
CALCULATION OF THE SPEED-UP IN PARALLEL VERSIONS OF
CODE_BRIGHT

This document describes a methodology to calculate speed up and efficiency when parallel
runs are carried out with CODE_BRIGHT.

1) Run a model in CODE_BRIGHT using, for instance, four different CODE_BRIGHT
versions: vn, vnpar2, vnpar4 and vnpar6 (available in the CODE_BRIGHT website).
Remember that the parallelization works only when using the iterative solver. It does not
make sense to use parallel versions for small problems that are solved using the “direct
solver” option.

2) For each model, you will obtain a summary of the calculation, going to:

Calculate  View process info…

Figure 1. Snapshot of the “View process info…” produced by GiD.
Note that the run has finalized and a summary of information regarding elapsed times,

number of time steps and number of iterations is shown.

3) Write down the Total accumulated cputime for each case. The cputime devoted to solver
is also available and can be used in the same way.

4) Now, the walk clock time (real time that the model has taken to run) results from dividing
the Total accumulated cputime by the number of threads (1 thread for vn, 2 threads for
vnpar2, 4 threads for vnpar4 and 6 threads for vnpar6).

5) You may go to the project folder and on the “date modified” column compare the elapsed
time between the “msh.dat” file and the “_gen.out” file, for verification.

If these two values are very different, it may mean that processors were not available for
CODE_BRIGHT all time. Then, wall clock time from file time and date would be bigger
than the internally calculated with CODE_BRIGHT which corresponds to time spent by
processors.

6) Finally, to calculate the speed-up of each parallelized version, you just have to divide the
walk clock time of the non-parallelized version and the walk clock time of each parallel
version.

7) You may also calculate the efficiency of the parallelization, dividing the speed-up by the
number of threads.

Figure 2 shows Amdahl’s law, which indicates the expected speed-up that can be obtained.
This value depends on the portion of the programs that is able to run in parallel. Figure 3
shows an example of calculation done by the Code_Bright Team.

Figure 2. Theoretical evolution of speed-up depending on the parallel portion of a program.

Figure 3. Example of speed-up and efficiency calculation.

