CALCULATION OF THE SPEED-UP IN PARALLEL VERSIONS OF
CODE_BRIGHT

This document describes a methodology to calculate speed up and efficiency when parallel
runs are carried out with CODE_BRIGHT.

1) Run a model in CODE_BRIGHT using, for instance, four different CODE BRIGHT
versions: vn, vnpar2, vnpar4 and vnpar6 (available in the CODE BRIGHT website).
Remember that the parallelization works only when using the iterative solver. It does not
make sense to use parallel versions for small problems that are solved using the “direct
solver” option.

2) For each model, you will obtain a summary of the calculation, going to:

Calculate = View process info...

. GiD x84 Project: Stage3c-BBM-v6.3parb (Cede_bright_vb_3parf) - - C
Files View Geometry Utilities Data Mesh Calculate Help
@@ @|ﬁm:_’;a§o|ﬁ ,:I‘ | EX}; Calculate F5 :'.::
Calculate remote =
;;) L Calculate from the beginning (save files will be erased!)
E Cancel process
o \/ View process info...
e v @ Calculate window...
3"\1:' T
9 E
x@ Newton-Raphson Iterations (iter,ntiter): 1 738
\@ #*Time dint.: 466 Time: 0.312979E+11 Dtime: 0.238105E+09
-, Force balance H 1 D.238E+03 3
) 2, Water balance : 1 0.115E-07 4108
t‘\)ﬁ Solver iterations(iter= 1): 15
=" Last max. correctiom : 0.481451E-09
:\\/‘ﬂ Time step factor: 1.4142135623730951
v Displacement : 1 0.306E-09 2380
| /57' Liguid pressure : 1 0.447E-07 1375
S e Stress H 1 0.762E-05 2984 2
2_7 Bee. cputime (total, solwver): 1562.52 968.734
- Q Newton-Raphson Iterations (iter,ntiter): 1 739
!
gf& #%*Time int.: 467 Time: 0.315360E+11 Dtime: 0.238105E+09
_A%‘;{ Force balance : 1 0.101E-02 3
oy Water balance H 1 0.116E-07 4108
“‘-:':"% Solver iterations(iter= 1): 5
Last max. correction : 0.952631E-09
% Time step factor: 1.4142135623730951
@ Displacement : 1 0.125E-09 [0
Liquid pressure : 1 0.178E-07 1188
@ Stress H 1 0.43%E-05 2984 2
s | Acc. cputime (total, solver): 1563.64 968.828
f;ﬁ‘. Newton-Raphson Iterations (iter,ntiter): 1 740
" | Total accumulated cputime: 0.156364E+04
Ia Cputime solver only H 0.968828E+03
0 Ratio solver/total H 0.619598E+00
Total number of N-R iterations (ntiter): T40
BA Total number of time intervals (int) : 487
tfv Ratio iterations per time step : 1.58

Figure 1. Snapshot of the “View process info...” produced by GiD.
Note that the run has finalized and a summary of information regarding elapsed times,
number of time steps and number of iterations is shown.

3) Write down the Total accumulated cputime for each case. The cputime devoted to solver
is also available and can be used in the same way.

4) Now, the walk clock time (real time that the model has taken to run) results from dividing
the Total accumulated cputime by the number of threads (1 thread for vn, 2 threads for
vnpar2, 4 threads for vnpar4 and 6 threads for vnpar6).

5) You may go to the project folder and on the “date modified” column compare the elapsed
time between the “msh.dat” file and the ““_gen.out” file, for verification.

If these two values are very different, it may mean that processors were not available for
CODE_BRIGHT all time. Then, wall clock time from file time and date would be bigger
than the internally calculated with CODE_BRIGHT which corresponds to time spent by
processors.

6) Finally, to calculate the speed-up of each parallelized version, you just have to divide the
walk clock time of the non-parallelized version and the walk clock time of each parallel
version.

7) You may also calculate the efficiency of the parallelization, dividing the speed-up by the
number of threads.

Figure 2 shows Amdahl’s law, which indicates the expected speed-up that can be obtained.
This value depends on the portion of the programs that is able to run in parallel. Figure 3
shows an example of calculation done by the Code Bright Team.

Amdahl's Law

20.00
I

]
18.00 =

/// Parallel portion

16.00 7 50%
/ 75%
90%

14.00
/ 95%

7

10.00 7

Speedup

8.00

6.00 /

4.00

AR
\

2.00

-] = =] =]] =t
- [ar] w

128
256
hl12
1024
2048
4096
8192
16384
32768
65536

Number of processors

Figure 2. Theoretical evolution of speed-up depending on the parallel portion of a program.

v7 vipar2 vipard v7parb
Number of threads 1 2 4 6
Total accumulated cputime 478 579 986 1564
Cputime solver only 390 398 626 969
Wall clock time {according to files) 479 290 247 261
Wall clock time calculated 478 290 247 261
speed up 1.00 1.65 1.94 1.84
speed up solver only 1.00 1.96 2.49 241
efficiency cputime 1.00 0.83 0.48 0.31
efficiency cputime solver only 1.00 0.98 0.62 0.40
Ratio solver/total: 0.81 0.69 0.63 0.62
Total number of N-R iterations [ntiter): 734 740 740 740
Total number of time intervals (int): 465 467 467 467
Ratio iterations per time step: 1.58 1.58 1.58 1.58
2.00 5 d
eed-u
1.80 P P
1.60
1.40
o 1.20
=
= 1.00
-1}
&
Z0.80
0.60
0.40
0.20
0.00
1 2 4 &
Threads parallelized
1.00 -
Efficiency
0.90
0.80
0.70
0.60
2 0.50
g
;‘E 0.40
= 0.30
0.20
0.10
0.00
1 2 4 &

Threads parallelized

Figure 3. Example of speed-up and efficiency calculation.

