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1 INTRODUCTION 

 
The performance and accuracy of CODE-BRIGHT has been carefully tested by carrying 
out analyses of problems with known analytical solutions. Most of the analysis has been 
carried out as part of international benchmark exercises in which other computational 
codes has also been used. In the validation document the most relevant references has 
been compiled. 
 
In this document, verifications examples using the present version of CODE_BRIGHT 
have been performed in order to check that the program is solving the intended 
equations. Analyses involving T, H, and M problems in isolated or coupled way are 
described and the numerical results are compared with known analytical solutions. 
 
The first analysis is the classical problem of one-dimensional consolidation involving a 
hydro-mechanical coupling. The second analysis is the case of radial heat flow to which 
only the energy equation is solved. The last analysis is related with the problem of 
convergence of excavations in salt formations, no thermal or hydraulic coupling were 
considered in this exercise. For the three analyses, comparisons of calculations with the 
analytical solutions show a good agreement. Therefore, performance of 
CODE_BRIGHT will be considered successful. 
 
 
 
 
 
 



                           

2 ONE-DIMENSIONAL CONSOLIDATION 

 
Consolidation is a transient process of unsteady flow in which there is coupling between 
flow and volume changes as the soil gradually adjusts to a new effective stress regime.  
 
The problem of one-dimensional consolidation can be described by the following 
differential equation for the liquid pressure pl,, 

l l
v

p p
C

z t
∂ ∂

=
∂ ∂

2

2  (2.1) 

 
where, Cv is the coefficient of consolidation which has dimensions of (length2/time) and 
is calculated as,  
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The one-dimensional consolidation equation (2.1) is a linear equation, which can be 
made non-dimensional by writing, 
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where, plo is a reference pore liquid pressure, H is a characteristic length, and T emerges 
as a dimensionless time factor. The equation (2.1) then becomes as (2.4), 
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The assumptions that underpin this equation are material characteristics: incompressible 
pore fluid, incompressible soil particles, flow of pore fluid governed by Darcy's law, 
constant stiffness Eoed during the consolidation process; and boundary conditions: one-
dimensional deformation and flow.  
 
The analytical solution of the one-dimensional consolidation equation as a function of 
time and position is written as a general Fourier series as, 
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where m is an integer. 
 
Figure 2.1 shows the geometry and finite element mesh for the simulation of the one-
dimensional consolidation problem in a saturated medium. The height of the geometry 
is 1.0 m. The upper side is allowed to drain while the other sides are kept undrained by 
imposing impermeable boundary condition. An excess liquid pressure is generated 
applying an external vertical load of ∆σ = 0.1 MPa to the upper boundary.  The 
dissipation of the excess liquid pressure is monitored at different interval times.  
Constitutive laws and parameters employed are showed in Table 2.1. 
 



                           

 
 

 
Figure 2.1 Problem geometry, finite element mesh and boundary conditions 

 
 

MECHANICAL DATA 
Linear elasticity law: 
ITYCL 1 
P1:  E (MPa) 1 
P3:  ν 0.3 

HYDRAULIC DATA 
Intrinsic Permeability: 
ITYCL 1 
P1:  (k11)o (m2) 10-14 
P2:  (k22)o (m2) 10-14 
P3:  (k33)o (m2) 10-14 

PHASE PROPERTIES 
Solid phase 
ITYCL 1 
P2:  ρs (kg m-3) 2600 
Liquid phase 
ITYCL 1 
P1:  ρ l0 (kg m-3) 1000 

 
Table 2.1 Constitutive laws and parameters for consolidation problem 

 
Figure 2.2 shows the relative excess liquid pressure versus the relative vertical position 
(or characteristic length), for different time factors. The analytical solution is presented 
by continues lines. It can be seen that numerical solution is close to the analytical 
solution. 
 



                           

0.02

0.05

0.1

0.2
0.3

0.81.0

T = 0.01

0.5

2.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0
Relative liquid pressure P l

R
el

at
iv

e 
ve

rt
ic

al
 p

os
iti

on
 Z

Numerical solution
Analytical solution

 
Figure 2.2 Development of liquid pressure as a function of the sample height 

 
 
Predicted settlement at the surface (top boundary) will be computed as, 

oed

h H
E

σ∆
∆ = = 0.0743 m . Figure 2.3 shows the contours of vertical displacement obtained 

in the simulation along the sample height. Figure shows a perfect fit with predicted 
solution at the surface. 
 

 
Figure 2.3 Contours of vertical displacement 



                           

3 RADIAL HEAT FLOW 

 
The heat flow equation and the confined liquid flow equation are formally identical for 
the linear case. For this problem, only temperature must be computed and the energy 
equation becomes, 
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where ρs is the solid density, Cs is solid specific heat, and λs is thermal conductivity. If 
the parameters are taken constant, the problem is linear. Moreover, if the flow is radial 
and a source or sink at constant heat rate Qh is assumed at r = 0, then the solution of the 
problem is given by, 

h s
o

s s s

Q rT T W u u D
Dt c

λ
πλ ρ

− = = =
2

( );    ;    
4 4

 (3.2) 

Where, ( )

u

y
W u dy

y

∞
−

= ∫ exp
( )  is an integral function, u is dimensionless variable and D is 

the diffusivity. This is the well-known Theis (1935) solution for radial flow in a 
confined aquifer. 
 
Radial heat flow problem is simulated both using an axisymmetric geometry and a 3D 
geometry with an internal radius of r=0.25 m. Constitutive laws and parameters 
employed in both cases are listed in Table 3.1. 
 

THERMAL DATA 
Conductive flux of heat: 
ITYCL 1 
P1:  λdry (W mK-1) 5.1 
P2:  λsat (W mK-1) 5.1 

PHASE PROPERTIES 
Solid phase 
ITYCL 1 
P1: Cs (J kg-1K-1) 874 
P2:  ρs (kg m-3) 2163 

 
Table 3.1 Constitutive laws and parameters for radial flow problem 

3.1 Axisymmetric problem 

Figure 3.1, shows the axisymmetric geometry with an internal radius of r=0.25 m. 
Different values for the external radius (b) were studied (b = 10, 30, 50 and 100 m), to 
analyse the influence of the position of boundary condition on the results. An initial 
temperature of To=40ºC is imposed at the right boundary and a constant heat flow of 
Qh=930 J/s/m (this is the power of one meter of canister) is imposed at the left 
boundary. For the geometry adopted, prescribed heat flow per square meter is equal to 

h applied hQ Q rhπ= = 2
 2 592 J/s/m , where h is the height of the model (h=10m). This is the 

value imposed in the line that represents the cylindrical internal surface. 
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Figure 3.1 Problem geometry and boundary conditions (Axisymmetric geometry) 

 
Figure 3.2 shows the resulting variation of temperature in time for four different finite 
element geometries varying the position of the boundary condition away of the heat 
source (right boundary). In addition, the analytical solution is showed in the figure 3.2. 
It can observe a good agreement between analytical and numerical solutions. The only 
significant caution came from the selection of the geometry, a boundary condition away 
enough from the heating is recommended to avoid influence on results. Figure 3.3 
shows the contours of temperature distribution along the axisymmetric geometry. 
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Figure 3.2 Variation of temperature in time, analytical and numerical predictions 

(Axisymmetric geometry) 
 

 
Figure 3.3 Contours of temperature distribution (Axisymmetric geometry) 
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3.2 Three-dimensional problem 

The same problem is solved in three dimensions to verify that the same solution is 
obtained. Figure 3.4 shows the 3D geometry. A quarter of a cylindrical domain with a 
borehole is used taking advantage of symmetry of the problem. The same internal radius 
of r=0.25 m is considered and the external radius is set to b=25 m. Finite element mesh 
conformed by tetrahedral elements has been employed.  
 

 
 
 
 

a) 

 
 

 
 

b) 
Figure 3.4. 3D geometry and finite element mesh used. a) x-y-z plane. b) x-y plane 

 
An initial temperature of To=40ºC is imposed on the external boundary (b=25m). A 
constant heat flow is imposed on the internal boundary. In the same way as in the 
Axisymmetric case, prescribed heat flow at the internal boundary (r=0.25m) per square 
meter or unit area is equal to h applied hQ Q rhπ= = 2

 2 592 J/s/m , where h is the height of 
the cylindrical domain (h=10m). Note that the heat flux (heat flow per unit area) that is 
imposed in the axisymmetric case and in the three-dimensional case is exactly the same. 
Obviously, integration on the complete cylinder would give the total power per 10 m 
(9300 J/s) while integration on the quarter of cylinder would give a quarter of the power 
per 10 m (2325 J/s).  
 
Results are shown in Figure 3.5, where it can be observed a good agreement between 
analytical and numerical solution. Again, an influence of the location of external 
boundary is observed. Figure 3.6 shows the contours of temperature distribution along 
the 3D geometry. 
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Figure 3.5 Variation of temperature in time, analytical and numerical predictions 

(3D geometry) 
 
 
 

 
Figure 3.6. Contours of temperature distribution (3D geometry) 

 



                           

4 CONVERGENCE OF EXCAVATIONS 

 
The convergence of excavations (long galleries, boreholes, large caverns or chambers) 
in salt formations is associated with the gradually decrease of volume excavation as 
time goes. The convergence is a result of both rock salt pressure and time dependent 
material behaviour (creep) and consequently strongly depends on depth and 
temperature. 
 
Numerical solution of this problem is compared with the analytical solution used by Prij 
(1987). Analytical solution has been obtained using the following assumptions: 
 
- The convergence of excavations is idealized as a thick-walled cylinder problem in a 

state of plane strain with a radial pressure (p).  
 
- The constitutive behaviour of rock salt is described with a combination of elastic 

strains and secondary creep strains according to a Norton law, 
cr
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where, 
cr
eqε , is the second invariant of the deviatoric strain tensor 

A T( ) , is a parameter depends on temperature 
n
eqσ , is the second invariant of the deviatoric stress tensor 

n , is a power of the deviatoric stresses 
 
- The creep strain components are calculated by a flow rule based on a normality 

principle, 
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where, 
crε , are the deviatoric components of the strain tensor 

p−σ I , are the deviatoric components of the stress tensor 
 
The analytical solution was derived introducing dimensionless variables allowing 
comparisons between convergence curves itself and with the analytical solution. The 
normalised radial creep displacement is calculated as, 
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where, 
( )cru aτ , , are the total radial displacements at the cavity wall 
( )elu a , are the radial elastic displacements at the cavity wall 

 
With the assumption of salt as incompressible medium, elastic displacements will be 
computed as,  
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E

= −
3
2

 (4.4) 

 



                           

Dimensionless time is defined as, 
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where, 
p , is the confining pressure 
a , is the cavity radii 
E , is the elastic moduli 

 
The normalized convergence rate is written as, 

SS
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=  (4.6) 

where, 
du dt , is the convergence rate at the cavity wall 

SSdu dt , is the stationary convergence rate at the cavity wall and the following 
analytical solution is used, 
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Convergence of an excavation with CODE_BRIGHT is simulated using an 
axisymmetric geometry with a radius of excavation a=0.25 m (Figure 4.1). As the 
radius of the excavation is much smaller than the thickness of the “salt wall” around it, 
the outer radius of the cylinder is considered very large and equal to b=25m (i.e. 100 
times greater than a). The rock pressure p in the salt around the excavation was taken 
equal to p=-5 MPa. 
 
Constitutive laws and parameters employed are listed in Table 4.1, the viscoplasticity 
model for saline materials was used. A constant temperature of T0=40ºC was assumed 
to compute the parameter A in equation (4.1) as (see CODE_BRIGHT User’s guide 
2017): 
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Figure 4.1 Geometry of and finite element mesh of a cylindrical cavity problem 
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MECHANICAL DATA 

Linear elasticity 1: 
ITYCL 1 
P1: E (MPa) 25000 
P3:  ν 0.3 
Viscoplasticity - creep: 
ITYCL 1 
P1: AA (s-1 MPa-n) 0.000005 
P2: QA (J m-1) 60000 
P3: n 2, 3, 4, 5, 5.5 

 
Table 4.1 Constitutive laws and parameters for convergence excavation problem 

 
The normalised total radial displacement computed with equation (4.3) against the 
normalised time computed with equation (4.5) is plotted in Figure 4.2. Total radial 
displacements at the cavity wall (U) are obtained from the numerical analysis using a 
creep exponent n of 5.5. Analytical solution (Prij, 1987) for n=5.5 is also shown in 
Figure 4.2, for different values of p, A and E. It can be observed that numerical solution 
is close to the analytical solution when a Poisson’s ratio near to 0.4 is selected. 
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Figure 4.2. Normalised total radial displacement of a cylindrical cavity for  

n= 5.5. Comparison with analytical solution 
 

A sensitivity analysis of the influence of n on the radial displacement at the cavity wall 
was done. Figure 4.3 shows the convergence curves for different n values in a double 
logarithmic scale of normalised radial displacement against normalised time. It is 
observed that smaller values of n induce larger total radial deformations.  
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Figure 4.3. Normalised total radial displacement of a cylindrical cavity for 

different values of n 
 
 
The normalized convergence rate (k) computed with equation (4.6) against the 
normalised time (equation 4.5) is plotted in Figure 4.4 for different values of n. The 
convergence rate, du dt at the cavity wall, is obtained from the numerical analysis. 
Figure 4.4 shows that the convergence rate is strongly time dependent. Convergence 
rate increases for high values of n. It can be observed further that convergence rate does 
not reach a stationary value for n=2. This is supposed to be caused by numerical 
inaccuracies in the FEM solution for the large deformations. 
 
For comparison proposes the normalised convergence rate obtained by Prij (1987) from 
his analytical solution is included in Figure 4.5. It will be observed some differences 
during the initial period between finite element results (Figure 4.4) an analytical results 
(Figure 4.5) for n=5.0 and n=5.5.  Differences will be attributed to the fact that the 
finite element results represent the ratio of total radial deformation rate to stationary 
radial deformation rate while the analytical results give the ratio of radial creep 
deformation rate to stationary radial deformation rate, i.e., elastic deformations in 
analytical solution are ignored. Similar results are reported by Prij (1987) from his FEM 
analysis. 
 



                           

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000
τ

k

n=5.5
n=5
n=4
n=3
n=2

 
Figure 4.4. Normalised convergence rate of a cylindrical cavity for different values 

of n 
 

 
Figure 4.5. Analytical solution (from Prij, 1987) of normalised convergence rate of 

a cylindrical cavity for different values of n 
 
 
The stress distribution is presented in Figure 4.6. Initial elastic stress is shown in Figure 
4.6a), it is observed that radial stress (Sxx) at the cavity wall is twice hoop stress (Szz) 
and vertical stress (Syy) remains as zero, following elasticity. Stationary stress 
distribution is shown in Figure 4.5b). It is observed the enormous influence of creep 
induced stress redistribution (Sxx>Syy>Szz), this solution depends only on the creep 
exponent n and not on the other constitutive parameters. Figure 4.5 shows that for a 
relation r/a greater than 10 the initial elastic stress can be ignored but the stationary 
stresses are even significant for r/a > 20. The same results were given by Prij (1987). 
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Figure 4.6.  Normalised stress distribution of a cylindrical cavity for n=5.5. a) 

Initial (elastic) stresses b) Stationary stresses. (Sxx, Syy, Szz are radial, vertical 
and hoop stresses, respectively) 

 
 
 
 
 
 
 
 
 
 
 
 



                           

5 VERIFICATION OF MECHANICAL CONSTITUTIVE MODELS. 

Code_bright considers some mechanical constitutive models that include the Barcelona 
Basic Model (BBM) law, this models are: Visco-plastic model (VP), Thermo-elasto-
plastic model (TEP), Barcelona expansive model (BExM), damage-elastoplastic model 
for argillaceous rocks (Argillite), and Clay and sand model (CASM). 

The following equations present the analytical solution of swelling strain, horizontal 
stress and swelling pressure of a material obeying the BBM elastic law: 

Swelling strain 

 
 

Horizontal stress: 
 

 
Swelling pressure:  
 
 

 
 
A simulation of an oedometer test, involving load at constant suction, wetting at 
constant vertical stress and loading under saturated conditions, was used in order to 
evaluate the response of the different constitutive models. The results were compared 
with the analytical solution. Table 5.1 presents the parameters employed in the 
simulation for all the constitutive models consider. 

 

 
 

 
Termo elasto-plastic (TEP)  Visco plastic model (VP) 

ICL=21: Elastic parameters  ICL=4: Nonlinear Elasticity 
ITYCL 1  ITYCL 1 
P1:  κ i0 0.01  P1:  -κ/(1+e) -0.0055 
P2:  κ s0 0  P2:  -κs/(1+e) 0 
P3:  Kmin (MPa) 0.1  P5:  ν 0.35 
P5:  υ 0.35  P6:  tens (MPa) 0 
ICL=23: Plastic parameters (1)  P7:  Kmin (MPa) 0.1 
ITYCL 1  ICL=34: VPUSR 1 
P1:  λ(0)  0.135  ITYCL 1 
P2:  r 0.75  P1:  Γο (1/s) 100 
P3:  β (MPa-1) 35  P2:  N 3 
P5:  k 0  P3:  Fo (MPa) 1 
P6:  ps0 (MPa) 0  P5:  b 1 



                           

ICL=24: Plastic parameters (2)  ICL=35: VPUSR 2 
ITYCL 1  ITYCL 1 
P1:  pc

 (MPa) 0.01  P1:  n 1 
P2:  M 1.07  P2:  γ -0.111 
P3:  α 1  P5:  µDRY 1.07 
P4:  e0 0.825  P7: (J1

o*)F  (MPa) 0.18  
P5:  p0

*
 (MPa) 0.06  P8: (J1

o*)G  (MPa) 0.18  
ICL=25: Shape yield surface   P9:  a 3 
ITYCL 3  P10: µSAT 1.07 
ICL=26: Shape plastic potential   ICL=36: VPUSR 3 
ITYCL 3  ITYCL 1 
ICL=27: Integration control 
parameters 

 P1:  κ  0.01 

ITYCL 1  P2:  λ(0) 0.135 
P1:  Tole1 1.E-8  P3:  r 0.75 
P2:  Tole2 1.E-3  P4:  β (MPa-1) 35 
P3:  Tole2 1.E-3  P5:  pc (MPa) 0.01 
P4:  µ 1  P7: k2 0 
P5: Index -1  P8  k3 0 
     

Argillite  BExM model 
ICL=71: Argillite matrix  ICL=81: Elastic model 
ITYCL 3  ITYCL 1 
P1:  κM 0.0055  P1:  κMacro 0.0055 
P2:  νM 0.35  P2:  κMicro 1e-10 
P3:  κs

M 0  P5:  κs
Macro 0 

ICL=72: Coupling behaviour  P6:  νM 0.35 
ITYCL 1  P7:  Kmin

Macro(MPa) 0.1 
P1:  χ0 0  P8:  Kmin

Micro(MPa) 0.1 
ICL=73: BBM (YS shape in p’-q)  ICL=82: Coupling behaviour 
ITYCL 3  ITYCL 1 
P1:  MM 1.07  P1:  χ0 0 
P3:  rM 0.75  ICL=83: BBM (YS shape in p’-q) 
P4:  βM(MPa-1) 35  ITYCL 1 
P5:  pcM(MPa) 0.01  P1:  M 1.07 
P6: ks

M 0  P3:  r 0.75 
ICL=74: BBM  (YS shape in 
deviatoric plane) 

 P4:  β(MPa-1) 35 

ITYCL 3  P5:  pc(MPa) 0.01 
P1:  θ t

M (º) 
 25  P6: ks 0 

ICL=75: BBM  (plastic potential 
shape in p’-q) 

 P6: pt0 (MPa) 0 

ITYCL 3  ICL=85: BBM  (Plastic potential in p’-q) 
P1:  ωM

 1  ITYCL 1 
ICL=77: BBM hardening law  P1:  ω 

 1 
ITYCL 3  ICL=87: BBM hardening law 
P1:  λM(0) 

 0.135  ITYCL 1 
ICL=79: Control parameters  P1:  λ(0) 

 0.135 
ITYCL 1  ICL=88: Control parameters 
P1:  tol 

 1e-8  ITYCL 1 
P2:  itmax 

 30  P1:  tol 
 1e-8 

P3:  isubmax 
 500 

 P4:  
toler_ini_SI_SD 

 

Fixed as initial 
conditions 
γSI=1e6 
γSD = -1e6 

P4:  iJac 
 -1    

     



                           

CASM    
ICL=90: CASM saturated parameters    
ITYCL 2    
P1:  ν 0.35    
P2:  κ 0.01    
P3:  λ(0) 0.135    
P4:  r 2    
P5:  n 1.5    
P6:  M 1.07    
ICL=91: CASM Unsaturated 
parameters 

   

ITYCL 2    
P1:  Pr (MPa) 0.01    
P2:  r* 0.75    
P3:  β(MPa-1) 35    
P4:  κs 0    
P5:  k s 0    
P6:  iunsat 0 : Net stress    

Table 5.1 Parameters employed for oedometer test simulation realized with different mechanical 
constitutive models. 

 
Figure 5.1 presents a comparison of the simulation carried out with the different 
constitutive models and the analytical solution in the plane void ratio vs mean effective 
stress. In figure 5.2 can be appreciate a comparison of all the constitutive models in the 
plane Ko vs mean effective stress. In both figures can be seen that the solutions obtain 
with all the constitutive models are very close and correspond with the values for the 
analytical solution. 
 

 
Figure 5.1 Comparison in void ratio vs mean effective stress plane 



                           

 
 

 
Figure 5.2 Comparison in K0 vs mean effective stress plane 
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