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Abstract

This thesis deals with finite element methods to solve com-
pressible flow problems, an important branch of Computa-
tional Fluid Dynamics (CFD) whose applications are broad
in many areas of engineering and science. In spite of the in-
creasing amount of computational resources made available
for the scientific and engineering research communities, the
numerical simulation of complex compressible phenomena
in many practical applications is still a challenge. These type
of flow problems are extremely demanding in what concerns
numerical computations and memory requirements.

In particular, in this thesis we investigate the possibility to
solve the underlying algebraic systems in a decoupled man-
ner, a technique usually called fractional step or segregation
method. Although segregation techniques have been broadly
studied and analyzed for the incompressible Navier-Stokes
equations, allowing for the separate resolution of velocity
and pressure unkonwns, much less has been explored for
compressible problems. The interest on this type of tech-
nique not only comes from the fact that it permits a segre-
gated calculation of the problem unkonwns (usually leading
to better conditioned systems) but from the associated reduc-
tion of the computational cost.

We study three different problems inside the compressible
CFD research branch in separated chapters: the isentropic
Navier-Stokes equations, the Navier-Stokes problem written
in primitive variables (velocity, pressure and temperature),
and the Navier-Stokes problem written in the classical for-
mulation with conservative variables (momentum, density,
total energy). For each of these problems, first we propose a
finite element stabilized formulation framedwithin the Varia-
tional MultiScale concept, which allows to use equal interpo-
lation spaces for all the variables in play. Second, and once
space and time discretizations are selected, we derive frac-
tional step methods up to second order in time. Finally, all
the schemes are implemented in a parallel multiphysics code
and representative simulations are carried out in order to an-
alyze the performance of the proposed techniques.





Notation

The notation employed in this work is fairly standard in the
computational mechanics literature. In order to clarify the
exposition, the matrix version of the abstract formulation of
the problems studied in this thesis will be given, mainly be-
cause it will serve as a starting point for presenting the basic
flow chart of the iterative algorithms.

As a general rule and with few exceptions stated in the text,
tensors of rank greater than or equal to one are denoted by
boldface characters and scalars by lightface italic characters.
Moreover, we shall use standard Cartesian notation to refer
to a particular coordinate system, hence denoting by x the
position vector and (𝑥1, 𝑥2, 𝑥3) or (𝑥, 𝑦 , 𝑧) the Cartesian coor-
dinates for the three-dimensional case.

When deriving the weak formulation of the problems in this
thesis, we will use

⟨•, ⋆⟩𝜔
to denote the integral over a region 𝜔 of the product of two
functions (•) and (⋆), assumed to be well defined. The sub-
script will be dropped when the region is the actual compu-
tational domain of the problem Ω.

Likewise, the classical gradient, divergence, and Laplacian
operators have been denoted respectively by

∇(•), ∇ ⋅ (•), and Δ(•).

For the case of the temporal derivative and for the partial
derivative with respect to a Cartesian coordinate 𝑥𝑖, we shall
use any of the following symbols

𝜕𝑡 (•) ≡ 𝜕(•)
𝜕𝑡 , 𝜕𝑖(•) ≡ 𝜕(•)

𝜕𝑥𝑖
,

and, in addition, the symbol 𝛿𝑡 will stand for the time step
size. In this regard, we make use of a superscript to denote
the time step counter, indicating by 𝑛 the time level up to
which the solution is known. Then, 𝑓 𝑛 will denote an ap-
proximation to a certain time-dependent function 𝑓 (𝑡) at time
𝑡𝑛.



6 List of Tables

Most of the problems in this thesis are nonlinear and the way
in which we denote a certain iterative strategy is by a su-
perscript with parentheses enclosing the nonlinear iteration
counter, e.g., 𝑔(𝑖) denotes a general function 𝑔 evaluated at
iteration 𝑖.
Various integers have been employed in the text. The most
important ones are

𝑁sd ∶ number of space dimensions

𝑁el ∶ number of elements in the discretization

𝑁no ∶ number of nodes per element

𝑁tp ∶ total number of nodes of the finite element mesh

𝑁 ∶ number of time steps

In the development of finite element formulations, the sym-
bol

Ω(𝑒), 𝑒 = 1, … , 𝑁el

has been used to denote a finite element partition of the com-
putational domain Ω. It is understood that the subdomains
Ω(𝑒) are open, non-overlapping and the union of their clo-
sures is the closure of Ω, i.e.

Ω =
𝑁el

⋃
𝑒=1

Ω(𝑒)
and Ω(𝑒) ∩ Ω(𝑓 ) = ∅ for 𝑒 ≠ 𝑓 .

Each subdomain Ω(𝑒) has a has a piecewise smooth boundary
Γ(𝑒) = 𝜕Ω(𝑒). A function belonging to the finite element space
is recognized by the subscript ℎ, which also stands for the
characteristic mesh size, such that

ℎ = max𝑒 {ℎ(𝑒)} , ℎ(𝑒) = diam (Ω(𝑒)) .

A generic shape function has been denoted by 𝜑, usually with
the addition of a superscript to indicate the node to which it
is associated.

The rest of the notation is explained in the text.
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Introduction 1
1.1 Prologue

After having spent his entire life dedicated to the study of
mathematics and physics, with paramount contributions in
the field of fluid mechanics, Leonhard Euler died in 1783 due
to an ischemic disease. French engineer Claude-Louis Navier,
carrying on the work previously developed by Euler, passed
away just at the age of 51 in the 19th century. Now it is my
turn to address the subject of fluid mechanics; specifically
Computational Fluid Dynamics (CFD). Taking into account
the previous statements, perhaps it would be a wise decision
to approach the subject with extreme care.

All jokes aside, fluidmechanics has always been one themain
areas of sciencewhich resultedmore appealing tomathemati-
cians, physicists and engineers. In the 18th century, Euler
was able to completely describe the movement of a fluid by
means of a set of Partial Differential Equations (PDEs), fully
derived from basic physical principles such as conservation
of mass, momentum and energy. Until then, the majority
of the works in the field of fluid mechanics were devoted to
hydraulic engineering, where the Archimede’s principle and
Pascal’s law represented the most remarkable contributions.
Hence, Euler was the first scientist who succeeded at pro-
viding a mathematical description which characterized the
basic behavior of a fluid.

Although Euler equations were a huge accomplishment in
themselves, they did not reproduce viscous effects, which
are innate to a fluid motion. The inclusion and interpreta-
tion of viscosity effects were precisely the main findings of
Navier and Irish mathematician and physicist George Stokes.
Thereby, the socalled Navier-Stokes equations were born1.

Nowadays, the mathematical set of Navier-Stokes equations
serves as an starting point in many different fields of physics
and engineering, specifically in aerodynamics [1, 2], as well
as in the study of atmospheric and oceanic sciences [3] or
even geophysical phenomena; a branch usually known as
geophysical fluid dynamics (GFD) [4, 5]. However, from the
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pure mathematical point of view, the Navier-Stokes equa-
tions are really challenging to tackle. They represent a mixed
nonlinear parabolic-hyperbolic set of PDEs whose analytical
solutions is unknown even when making use of simplifica-
tion hypothesis. This is in fact one of the socalledmillennium
problems proposed by the ClayMathematics Institute, whose
solution could reward you a total prize of $1,000,000. There-
fore, in practice, solutions to this problem are computed via
numerical methods, a branch of mathematics whose early de-
velopments date back to the 17th century with the Newton-
Raphson method.

Nevertheless, the boom of numerical methods took place in
the 20th century mainly associated to the strengthening of
computational calculus. This fact is nothing but a direct re-
sult of the technological advances in computer science, what
made possible to deal with mathematical problems which
were unaffordable until then. In this regard, many different
methodologies were developed, such as the Finite Element
Method (FEM), originally used in solid mechanics, and the
Finite Volume Method (FVM), which emerged as the fluid
mechanics counterpart. The cornerstone of these two tech-
niques is the splitting of the domain where the problem is
posed into a set of elements, forming a mesh in which the so-
lution is approximated. The application of numerical or com-
putational methods specifically in fluid mechanics is named
CFD, whose developments were of significant impact in the
Cold War and in particular in the Space Race. Doubtlessly,
this is an area of continuous advance and innovation and this
thesis is my very small contribution to the exciting field of
CFD.

1.2 Compressibility

We shall start this introductory section by clarifying the con-
cept of compressibility. The compressibility of a fluid is a
measure of the density changes which occur as a response to
specific changes in pressure. In general, it can be stated that
gases are highly compressible whereas most liquids show a
very low compressiblity. In a fluid flow, theremight be changes
in pressure associated, for instance, with changes in the flow
velocity. Then, these pressure changes will, in general, in-
duce density changes, which will have an influence on the
flow features, i.e., the compressibility of the fluid will have

https://www.claymath.org/millennium-problems
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an influence on the flow. If these density changes are signif-
icant, the temperature changes in the flow, which may arise
due to the kinetic energy variations, also affect the develop-
ment of the flow. In other words, when compressibility is
important, the temperature changes of the flow are also im-
portant.

There exist many different situations of practical relevance in
which the effect of such density and/or temperature changes
is negligible. Classical incompressible fluid mechanics deals
with that kind of flows in which pressure and kinetic energy
changes are so small that the effects of the induced density
and temperature changes on the fluid flow are not accounted
for. There also exist, however, many fluid flows in which
the incompressible assumption is not adequate. Density and
temperature changes can be so large that they can really in-
fluence the development of the flow. Under these circum-
stances, it is mandatory to analyze the dynamics of the flow
together with its thermodynamics. The study of this type of
flows is an entire discipline by itself in the vast field of fluid
mechanics and it is usually termed compressible fluid flow
or, sometimes, gas dynamics.

The traditional (and most important we shall say) applica-
tion of compressible fluid flow theory is in the design of high
speed aircrafts2. Likewise, compressible flow theory is re-
quired in the design and operation of many other devices
commonly encountered in many engineering areas such as
steam and gas turbines (the flow in the blades and nozzles is
compressible) or reciprocating engines (the flow of the gases
through the valves and in the intake and exhaust systems
must be treated as compressible).

1.3 Numerical methods

1.3.1 A brief historical note

The field of numerical methods experienced a huge step for-
ward from the second half of the 20th century. The method
of finite differences represents one of the oldest and most di-
rect approaches to discretizing PDEs. In fact, it was already
used by Euler for one-dimensional problems. However, al-
though it can be a very efficient method for regular grids and
provide high quality results, its applicability is reduced and
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hence usually left for academic purposes since it showsmany
inconveniences for complex problems with irregular geome-
tries and the imposition of boundary conditions might also
be problematic.

In the 50s, the Finite Element Method (FEM) was born. Ini-
tially, the formulation of the method emerged from a tradi-
tional structural engineering approach and the first applica-
tions of this technique were precisely in the field of solid me-
chanics. However, as the underlying mathematical founda-
tion of the method was understood, its extension to other
disciplines became possible. This fact represented a huge
advance in many design and analysis procedures in differ-
ent areas such as civil, mechanical and aerospace engineer-
ing. Professor Zienkiewicz3, one of the early pioneers of the
FEM and internationally recognized as a leading figure in its
development, was precisely the one who became aware of
the possible application of this technique outside the area of
structural analysis. His book [6] is still viewed by many as
”the bible” of the FEM. In particular, he applied the FEM to
fluid mechanics problems, being the first non-structural ap-
plication the treatment of a groundwater flow problem. The
finite element process as a methodology to solve continuum
problems is based on the division of the continuum into a fi-
nite number of parts (known as finite elements, which form
a mesh), whose response is specified by a finite number of
parameters. From the mathematical viewpoint, the FEM is
a variational (or energy) methodology based on the deriva-
tion of the socalled weak form, departing from the strong (or
differential form). Then, the unknown quantities can be in-
terpolated using polynomials over the elements of the mesh.
Over the last 10 to 15 years, efficient numerical techniques
for CFD simulations in the framework of FEM have been de-
veloped and become increasingly popular. Today, the FEM
remains as a prosper research branch and its application has
been considerably extended to new scientific areas, even in-
cluding medicine (see e.g. [7, 8]).

Closely related to the FEM, and developed almost in parallel,
the Finite Volume Method (FVM) has always been a widely
used technique in CFD. In essence, the basic principle is the
same as in the FEM, i.e., the division of the continuum do-
main into a finite number of parts, yet in this case the term
cell or control volume is used instead of element due to math-
ematical reasoning. In contrast to the FEM, the FVM departs
from the integral form of the conservation laws, rather than
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their differential form. It ensures local conservation at the
cell level, and this is precisely why it has been the natural
choice to solve problems in CFD (the Navier-Stokes equa-
tions represent nothing but conservation of mass, momen-
tum and energy). One of the first and most important contri-
butions in this area was proposed by Godunov [9], as he de-
veloped a conservative scheme for nonlinear hyperbolic sys-
temswhere the solution is constant over each cell. Since then,
many works have been developed within the FVM frame-
work, in order to understand the difficulties lying on the ap-
plication of the general procedure, the development of nu-
merical strategies to overcome them and the extension to
higher-order approximations.

In the 70s decade, one of the first meshless techniques ap-
peared. This is the socalled Smooth Particle Hydrodynam-
ics (SPH) method. This technique was novelly developed in
[10] and simultaneously in [11] initially for problems in astro-
physics. However, in the end it has been widely used in fluid
mechanics problems especially when the required solution
involves heterogeneous media or rapidly moving free sur-
faces [12]. The lack of a mesh in the classical sense simplifies
the model implementation and its parallelization. However,
the prescription of boundary conditions in inlets, outlets or
walls is definitely more problematic than classical grid-based
techniques and, specifically in CFD, it shows many difficul-
ties when dealing with shock waves.

The advancement of numerical methods within the field of
CFD has always been related to the development of higher
order approximations. In this regard, it is worth mentioning
the Discontinuous Galerkin (DG) method, which was first in-
troduced in [13]. It is based on a element by element discon-
tinuous aproximation but continuity is imposed in the weak
form with proper numerical fluxes, which provide a natural
stabilization to the solution. Successful applications of DG
methods to flow problems were performed in the 90s, being
very important contributions the works by Cockburn [14]
for the Euler equations and Bassi [15] for the Navier-Stokes
equations. However, DG methods have been considerably
questioned mainly because for the same mesh and polyno-
mial degree of the approximation, the number of globally
coupled degrees of freedom of the DG methods is much big-
ger than that of the classical continuous method (FEM). In or-
der to mitigate this inconvenience, the Hybridizable Discon-
tinuous Galerkin (HDG) method emerged. Generally speak-
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ing, the HDG methods are derived upon the discretization
in terms of many local problems, especifically one for each
element in the mesh, together with a single global problem
posed over the skeleton of the mesh which imposes the trans-
mission conditions. Clearly, HDG methods have been de-
vised as a significantly less expensive alternative than clas-
sical DG methods, and they have been succesfully aplied to
a wide range of problems in CFD [16–18].

1.3.2 State of the art

The numerical approximation of transient flowproblems (par-
ticularly the compressible Navier-Stokes equations) involves
complex numerical techniques particularly when the princi-
pal objective is to represent the flow features up to the small-
est scales. To this end, researchers either focus on the appli-
cation of high precision numerical methodologies or on the
refinement of the mesh (and time step sizes for the time in-
tegration). The latter option is remarkably expensive from
the computational point of view (and especially in large do-
mains), since it leads to an algebraic system that contains a
very large number of unknowns and whose solution is sub-
stantially difficult to obtain. In this regard, a possible alter-
native is to make use of Adaptive Mesh Refinement (AMR)
techniques. Essentially, AMR faces the previous issue after
dynamically reconfiguring an initial mesh and changing its
structure by employing some type of criteria (see e.g. the
technique previously developed in our group in [19] as an
example in compressible flow simulations).

On the other hand, high order spatial methods have experi-
enced a growing interest in scientific and engineering com-
munities (and especially in CFD), due to their increased accu-
racy with respect to classical low-order methods [20]. This
approach is generally cheaper from the computational view-
point in contrast to the refinement technique, yet most high
order spatial schemes are commonly restricted to simple do-
main configurations. For more challenging geometries, the
aforementioned HDG method has become an engaging field
of research [21]. However, the FVM and FEM still remain
as the preferred choices in both industrial [22] and research
[23, 24] CFD solversmainly due to their demonstrated robust-
ness, easy implementation and competitiveness. Particularly
in this work, we favor finite element methodologies.
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The treatment of the transient term appearing in the flow
equations also deserves some special comments. Of course,
a different approach than the FEM or the FVM has to be
selected, usually a finite difference scheme in time. In this
case, and particularly in the field of compressible flows, a
dichotomy is devised between explicit or implicit schemes.
The former uses only known information from previous cal-
culations in order to advance the solution in time whereas
the latter requires information of the solution which still has
to be determined, thus resulting in a nonlinear problem that
needs to be treated with some numerical strategy at some
point.

Explicit time integration schemes are usually selected to accu-
rately describe the propagation of the smallest scales, and
they have been extensively used in compressible flow simu-
lations (see e.g. [25–27]). The properties of this type of meth-
ods are well understood and fairly efficient schemes from the
computational viewpoint have been developed, since they re-
quire a small number of parallel communications compared
to implicit schemes (yet this depends on the computational
implementation strategy). However, the main drawback of
explicit time integration schemes lies in the numerical limit
of stability posed on the time step size for the computations;
the well known Courant–Friedrichs–Lewy (CFL) condition.
When the time step size exceeds such stability limit, numeri-
cal instabilities appear and the solution becomes unbounded
in time. In addition, intermediate stages are often needed
by higher order schemes, which results in several computa-
tional efforts that can be wasted in cumbersome calculations.
On the contrary, the time step size can be prescribed for im-
plicit schemes but some particular method for dealing with
the nonlinear character of the underlying equations needs
to be included, as pointed out previously. There is not a
clear agreement on the choice of the time integration scheme
for compressible flow problems. Although explicit schemes
might be the standard procedure for transonic and super-
sonic simulations (e.g. [28]), at low Mach number flows the
acoustic speed tends to infinity and this fact restricts explicit
schemes to extremely small time step sizes. This restriction
is avoided by using an implicit time integration scheme for
the time derivatives of the unknowns of the problem [29].
In this thesis, we will make use of implicit time integration
schemes.

The compressible Navier-Stokes equations, namely the con-
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servation of mass, momentum, and energy, together with
the constitutive and thermodynamical closing equations, re-
present a physical model capable of describing compressible
fluid flow phenomena. This model is able to represent the
wide range of spatial and temporal flow scales typically en-
countered in engineering cases of interest, as pointed out in
Section 1.2. After performing the space discretization via the
FEM and selecting a time integration scheme to advance the
solution in time, solving the underlying algebraic system of
equations in a monolithic (coupled) manner is the classical
strategy. However, despite of the several simplifications that
might be introduced along the whole procedure, solving the
resulting linear system might still be computationally expen-
sive, specially in 3D geometries. The unknowns in compress-
ible flow problems are highly coupled (mainly through the
constitutive and thermodynamical relations) and nonlineari-
ties need to be treated with some strategy too. An alternative
to that standard approach is to advance the solution of the
problem in time by means of a fractional step or segregation
method. This technique consists in segregating or splitting
the calculation of the unknowns, in such a way that they can
be computed separately, yet this may involve the introduc-
tion of some correction steps during the computations. On
the negative side, fractional step methods have an associated
temporal error, frequently labeled as fractional or segrega-
tion error, and which precisely emanates from the splitting
of the solution procedure. In this regard, it is indispensable
to ensure that such error is at least of the same order than
that of the time integration scheme used for the temporal dis-
cretization, because otherwise the global temporal accuracy
of the method is broken.

Although some may think that fractional step methods are a
novel solution approach, the truth is that this technique was
developed in the 60s with the pioneering works published by
Chorin and Teman in [30–33] for the incompressible Navier-
Stokes problem. In these publications, a method to decou-
ple the calculation of velocity and pressure unknowns was
proposed, an originally labeled as pressure segregation me-
thods. The original method made possible the segregation
of the pressure unknown by means of a projection opera-
tor, and that is why the original scheme is also known in
the literature as the projection method. In the projection
method, an intermediate velocity obtained from the momen-
tum equationwithout the pressure term is decomposed into a
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solenoidal field, the velocity, and the gradient of a scalar field,
the pressure. Essentially, the main idea is that the approxima-
tion of the uncoupled continuous problem has a lower com-
putational requirement than the one from the original cou-
pled problem, what in turn permits to compute the solution
more efficiently for large scale simulations. Those publica-
tions established the foundation of this segregated approach
and, since then, many works have been devoted to a proper
understanding of the original schemes, their numerical and
stability properties, their extension to higher order approxi-
mations and to the design of adequate boundary conditions
(we highlight e.g. [34–45] to name a few). Over the past two
decades, fractional step methods have enjoyed an extensive
recognition mainly due to two reasons: the aforementioned
important reduction of computational time and the introduc-
tion of an intrinsic stability over the pressure gradient term,
as explained in [46].

Although the first schemes were introduced at the continu-
ous level, i.e. manipulating the continuous equations, a di-
fferent approach to the classical projection methods was pro-
posed by Perot in a discrete setting (both in space and time)
in [47]. In this publication, the classical pressure segregation
method is identified as an inexact factorization of the final
algebraic system. In [48], Quarteroni further analyzed and
generalized this approach, and Badia in [49] performed the
convergence analysis of a first order algebraicmethod obtain-
ing optimal results in space and in time. In this work we fa-
vor such algebraic viewpoint, introducing the splitting of the
equations once space and time discretizations have been se-
lected. Our choice is based on some of the points discussed in
[50] (see Section 4 of that publication). First of all, continuous
projection methods have been questioned regarding the im-
position of Dirichlet and Neumann boundary conditions on
the different steps of the scheme. However, any reference to
the proper imposition of boundary conditions for the steps
of the scheme can be skipped if the splitting at the purely
algebraic level is performed. In addition to this, and for prob-
lems with open boundaries, Neumann boundary conditions
are directly incorporated in the force term as it is the case
of the coupled monolithic system. High order schemes de-
signed at the continuous level are scarce and particularly dif-
ficult to obtain, but several third and even fourth order split-
ting methods obtained from the algebraic viewpoint can be
found in the literature (see e.g. [51, 52]). It is also worth men-
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tioning that pressure segregation methods introduced at the
purely algebraic level also motivate effective preconditioners
to be exploited for the monolithic Navier-Stokes system. Fi-
nally, the algebraic approach has been extensively and effec-
tively applied to different test cases in computational physics
in our research group, including the classical incompressible
equations [53, 54] and the viscoelastic flow problem [55]. In
this regard, this thesis can be seen as a continuation of those
works, and with the objective of exploring the applicability
of segregation techniques to compressible flow problems.

While the literature regarding fractional step or segregation
schemes for incompressible flow applications is really vast,
the application of this type of techniques to compressible
flow simulations is rare. However, several innovative and
diverse collections of uncoupling techniques have been pub-
lished, which involve distinct spatial discretizations (finite
differences, finite volumes, finite elements), temporal schemes
(explicit, implicit, semi-implicit) and also different sets of un-
knowns (conservative, primitive and even combinations of
both type of variables). In [56], Hauke and coworkers intro-
duce a segregated method for non-isothermal compressible
flows but preserving the thermodynamic coupling due to con-
vergence reasons and Herárd [57] presents a fractional step
algorithm in the context of the FVM for the computation of
numerical approximations of a class of two-fluid two-phase
flow model. A mixed method for a barotropic flow model
is discussed in [58], which combines a segregation method
of pressure-correction type to a space discretization associ-
ating low order non-conforming mixed finite elements and
finite volumes. A sort of fractional step in the context of the
second order central difference scheme for lowMach number
flows was developed in [59]. Finally, it is also worth mention-
ing the work of Codina and coworkers [60], who proposed a
general algorithm for both compressible and incompressible
regimes by performing discretizations along the characteris-
tics.

1.4 Conferences & publications

During the development of the present PhD thesis, the partial
advances and results have been presented in several interna-
tional and specialized conferences or workshops. The list of
attended conferences is included down below:
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[60]: Codina et al. (1996), “A gen-
eral algorithm for the compress-
ible and incompressible flows.
Part III: the semi–implicit form”

▶ Joan Baiges, Ramon Codina and Samuel Parada. A frac-
tional step method for the isentropic Navier-Stokes prob-
lem. 20th International Conference on Fluid Flow Prob-
lems (FEF–2019). March 31 – April 3, 2019, Chicago, IL,
USA.

▶ Samuel Parada, Joan Baiges and Ramon Codina. Weak
imposition of Dirichlet boundary conditions in incompress-
ible and isentropic flows using fractional step methods.
Congress onNumericalMethods in Engineering (CMN-
2019). July 1–3, 2019, Guimarães, Portugal.

▶ Samuel Parada, Ramon Codina and Joan Baiges. On the
development of algebraic fractional step algorithms for
the compressilbe Navier-Stokes equations. 14th World
Congress in Computational Mechanics (WCCM – EC-
COMAS 2020). January 11 – February 4, 2021, Paris,
France (online due to Covid-19 pandemic).

In addition to the above mentioned conferences, the results
and findings of this thesis have been published in peer re-
viewed academic journals. The list of articles is provided
down below:

▶ Samuel Parada, Joan Baiges and Ramon Codina. A frac-
tional step method for computational aeroacoustics us-
ing weak imposition of Dirichlet boundary conditions. In
Computers & Fluids (2020), p. 104374, vol. 197.
DOI = https://doi.org/10.1016/j.compfluid.2019.104374.

▶ Samuel Parada, Ramon Codina and Joan Baiges. De-
velopment of an algebraic fractional step scheme for the
primitive formulation of the compressible Navier-Stokes
equations. In Journal of Computational Physics (2021),
p. 111017, vol. 433.
DOI = https://doi.org/10.1016/j.jcp.2020.110017

▶ Samuel Parada, RamonCodina and Joan Baiges. AVMS-
based fractional step technique for the compressible Navier-
Stokes equations using conservative variables. In Journal
of Computational Physics (2022), p. 111137, vol. 459.
DOI = https://doi.org/10.1016/j.jcp.2022.111137

1.5 Outline

Thework developed in this thesis can be enclosed in themain
objective of investigating stabilized finite element formula-
tions for compressible flows simulations, a new research line

https://doi.org/10.1016/j.compfluid.2019.104374
https://doi.org/10.1016/j.jcp.2020.110017
https://doi.org/10.1016/j.jcp.2022.111137
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opened in our research group quite recently. The aim of this
study is specifically the design and development of new nu-
merical schemes to solve compressible flow problems with
reduced computational cost in comparison to classical tech-
niques by using fractional step methods.

All the numerical strategies that we develop are based on
the FEM, and in order to avoid any possible instabilities that
may appear when using the standard Galerkin methodology,
a two-scale approximation is developed in the context of the
Variational Multi-Scale (VMS) framework, which permits the
same interpolation for all variables of the problem.

In particular, we will analyze in this thesis three different sce-
narios. As a first approach to compressible flows, we study
the isentropic Navier-Stokes problem, which can be under-
stood as an extension of the classical incompressible case
with the addition of the pressure temporal derivative. Af-
ter this, we examine the primitive formulation of the com-
plete Navier-Stokes problem and, finally, we proceed simi-
larly with the conservative formulation. The main goal for
each problem is to develop fractional step schemes at least of
second order in time, implement them in a High Performance
Computing (HPC) environment and test them by simulating
reference test cases.

The specific content of this work is divided into several sub-
jects, which are studied and developed progressively, and
that will be presented in the document as follows:

▶ Chapter 2 is an introductory chapter to present the ba-
sic equations in fluid mechanics (postulates, variables
in play, definitions, etc.), which will serve as starting
point for the upcoming developments.

▶ Chapter 3 is devoted to the VMS framework. Since
all the numerical algorithms of this thesis are based
precisely on this technique, a separated chapter is in-
cluded. Here we apply the VMS framework to a gen-
eral problem, which we then particularize in the subse-
quent chapters.

▶ Chapter 4 presents a development of a fractional step
method for the isentropicNavier-Stokes problemwithin
the VMS framework.

▶ Chapter 5 extends thework of the previous chapter and
focuses on the solution of the complete Navier-Stokes
equationswritten in pressure primitive variables bymeans
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of a fractional step method in time. We focus here on
low Mach simulations.

▶ Chapter 6 is devoted to the VMS formulation of the full
compressible Navier-Stokes equations written in con-
servative variables. The design of the VMS stabilized
formulation plus the derivation of a fractional step al-
gorithm is the main objective of the chapter. The solu-
tion of supersonic cases with shock capturing methods
is also investigated.

Let us finally mention that chapters are quite self contained
even if this implies the need of repeating some information.
This is due to the fact that Chapter 4, Chapter 5 and Chapter
6 are based on the above mentioned publications individu-
ally.

1.6 FEMUSS

All the algorithms developed in this thesis are implemented
in FEMUSS4. This is an object-oriented and Fortran-based
finite element code which follows a modular approach for
multiphysics interaction and performs parallel computations
under MPI directives, thus setting an HPC environment. The
includedmodules range fromfluid dynamics (classical incom-
pressible and compressible equations, wave equations, low
Mach models, etc.), solid mechanics (plates, shells, incom-
pressiblematerials, etc.), fluid-structure interacion or coupled
thermal problems among others.

FEMUSSmakes use of PETSc5 [61], a suite of data routines and
algorithms for the scalable (parallel) solution of different ap-
plications modeled by PDEs. It includes a large set of parallel
linear and nonlinear solvers that can be coupled to different
application codes. Nowadays, FEMUSS relies on PETSC not
only as a solver library, but also as a partitioner and com-
municator among subdomains, thanks to the PETSC broad
set of capabilities. The interaction of FEMUSS with PETSc

is achieved through an abstract and independent interface,
what would allow to easily replace PETSc by another library
if required (for example Trilinos).

For the preprocessing stage we use GID, a processing system
for computer analysis in science and engineering developed
here at CIMNE, whereas most of the postprocessing has been
done with Paraview [62] through the VTK library [63].
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One of the main strengths of FEMUSS is the straightforward
organization and accessibility of the code, which facilitates
the introduction of new models and algorithms. Neverthe-
less, since it is mostly research-oriented and in constant de-
velopment, the implementation of new formulations requires
additional changes and improvements to reach the goals of
the work.

Let us now provide some insights on the general structure
of FEMUSS. The highest level structure in FEMUSS is named
CASE. In each CASE, all processes taking place over the same
finite element mesh are grouped. As a consequence, each
CASE has a its own mesh (together with an adaptive refiner,
yet this is out of the scope of this explanation), a file post-
processor and might have several physical problems inside.
Hence, different CASEs could be defined so that the code is
capable of dealing with, for instance, fluid-structure interac-
tion where each problem is defined on a different computa-
tional domain and may involve different mesh requirements
and procedures.

The most important object inside FEMUSS is the mesh object.
This takes care of all the geometrical information including
elements, connectivities, coordinates, shape functions, etc. File
postprocessors are objects in charge of writing information
to disk so that the results can be visualized later on.

Other important concepts in FEMUSS are the Physical Prob-
lems and the Physical Problem Drivers. The latter, as the
name suggests, ’drives’ or commands the Physical Problem
while allowing for its interaction with external objects. In-
side the Physical Problems part, the different modules are
implemented. In this thesis, a compressible flow module was
developed from scratch for the algorithms in Chapter 5 and
Chapter 6, whereas the implementation of the algorithms in
Chapter 4 relies in previous subroutines .
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The Navier-Stokes
equations of compressible

flow 2
2.1 Introduction

The foundation of the subject of continuum mechanics is the
establishment of a series of general postulates, holding un-
der any type of condition. These are the socalled balance
principles, namely, the conservation of mass, the balance of
linear (and angular) momentum and the conservation of en-
ergy (also known as the first law of thermodynamics).

From this point, the fluidmechanics or general Navier-Stokes
problem can be formally stated. This chapter is devoted to
the presentation of the basic equations which allow to study
the dynamic behavior of a fluid and which also serve as a
starting point for the developments in Chapter 4, Chapter 5
and Chapter 6.

The material here presented is basic and the different parts
of this chapter can be found in classical textbooks of fluid
mechanics or continuum mechanics. Some of my favourite
are [64–68].

2.2 Balance principles

2.2.1 Introduction

In order to derive the equations which govern the motion of
a fluid, two different viewpoints might be considered. One
of these methods approach the question from the molecular
point of view, considering the fluid as a collection ofmolecules
whosemotion is governed by the laws of dynamics. Although
this statistical theory is well developed for light gases, it is
known to be incomplete for liquids [69].

The alternative to that statistical methodology is the contin-
uum approach, which is the classically adopted viewpoint,
where it is assumed that the fluid consists of continuous mat-
ter. Then, at each point, the fluid is to be characterized by
unique values of velocity, pressure, density and/or other field
variables. The continuous matter is required to satisfy the
conservation laws of mass, momentum and energy, which
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state the basic set of PDEs for the field variables. The contin-
uum assumption is valid when the mean free path between
molecular collisions is much smaller than the characteristic
length of the body under consideration, or equivalently, when
the socalled Knudsen number, precisely the ratio between
the mean free path between molecular collisions and a char-
acteristic length, is much smaller than the unity1.

2.2.2 Lagrangian vs Eulerian and computational
aspects

The choice of a frame of reference to adequately formulate
the conservation laws is a fact of paramount importance. As
it is well known in continuum mechanics, the are two basic
coordinate systems which might be employed, i.e., the Eule-
rian and the Lagrangian coordinates, yet both descriptions
can actually be combined and related by means of the Arbi-
trary Lagrangian Eulerian (ALE) methodology (see e.g. [70]
for the fundamentals of this mixed technique).

In the Eulerian framework the independent variables are ba-
sically the spatial coordinates (position vector x) and the time
coordinate 𝑡 . Hence, our attention is focused on the fluid
passing through a certain control volume which is fixed in
space. On the contrary, in the Lagrangian approach, we fo-
cus on a particular mass of fluid as it moves, thus consider-
ing always the same particles. Here, the independent vari-
ables correspond to the position vector X, precisely the coor-
dinates of a fluid mass at a time, say, 𝑡0. The configuration at
this time 𝑡0 is called reference configuration, i.e., the config-
uration where the equations are formally stated. Within this
regard, two distinct Lagrangian approaches can be defined,
namely total and updated Lagrangian configurations. On the
one hand, in the total Lagrangian formulation the reference
configuration coincides with the initial one and it is fixed in
time. On the other hand, in the updated Lagrangian formula-
tion, the reference configuration changes in time and it usu-
ally corresponds to the last known configuration 2. See for
instance, [71, 72], which solve the same mathematical prob-
lem from both total and updated descriptions.

The usual approach to derive the equations is to apply the
conservation laws to a control volume consisting of the same
fluidmass rather than onewhere different fluid particles pass,
hence using a Lagrangian coordinate system. However, the
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Eulerian system is preferred for solving the majority of prob-
lems in fluid mechanics. In this regard, a relation between
the two different approaches is established, the well known
Reynold’s transport theorem.

From the computational point of view, selecting Lagrangian
or Eulerian frame of references implies a very different treat-
ment of a certain problem. In solid mechanics, Lagrangian
algorithms are usually preferred, since each individual node
of the computational mesh is associated to a material particle
during the motion. This makes possible to easily track differ-
ent surfaces, whether they represent free surfaces or contact
interfaces among different materials. On the contrary, the
major weakness of the Lagrangian approach resides in its dif-
ficulty to describe large distortions of the computational do-
main without resorting to a remeshing strategy. This is pre-
cisely why the Eulerian methodology is extensively used in
fluid mechanics problems. However, since the Eulerian for-
mulation dissociates the mesh nodes from the material par-
ticles, convective effects appear in the definition of the time
derivatives due to the relative motion between the deform-
ing material and the computational grid. Hence, this type
of terms need to be treated accordingly in order to avoid
numerical instabilities in the solution. On top of this, the
definition of evolving interfaces is not natural as in the La-
grangian approach, yet this might be circumvented by resort-
ing to numerical techniques such as the level set (LS) method
[73, 74].

2.2.3 Local spatial equations

For the sake of conciseness, we shall skip the whole deriva-
tion of the fundamental principles, which depart from a spe-
cificmass of fluid occupying a volume arbitrarily chosen, and
then localizing the result via the Reynold’s transport theorem
(see e.g. [67, 68] or [75] for the whole procedure).

In order to describe the basic equations, let us consider a
given physical domain Ω. The velocity of the fluid is denoted
with the vector function u(x, 𝑡). In order to provide a com-
plete dynamic description of the fluid, the velocity needs to
be supplemented with at least two thermodynamic variables.
Usually, those might be selected from the set formed by the
density 𝜌(x, 𝑡), the (thermodynamic) pressure 𝑝(x, 𝑡) and the
temperature 𝜗(x, 𝑡), although others might be considered.
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3: The material derivative,

d•
d𝑡 = 𝜕•

𝜕𝑡 + (∇•)u

represents the total change in a
property (•) as seen by an ob-
server following a particular fluid
mass. The right-hand side of the
equation is the total change of the
property in an Eulerian frame.

The principle of conservation of mass states that the mass of
a continuous medium remains unchanged. Mathematically,
the socalled local spatial form of the principle of conservation
of mass is expressed as

Conservation of mass

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌u) = 0 (2.1)

This expression is sometimes called continuity equation. In
some practical cases, the variation of density might be negli-
gible, for instance in many flow problems involving liquids.
In such cases, the fluid is termed incompressible and pressure
changes are not associated to density changes. This amounts
to saying that

d𝜌
d𝑡 = 0,

where the notation d•
d𝑡 stands for the material derivative 3 of

(•). By expanding the divergence term, the differential form
of the mass conservation equation is reduced to

∇ ⋅ u = 0, (2.2)

that is to say, the velocity field is solenoidal under the incom-
pressibility regime.

The principle of linear momentum states that the following
differential equation needs to be satisfied by the field vari-
ables so that the basic law of dynamics holds:

Conservation of momentum (I)

𝜕 (𝜌u)
𝜕𝑡 + ∇ ⋅ (𝜌u ⊗ u) = 𝜌b + ∇ ⋅ 𝜎𝜎𝜎, (2.3)

which is the usually named local spatial form of the princi-
ple of balance of linear momentum. Here and in what fol-
lows, 𝜌b(x, 𝑡) are (external) body forces per unit of volume
and 𝜎𝜎𝜎(x, 𝑡) is the Cauchy stress tensor.

Different external forcing terms can be considered on the
right hand side of Equation 2.3. The most common type of
body force acting on a fluid is the gravity force based on the
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gravity acceleration, g(x, 𝑡). Likewise, there are many prob-
lems where electromagnetic effects are also important and
need to be accounted for4. The external forcing term is in
that case linked to the classical Lorentz force which relates
the charge density, the electric field vector and the magnetic
field vector, which in turn are related throughMaxwell’s equa-
tions. In these scenarios, the problem to be solved involves
the equations of fluidmechanics and electromagnetism, jointly
known as the magnetohydrodynamics problem (see e.g. [76,
77]). Moreover, sometimes it is of practical interest to con-
sider a temperature-dependent external forcing term, as it is
the case for instance of the classical Boussinesq approxima-
tion [78].

Making use of Einstein’s notation, some authors also intro-
duce the conservation of linear momentum principle as

𝜕(𝜌𝑢𝑖)
𝜕𝑡 = −𝜕Π𝑖𝑘

𝜕𝑥𝑘
+ 𝜌𝑏𝑖,

where the second order tensor

Π𝑖𝑘 ≔ −𝜎𝑖𝑘 + 𝜌𝑢𝑖𝑢𝑘 , 𝑖, 𝑘 ∈ {1, 2, 3}

is termed momentum flux density tensor, and which phys-
ically represents the 𝑖-th component of the amount of mo-
mentum flowing through an unit area perpendicular to the
𝑥𝑘 axis.

The left-hand side of Equation 2.3 might be simplified upon
the expansion of the temporal and spatial derivatives. Then,
taking into account the conservation of mass above stated,
the conservation of momentum becomes now

Conservation of momentum (II)

𝜌 𝜕u𝜕𝑡 + 𝜌 (u ⋅ ∇)u = 𝜌b + ∇ ⋅ 𝜎𝜎𝜎. (2.4)

The principle of conservation of energy is the application of
the first law of thermodynamics to a fluid element. It basi-
cally states that the change of internal energy due to a certain
process equals the total work done on the system plus any
heat which was possibly added. Denoting by 𝜄(x, 𝑡) the spe-
cific internal energy, the local spatial form of the internal en-
ergy balance (usually shortened to simply energy equation)
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can be finally written as

𝜕
𝜕𝑡 (𝜌𝜄 +

1
2𝜌u ⋅ u) + ∇ ⋅ [(𝜌𝜄 + 1

2𝜌u ⋅ u)u] = ∇ ⋅ (𝜎𝜎𝜎 ⋅ u − q)
+ 𝜌u ⋅ b + 𝜌𝑟, (2.5)

where q(x, 𝑡) is the heat flux vector and 𝑟(x, 𝑡) is a possible
heat source, which may include chemical reactions or even
electromagnetic effects. Moreover, the quantity

𝜌𝜄 + 1
2𝜌u ⋅ u,

is the total energy of the system per unit of volume, com-
posed of intrinsic or internal energy and the kinetic energy.
However, Equation 2.5 is not very handy as it is written and
it shall be simplified by first expanding the derivatives and
then by using both the conservation of mass and momentum
equations. Thus, the equation which expresses conservation
of thermal energy finally reads

Conservation of energy

𝜌 𝜕𝜄𝜕𝑡 + 𝜌 (u ⋅ ∇) 𝜄 = 𝜎𝜎𝜎 ∶ ∇u − ∇ ⋅ q + 𝜌𝑟 (2.6)

The entire left-hand side of the equation contains the rate of
change in internal energy (temporal plus convective), whereas
the right-hand side is composed of three main parts: the con-
version of mechanical into thermal energy due to surface
stresses, the rate at which heat is being added/subtracted by
conduction from the outside, and finally other heat sources
or sinks.

2.3 Constitutive equations in fluid
mechanics

The basic conservation equations stated in the previous sub-
section account for three fundamental physical principles. Equa-
tion 2.1, Equation 2.3 and Equation 2.5 represent five scalar
equations in the three-dimensional case. Nevertheless, there
aremanymore unknown variables in play, exactly seventeen:
the scalars 𝜌 (1) and 𝜄 (1), the vectors u (3) and q (3) and the
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6: Generally speaking, gases
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motion [66].

stress tensor 𝜎𝜎𝜎 which has, in general, nine independent com-
ponents5. Thus, supplementary expressions are needed to
complete the formulation of the problem. These are the so-
called constitutive equations, which we discuss up next.

2.3.1 Thermo-mechanical constitutive equation

In the most general case, this equation expresses the depen-
dency of the Cauchy stress tensor 𝜎𝜎𝜎 on thermodynamic vari-
ables: the thermodynamic pressure 𝑝(x, 𝑡), the density 𝜌(x, 𝑡),
the absolute temperature 𝜗(x, 𝑡) and on the strain rate tensor
𝜀𝜀𝜀(x, 𝑡).

The strain rate tensor is an implicit function of the velocity,
and it is formally defined as its symmetric gradient, i.e.

𝜀𝜀𝜀(u) ≔ 1
2 (∇u + ∇𝑇u) . (2.7)

Then, the thermo-mechanical constitutive equation is expressed
in the most general case as

𝜎𝜎𝜎 = −𝑝I𝑁sd
+𝔉𝔉𝔉(𝜀𝜀𝜀, 𝜌, 𝜗),

where𝔉𝔉𝔉 is a symmetrical tensor function. If this tensor func-
tion is nonlinear on its arguments, the resulting model is
termed Stokesian fluid model, whereas if 𝔉𝔉𝔉 is linear, the re-
sult is the classical Newtonian fluid model. As a consequence,
the stress components depend linearly on the rates of defor-
mation. A classical example of non-Newtonian behavior is
a type of fluid called viscoelastic, widely used in many in-
dustrial applications in chemical engineering [79, 80]. Here-
inafter, only Newtonian fluids will be considered.

The mechanical constitutive equation for a Newtonian fluid
can be stated as

𝜎𝜎𝜎 = −𝑝I𝑁sd
+ℂℂℂ ∶ 𝜀𝜀𝜀, (2.8)

where ℂℂℂ is a constant fourth-order constitutive tensor. For
an isotropic6 behavior (there is an absence of any internally
preferred direction), the constitutive tensor ℂℂℂ is an isotropic
tensor, i.e. it maintains its components in any Cartesian co-
ordinate system. The basic isotropic tensor is the (second
order) Kronecker delta tensor. In the case of fourth-order
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[81]: Sutherland (1893), “The vis-
cosity of gases and molecular
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tensors, the most general expression is demonstrated to be

ℂℂℂ = 𝜆I𝑁sd
⊗ I𝑁sd

+ 2𝜇𝕀,
[𝕀]𝑖𝑗𝑘𝑙 = 1

2 [𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘] , 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, 2, 3}

where I𝑁sd
is the second order identity tensor and 𝕀 is the

fourth-order symmetric (isotropic) unit tensor. If we now
replace this expression in Equation 2.8, the mechanical con-
stitutive equation yields

Mechanical constitutive equation

𝜎𝜎𝜎 = −𝑝I𝑁sd
+ 𝜎𝜎𝜎d = −𝑝I𝑁sd

+ 𝜆 tr(𝜀𝜀𝜀)I𝑁sd
+ 2𝜇𝜀𝜀𝜀 (2.9)

where 𝜎𝜎𝜎d represents the viscous part of the constitutive ten-
sor and tr(•) stands for the trace operation over (•).

A note on viscosity coefficients

The parameters 𝜆 and 𝜇 physically correspond to viscosities,
which are understood as material properties. Usually, 𝜇 is
termed dynamic, molecular or even shear viscosity and 𝜆 is
referred to as second viscosity coefficient. It can be shown
that these parameters are required to be non-negative. See
e.g. the proof in [64]. In the most general case, they are non-
constant andmay depend on other thermodynamic variables,
for example

𝜆 = 𝜆(𝑝, 𝜗) and 𝜇 = 𝜇(𝑝, 𝜗).

A classical example is the dependency of the viscosity on the
temperature, by means of the well known Sutherland’s law
[81]. It is based on the kinetic theory of ideal gases and an
idealized intermolecular-force potential. The formula reads

𝜇 = 𝜇(𝜗) = 𝜇ref ( 𝜗
𝜗ref

)
1/2 𝜗ref + 𝑆

𝜗 + 𝑆 , (2.10)

where 𝜗ref is a reference temperature, 𝜇ref is the viscosity at
the reference temperature and 𝑆 is the usually termed Suther-
land temperature.
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7: According to experimental ev-
idence, only in very particular
conditions will the term 𝜇btr(𝜀𝜀𝜀)
be of practical significance. This
may happen for instance when
the fluid exhibits large values of
𝜇b (e. g. CO2), or the motion is
such that extremely large values
of ∇ ⋅ u occur, for example in hy-
personic flows, which are out of
the scope of the present work.

In order to introduce some insights in the viscosity parame-
ters, the mean pressure ̄𝑝 is calculated, which is given by

̄𝑝 ≔ 1
3 tr(𝜎𝜎𝜎).

Let us now take the trace of the constitutive equation of a
Newtonian fluid, i.e.

tr(𝜎𝜎𝜎) = −𝑝tr(I𝑁sd
) + 𝜆 tr(𝜀𝜀𝜀) tr(I𝑁sd) + 2𝜇 tr(𝜀𝜀𝜀)

= −3𝑝 + (3𝜆 + 2𝜇) tr(𝜀𝜀𝜀).

Then, it is easy to see that the relation between thermody-
namic and mean pressures can be stated as

𝑝 = ̄𝑝 + 𝜇b tr(𝜀𝜀𝜀) = ̄𝑝 + 𝜇b∇ ⋅ u

where 𝜇b denotes the bulk viscosity, which controls sound
attenuation together with 𝜇 [82] and it is given by

𝜇b = 𝜆 + 2
3𝜇. (2.11)

A common practice in the analysis of themotion of compress-
ible fluids is to make use of the well-known Stokes hypothe-
sis, that is to say

𝜇b = 0 → 𝜆 = −2
3𝜇.

Setting 𝜇b = 0 is supported by the kinetic theory of gases
for the case of a polyatomic gas. This assumption renders the
mathematical treatment of compressible flows notably eas-
ier, yet it has been the object of long-lasting discussions on
compressible flows simulations7.

2.3.2 Equations of state

These equations are the classical caloric equation of state,
which define the specific internal energy 𝜄(x, 𝑡) (function of
density and temperature in the most general case), and the
kinetic equation of state, which provides an equation for the
thermodynamic pressure 𝑝 as a function of other thermody-
namic variables. Mathematically, we can express these state-
ments as

𝜄 = 𝑔(𝜌, 𝜗), (2.12a)
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8: Dry air in the atmosphere be-
haves approximately as an ideal
gas. However the situation is sig-
nificantly different if water vapor
is present. In such situation, the
classical relation is modified by in-
troducing a factor that varies with
the specific humidity. See e. g. [3].

𝑓 (𝜌, 𝑝, 𝜗) = 0. (2.12b)

In this work, we shall consider a calorically perfect gas. As a
result, the internal energy is a sole function of the tempera-
ture, and hence the caloric equation of state can be simplified
to

𝜄 = 𝜄(𝜗) ≔ 𝑐𝑣𝜗 . (2.13)

In the sequel, 𝑐𝑣 denotes the specific heat at constant volume,
and 𝑐𝑝 stands for the specific heat at constant pressure. In
this regard, we also define the ratio of specific heats

𝛾 ≔ 𝑐𝑝/𝑐𝑣 . (2.14)

The most frequently encountered form of the thermal equa-
tion of state is the ideal-gas law8,

𝑓 (𝜌, 𝑝, 𝜗) ≡ 𝑝 − 𝜌𝑅g𝜗 = 0, (2.15)

where 𝑅g is the constant of the gas under consideration, de-
fined as

𝑅g = 𝑅0
𝑀w

, (2.16)

being 𝑅0 = 8.31 J/(mol K) the universal constant and 𝑀w the
molecular weight.

However, there might be some conditions where simpler re-
lations can be considered. For instance, if the fluid is consid-
ered to be barotropic, temperature does not intervene in the
kinetic equation of state and thus we can simply write

𝑓 (𝜌, 𝑝) = 0 → 𝜌 = 𝑔(𝑝),

that is to say, the density is a sole function of the pressure.
A very particular case of a barotropic fluid is the above men-
tioned incompressible fluid in which the density is constant

𝑓 (𝜌, 𝑝) ≡ 𝜌 − 𝒞 = 0, 𝒞 = const., (2.17)

and hence it does not depend on the pressure or the temper-
ature.

Another particular case of the barotropic fluid arises when
isentropic (reversible and adiabatic) ideal conditions are con-
sidered. In such a case

𝑓 (𝜌, 𝑝) ≡ 𝑝
𝜌𝛾 − 𝒞 = 0, 𝒞 = const. (2.18)



2.3 Constitutive equations in fluid mechanics 31

2.3.3 Thermal constitutive equation

The heat flux vector q(x, 𝑡) is calculated using Fourier’s law
of heat conduction, which in general can be written as

q = −∇𝑔(𝜗),

where 𝑔 is a nonlinear function of the temperature 𝜗(x, 𝑡). Al-
though nonlinear diffusion problems are often found in prac-
tice, we will restrict ourselves to the classical linear relation
in order to ease the discussion. Hence we write

q ≔ −k ⋅ ∇𝜗 , (2.19)

where k is the (symmetrical second-order) tensor of thermal
conductivity, which is a property of the fluid. For the isotropic
case, the thermal conductivity tensor is a spherical tensor,
i.e.

k = 𝜅I𝑁sd
,

and it depends on the scalar parameter 𝜅(x, 𝑡), which is the
thermal conductivity of the fluid.

Remark 2.3.1 Although 𝜇 and 𝜅 might be assumed to be
constant to ease the discussion, many other models can be
introduced in order to reproduce more realistic conditions.
Apart from the abovementioned classical Sutherland’s law
which makes the variables temperature dependent, other
expressions based on the kinetic theory can be considered
such as the Chapman-Cowling relation for 𝜇 or the modi-
fied Eucken correction formula for 𝜅 (see e.g. [83–85] [83]: Chapman et al. (1991),

The mathematical theory of
non-uniform gases
[84]: Hirschfelder et al. (1954),
Molecular theory of gases and
liquids
[85]: Hollis (1996), Real-gas flow
properties for NASA Langley re-
search center aerothermodynamic
facilities complex wind tunnels

).

2.3.4 Dissipation function

Due to the symmetry of Cauchy’s stress tensor, it is easy to
see that

𝜎𝜎𝜎 ∶ 𝜀𝜀𝜀(u) = −𝑝 (∇ ⋅ u) + 2𝜇𝜀𝜀𝜀(u) ∶ 𝜀𝜀𝜀(u) − 2
3𝜇 (∇ ⋅ u)2 ,

where the remaining two terms correspond to the usually
termed dissipation or Rayleigh function, denoted here as Φ
and defined as

Φ ≔ 2𝜇𝜀𝜀𝜀(u) ∶ 𝜀𝜀𝜀(u) − 2
3𝜇 (∇ ⋅ u)2 .
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This function represents the rate at whichmechanical energy
is being converted to thermal energy (Joule’s effect).

Usually, this term in the energy equation is negligible for the
Newtonian fluid model, and it might only be taken into ac-
count when highly viscous flows are considered. In partic-
ular, this term is fundamental when the flow of viscoplastic
materials is studied but it is also of paramount importance in
the small scales of turbulence in compressible flows.

2.4 Final problem statement

2.4.1 General fluid mechanics problem

The general (coupled) fluid mechanics problem is defined the
general domain Ω × ℝ+ domain. Then, the problem consists
in computing the density 𝜌(x, 𝑡), the velocity u(x, 𝑡), the pres-
sure 𝑝(x, 𝑡), the temperature 𝜗(x, 𝑡), and the internal energy
𝜄(x, 𝑡) from the following set of equations:

General fluid mechanics problem

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌u) = 0, (2.20a)

𝜌 𝜕u𝜕𝑡 + 𝜌 (u ⋅ ∇)u = −∇𝑝 + 2∇ ⋅ [𝜇𝜀𝜀𝜀(u)] + ∇ (𝜆∇ ⋅ u)
+ 𝜌b (2.20b)

𝜌 𝜕𝜄𝜕𝑡 + 𝜌 (u ⋅ ∇) 𝜄 = −𝑝∇ ⋅ u + ∇ ⋅ (𝜅∇𝜗) + 𝜆(∇ ⋅ u)2

+ 2𝜇𝜀𝜀𝜀(u) ∶ 𝜀𝜀𝜀(u) + 𝜌𝑟 (2.20c)

𝜄 = 𝜄(𝜌, 𝜗), (2.20d)

𝑝 = 𝑝(𝜌, 𝜗), (2.20e)

The definitions from Equation 2.9, Equation 2.7 and Equa-
tion 2.19 are plugged into the mass, momentum and energy
conservation equations. Furthermore, initial and boundary
conditions need to be appended in order to ensure the well-
possedness of the problem.

In the following chapters wewill discuss different techniques
to numerically solve this problem by making use of the finite
element method. Particularly, in Chapter 4 we analyze the
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isentropic regime, for which the mechanical part can be un-
coupled from the thermal part. This fact reduces the global
size of the problem since only the momentum and mass con-
servation equations need to be solved. In Chapter 5 we deal
with the complete set of equations considering the socalled
primitive set of unknowns, i.e. the pressure, the velocity and
the temperature. On the contrary, in Chapter 6 we reformu-
late the problem in terms of conservative variables, namely,
the density, the linear momentum, and the total energy of
the system.

2.4.2 Non-dimensional numbers

The description of the problem can be further complemented
with the definition of some dimensionless numbers. Themost
remarkable ones in fluid mechanics are defined as follows:

Definition 2.4.1 Dimensionless numbers in fluid mechanics

Re ≔ 𝜌𝑈𝐿
𝜇 Reynolds number, (2.21a)

Pe ≔ 𝜌𝑐𝑝𝑈𝐿
𝜅 Péclet number, (2.21b)

Ma ≔ 𝑈
𝑎 Mach number, (2.21c)

Ra ≔ ‖g‖𝜌2𝑐𝑝Δ𝜃
𝜇𝜅 Rayleigh number, (2.21d)

Pr ≔ 𝑐𝑝𝜇
𝜅 Prandtl number, (2.21e)

Gr ≔ ‖g‖𝜌2Δ𝜃
𝜇2 Grashof number, (2.21f)

Nu ≔ 𝜙𝐿
𝜅 Nusselt number, (2.21g)

where 𝐿 is a characteristic length (to be specified), 𝑈 a char-
acteristic velocity, Δ𝜃 a characteristic temperature difference
(not to be confused here with the Laplacian of the tempera-
ture), g a buoyancy force vector, 𝜙 is the heat transfer coeffi-
cient, and 𝑎 is the speed of sound in the considered medium.
The rest of the variables were already defined. These num-
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bers are related by

Ra = GrPr,
Fr = Re2Gr−1,
Re = PePr−1.

Upon the introduction of the thermal diffusivity

𝐾 ≔ 𝜅
𝜌𝑐𝑝

, (2.22)

and the kinematic viscosity

𝜈 ≔ 𝜇
𝜌 , (2.23)

the Prandtl number might be simply written as

Pr = 𝜈/𝐾.

The Prandtl number is a measure for the similarity of the
transport of heat and momentum. In addition, the Grashof
number is ameasure of the relative importance of the bouyancy
forces to the viscous forces.

In compressible flows, the Mach number is of particular in-
terest since it defines the compressibility regime. It can range
from subsonic (Ma < 0.8), transonic (0.8 < Ma < 1.2), su-
personic (Ma > 1.2), and hypersonic (Ma ≫ 1) flow condi-
tions.

2.4.3 Closure of the initial boundary value
problem

Once the governing equations are defined, boundary and ini-
tial conditionsmust be adequately prescribed in order to close
the statement of the problem and ensure well-possedness.
Boundary conditions are still an open question for the com-
plete set of Navier-Stokes equations [86].

In general, three types of boundary conditions can be con-
sidered: Dirichlet (or essential), Neumann (or natural) and
Robin (or mixed) conditions. Let us denote by Γ = 𝜕Ω the
boundary of the domain Ω and consider the following dis-
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joint splitting:

ΓD ∪ ΓN ∪ ΓM = Γ,
ΓD ∩ ΓN = ∅,
ΓN ∩ ΓM = ∅,
ΓD ∩ ΓM = ∅,

where the subscripts refer to, respectively, the Dirichlet, Neu-
mann and mixed parts of the boundary. Generally speaking,
we shall require the following specifications in order to solve
a problem:

▶ Dirichlet boundary conditions for the unknonwn vari-
ables at the boundary ΓD.

▶ Neumann boundary conditions for the normal compo-
nent of the fluxes of the variables at the boundary ΓN.

▶ Robin boundary conditions at the boundary ΓM, stated
as a linear combination of given values of the unknowns
and normal components of the fluxes.

▶ Initial conditions prescribed over whole domain Ω for
all the variables in play at 𝑡 = 0.

However, not all boundary conditions can be applied arbi-
trarily everywhere along the contours of the domain. For
instance, in hyperbolic problems essential boundary condi-
tions cannot be imposed on the whole boundary. In addi-
tion to this, boundary conditions might be prescribed using
different sets of variables which complicates even more this
fact. Many other times, the boundary conditions involve un-
known variables and hence an iterative procedure has to be
introduced (as we shall do for the problem analyzed in Chap-
ter 6).

In the context of pure hyperbolic problems, a simplified anal-
ysis in one dimension can be done by assuming that viscosity
and diffusion effects are removed and studying the problem
from the viewpoint of a Fourier transformation, see the re-
sults in [87, 88]. The following general statements can be
done for inflows and outflows at different Mach numbers in
compressible flows:

▶ For the subsonic regime, i.e. when Ma<1, two condi-
tions are imposed at inlets, usually the velocity and the
temperature and only one condition is prescribed at the
outlet, usually the pressure.
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▶ For supersonic conditions Ma≥1, three conditions are
prescribed at the inlet, usually the density, the velocity
and the temperature, and none at the outlet.

In addition to all this, solid boundaries can be represented as
a slip condition (impermeable wall condition)

u ⋅ n = 0,

as a no-slip condition
u = 0,

with a given velocity ug

u − ug = 0,

as an isothermal wall with a given temperature value 𝜗g
𝜗 − 𝜗g = 0,

or as a wall with a prescribed heat flux

−𝜅n ⋅ ∇𝜗 = 𝜑,

with 𝜑 = 0 in the case of an adiabatic wall.

In Chapter 4, Chapter 5 and Chapter 6 we shall explicitly de-
tail in each case the prescribed boundary conditions when
formulating the corresponding problem.
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Numerical fundamentals:
the VMS framework 3

3.1 Introduction

The Variational Multi-Scale (VMS) concept was first intro-
duced in the 90s by Hughes and coworkers in [89, 90]. Since
then, it has served as a starting point for the development
of stabilized finite element methods for the solution of prob-
lems where the stability of the standard Galerkin formula-
tion is not guaranteed. In mixed problems, this is mainly
due to some incompatibility restriction of the corresponding
interpolating spaces1. Apart from this, the convective terms
appearing in the governing equations of flow problems may
render the solution unstable when using a finite element for-
mulation, showing spurious oscillations. In general, this fluc-
tuating behavior could be avoided setting a specificmesh size,
but this approach if often disregarded as it is not computa-
tionally affordable.

Both instabilities can be tackled by resorting to stabilized fi-
nite element methods. Although the term stabilization is re-
ally broad in the field of computational mechanics, since it
includes many numerical techniques, here we refer to those
methods based on themodification of theweak form obtained
by the Galerkin approach by adding some mesh-dependent
terms weighted by the residuals of the differential equations
(or even part of these residuals).

Stabilized finite element methods were initially developed
in the context of convection-dominated flow problems. It
was soon understood that node-to-node numerical oscilla-
tions could be avoided by introducing some sort of numerical
diffusion. The first successful attempt of this idea had already
been tested in the context of the finite difference method [91].
Later, this idea evolved so as to introduce artificial diffusion
but only along the streamline direction [92].

Thewidely known StreamlineUpwind PetrovGalerkin (SUPG)
method [93, 94] was originally introduced as an extension of
the previously developed stabilizationmethods for convection-
diffusion flow problems. The foundation of the method was
to introduce numerical diffusion along the streamlines in an
optimal manner by defining a certain stabilization term. This
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termwas based on a matrix of algorithmic parameters, an op-
erator applied to the test function, and the complete residual
of the differential equation. Later, modifications to that op-
erator applied to the test function were introduced, giving
raise to the commonly named Galerkin Least Squares (GLS)
method (see e.g., [95]). Other examples of similar stabilized
methods are the Characteristic Galerkinmethod [96], and the
Taylor-Galerkin method [97].

The key idea behind the VMS approach is to split the un-
knowns of the problem in hand into two scales, namely, the
scale that can be approximated by the finite element mesh
and the subgrid scale, the unresolvable one. The general
methodology consists in finding an approximation for the
subgrid scale so as to yield a stable formulation involving
only the finite element scales, hence maintaining the num-
ber of degrees of freedom of the starting Galerkin variational
problem. There are different ways to model the subgrid scale,
provided a definition of the functional spacewhere it belongs.
In this thesis, we will assume the subgrid component to be
L2-orthogonal to the finite element space, what leads to the
orthogonal subgrid scales method (named OSGS or simply
OSS).

The OSGS approach was first introduced by Codina in [98]
as an extension of the stabilized method earlier introduced
for the Stokes problem and the convection-diffusion equa-
tion. Later, the natural extension of this technique to tran-
sient problems was elaborated in [99]. The OSS method is
facilely extended to transient problems and the effect of the
time discretization over the stabilization method is also ex-
plained in that publication.

After performing the decomposition of the unknown of the
problem into the finite element and subgrid scale, some mod-
elling considerations have to be taken into account in order
to be able to numerically compute the subscales 2. Different
approaches have been proposed in the literature of VMS. In
[100], the approach for the subgrid problem is to consider
a finer finite element space and the introduction of numer-
ical diffusion. A different possibility is to consider the sub-
scales as bubble functions [101, 102]. A more recent develop-
ment in based on a multiscale discontinuous Galerkin [103],
where the coarse scale is considered continuous and the sub-
grid scale discontinuous.
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The classical techniques within the VMS framework neglect
the time derivatives of the subgrid scales when solving the
associated subscale problem. The subscales resulting from
this assumption are labeled as quasi-static [99]. For such an
approximation, it turns out that the inequality

𝛿𝑡 > 𝐶ℎ2

needs to be satisfied in order to obtain stable solutions, being
𝛿𝑡 the time step size, 𝐶 a certain positive constant and ℎ the
spatial grid size. In this regard, and as it is explained in [104],
anisotropic space-time discretizations 3 cannot guarantee sta-
ble solutions. Moreover, these instabilities usually appear in
the early stages of the time integration procedure. In that
publication, the basic features of considering time-dependent
subscales are exposed, e.g., the resolution of inconsistencies,
to perform the simulation of turbulent flows and the reduc-
tions of the computational effort since the number of nonlin-
ear iterations needed to solve each time step decreases too.
In essence, accounting for the time derivative of the subgrid
scales has become an effective feature in order to eliminate
numerical oscillations originated by initial transients while
minimizing numerical dissipation (see e.g. [105]).

The multi-scale concept was first presented in the context
of compressible Navier-Stokes formulations as a turbulence
model. For this reason, it originally played the role of a nu-
merical artifact to account for the effect of the unresolved
scales rather than a stabilization method per se. In this re-
gard, [106] introduced a mixed formulation to approximate
the solution by separating in advance the resolved and un-
resolved turbulent scales, whose effect is modeled using a
Reynolds stress tensor. This initial work was contrasted in
[107], specifically in the definition of the unresolved scales,
proposing a Fourier-Spectral projector, which could be im-
plemented with a discontinuous Galerkin method. Likewise,
[108] proposed a GLS methodology for the solution of the
compressible Navier-Stokes problem written in the socalled
entropy variables, which includes a filtering procedure with
subgrid entropy variables andwhere the authorsmodeled the
effects of subscales into the resolved scales with a turbulence
model. In [109] conservative variables are used, but then ve-
locity, pressure and temperature were selected in the mixed
terms that resulted after averaging the compressible equa-
tions. The influence of the subscales was modeled using the
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Smagorinsky turbulence model.

Specifically in the context of compressible flows, [110] presents
a review of different stabilizedmethods for compressible flow
computations with a historical perspective from initial de-
velopments to modern approaches. In addition, [111] was
the first attempt to introduce stabilization techniques strictly
in the frame of VMS methods. In these references, VMS-
based formulations previously developed for the incompress-
ible case are satisfactorily extended to its compressible coun-
terpart. More recently, in [112] the VMSmethod was applied
in order to stabilize the Euler equations, where the authors
demonstrated the convergence of the numerical method in a
wide range of stratified flows, yet they restricted the explicit
formulation to a linear Euler time integration scheme.

The purpose of this chapter is to present the basic numeri-
cal ingredients for the upcoming developments in Chapter 4,
Chapter 5 and Chapter 6. We will depart from a general ini-
tial and boundary value problem, and then expose the basic
features of the VMS framework and how to apply it to this
standard case.

3.2 General initial and boundary value
problem

The majority of problems in fluid mechanics may be con-
veniently cast in a unified manner as a system of nonlin-
ear convection-diffusion-reaction evolution equations, as it
is the case of the problem in Equation 2.20a–Equation 2.20c.
Let then Ω be an open, bounded and polyhedral domain of
ℝ𝑁sd (𝑁sd = 2 or 3 is the number of space dimensions) and
[0, 𝑡f] the time interval of analysis. The strong form of the
problem consists in finding a vector function y ∈ ℝ𝑁sd+2 such
that

ℳ(y)𝜕𝑡y +ℒ(y; y) = ℱ in Ω × (0, 𝑡f), (3.1)

whereℳ is an operator containing coefficients related to the
temporal derivatives (nonlinear in the most general case),
and ℱ is an external forcing term. The remaining spatial
operator ℒ(y; y), linear in the second argument, is clearly
a convection-diffusion-reaction operator for the problems of
interest described in Chapter 4, Chapter 5, Chapter 6. It is
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4: For the sake of simplicity in the
discussion, we skip mixed type of
boundary conditions.

5: Although we have grouped
Neumann conditions on ΓN and
Dirichlet conditions on ΓD, a com-
bination of boundary equations
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ables on the same part of the
boundary, and hence they may
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a certain velocity value on a
wall, but consider it also as adia-
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in our examples how the initial
and boundary conditions are pre-
scribed, as already discussed in
Section 2.4.3.

defined as

ℒ(y⋆; y) ≔ 𝒜𝑗(y⋆)𝜕𝑗y − 𝜕𝑗(𝒦𝑗𝑘(y⋆)𝜕𝑘y) − 𝒮 (y⋆)y, (3.2)

where 𝒜𝑗 , 𝒦𝑗𝑘 and 𝒮 are the classical (𝑁sd + 2) × (𝑁sd + 2)
convective, diffusive and reactive matrices.

In general, this problem corresponds to a nonlinear initial
and boundary value problem of parabolic-hyperbolic type
which needs to be supplemented with appropriate initial and
boundary conditions. Usually, these can be expressed in the
following vector form after setting Γ = ΓD ∪ ΓN 4:

𝑛𝑗 (𝒦𝑗𝑘(y)𝜕𝑘y) = tN on ΓN, 𝑡 ∈ (0, 𝑡f), (3.3a)

𝔇y = 𝔇yD on ΓD, 𝑡 ∈ (0, 𝑡f), (3.3b)

y = y0(x), in Ω, 𝑡 = 0, (3.3c)

where y0 denotes the prescribed initial conditions over the
whole domain Ω. Furthermore, the Dirichlet boundary oper-
ator 𝔇 is used to impose the Dirichlet boundary conditions
from given values yD. The normal vector to Γ is denoted by
n, whose 𝑗-th component is 𝑛𝑗 , and tN is the prescribed ”trac-
tion” (in general, a flux) over the Neumann boundary. For
the sake of simplicity, let us assume tN = 0 in this chapter,
as well as 𝔇y = 0 5.

3.3 Variational formulation

Let us denote by 𝕐 the proper functional space where each
component of the unknown vector y is well defined for each
fixed time 𝑡 ∈ (0, 𝑡f), with appropriate regularity and satis-
fying the Dirichlet boundary conditions. The weak form of
the problem is obtained by testing Equation 3.1 against an
arbitrary set of test functions zwhich we consider to be time
independent and such that they vanish on the Dirichlet part
of the boundary. Then the weak or variational form of the
problem consists in solving for y ∶ (0, 𝑡f) → 𝕐 such that

∫Ω z𝑇 ⋅ [ℳ(y)𝜕𝑡y +ℒ(y; y)] dΩ = ∫Ω z𝑇 ⋅ ℱ dΩ, (3.4a)

∫Ω z𝑇 ⋅ y = ∫Ω z𝑇 ⋅ y0 dΩ, (3.4b)

for all z ∈ 𝕐.
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Now in order to reduce continuity requirements, integration
by parts is usually performed in the diffusive terms, what
in turn allows to introduce Neumann boundary conditions
naturally. After the introduction of the following forms

ℬ(y⋆; y, z) ≔∫Ω z𝑇 ⋅ (𝒜𝑗(y⋆)𝜕𝑗y − 𝒮(y⋆)y) dΩ

+∫Ω 𝜕𝑗z𝑇 ⋅ (𝒦𝑗𝑘(y⋆)𝜕𝑘y) dΩ, (3.5a)

ℓ(z) ≔∫Ω z𝑇 ⋅ ℱ dΩ, (3.5b)

the weak form can be rewritten as:

Weak form of the general problem

Find the vector function y ∶ (0, 𝑡f) → 𝕐 such that,

⟨z,ℳ(y)𝜕𝑡y⟩ + ℬ(y; y, z) = ℓ(z), ∀ z ∈ 𝕐. (3.6)

From this continuous equation, discretization in space and in
time can be performed with different techniques. We discuss
next the time discretization.

3.4 Time discretization

In order to introduce the time discretizaion, let

0 ≤ 𝑡0 ≤ 𝑡1 ≤ … ≤ 𝑡𝑁 = 𝑡f,

be a uniform partition of the time interval of analysis with
time step size

𝛿𝑡 = 𝑡𝑛 − 𝑡𝑛−1, 𝑛 = 1, … , 𝑁 .

In this work, we suggest backward difference (BDF) schemes
of order 𝜃 = 1, 2, …, which can be introduced upon the defini-
tion the following BDF operator

Definition 3.4.1 BDF-operator

𝐷𝜃𝑓 𝑛+1 ≔ 1
𝜙𝜃

(𝑓 𝑛+1 −
𝜃−1
∑
𝑖=0

𝜁 𝑖𝜃𝑓 𝑛−𝑖) , (3.7)
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being 𝜙𝜃 and 𝜁 𝑖𝜃 numerical parameters which depend on the
order of the temporal approximation. In particular, for the
first and second order schemes, it is found that

𝐷1𝑓 𝑛+1 = 𝛿𝑓 𝑛+1 ≔ 𝑓 𝑛+1 − 𝑓 𝑛 ,
𝐷2𝑓 𝑛+1 = 3

2 (𝑓 𝑛+1 − 4
3𝑓

𝑛 + 1
3𝑓

𝑛−1) .

The first order one (BDF1) coincides with classical Backward
Eulermethod. Both BDF1 and the second order scheme (BDF2)
are known to beA-stable schemes. The concept ofA-stability
is based on the socalledDahlquist or stiff test problem, formu-
lated as:

d𝑦
d𝑡 = 𝜆𝑦,

|𝑦(𝑡)| ≤ |𝑦(0)|, ∀ 𝑡 ≥ 0, if 𝜆 ∈ ℂ−,

with,
ℂ− ≔ {𝑧 ∈ ℂ | ℜ(𝑧) ≤ 0} ,

where ℜ stands for the real part of the complex number 𝑧.
Specifically in the context of BDF integrators, we need to con-
sider the following test equation:

𝐷𝜃𝑦𝑛+1
𝛿𝑡 = 𝜆𝑦𝑛+1,

and A-stability states that |𝑦𝑛+1| ≤ |𝑦𝑛 |, i.e., solutions do not
grow uncontrollably in time.

However, a mathematical analysis of the previous statement
does not hold for BDF methods of higher order than 2, a limi-
tation referred to as the second Dahlquist barrier in the litera-
ture. See [113] for a detailed exposition of thewhole family of
BDF methods and the analysis of their stability properties.

For the design of fractional step schemes, it is particularly
advantageous to make use of the backward extrapolation op-
erators, which permit the explicit treatment in time of some
terms of the equations in the design stage of an algorithm.
These extrapolation operators are given as

𝑓 𝑛+10 = 0, (3.8a)

𝑓 𝑛+11 = 𝑓 𝑛 , (3.8b)

𝑓 𝑛+12 = 2𝑓 𝑛 − 𝑓 𝑛−1, (3.8c)
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or, in general as

̂𝑓 𝑛+1𝜃 ≔ 𝑓 𝑛+1−𝛿 (𝜃)𝑓 𝑛+1 = 𝑓 𝑛+1+𝒪 (𝛿𝑡𝜃) , 𝜃 = 0, 1, 2… (3.9)

where

𝛿 (𝑖+1)𝑓 𝑛+1 = 𝛿 (𝑖)𝑓 𝑛+1 − 𝛿 (𝑖)𝑓 𝑛 , ∀ 𝑖 = 1, 2, 3, … .

When the BDF operator is applied to the continuous prob-
lem Equation 3.6, we obtain a time-discrete space-continous
problemwhich reads: given the known y𝑛−𝑖 values from 𝑖 = 0
to 𝜃 − 1, compute the next time step unknown y𝑛+1 ∈ 𝕐 such
that

⟨z,ℳ(y𝑛+1)𝛿𝑡y𝑛+1⟩ + ℬ(y𝑛+1; y𝑛+1, z) = ℓ(z), (3.10)

for all z ∈ 𝕐, where we have introduced the following nota-
tion for the discrete time derivative

𝛿𝑡 (•) ≡
𝐷𝜃 (•)
𝛿𝑡 .

3.5 The VMS framework

In this section, we recast the basic theory of the Variational
Multi-Scale framework, which is the base for all the develop-
ments contained in the next chapters.

3.5.1 Galerkin finite element discretization

Let us assume a polyhedral domain Ω for which we can con-
sider a finite element partition, Ω(𝑒). It is understood that the
subdomains Ω(𝑒) are open, non-overlapping and the union of
their closures is the closure ofΩ. In the following, the approx-
imations we consider are conforming, i.e., the finite element
spaces will be chosen as finite dimensional subspaces of the
functional ones where the problem is posed. To this end, let
𝕐ℎ ⊂ 𝕐 be the finite element approximating space for the
problem in hand.

We then consider the discrete space

𝕐ℎ ≔ {y ∈ 𝕐 | y(⋅, 𝑡)|Ω(e) ∈ 𝒫𝑚 (Ω(e)) , 𝑡 ∈ (0, 𝑡f)} ⊂ 𝕐
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where 𝒫𝑚 stands for the set of complete polynomials of de-
gree ≤ 𝑚 in Ω(e). In several spatial dimensions, different
types of polynominals can be chose, e.g., P𝑚, the set of poly-
nomials of degree ≤ 𝑚 defined over a reference triangle, Q𝑚,
the set of polynomials of degree ≤ 𝑚 in each variable defined
over a reference square, or S𝑚 = P𝑚 ⊕ span {𝑥𝑚𝑦, 𝑥𝑦𝑚}, also
known as serendipity spaces over a reference square.

In order to make the discussion clearer, we shall depart from
Equation 3.6 since time discretization is not relevant for this
subsection. The raw Galerkin finite element approximation
of the problem in hand is stated by approximating y ≈ yℎ
and then consists now in finding yℎ ∶ (0, 𝑡f) → 𝕐ℎ such that

⟨zℎ,ℳ(y)𝜕𝑡yℎ⟩ + ℬ(y; yℎ, zℎ) = ℓ(zℎ), ∀ zℎ ∈ 𝕐ℎ. (3.11)

Denoting by Λ = {1, 2, … , 𝑁tp} the set of global nodes in the
finite element mesh, the approximation of the problem un-
known is then stated as

y(x, 𝑡) ≈ yℎ(x, 𝑡) = ∑
𝑎 ∈ Λ

𝜑𝑎(x)Y𝑎(𝑡)

where 𝜑𝑎 is the shape function associated with the node 𝑎
and Y is the nodal unknown. Likewise, the arbitrary test
functions are defined analogously in the Galerkin method-
ology.

In practice, the computations are performed over an individ-
ual element Ω(𝑒), being the shape functions 𝜑𝑎 , 𝑎 = 1,… , 𝑁no
defined on a master element in normalized coordinates, e.g.,
a square (𝜉 , 𝜂) = [−1, 1] × [1, 1]. This leads to the commonly
known as isoparametric approximation for an element. The
integrals are then evaluated element by element in local co-
ordinates using a numerical quadrature and later assembled
into the global system what leads to the final matrix system
(see a complete explanation in [6]).

3.5.2 Scale splitting

As we stated in the introduction of this chapter, it is well
known that raw Galerkin formulations may suffer from dif-
ferent types of numerical instabilities, particularly when ap-
plied to flow problems. The main ones arise, precisely, from
the non-elliptic nature of the equations and others come from
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6: Note that setting �̃� = {0}
would yield the original Galerkin
method, but better options are
expected to be found when that
method is unstable.

compatibility restrictions between the approximations of the
different components of the vector of unknowns. In any case,
they all depend on the expression of the matrices that de-
fine the nonlinear convection-diffusion-reaction operator in
Equation 3.2.

The cornerstone of the VMS approach is to split the space of
the unknowns 𝕐 in the following manner

𝕐 = 𝕐ℎ ⊕ �̃�,

where 𝕐ℎ is the finite element space (and hence finite dimen-
sional) and �̃� is any complementary space which completes
𝕐ℎ in 𝕐, usually termed subgrid scale space and which is in
principle infinite dimensional. Each VMS-type method will
depend on the approximation introduced for the computa-
tion of �̃�. Therefore, distinct methodologies arise from dif-
ferent approximations of the subgrid scale space and this is
precisely why we refer to VMS as a framework, rather than
a single method.

The previous splitting of the space 𝕐 induces a scale separa-
tion of unknowns and test functions, in such a way that

y = yℎ + ỹ, yℎ ∈ 𝕐ℎ, ỹ ∈ �̃�,
z = zℎ + z̃, zℎ ∈ 𝕐ℎ, z̃ ∈ �̃�.

Taking this into account, it is readily checked that the con-
tinuous problem can be written as the following system of
equations:

⟨zℎ,ℳ(y)𝜕𝑡y⟩ + ℬ(y; y, zℎ) = ℓ(zℎ) ∀zℎ ∈ 𝕐ℎ, (3.12a)

⟨z̃,ℳ(y)𝜕𝑡y⟩ + ℬ(y; y, z̃) = ℓ(z̃) ∀z̃ ∈ �̃�, (3.12b)

where the first row Equation 3.12a is termed finite element
scale equation (which is posed in the finite element space)
and the second row Equation 3.12b is referred to as subgrid
scale equation in the literature (it is posed in the subscale
space)6.

3.5.3 Approximation of the subgrid scales

In order to derive a computationally feasible methodology,
some approximation needs to be introduced due to the fact
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7: In other words, the space �̃�
is taken as the space of bub-
ble functions. This approximation
makes the subscale problem de-
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problems. Otherwise, finding a so-
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cisely that of satisfying continuity
of fluxes across element edges.

[114]: Codina et al. (2009), “Sub-
scales on the element boundaries
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element method”
[115]: Codina et al. (2018), “Vari-
ational Multiscale Methods in
Computational Fluid Dynamics”

that the subscale problem Equation 3.12b is posed in an in-
finite dimensional space. In this regard, the goal is to find
an approximation of the subscales in order to end up with
a problem which should depend just on the finite element
scales, hence maintaining the original number of degrees of
freedom. In other words, the goal is to find an explicit expres-
sion for the computation of ỹ in Equation 3.12b which could
then be plugged into Equation 3.12a.

Integration by parts within each element can be performed in
Equation 3.12a, which avoids, precisely, the introduction of a
model for the spatial derivatives of the subscale unknown ỹ.
Hence, making use of the additivity property of the integral,
it is easy to check that

⟨zℎ,ℳ(y)𝜕𝑡yℎ⟩ + ℬ(y; yℎ, zℎ)

+
𝑁el

∑
𝑒=1

∫Ω(𝑒)
[ℒ⋆(y; zℎ)]𝑇 ⋅ ỹ dΩ = ℓ(zℎ), (3.13)

where the boundary terms over the skeleton of the mesh are
neglected by supposing that the subscales vanish at the ele-
ment boundaries, though this assumption could be relaxed by
including some strategy to account for the subscales on the
element boundaries7. In [114, 115] this fact is extensively dis-
cussed, concluding that enhanced stability properties might
be achieved under some conditions. The star superscript de-
notes the formal adjoint operator ofℒ(y; y) fromEquation 3.2.
Such adjoint operator satisfies, up to boundary terms, the fol-
lowing relation

∫Ω z𝑇 ⋅ ℒ(y;w) dΩ = ∫Ω [ℒ⋆(y; z)]𝑇 ⋅w dΩ ∀ y,w, z,

and the outcome of this operator when it is applied to the
test function vector is

ℒ⋆(y; zℎ) ≔ − 𝜕𝑗 (𝒜 𝑇𝑗 (y)zℎ) − 𝜕𝑘 (𝒦 𝑇𝑗𝑘(y)𝜕𝑗zℎ)
− 𝒮 (y)𝑇 zℎ. (3.14)

The finite element scale equation Equation 3.12a can be in-
terpreted as the projection of the original problem onto 𝕐ℎ.
Similarly, the subgrid scale equation Equation 3.12b can be
understood as the projection of the equations onto the space
of subscales �̃�, i.e., by taking the test function in the space
of subscales instead of taking it in the finite element space.
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Hence, if 𝒫 denotes the classical L2(Ω)-projection onto the
space of subscales, Equation 3.12b can be equivalently rewrit-
ten as follows:

𝒫 [ℳ(y)𝜕𝑡 ỹ +ℒ(y; ỹ)] = 𝒫 [ℛ(y; yℎ)] ,

where ℛ(y; yℎ) is the (strong) finite element residual, i.e.

ℛ(y; yℎ) ≔ ℱ −ℳ(y)𝜕𝑡yℎ −ℒ(y; yℎ). (3.15)

In principle, solving the fine scale problem for ỹ would re-
quire to find a certain inverse operator ℒ−1(y; ỹ). However,
since such an inverse operator cannot be directly computed,
an element by element approximation is performed bymeans
of the socalled matrix of stabilization parameters, which we
denote by 𝜏𝜏𝜏 (generally nonlinear in y), and in such a way
that

ℒ(y; ỹ) ≈ 𝜏𝜏𝜏−1(y)ỹ.
Therefore, Equation 7 might be rewritten as

ℳ(y)𝜕𝑡 ỹ + 𝜏𝜏𝜏−1(y)ỹ = 𝒫 [ℛ(y; yℎ)] , (3.16)

where we have assumed that the left-hand-side (LHS) of the
equation already belongs to the space of subscales and hence
its projection is precisely the same LHS.

The definition of the matrix of stabilization parameters 𝜏𝜏𝜏 (y)
is by nomeans a closed question. Up to our knowledge, there
is no general rule to define it for systems of equations. It must
be designed for each particular problem taking into account
its stability deficiencies or even scaling requirements. In this
regard, an approximate Fourier analysis of the subscale prob-
lem was performed in [116], where the dependence of the
stabilization parameters on the equation coefficients and the
mesh size was established. We shall keep the definition of
the stabilization parameters aside, and come back to it in the
following chapters as these are problem dependent, as previ-
ously stated.

3.5.4 Algebraic vs orthogonal, quasi-static vs
dynamic subscales

Depending on the choice of the projection operator𝒫 (which
implicitly involves the choice of �̃�), different approximation
equations for the subscales can be defined. In particular, in
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[115] two alternatives for formulating the subscale equations
are described. The first one is namedAlgebraic Subgrid Scales,
hereinafter ASGS. This is the most common approach and it
is defined after setting the projection operator equal to the
identity projector, that is to say

𝒫 = ℐ , (ASGS)

when applied to the finite element residual appearing in the
right-hand-side of Equation 3.16. The second alternative cor-
responds to

𝒫 = 𝒫 ⟂ℎ ≔ ℐ − 𝒫ℎ, (OSGS)

being𝒫ℎ the projector operator onto the finite element space.
The resulting formulation is called Orthogonal Subgrid Scales
(OSGS) because when the stabilization parameters 𝜏𝜏𝜏 are the
same for all elements in the mesh, this choice exactly corre-
sponds to taking �̃� as the orthogonal complement of 𝕐ℎ in
𝕐.
Apart from this, and as the reader might have noticed, Equa-
tion 3.16 includes the time derivative of the subscale. Since
the numerical instabilities of flow problems have essentially
a spatial nature, the time dependency of the subscales is not
considered as a standard choice [117–119]. In such scenario,
the subscales are usually called quasi-static (QSS) due to the
fact that although their time derivative is neglected, the sub-
scales still vary in time since the residual does. Therefore, in
such sceneario, the subscales are simply computed from

ỹ = 𝜏𝜏𝜏(y)𝒫 [ℛ(y; yℎ)] . (3.17)

The subscale as a time dependent variable of the problemwas
novelly introduced in [99] and further analyzed in [104] and
[120]. The inclusion of the time derivative of the subscales
was shown to give rise to important properties such as the
commutativity of space and time discretizations, the stabil-
ity without restrictions on the time step size and, when they
are additionally combined with orthogonal subscales, to en-
hanced stability and convergence properties in time as well
as to improved accuracy (see Section 5 in [115]).

However, in order to deal with dynamic subscales one needs
to integrate Equation 3.16 in time, e.g., using for example a fi-
nite differences scheme although there is also the possibility
to integrate the subscales in time analytically, as explained



50 3 Numerical fundamentals: the VMS framework

8: Hence, the subscales play the
role of an internal variable as
in computational solid mechanics
problems.

9: The rationale behind using
such a dissipative scheme for the
time integration of the the fine
scales is precisely the assumption
of bubble functions.

10: The reader should note
that formally the term
ℬstab(y𝑛+1; y𝑛+1ℎ , zℎ) may
contain the temporal derivative
of the unknown y𝑛+1ℎ , and hence
a contribution to the RHS of
Equation 3.20 appears as a result
of known information from
previous time steps.

in [105]. Moreover, the storage of the subscales at the inte-
gration points is needed, since at a certain time step the sub-
scales of the previous one are required to advance the solu-
tion in time8. As it is clearly discussed in [104], the choice of
the time integration scheme of the subscales equation can be
less accurate than that of the general finite element equation
without altering the time accuracy of the numerical scheme.
Since in this thesis wewill consider mainly second order inte-
gration schemes for the finite element equations, we select a
simple backward Euler scheme for the subscales9. Following
Section 3.4, it yields

ỹ𝑛+1 = 𝜏𝜏𝜏d(y𝑛+1)𝒫 [ℛ(y𝑛+1; yℎ)]
+ 𝜏𝜏𝜏d(y𝑛+1)ℳ(y𝑛+1) ỹ

𝑛

𝛿𝑡 , (3.18)

where we have introduced an effective stabilization parame-
ter which is defined as

𝜏𝜏𝜏d(y𝑛+1) ≔ [ℳ(y𝑛+1)
𝛿𝑡 + 𝜏𝜏𝜏−1(y𝑛+1)]

−1
. (3.19)

Now that we have an explicit strategy to solve for the sub-
scales, i.e. either Equation 3.17 or Equation 3.18 with the
algebraic or orthogonal definition of𝒫 , we can take those ex-
pressions to the former finite element scales equation Equa-
tion 3.13 to finally get a problem which involves only the
finite element subscales.

The final problem is stated in the following abstract form,
considered as an extension of Equation 3.10 with the addition
of the stabilization terms based on the VMS strategy. Then,
it yields

⟨zℎ, ℳ(y𝑛+1)𝛿𝑡y𝑛+1ℎ ⟩ + ℬ(y𝑛+1; y𝑛+1ℎ , zℎ)
+ ℬstab(y𝑛+1; y𝑛+1ℎ , zℎ) = ℓ(zℎ) + ℓstab(zℎ) (3.20)

The definition of the stabilization forms for each specific case
are provided in the following tables: Table 3.1 and Table 3.2
contain the definition of the LHS-form ℬstab(y𝑛+1; y𝑛+1ℎ , zℎ)
for the ASGS and OSGS approaches, and Table 3.3 and Ta-
ble 3.4 the definitions of the RHS-form ℓstab(zℎ), respectively10.
Taking into account the previously discussed features of the
dynamic OSGS approach, we favor the implementation of
this methodology.
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Table 3.1: Definition of the ℬstab(y𝑛+1; y𝑛+1ℎ , zℎ) form for both dynamic (DYN) and quasi-static (QSS) algebraic
subgrid scales.

DYN −∑𝑁el𝑒=1 ⟨ℳ(y𝑛+1)𝛿𝑡y𝑛+1ℎ +ℒ(y𝑛+1; y𝑛+1ℎ ), 𝜏𝜏𝜏d(y𝑛+1)ℒ⋆(y𝑛+1; zℎ)⟩
−∑𝑁el𝑒=1 ⟨ℳ(y𝑛+1)𝛿𝑡y𝑛+1ℎ +ℒ(y𝑛+1; y𝑛+1ℎ ), [I − 𝜏𝜏𝜏(y𝑛+1)−1𝜏𝜏𝜏d(y𝑛+1)] zℎ⟩

QSS −∑𝑁el𝑒=1 ⟨ℳ(y𝑛+1)𝛿𝑡y𝑛+1ℎ +ℒ(y𝑛+1; y𝑛+1ℎ ), 𝜏𝜏𝜏d(y𝑛+1)ℒ⋆(y𝑛+1; zℎ)⟩

Table 3.2: Definition of the form ℬstab(y𝑛+1; y𝑛+1ℎ , zℎ) for both dynamic and quasi-static orthogonal subgrid scales.

DYN −∑𝑁el𝑒=1 ⟨𝒫 ⟂ℎ [ℒ(y𝑛+1; y𝑛+1ℎ )] , 𝜏𝜏𝜏d(y𝑛+1)ℒ⋆(y𝑛+1; zℎ)⟩
QSS −∑𝑁el𝑒=1 ⟨𝒫 ⟂ℎ [ℒ(y𝑛+1; y𝑛+1ℎ )] , 𝜏𝜏𝜏 (y𝑛+1)ℒ⋆(y𝑛+1; zℎ)⟩

Remark 3.5.1 The treatment of the unknown nonlinear
term y in the operators ℳ(y, •), ℒ(y, •) and the adjoint
operatorℒ⋆(y, •) presents another dichotomy in the treat-
ment of the subscales. Two different alternatives are de-
vised, respectively labeled as linear subscales, where y ≈
yℎ, and nonlinear subscales, where y ≈ yℎ + ỹ. Here, the
words linear and nonlinear just indicate whether the sub-
scales appear only in the linear terms or also in the nonlin-
ear ones. Since the improvements in the performance of
the formulation with nonlinear subscales are limited, we
restrict ourselves in this thesis to linear subscales. We re-
fer to [99] and [121] [121]: Colomes et al. (2015), “As-

sessment of variational multiscale
models for the large eddy simu-
lation of turbulent incompressible
flows”

for a detailed description of nonlinear
subscales.

A note on the computation of the projection operations

When compared to the raw Galerkin method, the matrices
emerging from the orthogonal projection of the unknowns
show awide stencil, introducing new couplingswith the neigh-
boring elements from subsequent levels. A practical strat-
egy to get rid of this inconvenience is to solve for the projec-
tion onto the finite element space 𝒫ℎ and then directly use
𝒫 ⟂ℎ = ℐ − 𝒫ℎ. Thus, if we denote by 𝜉𝜉𝜉 ℎ the projection of
ℒ(y, yℎ) − ℱ onto the finite element space 𝕐ℎ, the proposed
dynamic OSGS methodology consists in solving y𝑛+1ℎ , 𝜉𝜉𝜉 𝑛+1ℎ ∈
𝕐ℎ × 𝕐ℎ such that

⟨zℎ,ℳ(y𝑛+1)𝛿𝑡y𝑛+1ℎ ⟩ + ℬ(y𝑛+1; y𝑛+1ℎ , zℎ)
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Table 3.3: Definition of the form ℓstab(zℎ) for both dynamic and quasi-static algebraic subgrid scales.

DYN −∑𝑁el𝑒=1 ⟨ℱ , 𝜏𝜏𝜏d(y𝑛+1)ℒ⋆(y𝑛+1; zℎ) + [I − 𝜏𝜏𝜏(y𝑛+1)−1𝜏𝜏𝜏d(y𝑛+1)] zℎ⟩
−∑𝑁el𝑒=1 ⟨𝛿𝑡−1ℳ(y𝑛+1)ỹ𝑛−1, 𝜏𝜏𝜏d(y𝑛+1)ℒ⋆(y𝑛+1; zℎ)⟩
+∑𝑁el𝑒=1 ⟨𝛿𝑡−1ℳ(y𝑛+1)ỹ𝑛−1, 𝜏𝜏𝜏 (y𝑛+1)−1𝜏𝜏𝜏d(y𝑛+1)zℎ⟩

QSS −∑𝑁el𝑒=1 ⟨ℱ , 𝜏𝜏𝜏d(y𝑛+1)ℒ⋆(y𝑛+1; zℎ)⟩

Table 3.4: Definition of the form ℓstab(zℎ) for both dynamic and quasi-static orthogonal subgrid scales.

DYN −∑𝑁el𝑒=1 ⟨𝒫 ⟂ℎ [ℱ ] + 𝛿𝑡−1ℳ(y𝑛+1)ỹ𝑛−1, 𝜏𝜏𝜏d(y𝑛+1)ℒ⋆(y𝑛+1; zℎ)⟩
QSS −∑𝑁el𝑒=1 ⟨𝒫 ⟂ℎ [ℱ ] , 𝜏𝜏𝜏d(y𝑛+1)ℒ⋆(y𝑛+1; zℎ)⟩

[122]: Codina (2008), “Analysis of
a stabilized finite element approxi-
mation of the Oseen equations us-
ing orthogonal subscales”
[123]: Aguirre et al. (2021), “A
variational multiscale stabilized
finite element formulation for
Reissner-Mindlin plates and Tim-
oshenko beams”

−
𝑁el

∑
𝑒=1

⟨ℒ(y𝑛+1; y𝑛+1ℎ ) − 𝜉𝜉𝜉 𝑛+1ℎ , 𝜏𝜏𝜏d(y𝑛+1)ℒ⋆(y𝑛+1; zℎ)⟩

= ℓ(zℎ) −
𝑁el

∑
𝑒=1

⟨ℱ , 𝜏𝜏𝜏d(y𝑛+1)ℒ⋆(y𝑛+1; zℎ)⟩

−
𝑁el

∑
𝑒=1

⟨𝛿𝑡−1ℳ(y𝑛+1)ỹ𝑛 , 𝜏𝜏𝜏d(y𝑛+1)ℒ⋆(y𝑛+1; zℎ)⟩ (3.21a)

⟨𝜉𝜉𝜉 𝑛+1ℎ , 𝜋𝜋𝜋ℎ⟩ −
𝑁el

∑
𝑒=1

⟨ℒ(y𝑛+1, y𝑛+1ℎ ) − ℱ ,𝜋𝜋𝜋ℎ⟩ = 0 (3.21b)

which must hold for all [zℎ, 𝜋𝜋𝜋ℎ].
From this point, the solution of Equation 3.21a together with
Equation 3.21b comprises the solution of an algebraic prob-
lem. If an iterative solver is to be used, it is computationally
feasible to solve it in a direct monolithic way, with y𝑛+1ℎ and
𝜉𝜉𝜉 𝑛+1ℎ as unknowns. See e.g., [122, 123].

However, the solution strategy can be even simplified by im-
plementing a block iteration algorithm which segregates the
calculation of 𝜉𝜉𝜉 ℎ from that of yℎ. This amounts to saying that
at the 𝑖-th iteration of the 𝑛-th time step we may approximate
the projection of any generic function 𝑔 as

𝒫 ⟂ℎ (𝑔𝑛,(𝑖)) ≈ 𝑔𝑛,(𝑖) − 𝒫ℎ (𝑔𝑛,(𝑖−1))

or even as

𝒫 ⟂ℎ (𝑔𝑛,(𝑖)) ≈ 𝑔𝑛,(𝑖) − 𝒫ℎ (𝑔𝑛−1) .

In otherwords, we perform the projection bymeans of known
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values from either the previous iteration or time step. Nu-
merical tests reveal that both options are effective, and in
this thesis we make use of these two alternatives.





[124]: Bailly et al. (2010),
“Progress in direct noise
computation”

The isentropic
Navier-Stokes problem 4

4.1 Abstract

In this chapter we consider the approximation of the isen-
tropic (weakly compressible) Navier-Stokes equations. The
model we present is capable of taking into account acoustics
and flow scales at once. After space and time discretizations
have been chosen, it is very convenient from the computa-
tional point of view to design fractional step schemes in time
so as to permit a segregated calculation of the problem un-
knowns. While these segregation schemes are well estab-
lished for incompressible flows, much less is known in the
case of isentropic flows. We discuss this issue in this chap-
ter and, furthermore, we study the way to impose Dirichlet
boundary conditions weakly via Nitsche’s method. In order
to avoid spurious reflections of the acoustic waves, Nitsche’s
method is combined with a non-reflecting boundary condi-
tion. Employing a purely algebraic approach to discuss the
problem, some of the boundary contributions are treated ex-
plicitly and we explain how these are included in the differ-
ent steps of the final algorithm. Numerical evidence shows
that this explicit treatment does not have a significant im-
pact on the convergence rate of the resulting time integration
scheme. The equations of the formulation are solved using
a subgrid scale technique based on a term-by-term stabiliza-
tion, which we will introduce here as a particularization of
the OSGS method from the previous chapter.

4.2 Introduction

Within the field of Computational Aeroacoustics (CAA), the
solution of the complete set of Navier-Stokes equations, i.e.,
the coupled problem involving mass, momentum and energy
conservation equations, is referred to as Direct Noise Com-
putation (DNC)[124]. This formulation represents a direct
approach to consistently deal with aerodynamic and acous-
tic scales in an unified manner. The solution of this fully
compressible problem via the Finite Element Method (see
e.g. [28]) is known to be excessively demanding in terms
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[125]: Lighthill (1952), “On sound
generated aerodynamically I.
General theory”

[126]: Hardin et al. (1994),
“An acoustic/viscous splitting
technique for computational
aeroacoustics”
[127]: Shen et al. (1999), “Aeroa-
coustic modelling of low-speed
flows”
[128]: Shen et al. (2009), “Aeroa-
coustic Computations for
Turbulent Airfoil Flows”
[129]: Shen et al. (2004), “A collo-
cated grid finite volume method
for aeroacoustic computations of
low-speed flows”

[130]: Pont et al. (2018), “Uni-
fied solver for fluid dynamics and
aeroacoustics in isentropic gas
flows”

of computational power. Likewise, most of the compress-
ible flow solvers derived in conservative variables found in
the literature exhibit an inadequate performance in the low
Mach number regime. This is mainly due to the fact that flow
and acoustic scales start to considerably differ one from each
other under the subsonic condition as the Mach number is
progressively reduced. As a consequence, the algebraic sys-
tems arising from those formulations are commonly very ill-
conditioned and difficult to solve in practice.

With the aim of overcoming such conditioning issues, several
hybrid methods were developed. In this kind of techniques
the computation of aerodynamic and acoustic fields is decou-
pled and hence they are solved independently. One of the
early works in this area is the well known Lighthill’s anal-
ogy [125], in which the acoustic field is obtained upon the
derivation of a source term computed with the flow equa-
tions. It is also worth mentioning the socalled incompress-
ible acoustic split method (see e.g. [126–128] and references
therein) which consists in solving the incompressible Navier-
Stokes equations followed by an inviscid acoustic part which
accounts for the wave propagation. In [129], this approach
is revised by also retaining the viscous terms in the acous-
tic set of equations. The advantage of these techniques with
respect to the acoustic analogy is that the source term is di-
rectly obtained and it accounts for both sound generation and
scattering. These type of hybrid methods allow a certain flex-
ibility, as they permit to combine different models for flow
and acoustic fields. However, since the incompressible prob-
lem is solved prior to the acoustic one, these methods do not
account for any feedback from acoustics to the flow. Thus,
their application is usually limited to problems with a light
coupling between acoustic and flow scales.

The methodology we propose in this chapter aims at com-
bining the simplicity of the aforementioned hybrid methods
with the unified scale computation of DNC. Assuming a low
Mach number flow, with neither shocks nor thermal sources,
and entropy to remain constant, a simplified (weak) com-
pressible Navier-Stokes problem involving only velocity and
pressure fields as unknowns can be derived. This is the so-
called isentropic flow problem (see a previous work in [130]).
Solving in a monolithic (coupled) manner the algebraic sys-
tem of equations that arises after the discretization via the
finite element method of the continuous problem is the clas-
sical solution strategy. Despite of the several simplifications
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that can be introduced thanks to the constant entropy as-
sumption, solving the resulting linear system of equations
might still be computationally expensive, specially in 3D ge-
ometries. The unknowns are highly coupled and nonlineari-
ties need to be treated with some strategy too. An alternative
to that standard approach is to solve the problem by means
of a fractional step method in time. This technique consists
in segregating the calculation of the unknowns, so that they
can be computed separately, probably with the addition of
some correction steps. On the negative side, fractional step
methods have an associated temporal error, frequently la-
beled as fractional or segregation error. It is indispensable to
ensure that such error is at least of the order of the integra-
tion scheme used in time, with the purpose of maintaining
the global temporal accuracy of the method.

Apart from a possible compatibility restriction between ve-
locity and pressure interpolating spaces, the convective terms
appearing in the governing equations may render the solu-
tion unstable when using a finite element formulation, show-
ing spurious node-to-node oscillations. Though this fluctu-
ating behavior could be avoided setting a specific mesh size
(which commonly is not computationally affordable), stabi-
lized formulations appear to circumvent this issue. In these
formulations, the weak form of the problem obtained by the
classical Galerkin method is modified upon the introduction
of some mesh-dependent terms weighted by the residuals
(or even part of them) of the differential equations. In this
work we adopt the VMS framework. The key idea behind
the VMS approach is to split the unknowns of the problem
into two scales, namely, the scale that can be approximated
by the finite element mesh and the subgrid scale, the unre-
solvable one. As we have already discussed previously, the
general methodology consists in finding an approximation
for the subgrid scale so as to yield a stable formulation in-
volving only the finite element scales, hence maintaining the
number of degrees of freedom of the starting Galerkin vari-
ational problem. There are different ways to model the sub-
grid scale, provided a definition of the functional spacewhere
it belongs. Here, we will define such space as the orthogonal
one to the finite element space and, using this concept, we
will state a term-by-term technique by neglecting the extra
cross products which do not play any stability role in the
formulation. As a result, this stabilized formulation is not
residual based, and hence not consistent, being consistency
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understood in the classical finite element context. However,
for the incompressible flow problem this term-by-term pos-
sibility provides a slightly improved pressure stability [99],
and in [131, 132] it was applied to the viscoelastic flow prob-
lem resulting more robust and convenient than a classical
residual-based formulation.

Another important feature of nearly incompressible aeroa-
coustic flows in that external computational boundaries may
produce deceptive wave reflections which pollute the solu-
tion. Ingoing waves can interfere with acoustic signals as
well as originate numerical instabilities if the numerical tech-
nique is unable to introduce enough dissipation. This dis-
tinguishing issue has been widely studied and as a result,
there are several numerical techniques which deal with the
backscattering of waves in the aeroacoustics field. Among
the most remarkable ones are: the damping of the compress-
ible equations, the addition of an artificial counter signal, and
the application of non-reflecting boundary conditions. Per-
forming a damping of some terms of the compressible equa-
tions is a robust approach to face spurious reflections at the
boundary (usually named in this case buffer zones). How-
ever, this technique brings an extra computational effort as-
sociated with the new terms that need to be included, and
hence other approaches are often adopted. The literature on
compressible boundary conditions is extensive, so we refer to
the reviews in [133–135] and references therein. For the spe-
cific case of the isentropic problem, a novel method for the
unified prescription of boundary conditions was introduced
in [130] (see Section 3 in that publication). The particular-
ity of this technique is that it combines a weak imposition
of Dirichlet boundary conditions of the mean flow variables,
plus a Sommerfeld non-reflecting boundary condition for the
acoustic component of the pressure (similarly as in [136]).

To sum up, in this chapter we will present an algebraic frac-
tional step method in time which allows to solve the isen-
tropic Navier-Stokes problem in a segregated manner. Our
algorithm includes a stabilizationwithin the VMS framework,
making use of the orthogonal subscale concept to derive a
term-by-term technique. In order to avoid any artificial re-
flection at the external boundaries, we incorporate the above-
mentioned unified prescription of boundary conditions for
the isentropic problem, formulating here its segregated coun-
terpart.
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The set of equations to be discussed in the following can be
understood as an extension of the incompressible case, since
the final problem to be solved requires to compute only ve-
locity and pressure fields, being the thermal problem mathe-
matically uncoupled. This is possible due to the constant en-
tropy assumption, which in turn allows to a establish a direct
connection between density and pressure derivatives. As a
result, the isentropic model presents two main advantages:
first it takes into account any possible acoustic feedback on
the flow scales and second, the validity of the acoustic field
is not subject to the particular motion of the flow. On top
of that, the computational cost of the present technique is
reduced with respect to other methods. Apart from the fact
that both acoustic and flow scales are solved altogether and
that we get rid of the energy conservation equation, the final
system is better conditioned (we refer to [130] for a detailed
discussion on this).

The chapter is organized as follows: in Section 4.3 the isen-
tropic compressible Navier-Stokes equations are introduced,
as well as its variational formulation. The details of the com-
patible prescription of boundary conditions are reviewed in
Section 4.4, whereas in Section 4.5 we present the monolithic
time discretization of the problem with the boundary condi-
tions described earlier. In Section 4.6 we design the fractional
step scheme from an algebraic viewpoint, taking into account
the modifications due to the application of boundary condi-
tions. In Section 4.7, we state the stabilized finite element
formulationwe favor, together with the relevant adjustments
that need to be considered. Numerical experiments are con-
ducted in Section 4.8 and, finally, conclusions are drawn in
Section 4.9.

4.3 Problem statement

4.3.1 Preliminaries

In this chapterwe aim at solving the isentropic Navier-Stokes
problem. Hence, we shall introduce some considerations in
order to rewrite the general system formed by Equation 2.20a,
Equation 2.20b and Equation 2.20c in amore convenient form.
By definition of an isentropic (reversible and adiabatic) flow,
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the entropy remains constant, and hence pressure and den-
sity are related through Equation 2.18. Taking into account
that density is just a function of pressure, Equation 2.20a
shall be rewritten by expanding the derivatives as follows

1
𝜌𝑎2 [𝜕𝑡𝑝 + (u ⋅ ∇)𝑝] + ∇ ⋅ u = 0,

where we recall that 𝑎 stands for the speed of sound. Hence,
in practice, the following relations hold

𝜕𝑡𝑝 = 𝑎2 𝜕𝑡𝜌 (4.1a)

∇𝑝 = 𝑎2 ∇𝜌. (4.1b)

The previous relations in Equation 4.1a and Equation 4.1b
establish a connection between pressure and density varia-
tions in a straightforward manner and it helps to reduce the
general complexity of the problem while making possible to
capture the acoustic scales of the flow. This is in contrast to
other non-isentropic formulations for low Mach flows (see
e.g., [137]) in which density variations might be related to
temperature instead of pressure, and hence no acoustics are
modeled.

4.3.2 Initial and boundary value problem

The continuous problem finally consists in finding the fluid
velocity u ∶ Ω×(0, 𝑡f) → ℝ𝑁sd and the pressure 𝑝 ∶ Ω×(0, 𝑡f) →
ℝ, which are solution of the following strong form of the isen-
tropic compressible Navier-Stokes problem:

Isentropic Navier-Stokes problem

𝜌 [𝜕𝑡u + (u ⋅ ∇)u] − 2∇ ⋅ [𝜇𝜀𝜀𝜀(u)] − ∇ [𝜆(∇ ⋅ u)]
+ ∇𝑝 = 𝜌b, in Ω, 𝑡 ∈ (0, 𝑡f) (4.2a)

𝜖−1 [𝜕𝑡𝑝 + (u ⋅ ∇) 𝑝] + ∇ ⋅ u = 0, in Ω, 𝑡 ∈ (0, 𝑡f) (4.2b)

together with the two closure equations

𝑝 = 𝒞𝜌𝛾 , 𝒞 = const. (4.3a)

𝑎 =
√
𝛾𝑝
𝜌 =

√
𝜖
𝜌 (4.3b)
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1: Note that the problem de-
fined by Equation 4.2a and Equa-
tion 4.2b can be seen as a direct
extension of the incompressible
Navier-Stokes case with the addi-
tion of the total time derivative
(temporal plus convective) of the
pressure. It is precisely this term
the responsible for the wave prop-
agation modeling.

where 𝜖 is the bulk modulus of the fluid.

The previous problem can be rewritten in the compact man-
ner as in Equation 3.1 after setting

y = [u, 𝑝]𝑇 ,
ℳ(y) = diag (𝜌, 𝜖−1) ,

ℱ = [𝜌b, 0]𝑇 ,

ℒ(y; y) = [𝜌(u ⋅ ∇)u − 2∇ ⋅ [𝜇𝜀𝜀𝜀(u)] − ∇ [𝜆(∇ ⋅ u)] + ∇𝑝
𝜖−1(u ⋅ ∇)𝑝 + ∇ ⋅ u ] .

The governing equations need to be complemented with a
suitable set of both initial and boundary conditions to ensure
the well-possedness of the problem1.

Let us now set
Γ = 𝜕Ω = ΓD,u ∪ ΓN,u,

where subscript D refers to Dirichlet or essential boundary
conditions, whereas N refers to Neumann or natural bound-
ary conditions. The second subscript indicates the variable
to which the condition is applied, in this case velocity. If n
denotes the unit vector normal to Γ, ug the given velocity
prescribed on ΓD,u and t the prescribed traction on ΓN,u, the
boundary conditions to be considered for all time 𝑡 ∈ (0, 𝑡f)
are initially written as:

u − ug = 0 on ΓD,u, (4.4a)

n ⋅ 𝜎𝜎𝜎 − t = 0 on ΓN,u. (4.4b)

The initial conditions for Equation 4.2a–Equation 4.2b are set
for velocity and pressure, and shall be written in the form,

u(x, 0) = u0(x) in Ω, (4.5a)

𝑝(x, 0) = 𝑝0(x) in Ω. (4.5b)

Remark 4.3.1 The readermight have noticed that although
several simplificationswere introduced, the governing equa-
tions still depend on both density and sound velocity fields.
In order to resolve these additional nonlinearities, Equa-
tion 4.3a and Equation 4.3b are used to complete the for-
mulation and help to solve the nonlinearities . Hence, one
would need to solve only for velocity and pressure fields,
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as previously stated.

4.3.3 Variational form

In order to write the weak form of the problem from Equa-
tion 4.2a and Equation 4.2b together with the boundary con-
ditions in Equation 4.4a and Equation 4.4b, let v, 𝑞 be the cor-
responding test functions for velocity and pressure, which
are time-independent. Additionally v is assumed to vanish
on ΓD,u.
Let now Vu and 𝕍𝑝 be the proper functional spaces where
each component of the velocity and the pressure are properly
defined for each fixed time 𝑡 ∈ (0, 𝑡f), with appropriate regu-
larity. In addition, the functional spaces of trial solutions and
test functions for the velocity are written as

𝕍u = {u ∈ [Vu]𝑁sd | u|ΓD,u = ug} ,
𝕎u = {v ∈ [Vu]𝑁sd | v|ΓD,u = 0} .

Performing the integration over the computational domainΩ
and using the intregration-by-parts formula on second order
terms, the resulting variational form of the problem with the
boundary conditions from Equation 4.4a-Equation 4.4b that
we consider is given as follows: Find the pair [u, 𝑝] ∶ (0, 𝑡f) →
𝕍u × 𝕍𝑝 such that

⟨v, 𝜌𝜕𝑡u⟩ + 𝑐(𝜌,u;u, v) + 𝑎(u, v) − 𝑏(𝑝, v) = ℓu(𝜌; v), (4.6a)

⟨𝑞, 𝜖−1𝜕𝑡𝑝⟩ + 𝑑(𝜌,u; 𝑝, 𝑞) + 𝑏(𝑞,u) = 0, (4.6b)

⟨u(x, 0), v⟩ = ⟨u0(x), v⟩ , (4.6c)

⟨𝑝(x, 0), 𝑞⟩ = ⟨𝑝0(x), 𝑞⟩ , (4.6d)

whichmust hold for all time 𝑡 ∈ (0, 𝑡f) and for all test functions
[v, 𝑞] ∈ 𝕎u × 𝕎𝑝 (𝕎𝑝 ≡ 𝕍𝑝). The following forms where
introduced:

𝑐(𝜌,u1;u2, v) ≔∫Ω 𝜌 [(u1 ⋅ ∇)u2] ⋅ v dΩ, (4.7a)

𝑎(u, v) ≔2∫Ω 𝜇𝜀𝜀𝜀(u) ∶ 𝜀𝜀𝜀(v) dΩ

−2
3 ∫Ω 𝜇(∇ ⋅ u)(∇ ⋅ v) dΩ, (4.7b)

𝑏(𝑝, v) ≔∫Ω 𝑝(∇ ⋅ v) dΩ, (4.7c)
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2: The reader should note that
the splitting of unknowns done
in this section is a particularity
of the technique to incorporate
the boundary conditions and has
nothing to do with the derivation
of the fractional stepmethod to be
discussed later on.

𝑑(𝜌;u, 𝑝, 𝑞) ≔∫Ω 𝜖−1 [(u ⋅ ∇)𝑝] 𝑞 dΩ, (4.7d)

ℓu(𝜌; v) ≔∫Ω 𝜌b ⋅ v dΩ + ∫ΓN,u
t ⋅ v d𝜕Ω, (4.7e)

The previous weak formulation is nothing but Equation 3.6
applied to the isentropic compressible Navier-Stokes prob-
lem, taking into account that now

ℬ(u, y, z) = 𝑐(𝜌,u;u, v) + 𝑎(u, v) − 𝑏(𝑝, v)
+ 𝑑(𝜌,u; 𝑝, 𝑞) + 𝑏(𝑞,u)

ℓ(z) = ℓu(𝜌; v)

with the addition of the boundary term in momentum equa-
tion. In this regard, special care needs to be taken on the
imposition of boundary conditions of the isentropic problem.
This is to be treated next, so that the right hand side bound-
ary term of Equation 4.6a and the right hand side of Equa-
tion 4.6b are modified in order to allow a compatible treat-
ment of waves and flow velocity conditions.

4.4 Imposition of boundary conditions

Since the formulation we present aims at accounting for both
flow and acoustic scales at once, there must be a compatibil-
ity requirement between the treatment of acoustic waves and
the flow boundary conditions. In particular, a special type
of condition must be imposed for the pressure field, whose
main purpose is to allow the sound waves to leave the ex-
ternal boundaries of the computational domain smoothly. In
this section we review the method proposed in [130] for the
prescription of boundary conditions for the isentropic prob-
lem.

4.4.1 Unknown and boundary splitting

The starting idea of the method is the splitting of the two
unknown fields of the problem, i.e., velocity and pressure,
into mean and oscillatory components2. For a given time
instant 𝑡 ∈ (0, 𝑡f) and a point in the spatial domain x ∈ Ω, we
perform the following splitting

u(x, 𝑡) = u(x, 𝑡) + u′(x, 𝑡), (4.8a)
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𝑝(x, 𝑡) = 𝑝(x, 𝑡) + 𝑝′(x, 𝑡), (4.8b)

where the mean variables are mathematically described as

u(x, 𝑡) ≔ 1
𝑇𝑤 ∫

𝑡

𝑡−𝑇𝑤
u(x, 𝜉 ) d𝜉 , (4.9a)

𝑝(x, 𝑡) ≔ 1
𝑇𝑤 ∫

𝑡

𝑡−𝑇𝑤
𝑝(x, 𝜉 ) d𝜉 , (4.9b)

being 𝑇𝑤 an appropriate time window for the integration.

In the following, we will identify the oscillatory components
with the acoustic fluctuations and the mean variables with
the flow variables. The main idea is that 𝑇𝑤 implicitly de-
fines a filtering frequency for the acoustic waves, whichmust
be chosen small enough to allow a damping of the acous-
tic waves while still reproducing the flow behavior with cer-
tainty.

Complementing the previous variable decomposition, we also
divide the boundary where velocity conditions exist (either
essential or natural) into internal and external contributions.
Internal contributions are, for instance, those corresponding
to solid walls in the interior of the domain. External contours
correspond to inlet and outlet boundaries (artificial bound-
aries). The external boundary where velocity shall be pre-
scribed Γ𝑒u is divided into two different disjoint subsets, Γ𝑒D,u,
Γ𝑒N,u. These subsets are such that

Γ𝑒D,u ∩ Γ𝑒N,u = ∅
Γ𝑒D,u ∪ Γ𝑒N,u = Γ𝑒u.

We remark that this boundary splitting is performed at the
external artificial contours of the domain. Should the domain
contain any interior wall with prescribed velocity, we shall
expect soundwaves to be reflected in such location and hence
no particular boundary treatment is needed. On both Γ𝑒D,u
and Γ𝑒N,u, which are in the far field, it is assumed that the
acoustic scales are dominant.

Remark 4.4.1 The key idea behind our boundary formula-
tion is the introduction of the socalled Sommerfeld bound-
ary condition. Such condition is derived from the wave
equation written in mixed form, which represents a set of
wave-like equations for u(x, 𝑡) and 𝑝(x, 𝑡) [136].
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3: Assuming that Γ𝑒N,u is located
sufficiently far away from a possi-
ble solid boundary, i. e., in the far
field-region, it is reasonable to set
𝑝 ≈ 0 and ∇ u ≈ 0 and hence the
natural condition to be imposed is
t = 0.

4.4.2 Unified prescription of boundary
conditions

In this subsection, we summarize the different conditions to
be applied on each boundary. The two main mathematical
ingredients of the methodology are the weak prescription of
essential boundary conditions and the application of (zero or-
der) Sommerfeld-like non-reflecting boundary conditions.

On the frontiers belonging to the truncation boundary Γ𝑒D,u,
distinct conditions are enforced:

▶ Themean value of the velocity is prescribed to the flow
given velocity

u − ug = 0 on Γ𝑒D,u, (4.10)

and this will be done weakly via Nitsche’s method.
▶ A Sommerfeld-like non-reflecting boundary condition

is considered for the acoustic component of the veloc-
ity field. In the normal direction to the boundary we
set

n ⋅ [n ⋅ 𝜎𝜎𝜎(u′, 𝑝′)] = 𝜌𝑎n ⋅ u′ on Γ𝑒D,u, (4.11)

and for the tangential direction we directly write

t ⋅ [n ⋅ 𝜎𝜎𝜎(u′, 𝑝′)] = 0 on Γ𝑒D,u, (4.12)

for any vector t in the tangent direction to Γ𝑒D,u.
Finally, on the boundary Γ𝑒N,u, the following conditions are
enforced:

▶ The mean value tractions are prescribed3, i.e.

n ⋅ 𝜎𝜎𝜎(u, 𝑝) = t on Γ𝑒N,u. (4.13)

▶ The same approach as in Γ𝑒D,u is used now for the fluc-
tuating component. Therefore

n ⋅ [n ⋅ 𝜎𝜎𝜎(u′, 𝑝′)] = 𝜌𝑎n ⋅ u′ on Γ𝑒N,u, (4.14a)

t ⋅ [n ⋅ 𝜎𝜎𝜎(u′, 𝑝′)] = 0 on Γ𝑒N,u. (4.14b)

Taking now into account these definitions, the prescription
of the boundary conditions in the weak form of the problem
can be done upon the modification of the boundary term in
Equation 4.6a, which after the introduction of the symmetric
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[138]: Juntunen et al. (2009),
“Nitche’s method for general
boundary conditions”

and the penalty terms for the imposition of u = ug using
Nitsche’s method [138] reads:

∫Γ𝑒u
[n⋅ 𝜎𝜎𝜎(u, 𝑝)] ⋅ v d𝜕Ω = ∫Γ𝑒D,u

[n ⋅ 𝜎𝜎𝜎(u, 𝑝)] ⋅ v d𝜕Ω

− ∫Γ𝑒D,u
𝜌𝑎(u′ ⋅ n)(v ⋅ n) d𝜕Ω

+ ∫Γ𝑒D,u
(u − ug) ⋅ [n ⋅ 𝜎𝜎𝜎(v, 𝑞)] d𝜕Ω

− ∫Γ𝑒D,u
𝜓(u − ug) ⋅ v d𝜕Ω

− ∫Γ𝑒N,u
𝜌𝑎(u′ ⋅ n)(v ⋅ n) d𝜕Ω

+ ∫Γ𝑒N,u
t ⋅ v d𝜕Ω, (4.15)

where 𝜓 denotes the numerical Nitche’s penalty parameter.

The reader should also note that there are several terms in
Equation 4.15 which are known and therefore can be taken to
the right hand side of the problem. Let us group those bound-
ary terms introducing the following forms for the isentropic
problem:

𝑐Γ(𝜌;u, v) ≔∫Γ𝑒u
𝜌𝑎(u′ ⋅ n)(v ⋅ n) d𝜕Ω

+∫ΓD,u
𝜓u ⋅ v d𝜕Ω

−∫Γ𝑒D,u
2𝜇[n ⋅ 𝜀𝜀𝜀(u)] ⋅ v d𝜕Ω

+∫Γ𝑒D,u
2
3𝜇∇ ⋅ u(n ⋅ v) d𝜕Ω

−∫Γ𝑒D,u
2𝜇[n ⋅ 𝜀𝜀𝜀(v)] ⋅ u d𝜕Ω

+∫Γ𝑒D,u
2
3𝜇∇ ⋅ v(n ⋅ u) d𝜕Ω, (4.16a)

𝑏Γ(𝑝, v) ≔∫Γ𝑒D,u
𝑝(n ⋅ v) d𝜕Ω, (4.16b)

ℓΓ,u(v) ≔∫Γ𝑒D,u
𝜓ug ⋅ v d𝜕Ω − ∫Γ𝑒D,u

2𝜇[n ⋅ 𝜀𝜀𝜀(v)] ⋅ ug d𝜕Ω

+∫Γ𝑒D,u
2
3𝜇∇ ⋅ v(n ⋅ ug) d𝜕Ω
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+∫Γ𝑒N,u
v ⋅ t d𝜕Ω, (4.16c)

ℓΓ,𝑝(𝑞) ≔∫Γ𝑒D,u
𝑞(n ⋅ ug) d𝜕Ω, (4.16d)

which will go to the left and right hand side of the problem,
respectively.

Finally, the variational formulation with the boundary condi-
tions consists now in solving for velocity and pressure such
that the following equations are satisfied

⟨v, 𝜌𝜕𝑡u⟩ + 𝑐(𝜌,u;u, v) + 𝑎(u, v) − 𝑏(𝑝, v) + 𝑐Γ(𝜌;u, v)
+ 𝑏Γ(𝑝, v) = ℓu(𝜌; v) + ℓΓ,u(v) (4.17a)

⟨𝑞, 𝜖−1𝜕𝑡𝑝⟩ + 𝑑(𝜌,u; 𝑝, 𝑞) + 𝑏(𝑞,u)
+ 𝑏Γ(𝑞,u) = ℓΓ,𝑝(𝑞) (4.17b)

for all test functions [v, 𝑞] and satisfying the initial conditions
too.

4.5 Numerical approximation

4.5.1 Space and time discretization

Let now𝕍u,ℎ ⊂ 𝕍u,𝕍𝑝,ℎ ⊂ 𝕍𝑝 be the velocity and pressure fi-
nite element spaces associated with the corresponding trian-
gulation. Therefore, the raw Galerkin method applied to the
problem stated in Equation 4.17a and Equation 4.17b reads:
find the functions uℎ and 𝑝ℎ such that,

⟨vℎ, 𝜌𝜕𝑡uℎ⟩ + 𝑐(𝜌,uℎ;uℎ, vℎ) + 𝑎(uℎ, vℎ) − 𝑏(𝑝ℎ, vℎ)
+ 𝑐Γ(𝜌;uℎ, vℎ) + 𝑏Γ(𝑝ℎ, vℎ) = ℓu(𝜌; vℎ)
+ ℓΓ,u(vℎ) (4.18a)

⟨𝑞ℎ, 𝜖−1𝜕𝑡𝑝ℎ⟩ + 𝑑(𝜌,uℎ; 𝑝ℎ, 𝑞ℎ) + 𝑏(𝑞ℎ,uℎ)
+ 𝑏Γ(𝑞ℎ,uℎ) = ℓΓ,𝑝(𝑞ℎ) (4.18b)

The time discretization of the problem in hand is performed
by following the notation and statements already introduced
in Section 3.4. Then, making use of the BDF operator in
Equation 3.7, the fully discrete problem we need to solve is:
for 𝑛 = 0, 1, … , 𝑁 − 1, solve for u𝑛+1ℎ , 𝑝𝑛+1ℎ , given the values
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u𝑛−𝑙ℎ , 𝑝𝑛−𝑙ℎ for 𝑙 = 0 to 𝜃 − 1, such that

⟨vℎ, 𝜌𝛿𝑡u𝑛+1ℎ ⟩ + 𝑐(𝜌,u𝑛+1ℎ ;u𝑛+1ℎ , vℎ) + 𝑎(u𝑛+1ℎ , vℎ)
− 𝑏(𝑝𝑛+1ℎ , vℎ) + 𝑐Γ(𝜌;u𝑛+1ℎ , vℎ)
+ 𝑏Γ(𝑝𝑛+1ℎ , vℎ) = ℓu(𝜌; vℎ) + ℓΓ,u(vℎ) (4.19a)

⟨𝑞ℎ, 𝜖−1𝜕𝑡𝑝𝑛+1ℎ ⟩ + 𝑑(𝜌,u𝑛+1ℎ ; 𝑝𝑛+1ℎ , 𝑞ℎ) + 𝑏(𝑞ℎ,u𝑛+1ℎ )
+ 𝑏Γ(𝑞ℎ,u𝑛+1ℎ ) = ℓΓ,𝑝(𝑞ℎ) (4.19b)

Remark 4.5.1 We want to remark that the unknowns of
the problem are u𝑛+1ℎ , and 𝑝𝑛+1ℎ and that 𝜌 and 𝑎 (and hence
𝜖) shall be explicitly computed in the final algorithm by
means of a linearization process. Their values are obtained
from finite element quantities but not solved as unknowns
for each time step and nonlinear iteration. In other words,
𝜌 and 𝑎 do not belong to the finite element spaces, and that
is why we did not include neither the ℎ subscript nor the
superscript 𝑛 + 1 in the equations. It should be understood
just as notation.

It remains to provide a discrete expression to compute the
mean components of the unknowns. At the discrete level, the
time window introduced in Equation 4.9a and Equation 4.9b
is computed as 𝑇𝑤 = 𝑁𝑤 𝛿𝑡 being 𝑁𝑤 a certain amount of time
steps. It is proposed to use the trapezoidal rule for integration
in order to compute the mean variables. The expression we
use for the average values is then

u𝑛+1ℎ = 𝛿𝑡
𝑇𝑤

(12u
𝑛+1
ℎ +

𝑛
∑

𝑗=𝑛−𝑁𝑤+2
u𝑗ℎ +

1
2u

𝑛−𝑁𝑤+1
ℎ ) , (4.20)

and equivalently for the pressure. This expression maintains
the integration implicit and second order accurate, but sev-
eral time steps need to be run prior to its application so as
to obtain representative data for a reliable mean computa-
tion.

4.5.2 On the linearization of the problem

Prior to perform any implementation in our computer code
FEMUSS, we shall select a linearization strategy to solve the
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4: If fact we should refer to the
case of 𝜁 = 1 as a ”pseudo”
Newton-Raphson approach, since
we should expand also the ex-
pression for the density, by using
Equation 4.3a, what would intro-
duce the pressure as an unknown
in this term too.

previous nonlinear problem.

Apart from the classical nonlinearities appearing in the con-
vective terms due to the advection velocity, there are others
inherent to the nature of the isentropic equations. In partic-
ular, all the temporal terms in the problem are nonlinear due
to the presence of the density 𝜌 and the speed of sound 𝑎,
computed in terms of the pressure (and the density).

Two different iterative strategies are usually considered for
solving the nonlinearities in flow problems, namely, the Pi-
card (fixed point) and the Newton-Raphson algorithms. De-
noting by u𝑛+1,(𝑖), 𝜌𝑛+1,(𝑖) and 𝑝𝑛+1,(𝑖) the known velocity, den-
sity and pressure at time step 𝑛 + 1 and iteration (𝑖), the con-
vective terms can be approximated by,

𝑐(𝜌𝑛+1,(𝑖+1),u𝑛+1,(𝑖+1)ℎ ;u𝑛+1,(𝑖+1)ℎ , vℎ)
≈ 𝑐(𝜌𝑛+1,(𝑖),u𝑛+1,(𝑖)ℎ ;u𝑛+1,(𝑖+1)ℎ , vℎ)
+ 𝜁 𝑐(𝜌𝑛+1,(𝑖),u𝑛+1,(𝑖+1)ℎ ;u𝑛+1,(𝑖)ℎ , vℎ)
− 𝜁 𝑐(𝜌𝑛+1,(𝑖),u𝑛+1,(𝑖)ℎ ;u𝑛+1,(𝑖)ℎ , vℎ)

𝑑(𝜌𝑛+1,(𝑖+1),u𝑛+1,(𝑖+1)ℎ ; 𝑝𝑛+1,(𝑖+1)ℎ , 𝑞ℎ)
≈ 𝑑(𝜌𝑛+1,(𝑖),u𝑛+1,(𝑖)ℎ ; 𝑝𝑛+1,(𝑖+1)ℎ , 𝑞ℎ)
+ 𝜁 𝑑(𝜌𝑛+1,(𝑖),u𝑛+1,(𝑖+1)ℎ ; 𝑝𝑛+1,(𝑖)ℎ , 𝑞ℎ)
− 𝜁 𝑑(𝜌𝑛+1,(𝑖),u𝑛+1,(𝑖)ℎ ; 𝑝𝑛+1,(𝑖)ℎ , 𝑞ℎ)

For 𝜁 = 0 the previous equations correspond to the Picard
approximation of the convective terms whereas for 𝜁 = 1 it
yields the Newton-Raphson strategy 4.

In this thesis, we are mainly interested in the development of
fractional step schemes for compressible flow. For the imple-
mentation of this kind of techniques, numerical experience
suggests that the time step of the computations 𝛿𝑡 cannot be
taken very large for the method to be effective, for instance
when it is compared to the critical time step of an explicit
time integration scheme. This fact is of remarkable impor-
tance in the compressible regime, as the time step should
be sufficiently small in order to reproduce the wide range
of different scales of compressible flow problems. Thus, for
a given solution at a particular nonlinear iteration, the next
solution should be particularly close. Hence, only a few non-
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linear iterations are required to converge and the fixed-point
option is usually enough for the temporal and convective
nonlinearities. Otherwise one should include an expansion
bymeans of a Taylor series of the expressions for density and
speed of sound. Although this may be appealing, it definitely
introduces some burden in the formulation since the result-
ing terms involve rational expressions which are in general
arduous to integrate numerically.

Remark 4.5.2 Concerning theway convergence is checked,
we have used the following criterion,

‖y𝑛+1,(𝑖+1)ℎ − y𝑛+1,(𝑖)ℎ ‖
L𝑠

≤ TOL‖y𝑛+1,(𝑖)ℎ ‖
L𝑠

where TOL is the tolerance that we set and ‖•‖L𝑠 denotes the
discrete L𝑠 norm. The choice of the parameter 𝑠 controls
the convergence, yet we select 𝑠 = 2 as standard in the
computations.

Remark 4.5.3 When running the calculations, the initial
guess for each time step can be taken as the converged
unknowns from the previous step, that is to say

u𝑛+1,0ℎ = u𝑛ℎ,
𝑝𝑛+1,0ℎ = 𝑝𝑛ℎ .

Another possibility is to make an extrapolation in time,
depending on the order of the selected time integration
scheme, using Equation 3.9 with known values from pre-
vious time steps.

4.5.3 Monolithic algebraic system

Once the finite element interpolation has been chosen, every
element of the spaces of test functions and of trial solutions
will be represented by a vector containing the nodal values
of this element. This vector will be denoted by the boldface
capital letter corresponding to the lower case function, e.g.,
V will be the vector of nodal values of a generic velocity test
function and U the vector of nodal values of the unknown
velocity, and the same criteria is employed for pressure, re-
spectively Q and P. As usual, superscripts will be used to
indicate the time step and the iteration counter.
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Matrix version Term where it comes from

V𝑇MuU ⟨vℎ, 𝜌𝜕𝑡uℎ⟩
V𝑇Ku (U1)U2 𝑐(𝜌,uℎ,1;uℎ,2, vℎ)
V𝑇MΓU ⟨𝜓u, vℎ⟩ΓD,u
V𝑇KΓU 𝑐Γ(𝜌;uℎ, vℎ) − ⟨𝜓u, vℎ⟩ΓD,u
V𝑇GP 𝑏(𝑝ℎ, vℎ)
V𝑇GΓP 𝑏Γ(𝑝ℎ, vℎ)
V𝑇F ℓu(𝜌; vℎ)
V𝑇FΓ,u ℓΓ,u(vℎ)

Table 4.1:Matrix form of the isen-
tropic terms corresponding to the
momentum equation.

Matrix version Term where it comes from

Q𝑇M𝑝P ⟨𝑞ℎ, 𝜖−1𝜕𝑡𝑝ℎ⟩
Q𝑇K𝑝 (U)P 𝑑(𝜌,uℎ; 𝑝ℎ, 𝑞ℎ)
Q𝑇DU 𝑏(𝑞ℎ,uℎ)
Q𝑇DΓU 𝑏Γ(𝑞ℎ,uℎ)
Q𝑇FΓ,𝑝 ℓΓ,𝑝(𝑞ℎ)

Table 4.2:Matrix form of the isen-
tropic terms corresponding to the
mass equation.

The definitions of the arrays involved in this problem are col-
lected in Table 4.1 and Table 4.2. The notation here is as
follows: the subscripts (⋅)u and (⋅)𝑝 refer to matrices of the
momentum and continuity equation. In addition, (⋅)Γ stands
for terms arising from the special treatment of boundary con-
ditions, withMΓ containing the penalty term and KΓ,GΓ and
DΓ the remaining Nitsche and Sommerfeld contributions.
Having introduced all these matrices and vectors, the resolu-
tion of the isentropic compressible flow problem via the FE
method is stated now as: given the initial data and the cor-
responding values U𝑛−𝑙 , P𝑛−𝑙 for 𝑙 = 0 to 𝜃 − 1, find U𝑛+1 and
P𝑛+1, approximation to U(𝑡𝑛+1), P(𝑡𝑛+1), as the converged so-
lutions of the following iterative procedure:

Mu,𝜌(𝑖)
𝐷𝜃
𝛿𝑡 U

𝑛+1,(𝑖+1) + Ku,𝜌(𝑖) (U𝑛+1,(𝑖))U𝑛+1,(𝑖+1)

+MΓU𝑛+1,(𝑖+1) + KΓ,𝜌(𝑖)U𝑛+1,(𝑖+1)

−GP𝑛+1,(𝑖+1) +GΓP𝑛+1,(𝑖+1) = F𝑛+1𝜌(𝑖) + F𝑛+1Γ,u , (4.21a)

M𝑝,𝜌(𝑖)
𝐷𝜃
𝛿𝑡 P

𝑛+1,(𝑖+1) + K𝑝,𝜌(𝑖)(U𝑛+1,(𝑖))P𝑛+1,(𝑖+1) +DU𝑛+1,(𝑖+1)
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[139]: Owen et al. (2012), “A third-
order velocity correction scheme
obtained at the discrete level”

+DΓU𝑛+1,(𝑖+1) = F𝑛+1Γ,𝑝 , (4.21b)

where the dependence of matricesKu andK𝑝 on the vector of
velocity unknowns U has been explicitly displayed in order
to remark the nonlinear character of the problem. Further-
more, we have included a subscript 𝜌(𝑖) to indicate that those
arrays are computed by taking a previously computed value
of the density. This system, in a more compact manner for
each iteration, can be rearranged for each iteration as follows:

[Auu Au𝑝
A𝑝u A𝑝𝑝

] ⋅ [U
𝑛+1

P𝑛+1] = [F
𝑛+1
U

F𝑛+1P
] (4.22)

with the following definitions

Auu ≔Mu(𝜌)
𝐷𝜃
𝛿𝑡 + Ku (𝜌,U𝑛+1) +MΓ + KΓ(𝜌)

Au𝑝 ≔−G +GΓ
A𝑝u ≔D +DΓ

A𝑝𝑝 ≔M𝑝(𝜌)
𝐷𝜃
𝛿𝑡 + K𝑝 (𝜌,U𝑛+1)

F𝑛+1U ≔F𝑛+1u (𝜌) + F𝑛+1Γ,u
F𝑛+1P ≔F𝑛+1Γ,𝑝

The high non-linear character of the problem is made explicit
in the system by including the dependence of the arrays on
the variables in the parenthesis.

4.6 Design of the fractional step
methodology

The method we propose in this section is directly linked to
the classical pressure-correction scheme applied to the in-
compressible Navier-Stokes flow problem [50], in which a
velocity guess is first computed and then corrected once the
pressure is calculated. Another possibility would be to cal-
culate first a pressure guess, what would provide a velocity-
correction-like algorithm (see e.g.., [139]). We will not dis-
cuss them here, yet the ideas presented next could be also
used to design velocity-correction schemes.
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4.6.1 Pressure-correction algorithm

In order to simplify the exposition and the notation, let us
drop the iteration counter (𝑖) in this section. For the purpose
of the derivation of the method, let us start by writing sys-
tem Equation 4.21a-Equation 4.21b in the following equiva-
lent manner:

Mu(𝜌)
𝐷𝜃
𝛿𝑡 Ũ

𝑛+1 + Ku(𝜌, Ũ𝑛+1)Ũ𝑛+1 +MΓŨ𝑛+1 + KΓ(𝜌)Ũ𝑛+1

− (G −GΓ)P̂𝑛+1𝜃′ = F𝑛+1(𝜌) + F𝑛+1Γ,u , (4.23a)

Mu(𝜌) 1
𝜙𝜃𝛿𝑡

(U𝑛+1 − Ũ𝑛+1) + N𝑛+1
u + N𝑛+1

𝜓 + N𝑛+1
Γ

− (G −GΓ)(P𝑛+1 − P̂𝑛+1𝜃′ ) = 0, (4.23b)

M𝑝(𝜌)
𝐷𝜃
𝛿𝑡 P

𝑛+1 + K𝑝(𝜌,U𝑛+1)P𝑛+1 − 𝜙𝜃𝛿𝑡(D +DΓ)M−1
u N𝑛+1

u

− 𝜙𝜃𝛿𝑡(D +DΓ)M−1
u N𝑛+1

𝜓 − 𝜙𝜃𝛿𝑡(D +DΓ)M−1
u N𝑛+1

Γ
+ 𝜙𝜃𝛿𝑡(D +DΓ)M−1

u (G +GΓ)(P𝑛+1 − P̂𝑛+1𝜃′ )
+ (D +DΓ)Ũ𝑛+1 = F𝑛+1Γ,𝑝 , (4.23c)

where we have introduced the following arrays,

N𝑛+1
u = Ku(U𝑛+1)U𝑛+1 − Ku(Ũ𝑛+1)Ũ𝑛+1, (4.24a)

N𝑛+1
𝜓 = MΓU𝑛+1 −MΓŨ𝑛+1, (4.24b)

N𝑛+1
Γ = KΓU𝑛+1 − KΓŨ𝑛+1. (4.24c)

In these equations, Ũ𝑛+1 is an auxiliary variable to which we
shall refer to as intermediate velocity and P̂𝑛+1𝜃′ is an extrapo-
lation of the pressure of order 𝜃′ at time step 𝑡𝑛+1. See Equa-
tion 3.9 for details. The main idea of the previous splitting is
that adding up Equation 4.23a and Equation 4.23b we recover
Equation 4.21a. Likewise, Equation 4.23c is derived upon sub-
stitution into Equation 4.21b of the relation between U𝑛+1
and Ũ𝑛+1 obtained from Equation 4.23b, and this relation is

U𝑛+1 = Ũ𝑛+1 + 𝜙𝜃𝛿𝑡M−1
u [(G +GΓ) (P𝑛+1 − P̂𝑛+1𝜃′ )]

− 𝜙𝜃𝛿𝑡M−1
u [N𝑛+1

u + N𝑛+1
𝜓 + N𝑛+1

Γ ] . (4.25)

Generally speaking, the fractional step approach to solve the
isentropic Navier-Stokes problem has three main steps: first
compute the intermediate velocity from Equation 4.23a, then
obtain the pressure from Equation 4.23c, and finally correct
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the velocity result using Equation 4.23b.

Although this scheme will make possible to segregate the
calculation of the unknowns of the problem and provides
an algorithm of pressure-correction type, some extra infor-
mation is needed since equations Equation 4.23b and Equa-
tion 4.23c still couple the calculation of U𝑛+1 and P𝑛+1. At
this point, it is very convenient to make the following re-
marks:

Remark 4.6.1 One should notice that the resulting matrix
from DM−1

u G Equation 4.23c can be viewed as an approx-
imation to the discrete version of the Laplacian operator
Δ(•) as it is discussed in [140][140]: Codina et al. (2004),

“A stabilized finite element
predictor–corrector scheme
for the incompressible Navier–
Stokes equations using a
nodal–based implementation”

and [50]. In order to avoid
dealing with that matrix, which has a wide stencil and
might be computationally feasible only if Mu is approxi-
mated by a diagonal matrix, we can work with

DM−1
u G ≈ L

where L is a Laplacian matrix obtained from the assembly
of an elemental matrix computed using the gradient of the
standard shape functions. If 𝑖 and 𝑗 run from 1 to the num-
ber of elemental nodes, the matrix is computed as

[L(𝑒)]𝑖𝑗 = ∫Ω(𝑒)
1
𝜌 ∇𝜑

𝑖 ⋅ ∇𝜑𝑗 dΩ

L = 𝔸(𝑒)L(𝑒)

where 𝔸(𝑒) is the assembly operator (addition plus injec-
tion) acting on the local element matrix.

Remark 4.6.2 If we wanted to compute the pressure from
Equation 4.23c, we would still have to face the difficulty of
computing terms such asDΓM−1

u G,DM−1
u GΓ andDΓM−1

u GΓ.
Such computations can be really time consuming and bur-
densome. Note that an approximation similar to the one
just commented above is not possible due to the character
of the boundarymatricesDΓ andGΓ. A possible strategy to
get rid of those calculation is to introduce an explicit treat-
ment of some on the terms involved in the calculations.

Remark 4.6.3 Note that from the definition of the extrapo-
lation operators in Section 3.4, the difference between the
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pressure and the extrapolated pressure is of the following
order,

‖P𝑛+1 − P̂𝑛+1𝜃−1‖ ∼ 𝒪(𝛿𝑡𝜃−1).
Therefore, it is easy to see from Equation 4.25 that,

𝒪 (‖U𝑛+1 − Ũ𝑛+1‖) = 𝒪(𝛿𝑡𝜃 )

and thus, the intermediate velocity could be used as an
approximation to the actual velocity without affecting the
global accuracy of the temporal integrator.

4.6.2 Explicit treatment of boundary terms and
final fractional step scheme

Having the previous information in mind, the novel idea we
propose in this work is to modify Equation 4.23a and Equa-
tion 4.23c in such a way that both boundary terms GΓP𝑛+1
and DΓU𝑛+1 are treated explicitly, by means of an extrapola-
tion of the same order of the time integration scheme, 𝜃 . This
implies that system in Equation 4.23a and Equation 4.23cwould
now read as

Mu(𝜌)
𝐷𝜃
𝛿𝑡 Ũ

𝑛+1 + Ku(𝜌, Ũ𝑛+1)Ũ𝑛+1 +MΓŨ𝑛+1 + KΓ(𝜌)Ũ𝑛+1

−GP̂𝑛+1𝜃′ +GΓP̂𝑛+1𝜃 = F𝑛+1(𝜌) + F𝑛+1Γ,u , (4.26a)

Mu(𝜌) 1
𝜙𝜃𝛿𝑡

(U𝑛+1 − Ũ𝑛+1) + N𝑛+1
u + N𝑛+1

𝜓 + N𝑛+1
Γ

−G(P𝑛+1 − P̂𝑛+1𝜃′ ) = 0, (4.26b)

M𝑝(𝜌)
𝐷𝜃
𝛿𝑡 P

𝑛+1 + K𝑝(𝜌,U𝑛+1)P𝑛+1 − 𝜙𝜃𝛿𝑡(D +DΓ)M−1
u N𝑛+1

u

− 𝜙𝜃𝛿𝑡(D +DΓ)M−1
u N𝑛+1

𝜓 − 𝜙𝜃𝛿𝑡(D +DΓ)M−1
u N𝑛+1

Γ
+ 𝜙𝜃𝛿𝑡DM−1

u G(P𝑛+1 − P̂𝑛+1𝜃′ ) +DŨ𝑛+1

+DΓÛ𝑛+1
𝜃 = F𝑛+1Γ,𝑝 . (4.26c)

Note that now the productsDΓM−1
u G,DM−1

u GΓ andDΓM−1
u GΓ

do not appear in the formulation and that we treat some
terms on the boundary explicitly via extrapolations inGΓP̂𝑛+1𝜃
and DΓÛ𝑛+1

𝜃 .

Formally, the fractional step algorithmof order 𝜃 can be stated
by taking 𝜃′ = 𝜃 − 1 and it entails the following steps:
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1. Compute an intermediate velocity Ũ𝑛+1 by solving Equa-
tion 4.26a.

2. Compute an approximation to the pressure P𝑛+1 after
solving Equation 4.26c neglectingN𝑛+1

u , N𝑛+1
𝜓 N𝑛+1

Γ and

substituting U𝑛+1 by Ũ𝑛+1 in the term K𝑝(U𝑛+1)P𝑛+1.
As we have already pointed out this perturbation is of
order 𝒪(𝛿𝑡𝜃 ) and it is the key point that permits to un-
couple the calculation of U𝑛+1 and P𝑛+1.

3. Perform the correction and compute the end-of-step ve-
locity U𝑛+1 from Equation 4.26b neglecting N𝑛+1

u , N𝑛+1
Γ

but taking into accountN𝑛+1
𝜓 . This can be seen as a sort

of Yosida factorization for the imposition of boundary
conditions ( see [50] and references inside).

It is well known that the extrapolation of second order of the
term GP̂𝑛+1𝜃′ , i.e., taking 𝜃′ = 2, is unstable. Hence the result-
ing scheme is known to be stable up to 𝜃 = 2. In fact, this
issue motivated the study of velocity correction algorithms,
which allow to design fractional step schemes of third order
in time. However, we did not observe any erratic behaviour
of the termGΓP̂𝑛+1𝜃 for the extrapolation of second order. The
final algorithm in its matrix form is included down below for
𝜃 = 1, 2.

First and second order fractional step scheme for the
isentropic problem

▶ Set/read the initial conditions for U0 and P0.
▶ WHILE 𝑛 < 𝑁 DO

• Set U𝑛,0 = U𝑛−1 and P𝑛,0 = P𝑛−1
• WHILE (not converged) DO

∗ Compute intermediate velocity Ũ𝑛+1

Mu,𝜌𝑛
𝐷𝜃
𝛿𝑡 Ũ

𝑛+1,(𝑖+1) + Ku,𝜌𝑛 (Ũ𝑛+1,(𝑖)) Ũ𝑛+1,(𝑖+1)

+MΓŨ𝑛+1,(𝑖+1) + KΓ,𝜌𝑛 Ũ𝑛+1,(𝑖+1)

−GP̂𝑛+1𝜃′ +GΓP̂𝑛+1𝜃 = F𝑛+1𝜌(𝑖) + F𝑛+1Γ,u

∗ Check convergence
• END while (not converged)
• Compute the pressure P𝑛+1 using the interme-
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diate velocity from the previous step

M𝑝,𝜌𝑛
𝐷𝜃
𝛿𝑡 P

𝑛+1 + K𝑝,𝜌𝑛 (Ũ𝑛+1)P𝑛+1

+ 𝜙𝜃𝛿𝑡L𝜌𝑛 (P𝑛+1 − P̂𝑛+1𝜃′ ) +DŨ𝑛+1

+DΓÛ𝑛+1
𝜃 = F𝑛+1Γ,𝑝

• Velocity correction to obtain the end-of-step
velocity U𝑛+1

Mu,𝜌𝑛+1
1

𝜙𝜃𝛿𝑡
(U𝑛+1 − Ũ𝑛+1) + N𝑛+1

𝜓

−G (P𝑛+1 − P̂𝑛+1𝜃′ ) = 0

▶ END while 𝑛 < 𝑁 (non-stationary)

The equation to solve for the pressure is in principle non-
linear since we need the pressure to compute the density
through the isentropic law. One option is to perform a loop
in the implementation, iterating for instance by means of a
Picard’s approach, so that we compute the density with the
pressure values from the previous iteration. Another pos-
sibility could be just to compute the density with the pres-
sure values already available from the previous time steps,
for instance performing an extrapolation in time. Since the
implementation of the isentropic problem is coded over an
already-existing implementation of the classical incompress-
ible Navier-Stokes solver, we favor the latter option.

Remark 4.6.4 The inclusion of the penalization correction
N𝑛+1
𝜓 in the last step of the algorithm aids to properly im-

pose the boundary conditions of the problem avoiding pos-
sible instabilities. It seems reasonable to take it into ac-
count, bearing in mind that the splitting in Equation 4.26a-
Equation 4.26c needs to be done taking into account bound-
ary conditions, similarly to the standard case in which the
boundary conditions are enforced strongly.

Remark 4.6.5 It is also important to note thatMΓ displays
a structure of mass matrix but for boundary contributions,
what in turn would allow to solve directly the system for
U𝑛+1 if a lumping technique is used. Moreover, the correc-
tion of the convective term N𝑛+1

u could also be taken into
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consideration in this last step, yielding a complete Yosida
scheme. This would permit to derive a high order method
in time (see [50], Section 4.3).

Remark 4.6.6 Another possibility for the extrapolation of
the velocity boundary term could be argued. Since Ũ𝑛+1 is
an approximation of 𝒪(𝛿𝑡𝜃 ) to U𝑛+1, and the intermediate
velocity is already computed when the termDΓU𝑛+1 needs
to be treated explicitly, one could even consider to com-
pute DΓŨ𝑛+1 instead of DΓÛ𝑛+1

𝜃 . Numerical experiments
show that both options provide basically equivalent results.

4.7 VMS stabilized formulation

This section is devoted to the discussion of the application
of the Variational Multiscale method to the isentropic prob-
lem. The general procedurewas already described in Chapter
3. Hence, the stabilized version of the isentropic compress-
ible problem is nothing but Equation 3.20 with the pertinent
definitions of the stabilization terms (and up to boundary
terms).

4.7.1 Stabilized formulation applied to the
isentropic Navier-Stokes problem

For reasons already discussed, we will consider the OSGS
technique, as stated in Section 3.5.4. Taking into account the
information there presented, the finite element discrete resid-
uals of the momentum and mass equations can be written as
in Equation 3.15, excluding the viscous terms as

ℛ(y; yℎ) = − [ 𝜌(u𝑛+1ℎ ⋅ ∇)u𝑛+1ℎ + ∇𝑝𝑛+1ℎ1
𝜖 (u𝑛+1ℎ ⋅ ∇)𝑝𝑛+1ℎ + ∇ ⋅ u𝑛+1ℎ

] . (4.27)

Similarly, the adjoint operator of the problem as in Equa-
tion 3.14 is then identified as

ℒ⋆(y; zℎ) = − [∇ ⋅ (𝜌u𝑛+1ℎ ⊗ vℎ) + ∇𝑞ℎ
∇ ⋅ (𝜖−1u𝑛+1ℎ 𝑞) + ∇ ⋅ vℎ

] . (4.28)



4.7 VMS stabilized formulation 79

Furthermore, the subscales are time tracked in time by solv-
ing Equation 3.18 which for the problem in hand reads:

ũ𝑛+1 = −𝜏u,d𝒫 ⟂ℎ [𝜌(u𝑛+1ℎ ⋅ ∇)u𝑛+1ℎ + ∇𝑝𝑛+1ℎ ]
+ 𝜏u,d𝜌 ũ

𝑛
𝛿𝑡 , (4.29a)

̃𝑝𝑛+1 = −𝜏𝑝,d𝒫 ⟂ℎ [𝜖−1(u𝑛+1ℎ ⋅ ∇)𝑝𝑛+1ℎ + ∇ ⋅ u𝑛+1ℎ ]

+ 𝜏𝑝,d
̃𝑝𝑛

𝜖𝛿𝑡 . (4.29b)

Remark 4.7.1 It is assumed that the orthogonal projec-
tions of the residual temporal terms cancel, i.e.

𝒫 ⟂ℎ [𝜌𝜕𝑡uℎ] ≈ 0 and 𝒫 ⟂ℎ [1𝜖 𝜕𝑡𝑝ℎ] ≈ 0.

These terms would be exactly zero if both 𝜌 and 𝜖 were
equal to a constant, which is not the case for the isentropic
problem. However, we consider as true that both variables
are such that 𝜌𝜕𝑡uℎ and 𝜖−1𝜕𝑡𝑝ℎ already belong to the finite
element spaces and hence its orthogonal projection van-
ishes. Additionally, we assume

𝒫 ⟂ℎ [𝜌b] ≈ 0,

which yields a weakly consistent method.

4.7.2 On the stabilization parameters

The stabilization parameters 𝜏u,d and 𝜏𝑝,d defined over each
element Ω(𝑒) of the partition contribute to provide the sta-
bilization for the weak forms of the momentum and mass
conservation equations. Up to our knowledge, there is no
general rule to define it for systems of equations. It must be
designed for each particular problem taking into account its
stability deficiencies or even scaling requirements. For the
problem in hand, we will take a simple diagonal expression.
Hence, we define

𝜏𝜏𝜏 (y𝑛+1) = diag(𝜏u,dI𝑁sd
, 𝜏𝑝,d). (4.30)
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[141]: Rebollo (1998), “A term by
term stabilization algorithm for fi-
nite element solution of incom-
pressible flow problems”

Following Equation 3.19, we can now write

𝜏u,d = [ 𝜌𝛿𝑡 + 𝜏−1u (y𝑛+1)]
−1

, (4.31a)

𝜏𝑝,d = [𝜖
−1
𝛿𝑡 + 𝜏−1𝑝 (y𝑛+1)]

−1
. (4.31b)

The definition of both 𝜏u and 𝜏𝑝 is based on a Fourier analysis,
which wewill not discuss here (see the developments in [99]).
We compute them as

𝜏u = [𝑐1
𝜇
ℎ2 + 𝑐2𝜌

‖uℎ‖
ℎ ]

−1
, (4.32a)

𝜏𝑝 = ℎ2
𝑐1𝜏u

, (4.32b)

where ‖uℎ‖ is themean Euclidean norm of the velocity in each
element and ℎ is the element size. Note that their values are
needed at each integration point. The algorithmic constants
𝑐1 and 𝑐2 depend on the polynomial order of the interpola-
tion. For linear elements, the values 𝑐1 = 4 and 𝑐2 = 2 are
commonly set.

4.7.3 Term-by-term stabilization

From the point of view of stability, not all the terms of the
finite element residual aid to enhance the stability of the for-
mulation. Therefore, some of them could be even neglected
and a less costly method emerges. Precisely, it is this last
idea the one that motivates the socalled term-by-term stabi-
lization methods (see e.g. [132] and [141]).

The stabilized formulation we favor in this work is a term-
by-term OSGS approach, also referred to as split OSGS. Al-
though this scheme is not completely residual-based, it has
been concluded that it has an optimal consistency error (see
[122] for a formal discussion and numerical analysis on the
Oseen equations). The key idea behind this method resides
in neglecting the extra cross products among operators applied
on both test and trial functions, which arise from the classical
orthogonal stabilization.

Let us rewrite Equation 4.29a–Equation 4.29b as follows

ũ𝑛+1 = −𝜏u,d𝒫 ⟂ℎ [𝜌(u𝑛+1ℎ ⋅ ∇)u𝑛+1ℎ ] − 𝜏u,d𝒫 ⟂ℎ [∇𝑝𝑛+1ℎ ]
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[142]: Castillo et al. (2019), “Dy-
namic term-by-term stabilized fi-
nite element formulation using or-
thogonal subgrid-scales for the in-
compressible Navier-Stokes prob-
lem”

+ 𝜏u,d𝜌 ũ
𝑛
𝛿𝑡 , (4.33a)

̃𝑝𝑛+1 = −𝜏𝑝,d𝒫 ⟂ℎ [𝜖−1(u𝑛+1ℎ ⋅ ∇)𝑝𝑛+1ℎ ] − 𝜏𝑝,d𝒫 ⟂ℎ [∇ ⋅ u𝑛+1ℎ ]

+ 𝜏𝑝,d
̃𝑝𝑛

𝜖𝛿𝑡 . (4.33b)

It is clear that omitting any of the projections in the previ-
ous system would have a remarkable effect on the stability
of the final formulation, yet this does not affect the general
accuracy of the scheme. In order to provide stability and con-
vergence on both convective terms, the contributions

𝒫 ⟂ℎ [𝜌uℎ ⋅ ∇uℎ] and 𝒫 ⟂ℎ [𝜖−1uℎ ⋅ ∇𝑝ℎ]

are essential. In addition, control is also needed over the pres-
sure gradient

𝒫 ⟂ℎ [∇𝑝ℎ] .

We shall consider now that both velocity and pressure sub-
scales can be split in the form ũ = ũ1 + ũ2 and ̃𝑝 = ̃𝑝1 + ̃𝑝2,
each component corresponding to the first and second terms
in the right hand side of Equation 4.33a and Equation 4.33b,
so that the stabilization terms are independent (see [142]).
This amounts to saying that the subscales are computed in
practice by solving:

ũ𝑛+11 = − 𝜏u,d𝒫 ⟂ℎ [𝜌(u𝑛+1ℎ ⋅ ∇)u𝑛+1ℎ ] + 𝜏u,d𝜌
ũ𝑛1
𝛿𝑡 , (4.34a)

ũ𝑛+12 = − 𝜏u,d𝒫 ⟂ℎ [∇𝑝𝑛+1ℎ ] + 𝜏u,d𝜌
ũ𝑛2
𝛿𝑡 , (4.34b)

̃𝑝𝑛+11 = − 𝜏𝑝,d𝒫 ⟂ℎ [𝜖−1(u𝑛+1ℎ ⋅ ∇)𝑝𝑛+1ℎ ] + 𝜏𝑝,d
̃𝑝𝑛1

𝜖𝛿𝑡 , (4.34c)

̃𝑝𝑛+12 = − 𝜏𝑝,d𝒫 ⟂ℎ [∇ ⋅ u𝑛+1ℎ ] + 𝜏𝑝,d
̃𝑝𝑛2

𝜖𝛿𝑡 . (4.34d)

and taking into account that the extra cross products among
operators are neglected, the final formulation reads: for 𝑛 =
0, 1, … , 𝑁 − 1, solve for u𝑛+1ℎ , 𝑝𝑛+1ℎ , given the values u𝑛−𝑙ℎ , 𝑝𝑛−𝑙ℎ
for 𝑙 = 0 to 𝜃 − 1, such that

⟨vℎ, 𝜌𝛿𝑡u𝑛+1ℎ ⟩ + 𝑐(𝜌,u𝑛+1ℎ ;u𝑛+1ℎ , vℎ) + 𝑎(u𝑛+1ℎ , vℎ)
− 𝑏(𝑝𝑛+1ℎ , vℎ) + 𝑐Γ(𝜌;u𝑛+1ℎ , vℎ)
+ 𝑏Γ(𝑝𝑛+1ℎ , vℎ) + ℬ⟂

u,stab(𝜌,u𝑛+1ℎ ;u𝑛+1ℎ , vℎ)
= ℓu(𝜌; vℎ) + ℓΓ.u(vℎ) + ℓu,stab(𝜌; vℎ) (4.35a)
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⟨𝑞ℎ, 1𝜖 𝜕𝑡𝑝
𝑛+1
ℎ ⟩ + 𝑑(𝜌,u𝑛+1ℎ ; 𝑝𝑛+1ℎ , 𝑞ℎ) + 𝑏(𝑞ℎ,u𝑛+1ℎ )

+ 𝑏Γ(𝑞ℎ,u𝑛+1ℎ ) + ℬ⟂
𝑝,stab(𝜌,u𝑛+1ℎ ; 𝑝𝑛+1ℎ , 𝑞ℎ)

= ℓΓ,𝑝(𝑞ℎ) + ℓ𝑝,stab(𝜌; 𝑞ℎ) (4.35b)

where the following forms were introduced

ℬ⟂
u,stab(𝜌,uℎ;uℎ, vℎ) ≔

𝑁el

∑
𝑒=1

⟨∇ ⋅ vℎ, 𝜏𝑝,d𝒫 ⟂ℎ [∇ ⋅ uℎ]⟩Ω(𝑒)

+
𝑁el

∑
𝑒=1

⟨𝜌(uℎ ⋅ ∇)vℎ, 𝜏u,d𝒫 ⟂ℎ [𝜌(uℎ ⋅ ∇)uℎ]⟩Ω(𝑒) , (4.36a)

ℓu,stab(𝜌; vℎ) ≔
𝑁el

∑
𝑒=1

⟨𝜌(uℎ ⋅ ∇)vℎ, 𝜏u,d𝜌 ũ
𝑛
𝛿𝑡 ⟩Ω(𝑒)

+
𝑁el

∑
𝑒=1

⟨∇ ⋅ vℎ, 𝜏𝑝,d
̃𝑝𝑛

𝜖𝛿𝑡 ⟩Ω(𝑒)
(4.36b)

ℬ⟂
𝑝,stab(𝜌,uℎ; 𝑝ℎ, 𝑞ℎ) ≔

𝑁el

∑
𝑒=1

⟨∇𝑞ℎ, 𝜏u,d𝒫 ⟂ℎ [∇𝑝ℎ]⟩Ω(𝑒)

+
𝑁el

∑
𝑒=1

⟨𝜖−1(uℎ ⋅ ∇)𝑞ℎ, 𝜏𝑝,d𝒫 ⟂ℎ [𝜖−1(uℎ ⋅ ∇)𝑝ℎ]⟩Ω(𝑒) (4.36c)

ℓ𝑝,stab(𝜌; 𝑞ℎ) ≔
𝑁el

∑
𝑒=1

⟨𝜖−1(uℎ ⋅ ∇)𝑞ℎ, 𝜏𝑝,d
̃𝑝𝑛

𝜖𝛿𝑡 ⟩Ω(𝑒)

+
𝑁el

∑
𝑒=1

⟨∇𝑞ℎ, 𝜏u,d𝜌 ũ
𝑛
𝛿𝑡 ⟩Ω(𝑒) . (4.36d)

The terms inside the previous forms modify, respectively, the
weak forms of the momentum and continuity equations pro-
viding a stabilized formulation which adds the numerical dif-
fusion in an efficient manner by means of completely sym-
metric terms.

4.7.4 Algebraic formulation and stabilized
fractional step algorithm

The final variational formulation of the isentropic compress-
ible problem was stated in Equation 4.35a–Equation 4.35b.
From there, the derivation of the matrix version is straight-
forward and thematrix system that needs to be solved at each
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Matrix version Term where it comes from

V𝑇 Su(U)U ℬ⟂
u,stab(𝜌,uℎ;uℎ, vℎ)

V𝑇Fu,stab ℓu,stab(𝜌; vℎ)
Q𝑇 S𝑝 (U)P ℬ⟂

𝑝,stab(𝜌,uℎ; 𝑝ℎ, 𝑞ℎ)
Q𝑇F𝑝,stab ℓ𝑝,stab(𝜌; 𝑞ℎ)

Table 4.3: Matrix form of the sta-
bilization terms.

time step has the same algebraic structure as Equation 4.21a–
Equation 4.21b with the addition of the corresponding stabi-
lization arrays, as we show in Table 4.3.

With these observations in mind, the general procedure de-
scribed in Section 4.6 is facilely extended to the stabilized
algorithm. Down below we include the final scheme in its
matrix form.

First and second order stabilized fractional step scheme
for the isentropic problem

▶ Set/read the initial conditions for U0 and P0.
▶ WHILE 𝑛 < 𝑁 DO

• Set U𝑛,0 = U𝑛−1 and P𝑛,0 = P𝑛−1
• WHILE (not converged) DO

∗ Compute intermediate velocity Ũ𝑛+1

Mu,𝜌𝑛
𝐷𝜃
𝛿𝑡 Ũ

𝑛+1,(𝑖+1) + Ku,𝜌𝑛 (Ũ𝑛+1,(𝑖)) Ũ𝑛+1,(𝑖+1)

+MΓŨ𝑛+1,(𝑖+1) + KΓ,𝜌𝑛 Ũ𝑛+1,(𝑖+1)

+ Su,𝜌𝑛 (U𝑛+1,(𝑖))U𝑛+1,(𝑖+1) −GP̂𝑛+1𝜃′
+GΓP̂𝑛+1𝜃 = F𝑛+1𝜌𝑛 + F𝑛+1Γ,u + F𝑛+1u,𝜌𝑛 ,stab

∗ Check convergence
• END while (not converged)
• Compute the pressure P𝑛+1 using the interme-
diate velocity from the previous step

M𝑝,𝜌𝑛
𝐷𝜃
𝛿𝑡 P

𝑛+1 + K𝑝,𝜌𝑛 (Ũ𝑛+1)P𝑛+1

+ 𝜙𝜃𝛿𝑡L𝜌𝑛 (P𝑛+1 − P̂𝑛+1𝜃′ ) +DŨ𝑛+1

+DΓÛ𝑛+1
𝜃 + S𝑝,𝜌𝑛 (Ũ𝑛+1)P𝑛+1 = F𝑛+1Γ,𝑝

+ F𝑛+1𝑝,𝜌𝑛 ,stab
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• Velocity correction to obtain the end-of-step
velocity U𝑛+1

Mu,𝜌𝑛+1
1

𝜙𝜃𝛿𝑡
(U𝑛+1 − Ũ𝑛+1) + N𝑛+1

𝜓

−G (P𝑛+1 − P̂𝑛+1𝜃′ ) = 0

▶ END while 𝑛 < 𝑁 (non-stationary)

Note that the additional stabilization term in the system for
the pressure, S𝑝(Ũ𝑛+1)P𝑛+1, does not need to be linearized
since Ũ𝑛+1 is already known by the time that P𝑛+1 needs to
be computed.

4.8 Numerical results

In this section, some numerical examples are presented to
show the performance of the proposed formulation. The first
case we consider is a test with a manufactured solution in or-
der to analyze the time discretization errors of the fractional
step technique. After that, a 2D low-speed viscous flow over
a cylinder at Ma = 0.0583 is calculated. Later, the noise radi-
ated by the flow over a cavity at Ma=0.7 is discussed.

For all the numerical examples, we consider

𝛾 = 1.4, and 𝑎0 = √
𝛾𝑝0
𝜌0

= 343 m/s.

In addition to this, the boundary formulation with the weak
imposition of Dirichlet boundary conditions plus the NRBC
is used, as explained in Section 4.4. Hence, a penalty param-
eter needs to be set to perform the simulation, 𝜓 . In the case,
this parameter behaves as

𝜓 = 𝜓0 (
𝜇
ℎ + 𝜌‖uℎ‖) ,

for some constant 𝜓0 and mesh size ℎ, which will be fixed for
each example.

As previously discussed, the nonlinearities in the problem
are solved via Picard’s scheme. This leads to a monotoni-
cally decreasing relative error among consecutive iterations,
ensuring the convergence of the method. A maximum of 10
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[143]: Vorst (1992), “Bi-CGSTAB:
A fast and smoothly converging
variant of Bi-CG for the solution
of nonsymmetric linear systems”

iterations is set, and the numerical tolerance for the L2 norm
is 1 × 10−6.
In order to solve the underlying systems of linear equations,
we use the Biconjugate Gradients solver, BiCGstab [143],
which is already implemented in the PETSc parallel solver
library [61]. All variables in the upcoming plots are in SI
units.

4.8.1 A test with analytical solution

Let us first perform a simple test whose main objective is
to numerically check the time convergence of the fractional
step schemes defined above. For this purpose we use the so-
called method of manufactured solutions. In this procedure,
an exact analytical solution is defined a priori and later sub-
stituted into the continuum equations in order to obtain the
associated forcing terms. Continuedly, these forcing terms
are introduced as perturbations in the finite element com-
putation. The time-dependent manufactured solutions are
composed of smooth functions with no physical meaning.
Dirichlet boundary conditions are prescribed weakly over
the boundaries upon evaluation of the velocity analytical so-
lution and the initial conditions arise from the prescribed
functions evaluated at 𝑡 = 0 over the whole computational
domain.

The region we consider is the unit square, i.e.

Ω = [0, 1] × [0, 1],

and we assume the following manufactured fields:

u(𝑥1, 𝑥2, 𝑡) = 𝑔(𝑡) [− cos(𝑥1) sin(𝑥2), sin(𝑥1) cos(𝑥2)]𝑇

𝑝(𝑥1, 𝑥2, 𝑡) = −1
4𝑔

2(𝑡) (cos(2𝑥1) + cos(2𝑥2))

with 𝑔(𝑡) = sin(2𝑡).
A structured mesh of size ℎ = 0.05 with bilinear elements
has been employed to discretize the computational domain.
Finally a constant 𝜓0 = 1000 has been chosen to ensure a
proper prescription of boundary conditions, thus avoiding
excessive boundary errors.

The normalized error has been computed in different norms:
ℓ∞(L2(Ω)) (maximumof the time sequence of spatial L2-norms
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Figure 4.1: Convergence test re-
sults for the proposed fractional
step algorithm for the isentropic
Navier-Stokes problem: (top) ve-
locity error, (bottom) pressure er-
ror. The number after the dash in
the plot stands for first or second
order results.

1e-04

1e-03

1e-02

1e-01

1e+00

1e-02 1e-01

1
1

1
2

1
2

1 1lo
g(

E
u
)

log(δt)

l2(H1)-1
l∞(L2)-1

l2(H1)-2
l∞(L2)-2

1e-03

1e-02

1e-01

1e-02 1e-01

1
1

1
2

lo
g(

E
p
)

log(δt)

l∞(L2)-1 l∞(L2)-2

[144]: Guasch et al. (2009), “Com-
putational aeroacoustics of vis-
cous low speed flows using sub-
grid scale finite element methods”
[145]: Guasch et al. (2007), “An
algebraic subgrid scale finite ele-
ment method for the convected
Helmholtz equation in two dimen-
sions with applications in aeroa-
coustics.”

of the solution) and ℓ2(H1(Ω)) (ℓ2-norm of the time sequence
of spatialH1-norms of the solution) for velocity, and ℓ∞(L2(Ω))
for pressure.

Figure 4.1 shows the convergence plot for the fractional step
algorithm using the BDF1 and BDF2 schemes in time for ve-
locity and pressure fields, respectively. The reader can note
that the schemes proposed in previous sections show the de-
sired rate of convergence, and hence the extrapolations of
the boundary terms explained in Section 4.6 do maintain the
general temporal accuracy of the method. From the conver-
gence plots it is also observed that the spatial error is not
significant for the mesh size used.

4.8.2 Aeolian tones of low Mach viscous flow

The second numerical example we have considered to assess
the proposed formulation is a benchmark consisting in the
aerodynamic sound radiated by an uniform flow past a cylin-
der, what is commonly referred to as aeolian tones problem
in the literaure (see e.g. [144, 145] for further details). In
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this example, the cylinder undergoes lift fluctuations in re-
sponse to the vortex shedding generated at the lee of the
cylinder, and such fluctuations generate the sound pressure
pulses. The emitted sound is named aeolian tone and a typi-
cal example of this phenomenon is the wire whistle that can
be heard when wind impacts power transmission lines.

The problem domain is

Ω = [0, 𝐿] × [0, 𝐿] ⧵ ℭ,

with 𝐿 = 200 m, being ℭ the cylinder region of diameter
𝐷 = 0.3 m and located at the center point of the square. The
domain is big enough to describe the far field conditions far
away from the cylinder.

The prescription of boundary conditions is as follows: the
flow is injected from the left boundarywith constant horizon-
tal velocity 𝑢∞ = 20m/s. Over both upper and lowerwalls the
vertical component of the velocity is imposed to zero. These
prescriptions are done weakly, using 𝜓0 = 10. We have taken
a dynamic viscosity coefficient of 𝜇 = 0.006 kg/(m s) and den-
sity of 𝜌 = 1 kg/m3 to initiate the computation. All this infor-
mation leads to the following Reynolds andMach numbers

Re = 1, 000, and Ma = 0.0583,

used by the benchmark solution.

The unstructured mesh for the simulation is composed of
𝑁el ∼ 500, 000 𝑃1 elements using equal interpolation for ve-
locity and pressure thanks to the stabilized formulation above
discussed. The mesh near the cylinder wall is progressively
refined, so as to capture the expected high gradients in that
region. The time step size selected for the computation is
𝛿𝑡 = 1 × 10−3 s. It is important to note that the time step
has to be small enough in order to be able to reproduce the
aeroacoustic signal in an adequate manner. The second order
BDF2 scheme has been used for the large scales time evolu-
tion, while a first order scheme has been used for the track-
ing of subscales. In order to complete the simulation, we set
a filtering frequency of 50 Hz to avoid reflections at the ex-
ternal boundaries. We recall here the necessity of letting the
code run for several time steps prior to the application of the
boundary formulation, in order to accumulate representative
data for the computations. The initial condition for the simu-
lation is provided by several time steps of an incompressible
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segregated solver.

In Figure 4.2a and Figure 4.2b we present the flow pressure
contours for a certain time step of the vortex shedding cycle,
qualitatively comparing the proposed fractional step scheme
with its monolithic version (for the same mesh and time step
size), being the latter already validated in [130]. It can be
observed that the pressure pulses evolve radially from the
cylinder area with time, yet they do not propagate normally
to the flow direction since this case is based on an uniform
flow.

(a) Pressure contours of the segregated
scheme

(b) Pressure contours of the monolithic solu-
tion

Figure 4.2: Aeolian tones isentropic problem: (a) flow pressure contour for the fractional step scheme, (b) pressure
contour for the monolithic counterpart.

Figure 4.3 displays the pressure pulse along the positive 𝑦
axis for both formulations for the same time instant. The
reader can notice that the acousticwave propagation obtained
with the segregation algorithmmanages to reasonably repro-
duce the amplitude and frequency of the wave obtained with
the monolithic reference scheme. Although some minor dis-
crepancies might be noticed, the overall results are equiva-
lent in a reasonable manner. The differences should come
from the errors introduced by the fractional step approach
and the approximate boundary condition.
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Figure 4.3: Aeolian tones isen-
tropic problem: comparison of the
wave propagation along the 𝑦 di-
rection. Here and it what follows,
MN stands for monolithic results
and FS for fractional step results.

As pointed out previously, the behavior of pressure waves
once they reach the external artificial boundaries is a contro-
versial situation in compressible solvers. The raw isentropic
formulation would lead to the reflection of waves into the
computational domain, but the compatible prescription for
flow and acoustic variables adopted in this work allows the
pressure pulses to abandon the domain in a smooth fashion.
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This fact demonstrates the satisfactory performance of the
weak imposition of Dirichlet boundary conditions combined
with a segregation technique and, similarly, it exposes the
ability of the non-reflecting boundary conditions to attenu-
ate the propagated sound waves.

In order to further asses the suitability of the fractional step
approach so as to replace its monolithic counterpart (taken
as reference), we perform a comparison on both lift 𝐶𝑙 and
drag 𝐶𝑑 non-dimensional coefficients of the cylinder. These
are defined as:

𝐶𝑑 ≔ f𝑥
1
2𝜌∞𝑢2∞𝐷

, (4.38a)

𝐶𝑙 ≔
f𝑦

1
2𝜌∞𝑢2∞𝐷

, (4.38b)

and computed from the exerted force of the fluid over the
cylinder

f = −∫𝜕ΩCylinder

𝜎𝜎𝜎 ⋅ n d𝜕Ω. (4.39)

In addition, the Strouhal number is

St = 𝜔𝐷
𝑢∞

,

being here 𝜔 the vortex shedding frequency.

A part of the time histories of these coefficients are included
in Figure 4.4. Both exhibit the expected sinusoidal behavior,
with minimal deviation between the two formulations, as a
result of the segregation error.
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Figure 4.4: Aeolian tones isen-
tropic problem: (top) time evolu-
tion of non-dimensional lift coef-
ficient, (bottom) time evolution of
non-dimensional drag coefficient.

We also take these historical values to the frequency domain
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via a Fourier transform algorithm, and the results are shown
in Figure 4.5a and Figure 4.5b. For the case of the lift coeffi-
cient and the monolithic scheme, it has an amplitude of 1.363
and oscillates at the vortex shedding frequency of 15.625 Hz
(St= 0.234). These values have a remarkable agreement with
the ones reported in [145], where the problem is solved using
a convected Helmholtz equation (see Section 4.2 in that pub-
lication). When the solution is obtained with the segregated
approach, 𝐶𝑙 has an amplitude of 1.335 and shows a frequency
of 15.435 Hz (St= 0.231). In addition to this, the drag coeffi-
cient displays an amplitude of 0.181 for the monolithic solu-
tion and 0.169 for the fractional counterpart. In terms of fre-
quency, 𝐶𝑑 oscillates at 31.251Hz for the monolithic (which is
precisely twice the vortex shedding frequency) and at 31.105
Hz for the segregated algorithm, what translates into a rela-
tive error of ∼ 0.5 % with respect to the reference solution.
These values are collected in Table 4.4 down below.
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(a) 𝐶𝑙 spectrum
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Figure 4.5: Aeolian tones isentropic problem: non-dimensional lift and drag spectrums. In this figure, A𝑙 and A𝑑
stand for the lift and drag amplitudes, and 𝑓 is the frequency.

Table 4.4: Comparison of frequency and amplitude values for the non-dimensional lift and drag coefficients when
the solution of the problem is computed with the monolithic or fractional step algorithms.

Monolithic Fractional step
Amplitude [-] Frequency [Hz] Amplitude [-] Frequency [Hz]

𝐶𝑙 1.363 15.625 1.335 15.435
𝐶𝑑 0.181 31.265 0.169 31.105

The computational savings that segregation techniques offer
when compared to monolithic schemes are undoubted. The
linear systems to be solved in fractional step methods are
smaller and better conditioned, and usually each unknown
requires a distinct number of iterations to solve its corre-
sponding linear system. Although in this example we have
used the same solver for all subsystems arising in the segre-
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gationmethod, specific solving techniques could be exploited
in order to improve the performance of fractional step schemes
even further. For the problem in hand, it was obtained that
the CPU time of the fractional step algorithm over the CPU
time of the monolithic case was 0.39. In other words, the
computational savings go up to 60 %.

In view of the information provided by previous quantitative
comparisons, we can conclude that the fractional step ap-
proach is an effective alternative to the classical monolithic
technique.

4.8.3 Noise radiated by the flow past an open
cavity

As a final numerical example, the simulation of the noise ra-
diated by a 2D flow past an open cavity is performed in order
to further investigate the aeroacoustic feedback of the formu-
lation.

The problem setting consists in an infinitely long rectangu-
lar cavity of aspect ratio 2, with depth 𝐷 = 0.00254 m and
length 𝐿 = 2𝐷. The accurate simulation of the acoustic ra-
diation from the cavity relies on an adequate definition of
the boundaries. Hence, the computational domain extends
over 𝐻 = 25𝐷 vertically and 𝑊 = 50𝐷 horizontally, meaning
that both upstream and downstreamwalls are sufficiently far
away from the cavity itself in order to avoid any possible self-
forcing and to allow a proper impinging of the propagated
sound waves, see Figure 4.6. Figure 4.6: Flow past a cavity. De-

scription of the domain.
This is a challenging problem, where acoustics and flow dy-
namics are highly coupled. Essentially, periodic vortices start
to develop just downstream the leading edge of the cavity,
and when they impinge the trailing edge, pressure pulses are
generated which start propagating upstream.

Non slip boundary conditions are prescribed on the cavity
walls and the flow is injected at the left-most side with uni-
form velocity 𝑢∞ = 245 m/s. The right-most side is left free
and over the higher wall the vertical component of the ve-
locity is prescribed to zero. Additional parameters for the
simulation are chosen as follows: 𝜌 = 1.16 kg/m3, 𝜇 = 1.76 ×
10−5 kg/(m s), 𝜓0 = 25, 𝛿𝑡 = 5 × 10−6, and the filtering fre-
quency is 5, 000 Hz. Hence, we obtain, based on the cavity
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depth
Re = 41, 000, and Ma = 0.7,

conditions that have been studied by several authors in the
literature [146–148]. An unstructuredmeshwith nearly𝑁el ∼
275, 000 triangular elements is used for the computations. The
point 𝑃 is used to monitor the pressure, whose coordinates
are 𝑥1 = −0.04𝐷 and 𝑥2 = 2𝐷. It is located at the beginning
at the acoustic region outside the cavity.

The sound pressure level (SPL) or acoustic pressure level is
a (logarithmic) measure of the sound pressure with respect
to reference sound pressure. Mathematically, it is computed
as

SPL = 20 log10 (
𝑝
𝑝ref

) [dB]

where 𝑝ref is the reference pressure. A value usually taken as
reference is 20 𝜇Pa, the threshold of human hearing. Figure
4.7 shows the corresponding sound pressure level spectrum
versus the Strouhal number for this case. The principal peak
is located at St = 0.64 whereas in [148], where a DNS of the
compressible flow equations is performed and taken as refer-
ence here, it is located at St = 0.66. Amaximum of 158 dBwas
obtained, which agrees with the values shown in that publi-
cation. Furthermore, the slope of the cascade that appears at
higher Strouhal numbers is comparable.
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Figure 4.7: Flow past a cavity.
Sound pressure level spectrum

Likewise, the propagation of acoustic waves can be visual-
ized and compared in Figure 4.8a and Figure 4.8b. Pressure
contours obtained in the present simulation, in contrast to
the ones from [148] are depicted. Visual comparisons of the
radiated pressure field coincide reasonably. The reader should
also note that the computational domain used for the simu-
lation does not affect the solution as it allows to damp com-
pletely the reflection of the soundwaves at the artificial walls.
The aforementioned agreement cannot be achieved without
the use of non-reflecting conditions (or any similar damping
technique).

Regarding the near field results, Figure 4.9 and Figure 4.10
show respectively the vorticity and pressure fields for a given
time instant once the fluctuating mechanism is established.
In Figure 4.9 one can observe different vortical structures.
One of them inside the cavity, as the interaction between
flow and acoustics causes a highly chaotic behavior in this
region. Another vortex can be seen just above the trailing
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(a) Pressure solution from [148]. (b) Fractional step pressure solution

Figure 4.8: Flow past a cavity: (a) DNS reference pressure field (b) calculated pressure field using the second order
fractional step scheme. (scale between ∓3000 Pa)

edge. As the vortex first hits this edge, it spills over the cor-
ner and, eventually, it is convected downstream, increasing
the thickness of the reattached boundary layer. Figure 4.10
is the corresponding pressure field. A recirculation zone is
located in the second half of the cavity, which is mainly as-
sociated with the low pressure region in the plot (in blue). In
addition, a subsequent high-low pressure structure outside
the cavity can be observed, which is propagating towards
the far field. This sequence can be directly compared to the
ones presented in [148] (see Section 2 in that publication), so
we conclude that the present implementation manages to re-
produce the same flow patterns (same scaling is used for the
comparison).

Figure 4.9: Flow past a cavity: vor-
ticity contours for a given time
instant within the main oscilla-
tion. Fifteen contours between
𝜔𝑥3𝐷/𝑈 = −10.5 and 1.35 were
used.

Figure 4.10: Flow past a cavity:
pressure isocontours for a given
time instant within the main os-
cillation. Twenty five contours be-
tween ∓10000 Pa were used.
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4.9 Conclusions

In this chapter, a methodology up to second order in time to
solve the isentropic compressible Navier-Stokes equations in
a segregated manner has been presented. The formulation
is constructed using the extrapolation concept at the pure
algebraic level. From the numerical point of view, the frac-
tional step approach has been combined with other ingredi-
ents, such as the split-orthogonal and dynamic definition of
subscales, the weak imposition of Dirichlet boundary condi-
tions via extrapolations of boundary terms and the applica-
tion of non-reflecting boundary conditions, a major issue in
compressible solvers.

The accuracy of the resulting schemes has been tested numer-
ically using the method of manufactured solutions, obtaining
optimal convergence rates for smooth enough solutions. Ad-
ditionally, the implementation managed to reproduce the ae-
olian tones radiated by a flow past a cylinder and the problem
of flow past a cavity at Ma=0.7. All these examples cover the
subsonic range and highlight the satisfactory performance of
the proposed prescription of boundary conditions, combin-
ing Nitche’s method and a Sommerfeld-like non-reflecting
condition in a segregated approach. The inclusion of the
latter is crucial in this problem, in which reflections at the
boundaries develop oscillations and instabilities that end up
affecting the simulation results if a standard methodology is
used. In addition to this, an important reduction in the CPU
time with respect to the monolithic case has been verified.

The low implementation requirements when departing from
a Navier-Stokes (incompressible) solver, added to the com-
putational savings of the segregated approach, make this al-
gorithm appealing for aeroacoustic problems within the sub-
sonic regime, where shocks and heat transfer can be neglected.
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The Navier-Stokes problem:
primitive formulation 5

5.1 Abstract

In this part we address the compressible Navier-Stokes equa-
tions written in the socalled primitive formulation. The pro-
posed methodology is a finite-element solver based on a frac-
tional step scheme in time, which allows to uncouple the cal-
culation of the problem unknowns providing important sav-
ings in computational cost. In addition, we include a stabi-
lization technique within the Variational Multi-Scale frame-
work and, in particular, we consider orthogonal and dynamic
definitions for the subscales. In order to overcome any wave
reflections which may arise in aeroacoustic simulations at
the low compressibility regime, we present a method for en-
forcing boundary conditions based on a combination of a
zero order non-reflecting condition plus the weak imposition
of Dirichlet boundary conditions over the external contours.
Several representative benchmark flow simulations are per-
formed, which demonstrate the suitability of the proposed
algorithm for the subsonic regime.

5.2 Introduction

The socalled compressible Navier-Stokes equations are com-
monly used to model flow problems where compressibility
effects become relevant, e.g. in aerodynamic and aeroacous-
tic research areas, with applications ranging from classical
turbo-machinery design [149] tomodern speech therapy sim-
ulations [150]. The general mathematical setting consists
of the momentum, mass and energy conservation equations.
This set of partial differential equations describes awide range
of scales, and hence reliable computational methods are re-
quired. In general, in order to compute an accurate solution
of this problem one could proceed either by choosing small
mesh and time step sizes or by using high precision schemes.
Regardless of the selected approach, obtaining a representa-
tive solution of the problem is particularly demanding from
the computational point of view and this still remains as one
of the main limitations in compressible flow simulations in
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spite of the increasing amount of computing facilities avail-
able for the scientific and engineering communities.

The development of numerical approximations for the com-
pressible Navier-Stokes equations which perform adequately
at low compressibility regimes is one of the major concerns
related to compressible flow simulations. However, the clas-
sical compressible flow solvers found in the literature display
a deterioration in the solution when the free stream Mach
number is reduced. According to [151], the rationale behind
this misbehavior is a possible mismatch between numerical
and continuous fluxes, a fact principally attributed to the
broad difference in length and time scales of the solution. In
this regard, a widespread alternative for performing wave-
propagation simulations is to solve the classical incompress-
ible Navier-Stokes equations supplemented with an aeroa-
coustic model, commonly referred in the literature to as hy-
bridmethods (see e.g. [126–128]). Nonetheless, this common
approach generally involves a sequential calculation of aero-
dynamics and aeroacoustics, what directly leads to discard
any feedback related to the sound waves into the flow. Apart
from this, and although they are not suitable for wave-like
problems, there exist the socalled unified methods, a com-
pletely different family of techniques which are intended to
be suitable for either compressible and incompressible flows
[152].

Probably the main reason for developing a compressible for-
mulation which could be properly applied to lowMach flows
is the fact that very lowMach number zones can coexist with
regions where the flow compressibility becomes significant.
In addition to this, several applications traditionally solved
with incompressible formulations could be successfully han-
dled by appropriate compressible solution techniques. The
general trend in the literature is to make use of the conser-
vative variables (namely density, momentum, and total en-
ergy) for the compressible formulation, whereas primitive
variables (pressure, velocity, and temperature) are preferred
for the incompressible equations. However, including den-
sity as a variable in the compressible problem (like in the
conservative formulation), might yield singularities for prob-
lems within the low Mach number limit. Hence, primitive
and even entropic unknowns remain as the two main possi-
bilities in order to solve compressible problems posed in low
compressibility conditions. Particularly, the entropy variable
formulation ensures a global entropy stability condition, but
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it is subject to the definition of the entropy function [153].
For a general review on the different set of variables for solv-
ing compressible and incompressible flow problems we refer
to [95].

As we discussed in the previous chapter, another particular
feature of nearly incompressible aeroacoustic flows is that ex-
ternal computational boundaries may produce artificial wave
reflections related to the ingoing part of the sound waves
and which can completely pollute the solution of the prob-
lem. Ingoing waves may not only interfere with the acous-
tic signal, but they can also produce numerical instabilities
if the numerical method is not able to provide enough dissi-
pation. Among the most remarkable numerical techniques
which deal with the backscattering of waves in the acoustic
field we would like to highlight the damping of the compress-
ible equations and the application of non-reflecting bound-
ary conditions. Even though performing a damping of some
terms of the compressible equations is a robust approach to
face spurious reflections at the boundary (usually referred
to as buffer or sponge zones), this technique brings an extra
computational effort related to the new terms that need to be
included over an augmented computational domain. There-
fore, other approaches are often adopted, being one of the
main alternatives the inclusion of non-reflecting boundary
conditions, an approach that we favor in this work. The
backscattering issue represents a traditional research topic in
aeroacoustics and thus the literature on compressible bound-
ary conditions is really extensive. Nevertheless, we refer
to the early work in [133] and to the more recent reviews
in [134, 135] and [154] for a deeper understanding on this
topic.

The principal objective of the present chapter is to discuss the
development of pressure segregation methods for the tran-
sient compressible Navier-Stokes equations written in prim-
itive variables and using a finite element approximation for
the space discretization. As a reference in the comparisons,
we will take the solution of the socalled monolithic problem,
that is to say, the standard coupled calculation involving all
the problem unknowns. Clearly, the fully discrete and lin-
earized monolithic scheme leads to an algebraic system the
structure of which can be exploited so as to solve indepen-
dently for the velocity, the pressure and the temperature de-
grees of freedom.
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Referring to the time integration, on the following we will
concentrate on first and second order implicit finite differ-
ence schemes. The backward Euler method will be used for
the former, whereas for second order methods we will stick
to backward differentiation (or Gear) schemes, yet our devel-
opments are not restricted and, in principle, any other dis-
cretization methods might be used to advance the solution
in time.

The technique we will discuss here corresponds to the clas-
sical fractional step algorithms. Our approach in this work
is to present the splitting of the equations at the pure alge-
braic level once the equations have already been discretized
in space and in time (see e.g. [53, 55, 155] for algebraic ap-
proaches on the incompressible, viscoelastic and isentropic
flow equations). This way to face the problem emerged after
the identification in [47] of the classical pressure segregation
method as an inexact factorization of the final algebraic sys-
tem. In this chapter we favor such algebraic viewpoint since
it is generally simpler and, although a particular treatment
of boundary conditions will be discussed to avoid the reflec-
tion of soundwaves, it makes possible to obviate a discussion
on specific boundary conditions for the different steps of the
fractional step scheme [46, 50].

The outline of the present chapter is as follows: in Section 5.3
we introduce the compressible Navier-Stokes problem writ-
ten in primitive variables, as well as its variational formu-
lation. In Section 5.4 we discuss the imposition of bound-
ary conditions in order to avoid the spurious wave reflec-
tions at the external boundaries of the computational domain,
whereas in Section 5.5 we present the standard finite element
approximation and the monolithic time discretization. Sec-
tion 5.6 is devoted to the design of pressure-correction al-
gorithms, taking into account the modifications due to the
application of boundary conditions. In Section 5.7, we intro-
duce the VMS stabilized finite element formulation. Numeri-
cal experiments are conducted in Section 5.8, and, finally, we
close the chapterwith some concluding statements in Section
5.9.
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1: There are some authors in
the literature who also consider
velocity u(x, 𝑡), density 𝜌(x, 𝑡) and
temperature 𝜗(x, 𝑡) as primitive
variables. Hence, the triplet
[u(x, 𝑡), 𝑝(x, 𝑡), 𝜗 (x, 𝑡)] is usually
named pressure primitive vari-
ables. However, in the context
of this thesis, we shall just use
primitive variables to denote the
set formed by velocity, pressure
and temperature.

5.3 Problem statement

5.3.1 Preliminaries

In this chapter we aim at solving the compressible Navier-
Stokes problem for the socalled primitive variables, namely,
velocity u(x, 𝑡), pressure 𝑝(x, 𝑡) and temperature 𝜗(x, 𝑡)1. For
this purpose, we shall introduce some considerations in or-
der to rewrite the system formed by Equation 2.20a, Equa-
tion 2.20b and Equation 2.20c in a more convenient form.

Henceforth, we will make use of the most frequently encoun-
tered form of the thermal equation of state, i.e. the ideal-gas
law Equation 2.15. Taking into account that density is then
a function of pressure and temperature, Equation 2.20a shall
be rewritten by expanding the derivatives as follows

𝛽 [𝜕𝑡𝑝 + (u ⋅ ∇)𝑝] − 𝛼 [𝜕𝑡𝜗 + (u ⋅ ∇)𝜗] + ∇ ⋅ u = 0.

In this equation, two new physical variables are introduced,
which relate temperature, pressure and density derivatives.
These are the socalled volume expansivity and isothermal com-
pressibility coefficients, denoted respectively as 𝛼 and 𝛽 here-
after. Their definitions are

𝛼 ≔ − 1
𝜌 (𝜕𝜌𝜕𝜃 )𝑝 , (5.1a)

𝛽 ≔1
𝜌 (𝜕𝜌𝜕𝑝 )𝜃

, (5.1b)

where (⋅)𝜃 and (⋅)𝑝 stand for a constant temperature and pres-
sure constrain. Since the ideal gas law is considered, it is
readily checked that the previous expressions simply reduce
to

𝛽 = 𝑝−1 and 𝛼 = 𝜃−1.

If we consider a calorically perfect gas, then the internal en-
ergy is a sole function of the temperature as stated in Section
2.3.2. By using Equation 2.13 into Equation 2.20c, the energy
conservation equation takes the form

𝜌𝑐𝑣 [𝜕𝑡𝜗 + (u ⋅ ∇)𝜗] − ∇ ⋅ (𝜅∇𝜗) + 𝑝(∇ ⋅ u) − Φ(u) = 𝜌𝑟,

where we recall that Φ(u) is the dissipation function from
Section 2.3.4.
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5.3.2 Initial and boundary value problem

Let Ω be an open, bounded and polyhedral domain of ℝ𝑁sd

and [0, 𝑡f] the time interval of analysis. The unknowns of
the problem are the primitive variables, i.e. the fluid veloc-
ity u(x, 𝑡) ∶ Ω × (0, 𝑡f) → ℝ𝑁sd , the thermodynamic pressure
𝑝(x, 𝑡) ∶ Ω × (0, 𝑡f) → ℝ, and the temperature 𝜗(x, 𝑡) ∶ Ω ×
(0, 𝑡f) → ℝ which are the solution of the following system of
partial differential equations:

Primitive Navier-Stokes problem

𝜌 du
d𝑡 − 2∇ ⋅ (𝜇𝜀𝜀𝜀) + 2

3∇(𝜇∇ ⋅ u)
+ ∇𝑝 = 𝜌b in Ω × (0, 𝑡f), (5.2a)

𝛽 d𝑝
d𝑡 − 𝛼 d𝜗

d𝑡 + ∇ ⋅ u = 0 in Ω × (0, 𝑡f), (5.2b)

𝜌𝑐𝑣 d𝜗d𝑡 − ∇ ⋅ (𝜅∇𝜗) + 𝑝(∇ ⋅ u) = 𝑄 in Ω × (0, 𝑡f), (5.2c)

where 𝑄 stands for the energy source terms, which accounts
for mechanical dissipation into heat, chemical reactions or
even electromagnetic effects. Therefore,

𝑄 ≔ 𝜌𝑟 + Φ(u) = 𝜌𝑟 + 2𝜇𝜀𝜀𝜀(u) ∶ 𝜀𝜀𝜀(u) − 2
3𝜇(∇ ⋅ u)2. (5.3)

Here and in what follows in this chapter, 𝜇, 𝜅 and 𝑐𝑣 are
assumed to be constant to ease the discussion. The reader
should note that the coupling among all the variables in the
primitive problem defined by Equation 5.2a–Equation 5.2c is
remarkably relevant, mostly through nonlinear relations.

The previous problem can be rewritten in the compact man-
ner as in Equation 3.1 after setting

y = [u, 𝑝, 𝜗]𝑇 ,

ℳ(y) = [
𝜌 0 0
0 𝛽 −𝛼
0 0 𝜌𝑐𝑣

] ,

ℱ = [𝜌b, 0, 𝑄]𝑇 ,

ℒ(y; y) = [
𝜌(u ⋅ ∇)u − 2∇ ⋅ [𝜇𝜀𝜀𝜀(u)] − ∇ [𝜆(∇ ⋅ u)] + ∇𝑝

𝛽(u ⋅ ∇)𝑝 − 𝛼(u ⋅ ∇)𝜗 + ∇ ⋅ u
𝜌𝑐𝑣 (u ⋅ ∇)𝜗 − ∇ ⋅ (𝜅∇𝜗) + 𝑝(∇ ⋅ u)

] .
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Boundary conditions need to be appended to the previous
problem. Let us consider the following disjoint splittings

Γ = 𝜕Ω = ΓD,u ∪ ΓN,u = ΓD,𝜗 ∪ ΓN,𝜗 .

Subscript D refers to Dirichlet boundary conditions, whereas
N refers to Neumann or natural boundary conditions. The
second subscript indicates the variable to which the condi-
tion is applied. Note that boundaries for velocity and tem-
perature may overlap. Let n be the unit vector normal to
Γ, ug the given velocity prescribed on ΓD,u, t the prescribed
traction on ΓN,u, 𝜗g the given temperature on ΓD,𝜗 and 𝜑 the
prescribed heat flux on ΓN,𝜗 . The boundary conditions to be
considered for all time 𝑡 ∈ (0, 𝑡f] are initially written as:

u − ug = 0 on ΓD,u, (5.4a)

n ⋅ 𝜎𝜎𝜎 = t on ΓN,u, (5.4b)

𝜗 − 𝜗g = 0 on ΓD,𝜗 , (5.4c)

−𝜅n ⋅ ∇𝜗 = 𝜑 on ΓN,𝜗 . (5.4d)

Sometimes, the Neumann-type prescription for the temper-
ature has to be generalized to a Robbin boundary condition
to include the surface heat convection, although this is im-
material for what follows. To complete the definition of the
problem we need to add initial conditions of the form

u(x, 0) = u0(x),
𝑝(x, 0) = 𝑝0(x),
𝜗(x, 0) = 𝜗0(x).

Remark 5.3.1 For ideal gases at the low Mach number
limit, the fluid usually presents very large values of pres-
sure and temperature, specially if the international system
is used. Therefore, both volume expansivity and isother-
mal compressibility coefficients tend to zero, and the sys-
tem from Equation 5.2a–Equation 5.2c recovers the classi-
cal incompressible form with almost constant density.
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2: Some formswere already intro-
duced for the weak form of the
isentropic problem, but they are
included here again for the sake
of completeness.

5.3.3 Variational formulation

In order towrite theweak form of Equation 5.2a–Equation 5.2c
together with the boundary conditions in Equation 5.4a –
Equation 5.4d let v, 𝑞, and 𝜂 be the test functions for u, 𝑝 and
𝜗 , respectively. We consider them time-independent, and ad-
ditionally v and 𝜂 are assumed to vanish separately on ΓD,u
and ΓD,𝜗 , respectively.

Let now Vu,𝕍𝑝 and V𝜗 be, respectively, the proper functional
spaces where each component of the velocity, the pressure
and the temperature are well defined for each fixed time 𝑡 ∈
(0, 𝑡f), with appropriate regularity. In addition, let us further
introduce the following functional spaces of trial solutions
and test functions

𝕍u = {u ∈ [Vu]𝑁sd | u|ΓD,u = ug} ,
𝕎u = {v ∈ [Vu]𝑁sd | v|ΓD,u = 0} ,
𝕍𝜗 = {𝜗 ∈ V𝜗 | 𝜗 |ΓD,𝜗 = 𝜗g} ,
𝕎𝜗 = {𝜂 ∈ V𝜗 | 𝜂|ΓD,𝜗 = 0} .

Once Equation 5.2a–Equation 5.2c are multiplied by the cor-
responding test functions, integrated over the computational
domain Ω, second order terms integrated by parts, and the
boundary conditions are also taken into account, the result-
ing variational form of the problem that we consider is given
as follows: Find the triplet [u, 𝑝, 𝜗] ∶ (0, 𝑡f) → 𝕍u × 𝕍𝑝 × 𝕍𝜗
such that

⟨𝜌𝜕𝑡u, v⟩ + 𝑐(𝜌,u;u, v) + 𝑎(u, v) − 𝑏(𝑝, v) = ℓu(𝜌; v), (5.6a)

⟨𝛽𝜕𝑡𝑝, 𝑞⟩ − ⟨𝛼𝜕𝑡𝜗 , 𝑞⟩ + 𝑑(𝛽,u; 𝑝, 𝑞) − 𝑑(𝛼,u; 𝜗 , 𝑞)
+ 𝑏(𝑞,u) = 0, (5.6b)

⟨𝜌𝑐𝑣 𝜕𝑡𝜗 , 𝜂⟩ + 𝑓 (𝜌,u; 𝜗 , 𝜂) + 𝑒(𝜗 , 𝜂)
+ 𝑔(u; 𝑝, 𝜂) = ℓ𝜗 (𝜌,u; 𝜂), (5.6c)

⟨u(x, 0), v⟩ = ⟨u0(x), v⟩ , (5.6d)

⟨𝑝(x, 0), 𝑞⟩ = ⟨𝑝0(x), 𝑞⟩ , (5.6e)

⟨𝜗(x, 0), 𝜂⟩ = ⟨𝜗0(x), 𝜂⟩ , (5.6f)

which must hold for all test functions v ∈ 𝕎u, 𝑞 ∈ 𝕎𝑝 ≡ 𝕍𝑝
and 𝜂 ∈ 𝕎𝜗 and for all 𝑡 ∈ (0, 𝑡f). Following the notation used
in the previous chapter, the different forms appearing in the
previous weak equation are defined as 2:
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𝑐(𝜌,u1;u2, v) ≔∫Ω 𝜌 [(u1 ⋅ ∇)u2] ⋅ v dΩ (5.7a)

𝑎(u, v) ≔∫Ω 2𝜇𝜀𝜀𝜀(u) ∶ 𝜀𝜀𝜀(v) dΩ

−∫Ω
2
3𝜇(∇ ⋅ u)(∇ ⋅ v) dΩ, (5.7b)

𝑏(𝑝, v) ≔∫Ω 𝑝(∇ ⋅ v) dΩ, (5.7c)

𝑑(𝛽,u; 𝑝, 𝑞) ≔∫Ω 𝛽[(u ⋅ ∇)𝑝]𝑞 dΩ, (5.7d)

𝑓 (𝜌,u; 𝜗 , 𝜂) ≔∫Ω 𝜌𝑐𝑣 [(u ⋅ ∇)𝜗]𝜂 dΩ (5.7e)

𝑒(𝜗 , 𝜂) ≔∫Ω 𝜅∇𝜗 ⋅ ∇𝜂 dΩ, (5.7f)

𝑔(u; 𝑝, 𝜂) ≔∫Ω 𝑝(∇ ⋅ u)𝜂 dΩ, (5.7g)

ℓu(𝜌; v) ≔∫Ω 𝜌b ⋅ v dΩ + ∫ΓN,u
t ⋅ v dΓ, (5.7h)

ℓ𝜗 (𝜌,u; 𝜂) ≔∫Ω 𝑄𝜂 dΩ + ∫ΓN,𝜗
𝜑𝜂 dΓ. (5.7i)

The previous weak form in Equation 5.6a–Equation 5.6f is
nothing but Equation 3.6 applied to the compressible Navier-
Stokes problem in primitive variables considering the follow-
ing definitions:

ℬ(y; y, z) = 𝑐(𝜌,u;u, v) + 𝑎(u, v) − 𝑏(𝑝, v)
+ 𝑑(𝛽,u; 𝑝, 𝑞) − 𝑑(𝛼,u; 𝜗 , 𝑞) + 𝑏(𝑞,u)
+ 𝑓 (𝜌,u; 𝜗 , 𝜂) + 𝑒(𝜗 , 𝜂) + 𝑔(u, 𝑝, 𝜂)

ℓ(z) = ℓu(𝜌; v) + ℓ𝜗 (𝜌,u; 𝜂)

with the addition of the corresponding boundary terms. In
this regard, special care needs to be taken on the imposition
of boundary conditions. We discuss this issue in the upcom-
ing section.

5.4 Non reflecting boundary conditions

The compressible Navier-Stokes equations represent a direct
path to consistently deal with both aerodynamic and acoustic
scales at once. As a consequence, acoustic waves and the flow
boundary conditions must be treated consistently and a cer-
tain compatibility requirement should be introduced. In this
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section we review the boundary setting described originally
in [130] and also in Section 4.4. This technique is basically
the same as in the previous chapter, but we pretend to extend
its application for the compressible problem in primitive vari-
ables accounting for the corresponding modifications. We
recall that the main ingredients of the methodology are the
weak prescription of essential boundary conditions together
with the application of a zero-order non-reflecting boundary
condition.

5.4.1 Unknown and boundary splitting

For the sake of completeness, let us start again by consider-
ing a splitting of the velocity and pressure fields, respectively
into mean and oscillatory components. For a given time in-
stant 𝑡 ∈ (0, 𝑡f), we have

u(x, 𝑡) = u(x, 𝑡) + u′(x, 𝑡), (5.8a)

𝑝(x, 𝑡) = 𝑝(x, 𝑡) + 𝑝′(x, 𝑡), (5.8b)

where the time-average variables are mathematically defined
as

u(x, 𝑡) ≐ 1
𝑇𝑤 ∫

𝑡

𝑡−𝑇𝑤
u(x, 𝜉 ) d𝜉 , (5.9a)

𝑝(x, 𝑡) ≐ 1
𝑇𝑤 ∫

𝑡

𝑡−𝑇𝑤
𝑝(x, 𝜉 ) d𝜉 , (5.9b)

Hereafter, the oscillatory components correspond to the acous-
tic fluctuations and the mean components to the flow vari-
ables. In this definition, 𝑇w represents an appropriate time
window and thus it implicitly defines a filtering frequency for
the acoustic waves, which must be chosen small enough to
allow a damping of the acoustic perturbations without dam-
aging the flow evolution.

The boundary where velocity conditions exist (either essen-
tial or natural) is divided into internal and external contribu-
tions. Internal contributions are e.g. those corresponding to
solid walls in the interior of the domain. External (artificial)
boundaries correspond to inlet and outlet boundaries. The
external boundary where velocity shall be prescribed Γ𝑒u is
divided into two different disjoint subsets,

Γ𝑒D,u ∩ Γ𝑒N,u = ∅
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Γ𝑒D,u ∪ Γ𝑒N,u = Γ𝑒u.

We remark that this boundary splitting is performed at the
external artificial contours of the domain. Should the domain
contain any interior wall with prescribed velocity, we should
expect sound waves to be reflected in such location and no
particular boundary treatment is needed. The key idea be-
hind our boundary formulation is the introduction of the so-
called Sommerfeld boundary condition. Such condition is de-
rived from the wave equation written in mixed form, which
represents a set of wave-like equations for u(x, 𝑡) and 𝑝(x, 𝑡)
[136].

Remark 5.4.1 Some might argue that there exits a wave-
like equation for heat. However, following the ideas in
[156] [156]: Salazar (2006), “Energy

propagation of thermal waves”
, it is easily shown that although temperature oscil-

lations may have the mathematical expression of a wave,
they are not real travelling waves as there is no actual
transport of energy, and hence they show neither wave
fronts nor reflection/refraction phenomena. As a result,
there is no need to introduce any splitting for the tem-
perature into mean and oscillatory components and the
only contribution to the weak form from the imposition of
boundary conditions in the temperature equation would
be Equation 5.4d.

5.4.2 Unified prescription of boundary
conditions

In this subsection, we summarize the different conditions to
be applied on each boundary.

On the frontiers belonging to the truncation boundary Γ𝑒D,u,
distinct conditions are enforced:

▶ The mean value of the velocity is prescribed to a given
velocity value

ū = ug on Γ𝑒D,u, (5.10)

and this will be done weakly via Nitsche’s method.
▶ A Sommerfeld-like non-reflecting boundary condition

is enforced for the acoustic component of the velocity
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field. In the normal direction to the boundary we set

n ⋅ [n ⋅ 𝜎𝜎𝜎(u′, 𝑝′)] = −
√
𝜌
𝛽 n ⋅ u′ on Γ𝑒D,u, (5.11)

and for the tangential direction we directly write

t ⋅ [n ⋅ 𝜎𝜎𝜎(u′, 𝑝′)] = 0 on Γ𝑒D,u, (5.12)

for any vector t in the tangent direction to Γ𝑒D,u.

Finally, on the boundary Γ𝑒N,u, the following conditions are
enforced:

▶ The mean value tractions are prescribed, i.e.

n ⋅ 𝜎𝜎𝜎(u, 𝑝) = t on Γ𝑒N,u. (5.13)

▶ The same approach as in Γ𝑒D,u is used now for the fluc-
tuating component. Therefore

n ⋅ [n ⋅ 𝜎𝜎𝜎(u′, 𝑝′)] = −
√
𝜌
𝛽 n ⋅ u′ on Γ𝑒N,u, (5.14a)

t ⋅ [n ⋅ 𝜎𝜎𝜎(u′, 𝑝′)] = 0 on Γ𝑒N,u. (5.14b)

Taking now into account these definitions, the prescription
of boundary conditions in the weak form of the problem can
be done upon the modification of the boundary term on the
right-hand-side of the momentum equation Equation 5.6a,
which after the introduction of the symmetric and the penalty
terms for the imposition of ū = ug using Nitsche’s method
reads:

∫Γ𝑒u
[n⋅ 𝜎𝜎𝜎(u, 𝑝)] ⋅ v d𝜕Ω = ∫Γ𝑒D,u

[n ⋅ 𝜎𝜎𝜎(u, 𝑝)] ⋅ v d𝜕Ω

− ∫Γ𝑒D,u √
𝜌
𝛽 (u

′ ⋅ n)(v ⋅ n) d𝜕Ω

+ ∫Γ𝑒D,u
(ū − ug) ⋅ [n ⋅ 𝜎𝜎𝜎(v, 𝑞)] d𝜕Ω

− ∫Γ𝑒D,u
𝜓(ū − ug) ⋅ v d𝜕Ω

− ∫Γ𝑒N,u √
𝜌
𝛽 (u

′ ⋅ n)(v ⋅ n) d𝜕Ω

+ ∫Γ𝑒N,u
t ⋅ v d𝜕Ω, (5.15)
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where again 𝜓 stands for the numerical penalty parameter. If
we now group these boundary terms in the following forms:

𝑐Γ(𝜌, 𝛽;u, v) ≔∫Γ𝑒u √
𝜌
𝛽 (u

′ ⋅ n)(v ⋅ n) d𝜕Ω

+∫ΓD,u
𝜓u ⋅ v d𝜕Ω

−∫Γ𝑒D,u
2𝜇[n ⋅ 𝜀𝜀𝜀(u)] ⋅ v d𝜕Ω

+∫Γ𝑒D,u
2
3𝜇∇ ⋅ u(n ⋅ v) d𝜕Ω

−∫Γ𝑒D,u
2𝜇[n ⋅ 𝜀𝜀𝜀(v)] ⋅ u d𝜕Ω

+∫Γ𝑒D,u
2
3𝜇∇ ⋅ v(n ⋅ ū) d𝜕Ω, (5.16a)

𝑏Γ(𝑝, v) ≔∫Γ𝑒D,u
𝑝(n ⋅ v) d𝜕Ω, (5.16b)

ℓΓ,u(v) ≔∫Γ𝑒D,u
𝜓ug ⋅ v d𝜕Ω

−∫Γ𝑒D,u
2𝜇[n ⋅ 𝜀𝜀𝜀(v)] ⋅ ug d𝜕Ω

+∫Γ𝑒D,u
2
3𝜇∇ ⋅ v(n ⋅ ug) d𝜕Ω

+∫Γ𝑒N,u
v ⋅ t d𝜕Ω, (5.16c)

ℓΓ,𝑝(𝑞) ≔∫Γ𝑒D,u
𝑞(n ⋅ ug) d𝜕Ω, (5.16d)

theweak formulation of theNavier-Stokes compressible prim-
itive problem would now consist in seeking the velocity, the
pressure and the temperature satisfying

⟨𝜌𝜕𝑡u, v⟩ + 𝑐(𝜌,u;u, v) + 𝑎(u, v) − 𝑏(𝑝, v) + 𝑐Γ(𝜌, 𝛽;u, v)
+ 𝑏Γ(𝑝, v) = ℓu(𝜌; v) + ℓΓu(v), (5.17a)

⟨𝛽𝜕𝑡𝑝, 𝑞⟩ − ⟨𝛼𝜕𝑡𝜗 , 𝑞⟩ + 𝑑(𝛽,u; 𝑝, 𝑞) − 𝑑(𝛼,u; 𝜗 , 𝑞)
+ 𝑏(𝑞,u) + 𝑏Γ(𝑞,u) = ℓΓ𝑝(𝑞), (5.17b)

⟨𝜌𝑐𝑣 𝜕𝑡𝜗 , 𝜂⟩ + 𝑓 (𝜌,u; 𝜗 , 𝜂) + 𝑒(𝜗 , 𝜂)
+ 𝑔(u, 𝑝, 𝜂) = ℓ𝜗 (𝜌,u; 𝜂), (5.17c)

for all test functions and for all 𝑡 ∈ (0, 𝑡f), and fulfilling weakly
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the initial conditions at 𝑡 = 0.

5.5 Numerical approximation

5.5.1 Finite element discretization

Let now 𝕍u,ℎ ⊂ 𝕍u, 𝕍𝑝,ℎ ⊂ 𝕍𝑝 and 𝕍𝜗 ,ℎ ⊂ 𝕍𝜗 be the ve-
locity, pressure and temperature finite element spaces asso-
ciated with the chosen triangulation.

The discrete problem is obtained by approximating u, 𝑝 and
𝜗 . The raw Galerkin method applied to the problem stated in
Equation 5.17a– Equation 5.17c reads: find the functions uℎ,
𝑝ℎ and 𝜗ℎ such that

⟨𝜌𝜕𝑡uℎ, vℎ⟩ + 𝑐(𝜌,uℎ;uℎ, vℎ) + 𝑎(uℎ, vℎ) − 𝑏(𝑝ℎ, vℎ)
+ 𝑐Γ(𝜌, 𝛽;uℎ, vℎ) + 𝑏Γ(𝑝ℎ, vℎ) = ℓu(𝜌; vℎ)
+ ℓΓ,u(vℎ), (5.18a)

⟨𝛽𝜕𝑡𝑝ℎ, 𝑞ℎ⟩ − ⟨𝛼𝜕𝑡𝜗ℎ, 𝑞ℎ⟩ + 𝑑(𝛽,uℎ; 𝑝ℎ, 𝑞ℎ) − 𝑑(𝛼,uℎ; 𝜗ℎ, 𝑞ℎ)
+ 𝑏(𝑞ℎ,uℎ) + 𝑏Γ(𝑞ℎ,uℎ) = ℓΓ,𝑝(𝑞), (5.18b)

⟨𝜌𝑐𝑣 𝜕𝑡𝜗ℎ, 𝜂ℎ⟩ + 𝑓 (𝜌,uℎ; 𝜗ℎ, 𝜂ℎ) + 𝑒(𝜗ℎ, 𝜂ℎ)
+ 𝑔(uℎ, 𝑝ℎ, 𝜂ℎ) = ℓ𝜗 (𝜌,uℎ; 𝜂ℎ). (5.18c)

The time discretization of the problem is performed by fol-
lowing the notation and statements already introduced in
Section 3.4. Then, making use of the BDF operator in Equa-
tion 3.7, the fully discrete problem we need to solve is: for
𝑛 = 0, 1, … , 𝑁 − 1, solve for u𝑛+1ℎ , 𝑝𝑛+1ℎ and 𝜗𝑛+1ℎ given the val-
ues u𝑛−𝑙ℎ , 𝑝𝑛−𝑙ℎ , 𝜗𝑛−𝑙ℎ for 𝑙 = 0 to 𝜃 − 1, such that

⟨𝜌𝛿𝑡u𝑛+1ℎ , vℎ⟩ + 𝑐(𝜌,u𝑛+1ℎ ;u𝑛+1ℎ , vℎ) + 𝑎(u𝑛+1ℎ , vℎ) − 𝑏(𝑝𝑛+1ℎ , vℎ)
+ 𝑐Γ(𝜌, 𝛽;u𝑛+1ℎ , vℎ) + 𝑏Γ(𝑝𝑛+1ℎ , vℎ) = ℓu(𝜌; vℎ)
+ ℓΓ,u(vℎ), (5.19a)

⟨𝛽𝛿𝑡𝑝𝑛+1ℎ , 𝑞ℎ⟩ − ⟨𝛼𝛿𝑡𝜗𝑛+1ℎ , 𝑞ℎ⟩ + 𝑑(𝛽,u𝑛+1ℎ ; 𝑝𝑛+1ℎ , 𝑞ℎ)
− 𝑑(𝛼,u𝑛+1ℎ ; 𝜗𝑛+1ℎ , 𝑞ℎ) + 𝑏(𝑞ℎ,u𝑛+1ℎ )
+ 𝑏Γ(𝑞ℎ,u𝑛+1ℎ ) = ℓΓ,𝑝(𝑞), (5.19b)

⟨𝜌𝑐𝑣 𝛿𝑡𝜗𝑛+1ℎ , 𝜂ℎ⟩ + 𝑓 (𝜌,u𝑛+1ℎ ; 𝜗𝑛+1ℎ , 𝜂ℎ) + 𝑒(𝜗𝑛+1ℎ , 𝜂ℎ)
+ 𝑔(u𝑛+1ℎ , 𝑝𝑛+1ℎ , 𝜂ℎ) = ℓ𝜗 (𝜌,u𝑛+1ℎ ; 𝜂ℎ). (5.19c)
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In order to compute the mean components of the unknowns,
we use the same expression as in the isentropic problem in
the previous chapter, i.e., Equation 4.20.

Remark 5.5.1 In the case of the primitive compressible
problem, the unknowns are u𝑛+1ℎ , 𝑝𝑛+1ℎ , 𝜗𝑛+1ℎ . Then 𝜌, 𝛼
and 𝛽 shall be explicitly computed in the final algorithm
by means of a linearization process. Hence their values
are obtained from finite element quantities but not solved
as unknowns for each time step and non-linear iteration.
In other words, they do not belong to the finite element
spaces, and that is why we did not include neither the ℎ
subscript nor the superscript 𝑛 + 1 in the equations. It
should be understood just as notation. In particular, we
follow the ideas explained in Section 4.5.2 for the lineariza-
tion of the problem.

5.5.2 Monolithic algebraic system

We assume that u𝑛+1ℎ , 𝑝𝑛+1ℎ , and 𝜗𝑛+1ℎ are constructed using
the standard finite element interpolation from the nodal val-
ues, which we denote hereafter as U𝑛+1, P𝑛+1 and ΘΘΘ𝑛+1, re-
spectively. These are computed as the solution of a nonlin-
ear algebraic system, which is derived from Equation 5.17a–
Equation 5.17c. The definitions of the arrays involved in this
problem are collected in Table 5.1, Table 5.2 and Table 5.3.
The reader should note that the terms containing temporal
derivatives of the unknowns in the table actually contribute
to both LHS and RHS of the final equation after introducing
the chosen temporal discretization.

The first subscript on the arrays refers to the momentum (u),
energy (𝜗 ) and continuity (𝑝) equation, and the second stands
for the unknown to which the term refers to. The symbol M
stands for the mass matrices and, in addition, the subscript
Γ stands for the terms arising from the special treatment of
boundary conditions, as described in Section 5.4. Having in-
troduced all these matrices and vectors, the resolution of the
compressible flow problem via the FE method is stated now
as: given the initial data and the corresponding values U𝑛−𝑙 ,
P𝑛−𝑙 , ΘΘΘ𝑛−𝑙 for 𝑙 = 0 to 𝜃 − 1, find U𝑛+1, P𝑛+1, ΘΘΘ𝑛+1 approxima-
tion to U(𝑡𝑛+1), P(𝑡𝑛+1),ΘΘΘ(𝑡𝑛+1) as the converged solutions of
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Table 5.1: Matrix form of the
terms corresponding to the mo-
mentum equation.

Matrix version Term where it comes from

V𝑇MuuU ⟨vℎ, 𝜌𝜕𝑡uℎ⟩
V𝑇Kuu (U1)U2 𝑐(𝜌,uℎ,1;uℎ,2, vℎ) + 𝑎(uℎ,2, vℎ)
V𝑇MΓ,uuU ⟨𝜓u, vℎ⟩ΓD,u
V𝑇KΓ,uuU 𝑐Γ(𝜌, 𝛽;uℎ, vℎ) − ⟨𝜓u, vℎ⟩ΓD,u
V𝑇GP 𝑏(𝑝ℎ, vℎ)
V𝑇GΓP 𝑏Γ(𝑝ℎ, vℎ)
V𝑇Fu ℓu(𝜌; vℎ)
V𝑇FΓ,u ℓΓ,u(vℎ)

Table 5.2: Matrix form of the
terms corresponding to the mass
equation.

Matrix version Term where it comes from

Q𝑇M𝑝𝑝P ⟨𝑞ℎ, 𝛽𝜕𝑡𝑝ℎ⟩
Q𝑇K𝑝𝑝 (U)P 𝑑(𝜌,uℎ; 𝑝ℎ, 𝑞ℎ)
Q𝑇M𝑝𝜗P ⟨𝑞ℎ, 𝛼𝜕𝑡𝜗ℎ⟩
Q𝑇K𝑝𝜗 (U)P 𝑑(𝜌,uℎ; 𝜗ℎ, 𝑞ℎ)
Q𝑇DU 𝑏(𝑞ℎ,uℎ)
Q𝑇DΓU 𝑏Γ(𝑞ℎ,uℎ)
Q𝑇FΓ,𝑝 ℓΓ,𝑝(𝑞ℎ)

the following iterative problem:

Muu,𝜌(𝑖)
𝐷𝜃
𝛿𝑡 U

𝑛+1,(𝑖+1) + Kuu,𝜌(𝑖) (U𝑛+1,(𝑖))U𝑛+1,(𝑖+1)

+MΓ,uuU𝑛+1,(𝑖+1) + KΓ,uu,𝜌(𝑖)𝛽(𝑖)U𝑛+1,(𝑖+1)

+GP𝑛+1,(𝑖+1) +GΓP𝑛+1,(𝑖+1) = F𝑛+1
u,𝜌(𝑖) + F𝑛+1Γ,u , (5.20a)

M𝑝𝑝,𝛽(𝑖)
𝐷𝜃
𝛿𝑡 P

𝑛+1,(𝑖+1) + K𝑝𝑝,𝛽(𝑖)(U𝑛+1,(𝑖))P𝑛+1,(𝑖+1)

−M𝑝𝜗 ,𝛼 (𝑖)
𝐷𝜃
𝛿𝑡 ΘΘΘ

𝑛+1,(𝑖+1) − K𝑝𝜗 ,𝛼 (𝑖)(U𝑛+1,(𝑖))ΘΘΘ𝑛+1,(𝑖+1)

+DU𝑛+1,(𝑖+1) +DΓU𝑛+1,(𝑖+1) = F𝑛+1Γ,𝑝 , (5.20b)

M𝜗𝜗 ,𝜌(𝑖)
𝐷𝜃
𝛿𝑡 ΘΘΘ

𝑛+1,(𝑖+1) + K𝜗𝜗 ,𝜌(𝑖) (U𝑛+1,(𝑖))ΘΘΘ𝑛+1,(𝑖+1)

+ K𝜗𝑝 (U𝑛+1,(𝑖))P𝑛+1,(𝑖+1) = F𝑛+1𝜗 ,𝜌(𝑖)u(𝑖) , (5.20c)

where we have included a subscript 𝜌(𝑖), 𝛼 (𝑖), 𝛽(𝑖) so as to in-
dicate that those arrays are computed by taking a previously
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Matrix version Term where it comes from

H𝑇M𝜗𝜗ΘΘΘ ⟨𝜂ℎ, 𝜌𝑐𝑣 𝜕𝑡𝜗ℎ⟩
H𝑇K𝜗𝜗 (U)ΘΘΘ 𝑓 (𝜌,uℎ; 𝜗ℎ, 𝜂ℎ) + 𝑒(𝜗ℎ, 𝜂ℎ)
H𝑇K𝜗𝑝 (U)P 𝑔(uℎ, 𝑝ℎ, 𝜂ℎ)
H𝑇F𝜗 ℓ𝜗 (𝜌,uℎ; 𝜂ℎ)

Table 5.3: Matrix form of the
terms corresponding to the en-
ergy equation.

computed value of density, volume expansivity and isother-
mal compressibility coefficients. This system, in a more com-
pact manner for each iteration, can be rearranged as

[
Auu Au𝑝 0
A𝑝u A𝑝𝑝 A𝑝𝜗
0 A𝜗𝑝 A𝜗𝜗

] ⋅ [
U𝑛+1
P𝑛+1
ΘΘΘ𝑛+1

] = [
F𝑛+1U
F𝑛+1P
F𝑛+1ΘΘΘ

] (5.21)

with the following matrices:

Auu ≔Muu(𝜌)
𝐷𝜃
𝛿𝑡 + Kuu (𝜌,U𝑛+1) +MΓ,uu + KΓ,uu(𝜌, 𝛽)

Au𝑝 ≔G +GΓ
A𝑝u ≔D +DΓ

A𝑝𝑝 ≔M𝑝𝑝(𝛽)
𝐷𝜃
𝛿𝑡 + K𝑝𝑝 (𝛽,U𝑛+1)

A𝑝𝜗 ≔−M𝑝𝜗 (𝛼)
𝐷𝜃
𝛿𝑡 − K𝑝𝜗 (𝛼,U𝑛+1)

A𝜗𝑝 ≔K𝜗𝑝 (U𝑛+1)
A𝜗𝜗 ≔M𝜗𝜗 (𝜌)

𝐷𝜃
𝛿𝑡 + K𝜗𝜗 (𝜌,U𝑛+1)

F𝑛+1U ≔F𝑛+1u (𝜌) + F𝑛+1Γ,u
F𝑛+1P ≔F𝑛+1Γ,𝑝
F𝑛+1ΘΘΘ ≔F𝑛+1𝜗 (𝜌,U𝑛+1)

The high non-linear character of the problem is made explicit
in the system by including the dependency of the arrays on
the variables in the parenthesis.

5.6 Design of the fractional step method

In this section we develop the algebraic fractional step meth-
ods for the compressible Navier-Stokes problem written in
primitive variables. The algorithm here proposed could be
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viewed as a natural extension of pressure-segregation schemes
previously developed for viscoelastic flows [55] or incom-
pressible flows [50].

The basic procedure entails a calculation of an intermediate
velocity with a guess of the pressure, as we already discussed
for the isentropic case in the previous chapter, yet we will
broaden here the original technique by computing also an in-
termediate temperature. After computing the pressure, we
will finally correct the velocity and temperature intermedi-
ate values, so as to ensure that the global time accuracy of
the method is maintained. We will not discuss here different
segregation techniques such as velocity-correction methods
[139] (based on the opposite procedure, a velocity guess is as-
sumed to solve for the pressure) or predictor-multicorrector
techniques [56].

5.6.1 The algebraic viewpoint. Extrapolation.

In order to simplify the exposition and the notation, let us
drop the iteration counter (𝑖) in this section. For the pur-
pose of the derivation of the method, let us start by writing
the previous systemEquation 5.21 in the following equivalent
manner:

Muu(𝜌)
𝐷𝜃
𝛿𝑡 Ũ

𝑛+1 + Kuu(𝜌,U𝑛+1)U𝑛+1 − Ku𝑝P̂𝑛+1𝜃−1
+MΓ,uuU𝑛+1 + KΓ,uu(𝜌, 𝛽)U𝑛+1

+ KΓ,u𝑝P𝑛+1 = F𝑛+1U , (5.22a)

Muu(𝜌) 1
𝜙𝜃𝛿𝑡

(U𝑛+1 − Ũ𝑛+1) − Ku𝑝(P𝑛+1 − P̂𝑛+1𝜃−1) = 0, (5.22b)

M𝜗𝜗 (𝜌)
𝐷𝜃
𝛿𝑡 Θ̃ΘΘ

𝑛+1 + K𝜗𝜗 (𝜌,U𝑛+1)ΘΘΘ𝑛+1

+ K𝜗𝑝(U𝑛+1)P̂𝑛+1𝜃−1 = F𝑛+1ΘΘΘ , (5.22c)

M𝜗𝜗 (𝜌) 1
𝜙𝜃𝛿𝑡

(ΘΘΘ𝑛+1 − Θ̃ΘΘ𝑛+1) + K𝜗𝑝(U𝑛+1)(P𝑛+1 − P̂𝑛+1𝜃−1) = 0,
(5.22d)

M𝑝𝑝(𝛽)
𝐷𝜃
𝛿𝑡 P

𝑛+1 + K𝑝𝑝(𝛽,U𝑛+1)P𝑛+1 −M𝑝𝜗 (𝛼)
𝐷𝜃
𝛿𝑡 ΘΘΘ

𝑛+1

− K𝑝𝜗 (𝛼,U𝑛+1)ΘΘΘ𝑛+1 + K𝑝uU𝑛+1

+ KΓ,𝑝uU𝑛+1 = F𝑛+1P , (5.22e)

where 𝐷𝜃 ̃𝑓 𝑛+1 is computed as 𝐷𝜃𝑓 𝑛+1 but replacing 𝑓 𝑛+1 by a
yet undetermined function ̃𝑓 𝑛+1, for 𝑓 = U and 𝑓 = ΘΘΘ. The
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chosen ordering of the equations is consistent with the steps
of the fractional step algorithm proposed below.

The reader should note that adding up Equation 5.22a and
Equation 5.22b we obtain the former momentum equation,
i.e., the first row of the system in Equation 5.21. Adding up
Equation 5.22c and Equation 5.22d we recover the original
energy equation, i.e., the last row in Equation 5.21. We shall
refer to Equation 5.22a and Equation 5.22c as intermediate
momentum and intermediate energy equations, respectively
and to Equation 5.22b–Equation 5.22d as momentum correc-
tion and energy correction equations. Similarly, the auxiliary

variables Ũ𝑛+1 and Θ̃ΘΘ𝑛+1
are the socalled intermediate veloc-

ity and intermediate temperature. Likewise, P̂𝑛+1𝜃−1 is an ex-
trapolation of the pressure of order 𝜃 − 1 at time step 𝑛 + 1.
Note that we introduce a pressure extrapolation of one or-
der less than the general time integration scheme, but we
re-include this extrapolated term in the correction equations.
This is essential for the scheme to be formally of order 𝜃 .

Let us now proceed as follows: if we multiply Equation 5.22b
by the matrix K𝑝uM−1

uu, we get

K𝑝uU𝑛+1 = K𝑝uŨ𝑛+1 + 𝜙𝜃𝛿𝑡K𝑝uM−1
uuKu𝑝(P𝑛+1 − P̂𝑛+1𝜃−1),

and multiplying Equation 5.22d by K𝑝𝜗M−1
𝜃𝜃 , we obtain

K𝑝𝜗ΘΘΘ𝑛+1 = K𝑝𝜗Θ̃ΘΘ
𝑛+1 − 𝜙𝜃𝛿𝑡K𝑝𝜗M−1

𝜗𝜗K𝜗𝑝(P𝑛+1 − P̂𝑛+1𝜃−1),

and both expressions can be used in the equation for the pres-
sure Equation 5.22e and this yields

M𝑝𝑝(𝛽)
𝐷𝜃
𝛿𝑡 P

𝑛+1 + K𝑝𝑝(𝛽,U𝑛+1)P𝑛+1 −M𝑝𝜗 (𝛼)
𝐷𝜃
𝛿𝑡 ΘΘΘ

𝑛+1

− K𝑝𝜗 (𝛼,U𝑛+1)Θ̃ΘΘ𝑛+1 + K𝑝uŨ𝑛+1

+ 𝜙𝜃𝛿𝑡K𝑝𝜗M−1
𝜗𝜗K𝜗𝑝(P𝑛+1 − P̂𝑛+1𝜃−1)

+ 𝜙𝜃𝛿𝑡K𝑝uM−1
uuKu𝑝(P𝑛+1 − P̂𝑛+1𝜃−1)

+ KΓ,𝑝uU𝑛+1 = F𝑛+1P .

At this point, several remarks are in order, since we have to
note that we have modified the original matrix version of
the continuity equation by introducing some burden related
to appearance of the inverse of the mass matrices M𝜗𝜗 and
Muu.
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Remark 5.6.1 Similarly as in the case of the isentropic
problem, one should notice that the resulting matrix from
K𝑝uM−1

uuKu𝑝 can be viewed as an approximation to the dis-
crete version of a Laplacian operator, [140]. Hence, Re-
mark 4.6.1 also applies here and we can simply use matrix
L as an approximation to K𝑝uM−1

uuKu𝑝 . The reader should
note that K𝑝u = D and Ku𝑝 = G.

Remark 5.6.2 The case of K𝑝𝜗M−1
𝜃𝜃 K𝜗𝑝 deserves an special

comment. We need to take into account that, of course, we
want to avoid computing inverse of matrices by all means.
We approximate the effect of this term by

K𝑝𝜗M−1
𝜃𝜃 K𝜗𝑝 ≈ Q,

which we compute in each element as

[Q(𝑒)]𝑎𝑏 = ∫Ω(𝑒)
𝛼
𝜌𝑐𝑣

(uℎ ⋅ ∇) 𝜑𝑎(∇ ⋅ uℎ)𝜑𝑏 dΩ,

Q = 𝔸(𝑒)Q(𝑒),

for 𝑎, 𝑏 running from 1 to the number of elemental nodes
and where the first factor in the integral is introduced to
keep the proper scaling.

Remark 5.6.3 Note from the definition of the extrapola-
tion operators, Equation 3.9, that the difference

‖P𝑛+1 − P̂𝑛+1𝜃−1‖ ∼ 𝒪(𝛿𝑡𝜃−1)

is of order 𝒪(𝛿𝑡𝜃−1). Therefore, it is easy to see from Equa-
tion 5.22b and Equation 5.22d that

𝒪(||U𝑛+1 − Ũ𝑛+1||) = 𝒪(𝛿𝑡𝜃 )
𝒪(||ΘΘΘ𝑛+1 − Θ̃ΘΘ𝑛+1||) = 𝒪(𝛿𝑡𝜃 )

and thus, the global accuracy of the temporal integrator is
formally maintained.
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5.6.2 Pressure-correction scheme

Generally speaking, the fractional step approach that we fa-
vor to solve the fully compressible Navier-Stokes problem in
primitive variables has five main steps:

(i) Compute an intermediate velocity from Equation 5.22a.
(ii) Compute an intermediate temperature fromEquation 5.22c.
(iii) Compute an approximation to the end-of-step pressure

by using Equation 5.22e.
(iv) Update the end-of-step velocity with Equation 5.22b.
(v) Solve for the end-of-step temperature by using Equa-

tion 5.22d.

This procedure will make possible to segregate the calcula-
tion of the unknowns of the problem and provides a pressure-
correction-like algorithm.

However, in Equation 5.22a to Equation 5.22e there are still
some terms which involve some coupling of the unknowns
and hence some extra information is still needed in order
to complete the algorithm. One of the key approximations
we introduce to decouple the calculation of the problem un-

knowns is to substituteU𝑛+1 by Ũ𝑛+1 andΘΘΘ𝑛+1 by Θ̃ΘΘ𝑛+1
in the

rest of the terms in the intermediate momentum and energy
equations, respectively Equation 5.22a and Equation 5.22c.
This approximation is supported by Remark 5.6.3. In addi-
tion to this, the boundary pressure term in Equation 5.22a
is made explicit by considering an extrapolation of order 𝜃
following Equation 3.9. This is the same strategy as we ex-
plained in Section 4.6.2 for the isentropic case. Hence this
term is not accounted for in any correction step.

The remaining terms which could still couple the problem

variables can be evaluated with Ũ𝑛+1 or Θ̃ΘΘ𝑛+1
(Remark 4.6.6

also applies here) and the possible additional nonlinearities
are solved by taking the known values of the unknowns from
the previous iteration, time step or from the intermediate
equations. Taking all this information into account, the fi-
nal algorithmic procedure is included down below.

First and second order fractional step scheme for the
primitive Navier-Stokes problem

▶ Set/read the initial conditions for U0, P0 and ΘΘΘ0.
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▶ WHILE 𝑛 < 𝑁 DO

• Set U𝑛,0 = U𝑛−1, P𝑛,0 = P𝑛−1 and ΘΘΘ𝑛,0 = ΘΘΘ𝑛−1
• WHILE (not converged) DO

∗ Compute intermediate velocity Ũ𝑛+1:

Muu,𝜌𝑛
𝐷𝜃
𝛿𝑡 Ũ

𝑛+1,(𝑖+1) + Kuu,𝜌𝑛 (Ũ𝑛+1,(𝑖)) Ũ𝑛+1,(𝑖+1)

+MΓ,uuŨ𝑛+1,(𝑖+1) + KΓ,uu,𝜌𝑛𝛽𝑛 Ũ
𝑛+1,(𝑖+1)

= F𝑛+1U + Ku𝑝P̂𝑛+1𝜃−1 − KΓ,u𝑝P̂𝑛+1𝜃

∗ Check convergence
• END while (not converged)
• WHILE (not converged) DO

∗ Compute the intermediate temperature Θ̃ΘΘ𝑛+1

after solving:

M𝜗𝜗 ,𝜌(𝑖)
𝐷𝜃
𝛿𝑡 Θ̃ΘΘ

𝑛+1,(𝑖+1) + K𝜗𝜗 ,𝜌(𝑖) (Ũ𝑛+1) Θ̃ΘΘ𝑛+1,(𝑖+1)

= F𝑛+1ΘΘΘ − K𝜗𝑝 (Ũ𝑛+1) P̂𝑛+1𝜃−1

∗ Check convergence
• END while (not converged)
• WHILE (not converged) DO

∗ Compute the pressure P𝑛+1 using the in-
termediate velocity and temperature:

M𝑝𝑝,𝛽(𝑖)
𝐷𝜃
𝛿𝑡 P

𝑛+1,(𝑖+1) + K𝑝𝑝,𝛽(𝑖) (Ũ𝑛+1)P𝑛+1,(𝑖+1)

+ 𝜙𝜃𝛿𝑡Q𝜌(𝑖)𝛼 (𝑖) (P𝑛+1,(𝑖+1) − P̂𝑛+1𝜃−1)
+ 𝜙𝜃𝛿𝑡L𝜌(𝑖) (P𝑛+1,(𝑖+1) − P̂𝑛+1𝜃−1) = F𝑛+1P

− K𝑝uŨ𝑛+1 + K𝑝𝜗 ,𝛼 (𝑖) (Ũ𝑛+1) Θ̃ΘΘ𝑛+1

+M𝑝𝜗 ,𝛼 (𝑖)
𝐷𝜃
𝛿𝑡 Θ̃ΘΘ

𝑛+1

− KΓ,𝑝uŨ𝑛+1

∗ Check convergence
• END while (not converged)
• Velocity correction to obtain the end-of-step
velocity U𝑛+1:

Muu,𝜌𝑛+1
1

𝜙𝜃𝛿𝑡
U𝑛+1 +MΓ,uuU𝑛+1 = Muu,𝜌𝑛+1

1
𝜙𝜃𝛿𝑡

Ũ𝑛+1
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+MΓ,uuŨ𝑛+1 + Ku𝑝 (P𝑛+1 − P̂𝑛+1𝜃−1)

• Temperature correction to obtain the end-of-
step temperature ΘΘΘ𝑛+1:

M𝜗𝜗 ,𝜌𝑛+1
1

𝜙𝜃𝛿𝑡
(ΘΘΘ𝑛+1 − Θ̃ΘΘ𝑛+1)

= −K𝜗𝑝 (U𝑛+1) (P𝑛+1 − P̂𝑛+1𝜃−1)

▶ END while 𝑛 < 𝑁 (non-stationary)

It is well known that the extrapolation of second order of
the term Ku𝑝P𝑛+1 is unstable. In fact, this issue motivated
the study of other methods to upgrade the temporal order of
the fractional step scheme, such as the Yosida regularization
technique (see e.g. [50]). On the contrary, we did not observe
any erratic behavior of the term KΓ,u𝑝P̂𝑛+1𝜃 when 𝜃 = 2 is
chosen. Both Remark 4.6.4 and Remark 4.6.5 do apply here
as well.

5.7 Variational Multiscale stabilized
formulation

In this section, we discuss the application of the Variational
Multiscale method to the Navier-Stokes problem formulated
in primitive variables. The general procedure was already
described in Chapter 3. Hence, the stabilized version of the
primitive compressible problem is nothing but Equation 3.20
with the pertinent definitions of the stabilization terms (and
up to boundary terms), which we discuss next.

5.7.1 Stabilized formulation applied to the
compressible Navier-Stokes problem
written in primitive variables

For reasons already discussed, we make use the OSGS tech-
nique, as stated in Section 3.5.4. The OSGS method allows
certain type of simplifications [99]:

▶ The orthogonal projection of the external forces might
be neglected. External loads are assumed to belong to
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the finite element spaces or are approximated by an
element of the corresponding space. Hence

𝒫 ⟂ℎ (𝜌𝑟) ≈ 0,
𝒫 ⟂ℎ (𝜌b) ≈ 0.

▶ The orthogonal projection of terms involving temporal
derivatives might be also neglected. Their orthogonal
projection would be exactly zero if 𝜌, 𝛽 and 𝛼 were con-
stant. However we consider as true that those parame-
ters are such the temporal terms already belong to the
finite element space. This simplification is key in or-
der to solve the problem by means of a fractional step
method in time. This amounts to saying that

𝒫 ⟂ℎ (𝜌𝜕𝑡uℎ) ≈ 0,
𝒫 ⟂ℎ (𝛽𝜕𝑡𝑝ℎ) ≈ 0,
𝒫 ⟂ℎ (𝛼𝜕𝑡𝜗ℎ) ≈ 0,

𝒫 ⟂ℎ (𝜌𝑐𝑣 𝜕𝑡𝜗ℎ) ≈ 0.

All this statements are similar as collected in Remark 4.7.1
for the isentropic problem.

▶ The evaluation of second derivatives in the stabiliza-
tion terms is a costly and cumbersome process in finite
element implementations which can be avoided using
orthogonal subgrid scales. Second order derivatives
are exactly zero for linear elements and for higher or-
der interpolation, disregarding them leads to a weakly
consistent formulation in the context of finite elements,
that is to say, the stabilization terms do not cancel for
the exact solution but vanish as the mesh size goes to
zero.

Taking into account all this information, the finite element
discrete residuals can be written as in Equation 3.15, exclud-
ing viscous and external forcing terms as

ℛ(y𝑛+1; y𝑛+1ℎ ) = −[
ℛu(y𝑛+1; y𝑛+1ℎ )
ℛ𝑝(y𝑛+1; y𝑛+1ℎ )
ℛ𝜗 (y𝑛+1; y𝑛+1ℎ )

] , (5.23)

where the corresponding residuals of the momentum, mass
and energy conservation equations are defined as follows:

ℛu(y𝑛+1; y𝑛+1ℎ ) ≔𝜌𝑛+1(a𝑛+1 ⋅ ∇)u𝑛+1ℎ + ∇𝑝𝑛+1ℎ , (5.24a)
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3: Note that we have not included
in the adjoint operator of the tem-
perature equation the terms cor-
responding to the compression
work and the dissipation func-
tion. The hope is that their in-
fluence on the stability of the
scheme is small. The formulation
is then weakly consistent, as al-
ready stated above, and it is de-
signed by taking the subscales in
the orthogonal space to the finite-
dimensional resolved space.

ℛ𝑝(y𝑛+1; y𝑛+1ℎ ) ≔𝛽𝑛+1(a𝑛+1 ⋅ ∇)𝑝𝑛+1ℎ − 𝛼𝑛+1(a𝑛+1 ⋅ ∇)𝜗𝑛+1ℎ
+∇ ⋅ u𝑛+1ℎ , (5.24b)

ℛ𝜗 (y𝑛+1; y𝑛+1ℎ ) ≔𝜌𝑛+1𝑐𝑣 (a𝑛+1 ⋅ ∇)𝜗𝑛+1ℎ
+(∇ ⋅ u𝑛+1ℎ )𝑝𝑛+1ℎ , (5.24c)

and with a𝑛+1 = u𝑛+1ℎ or a𝑛+1 = u𝑛+1ℎ + ŭ𝑛+1 if the nonlinear
character of the subscales was to be accounted for.

In addition, the adjoint operator is formally defined as

ℒ ∗(y𝑛+1; zℎ) = −[
ℒ ∗

u (y𝑛+1; zℎ)
ℒ ∗𝑝 (y𝑛+1; zℎ)
ℒ ∗𝜗 (y𝑛+1; zℎ)

] , (5.25)

and where the definition of the adjoint operators correspond-
ing to the momentum, mass and energy equations are3

ℒ ∗
u (y𝑛+1; zℎ) ≔∇ ⋅ (𝜌𝑛+1a𝑛+1 ⊗ vℎ) + ∇𝑞ℎ, (5.26a)

ℒ ∗𝑝 (y𝑛+1; zℎ) ≔∇ ⋅ vℎ + ∇ ⋅ (𝛽𝑛+1a𝑛+1𝑞ℎ), (5.26b)

ℒ ∗𝜗 (y𝑛+1; zℎ) ≔ − ∇ ⋅ (𝛼𝑛+1a𝑛+1𝑞ℎ)
+ 𝑐𝑣∇ ⋅ (𝜌𝑛+1a𝑛+1𝜂ℎ). (5.26c)

Furthermore, the subscales are time tracked in time by solv-
ing Equation 3.18 which for the problem in hand reads as
follows

ũ𝑛+1 = −𝜏u,d𝒫 ⟂ℎ [𝜌(u𝑛+1 ⋅ ∇)u𝑛+1ℎ + ∇𝑝𝑛+1ℎ ]
+ 𝜏u𝜌 ũ

𝑛
𝛿𝑡 , (5.27a)

̃𝑝𝑛+1 = −𝜏𝑝,d𝒫 ⟂ℎ [𝛽(u𝑛+1 ⋅ ∇)𝑝𝑛+1ℎ − 𝛼(u𝑛+1 ⋅ ∇)𝜗𝑛+1ℎ + ∇ ⋅ u𝑛+1ℎ ]

+ 𝜏𝑝𝛽
̃𝑝𝑛
𝛿𝑡 , (5.27b)

̃𝜗𝑛+1 = −𝜏𝜗 ,d𝒫 ⟂ℎ [𝜌𝑐𝑣 (u𝑛+1 ⋅ ∇)𝜗𝑛+1ℎ + (∇ ⋅ u𝑛+1ℎ )𝑝ℎ
−2𝜇𝜀𝜀𝜀(u𝑛+1ℎ ) ∶ 𝜀𝜀𝜀(u𝑛+1ℎ ) + 2

3𝜇(∇ ⋅ u𝑛+1ℎ )2]

+ 𝜏𝜗𝜌𝑐𝑣
̃𝜗𝑛
𝛿𝑡 . (5.27c)

5.7.2 On the stabilization parameters

Although the application of the VMS method to the com-
pressible Navier-Stokes problem has already been discussed,
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the stabilization technique is not completed until one intro-
duces a definition to compute the matrix of stabilization pa-
rameters 𝜏𝜏𝜏 (y𝑛+1) (generally nonlinear). This is what we do
next.

Up to our knowledge, there is no general rule to define it for
systems of equations. It must be designed for each particular
problem taking into account its stability deficiencies or even
scaling requirements. For the problem in hand, we will take
a simple diagonal expression. In the most general scenario
we define

𝜏𝜏𝜏 (y𝑛+1) = diag(𝜏uI𝑁sd
, 𝜏𝑝 , 𝜏𝜗 ). (5.28)

and following Equation 3.19, we can now write

𝜏u,d = [ 𝜌𝛿𝑡 + 𝜏−1u (y𝑛+1)]
−1

, (5.29a)

𝜏𝑝,d = [ 𝛽𝛿𝑡 + 𝜏−1𝑝 (y𝑛+1)]
−1

, (5.29b)

𝜏𝜗 ,d = [𝜌𝑐𝑣𝛿𝑡 + 𝜏−1𝜗 (y𝑛+1)]
−1

. (5.29c)

The usual definition of the compressible stabilization parame-
ters include a local sound velocity that arises from a lineariza-
tion of the characteristic compressible flow problem (see [28]
for a Fourier analysis). At the low Mach number limit the
sound speed tends to infinity, and therefore such stabiliza-
tion parameters are not suitable for the computations. In this
work, we consider the following definition [29]:

𝜏−1u = 𝑐1
𝜇
ℎ2 + 𝑐2

𝜌𝜉
ℎ , (5.30a)

𝜏−1𝑝 = 𝜏u
ℎ2 , (5.30b)

𝜏−1𝜗 = 𝑐1 𝜅
ℎ2 + 𝑐2

𝜌𝑐𝑣 𝜉
ℎ . (5.30c)

where we recall that ℎ stands for the mesh size. It is under-
stood that these expressions are evaluated element by ele-
ment. The numerical constants 𝑐1 and 𝑐2 are independent of
the physical parameters of the problem. In the numerical cal-
culations we take them as,

𝑐1 = 15𝜔4,
𝑐2 = 2,

where 𝜔 stands for the order of the finite element interpo-
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lation. In the case of the largest characteristic velocity in
the convective contribution, which theoretically should cor-
respond to (‖u‖ + 𝑎), we introduce a modified velocity 𝜉 , that
we take as the harmonic mean value of ‖uℎ‖ and 𝑎, that is to
say

𝜉 = 1
1

‖uℎ‖ +
1
𝑎
.

This definition for the characteristic velocity accounts for the
effect of the sound speed, and ensures the proper definition
at the zero Mach limit (𝑎 → ∞).

5.7.3 Final stabilized problem

We shall start this part by specifically writing the stabilized
version of the problem in hand. As stated before, the general
equation is Equation 3.20, but now taking into account the
definitions of the residuals and adjoint operators from the
previous subsection. The final stabilized formulation is then
nothing but an extension of the problem in Equation 5.19a–
Equation 5.19c with the addition of the corresponding stabi-
lization terms.

The final problem reads as follows: for 𝑛 = 0, 1, … , 𝑁 − 1,
solve for u𝑛+1ℎ , 𝑝𝑛+1ℎ and 𝜗𝑛+1ℎ given the values u𝑛−𝑙ℎ , 𝑝𝑛−𝑙ℎ , 𝜗𝑛−𝑙ℎ
for 𝑙 = 0 to 𝜃 − 1, such that

⟨𝜌 𝛿𝑡u𝑛+1ℎ , vℎ⟩ + 𝑐(𝜌,u𝑛+1ℎ ;u𝑛+1ℎ , vℎ) + 𝑎(u𝑛+1ℎ , vℎ) − 𝑏(𝑝𝑛+1ℎ , vℎ)
+ 𝑐Γ(𝜌, 𝛽;u𝑛+1ℎ , vℎ) + 𝑏Γ(𝑝𝑛+1ℎ , vℎ)
+ ℬ⟂

uu,stab(𝜌,u𝑛+1ℎ ;u𝑛+1ℎ , vℎ) + ℬ⟂
u𝑝,stab(𝜌,u𝑛+1ℎ ; 𝑝𝑛+1ℎ , vℎ)

+ ℬ⟂
u𝜗 ,stab(𝛼,u𝑛+1ℎ ; 𝜗𝑛+1ℎ , vℎ) = ℓu(𝜌; vℎ) + ℓΓ,u(vℎ)

+ ℓu,stab(𝜌; vℎ), (5.31a)

⟨𝛽 𝛿𝑡𝑝𝑛+1ℎ , 𝑞ℎ⟩ − ⟨𝛼𝛿𝑡𝜗𝑛+1ℎ , 𝑞ℎ⟩ + 𝑑(𝛽,u𝑛+1ℎ ; 𝑝𝑛+1ℎ , 𝑞ℎ)
− 𝑑(𝛼,u𝑛+1ℎ ; 𝜗𝑛+1ℎ , 𝑞ℎ) + 𝑏(𝑞ℎ,u𝑛+1ℎ ) + 𝑏Γ(𝑞ℎ,u𝑛+1ℎ )
+ ℬ⟂

𝑝𝑝,stab(𝛼, 𝛽,u𝑛+1ℎ ; 𝑝𝑛+1ℎ , 𝑞ℎ) + ℬ⟂
𝑝u,stab(𝜌, 𝛽,u𝑛+1ℎ ;u𝑛+1ℎ , 𝑞ℎ)

+ ℬ⟂
𝑝𝜗,stab(𝜌, 𝛼, 𝛽,u𝑛+1ℎ ; 𝜗𝑛+1ℎ , 𝑞ℎ) = ℓΓ,𝑝(𝑞ℎ)

+ ℓ𝑝,stab(𝜌, 𝛼, 𝛽; 𝑞ℎ), (5.31b)

⟨𝜌 𝑐𝑣 𝛿𝑡𝜗𝑛+1ℎ , 𝜂ℎ⟩ + 𝑓 (𝜌,u𝑛+1ℎ ; 𝜗𝑛+1ℎ , 𝜂ℎ) + 𝑔(u𝑛+1ℎ , 𝑝𝑛+1ℎ , 𝜂ℎ)
+ 𝑒(𝜗𝑛+1ℎ , 𝜂ℎ) + ℬ⟂

𝜗𝜗,stab(𝜌,uℎ; 𝜗ℎ, 𝜂ℎ) = ℓ𝜗 (𝜌,u𝑛+1ℎ ; 𝜂ℎ)
+ ℓ𝜗 ,stab(𝜌; 𝜂ℎ). (5.31c)
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where the following forms were introduced (dropping the su-
perscript 𝑛 + 1 in order to simplify the notation),

ℬ⟂
uu,stab(𝜌,uℎ;uℎ, vℎ) ≔

𝑁el

∑
𝑒=1

⟨∇ ⋅ vℎ, 𝜏𝑝,d𝒫 ⟂ℎ [∇ ⋅ uℎ]⟩

+
𝑁el

∑
𝑒=1

⟨∇ ⋅ (𝜌uℎ ⊗ vℎ) , 𝜏u,d𝒫 ⟂ℎ [𝜌(uℎ ⋅ ∇)uℎ]⟩ , (5.32a)

ℬ⟂
u𝑝,stab(𝜌,uℎ; 𝑝ℎ, vℎ) ≔

𝑁el

∑
𝑒=1

⟨∇ ⋅ (𝜌uℎ ⊗ vℎ) , 𝜏u,d𝒫 ⟂ℎ [∇𝑝ℎ]⟩

+
𝑁el

∑
𝑒=1

⟨∇ ⋅ vℎ, 𝜏𝑝,d𝒫 ⟂ℎ [𝛽(uℎ ⋅ ∇)𝑝ℎ]⟩ , (5.32b)

ℬ⟂
u𝜗 ,stab(𝛼,uℎ; 𝜗ℎ, vℎ) ≔

𝑁el

∑
𝑒=1

⟨∇ ⋅ vℎ, 𝜏𝑝,d𝒫 ⟂ℎ [−𝛼(uℎ ⋅ ∇)𝜗ℎ]⟩ ,

(5.32c)

ℬ⟂
𝑝𝑝,stab(𝛼, 𝛽,uℎ; 𝑝ℎ, 𝑞ℎ) ≔

𝑁el

∑
𝑒=1

⟨∇ ⋅ 𝑞ℎ, 𝜏u,d𝒫 ⟂ℎ [∇𝑝ℎ]⟩

+
𝑁el

∑
𝑒=1

⟨∇ ⋅ (𝛽uℎ𝑞ℎ) , 𝜏𝑝,d𝒫 ⟂ℎ [𝛽(uℎ ⋅ ∇)𝑝ℎ]⟩

−
𝑁el

∑
𝑒=1

⟨∇ ⋅ (𝛼uℎ𝑞ℎ) , 𝜏𝜗 ,d𝒫 ⟂ℎ [(∇ ⋅ uℎ)𝑝ℎ]⟩ (5.32d)

ℬ⟂
𝑝u,stab(𝜌, 𝛽,uℎ;uℎ, 𝑞ℎ) ≔

𝑁el

∑
𝑒=1

⟨∇ ⋅ (𝛽uℎ𝑞ℎ) , 𝜏𝑝,d𝒫 ⟂ℎ [∇ ⋅ uℎ]⟩

+
𝑁el

∑
𝑒=1

⟨∇𝑞ℎ, 𝜏u,d𝒫 ⟂ℎ [𝜌(uℎ ⋅ ∇)uℎ]⟩ (5.32e)

ℬ⟂
𝑝𝜗,stab(𝜌, 𝛼, 𝛽,uℎ; 𝜗ℎ, 𝑞ℎ) ≔

𝑁el

∑
𝑒=1

⟨∇ ⋅ (𝛽uℎ𝑞ℎ) , 𝜏𝑝,d𝒫 ⟂ℎ [−𝛼(uℎ ⋅ ∇)𝜗ℎ]⟩

−
𝑁el

∑
𝑒=1

⟨∇ ⋅ (𝛼uℎ𝑞ℎ) , 𝜏𝜗 ,d𝒫 ⟂ℎ [𝜌𝑐𝑣 (uℎ ⋅ ∇)𝜗ℎ]⟩ (5.32f)

ℬ⟂
𝜗𝜗,stab(𝜌,uℎ; 𝜗ℎ, 𝜂ℎ) ≔

𝑁el

∑
𝑒=1

⟨∇ ⋅ (𝜌𝑐𝑣uℎ𝜂ℎ), 𝜏𝜗 ,d𝒫 ⟂ℎ [𝜌𝑐𝑣 (uℎ ⋅ ∇)𝜗ℎ]⟩

(5.32g)

ℓu,stab(𝜌, 𝛽; vℎ) ≔
𝑁el

∑
𝑒=1

⟨∇ ⋅ (𝜌uℎ ⊗ vℎ), 𝜏u,d𝜌 ũ
𝑛
𝛿𝑡 ⟩
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+ ⟨∇ ⋅ vℎ, 𝜏𝑝,d𝛽
̃𝑝𝑛
𝛿𝑡 ⟩ (5.32h)

ℓ𝑝,stab(𝜌, 𝛼, 𝛽; 𝑞ℎ) ≔
𝑁el

∑
𝑒=1

⟨∇ ⋅ (𝛽uℎ𝑞ℎ), 𝜏𝑝,d𝛽
̃𝑝𝑛
𝛿𝑡 ⟩

+ ⟨∇𝑞ℎ, 𝜏u,d𝜌 ũ
𝑛
𝛿𝑡 ⟩ − ⟨∇ ⋅ (𝛼uℎ𝑞ℎ), 𝜏𝜗 ,d𝜌𝑐𝑣

̃𝜗𝑛
𝛿𝑡 ⟩ (5.32i)

ℓ𝜗 ,stab(𝜌; 𝜂ℎ) ≔ ⟨∇ ⋅ (𝜌𝑐𝑣uℎ𝜂ℎ), 𝜏𝜗 ,d𝜌𝑐𝑣
̃𝜗𝑛
𝛿𝑡 ⟩ (5.32j)

and all the integrals evaluated over Ω(𝑒).

5.7.4 Stabilized fractional step algorithm

The final variational formulation of the compressible prob-
lemwas stated in Equation 5.19a–Equation 5.19c. From there,
the derivation of the matrix version is straightforward and
the matrix system that needs to be solved at each time step
has the same algebraic structure as Equation 5.21 with the ad-
dition of the corresponding stabilization arrays, as we show
in Table 5.4. From this point, the derivation of the fractional

Matrix version Term where it comes from

V𝑇 Suu (U)U ℬ⟂
uu,stab(𝜌,uℎ;uℎ, vℎ)

V𝑇 Su𝑝 (U)P ℬ⟂
u𝑝,stab(𝜌,uℎ; 𝑝ℎ, vℎ)

V𝑇 Su𝜗 (U)ΘΘΘ ℬ⟂
u𝜗 ,stab(𝛼,uℎ; 𝜗ℎ, vℎ)

V𝑇Fu,stab ℓu,stab(𝜌, 𝛽, vℎ)
Q𝑇 S𝑝𝑝 (U)P ℬ⟂

𝑝𝑝,stab(𝛼, 𝛽,uℎ; 𝑝ℎ, 𝑞ℎ)
Q𝑇 S𝑝u (U)U ℬ⟂

𝑝u,stab(𝜌, 𝛽,uℎ;uℎ, 𝑞ℎ)
Q𝑇 S𝑝𝜗 (U)ΘΘΘ ℬ⟂

𝑝𝜗,stab(𝜌, 𝛼, 𝛽,uℎ; 𝜗ℎ, 𝑞ℎ)
Q𝑇F𝑝,stab ℓ𝑝,stab(𝜌, 𝛼, 𝛽; 𝑞ℎ)
H𝑇 S𝜗𝜗 (U)ΘΘΘ ℬ⟂

𝜗𝜗,stab(𝜌,uℎ; 𝜗ℎ, 𝜂ℎ)
H𝑇F𝜗 ,stab ℓ𝜗 ,stab(𝜌; 𝑞ℎ)

Table 5.4: Matrix form of the sta-
bilization terms.

step procedure can be facilely extended to account for the
stabilization arrays and follows the same steps as done be-
fore. In addition, the unknown projections for a given equa-
tion can be computed with the values at the previous time
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step or iteration. The final algorithm is included down be-
low.

First and second order stabilized fractional step scheme
for the primitive Navier-Stokes problem

▶ Set/read the initial conditions for U0, P0 and ΘΘΘ0.
▶ WHILE 𝑛 < 𝑁 DO

• Set U𝑛,0 = U𝑛−1, P𝑛,0 = P𝑛−1 and ΘΘΘ𝑛,0 = ΘΘΘ𝑛−1
• WHILE (not converged) DO

∗ Compute intermediate velocity Ũ𝑛+1:

Muu,𝜌𝑛
𝐷𝜃
𝛿𝑡 Ũ

𝑛+1,(𝑖+1) + Kuu,𝜌𝑛 (Ũ𝑛+1,(𝑖)) Ũ𝑛+1,(𝑖+1)

+MΓ,uuŨ𝑛+1,(𝑖+1) + KΓ,uu,𝜌𝑛𝛽𝑛 Ũ
𝑛+1,(𝑖+1)

+ Suu,𝜌𝑛 (Ũ𝑛+1,(𝑖)) Ũ𝑛+1,(𝑖+1) = F𝑛+1U

+ Ku𝑝P̂𝑛+1𝜃−1 − KΓ,u𝑝P̂𝑛+1𝜃
− Su𝑝,𝜌𝑛𝛽𝑛 (Ũ𝑛+1,(𝑖))P𝑛
− Su𝜗 ,𝛼𝑛 (Ũ𝑛+1,(𝑖))ΘΘΘ𝑛

+ Fu,𝜌𝑛 ,stab (Ũ𝑛+1,(𝑖))

∗ Check convergence
• END while (not converged)
• WHILE (not converged) DO

∗ Compute the intermediate temperature Θ̃ΘΘ𝑛+1

after solving:

M𝜗𝜗 ,𝜌(𝑖)
𝐷𝜃
𝛿𝑡 Θ̃ΘΘ

𝑛+1,(𝑖+1) + K𝜗𝜗 ,𝜌(𝑖) (Ũ𝑛+1) Θ̃ΘΘ𝑛+1,(𝑖+1)

+ S𝜗𝜗 ,𝜌(𝑖) (Ũ𝑛+1) Θ̃ΘΘ𝑛+1,(𝑖+1) = F𝑛+1ΘΘΘ
− K𝜗𝑝 (Ũ𝑛+1) P̂𝑛+1𝜃−1 + F𝜗 ,𝜌(𝑖),stab

∗ Check convergence
• END while (not converged)
• WHILE (not converged) DO

∗ Compute the pressure P𝑛+1 using the in-
termediate velocity and temperature:

M𝑝𝑝,𝛽(𝑖)
𝐷𝜃
𝛿𝑡 P

𝑛+1,(𝑖+1) + K𝑝𝑝,𝛽(𝑖) (Ũ𝑛+1)P𝑛+1,(𝑖+1)
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+ 𝜙𝜃𝛿𝑡Q𝜌(𝑖)𝛼 (𝑖) (P𝑛+1,(𝑖+1) − P̂𝑛+1𝜃−1)
+ 𝜙𝜃𝛿𝑡L𝜌(𝑖) (P𝑛+1,(𝑖+1) − P̂𝑛+1𝜃−1)
+ S𝑝𝑝,𝛼𝑛 ,𝛽(𝑖) (Ũ𝑛+1)P𝑛+1,(𝑖+1) = F𝑛+1P

− K𝑝uŨ𝑛+1 + K𝑝𝜗 ,𝛼 (𝑖) (Ũ𝑛+1) Θ̃ΘΘ𝑛+1

+M𝑝𝜗 ,𝛼 (𝑖)
𝐷𝜃
𝛿𝑡 Θ̃ΘΘ

𝑛+1 − KΓ,𝑝uŨ𝑛+1

− S𝑝u,𝜌(𝑖)𝛽(𝑖) (Ũ𝑛+1) Ũ𝑛+1

− S𝑝𝜗 ,𝜌(𝑖)𝛼𝑛𝛽(𝑖) (Ũ𝑛+1) Θ̃ΘΘ𝑛+1

+ F𝑝,𝜌(𝑖)𝛼𝑛𝛽(𝑖),stab

∗ Check convergence
• END while (not converged)

• Velocity correction to obtain the end-of-step
velocity U𝑛+1:

Muu,𝜌𝑛+1
1

𝜙𝜃𝛿𝑡
U𝑛+1 +MΓ,uuU𝑛+1 = Muu,𝜌𝑛+1

1
𝜙𝜃𝛿𝑡

Ũ𝑛+1

+MΓ,uuŨ𝑛+1 + Ku𝑝 (P𝑛+1 − P̂𝑛+1𝜃−1)

• Temperature correction to obtain the end-of-
step temperature ΘΘΘ𝑛+1:

M𝜗𝜗 ,𝜌𝑛+1
1

𝜙𝜃𝛿𝑡
(ΘΘΘ𝑛+1 − Θ̃ΘΘ𝑛+1)

= −K𝜗𝑝 (U𝑛+1) (P𝑛+1 − P̂𝑛+1𝜃−1)

▶ END while 𝑛 < 𝑁 (non-stationary)

5.7.5 A final note on implementation

As stated before in this work, the primitive formulation for
ideal gases in the lowMach number limit results in very large
quantities in the continuity and energy equations, specially
if the international system of units is to be used. When an im-
plicit numerical scheme is used, the resulting linear system
of equations which needs to be solved at each time step com-
monly contains very large values for these two equations,
making it very inefficient to solve by using iterative methods.
In order to overcome this difficulty, we perform a decompo-
sition of the primitive (absolute) variables into a relative (or
gauge) part and a reference (or atmospheric) part. Thus, we
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set

𝑝 = 𝑝∗ + 𝑝atm , u = u∗ and 𝜗 = 𝜗∗ + 𝜃atm,

assuming the atmospheric values to be constant. Taking this
into account, we may write the initial system of equations
using the relative part of the unknowns, but taking special
care of the non-linear terms, where the complete contribu-
tion is needed to obtain reliable results. Furthermore, initial
and boundary conditions must be set for the primitive prob-
lem written using relative unknowns.

5.8 Numerical Experiments

In this section we include some numerical examples in or-
der to demonstrate, on the one hand, the performance of the
proposed stabilized fractional scheme and, on the other hand,
the suitability of the developed method to replace a standard
monolithic strategy.

First, we perform a test with analytical solution in order to
numerically check the convergence rate in time. Next, we
include a classical benchmark in the field of aeroacoustics,
which consists in simulating the sound generated by the flow
past a cylinder, also known as the aeolian tones problem. The
last example is based on simulating the differentially heated
flow inside a cavity, which is a well-known benchmark for
thermal problems.

As stated in the introduction, all the implementations have
been carried out into our in-house code FEMUSS after the de-
velopment from scratch of a specific solver module for com-
pressible flow simulations. In order to solve the final under-
lying systems of linear equations, if nothing else is stated,
we make use of an iterative algorithm based on the stabilized
version of the BiConjugate Gradient method BiCGstab [143],
which is already included in the PETSc parallel solver library
[61]. In order to solve the nonlinearities , we set a maximum
of 10 iterations, and the relative numerical tolerance for the
𝐿2-norm is 1 × 10−5. For all the upcoming numerical simula-
tions, we consider an ideal gas with 𝛾 = 1.4 (Rg = 287 J/(kg
K)) and 𝑐𝑝 = 1004.5 J/(kg K). All the plots are in SI units.
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5.8.1 Convergence test

The first example is a convergence test where we analyze
the time errors of the fractional step scheme, similar to the
one from [38]. Here we make use of the method of manufac-
tured solutions, which has been traditionally used to quantify
the numerical error of partial differential equations solvers.
In this example, an exact solution for pressure, velocity and
temperature is specified in the computational domain, which
are composed of smooth functions, yet they have no physical
meaning. We solve the Navier-Stokes problem over the unit
square Ω = [0, 1]2 and the force term is set so that the exact
solution of the problem is:

𝑝∗(𝑥1, 𝑥2, 𝑡) = cos(𝜋𝑥1) sin(𝜋𝑥2) sin(𝑡), (5.33a)

𝑢(𝑥1, 𝑥2, 𝑡) = 𝜋 sin(2𝜋𝑥2) sin2(𝜋𝑥1) sin(𝑡), (5.33b)

𝑣(𝑥, 𝑦 , 𝑡) = −𝜋 sin(2𝜋𝑥1) sin2(𝜋𝑥2) sin(𝑡), (5.33c)

𝜗∗(𝑥1, 𝑥2, 𝑡) = 𝑢(𝑥1, 𝑥2, 𝑡). (5.33d)

The contour plots of these fields are presented for complete-
ness in Figure 5.1–Figure 5.4. The finite element partition
is structured and uniform and contains 𝑄2/𝑄2/𝑄2 finite ele-
ments of size ℎ = 1/200. Both the boundary and initial con-
ditions are evaluated from the previous equations, and par-
ticularized for each of the sides of the square at each time
step and for 𝑡 = 0, respectively. We use a range of time step
sizes from 0.1 s to 0.003125 s and the problem is solved until
𝑡f = 1 s. In addition, we set 𝜇 = 0.001 kg/(m s), 𝜅 = 1 W/(m
K), 𝑝atm = 1 × 105 Pa and 𝜗atm = 300 K and we make use of a
sparse direct solver from the MUMPS library [157, 158].

The error between the exact solution of the Navier-Stokes
equations and the numerical one is measured in the ℓ2-norm
of the sequence of spatial 𝐿2-norms of the solutions, i.e.

𝐸𝑓 ≔ (𝛿𝑡
𝑁
∑
𝑛=1

‖𝑓 𝑛ℎ − 𝑓 (𝑡𝑛)‖2𝐿2
‖𝑓 (𝑡𝑛)‖2𝐿2

)
1/2

,

for 𝑓 = u, 𝑝 or 𝜗 , respectively.

Figure 5.1: Convergence test: con-
tour plot of the exact velocity
magnitude ‖u(x, 𝑡)‖ at 𝑡 = 1 s.

Figure 5.2: Convergence test: con-
tour plot of the exact pressure
function 𝑝∗(x, 𝑡) at 𝑡 = 1 s.

Figure 5.3: Convergence test: con-
tour plot of the exact temperature
function 𝜗∗(x, 𝑡) at 𝑡 = 1 s.

Figure 5.4: Convergence test: con-
tour plot of the associated Mach
number distribution Ma at 𝑡 = 1 s.

In Figure 5.5 we compare the convergence results of the stan-
dard monolithic solution with the ones obtained with the
fractional step algorithm for both first and second order time
integration schemes. The monolithic results can be used as
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a reference against which the results obtained with the frac-
tional step can be compared because they have no splitting
error. The expected convergence rate can be clearly seen
for both temporal approximations and for all the time step
sizes, yet the splitting errors of the fractional step approach
become more noticeable for the BDF2 scheme. From the con-
vergence plots it is also observed that the spatial error is not
significant for the mesh size used.

Figure 5.5: Convergence test:
time convergence of the rel-
ative errors of velocity (top),
pressure (middle) and tempera-
ture (bottom) measured in the
ℓ2(0, 𝑡f, 𝐿2(Ω))-norm. Here and
in what follows, FS stands for
fractional step results and MN for
monolithic results. The number
after the dash symbol stands
for first (1) or second (2) order
scheme in time.
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5.8.2 Aeolian tones: flow past a cylinder

The next example consists in a two-dimensional circular cylin-
der embedded in a flow with free stream. We use this ex-
ample to evaluate the performance of the VMS formulation
in unsteady flows and to test the proposed non-reflecting
boundary conditions.

In this problem, a sequence of vortices are generated at the
lee of the cylinder which are transported downstream. As a
reaction to this fact, the cylinder undergoes lift fluctuations
that lead to the emission of sound, with a wave frequency
established at the fixed value of the wake fluctuation. The
emitted noise is commonly referred to as an aeolian tone.

The computational domain for this simulation is

Ω = [0, 0] × [50, 50] ⧵ ℭ

being ℭ the cylinder region of diameter 𝐷 = 0.1 m which is
placed at point 𝑂(20, 25). The domain is big enough to de-
scribe the far field conditions far away from the cylinder. A
free stream enters from the left-most boundary with the fol-
lowing data:

𝑢∞ = 70 m/s,
𝑣∞ = 0 m/s,
𝑝∞ = 𝑝atm = 101325 Pa,
𝜗∞ = 𝜗atm = 300 K,

which allow to match the tested flow conditions

Re∞ = 150, and Ma∞ = 0.2,

for which meaningful 2D calculations can be performed. The
Prandtl number is Pr = 0.75.
No slip-adiabatic boundary conditions are prescribed on the
cylinder surface and the free stream values are used as initial
condition. We solve the compressible Navier-Stokes equa-
tions on an unstructured mesh of linear triangular elements,
progressively refined on the cylinder surface, accounting for
a total of 𝑁el ∼ 225,000 elements. The time step size used in
the computation is constant and equal to 𝛿𝑡 = 0.0001 s. The
second order BDF2 scheme has been used for the large scales
time evolution, while a first-order scheme has been used for
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[159]: Liow et al. (2006), “Sound
generated in laminar flow past
a two-dimensional rectangular
cylinder”
[160]: Mahato et al. (2018),
“Direct simulation of sound
generation by a two-dimensional
flow past a wedge”

the tracking of the subscales. In order to overcome all the bur-
den related to any possible wave reflections at the external
walls, we use the boundary formulation described in Section
5.4 and for this purpose we set a filtering frequency of 200
Hz.

Figure 5.6: 2D flow past a cylin-
der: near-field contours, (a) ve-
locity magnitude ‖u‖, (b) relative
pressure 𝑝∗ and (c) relative tem-
perature 𝜗∗ obtained with the
fractional step scheme.

(a) Velocity magnitude ‖u‖. Contour level range from 0 to 96 m/s.

(b) Relative pressure 𝑝∗. Contour plots range from −4.3 × 103 to 3.1 × 103 Pa.

(c) Relative temperature 𝜗∗. Contour plots range from 0 to 6 K.

In Figure 5.6 we present a depiction of the near-field devel-
oped flow, including the instantaneous contours of velocity
(magnitude), pressure and temperature obtainedwith the frac-
tional step algorithm. As we can see, they display the classi-
cal oscillating wake after the cylinder surface. Since no no-
table differences were observed between the results of both
the monolithic and fractional step counterpart, we provide
a quantitative comparison by computing some aerodynamic
integral values of the flow. In particular, we calculate the lift
and drag non-dimensional coefficients using Equation 4.38a
and Equation 4.38b.

Several studies on flow past bluff bodies, e.g., [159, 160] dis-
cuss that time varying fluctuating loads over the surface of
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[161]: Margnat (2015), “Hybrid
prediction of the aerodynamic
noise radiated by a rectangular
cylinder at incidence”
[162]: Inoue et al. (2002), “Sound
generation by a two-dimensional
circular cylinder in a uniform
flow”
[163]: Laffite et al. (2009), “Inves-
tigation of the Noise Generated
by Cylinder Flows Using a Direct
Lattice-Boltzmann Approach”
[164]: Ganta et al. (2019), “Anal-
ysis of sound generation by flow
past a circular cylinder perform-
ing rotary oscillations using di-
rect simulation approach”

the studied body (fluctuations in lift and drag coefficients)
are the main mechanism for generation and propagation of
soundwaves. Herewe evaluate the fluctuations in the lift and
drag coefficients (which we denote hereafter as 𝐶′l and 𝐶′d, re-
spectively) as the difference between their instantaneous and
mean values, respectively.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.6  0.62  0.64  0.66  0.68  0.7

C
’ l 

t

FS MN

(a) Time evolution of the lift coefficient

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  50  100  150  200  250  300  350

A
l

f

FS MN

(b) Fast Fourier Transform of the lift coefficient

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.6  0.62  0.64  0.66  0.68  0.7

C
’ d

 

t

FS MN

(c) Time evolution of the draf coefficient
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Figure 5.7: 2D flow past a cylinder: part of the time history of the fluctuating non-dimensional lift (a) and drag (c)
coefficients, together with FFTs obtained for time varying fluctuations in lift (b) and drag (d).

A part of the time history of the lift and drag fluctuations
is presented in Figure 5.7a and Figure 5.7c for both mono-
lithic and fractional step schemes. The Fast Fourier Trans-
form (FFT) of these time varying signals has been obtained,
and the plots of the corresponding Fourier amplitudes (𝐴l
and 𝐴d) as a function of the Fourier frequency are presented
in Figure 5.7b and Figure 5.7d.

Both monolithic and segregated methods basically provide
the same frequencies of oscillation for lift and drag. The lift
coefficient oscillates at a frequency of 124.673Hz (St = 0.178),
and the drag coefficient at 249.341 Hz (twice of the vortex
shedding one). Additional statistic results are collected in
Table 5.5, together with some reference values reported in
the literature and which cover a different variety of numer-
ical methods [161–164]. An overall agreement can be ob-
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served.

Regarding the propagation of acoustic waves, Figure 5.8 con-
tains the far field pressure contours at two certain time steps
obtained with the fractional step algorithm, one before the
acoustic waves reach the external boundaries and another
one on the long term once the waves hit the artificial con-
tours. The vortices located at the wake of the cylinder per-
turb the pressure field, which is propagated in the form of
sound waves. These pressure pulses evolve radially from the
cylinder area with time, yet they do not propagate normally
to the flow direction since this case is based on an uniform
flow. The inclusion of non-reflecting boundary conditions
(or any other dumping technique) is essential for the ade-
quate reproduction of the pressure waves, due to the fact that
reflections may occur at the external boundary and hence
local numerical oscillations may end up polluting the solu-
tion.

(a) Relative pressure 𝑝∗ at 𝑡 = 0.05 s. (b) Relative pressure 𝑝∗ at 𝑡 = 0.5 s.

Figure 5.8: 2D flow past a cylinder: relative pressure 𝑝∗ contours showing the propagation of sound waves towards
the far field at two different time instants. Monolithic contour plots are omitted since they are remarkably similar.

In addition to this, a plot concerning the pressure wave along
the positive 𝑦 direction is included in Figure 5.9. We observe
that our fractional step scheme is able to agreeably replicate
the dissipation of the radiated sound wave of the monolithic
scheme (which serves as reference here, [29]), yet minor dis-
crepancies might be noticed. These minor differences should
come from the splitting error introduced by the segregated
approach as well as from the approximate boundary condi-
tion.
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Table 5.5: 2D flow past a cylinder: aerodynamic statistics for Re∞ = 150 and Ma∞ = 0.2. IBM: Immersed boundary
method, FD-DNC: Finite difference Direct Numerical Simulation, LBM: Lattice Boltzmann method, FE: Finite Ele-
ment.

Ref. Method 𝐶d 𝐴d 𝐴l St

Margnat [161] Hybrid IBM 1.35 0.026 0.52 0.189
Inoue & Hatakeyama [162] FD-DNC 1.32 0.026 0.52 0.183
Laffite & Pérot [163] LBM 1.39 0.028 0.56 0.183
Ganta 𝑒𝑡𝑎𝑙 [164] FD-DNC 1.34 0.026 0.53 0.183
Present FE-MN 1.328 0.023 0.499 0.178
Present FE-FS 1.334 0.022 0.508 0.178
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(a) Time 𝑡 = 0.05 s.
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(b) Time 𝑡 = 0.5 s.

Figure 5.9: 2D flow past a cylinder: instantaneous pressure along the positive 𝑦 direction from the center of the
cylinder.

[165]: Christon et al. (2002),
“Computational predictability
of time-dependent natural
convection flows in enclo-
sures (including a benchmark
solution)”

5.8.3 Differentially heated flow inside a cavity

In this numerical simulation, we model the flow in a differ-
entially heated cavity both in 2D and 3D configurations (see
e.g. [165]). This is a natural convection flow problem in
which the fluid is driven both by a large temperature gra-
dient between two walls and by a gravity force, which plays
a significant role in the development of the buoyancy flow
patterns.

The purpose of this example is twofold. First, we use this
example to evaluate the applicability of the developed com-
pressible formulation in the low Mach number limit and to
investigate its behavior in unsteady chaotic flows. Second,
we will perform some simple tests in order to provide some
insights on the actual computational savings that the frac-
tional step implementation offers with respect to the stan-
dard monolithic solver.
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2D flow in a differentially heated cavity with aspect ratio
8: Pr = 0.71, Ra = 1 × 106

Let us start by solving a 2D configuration. The computa-
tional domain is given by a rectangular cavity

Ω = [0, 𝐿] × [0, 𝐻]

with 𝐻/𝐿 = 8 and 𝐿 = 1 m.

The prescription of boundary conditions is as follows: the
temperatures on the left and right boundaries, respectively
hot and cold walls, are fixed to 𝜗g,hot = 600 K and 𝜗g,cold =
300 K, while adiabatic boundary conditions are prescribed
on the upper and lower walls. No slip conditions are set for
the velocity over all the boundaries. No pressure boundary
conditions are prescribed for this example, yet we include an
iterative penalization term of the form

⟨𝜓 (𝑝𝑛+1,(𝑖+1)ℎ − 𝑝𝑛+1,(𝑖)ℎ ) , 𝑞ℎ⟩

to the mass conservation equation at the 𝑖th iteration. This
aims to overcome themechanical pressure resolution for tran-
sient and confined flows, where small local oscillations of
pressuremight generate overall distortions on the global pres-
sure levels. The factor 𝜓 needs to be defined in such a way
that it does not detriment neither the algebraic solver nor the
convergence of the iterative procedure. For this simulation,
we take 𝜓 = 1 × 10−6/𝜇, definition which renders this new
term dimensionally consistent.

The initial conditions to start the computations are prescribed
all over the whole domain as:

u0 = 0 m/s,
𝑝0 = 𝑝atm = 152525 Pa,
𝜗0 = 𝜗atm = 450 K.

The gravity acceleration is specified with a modulus ‖g‖ =
9.81 m/s2, acting on the negative 𝑦 direction (downwards).
For this problem we consider

Pr = 0.71, and Ra = 1 × 106,

conditions which are reported in the literature as chaotic.
The Rayleigh number is computed as expresssed in Equa-
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tion 2.21d where the dimensionless temperature ratio Δ𝜗 is
defined as

Δ𝜗 ≔ 2
𝜗g,hot − 𝜗g,cold
𝜗g,hot + 𝜗g,cold

.

The remaining parameters for the simulation are 𝜇 = 2.5 ×
10−3 kg/(m s) and 𝜅 = 3.55 W/(m K). The results down be-
low are obtained from an structured mesh of 𝑁tp = 20, 451
nodal points containing 𝑁el = 20,000 bilinear quadrilateral
elements. The time step size chosen for the computations is
𝛿𝑡 = 0.005 s.

In this problem, a cyclic flow is established around the cav-
ity due to the combination of both hot and cold shear lay-
ers. In order to analyze the dynamical response, in Figure
5.10 we have plotted the temperature evolution at a control
point in the horizontal middle plane of the cavity, as well
as the pressure-temperature cycle. The temperature evolu-
tion is completely smooth and the pressure-temperature cy-
cle shows the capability of the fractional step scheme to re-
produce, without oscillations, the randomness associatedwith
chaotic flows. Should the flow be non-chaotic the pressure-
temperature plot would be a completely closed curve [78].
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Figure 5.10: 2D differentially heated cavity: (a) temperature evolution over time and (b) phase diagram pressure-
temperature with values from the chosen control point (0.05,4).

In Figure 5.11 snapshots of temperature and velocity con-
tours at a certain time step and for the BDF2 version of the
fractional step algorithm are shown. The flow patterns repli-
cated in these images agree with instant contours of fields
previously presented in the literature for the same Rayleigh
number and cavity ratio (see e.g. results in [78]).

In order to further assess the transient behavior of the flow
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(a) (b)

Figure 5.11: 2D differentially heated cavity: (a) velocity magnitude ‖u‖ and (b) relative temperature 𝜗∗ contours of
the fractional step scheme. Monolithic contour plots are omitted since they are remarkably similar.

field and quantitatively compare the performance of the algo-
rithms, we present the calculations of the non-dimensional
Nusselt number, which we compute here in the cold and hot
walls as:

Nu(x, 𝑡) ≔ 𝐿
𝜗g,hot − 𝜗g,cold ∫𝜕Ω n ⋅ ∇𝜗(x, 𝑡) d𝜕Ω,

for any point x ∈ 𝜕Ω, 𝑡 > 0.
We can observe the unsteady character of the Nusselt num-
ber in Figure 5.12 for both hot and cold walls, where we also
compare the values obtained with both monolithic and frac-
tional step schemes. The computed average Nusselt numbers
are, respectively

NuFS,hot = 41.8162,
NuMN,hot = 41.8908,
NuFS,cold = −46.2698,

NuMN,cold = −46.2418.

We observe that the predicted values of the segregated com-
putation show an agreement with the ones from the mono-
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lithic counterpart. However, there exist some differences
which should come, precisely, from the temporal error as-
sociated to the fractional step scheme, as already stated.
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Figure 5.12: 2D differentially heated cavity: Nusselt number evolution on (a) hot wall, (b) cold wall computed with
both fractional step and monolithic second order schemes.

Now thatwe have checked that the solutions frombothmono-
lithic and fractional step schemes are significantly compara-
ble (up to the splitting error, which was shown to maintain
the temporal accuracy in time), we now include a compari-
son on the actual performance of themonolithic time integra-
tor against the fractional step version, with an emphasis on
the CPU time savings. We include the quotient between the
CPU time of the fractional step scheme over the CPU time of
the corresponding monolithic counterpart. A simple sequen-
tial implementation over a series of time steps has been used
in all cases, so that to avoid any bias in the data resulting
from a parallel computation. To this end, the results are pre-
sented in Table 5.6 and therewe distinguish between the total
CPU time needed by the algorithm and the time needed by
the PETSC solver to obtain the solution of the final algebraic
system (the remaining time is spent on assembling the dif-
ferent element contributions, updating variables, allocation
and deallocation processes, etc.). As one can observe, the ob-
tained savings in CPU time are remarkable, with a reduction
of roughly 78 % of the total time and around 95 % in the solver
time for the performed tests.

This result is directly relatedwith the information in Table 5.7,
where the number of iterations needed by the solver to ob-
tain the solution of the system of equations and the number
of nonlinear iterations used to obtain converged results are
collected. The number of iterations needed by themonolithic
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Table 5.6: 2D differentially heated cavity: ratio of CPU time of the fractional step schemes over the monolithic
formulations in the 2D chaotic case (second order schemes).

Case Total time ratio Solver time ratio

Pr = 0.71, Ra = 1 × 106 0.2263 0.054

Table 5.7: 2D differentially heated cavity: number of iterations of the monolithic and fractional step algorithms
(second order schemes). Here, nni is the average number of nonlinear iterations to achieve convergence and nsi
stands for the average number of iterations needed by the iterative algebraic solver.

Monolithic Fractional step
Case nni/nsi nniu/nsiu nni𝜗/nsi𝜗 nni𝑝/nsi𝑝

Pr = 0.71, Ra = 1 × 106 8/105 3/3 3/2 2/146

method is greater both for the linear solver and for the nonlin-
ear algorithm. The subsystems for the different steps of the
segregated algorithm are smaller, and in general better con-
ditioned what translates into a substantial diminution on the
number of iterations and hence in the time of the computa-
tions, as already mentioned. It is observed that the pressure
represents the bottleneck in the computations, as it shows
the greatest number of solver iterations, and this is in fact
the reason why the monolithic case delays the convergence
of the total system. Likewise, the greater number of nonlin-
ear iterations needed by the monolithic method confirms the
better treatment of the nonlinearities when the problem is
solved in a decoupled manner.

3D flow in a differentially heated cubic cavity: Pr = 0.71,
Ra = 3.5 × 105

We will now consider a 3D version of the previous cavity
problem. The computational domain is defined now as the
unit cube Ω = [0, 𝐿]3 with 𝐿 = 1 m. The prescription of
boundary conditions is similar as in the previous example:
the temperatures on the boundaries perpendicular to the 𝑥-
coordinate (horizontal) are fixed to 𝜗g,hot = 960 K (most left
boundary) and 𝜗g,cold = 240 K (most right boundary), while
adiabatic boundary conditions are prescribed on the remain-
ing walls. No slip conditions are set for the velocity over all
the walls. Furthermore, the initial conditions we consider
now are:

u0 = 0 m/s,
𝑝0 = 𝑝atm = 101325 Pa,
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𝜗0 = 𝜗atm = 600 K.

(a) Temperature, 𝜗 (b) Velocity magnitude, ‖u‖

Figure 5.13: 3D differentially heated cavity: contour plots of (a) relative temperature 𝜗∗ and (b) velocity magnitude
‖u‖ at the final time step of the simulation using the BDF2 fractional step scheme.

The gravity acceleration is specified to be acting in the neg-
ative 𝑦-coordinate direction (vertical) with a modulus ‖g‖ =
9.81 m/s2. For this problem we consider

Pr = 0.71, and Ra = 3.5 × 105,

which is a non-chaotic problem. In this case Δ𝜗 = 1.2. The
remaining parameters are set so that to match the desired
flow conditions. We perform the simulation using an uni-
form structured mesh composed of 64,000 hexahedron ele-
ments and we use a constant time step of 𝛿𝑡 = 0.02 s.

In Figure 5.13 some graphical results for this 3D cavity using
the second order integrator (both the BDF1 fractional step
scheme and the monolithic case provide practically identical
contour plots and they are not included for the sake of con-
ciseness).

We will again compare the CPU times for the different al-
gorithms selected for this problem as well the number of
iterations needed by the solver and the non-linear iterative
scheme. All these results are included in Table 5.8 and Table
5.9, respectively. For the monolithic formulation, the total
number of iterations of the linear system solver is really af-
fected by the pressure. This seems to be a general trend for
systems with primitive variables, as also discussed in [55] for
the non-Newtonian incompressible case. This fact is one of
the main downsides when compared to a fractional step al-
gorithm, in which each step requires a different number of
iterations to solve the corresponding linear system. Finally,
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although in these examples we have used the same solver
for all subsystems arising in the segregation method, specific
solving techniques could be exploited in order to improve the
performance of fractional step schemes even further.

Table 5.8: 3D differentially heated cavity: ratio of CPU times of the fractional step schemes over the monolithic
formulation for the 3D cavity (BDF1 results were equivalent).

Case Total time ratio Solver time ratio
Pr = 0.71, Ra = 3.5 × 105 0.3410 0.1016

Table 5.9: 3D differentially heated cavity: number of iterations of the monolithic and fractional step algorithm in
the 3D cavity for the BDF2 scheme (BDF1 results were equivalent).

Monolithic Fractional step
Case nni/nsi nniu/nsiu nni𝜗/nsi𝜗 nni𝑝/nsi𝑝

Pr = 0.71, Ra = 3.5 × 105 8/32 3/6 3/2 2/63

5.9 Conclusions

In this chapter, we have introduced a pressure-segregation
technique to solve the compressible Navier-Stokes equations
using primitive variables. The development of this new tech-
nique, which is up to second order in time, has been designed
at the pure algebraic level, considering as starting point the
fully discretized monolithic problem both in space and in
time and by using the extrapolation concept.

From the numerical viewpoint, the herein proposed fractional
step compressible model is based on a stabilized VMSmethod
and an implicit scheme to advance the solution in time. In ad-
dition, other ingredients were appended, such as the orthog-
onal and dynamic definition of subscales, the weak imposi-
tion of Dirichlet boundary conditions, the application of non-
reflecting boundary conditions (a major issue in low Mach
compressible solvers) and the decomposition of the pressure
and temperature unknowns into relative plus atmospheric
part in order to solve nearly incompressible cases.

We have shown that the fractional step method introduces
an splitting error whichmaintains the general temporal accu-
racy of the time integration scheme. Furthermore, the differ-
entially heated cavity problem has been used to test the per-
formance of the algorithm in dynamic and chaotic cases and
the possibility of directly computing acoustic pressure waves
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has been verified with the simulation of the aeolian tones
problem, for which the dumping of acoustic perturbations
at the external computational boundaries was also evaluated.
Likewise, the fractional step formulation has been shown to
be efficient since an important reduction in the CPU time has
been obtained with respect to the monolithic counterpart for
the tests performed, which have a relatively small number of
degrees of freedom; much more important savings should be
expected in large scale problems.





The Navier-Stokes problem:
conservative formulation 6

6.1 Abstract

In this chapter we address the compressible Navier-Stokes
equations written in the socalled conservative formulation.
In particular, we focus on the possibility of uncoupling the
computation of the problem unknowns, namely, density, lin-
ear momentum and total energy, a technique usually labeled
as fractional step method, which allows to reduce the asso-
ciated computational cost. The proposed methodology is a
finite-element solver supplemented with a stabilization tech-
nique within the Variational Multi-Scale framework. In this
regard, we consider orthogonal and dynamic definitions for
the subscales. This discretization in space shows an adequate
stability, permitting in particular the use of equal interpo-
lation for all variables in play. However, we complement
it with a shock-capturing operator in order to solve prob-
lems involving shocks. Several representative benchmark
flow simulations are performed, which demonstrate the suit-
ability of the proposed algorithm for a vast range of regimes.

6.2 Introduction

The socalled compressible Navier-Stokes equations are com-
monly used tomodel flow problemswhere compressibility ef-
fects become relevant with applications ranging from classi-
cal turbo-machinery design to modern speech therapy simu-
lations. The general mathematical setting consists of the mo-
mentum, mass and energy conservation equations together
with thermodynamic properties, constitutive relations and
proper initial and boundary conditions, which are appended
to close themathematical description ensuring thewell posed-
ness of the problem. Such a set of partial differential equa-
tions describes a wide range of scales and, in general, com-
puting its solution is a challenge in itself. One could proceed
either by choosing small mesh and time step sizes or by using
high precision numerical schemes. Regardless of the selected
approach, obtaining a representative solution is particularly
demanding from the computational viewpoint. This fact still
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remains as one of the main limitations in compressible flow
simulations in spite of the increasing amount of computing
facilities available for the scientific and engineering commu-
nities. In this chapter, we focus on the finite element approxi-
mation of the Navier-Stokes compressible flow problem writ-
ten in the conservation form. Particularly, we aim at solving
it in a segregated manner, that is to say, by uncoupling the
calculation of the problem unknowns. These are the well-
known conservative variables, i.e., density, momentum, and
total energy.

Although global stability is ensured by a VMS-based stabi-
lized formulation, some localized oscillations may arise from
sharp gradients in the solution, particularly at supersonic
regimes. This effect is innate to compressible flows involving
shocks (discontinuities). Hence, stabilized formulations usu-
ally need to be complemented with a local shock-capturing
methodology. A possible approach to model shocks is the
residual-based shock-capturing technique, first introduced in
[166] and later tested in [167] for a SUPG compressible flow
formulation. Another popular option is the socalled ”YZ𝛽”
method from [168]. In contrast to the previous formulations,
our strategy is to introduce the numerical diffusion in a “phys-
ical manner”, that is to say, we shall modify the diffusion of
the momentum and energy equations, but we avoid introduc-
ing artificial diffusion into the mass equation.

Nevertheless, in this work our main goal is the development
of segregationmethods for the transient compressible Navier-
Stokes equations using a finite element approximation for
the space discretization. As a reference in the comparisons,
we shall take the solution of the monolithic problem, i.e., the
standard coupled calculation involving all the problem un-
knowns. The fully discrete and linearizedmonolithic scheme
leads to an algebraic system, whose structuremay be exploited
in order to solve independently for the density, momentum
and energy degrees of freedom.

The technique we will discuss here corresponds to the clas-
sical fractional step algorithms, which might be seen as an
alternative methodology to solve transient problems. Our ap-
proach in this work is to present a splitting of the equations
at the algebraic level once the equations have already been
discretized in space and in time, simiarly as we did previously
in Chapter 4 and Chapter 5. As we have discussed, this alge-
braic viewpoint is generally simpler and it makes possible to



6.3 Preliminaries 145

obviate a discussion on specific boundary conditions for the
different stages of the fractional step scheme. Furthermore, it
has been extensively and effectively applied to a wide range
of different test cases in computational physics, including in-
compressible [50, 53], viscoelasticy [55], isentropic [155] and
compressible (primitive variables) [169] problems.

This chapter is structured as follows: in Section 6.3 we intro-
duce the compressible Navier-Stokes problem together with
its variational formulation. In Section Section 6.4 we discuss
differente numerical aspects which need to be taken into con-
sideration for the problem in hand. Section 6.5 is devoted to
the design of the fractional step scheme. Numerical experi-
ments are conducted in Section 6.6, and, finally, we close the
chapter with some concluding statements in Section 6.7.

6.3 Preliminaries

In this chapter we focus on the solution of the compress-
ible Navier-Stokes problem for the socalled conservative vari-
ables, namely, density 𝜌(x, 𝑡), momentum m(x, 𝑡) and total
energy 𝐸(x, 𝑡). Hence, we shall introduce some considera-
tions in order to rewrite the system formed by Equation 2.20a,
Equation 2.20b and Equation 2.20c in amore convenient form.
The linear momentum and total energy variables are respec-
tively defined as

m ≔ 𝜌u
𝐸 = 𝜌𝑒 ≔ 𝜌 (𝜄 + 1

2 ‖u‖
2) = 𝜌 (𝑐𝑣𝜗 + 1

2 ‖u‖
2)

where 𝑒 is the specific energy or energy per unit of mass.

Taking into account the definition of the viscous part of the
Newtonian stress tensor in Equation 2.9, that tensor can be
directly calculated using the conservative variables as

𝜎d𝑖𝑗 = 𝜈 (𝜕𝑚𝑖
𝜕𝑥𝑗

+ 𝜕𝑚𝑗
𝜕𝑥𝑖

) − 2𝜈
3 (𝜕𝑚𝑘

𝜕𝑥𝑘
) 𝛿𝑖𝑗 − 𝜈

𝜌 (𝑚𝑖
𝜕𝜌
𝜕𝑥𝑗

+ 𝑚𝑗
𝜕𝜌
𝜕𝑥𝑖

)

+ 2𝜈
3𝜌 (𝑚𝑙

𝜕𝜌
𝜕𝑥𝑙

) 𝛿𝑖𝑗 𝑖, 𝑗, 𝑘 = 1, … , 𝑁sd. (6.1)

In this equation, 𝛿𝑖𝑗 is the Kronecker delta (i.e., 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗
and 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗) and 𝜈 is the kinematic viscosity.
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In order to calculate the pressure and the speed of sound in
terms of conservative variables, the caloric equation of state
Equation 2.13 and the ideal gas state equation Equation 2.15
are used. It is then found that the pressure and the speed of
sound can be written respectively as

𝑝 = (𝛾 − 1) ((𝜌𝑒) − m ⋅m
2𝜌 ) , (6.2)

𝑎 =
√
𝛾(𝛾 − 1) ((𝜌𝑒)𝜌 − m ⋅m

2𝜌2 ). (6.3)

In a similar fashion, applying the caloric and state equations
to expand Equation 2.19, the heat flux vector can be com-
puted as

𝑞𝑖 = [𝜅(𝜌𝑒)𝑐𝑣𝜌2
− 𝜅(m ⋅m)

𝑐𝑣𝜌3
] 𝜕𝜌
𝜕𝑥𝑖

+ 𝜅𝑚𝑗
𝑐𝑣𝜌2

𝜕𝑚𝑗
𝜕𝑥𝑖

− 𝜅
𝜌𝑐𝑣

𝜕(𝜌𝑒)
𝜕𝑥𝑖

𝑖 = 1, … , 𝑁sd. (6.4)

6.3.1 Compact and quasi-linear form of the
problem

TheNavier-Stokes equations of compressible flow can be com-
pactly written as

𝜕𝑡y + ∇ ⋅ (ℱ c(y) + ℱ d(y, ∇y)) = ℱ (y) in Ω × (0, 𝑡f), (6.5)

where y ∈ ℝ𝑁sd+2 is here the vector of conservative variables,
ℱ c(y) and ℱ d(y, ∇y) ∈ ℝ(𝑁sd+2)×𝑁sd are the convective and
diffusion flux tensors, and ℱ (y) ∈ ℝ𝑁sd+2 is the vector of
external forcing terms, all of them respectively given by

y = [
𝜌
𝜌u
𝜌𝑒

] ,

ℱ c(y) = [
𝜌u𝑇

𝜌u ⊗ u + 𝑝I𝑁sd
(𝜌𝑒 + 𝑝)u𝑇

] ,

ℱ d(y, ∇y) =
⎡⎢⎢
⎣

0
−𝜎𝜎𝜎d

(q − 𝜎𝜎𝜎du)𝑇
⎤⎥⎥
⎦
,
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ℱ (y) = [
0
𝜌b

𝜌(𝑟 + b𝑇 ⋅ u)
] .

where 𝑝, 𝜎𝜎𝜎d and q are in this case given by Equation 6.2, Equa-
tion 6.1 and Equation 6.4, respectively.

However, the divergence of the convective and diffusive flux
tensors from the original system in Equation 6.5, can be writ-
ten in a more convenient manner upon the definition of the
socalled Euler Jacobian and diffusion matrices. Making use
of index notation, those are related to the convective and dif-
fusive flux tensors as follows:

𝒜𝑗(y) ≔
𝜕ℱ c𝑗 (y)

𝜕y 𝑗 = 1, … , 𝑁sd, (6.6a)

𝜕ℱ d𝑗 (y)
𝜕𝑥𝑗

≔− 𝜕
𝜕𝑥𝑘

(𝒦𝑘𝑗(y)
𝜕y
𝜕𝑥𝑗

) 𝑗, 𝑘 = 1, … , 𝑁sd. (6.6b)

The last term in Equation 6.5, the vector of sources, can also
be rewritten by means of a reactive-like term of the form

ℱ (y) ≔ 𝒮y. (6.7)

Therefore, taking all this information into account, the origi-
nal compressible Navier-Stokes system can be now stated as:
find the set of conservative unknowns y such that the follow-
ing is satisfied,

𝜕𝑡y +ℒ(y; y) = 0 in Ω × (0, 𝑡f), (6.8)

which is nothing but Equation 3.1 taking into account that
nowℳ = I𝑁sd

. The second-order nonlinear operatorℒ(y; y)
is given precisely by Equation 3.2.

The Euler matrix 𝒜𝑗(y) is developed using the spatial deriva-
tives of the pressure using Equation 6.2 and hence we obtain

𝒜𝑗(y) =
⎡⎢⎢⎢
⎣

0 e𝑇𝑗 0
m𝑚𝑗
𝜌2 + 𝐴1e𝑗 I𝑁sd

𝑚𝑗
𝜌 + m

𝜌 ⊗ e𝑗 − (𝛾 − 1)(e𝑗 ⊗ e𝑗)m
𝑇
𝜌 (𝛾 − 1)(e𝑗 ⊗ e𝑗)

(𝐴1 − 𝐴2) 𝑚𝑗
𝜌 −(𝛾 − 1)m

𝑇𝑚𝑗
𝜌2 + 𝐴2e𝑗 𝛾 𝑚𝑗

𝜌

⎤⎥⎥⎥
⎦
, (6.9)

for 𝑗 = 1, … , 𝑁sd, andwhere e𝑗 stands for the unit vector in the
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𝑗-th direction. In the previous definition, the thermodynamic
relations 𝐴1 and 𝐴2 stand for,

𝐴1 = 1
2(𝛾 − 1)|u|2,

𝐴2 =
(𝜌𝑒) + 𝑝

𝜌 .

Let us now denote by 0 the vector of ℝ𝑁sd with null compo-
nents. Using the viscous stress tensor and heat flux vector
definitions based on conservative variables i.e., Equation 6.1
– Equation 6.4 and the ideal gas law, each component in the
diffusive matrix can be respectively computed as

𝒦𝑗𝑗(y) =
⎡
⎢
⎢
⎣

0 0𝑇 0
−𝜈 m𝜌 𝜈I𝑁sd

0
(𝐾−𝜈)
𝜌2 ‖m‖2 − 𝐾

𝜌 𝐸 (𝜈 − 𝐾)m𝑇
𝜌 𝐾

⎤
⎥
⎥
⎦
, (6.10)

with 𝑗 = 1, … , 𝑁sd and

𝒦𝑘𝑗(y) =
⎡⎢⎢
⎣

0 0𝑇 0
−𝜈 𝑚𝑘

𝜌 e𝑗 + 2
3 𝜈

𝑚𝑗
𝜌 e𝑘 𝜈(e𝑗 ⊗ e𝑘) − 2

3 𝜈(e𝑘 ⊗ e𝑗) 0

− 1
3 𝜈

𝑚𝑘𝑚𝑗
𝜌2 𝜈 𝑚𝑗

𝜌 e
𝑇
𝑘 − 2

3 𝜈
𝑚𝑘
𝜌 e𝑇𝑗 0

⎤⎥⎥
⎦
, (6.11)

with 𝑗, 𝑘 = 1, … , 𝑁sd, and 𝑘 ≠ 𝑗. We recall that the symbol
𝐾 represents throughout this chapter the thermal diffusivity
Equation 2.22.

Finally, the reactive matrix can be written in terms of the
external sources as

𝒮 = [
0 0 0
b 0 0
𝑟 b𝑇 0

] . (6.12)

Having defined the expressions for the Euler, diffusive and
reactive matrices, the derivation of the solution procedure
follows exactly what has been explained Chapter 3. Equa-
tion 3.6 is then the weak form of the problem and the appli-
cation of the VMS framework to this problem yields noth-
ing but Equation 3.20 taking into account the previous defi-
nitions.
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6.4 Numerical aspects

6.4.1 Discontinuity capturing technique

Although theVMS stabilized finite element formulation yields
a globally stable solution, i.e., norms of the unknowns over
the whole domain Ω are bounded, local stability is not guar-
anteed in the vicinity of shocks or regions with sharp gradi-
ents. In order to mitigate these possible local oscillations, an
artificial shock-capturing (SC) term is added to the numerical
approximation of the problem. The main idea of a shock cap-
turing technique is to increase the amount of numerical dis-
sipation in the proximity of sharp gradients. Many different
approaches can be adopted to introduce artificial dissipation.
Here, two different alternatives are presented, which intro-
duce numerical diffusion only in the momentum and energy
equations.

The first nonlinear method that we implement is a classical
residual-based technique, which is consistent, that is to say,
when it is applied to the exact solution, the added diffusion is
zero. For this technique we calculate the artificial kinematic
viscosity as

𝜈sc =
𝐶scℎ
2

|ℛm(y; yℎ)|
|∇mℎ|

, if |∇mℎ| ≠ 0, (6.13a)

𝜈sc = 0, otherwise, (6.13b)

where 𝐶sc is an algorithmic constant to be set before the sim-
ulation, ℎ is the characteristic length that gives dimensional
consistency to the expression, and |∇mℎ| is the Frobenius norm
of the gradient of the momentum finite element solution. In
a similar manner, for the energy equation we introduce an
artificial thermal diffusivity computed as

𝐾sc =
𝐶scℎ
2

|ℛ𝐸(y, yℎ)|
‖∇𝐸ℎ‖

, if ‖∇𝐸ℎ‖ ≠ 0, (6.14a)

𝐾sc = 0, otherwise, (6.14b)

where ‖∇𝐸ℎ‖ is the norm of the gradient of the total energy
finite element solution.

An alternative to introduce the numerical diffusion is the
weakly consistent orthogonal projection technique from [170].
It is based on the orthogonal projection onto the finite ele-
ment space of the gradient of the unknown, instead of the
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common residual approach. Mathematically speaking, we
take the artificial viscosity as follows:

𝜈sc =
𝐶scℎ‖uℎ‖

2
|𝒫 ⟂ℎ [∇mℎ]|

|∇mℎ|
, if |∇mℎ| ≠ 0, (6.15a)

𝜈sc = 0, otherwise, (6.15b)

and the thermal diffusivity as

𝐾sc =
𝐶scℎ‖uℎ‖

2
‖𝒫 ⟂ℎ (∇𝐸ℎ)‖

‖∇𝐸ℎ‖
, if ‖∇𝐸ℎ‖ ≠ 0, (6.16a)

𝐾sc = 0, otherwise, (6.16b)

where the normof the velocity gives dimensional consistency.

In practice, the added numerical diffusion is introduced into
the diffusive Galerkin term by computing a modified viscous
stress tensor �̃�𝜎𝜎𝑑 and heat flux q̃ vector in the following isotropic
manner

�̃�d𝑖𝑗 = (1 + 𝜌𝜈sc
𝜇 ) 𝜎d𝑖𝑗 ∀ 𝑖, 𝑗 = 1, … , 𝑁sd, (6.17a)

�̃�𝑖 = (1 + 𝜌𝑐𝑣𝐾sc
𝜅 ) 𝑞𝑖 ∀ 𝑖 = 1, … , 𝑁sd. (6.17b)

6.4.2 On the stabilization parameters

Although the application of the VMS method to the com-
pressible Navier-Stokes problem should be now clear, the
stabilization technique is not completed until one introduces
a definition to compute the matrix of stabilization parame-
ters.

The usual definition of the compressible stabilization parame-
ters include a local sound velocity that arises from a lineariza-
tion of the characteristic compressible flow problem. In this
chapter we follow our previous findings published in [28]
(see section 3.3 from that paper for a complete and detailed
exposition) which are based on a Fourier analysis of the non-
linear operator of the problem.

Therefore, the stabilization matrix for the 3D case is com-
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puted here as

𝜏𝜏𝜏−1 = [
𝜏−1𝜌 0𝑇 0
0 𝜏𝜏𝜏−1m I𝑁sd

0
0 0𝑇 𝜏−1𝐸

] , (6.18)

with the following non-zero entries

𝜏−1𝜌 = 𝑐2
(‖u‖ + 𝑎)

ℎ + 𝑐3𝜏−1aux, (6.19a)

𝜏−1𝜌u = 𝑐1 4𝜈
3ℎ2 + 𝑐2

(‖u‖ + 𝑎)
ℎ + 𝑐3𝜏−1aux, (6.19b)

𝜏−1𝐸 = 𝑐1 𝐾ℎ2 + 𝑐2
(‖u‖ + 𝑎)

ℎ + 𝑐3𝜏−1aux. (6.19c)

and where

𝜏−1aux ≔ (𝑟
2 + 2‖b‖2𝑎2 + √𝑟4 + 4𝑎2‖b‖2𝑟2

2𝑎4 )
1/2

.

It is understood that these expressions are evaluated element
by element. The numerical constants 𝑐1 and 𝑐2 are indepen-
dent of the physical parameters of the problem. In the numer-
ical calculations we take them as 𝑐1 = 12𝜔4, 𝑐2 = 2𝜔, 𝑐3 = 1, 𝜔
being the order of the finite element interpolation.

6.5 Fractional step methods

Instead of solving the classical monolithic system, an alter-
native is to use a fractional step method in time, in which
various equations need to be solved for the different vari-
ables in an uncoupled way, probably with the addition of
some correction steps. The splitting of the equations intro-
duced in fractional step methods has an additional temporal
error, which has to be at least of the order of the time inte-
gration scheme used to approximate time derivatives. Other-
wise, time accuracy is broken.

In this section we develop a novel algebraic fractional step
method for the compressible Navier-Stokes problem. The ba-
sic procedure entails a calculation of an intermediate momen-
tum with a guess of the density and total energy. After solv-
ing for density and energy (in that order), we will finally cor-
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rect the intermediate momentum calculation, so as to ensure
that the global time accuracy of themethod is maintained.

6.5.1 Algebraic problem

We assume that 𝜌𝑛+1ℎ , m𝑛+1
ℎ and 𝐸𝑛+1ℎ are constructed using

the standard finite element interpolation from the nodal val-
ues, which we denote in this chapter as 𝜚𝜚𝜚𝑛+1, U𝑛+1 and E𝑛+1
respectively. These are computed as the solution of a nonlin-
ear algebraic problem, which is obtained directly from Equa-
tion 3.11 after discretization in time. We shall skip the stabi-
lization terms for the sake of conciseness. Their addition is
straightforward once the fractional stepmethod is developed,
similarly as we did in previous chapters.

The structure of the final system can be written in a compact
manner, for each iteration as

[
A𝜌𝜌 A𝜌m 0
Am𝜌 Amm Am𝐸
A𝐸𝜌 A𝐸m A𝐸𝐸

] ⋅ [
𝜚𝜚𝜚𝑛+1
U𝑛+1
E𝑛+1

] = [
F𝑛+1𝜚𝜚𝜚
F𝑛+1U
F𝑛+1E

] (6.20)

with the following matrices

A𝜌𝜌 ≔ M𝜌𝜌
𝐷𝜃
𝛿𝑡

A𝜌m ≔ C𝜌m
Am𝜌 ≔ Cm𝜌(𝜚𝜚𝜚𝑛+1,U𝑛+1) +Dm𝜌(𝜚𝜚𝜚𝑛+1,U𝑛+1)
Amm ≔ Mmm

𝐷𝜃
𝛿𝑡 + Cmm (𝜚𝜚𝜚𝑛+1,U𝑛+1) +Dmm (𝜚𝜚𝜚𝑛+1)

Am𝐸 ≔ Cm𝐸
A𝐸𝜌 ≔ C𝐸𝜌 (𝜚𝜚𝜚𝑛+1,U𝑛+1,E𝑛+1) +D𝐸𝜌 (𝜚𝜚𝜚𝑛+1,U𝑛+1,E𝑛+1)
A𝐸m ≔ C𝐸m (𝜚𝜚𝜚𝑛+1,U𝑛+1,E𝑛+1) +D𝐸𝜌 (𝜚𝜚𝜚𝑛+1,U𝑛+1)
A𝐸𝐸 ≔ C𝐸𝐸 (𝜚𝜚𝜚𝑛+1,U𝑛+1) +D𝐸𝐸 (𝜚𝜚𝜚𝑛+1)

The high nonlinear character of the problem is made explicit
in the system by including the dependence of the arrays on
the variables in the parenthesis, which are all evaluated at
time step 𝑛 + 1.
The first subscript on the arrays refers to the momentum (m),
energy (𝐸) and continuity (𝜌) equation, and the second stands
for the unknown to which the term refers to. Mass matrices
are labeled with the symbolM, convective-like matrices with
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C and diffusive-like matrices with the symbol D. The latter
comes from the discretization of the terms inside𝒦𝑘𝑗 and the
convective matrices from those in 𝒜𝑗 (see Section 6.3.1). All
the arrays in the system are computed from the local assem-
bly of the elemental contributions. Furthermore, the right
hand side terms in F might contain known terms such as ex-
ternal forces, yet we assume here the external forces to be
zero in order to ease the discussion.

Matrix version Term where it comes from

Z𝑇MY ⟨zℎ, 𝜕𝑡yℎ⟩
Z𝑇C(y)Y ⟨zℎ, 𝒜𝑗(y)𝜕𝑗yℎ⟩
Z𝑇D (y)Y ⟨𝜕𝑗zℎ,𝒦𝑗𝑘(y)𝜕𝑘yℎ⟩

Table 6.1: Matrix form of the con-
servative terms. Subscripts are ap-
pended depending on the equa-
tions and unknowns.

6.5.2 Design of the fractional step method

In order to derive the fractional step method, let us proceed
as follows: if Ũ𝑛+1 denotes an intermediate momentum vari-
able, �̂�𝜚𝜚𝑛+1𝜃−1 and Ê𝑛+1𝜃−1 are respectively density and energy ex-
trapolated values of order 𝜃 −1 according to Equation 3.9 and
we split the former momentum equation into two parts, the
previous system can be rewritten in the following equivalent
form:

Mmm
𝐷𝜃
𝛿𝑡 Ũ

𝑛+1 + Cmm(𝜚𝜚𝜚𝑛+1, Ũ𝑛+1)Ũ𝑛+1 +Dmm(𝜚𝜚𝜚𝑛+1)Ũ𝑛+1

+ Cm𝜌(𝜚𝜚𝜚𝑛+1,U𝑛+1)�̂�𝜚𝜚𝑛+1𝜃−1 +Dm𝜌(𝜚𝜚𝜚𝑛+1,U𝑛+1)�̂�𝜚𝜚𝑛+1𝜃−1
+ Cm𝐸Ê𝑛+1𝜃−1 = 0, (6.21a)

Mmm
1

𝜙𝜃𝛿𝑡
(U𝑛+1 − Ũ𝑛+1) + N𝑛+1

m + N𝑛+1𝜌

+ N𝑛+1
𝐸 = 0, (6.21b)

M𝜌𝜌
𝐷𝜃
𝛿𝑡 𝜚𝜚𝜚

𝑛+1 + C𝜌mU𝑛+1 = 0, (6.21c)

M𝐸𝐸
𝐷𝜃
𝛿𝑡 E

𝑛+1 + C𝐸𝐸(𝜚𝜚𝜚𝑛+1,U𝑛+1)E𝑛+1 +D𝐸𝐸(𝜚𝜚𝜚𝑛+1)E𝑛+1

+ C𝐸𝜌(𝜚𝜚𝜚𝑛+1,U𝑛+1,E𝑛+1)𝜚𝜚𝜚𝑛+1
+D𝐸𝜌(𝜚𝜚𝜚𝑛+1,U𝑛+1,E𝑛+1)𝜚𝜚𝜚𝑛+1
+ C𝐸m(𝜚𝜚𝜚𝑛+1,U𝑛+1,E𝑛+1)U𝑛+1

+D𝐸m(𝜚𝜚𝜚𝑛+1,U𝑛+1)U𝑛+1 = 0, (6.21d)
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with the following definitions

N𝑛+1
m ≔ [Cmm(𝜚𝜚𝜚𝑛+1,U𝑛+1) +Dmm(𝜚𝜚𝜚𝑛+1)]U𝑛+1

− [Cmm(𝜚𝜚𝜚𝑛+1, Ũ𝑛+1) +Dmm(𝜚𝜚𝜚𝑛+1)] Ũ𝑛+1, (6.22a)

N𝑛+1𝜌 ≔ [Cm𝜌(𝜚𝜚𝜚𝑛+1,U𝑛+1) +Dm𝜌(𝜚𝜚𝜚𝑛+1,U𝑛+1)] (𝜚𝜚𝜚𝑛+1 − �̂�𝜚𝜚𝑛+1𝜃−1) ,
(6.22b)

N𝑛+1
𝐸 ≔ Cm𝐸 (E𝑛+1 − Ê𝑛+1𝜃−1) , (6.22c)

and where 𝐷𝜃 Ũ𝑛+1 is computed as 𝐷𝜃U𝑛+1 but replacing U𝑛+1
by a yet undetermined function Ũ𝑛+1 (intermediate momen-
tum). The reader should note that adding up Equation 6.21a
and Equation 6.21b with the definitions in Equation 6.22a–
Equation 6.22c, we obtain the former momentum equation,
i.e., the second row of the original system. We shall refer to
Equation 6.21a as the intermediate momentum equation and
Equation 6.21b as the momentum correction equation. The
purpose of the latter is precisely to ensure that the global
time accuracy is not broken.

If we denote the node indexes with superscripts 𝑎, 𝑏, and the
standard shape function of node 𝑎 by 𝜑𝑎 , the components of
the matrix C𝜌m are the following:

[C𝜌m]
𝑎𝑏
𝑗 =

𝑁el𝔸𝑒=1∫𝜕Ω(𝑒)
𝜑𝑎𝜕𝑗𝜑𝑏 dΩ ∀ 𝑗 = 1, … , 𝑁sd, (6.23)

where, as usual, 𝔸 symbolizes the assembly of the local con-
tributions (addition plus injection) to the global equation.

Let us now proceed as follows: first, integration by parts over
that term in the mass equation would momentarily yield

M𝜌𝜌
𝐷𝜃
𝛿𝑡 𝜚𝜚𝜚

𝑛+1 − Č𝜌mU𝑛+1 = −F̌𝑛+1𝜌 , (6.24)

where

[Č𝜌m]
𝑎𝑏
𝑗 =

𝑁el𝔸𝑒=1∫Ω(𝑒)
𝜕𝑗𝜑𝑎𝜑𝑏 dΩ ∀ 𝑗 = 1, … , 𝑁sd, (6.25a)

[F̌𝑛+1𝜌 ]𝑎 =
𝑁el𝔸𝑒=1∫𝜕Ω(𝑒)

𝜑𝑎(n ⋅ U𝑛+1) d𝜕Ω. (6.25b)

Now, solving for U𝑛+1 from Equation 6.21b and multiplying
by Č𝜌m it gives,

Č𝜌mU𝑛+1 = −𝜙𝜃𝛿𝑡Č𝜌m [Mmm]−1 [N𝑛+1𝜌 + N𝑛+1
m + N𝑛+1

𝐸 ]
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+ Č𝜌mŨ𝑛+1. (6.26)

This new expression can be nowused in Equation 6.24. There-
fore

M𝜌𝜌
𝐷𝜃
𝛿𝑡 𝜚𝜚𝜚

𝑛+1 + 𝜙𝜃𝛿𝑡Č𝜌m [Mmm]−1 [N𝑛+1𝜌 + N𝑛+1
m + N𝑛+1

𝐸 ] = −F̌𝑛+1𝜌

+ Č𝜌mŨ𝑛+1. (6.27)

At this point, we havemodified the original mass equation by
introducing some burden that we need to solve. We discuss
this issue in the upcoming remarks.

Remark 6.5.1 One should notice that the resulting matrix
from Č𝜌m [Mmm]−1 Cm𝜌 can be viewed as an approxima-
tion to the discrete version of a Laplacian-like operator,
[140]. In order to avoid dealing with this matrix, which
is in general dense and might still be expensive to com-
pute even when Mmm is lumped, we use the approxima-
tion Č𝜌m [Mmm]−1 Cm𝜌 ≈ L where L is a Laplacian matrix
computed using the gradient of the standard shape func-
tions. If 𝑎 and 𝑏 range from 0 to the number of elemental
nodes and 𝑗 from 1 to 𝑁sd, the matrix is calculated as

[L(𝑒)]𝑎𝑏 = ∫Ω(𝑒)
0.5(u ⋅ u)(𝛾 − 1)𝜕𝑗𝜑𝑎𝜕𝑗𝜑𝑏 dΩ,

L = 𝔸(𝑒)L(𝑒),

where the first factors in the integrand are introduced to
keep the proper scaling. Being able to perform this ap-
proximation is what led us to obtain matrix Č𝜌m instead
of working directly with C𝜌m.

Remark 6.5.2 Recalling the definition of the extrapolation
operators, Equation 3.9, note that

‖𝜚𝜚𝜚𝑛+1 − �̂�𝜚𝜚𝑛+1𝜃−1‖ ∼ 𝒪(𝛿𝑡𝜃−1),
‖E𝑛+1 − Ê𝑛+1𝜃−1‖ ∼ 𝒪(𝛿𝑡𝜃−1).

Therefore, it is easy to see from Equation 6.21b that,

𝒪(‖U𝑛+1 − Ũ𝑛+1‖) = 𝒪(𝛿𝑡𝜃 ),

and thus, the global accuracy of the temporal integrator is
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formally maintained for the intermediate momentum vari-
able.

Remark 6.5.3 Note that if we substitute U𝑛+1 by Ũ𝑛+1 in
the definition of F̌𝑛+1𝜌 , which is supported by the previous
remark, the last two terms in Equation 6.24 can be grouped
as −C𝜌mŨ𝑛+1 (integration by parts).

Remark 6.5.4 Up to our knowledge, there is not a possible
approximation for the rest of the products involved in

Č𝜌m [Mmm]−1 [N𝑛+1𝜌 + N𝑛+1
m + N𝑛+1

𝐸 ] .

However, the presence of such extra products involving
density and energy could be avoided by performing an ex-
trapolation of the same order of that used to approximate
time derivatives in the intermediate momentum equation.
Then, we shall useDm𝜌�̂�𝜚𝜚𝑛+1𝜃 instead ofDm𝜌�̂�𝜚𝜚𝑛+1𝜃−1 andCm𝐸Ê𝑛+1𝜃
instead of Cm𝐸Ê𝑛+1𝜃−1 in Equation 6.21a. Therefore, there is
no need to include such terms in the correction equation
Equation 6.21b since ‖𝜚𝜚𝜚𝑛+1 − �̂�𝜚𝜚𝑛+1𝜃 ‖ and ‖E𝑛+1 − Ê𝑛+1𝜃 ‖ are al-
ready of order 𝒪 (𝛿𝑡𝜃).

Remark 6.5.5 Using directlyDm𝜌�̂�𝜚𝜚𝑛+1𝜃 andCm𝐸Ê𝑛+1𝜃 involves
an explicit treatment of density and energy in the momen-
tum equation that could imply the introduction of a critical
time step to ensure stability. However, in practice we have
not observed such time step limitation.

6.5.3 Fractional step algorithm

Taking all the previous information into account, the frac-
tional step approach that we favor to solve the fully com-
pressible Navier-Stokes problem in conservative variables is
composed of four main steps:

i. Compute an intermediatemomentum fromEquation 6.21a
making use of �̂�𝜚𝜚𝑛+1𝜃 and Ê𝑛+1𝜃 .

ii. Compute an approximation to the density from Equa-
tion 6.21c, neglectingN𝑛+1

m , replacingU𝑛+1 by Ũ𝑛+1 and
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taking into account the previous Laplacian approxima-
tion.

[M𝜌𝜌
𝐷𝜃
𝛿𝑡 + 𝜙𝜃𝛿𝑡L]𝜚𝜚𝜚𝑛+1 = −C𝜌mŨ𝑛+1 + 𝜙𝜃𝛿𝑡L�̂�𝜚𝜚𝑛+1𝜃−1.

(6.28)
iii. Compute an approximation to the total energy from

Equation 6.21d, replacingU𝑛+1 by Ũ𝑛+1 (already known
as a result of the first step).

iv. Update the end-of-stepmomentumwith Equation 6.21b
neglecting N𝑛+1

m .

This procedure will make possible to segregate the calcula-
tion of the unknowns of the problem and we shall refer to it
as density/energy-correction algorithm, using a similar nomen-
clature as it is usually done for incompressible/low Mach al-
gorithms.

First and second order fractional step scheme for the
conservative Navier-Stokes problem

▶ Set/read the initial conditions for 𝜚𝜚𝜚0, U0 and E0.
▶ WHILE 𝑛 < 𝑁 DO

• Set U𝑛,0 = U𝑛−1, P𝑛,0 = P𝑛−1 and ΘΘΘ𝑛,0 = ΘΘΘ𝑛−1
• WHILE (not converged) DO

∗ Compute intermediate momentum Ũ𝑛+1:

Mmm
𝐷𝜃
𝛿𝑡 Ũ

𝑛+1,(𝑖+1) + Cmm (�̂�𝜚𝜚𝑛+1𝜃 , Ũ𝑛+1,(𝑖)) Ũ𝑛+1,(𝑖+1)

+Dmm(�̂�𝜚𝜚𝑛+1𝜃 )Ũ𝑛+1,(𝑖+1) = −Cm𝜌(�̂�𝜚𝜚𝑛+1𝜃 , Ũ𝑛+1,(𝑖))𝜚𝜚𝜚𝑛+1𝜃−1
−Dm𝜌(�̂�𝜚𝜚𝑛+1𝜃 , Ũ𝑛+1,(𝑖))�̂�𝜚𝜚𝑛+1𝜃 − Cm𝐸Ê𝑛+1𝜃

∗ Check convergence
• END while (not converged)
• Compute density using the previous interme-
diate momentum values:

M𝜌𝜌
𝐷𝜃
𝛿𝑡 𝜚𝜚𝜚

𝑛+1 + 𝜙𝜃𝛿𝑡L𝜚𝜚𝜚𝑛+1 = −C𝜌mŨ𝑛+1 + 𝜙𝜃𝛿𝑡L�̂�𝜚𝜚𝑛+1𝜃−1

• Compute energy using intermediate momen-
tum and density solutions:

M𝐸𝐸
𝐷𝜃
𝛿𝑡 E

𝑛+1 + C𝐸𝐸 (𝜚𝜚𝜚𝑛+1, Ũ𝑛+1)E𝑛+1



158 6 The Navier-Stokes problem: conservative formulation

+D𝐸𝐸(𝜚𝜚𝜚𝑛+1)E𝑛+1 = −C𝐸𝜌(𝜚𝜚𝜚𝑛+1, Ũ𝑛+1, Ê𝑛+1𝜃 )𝜚𝜚𝜚𝑛+1

−D𝐸𝜌(𝜚𝜚𝜚𝑛+1, Ũ𝑛+1, Ê𝑛+1𝜃 )𝜚𝜚𝜚𝑛+1

− C𝐸m(𝜚𝜚𝜚𝑛+1, Ũ𝑛+1, Ê𝑛+1𝜃 )Ũ𝑛+1

−D𝐸m(𝜚𝜚𝜚𝑛+1, Ũ𝑛+1)Ũ𝑛+1

• Momentum correction, i.e., end-of-stepmomen-
tum calculation:

Mmm
U𝑛+1
𝜙𝜃𝛿𝑡

= Mmm
Ũ𝑛+1
𝜙𝜃𝛿𝑡

− Cm𝜌(𝜚𝜚𝜚𝑛+1 − 𝜚𝜚𝜚𝑛+1𝜃−1)

▶ END while 𝑛 < 𝑁 (non-stationary)

Once we introduce the VMS-based stabilization terms, new
coupling terms involving the three unknown conservative
variables appear. Hence, some extra information is required
in order to achieve the complete uncoupling process. When
needed, we may replace U𝑛+1 by Ũ𝑛+1, 𝜚𝜚𝜚𝑛+1 by �̂�𝜚𝜚𝑛+1𝜃 and E𝑛+1
by Ê𝑛+1𝜃 . These approximations are supported by Remark
6.5.2.

The remaining terms which could still couple the problem
variables can be evaluated by taking the known values of
the unknowns from the previous iteration, time step or from
the intermediate equations. In particular, note that density
and energy equations become coupled, an important fact for
the development of the whole methodology. The coupling
blocks are taken to the right-hand side and treated in an ex-
plicit manner, generally with the most up-to-date known val-
ues. However, when evaluating the residuals and the pro-
jections, we have found of critical importance to perform
the computations with all the terms evaluated at the same
time instant. Otherwise, convergence problems may appear
which we associate with the strong coupling between ther-
modynamic variables.

Remark 6.5.6 In the design of fractional step methods for
incompressible flows there are two equations in play tak-
ing velocity and pressure as main variables. The classic
andwell-established pressure-correction procedure [50, 55]
allows to split the calculation of the unknowns after per-
forming some extrapolation in the momentum equation,
prior to solving the continuity one. A similar design was
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carried out in [155] for isentropic flows. However, for the
case of compressible flows, as the problem includes also
the energy equation, there are more possibilities to per-
form the splitting and hence to design the algorithm. Our
intention in this chapter was to follow the same pattern
of previous developments in our group as in [46, 50, 53,
55] or the previous chapters, where the first equation to be
solved is the intermediate momentum equation. Neverthe-
less, other approaches should be explored and compared.

6.6 Numerical examples

In this section, a set of numerical examples is presented to
show the capabilities of the proposed fractional step method
for the simulation of compressible flows at different regimes.

In order to solve the final underlying systems of linear equa-
tions, and if nothing else is stated, wemake use of an iterative
algorithm based on the stabilized version of the BiConjugate
Gradient method BiCGstab [143], which is already included
as a part of the parallel solver library PETSc [61], which has
been coupled with FEMUSS.

We consider an ideal gas with 𝛾 = 1.4 (𝑅g = 287 J/(kg K)) and
𝑐𝑝 = 1004.5 J/(kg K) and Pr = 0.72. A maximum of 10 itera-
tions is set to solve each nonlinear problem, and the relative
numerical tolerance for the 𝐿2-norm is 1 × 10−5. All the plots
are in SI units.

6.6.1 Convergence test

In this first example we consider a simple convergence test
whose goal is to check numerically the time rate of conver-
gence for the proposed fractional step algorithm. We recall
that as time integration scheme we use backward differences,
of the same order as the fractional step to be tested.

As we did in previous chapters, we make use again of the
manufactured solutions method and, in particular, exact so-
lutions for density, momentum and energy are specified. The
compressible Navier-Stokes problem is solved over the unit
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square Ω = [0, 1] × [0, 1] and the force term is set so that the
exact solution of the problem is:

𝜌(𝑥, 𝑦 , 𝑡) ≔ 𝜋 + 𝑥 cos(sin 𝑡) + 𝑦 sin(sin 𝑡), (6.29a)

𝜌𝑢(𝑥, 𝑦 , 𝑡) ≔ −𝑦 cos(𝑡), (6.29b)

𝜌𝑣(𝑥, 𝑦 , 𝑡) ≔ 𝑥 cos(𝑡), (6.29c)

𝜌𝑒(𝑥, 𝑦 , 𝑡) ≔ 4𝜋 + 𝑥 cos(sin(𝑡)) + 𝑦 sin(sin(𝑡)). (6.29d)

The finite element partition is structured and uniform and
it contains 𝑄1/𝑄1/𝑄1 finite elements of size ℎ = 1/100. Both
the boundary and initial conditions are evaluated from the
previous equations, and particularized for each of the sides
of the square at each time step and for 𝑡 = 0, respectively.
We select a range of time step sizes and, in addition, we set
𝜇 = 1 × 10−5 kg/(m s), 𝜅 = 0.0015 W/(m K), and we make use
of a sparse direct solver from the MUMPS library [157, 158].

The error between the exact solution and the numerical one
ismeasured in the ℓ2-normof the sequence of spatial 𝐿2-norms
of the solutions, i.e.,

𝐸𝑓 ≔ (𝛿𝑡
𝑁
∑
𝑛=1

‖𝑓 𝑛ℎ − 𝑓 (𝑡𝑛)‖2𝐿2
‖𝑓 (𝑡𝑛)‖2𝐿2

)
1/2

,

for 𝑓 = 𝜌, 𝜌u or 𝜌𝑒, respectively.
Figure 6.1 shows the convergence results obtained with the
fractional step algorithm for both first and second order time
integration schemes. The expected convergence rate can be
clearly seen for both temporal approximations and for all the
time step sizes.

6.6.2 Supersonic viscous flow over a flat plate

Carter’s flat plate problem is a simple and classical bench-
mark to examine the performance of the solver in a problem
involving shock waves, boundary layers and the interaction
between them. This example is based on a 2D viscous super-
sonic flow over a flat plate with conditions:

Re∞ = 1, 000, and Ma∞ = 3.0.

Figure 6.2 shows the problem setup. If the coordinate origin
is placed and the tip of the plate, the computational domain is
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Figure 6.1: Convergence test:
time convergence of the relative
errors of density (top), momen-
tum (middle) and energy (bottom)
measured in the ℓ2(0, 𝑡f, 𝐿2(Ω))-
norm: The number after the dash
symbol stands for first (1) or
second (2) order scheme in time.

Figure 6.2: Supersonic flow over
a flat plate. Problem setup and
boundary conditions.

the rectangle covering from −0.25m ≤ 𝑥 ≤ 1.2m and 0 ≤ 𝑦 ≤
0.8 m. Density, velocity and temperature are set at the left
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and top boundaries of the domain. These prescribed values
are, respectively, 𝜌∞ = 1 kg/m3, 𝑢∞ = 1 m/s, 𝑣∞ = 0 m/s and
𝜗∞ = 2.769 × 10−4 K. The no-slip boundary condition u = 0
m/s is enforced at the plate wall, together with the stagnation
temperature, which is computed as

𝜗stag = 𝜗∞ (1 + 𝛾 − 1
2 Ma2∞) .

On the ”symmetric wall”, i.e., the boundary prior to the plate,
normal velocity, tangential traction, and heat flux are all set
to zero. No prescriptions are made at the outflow, and the
computations are initialized with the free-stream values for
each degree of freedom in the entire domain. The tempera-
ture dependent viscosity is computed according to the Suther-
land’s law in Equation 2.10, with 𝑆 = 0.0001406, and 𝐶1 =
0.0906.

The simulation was carried out using a time step correspond-
ing to a CFL of 4. Here, we estimate the critical time step for
the explicit scheme as the minimum of the stabilization pa-
rameters, i.e., 𝛿𝑡 = min(𝜏𝜌 , 𝜏𝜏𝜏m, 𝜏𝐸). In addition, we discretize
the domain with a structured mesh of square elements of size
ℎ = 0.01.

Figure 6.3 displays the obtained contours of density, veloc-
ity and temperature. The results are in general agreement
with the literature, e.g., [56] and [171–174]. The solution
is computed with the gradient-based shock capturing opera-
tor. Several values for the operator constant 𝐶sc were tested,
𝐶sc = {0.25, 0.5, 0.75} although the results were all really simi-
lar. We shall use 𝐶sc = 0.25 in the upcoming examples.

In Figure 6.4, we plot the normalized density and tempera-
ture profiles along the line 𝑥 = 1.2 for the stationary solution,
in order to further compare our solutions with the literature.
Although the obtained peak point values are not coincident
with the reference ones, an overall good agreement with the
reference results can be observed.

Since the solution is stationary, this example serves to demon-
strate that the approximations in the matrices introduced in
the design of the fractional step scheme maintain the accu-
racy and the ability to model shocks of the monolithic for-
mulation.
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(a) Density, 𝜌

(b) Velocity magnitude, ‖u‖

(c) Temperature, 𝜗

Figure 6.3: Carter’s flow prob-
lem: (a) density, (b) velocity mag-
nitude and (c) temperature con-
tours computed with the mono-
lithic algorithm. Fractional step
results are basically the same and
hence omitted.

6.6.3 Supersonic viscous flow over a cylinder

Another classical example in compressible flows is the super-
sonic viscous flow over a cylinder, as sketched in Figure 6.5,
with free stream conditions

Re∞ = 2, 000 and Ma∞ = 2.
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Figure 6.4: Carter’s flow problem: Comparison of the obtained (a) normalized temperature and (b) normalized
density along the line 𝑥 = 1.2 m with results reported in the literature [56, 171, 172, 174]. Hereinafter, MN stands
for monolithic results and FS for fractional step results.

[175]: Mittal (1998), “Finite ele-
ment computation of unsteady
viscous compressible flows”

Figure 6.5: Supersonic flow over
a cylinder: domain specification.
The computational domain is de-
fined as the area enclosed within
two arcs passing, respectively,
through points A(0,15), B(-4,0),
C(0,-15), and A, D(10,0) and C.
The cylinder is placed at the ori-
gin of coordinates with diameter
equal to 2 m.

The specification of boundary conditions is as follows: all
variables are specified on the upstream boundary matching
those conditions. The cylinder wall is assumed to be adia-
batic, no-slip condition is specified for the velocity on its sur-
face, and at the downstream boundary, no conditions are im-
posed. The computations are initialized with the free-stream
values for each degree of freedom in the entire domain. Like-
wise, we set 𝜇 = 0.001 kg/(m s) and 𝜅 = 1.39514 W/(m K).
The finite element mesh is unstructured and it is made of
31,288 linear triangular elements. Smaller elements are used
near the wall cylinder, whereas the mesh is coarser in the
rest of the domain. The mesh size was fixed to ℎ = 0.005
m in the finer region near the cylinder wall. Comparing the
solution obtained with monolithic and fractional step formu-
lations, the field contours are almost identical, what shows,
as in the previous example, that the space accuracy is not
affected by the design of the fractional step scheme. Den-
sity, pressure, Mach number and temperature distributions
are shown in Figure 6.6. A supersonic expansion develops
from the cylinder surface, while in the wake the flow pat-
tern is characterized by a recirculation zone and a weak tail
shock. The presented contours for the steady state solution
are in accordance with the ones presented in [111] and [175],
although neither Sutherland law nor power law were used
for viscosity in this example.

Since no noticeable qualitative differences were observed in
our results, some aerodynamic integral values of the flow
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(a) Density (b) Pressure

(c) Mach number (d) Temperature

Figure 6.6: Supersonic flow over
a cylinder: (a) density, (b) pres-
sure, (c) Mach number and (d)
temperature contours. The solu-
tion is obtained using the frac-
tional step formulation together
with the isotropic gradient-based
shock capturing method.

were computed. In particular, we calculate the lift and drag
non-dimensional coefficients, following Equation 4.38a, Equa-
tion 4.38b and Equation 4.39. The results are 𝐶𝑑 = 1.439 for
the monolithic case and 𝐶𝑑 = 1.442 for the fractional step
counterpart, which have an accuracy comparable to that re-
ported in [175], 𝐶𝑑 = 1.44.

6.6.4 NACA0012 airfoil

In this section we consider the well-known geometry of the
NACA0012 airfoil with chord length 𝑐 = 1 m and a sharp
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trailing edge. The objective now is to test our methodology
in a wider range of regimes. For this purpose, we consider
two cases with angle of attack AoA = 0°: first a subsonic case
with

Re∞ = 5, 000, and Ma∞ = 0.5,
and later a transonic problem with

Re∞ = 10, 000, and Ma∞ = 0.85.

In order to perform the simulation, we define a circular O-
type domain with the mid-chord point of the airfoil located
at the coordinate origin. The far-field boundary is placed at
15 chord lengths from the airfoil. In the inflow part of the
boundary, velocity and temperature are fixed according to
the selected Reynolds andMach numbers, whereas in the out-
flow part only density is prescribed. A no slip adiabatic wall
condition is imposed at the airfoil surface and the computa-
tions are initialized with free-stream conditions in the entire
domain. Furthermore, we use an unstructured mesh of trian-
gular elements, including non-uniform refinement towards
the airfoil surface. Figure 6.7 reports the details of the mesh,
which features 254,186 elements. The problem is solved with
a time step corresponding to a CFL of 12.

Figure 6.7: Mesh refinement for
the NACA 0012 simulations.

Ma=0.5, Re=5,000

First we present the subsonic viscous flow simulation. Figure
6.8 displays density, Mach number and temperature distribu-
tions for the steady-state solution of this problem. Likewise,
Figure 6.9 contains the chord-wise distributions of pressure
and skin friction coefficients, comparing both fractional step
and monolithic results with other researchers such as [172,
175, 176]. These are respectively computed from:

𝐶𝑝 = 𝑝 − 𝑝∞
1
2𝜌∞‖u‖

2
∞
, (6.30a)

𝐶𝑓 = 𝜏w
1
2𝜌∞‖u‖

2
∞
, (6.30b)

where 𝑝∞ is the inflow static pressure and

𝜏w = (𝜎𝜎𝜎 ⋅ n) ⋅ t
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[176]: Venkatakrishnan (1990),
“Viscous computations using a
direct solver”

is the wall stress, with t the tangent vector to the surface. It is
observed that the results exhibit a clear agreement with the
literature.

Additionally, the drag coefficient values are 𝐶𝑑 = 0.0548 for
the monolithic computations and 𝐶𝑑 = 0.0551 for the frac-
tional step counterpart, which are in line with the values re-
ported byMittal [175], 𝐶𝑑 = 0.0550 and Venkatkrishnan [176],
𝐶𝑑 = 0.0554. Finally, for the separation point, it is located at
82.7 % and 82.9 % of the chord from the leading edge, respec-
tively for monolithic and fractional step algorithms. These
results are summarized in Table 6.2 down below.

(a) Normalized Density, 𝜌/𝜌∞

(b) Mach number, Ma

(c) Normalized temperature, 𝜗/𝜗∞

Figure 6.8: Subsonic flow over a
NACA 0012 profile: (a) density,
(b) Mach number and (c) temper-
ature distributions around the air-
foil computed with the second or-
der version of the fractional step
scheme.

Ma=0.85, Re=10,000

We switch now the conditions of the problem to a transonic
regime with Re = 10, 000 and turn on the gradient-based
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(b) Skin friction coefficient

Figure 6.9: Subsonic flow over a NACA 0012 profile: (a) Non-dimensional pressure coefficient, and (b) skin friction
coefficient on the aerofoil.

Table 6.2: 2D differentially heated cavity: ratio of CPU time of the fractional step schemes over the monolithic
formulations in the 2D chaotic case (second order schemes).

Ref. 𝐶𝑑 𝑥s/𝑐
Mittal [175] 0.0550 0.813
Venkatkrishnan [176] 0.0554 [0.810,0.825]
Present-MN 0.0548 0.827
Present-FS 0.0551 0.829

[177]: Bouhadji et al. (2003), “Or-
ganised modes and shock–vortex
interaction in unsteady viscous
transonic flows around an aero-
foil. Part I: Mach number effect”

shock capturing operator with 𝐶sc = 0.25. After an initial
transient period is overcome, a fully developed periodic so-
lution is established.

Figure 6.10 displays density, Mach number and temperature
distributions once this periodic flow has been fully devel-
oped, and Figure 6.11 contains the pressure time history com-
paring fractional step and monolithic solutions. Both formu-
lations obtain very similar results. The flow evolves as de-
scribed in [177]: it originally expands from the front stag-
nation point and then the boundary layer thickness begins
to increase until the interaction between the layer and the
shock wave results in the separation of flow. It is to be no-
ticed that the vortices are shed from both, the upper and the
lower surfaces of the airfoil. Moreover, two different instabil-
ity mechanisms are active in the wake region, one mainly as-
sociated with the shear layer (also known as Kelvin-Helmoltz
mechanism), and the other one resulting from the interaction
between the layer and the shock wave.
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(a) Normalized density, 𝜌/𝜌∞

(b) Mach number, Ma

(c) Normalized temperature, 𝜗/𝜗∞

Figure 6.10: Transonic flow over
a NACA 0012 profile: (a) Density,
(b) Mach number and (c) tempera-
ture distributions around the aero-
foil computed with the second or-
der version of the fractional step
scheme.

6.6.5 3D flow over a sphere

In this final numerical example we model a 3D flow over
a sphere. The purpose of this simulation is twofold. First,
we use this example to show the applicability of the devel-
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Figure 6.11:Transonic flow over a
NACA 0012 profile: pressure time
history for both formulations at
point (3.5,0) located at the wake of
the airfoil.
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oped compressible formulation in complex 3D problems. Sec-
ond, we will perform some simple tests in order to provide
some insights on the actual computational savings that the
fractional step implementation may offer with respect to the
standard monolithic solver. We consider the flow around a
sphere with

Re∞ = 5, 000, and Ma∞ = {0.25, 0.75}.

Figure 6.12: Flow around a sphere.
Problem setup and domain speci-
fication.

Figure 6.13: Flow around a sphere.
Mesh cut.

The problem setup is shown in Figure 6.12. A uniform flow
with the desired conditions impinges the left-inlet boundary,
where density, velocity and temperature are prescribed. The
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lateral boundaries are defined as no-penetration and adia-
batic, and the right-outflow boundary is traction free and
adiabatic. The surface of the sphere is no-slip as well as adi-
abatic. As usual, the computations are initiated with free
stream values. In order to build up the mesh, we first as-
sign a size ℎ = 0.005 over the sphere with uniform trian-
gles. Likewise, two cylindrical refinement zones around and
downstream of the sphere are introduced in order to better
reproduce the wake of the flow, one with diameter of 2 m
and the second one with diameter of 5 m. The remainder of
the domain is filled with tetrahedral elements. A cut through
the mesh is shown in Figure 6.13 in order to illustrate the in-
terior of the domain. The mesh accounts for a total of ∼ 5.8
million elements. Figure 6.14 shows streamlines just to give
and idea of the features of the flow.

Figure 6.14: Flow around a sphere: stream lines for Ma = 0.25.

The left part in Table 6.3 shows the savings in CPU time of the
fractional step algorithms (second order) for the two cases
considered with respect to the monolithic formulation. A
simple implementation over a series of time steps has been
used. The savings are presented as the ratio between the
CPU time of the fractional step scheme over the CPU time
of the corresponding monolithic scheme. In addition, we
collect the number of iterations needed by the solver to ob-
tain the solution of the system of equations and the num-
ber of nonlinear iterations used to obtain converged results.
In fractional step schemes, each variable requires a different
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Table 6.3: Comparison between the number of nonlinear and solver iterations of the monolithic and of the second
order fractional step algorithm using the BDF2 time integrator. Here, nni is the average number of nonlinear
iterations to achieve convergence and nsi stands for the average number of iterations needed by the iterative
algebraic solver.

Case Time ratio Monolithic Fractional step
nni/nsi nni𝜌u/nsi𝜌u nsi𝜌 nni𝜌𝑒/nsi𝜌𝑒

Ma=0.25 0.58 8/9 5/7 11 2/7
Ma=0.75 0.89 7/7 5/6 7 4/6

number of iterations to solve the corresponding linear sys-
tem. Apart from the fact that the linear systems to be solved
in the fractional step method are smaller and usually better
conditioned, the main drawback of the monolithic formula-
tion is that the total number of iterations of the linear sys-
tem solver is driven by the slowest variable. This is at least
our experience from our previous works on fractional step
algorithms for incompressible, isentropic and compressible-
primitive formulations (see the section of numerical results
and conclusions in [55, 155, 169]). The general trend is that
the slowest variable in those cases is the pressure. This point
is illustrated by the first raw of Table 6.3. As expected, for the
low Mach subsonic Ma∞ = 0.25 case the slowest variable is
the density (pressure). Not only there is a reduction in the
computational cost but also the nonlinearities are solved in
a better manner. However, the benefit of using a fractional
step scheme in conservative variables degrades as the Mach
number is progressively increased. As the problem is far
from the incompressible behavior, the density stops being
the slowest variable and then we observe that the number of
iterations of the solver is basically the same for both mono-
lithic and fractional step methodologies. This is why the ob-
tained savings of the Ma∞ = 0.75 case are not very important,
although more important savings should be expected in very
large scale problems.

6.7 Conclusions

In this chapter, we have introduced a fractional step tech-
nique to solve the compressible Navier-Stokes equations us-
ing conservative variables. The development of this method-
ology, which is up to second order in time, has been designed
at the algebraic level, departing from the fully discretized
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monolithic problem both in space and in time and by using
the extrapolation concept.

From the numerical viewpoint, the herein proposed fractional
step compressible model is based on a stabilized VMSmethod
and an implicit scheme to advance the solution in time. In
addition, other ingredients were appended, such as the or-
thogonal and dynamic definition of subscales and the shock-
captuting operator which is calculated by using the orthog-
onal projection onto the finite element space of the gradient
of the solution.

First, we have shown that the fractional step method intro-
duces an splitting error but it maintains the general tempo-
ral accuracy of the time integration scheme. Furthermore,
the supersonic viscous flow over a cylinder and the classi-
cal flow over a plate have been used to test the performance
of the algorithm in the supersonic regime, where the inter-
action of shocks and shear layers is relevant. Similarly, the
NACA0012 flow problem was used to evaluate the behavior
of the implementation in subsonic and transonic cases also
with adequate results. Finally we have shown an involved 3D
case and also we have provided some insights on the possible
savings that a fractional step scheme may offer.





[178]: Quarteroni et al. (1999),
“Analysis of the Yosida method
for the incompressible Navier–
Stokes equations”

Afterword

The purpose of this section is to state an overall assessment
of the different strategies developed in this project and to
provide some possible topics that could be considered as fu-
ture research. I found more appropriate to draw some con-
clusions individually in each of the chapters, particularly be-
cause Chapter 4, Chapter 5 and Chapter 6 all correspond, re-
spectively, to different publications.

In this thesis we have developed different fractional step algo-
rithms for compressible flow problems. Particularly, we de-
veloped algorithms for the isentropic Navier-Stokes problem
and for both the compressible Navier-Stokes problem writ-
ten in primitive and conservative variables. All the schemes
were derived at the algebraic level, i.e., once space and time
discretizations were chosen and they are up to second order
in time. Moreover, all of them follow the classical ”pressure-
correction” type of algorithms, commonly used in incompress-
ible flow solvers, a field in which our research group has ex-
tensive experience.

From the theoretical standpoint, it could be particularly in-
teresting to extend our algorithms to a third (or even higher)
order method in time, e.g., using a BDF3 integration scheme.
This third order method could be in principle obtained by
using only first order extrapolations, a procedure that can
be interpreted as a Yosida scheme (see [53, 55] and specially
[178]). This should be the first research line to be addressed
in the near future and I consider that the code developed in
this thesis should serve as the proper starting point.

A different approach to derive fractional step algorithms is
the socalled ”velocity-correction” procedure, in which the ve-
locity unknown is first extrapolated rather than the pressure
(or density). The main advantage of this technique, at least
when applied to incompressible problems, is that experience
shows that extrapolations of velocity can be safely performed
up to third order (we recall here the comment on pressure ex-
trapolations from Section 4.6.2). Hence, the extension of the
algorithms to third order is somehow straightforward. This
could be done and then compared to third order ”pressure-
correction” methods.
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[179]: Pan et al. (2022), “Devel-
opment of a Balanced Adaptive
Time-Stepping Strategy Based on
an Implicit JFNK-DG Compress-
ible Flow Solver”
[180]: Peles et al. (2019), “Adap-
tive Time Steps for Compressible
Flows Based on Dual-Time Step-
ping and a RK/Implicit Smoother”
[181]: Kalkote et al. (2019), “To-
wards developing an adaptive
time stepping for compressible
unsteady flows”

As we have already stated in this thesis, there exists a vast lit-
erature regarding fractional step methods from incompress-
ible flow problems, regardless the chosen procedure (velocity
or pressure correction algorithms). In this scenario of incom-
pressible problems, since the problem only contains pressure
and velocity unknowns, there are just two possibilities to de-
rive a segregation method at the algebraic level by means of
the extrapolation concept: one either extrapolates first pres-
sure or velocity. The same applies to the isentropic problem
analyzed in Chapter 4. However, the full compressible mod-
els of Chapter 5 and Chapter 6 render the final algebraic sys-
tems with three different unknowns emanating from three
equations. Hence, there are more possibilities to be explored
in order to perform the extrapolations. This should be ad-
dressed in the future and compared with the algorithms here
proposed, especially in the case of the problem written in
conservative variables.

Particularly important in compressible flow simulations is
the adopted time integration scheme. In this regard, we have
just explored the application of classical BDF schemes up to
second order, but our developments are in principle open,
and other schemes could be easily attached. Due to the wide
range of scales that the compressible Navier-Stokes problem
expands, the selection of the time step size is crucial. Thus,
we consider that the implementation of adaptive time step-
ping techniques would be a very important feature to add to
the present code enabling the efficient simulation of practi-
cal applications (see e.g., [179–181]). In fact, this is a research
line of great interest in our group that could lead to the de-
velopment of a new thesis.

Another important point in the simulation of compressible
flows is the inclusion of non-reflecting boundary conditions,
as we have specifically addressed in Chapter 4 and Chapter 5.
In these chapters, we selected a weak imposition of Dirichlet
boundary conditions via extrapolations of boundary terms
and the application of the classical Sommerfeld boundary
condition. Although the application of this approach was
satisfactory for the simulations showcased in this thesis, this
topic could be further investigated in order to develop amore
direct approach for dealing with spurious wave reflections.
As discussed, the literature here is really extensive, and dif-
ferent techniques could be implemented and compared.

Finally, for the case of the simulation of problemswith shocks,
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a formulation including an anisotropic shock capturingmethod-
ology could be investigated so that diffusion is efficiently
introduced along the streamlines, rather than the isotropic
strategy proposed in Section 6.4.1.
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