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I ESTRATEGIES TO REPRESENT DISCONTINUITIES WITH BBM 

MODEL 
 

I.1 Discontinuities with mechanical coupling 

Programs that solve only water and heat flow and transport, usually use lower dimension 

elements to calculate flow (i.e. triangles combined with tetrahedral elements). CODE_BRIGHT 

has specific implementation for segments in 2D and triangles in 3D. This can be used as well in 

a hydro-mechanical coupled problem also if mechanical deformations of the discontinuity are 

not significant and therefore its transmissivity will remain constant (for instance for rock 

fractures with constant transmissivity).  

When a discontinuity needs to be represented with its mechanical properties and the 

geometrical representation is finite, properties have to be calculated taking into account the 

thickness of the finite zone representing the discontinuity. 

The particular case of discontinuities generated by bentonite based materials (contacts with 

rock and canister and contacts between blocks) requires specific attention as it is desirable 

that the discontinuity evolves in a way that its properties remain similar to the clay based 

materials.       

I.2 Strength estimation from soil properties 

Strength is different in a discontinuity as compared to a soil. If there are direct measurements 

of cohesion and friction angle of the discontinuity, they can be used directly for interface 

elements simulated with finite thickness or zero thickness. If these interface properties are not 

known, they can be reduced accordingly by using a reduction factor R. In practice, for 

geotechnical models, Mohr-Coulomb parameters for discontinuities can be estimated as: 

𝑐′ = 𝑐′𝑠𝑜𝑖𝑙𝑅 (1) 
𝜙′ = atan(𝑅 tan 𝜙′𝑠𝑜𝑖𝑙) (2) 

Where 𝑅 ≤ 1 is a reduction coefficient that represents the different strength of 

discontinuities.  

The correspondence of BBM parameters for cohesion and friction angle is (see Appendix 

BBM): 

𝑝𝑠𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦
= 𝑅(𝑝𝑠0 + 𝑘𝑠)𝑠𝑜𝑖𝑙  (3) 

𝑀𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 = 𝑅𝑀𝑠𝑜𝑖𝑙 (4) 

Therefore what has to be done is to reduce BBM parameters (𝑀, 𝑝𝑠0, 𝑘) by application of a 

reduction factor R in the same way as would be done for Mohr-Coulomb in the case of 

retaining walls or other geotechnical applications. As plastification is related with stress level it 

does not matter if a contact or a continuum element is considered.  

I.3 Stiffness estimation from discontinuity properties 

The question of deformability is different, as it is desirable that deformations do not depend 

on the thickness of the continuum element with finite thickness considered.  



It is assumed that a discontinuity can be characterized by the following relationships: 

∆𝜎𝑛 = 𝑘𝑛∆𝑢𝑛 (5) 
∆𝜏 = 𝑘𝑠∆𝑢𝑠  (6) 

With normal and shear stiffness parameters defined with displacements instead of 

deformations. 

From these parameters, the following elastic parameters can be used for a zone of equivalent 

thickness (𝑡): 

𝐺𝑑 = 𝑘𝑠𝑡    (7) 

𝐾𝑑 =
(1 + 𝜈)

3(1 − 𝜈)
𝑘𝑛𝑡 

(8) 

𝐸𝑑 =
(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
𝐸𝑛 =

(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
𝑘𝑛𝑡 

(9) 

𝜈𝑑 =
𝐸𝑛 − 2𝐺𝑑

2𝐸𝑛 − 2𝐺𝑑
=

𝑘𝑛 − 2𝑘𝑠

2𝑘𝑛 − 2𝑘𝑠
 

(10) 

Derivation of these equations is done in an Appendix. This is an interesting option for rock 

discontinuities which are well characterized by normal and shear stiffness.  

I.4 Stiffness estimation from soil properties 

If the discontinuity properties (𝑘𝑛, 𝑘𝑠) are not known, then it is necessary to derive them from 

soil properties.  

Here, 3 alternatives to estimate elastic properties for the discontinuities are proposed: 

a) REDUCED SHEAR STIFFNESS AND INCOMPRESSIBILITY: The elastic parameters can be 

estimated as according to what is proposed in Plaxis: 

𝐺𝑑 = 𝑅2𝐺 (11) 
𝜈𝑑 = 0.45 (12) 

 From which Young and Bulk modulus can be calculated: 

𝐸𝑑 = 2(1 + 𝜈𝑑)𝐺𝑑 (13) 

𝐾𝑑 =
2𝐺𝑑(1 + 𝜈𝑑)

3(1 − 2𝜈𝑑)
 

(14) 

This is interesting for soil-concrete interfaces for which volumetric deformation can be 

neglected (i.e. Poisson Ratio near to 0.5). 

b) NON-LINEAR COMPRESSIBILITY AND REDUCED SHEAR STIFFNESS: If interface 

volumetric stiffness 𝐾𝑑 is considered in the same range as the bentonite and shear 

modulus is assumed constant, the following parameters can be used: 

𝐾𝑑 = 𝐾 =
𝑝′(1 + 𝑒)

𝜅
 

(15) 

𝐺𝑑 = 𝑅2𝐺 (16) 

In addition to modifying shear modulus, it is convenient to remove swelling 

parameters for the interface (𝜅𝑠 = 0).  



c) NON-LINEAR COMPRESSIBILITY AND MODIFIED POISSON RATIO: If interface volumetric 

stiffness 𝐾𝑑 is considered in the same range as the bentonite and, Poisson ratio is used 

to calculate a nonlinear shear modulus 𝐺(𝐾, 𝜈), the following parameters can be used: 

𝐾𝑑 = 𝐾 =
𝑝′(1 + 𝑒)

𝜅
 

(17) 

𝐺𝑑 = 𝑅2𝐺 = 𝑅2
3𝐾(1 − 2𝜈)

2(1 + 𝜈)
 

(18) 

Both, K and G are non-linear as compressibility of soils depends on effective stress (and 

Poisson ratio was considered constant). Poisson ratio for the discontinuity can be 

calculated independently:  

𝜈𝑑 =
3𝐾𝑑 − 2𝐺𝑑

2(3𝐾𝑑 + 𝐺𝑑)
=

3𝐾 − 2𝑅2 3𝐾(1 − 2𝜈)
2(1 + 𝜈)

2 (3𝐾 + 𝑅2 3𝐾(1 − 2𝜈)
2(1 + 𝜈)

)
=

1 + 𝜈 − 𝑅2(1 − 2𝜈)

2(1 + 𝜈 + 𝑅2(1 − 2𝜈))
 

(19) 

Equations (17), (18) and (19) permit to use BBM model with the same parameters as 

for the bentonite except for shear modulus G or Poisson ratio.  

For instance if R=0.6 and =0.3, it results in a Poisson ratio for the discontinuity equal 

to 0.4. In addition to modifying Poisson ratio, it is important to remove swelling 

parameters for the interface (𝜅𝑠 = 0). 

Alternatives a), b), c) permit to use an interface with finite thickness to model a clay – solid 

interface.  

I.5 Stiffness scaling for different finite thickness elements 

Finally, if the thickness changes from laboratory scale to in situ scale, the following relations 

can be used: 

𝐾𝑑
𝑖𝑛 𝑠𝑖𝑡𝑢 = 𝐾𝑑

𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑠𝑎𝑚𝑝𝑙𝑒

𝑡𝑖𝑛 𝑠𝑖𝑡𝑢
 or  𝜅𝑑

𝑖𝑛 𝑠𝑖𝑡𝑢 = 𝜅𝑑
𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑖𝑛 𝑠𝑖𝑡𝑢

𝑡𝑠𝑎𝑚𝑝𝑙𝑒
   

(20) 

𝐺𝑑
𝑖𝑛 𝑠𝑖𝑡𝑢 = 𝐺𝑑

𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑠𝑎𝑚𝑝𝑙𝑒

𝑡𝑖𝑛 𝑠𝑖𝑡𝑢
 

(21) 

𝜈𝑑
𝑖𝑛𝑠𝑖𝑡𝑢 = 𝜈𝑑

𝑠𝑎𝑚𝑝𝑙𝑒
 (22) 

𝐸𝑑
𝑖𝑛 𝑠𝑖𝑡𝑢 = 𝐸𝑑

𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑠𝑎𝑚𝑝𝑙𝑒

𝑡𝑖𝑛 𝑠𝑖𝑡𝑢
 

(23) 

Note that Poisson Ratio (see equation (19) does not depend on the equivalent thickness 

considered. Note also that, if G changes with the finite thickness element to be used, R is not 

going to coincide with R used to reduce strength parameters.  

  



I.6 Hydraulic and thermal properties 

Both intrinsic permeability and retention curve depend on porosity as indicated in an 

Appendix. If permeability and retention curve depend on porosity, it is sufficient to consider a 

larger porosity for the interface in order to increase permeability, reduce air entry value and 

decrease thermal conductivity. The following options can be used: 

 Exponential equation. In the case presented below, increasing porosity of the interface 

zone by 50% may be sufficient to produce this effect. 

 Kozeny equation. It is also a function of porosity but it does not include parameters 

except a value of permeability for a given porosity.  

 For thermal conductivity, the function of porosity available may be a good option. 

 Other alternatives can be considered if variation should be larger (cubic law) and more 

information of the discontinuity is available.  

  



II INTERFACE REPRESENTATION IN 2D. APPLICATION 
 

Description 

Four models are presented, two with interface and two without interface. The two 

models with interface are based, respectively, on BBM with modified properties and 

on a combination of non-linear elasticity plus Mohr-Coulomb (friction). 

The models with interface use the following parameter modification (the following 

applies to BBM and to non-linear elasticity plus Mohr-Coulomb.  

 Friction parameter M has been reduced by a factor R=0.6  

 Poisson ratio has been recalculated to 0.4 instead of 0.3 using the same factor.  

 Swelling parameters for the interface are set to 0 (BBM model).  

 Porosity has been increased to 0.6 (instead of 0.43) at the interface zone which 

increases permeability and reduces capillary pressure at the initial conditions.  

 Parameters for hydraulic laws are the same as for the buffer.  

Compression of the interface element during clay swelling produces a reduction of 

porosity and leads to permeability in the range of bentonite permeability. 

The four models that are presented are: 

 Interface with BBM  

 Interface with nonlinear elasticity + Mohr Coulomb  

 No interface and fixed displacement on boundary all directions 

 No interface and fixed displacement on boundary along normal direction 

  



Results 

  
BBM Non-linear elasticity + Mohr Coulomb 

  
No interface, fixed No interface, sliding 

Figure II.1 Displacements at the end of hydration 
 

 

  



  
BBM Non-linear elasticity + Mohr Coulomb 

  
No interface, fixed No interface, sliding 

Figure II.2 Displacements at the end of hydration 
 

  



  
BBM Non-linear elasticity + Mohr Coulomb 

  
No interface, fixed No interface, sliding 

Figure II.3 Mean effective stress at the end of hydration 
 

  



  
BBM Non-linear elasticity + Mohr Coulomb 

  
No interface, fixed No interface, sliding 

Figure II.4 Mean effective stress evolution at the sample centre 
 

  



 

 
BBM 

 
Non-linear elasticity + Mohr Coulomb 

Figure II.5 Permeability evolution at the discontinuity and clay 
centre 

 



II INTERFACE REPRESENTATION IN 3D. APPLICATION 
 

Description 

Three models are presented with interface: 

 2D model with quadrilateral elements 

 3D model with hexahedral elements 

 3D model with tetrahedral elements 

The models with interface are based, respectively, on BBM with modified properties.  

 Friction parameter M has been reduced by a factor R=0.6.  

 Poisson ratio has been recalculated to 0.4 instead of 0.3 using the same factor.  

 Swelling parameters for the interface are set to 0 (BBM model).  

 Porosity has been increased to 0.6 (instead of 0.43) at the interface zone which 

increases permeability and reduces capillary pressure at the initial conditions.  

 Parameters for hydraulic laws are the same as for the buffer.  

Compression of the interface element during clay swelling produces a reduction of 

porosity and leads to permeability in the range of bentonite permeability.  

  



Results 

 

 

2D cuadrilateral elements  

  
3D hexahedral (cut plane uses triangles) 3D tetrahedral 

  

Figure II.1 Displacements at the end of hydration 
  



 

 

2D cuadrilateral elements  

  
3D hexahedral (cut plane uses triangles) 3D tetrahedral 

Figure II.2 Displacements at the end of hydration 
 

  



 

 

2D cuadrilateral elements  

  
3D hexahedral (cut plane uses triangles) 3D tetrahedral 

 
 

 

Figure II.3 Mean effective stress at the end of hydration 
 

  



 
2D cuadrilateral elements 

 
3D hexahedral (cut plane uses triangles) 

 
3D tetrahedral 

Figure II.4 Mean effective stress evolution at the sample centre 
 

 



 
2D cuadrilateral elements 

 
3D hexahedral (cut plane uses triangles) 

 
3D tetrahedral 

Figure II.5 Permeability evolution at the discontinuity and clay 
centre 

 

  



Appendix ELD Elasticity for discontinuities 

Elastic properties of a layer of finite thickness under normal and shear deformation 

A discontinuity is considered a layer of material that can be characterized by Normal Stiffness 

or Normal Deformation Modulus (𝐸𝑛) and Poisson ratio (𝜈). Normal Stiffness or Deformation 

Modulus is defined by the ratio between normal stress and normal deformation, assuming that 

axial deformation only takes place along the normal direction. 

  

The Normal Deformation Modulus can be referred to as Oedometric Modulus by analogy with 

the vertical deformation of a soil layer. 

A Normal Deformation Modulus in a discontinuity of finite thickness without lateral 

deformation can be derived from elasticity. The following equations represent deformation, 

normal and parallel to the plane of a fracture (see figure): 

𝜀𝑛 =
𝜎𝑛

𝐸
−

𝜈

𝐸
(𝜎𝑝 + 𝜎𝑝) (ELD.1) 

𝜀𝑝 =
𝜎𝑝

𝐸
−

𝜈

𝐸
(𝜎𝑛 + 𝜎𝑝) (ELD.2) 

Assuming that deformation parallel to the plane of the discontinuity is zero, it follows: 

𝜀𝑝 =
𝜎𝑝

𝐸
−

𝜈

𝐸
(𝜎𝑛 + 𝜎𝑝) = 0 → 𝜎𝑝 =

𝜈

1 − 𝜈
𝜎𝑛 (ELD.3) 

This is the same result obtained when a lateral stress has to be calculated in a soil or rock with 

horizontal surface assuming elastic response and no tectonic effects, i.e. oedometric 

conditions. 

Substitution of (ELD.3) in (ELD.1), results in: 

rock 

p 
n 



𝜀𝑛 =
𝜎𝑛

𝐸
−

𝜈

𝐸
(𝜎𝑝 + 𝜎𝑝) =

𝜎𝑛

𝐸
−

𝜈

𝐸
(

2𝜈

1 − 𝜈
𝜎𝑛) =

𝜎𝑛

𝐸
(1 −

2𝜈2

1 − 𝜈
)

=
𝜎𝑛

𝐸

(1 + 𝜈)(1 − 2𝜈)

1 − 𝜈
 

(ELD.4) 

From this equation, a deformation modulus for the normal direction under zero lateral 

deformation can be easily determined defined as follows ((𝐸𝑛), Normal Deformation Modulus 

or Normal Stiffness): 

𝜀𝑛 =
𝜎𝑛

𝐸

(1 + 𝜈)(1 − 2𝜈)

1 − 𝜈
=

𝜎𝑛

𝐸𝑛
 (ELD.5) 

Finally, elastic modulus and normal modulus can be related: 

𝐸 =
(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
𝐸𝑛 (ELD.6) 

Introducing the bulk modulus 𝐾 = 𝐸/(3(1 − 2𝜈)) in (ELD.6) it follows: 

𝐾 =
(1 + 𝜈)

3(1 − 𝜈)
𝐸𝑛 (ELD.7) 

In addition, the shear modulus, 𝐺 = 𝐸/(2(1 + 𝜈)), can be introduced in (ELD.6) resulting in: 

𝐸𝑛 =
2(1 − 𝜈)

(1 − 2𝜈)

𝐸

2(1 + 𝜈)
=

2(1 − 𝜈)

(1 − 2𝜈)
𝐺 (ELD.8) 

From this, Poisson ratio can be solved for: 

(1 − 2𝜈)𝐸𝑛 = 2(1 − 𝜈)𝐺 → 𝜈 =
𝐸𝑛 − 2𝐺

2𝐸𝑛 − 2𝐺
 (ELD.9) 

 

As a summary, it has been shown that a layer of finite thickness under Oedometric 

deformation can be described by any of the following pairs of elastic parameters: 

𝐸𝑛 𝐸𝑛 𝐾 𝐸 𝐾 
𝜈 𝐺 𝐺 𝜈 𝜈 

 

An example is that, if 𝐸𝑛 and 𝐺 were known, the elastic parameters Young and Poisson would 

be calculated as: 

𝜈 =
𝐸𝑛 − 2𝐺

2𝐸𝑛 − 2𝐺
;       𝐸 =

(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
𝐸𝑛 (ELD.10) 

Or inversely, if Young and Poisson are known, then it follows that: 

𝐸𝑛 =
(1 − 𝜈)𝐸

(1 + 𝜈)(1 − 2𝜈)
;         𝐺 =

𝐸

2(1 + 𝜈)
 (ELD.11) 

 

This will be used in what follows to propose equivalent material parameters for discontinuities.  

  



Equivalence of stress strain parameters in a discontinuity when using a finite 

thickness representation 

If a zone of thickness 𝑡 is used to represent a discontinuity, equivalent parameters are 

required. The objective is to propose parameters for discontinuities when a finite thickness 

representation is considered. Form discontinuity parameters (𝑘𝑛, 𝑘𝑠) and a finite thickness(𝑡), 

equivalent parameters can be determined. It will be assumed that a  

∆𝜎𝑛 = 𝑘𝑛∆𝑢𝑛 (ELD.12) 
∆𝜏 = 𝑘𝑠∆𝑢𝑠 (ELD.13) 

 

 

 

 

For the case of shear deformation, the following relationship can be written based on a 

discontinuity having an arbitrary thickness of 𝑡: 

𝐺 = 𝑘𝑠𝑡 (ELD.14) 
This can be shown easily because substitution of (ELD.14) in equation (ELD.13) leads to: 

∆𝜏 = 𝑘𝑠∆𝑢𝑠 =
𝐺∆𝑢𝑠

𝑡
= 𝐺∆𝜀𝑠 

(ELD.15) 

The implication of this is that 𝐺 can be calculated for a zone of given thickness representing 

the discontinuity. However, it should be modified if the thickness of the equivalent continuum 

zone is modified. So, it depends on the thickness. 

For the case of normal deformations, the normal deformation modulus can be calculated as: 

𝐸𝑛 = 𝑘𝑛𝑡 (ELD.16) 
This can be shown easily because substitution of (ELD.16) in equation (ELD.12) leads to: 

∆𝜎𝑛 = 𝑘𝑛∆𝑢𝑛 =
𝐸𝑛∆𝑢𝑛

𝑡
= 𝐸𝑛∆𝜀𝑛 

(ELD.17) 

rock 

p 
n 



The Normal Deformation modulus 𝐸𝑛 can be related to Young’s modulus through the following 

equation (Equation ELD.6):  

𝐸 =
(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
𝐸𝑛 

(ELD.18) 

This result can be deduced from elastic equations simply by imposing that deformation is zero 

in the transversal two directions (see equations AII.1 to AII.5). The parameter 𝐸𝑛 can be called 

oedometric modulus (Plaxis use this name) because it is obtained in the same way. Poisson 

ratio can be obtained (see equations AII.8, AII.9): 

𝜈 =
𝐸𝑛 − 2𝐺

2𝐸𝑛 − 2𝐺
 

(ELD.19) 

Finally, if the elastic properties of a discontinuity (𝑘𝑛, 𝑘𝑠) are known, the following elastic 

parameters can be used for a zone of equivalent thickness (𝑡): 

𝐺 = 𝑘𝑠𝑡    (ELD.20) 

𝜈 =
𝐸𝑛 − 2𝐺

2𝐸𝑛 − 2𝐺
=

𝑘𝑛 − 2𝑘𝑠

2𝑘𝑛 − 2𝑘𝑠
 

(ELD.21) 

𝐾 =
(1 + 𝜈)

3(1 − 𝜈)
𝑘𝑛𝑡 

(ELD.22) 

𝐸 =
(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
𝐸𝑛 =

(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
𝑘𝑛𝑡 

(ELD.23) 

 

Any of the pairs (𝐸, 𝜈), (𝐾, 𝐺) or (𝐾, 𝜈) can be used for the equivalent discontinuity. All 

parameters, except Poisson ratio, depend of the thickness chosen. 

Note that for the case of normal stiffness very high (𝑘𝑛 ≫ 𝑘𝑠) equation (ELD.21) implies 

𝜈 → 0.5 i.e. incompressible material. In this case, the elastic modulus should be calculated 

using 𝐸 = 𝐺/(2(1 + 𝜈)) because AII.23 give indetermination. 

_______________________ 

  



Appendix BBM. Equations for BBM and parameters considered in 

this study 
 

BBM parameters for Buffer 

Parameter Symbol MX-80 

Poisson ratio (-)  0.3 

Minimum bulk module (MPa) Kmin 10 

Reference mean stress (MPa) pref 0.01 

Parameters for elastic volumetric compressibility against mean net 

stress change (-) 

i0 0.09 

Parameters for elastic volumetric compressibility against suction 

change (-) 

s0 0.09 

Parameter for elastic thermal strain (oC-1)  9x10-4 

Slope of void ratio – mean net stress curve at zero suction (-) λ(0) 0.25 

Parameters for the slope void ratio – mean net stress at variable 

suction (-,MPa-1) 

r 0.8 

β 0.02 

Reference pressure for the P0 function (MPa) pc 0.1 

Pre-consolidation mean stress for saturated soil (MPa) Po* 2 

Critical state line (-) M 1.07 

Tensile strength parameter k 0.1 

  



Mechanical model for bentonite  

The Barcelona Basic Model is usually used to model the thermo-hydro-mechanical (THM) 

behaviour of several engineered barrier components such as buffer and backfill blocks. This 

model is implemented in CODE_BRIGHT referred to as thermo-elasto-plastic (TEP) model. The 

model formulation is described in this subsection. 

The effective stress is defined as  σ′ = σ − max(𝑝𝑔, 𝑝𝑙) (for positive compressions), which is a 

modification of the usual effective stress considered for saturated soils. The effective mean 

stress p’ is defined as 𝑝′ = 𝑝 − max (𝑃𝑔, 𝑃𝑙). The mechanical constitutive equation reads:  

𝑑𝛔′ = 𝐃𝑑𝛆 + 𝐡𝑑𝑠 (BBM.1) 

is derived from 𝑑𝛆 = 𝑑𝛆𝑒 + 𝑑𝛆𝑝 = (𝐃𝑒)−𝟏𝑑𝛔′ + α𝐈𝑑𝑠 + 𝛬
𝜕𝐺

𝜕𝛔′  and the volumetric strain is 

defined as ε𝑣 = ε𝑥 + ε𝑦 + ε𝑧. 

Elastic, isotropic and non-isothermal volumetric strains are defined by:  

𝑑𝜀𝑣
𝑒 =

𝜅𝑖(𝑠)

1 + 𝑒

𝑑𝑝′

𝑝′
+

𝜅𝑠(𝑝′, 𝑠)

1 + 𝑒

𝑑𝑠

𝑠 + 0.1
+ (𝛼0 + 2𝛼2∆𝑇)𝑑𝑇  (BBM.2) 

with parameter dependence on suction and stress as follows: 

𝜅𝑖(𝑠) = 𝜅𝑖0(1 + 𝛼𝑖𝑠) (BBM.3) 

𝜅𝑠(𝑝′, 𝑠) = 𝜅𝑠0 (1 + 𝛼𝑠𝑝 ln
𝑝′

𝑝𝑟𝑒𝑓
) exp(𝛼𝑠𝑠𝑠) (BBM.4) 

where e is the void ratio, where p' is the mean effective stress, s is the suction, kio
 
and i are 

parameters for elastic volumetric compressibility against mean stress change, and kso, sp, pref 

and ss are parameters for elastic volumetric compressibility against suction change. The 

parameters i, sp and ss do not belong to the original BBM model and were implemented 

later in order to be able to deal swelling clays with the BBM model. The model is quite 

sensitive to these parameters. 

The elastic properties are defined using two constants:  and , respectively, elastic 

compressibility in a natural log scale and Poisson ratio. The effective bulk modulus K depend 

on the mean effective stress 𝑝′, and the shear modulus is calculated as: 

𝐾 =
1 + 𝑒

𝜅
𝑝′,            𝐺 =

3𝐾(1 − 2𝜈)

2(1 + 𝜈)
 (BBM.5) 

The yield surface 𝐹 = 𝐹(σ′, ε𝑣
𝑝

, 𝑠) = 𝐹(𝑝′, 𝐽, θ, ε𝑣
𝑝

, 𝑠), where ε𝑣
𝑝

 is the plastic volumetric strain, 

depends on stresses and suction and can be expressed using stress invarBBMnts: 



Mean effective stress:  𝑝′ =
1

3
(σ′

𝑥 + σ′
𝑥 + σ′

𝑥) = 𝑝 − max(𝑃𝑔, 𝑃𝑙) 

Deviatoric stress:   𝐽 = √
1

2
(𝐬: 𝐬)          𝐬 = σ′ − 𝑝′𝐈   

Lode’s Angle:    θ = −
1

3
sin−1(1.5√3 det 𝐬/𝐽3)    

For simplicity, a form of the classical Modified Cam-Clay model is taken as the reference 

isothermal saturated constitutive law, so the yield surface reads: 

𝐹 = 𝑞2 − 𝑀2(𝑝′ + 𝑝𝑠)(𝑝0 − 𝑝′) (BBM.6) 

with M being a critical state line parameter, and po is considered to be dependent on 

suction: 

𝑝0 = 𝑝𝑐 (
𝑝0

∗(𝑇)

𝑝𝑐 )

𝜆(0)−𝜅𝑖0
𝜆(𝑠)−𝜅𝑖0

 

𝑝0
∗(𝑇) = 𝑝0

∗ + 2(𝛼1Δ𝑇 + 𝛼3Δ𝑇|Δ𝑇|) 

(BBM.7) 

𝜆(𝑠) = 𝜆(0)[(1 − 𝑟) exp(−𝛽𝑠) + 𝑟] (BBM.8) 

𝑝𝑠 = 𝑝𝑠0 + 𝑘𝑠 exp(−𝜌Δ𝑇) (BBM.9) 

where 𝑝𝑐 is the reference stress; 𝑝0
∗  is the initial preconsolidation stress for saturated 

conditions; 𝜆(0) is the slope of void ratio in saturated conditions; r defines the maximum soil 

stiffness; 𝛽 controls the rate of increase of soil stiffness with suction; 1 and 3 are parameters 

for elastic thermal strain, 𝑝𝑠0 is the tensile strength in saturated conditions; 𝑘 takes into 

account the increase of tensile strength due to suction; and 𝜌 takes into account the decrease 

of tensile strength due to temperature.  

Hardening depends on plastic volumetric strain according to: 

𝑑𝑝0
∗ =

1 + 𝑒

𝜆(0) − 𝜅𝑖0
𝑝0

∗𝑑𝜀𝑣
𝑝

 (BBM.10) 

The plastic potential G is taken as: 

𝐺 = 𝑞2 − 𝛼𝑀2(𝑝′ + 𝑝𝑠)(𝑝0 − 𝑝′) (BBM.11) 

where  is a non-associativity parameter. 

 

  



Hydraulic parameters for MX-80 

Equation Parameter MX-80 

Van 

Genuchten 

retention 

curve 

P (MPa) 27  

 (-) 0.45 

a (-) in P()  11 

b (-)in () 4 

0 0.43 

Darcy flux 

k (m2) 5.6x10-21 

b (-) in k() 15 

0 0.43 

m (-) 3 

Diffusive flux  (-) 0.4 

The liquid degree of saturation (shortened to degree of saturation in the following) of the 

porous medium is related to the liquid pore pressure by use of a retention law, here 

exemplified by van Genuchten’s retention law (van Genuchten, 1980): 

𝑆𝑙(𝑝𝑙) = (1 + (
𝑝𝑔 − 𝑝𝑙

𝑃
)

1
1−𝜆

)

−𝜆

 (BBM.12) 

with 𝑃 = 𝑃0
𝜎

𝜎0
, P0 is the air entry value at certain temperature, 0 the water surface tension at 

that temperature and  the surface tension as function of the temperature,  

The parameters P and  were measured for different porosities following the relations: 

𝑃0(𝜙) = 𝑃0exp (𝑎(𝜙0 − 𝜙))    
(BBM.13)    

𝜆(𝜙) = 𝜆exp(𝑏(𝜙0 − 𝜙)) (BBM.14) 

For intrinsic permeability: 

𝑘(𝜙) = 𝑘0exp (𝑏(𝜙−𝜙0))    
(BBM.15)  

And relative permeability: 

𝑘𝑟𝑙 = 𝑆𝑙
𝑚 (BBM.16) 

  



Appendix SUMMARY-TABLE 

Equivalent parameters for discontinuities discretized as thin elements of thickness t 

Conditions Equation for elastic parameters Other 

Normal and shear 
stiffness of the rock 
are known 

𝜈𝑑 =
𝑘𝑛 − 2𝑘𝑠

2𝑘𝑛 − 2𝑘𝑠
 

𝐸𝑑 =
(1 + 𝜈𝑑)(1 − 2𝜈𝑑)

(1 − 𝜈𝑑)
𝑘𝑛𝑡 

 

Normal and shear stiffness of 
the rock are defined as: 

∆𝜎𝑛 = 𝑘𝑛∆𝑢𝑛 
∆𝜏 = 𝑘𝑠∆𝑢𝑠 

t is the element thickness 

Shear stiffness of the 
rock (𝐺) is known 
and fracture does 
not deform in 
volume 

𝐺𝑑 = 𝑅2𝐺 
𝜈𝑑 = 0.45 

𝐸𝑑 = 2(1 + 𝜈𝑑)𝐺𝑑 
 

R is a parameter for reduction 
of strength (see below) 
 
Bulk modulus can be calculated 
as well: 

𝐾𝑑 =
2𝐺𝑑(1 + 𝜈𝑑)

3(1 − 2𝜈𝑑)
 

Discontinuity 
assumed like clay 
without swelling 

𝐾𝑑 = 𝐾 =
𝑝′(1 + 𝑒)

𝜅
 

𝐺𝑑 = 𝑅2𝐺 
 
Where 𝜅 is the elastic 
compression index in CamClay 
model 

Young and Poisson can be 
calculated as well: 

𝜈𝑑 =
3𝐾𝑑 − 2𝐺𝑑

2(3𝐾𝑑 + 𝐺𝑑)
 

 

𝐸𝑑 =
9𝐾𝑑𝐺𝑑

3𝐾𝑑 + 𝐺𝑑
 

 

Discontinuity 
assumed like clay 
without swelling 

𝐾𝑑 = 𝐾 =
𝑝′(1 + 𝑒)

𝜅
 

 

𝜈𝑑 =
1 + 𝜈 − 𝑅2(1 − 2𝜈)

2(1 + 𝜈 + 𝑅2(1 − 2𝜈))
 

 

Young and shear modulus can 
be calculated as: 
 

𝐸𝑑 = 3𝐾𝑑(1 − 2𝜈𝑑) 

𝐺𝑑 =
𝐸𝑑

2(1 + 𝜈𝑑)
 

 

 

Conditions Equation for plastic parameters  

Cohesion and friction 
angle are known 

𝑐𝑑
′ = 𝑅𝑐′𝑠𝑜𝑖𝑙  

𝜙𝑑
′ = atan(𝑅 tan 𝜙′𝑠𝑜𝑖𝑙) 

R is a reduction factor for 
strength properties 

Slope of critical state 
and cohesion term are 
known 

𝑀𝑑 = 𝑅𝑀 
𝑝𝑠𝑑

= 𝑅(𝑝𝑠0 + 𝑘𝑠) 
 

 

In general, the corresponding intrinsic permeability is easy to calculate from transmissivity, if 

this later is known. 

For soils, both intrinsic permeability and retention curve depend on porosity. If permeability 

and retention curve depend on porosity, it is sufficient to consider a larger porosity for the 

interface in order to increase permeability and reduce air entry value. The following options 

can be used: 



 Exponential equation. In the case presented here, increasing porosity of the interface 
zone by 50% may be sufficient to produce this effect. 

 Kozeny equation. It is also a function of porosity but it does not include parameters 
except a value of permeability for a given porosity.  

Other alternatives can be considered if variation should be larger (cubic law) and more 

information of the discontinuity. 


