.09
change (-)
Parameter for elastic thermal strain (°C*) a 9x10™
Slope of void ratio — mean net stress curve at zero suction (-) A(0) 0.25
Parameters for the slope void ratio — mean net stress at variable r 0.8
suction (-,MPa™)

B 0.02
Reference pressure for the P,function (MPa) p° 0.1
Pre-consolidation mean stress for saturated soil (MPa) P,* 2
Critical state line (-) M 1.07
Tensile strength parameter k 0.1




Mechanical model for bentonite
The Barcelona Basic Model is usually used to model the thermo-hydro-mechanical (THM)

behaviour of several engineered barrier components such as buffer and backfill blocks. This
model is implemented in CODE_BRIGHT referred to as thermo-elasto-plastic (TEP) model. The

model formulation is described in this subsection.

The effective stress is defined as o' = 0 — max(pg, pl) (for positive compressions), which is a
modification of the usual effective stress considered for saturated soils. The effective mean

stress p’ is definedasp’ = p — maX(Pg, Pl). The mechanical constitutive equation reads:

do’' = Ddg + hds (BBM.1)

!

is derived from de = de® + de? = (D) 1de’ + alds + A:TG and the volumetric strain is

defined ase, = &, + ¢, + ¢,.

Elastic, isotropic and non-isothermal volumetric strains are defined by:

de€ = Kki(s)dp'  ks(p';s) ds
gv_1+ep' 1+e s+0.1

+ (ag + 2a,AT)dT (BBM.2)

with parameter dependence on suction and stress as follows:

K;(s) = kjp(1 + a;5) (BBM.3)
Ks(p',s) = Ky <1 + agp In pp_f> exp(asss) (BBM.4)
re

where e is the void ratio, where p'is the mean effective stress, s is the suction, k;, and o; are
parameters for elastic volumetric compressibility against mean stress change, and ks, Olsp, Pref
and o, are parameters for elastic volumetric compressibility against suction change. The
parameters o, o, and o, do not belong to the original BBM model and were implemented
later in order to be able to deal swelling clays with the BBM model. The model is quite

sensitive to these parameters.

The elastic properties are defined using two constants: k and v, respectively, elastic
compressibility in a natural log scale and Poisson ratio. The effective bulk modulus K depend

on the mean effective stress p’, and the shear modulus is calculated as:

1+e | 3K(1 —2v)
K= P, =

K 21 +v)

(BBM.5)

The vyield surface F = F(o’, sg,s) =F(',],9, sf:,s), where sg is the plastic volumetric strain,

depends on stresses and suction and can be expressed using stress invarBBMnts:



Mean effective stress: p’ = §(0'x +0'y+0') =p—max(P,P)
Deviatoric stress: J= %(s: s) s=0"—p'l

Lode’s Angle: 0= —isin‘l(l.S\E dets/J3)
For simplicity, a form of the classical Modified Cam-Clay model is taken as the reference

isothermal saturated constitutive law, so the yield surface reads:

F=q*-M@" +ps)po—p) (BBM.6)
with M being a critical state line parameter, and p, is considered to be dependent on

suction:

A(0)—kKio
L (PE(T)\rio
Po =P\ Tpe (BBM.7)
po(T) = py + 2(a1 AT + a3AT|AT])
A(s) = 2(0)[(1 —r) exp(—PBs) + 1] (BBM.8)
Ds = Pso T ks exp(—pAT) (BBM.9)

where p¢ is the reference stress; p;‘) is the initial preconsolidation stress for saturated
conditions; 1(0) is the slope of void ratio in saturated conditions; r defines the maximum soil
stiffness; 8 controls the rate of increase of soil stiffness with suction; a; and o3 are parameters
for elastic thermal strain, pgo is the tensile strength in saturated conditions; k takes into
account the increase of tensile strength due to suction; and p takes into account the decrease

of tensile strength due to temperature.

Hardening depends on plastic volumetric strain according to:

dpy = 1te rdel (BBM.10)
Do = A(O) — Kjo Po gv :
The plastic potential G is taken as:
G =q*—aM?*(p' +ps)(po —p") (BBM.11)

where o is a non-associativity parameter.



Hydraulic parameters for MX-80

Equation Parameter MX-80

P(MPa) 27
Van A(-) 0.45
Genuchten

-)inP 11

retention a ()in P()
curve b (-)in A(0) 4

®o 0.43

k (m?) 5.6x10™%

b (-) in k() 15
Darcy flux

®o 0.43

m () 3
Diffusive flux | z(-) 0.4

The liquid degree of saturation (shortened to degree of saturation in the following) of the
porous medium is related to the liquid pore pressure by use of a retention law, here

exemplified by van Genuchten’s retention law (van Genuchten, 1980):

1 -1
i) = (1 + (@)H) (BBM.12)

with P = P, Ui, P, is the air entry value at certain temperature, o, the water surface tension at
0

that temperature and othe surface tension as function of the temperature,

The parameters P and A were measured for different porosities following the relations:

Py(¢) = Poexp(a(¢0 - d’))

(BBM.13)
A(¢) = Aexp(b(¢o — ¢)) (BBM.14)
For intrinsic permeability:
k(¢) = koeXP(b(¢—¢o))
(BBM.15)

And relative permeability:

ky = SM (BBM.16)



Appendix SUMMARY-TABLE

Equivalent parameters for discontinuities discretized as thin elements of thickness t

Conditions Equation for elastic parameters Other
Normal and shear _ ky — 2k Normal and shear stiffness of
stiffness of the rock Va = 2k, — 2k, the rock are defined as:
are known A +vy)(A—2vy) Ao, = k,Au,
Eq = (1—vy) n At = kgAug
tis the element thickness
Shear stiffness of the Gq = R%G R is a parameter for reduction
rock (@) is known vg = 0.45 of strength (see below)
and fracture does E; =2(1+v,)Gy
not deform in Bulk modulus can be calculated
volume as well:
_264(1+vg)
47301 -2vy)
Discontinuity p'(1+e) Young and Poisson can be
. Ki=K=—"— )
assumed like clay K calculated as well:
without swelling G4 = R*G 3K; — 2Gg4

Where k is the elastic
compression index in CamClay
model

V4 = 23K, + Gy

_ 9K4Gy
473K, + Gy

Discontinuity
assumed like clay
without swelling

p'(1+e)

K,=K=
d K

_ 1+v—R*(1-2v)
~2(1+v+R2(1-2v))

Vg

Young and shear modulus can
be calculated as:

Ed = 3Kd(1 - ZVd)
G, = —d
27201+ vy)

Conditions Equation for plastic parameters

Cohesion and friction cg =R gou R is a reduction factor for
angle are known ¢, = atan(R tan ¢'gp;1) strength properties
Slope of critical state M; = RM

and cohesion term are
known

Psg = R(pso + ks)

In general, the corresponding intrinsic permeability is easy to calculate from transmissivity, if

this later is known.

For soils, both intrinsic permeability and retention curve depend on porosity. If permeability
and retention curve depend on porosity, it is sufficient to consider a larger porosity for the
interface in order to increase permeability and reduce air entry value. The following options

can be used:




e Exponential equation. In the case presented here, increasing porosity of the interface
zone by 50% may be sufficient to produce this effect.

e Kozeny equation. It is also a function of porosity but it does not include parameters
except a value of permeability for a given porosity.
Other alternatives can be considered if variation should be larger (cubic law) and more

information of the discontinuity.



