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Chapter 1

Introduction and objectives

Aeroacoustics has emerged from the fields of acoustics and fluid mechanics and is
concerned with sound generated by unsteady and/or turbulent flows and also by their
interaction with solid boundaries. This type of sound is commonly known as aerodynamic
sound. In contrast to classical acoustics, forces and motions inside the flow are the sources
of sound rather than the externally applied ones. On the other hand, Computational
Aeroacoustics (CAA) is a relatively new computational field that aims at simulating
and predicting aerodynamically generated noise. CAA has become nowadays an active
research field due to its applications in the aeronautic, railway, automotive and underwater
industries.

The first purpose and main result of this thesis consists in developing a strategy, to be
implemented in a finite element code, that results in useful low speed CAA predictions. In
order to do so, Lighthill’s acoustic analogy is central to this work. Lighthill showed how the
compressible Navier-Stokes equations could be reordered in the form of an inhomogeneous
acoustic wave equation with a source term built from the double divergence of what is now
known as Lighthill’s tensor. This tensor involves combinations of the flow variables and
their derivatives (velocity, pressure and density) and under certain hypothesis it acquires
a simple, treatable expression. The idea is then to obtain this source term either by means
of experiment, analytical development or computation and to solve its corresponding wave
equation. The standard procedure involves finding a formal integral solution to the wave
equation using an appropriate Green’s function and hence to obtain the radiated acoustic
field in this way. However, a different approach will be followed in this thesis.

The herein proposed methodology to make CAA predictions of viscous low speed
flows can be conceptually divided in three steps. In the first step, a Computational Fluid
Dynamics (CFD) simulation is to be performed in order to find the acoustic source term.
For low speed flows, an incompressible CFD simulation can be carried out. In the case
of dealing with turbulent flows, it is customary to make use of Large Eddy Simulation
(LES) models, which involve filtering the Navier-Stokes equations with a low-pass filter at
the continuum level. This is traditionally done via a convolution operation that yields a
scale separation into resolvable large scales and non-resolvable small scales. The influence
of the small scales onto the large ones is modelled and then, the resulting LES equation

11
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for the large scales is discretised and solved. Although widely used, this procedure poses
several mathematical difficulties concerning, for instance, the influence and interaction
of errors arising from the physical LES modelling with errors arising from the numerical
discretisation scheme.

Recently, a somehow alternative approach to simulate turbulent flows has been under
development. The idea has its roots on the stabilisation methods used to prevent the
numerical instabilities arising in the finite element solution of partial derivative equations.
One of such stabilisation approaches, the Subgrid Scale (SGS) stabilised finite element
method, is precisely based on a scale separation between those scales that can be captured
by the computational mesh and those being not resolvable by the mesh. The influence
of the small non-resolved scales onto the large scales has to be modelled and the various
ways into how this is done give place to different SGS methods. An important point is
that in SGS the scale separation is performed by projection onto the appropriate finite
element spaces rather than at the continuum level. When applied to the Navier-Stokes
equations, the SGS strategy sets up the problem of simulation of turbulent flows as a
pure numerical problem rather than a question of physical LES modelling followed by
numerical discretisation. In this sense, it provides a more natural and straightforward
approach and avoids some of the drawbacks of classical LES modelling. The second
main outcome of this thesis precisely aims at giving support to this idea i.e., that no
physical LES modelling is needed for the simulation of turbulent flows, if an appropriate
discretisation scheme is used. Using results from statistical fluid mechanics applied to SGS
finite element methods, it will be heuristically argued that the main feature a LES model
should fulfil can be recovered from the additional stabilisation terms in the equations.

The second step of the proposed methodology for CAA involves obtaining the acoustic
source term, namely the double divergence of Lighthill’s stress tensor. Instead of following
the standard integral formulation, a different approach will be used. The source term in
the time domain will be obtained from the CFD computation. Then, it will be Fourier
transformed to the frequency domain and used to build an inhomogeneous Helmholtz
equation to be solved again using a SGS finite element method. If some acoustic time
domain information was necessary, it would be possible to anti-transform the obtained
results to get it. However this will rarely be the case in practical situations as for most
industrial applications the acoustic pressure spectrum is the desired final result. On the
other hand, several possibilities can be considered for obtaining the source term depending
on the weak form selected to solve the inhomogeneous Helmholtz equation. Our choice has
been to directly compute Lighthill’s stress tensor double divergence. As we are considering
the low speed case, the incompressibility constraint makes possible to compute Lighthill’s
stress tensor double divergence even when linear interpolating functions are used. This
procedure has the main advantage that it offers a direct visualisation of the aeroacoustic
source terms, which can be of great help for engineering design processes.

The third step consists in computing the acoustic field by solving the inhomogeneous
Helmholtz equation. It is a well-known fact that for large wavenumbers, the weak
form associated to this problem is non positive definite giving rise to what is known
as the pollution error. A dispersion analysis of the interior stencil associated to the
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discrete problem shows that the pollution error can be attributable to the fact that waves
propagate with a discrete wavenumber instead of the continuous one. The difference
between the discrete and continuous wavenumbers increases for large wavenumbers and a
phase error appears in the approximated wave.

A similar behaviour is observed for the convected counterpart of the Helmholtz
equation, namely the convected Helmholtz equation, which is of importance in several
areas of aeroacoustics such as aerodynamic sound generated by aircraft engine fans and
compressors. As a third main contribution of this thesis, we will address the problem of
developing a SGS stabilised finite element method for the convected Helmholtz equation
in two dimensions. The method will be formally equivalent to the Galerkin Least-Squares
(GLS) method and its key point will consist in finding an appropriate stabilisation
parameter by means of a dispersion analysis. We will see that the proposed method clearly
improves the results of the Galerkin approach to the problem and that our stabilisation
parameter will reduce to well-known results for the Helmholtz equation in the case of no
convection.

The thesis is organized as follows. Chapter 2 is wholly devoted to physical
aeroacoustics. It starts by presenting a reminder on several issues of classical acoustics
for readers not familiar with it. The main equations, approximations and concepts such
as the multipolar character of the acoustic field are reviewed. After that, we move to
aeroacoustics and the central concept of acoustic analogy is defined. Lighthill’s acoustic
analogy and its generalization to include the presence of solid boundaries are shown, as
well as the usual integral approach used to solve them.

Chapter 3 begins with the presentation of the proposed three-step methodology to
solve low speed CAA problems. Then, the methodology is implemented. The SGS
stabilised finite element method used to solve the incompressible Navier-Stokes equations
in the first step of the proposed CAA approach is explained in full detail. The method
has the particularity of performing a time tracking of the subscales and it maintains all
terms arising from the scale decomposition in the material derivative of the velocity field.
An overview of the SGS approach to solve the inhomogeneous Helmholtz equation in the
third step of the CAA method is also carried out. The chapter finishes with two numerical
examples consisting on the computation of the aerodynamic noise generated by flow past
a single and tandem cylinders at different Reynolds numbers (aeolian tones problem).

Chapter 4 begins with a review of the mathematical theory of existence and uniqueness
of the Navier-Stokes equations. We then present some aspects of turbulent flows with
emphasis on the Kolmogorov theory, as well as on some introductory results of statistical
fluid mechanics. We continue with an explanation of the standard approach to LES and
recent attempts towards a mathematical definition of it. These are based on the concept
of suitable approximations to the Navier-Stokes equations. Next, the dichotomy between
the SGS and LES approaches for the simulation of turbulent flows is established. The core
of the chapter is then dedicated to show, by means of heuristic reasoning, that a purely
numerical approach should suffice to simulate turbulent flows. That is, if an appropriate
SGS scheme is used, performing a physical LES approach turns to be redundant. The
chapter ends presenting two numerical examples that seem to give further support to this
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idea. The case of two-dimensional decaying isotropic turbulence and the three-dimensional
case of a turbulent flow impinging on a plate are considered.

In chapter 5 we concentrate on the third step of the method i.e., on the computation
of the acoustic field. First, a general framework relating the wave and convected wave
equations as well as their time Fourier transform counterparts (Helmholtz and convected
Helmholtz equations) is setted up. The latter equations are shown to correspond to
particular cases of Convection-Diffusion-Reaction (CDR) systems. Next, the numerical
problems arising in the Galerkin finite element solution of the Helmholtz and convected
Helmholtz equations are analysed in view of well-posedness and convergence theorems.
A numerical study of the pollution error and pattern of convergence of one and two-
dimensional propagating waves is also carried out. The kernel of the chapter consists
in the proposal of a SGS stabilised finite element method for the convected Helmholtz
equation that reduces to already well-known approaches in the case of no convection.
The performance of the method is tested by means of some examples including the case
of aeolian tones already described in Chapter 3.

In chapter 6 the possibilities to apply the CAA strategy to industrial cases is analysed.
The case of flow past a high-speed train is considered. Flow separation at the leading car
as well as pressure fluctuations beneath the turbulent boundary layer become a source
of both, mechanical vibrations that will result in interior noise and aerodynamic noise
sources radiating outwards. Due to computational limitations, the obtained results from
the simulations are of no immediate application in the industrial frequency range of
interest. However, the simulations clearly show how one could proceed to acquire the
desired information using supercomputer devices (tests are being currently performed)
and show much better performance than those achieved with commercial codes for the
same meshes.

Conclusions and future lines of research are finally drawn in Chapter 7. On the other
hand, we would like to note that all chapters are intended to be quite self-contained. This
is specially the case of chapters 4 and 5. Some information in the thesis may then be
somehow repeated in benefit of this consideration as well as for the sake of clarity. We
also note that no state of the art chapter has been included. Detailed bibliography on
each subject is provided in the introductory sections at the beginning of each chapter, as
well as throughout them.



Chapter 2

Aeroacoustics

In this introductory chapter we will review some aeroacoustics theory. Given that
aeroacoustics is a scientific branch lying somewhere in the middle between fluid mechanics
and acoustics, we will start by reminding some key concepts on acoustics. The basic
equations as well as the Green function approach, the Kirchoff-Helmholtz formulation or
the multipolar character of the acoustic field will be briefly introduced. Then, we will
move to aeroacoustics by introducing the notion of acoustic analogy. Special attention
will be paid to Lighthill’s acoustic analogy, which is central to this work. Other analogies
accounting for the effects of boundaries in the aerodynamic noise generation process will
be also considered, as well as the standard integral approaches to solve them.

2.1 Introduction

Let us start with a brief historical note of the physical problem at hand, namely the
calculation of aerodynamically generated sound. As mentioned in the introductory
Chapter 1, the term aerodynamic noise or sound was coined to designate noise
generated by unsteady and/or turbulent flows and by their interaction with boundaries.
Whereas classical acoustics concentrates on the mechanisms of noise generation and wave
propagation within a fluid, when an external force is applied to it (e.g. the vibration of a
plate, a loudspeaker, etc.), aeroacoustics focuses on noise generated by the flow internal
forces and motions (e.g. a rotating eddy, a jet plane, a fan blade, etc.).

Although at the end of the XIX century and start of the XX century some initial
research was made on aeroacoustics, specially concerning the problem of Aeolian tones
(sound generated by flow impinging on a cylinder, see e.g., [116,260,279] (c.f. [249])) it was
not until Lighthill’s celebrated papers on the generation of aerodynamic sound [206,207],
that aeroacoustics became a research field on its own. Lighthill work was initially
motivated by the need of beginning to build jet airplanes for commercial use. The noise
generated by military airplanes at that time was extreme and there was an urgent necessity
to build low-noise jet aircrafts to be used in inhabited areas. Lighthill’s discovery of
the concept of acoustic analogy and one of its first results, the eight-power law for the
generated acoustic power, allowed to combine large gains in aircraft’s propulsive power
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with a great reduction in the amount of radiated noise. This was achieved by means of
wide jets of high bypass ratio and a low exit velocity (see e.g., [209]). Lighthill’s work
placed again acoustics into the field of fluid mechanics [52] and was the start of what has
been termed the first golden age of aeroacoustics [124].

The original Lighthill’s acoustic analogy established an analogy between the
compressible Navier-Stokes equations and the sound radiated by a distribution of
quadrupole sources in a stationary fluid for the case of unbounded flows. The presence
of boundaries was soon taken into account in the work of Curle, [56], for the case
of non-moving rigid boundaries and generalised in the well-known Ffowcs-Williams -
Hawkings equation [71, 72] (see also [99]). On the other hand, the powerfulness of the
acoustic analogy relied on how the so-named Lighthill’s tensor could be approximated;
the various approximations taking into account fewer or more interaction effects between
the hydrodynamic source field and the acoustic one. Some well-known analogies are those
of Lilley [210], Phillips [248], Ribner [261] and Legendre [199], c.f. [209].

More related to the work developed in this thesis are the approximations carried
out for low Mach number flows, which emphasize the role of vorticity as a source of
sound. Crow [55] showed by the method of Matched Asymptotic Expansions that the
incompressible Reynolds tensor approximation to Lighthill’s tensor (see below), with the
hydrodynamic velocity field given by the Biot-Savart law (see e.g., [10]), was indeed a first
order approximation acceptable for low Mach numbers. More recently, Ristorcelli [263]
performed a two-time perturbation analysis of the problem and proposed a compressibility
correction to the Reynold’s tensor only involving the solenoidal velocity flow and pressure
(see also the interesting related work in [271]).

On the other hand, the integral solution to Lighthill’s equation with the double
divergence of the incompressible Reynolds tensor as a source term was rearranged by
Howe so as to demonstrate the dependence of the sound field on vorticity [134]. This has
the advantage that it is only necessary to integrate in those regions with non-vanishing
vorticity to obtain the far field acoustic pressure. In this way, Howe recovered the results
of Powell [256,257] on the generation of vortex sound. He also considered the case of sound
generation in the presence of an irrotational mean flow and proposed the time derivative
of the velocity potential as the appropriate acoustic variable, instead of the density or
pressure fluctuations [134, 135]. For the case of a rotational mean flow he proposed the
stagnation enthalpy as the appropriate acoustic variable [134]. However and as expected,
at the far field both quantities, the total enthalpy and the time derivative of the velocity
potential resembled the acoustic pressure fluctuations. Under certain conditions, the
Powell-Howe analogy can be modified in a more convenient way for computations (see
Mø̈hring analogy [230] and also [258]). It is worthwhile to point out that the development
of acoustic analogies in order to face specific problems concerning the interactions of
hydrodynamic and sound fields is still a subject of current research (see e.g., [100]).

Since Lighthill’s work and for several decades, aeroacoustics has been mainly
developed in the field of aeronautics. Aeronautics largely motivated the first intense
advances in the field and it has been doing it so, up to nowadays. A large amount of flow
phenomena involving the generation of aerodynamic noise can be found in aeronautic
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industry. Aeroacoustics of rotating devices such as propeller and propfans, rotors or
turbomachinery are of importance not only because of the high level of the generated
noise but also because of fatigue problems associated to it. Aerodynamic noise generated
by jets, shear flows and flow coherent motion is crucial in aviation as well as combustion
noise and the problem of sonic booms. A very complete and up to date treatise concerning
these topics can be found in the books [147, 148] (see also [189] for related subjects).
The literature on each of these topics is vast and out of the scope of this introduction
so detailed bibliography on them will be not given here. Only an exception will be
made concerning trailing edge noise (i.e., noise generated by flow passing by the trailing
edge of a wing). This problem has received much attention, both from an analytical
point of view (see [136, 138, 141, 142, 144]) as well as from a computational point of
view (see e.g., [115, 219, 244, 292]). This is so because of the problem’s simple geometry,
which is suitable for analytical approaches as well as for using very fine computational
meshes. Large eddy simulations are frequently used to perform a first Computational
Fluid Dynamic simulation, which is used as a source term for an acoustic analogy. In this
sense see also [270, 294].

Nowadays, aeroacoustic problems have extended to many other industrial sectors.
One of them is railways, where the appearance of high-speed trains operating at speeds
much higher than conventional trains, has resulted sometimes in the predominance of
aeroacoustic sources when compared to traditional ones, such as rolling noise. This
subject will be addressed in more detail in Chapter 6 and references will be given therein.
Aeroacoustic issues have also become of importance in the automotive sector. The success
in reducing mechanical noise sources has made aerodynamic noise relevant. Typical
problems are noise generated by rear-view mirrors or by the ventilation system. The
reduction of aerodynamic noise is also imperative in a large variety of industrial devices
such as fans, plotters, heat exchangers, ventilation systems, etc. It is also a subject of
investigation in underwater acoustics because noise generated by submarine propellers
can be used to detect them. Again, a large amount of literature exist on each of these
subjects and it is not our purpose to review it here. Some information can be found in
some general books on aeroacoustics. In this sense and for an easy introduction, [14,193]
prove useful. For a much deepest insight [19, 101, 145, 146] should be consulted, as well
as [54].

This chapter is organized as follows. In section 2.2 we review some fundamental
concepts on classical acoustics. In section 2.3 we introduce Lighthill’s acoustic analogy
that accounts for aerodynamic noise radiation from viscous low speed flows. Further
analogies, such as the Ffowcs-Williams equation that allows to account for the presence
of boundaries while still making use of the free space Green function formalism are
introduced in section 2.4. The standard formal integral solution to these acoustic analogies
is also presented. Finally, conclusions are given in section 2.5.
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2.2 Reminder on physical acoustics

2.2.1 Introduction

Sound can be defined as a vibration or mechanical perturbation propagating in an elastic
media such as a gas, a liquid or a solid. For every particular situation, the characteristics
of this vibration are given by the solution of the corresponding wave equation to be
presented in the next sections.

The above definition is rather general and includes the cases of ultrasonic, sonic and
infrasonic vibrations. In this work we will concentrate on perturbations that can be
perceived by human hearing and that are generically termed as noise.

Human hearing is sensible to pressure variations, p′, with respect to a reference
pressure, p0 = 2×10−5 Pa 1, between a certain frequency range. These pressure variations
are known as acoustic pressure. Actually, human hearing is not directly proportional to
acoustic pressure but it responds logarithmically to the changes in acoustic intensity
(proportional to |p′|2). Consequently, doubling the intensity of a sound will only result in
a slight increase of our perception, while to duplicate this perception it would be necessary
to intensify the acoustic energy a hundred times. For this reason, and because human
hearing is able to perceive pressure fluctuations comprising several orders of magnitude,
a decibel scale is usually employed to measure sound. The sound pressure level is defined
as

Lp = SPL = 20 log

( |p′|
p0

)
. (2.1)

We note that a pressure fluctuation having the atmospheric pressure magnitude, p′ =
p0 = 105 Pa, would result in an extremely high value of SPL (p0) ≈ 194 dB. A very loud
sound of 120 dB corresponds to an acoustic pressure of p′ = 2 × 10−510120/20 = 20 Pa so
that

p′

p0
= 2 × 10−4 ≪ 1. (2.2)

On the other hand, human beings are able to distinguish sound frequencies ranging
from about 20 Hz to 20 000 Hz. Hearing response is not equal for all frequencies: it
is rather insensitive at low frequencies while it is specially receptive between 1 000 Hz
and 4 000 Hz. In order to emulate the human hearing response when making a noise
measurement, the measured physical acoustic pressure has to be filtered. For a sound of
moderate intensity the so-called filter A is used. For noises of very loud intensity, hearing
becomes less sensitive at low frequencies and other filters reproduce better its response
(filters C and D).

The concepts and definitions on classical acoustics to be presented in the subsequent
sections can be found in many books on acoustics and mechanics, see e.g., [14,73,101,146,
233]. We would like to remark that only a brief overview will be given here and that it will

1p0 corresponds to the threshold value where human hearing starts to perceive sound at the frequency
of 1000 Hz.
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suffer from a serious bias given that special emphasis will be placed in those areas that
are important for aeroacoustics. Reference [146] will be closely followed in some cases.

2.2.2 Equations of a compressible fluid

Using the Eulerian description of a fluid (in 3D), its state at time t and position
x = (x1, x2, x3) can be described by the velocity vector field u (x, t) and by specifying
any thermodynamic variables. The motion of the fluid is then governed by five scalar
equations, which can be derived from the conservations laws for mass, momentum and
energy.

On the other hand, and in what concerns notation, through all this thesis we will
denote by ∂t the partial time derivative ∂/∂t, by ∂2

tt the partial time derivative of order
two ∂2/∂t2, by ∂i the spatial partial derivative ∂/∂xi, i = 1 ÷ d, and by ∂2

ij the spatial
partial derivatives up to order two ∂2/∂xi∂xj , i, j = 1÷d. d denotes the space dimension
and we will take d = 1, 2, 3 in the exposition. Dt will denote the material derivative,
Dt = ∂t + u · ∇ and, as usual, we will also identify x1 ≡ x, x2 ≡ y and x3 ≡ z. The
classical summation convention will be adopted for repeated indices.

The continuity equation

The law of mass conservation states that the rate of increase of fluid mass inside a fixed
volume Ω should equal the net influx due to convection across the boundary ∂Ω, plus the
contribution of any mass source distribution inside Ω. This is expressed by the continuity
equation

∂ρ+ ∇ · (ρu) = Q (2.3)

where ρ (x, t) stands for the fluid density and Q (x, t) for the mass source distribution.
Equation (2.3) can also be written as

1

ρ
Dtρ+ ∇ · u = q (2.4)

where q = Q/ρ corresponds to a volume source distribution.
It comes straightforwardly from the above equations that, in the case of an

incompressible flow (ρ = const) with no sources (Q = q = 0), the continuity equation
reduces to the incompressibility constraint ∇ · u = 0.

The momentum equation

Newton’s second law on momentum conservation leads to the momentum equation,
also known as the Navier-Stokes equation. This equation relates the rate of change of
momentum of a fluid particle to the surface forces (pressure plus viscous or frictional
forces) and body forces experienced by the fluid. The momentum equation reads

ρDtu−∇ · σ = f (2.5)
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where f is the body force per unit volume and σ is the Cauchy stress tensor that for a
Newtonian fluid becomes

σ = −pI + µ

[
∇u+ ∇u⊤ − 2

3
(∇ · u) I

]
. (2.6)

In (2.6), p is the pressure, µ the dynamic coefficient of viscosity and I the identity. For
an incompressible flow ∇ · u = 0 and the Cauchy stress tensor can be written as

σ = −pI + 2µS, (2.7)

with S standing for the rate-of-strain tensor

S :=
1

2

(
∇u+ ∇u⊤

)
. (2.8)

One can also define the momentum flux tensor

Φ := ρ (u⊗ u) − σ (2.9)

and, using (2.3) with Q = 0, rewrite the momentum equation in the Reynolds form

∂t (ρu) + ∇ ·Φ = f . (2.10)

The energy equation

In this work we will limit to the case of homentropic flows i.e., the specific entropy of the
fluid, s, will be assumed uniform and constant throughout the fluid. The energy equation
then reduces to the condition

∂ts = 0, (2.11)

(i.e., s = constant) with the pressure, p, the density, ρ, and the entropy, s, being related
by an equation of the type

p = p (ρ, s) , s constant. (2.12)

We remind that for an ideal gas p = constργ , with γ being the specific heat ratio
γ = Cp/CV , and that for an incompressible flow ρ = const (Cp and CV respectively
stand for the specific heats at constant pressure and volume).

2.2.3 Inhomogeneous wave equation and Helmholtz equation

We have explained in the introduction that one usually talks about noise when the pressure
perturbations satisfy a certain wave equation. It will be shown now how to obtain the
latter.

From (2.2), we observe that even for very intense noise, the pressure fluctuations are
very small relative to the atmospheric pressure, p0. We can then linearise the continuity
and momentum equations (2.4) and (2.5) relative to the mean pressure and density values
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p0 and ρ0. Denoting the pressure and density fluctuations by p′ := p−p0, ρ′ := ρ−ρ0, and
assuming propagation in an inviscid stationary fluid, provided that p′/p0 ≪ 1, ρ′/ρ0 ≪ 1,
we obtain the linearised versions of (2.4), (2.5):

1

ρ0
∂tρ

′ + ∇ · u = q, (2.13)

ρ0∂tu+ ∇p′ = f . (2.14)

Taking the time derivative of (2.13) and subtracting the divergence of (2.14) yields

∂2
ttρ

′ −∇2p′ = ρ0∂tq −∇ · f . (2.15)

We can now make use of the homentropic equation (2.12) to relate p′ and ρ′. For the
undisturbed state we will have p0 = p (ρ0, s), whereas for the perturbed state it will follow

p0 + p′ = p (ρ0 + ρ′, s) ≈ p (ρ0, s) + ∂ρp (ρ, s) |0,s=ctρ
′. (2.16)

The derivative in (2.16) is evaluated at (p0, ρ0) and has the dimensions of a squared
velocity. In fact, its square root defines the speed of sound

c0 =
√
∂ρp |0,s=ct . (2.17)

It is implicit in the approximations yielding to (2.17) that wave propagation under these
conditions is an adiabatic phenomena. From (2.17) and (2.16) it follows that p′ = ρ′c20,
which inserted into (2.15) gives

(
1

c20
∂2

tt −∇2

)
p′ = ρ0∂tq −∇ · f . (2.18)

Equation (2.18) is an inhomogeneous wave equation for the pressure fluctuations p′

(acoustic pressure). Observe that neither a steady volume source distribution q (x) nor a
spatially constant force f (t) produce any sound.

The notation in (2.18) is often simplified by using the d’Alambertian operator, which
is defined as �2 := [(1/c20) ∂

2
tt −∇2]. It then follows that (2.18) can be rewritten as

�2p′ = ρ0∂tq −∇ · f . (2.19)

It should be noted that the density fluctuations ρ′ also satisfy a wave equation.
Moreover, in the case of f = 0, (2.14) implies the existence of a velocity potential ϕ,
such that u = ∇ϕ, and both ϕ and u do also satisfy a wave equation.

If we now assume a time harmonic behaviour of angular frequency ω for the acoustic
pressure, as well as for the source terms in (2.18), and take into account that ∂t is replaced
by −iω, we obtain the inhomogeneous time-reduced or Helmholtz equation

(
−∇2 − k2

0

)
p̂′ = −iωρ0q̂ −∇ · f̂ , (2.20)

which is the analogous to (2.18) in the frequency domain, i.e., its Fourier transform. The
hat in (2.20) is used to denote explicit frequency dependence, e.g., p̂′ = p̂′ (x, ω), and k0

stands for the wavenumber k0 = ω/c0.
The operators [(1/c20) ∂

2
tt −∇2] and − [∇2 + k2

0] are respectively known as the wave
equation and Helmholtz operators. Obviously, they are both linear operators.
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2.2.4 Green functions and the Kirchoff-Helmholtz formulation

Free space Green function

In order to solve acoustic problems we should be able to find solutions to the wave
equation (2.18), or to the Helmholtz equation (2.20), in any finite or infinite physical
domain Ω ⊆ Rd, with prescribed boundary conditions on ∂Ω, and for a general source
distribution s (x, t) or ŝ (x, ω) (s will be used from now on to denote a generic acoustic
source term, do not confuse it with entropy). The use of Green functions prove very useful
to do so given that the wave and Helmholtz operators are linear.

The time-domain free-space Green function G0 (x,y, t− τ) in R3 is the sound field
generated by an impulsive point source located at x = y at time t = τ . Hence, it is the
causal solution to the differential problem of finding p′ in R3 such that

(
1

c20
∂2

tt −∇2

)
G0 = δ (x− y) δ (t− τ) t ≥ τ (2.21)

G0 = 0 t < τ. (2.22)

The solution is given by (see e.g., [101, 146, 233])

G0 (x,y, t− τ) =
1

4π |x− y|δ
(
t− τ − |x− y|

c0

)
, (2.23)

which is nothing but an impulsive and spherically symmetric wave expanding outwards
of the source located at y, having spherical symmetry and whose amplitude decreases
inversely with the distance to y, |x− y|.

The Fourier transform of (2.23) is the free-space Green function in the frequency
domain and corresponds to solving the Helmholtz equation (2.20) with a point source. It
is given by

Ĝ0 (x,y, ω) =
eik0|x−y|

4π |x− y| . (2.24)

Usefulness of the free space Green function

Suppose now that we are faced with the problem of solving (2.18) in an unbounded domain
for a general source distribution s (x, t), i.e.,

(
1

c20
∂2

tt −∇2

)
p′ = s (x, t) . (2.25)

We can think of s (x, t) as being built from a distribution of impulse point sources as
the one in the r.h.s of (2.21), given that we can expand it as

s (x, t) =

∫

R3

∫ +∞

−∞

s (y, τ) δ (x− y) δ (t− τ) dydτ. (2.26)
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Taking into account (2.21)-(2.23), each constituent s (y, τ) δ (x− y) δ (t− τ) dydτ will
generate an acoustic field (outward propagating wave) s (y, τ)G0 (x,y, t− τ) dydτ . The
superposition principle allows the summation of the contributions of all constituents to
obtain the acoustic field generated by s (x, t):

p′ (x, t) =

∫

R3

∫ +∞

−∞

s (y, τ)G0 (x,y, t− τ) dydτ

=
1

4π

∫

R3

s (y, t− |x− y| /c0)
|x− y| dy

=
1

4π

∫

R3

[s]

|x− y|dy, (2.27)

where we have made use of (2.23) in the second line of (2.27). The delimiters [ ] in the last
line of (2.27) are standard notation to denote evaluation of s at times t−|x− y| /c0. The
value t−|x− y| /c0 is usually termed the retarded time. Hence, equation (2.27) represents
the acoustic pressure at position x and time t, as a superposition of the acoustic fields
generated by sound sources located at y at the corresponding retarded times. Integral
equations such as (2.27) are called retarded potentials in acoustics.

Similarly, in the frequency domain we will have for the Fourier transform of the source
distribution, ŝ (x, ω),

p̂′ (x, ω) =

∫

R3

ŝ (y, ω) Ĝ0 (x,y, ω)dy

=

∫

R3

eik0|x−y|

|x− y| ŝ (y, ω)dy, (2.28)

where now, use has been made of (2.24).
Hence, we observe that once the free-space Green function is known it is quite

straightforward to obtain the pressure field generated by any source distribution in an
unbounded domain (at least formally).

The Kirchoff-Helmholtz equation

When surfaces are present and/or the wave equation is to be solved in a bounded domain,
the above approach has to be modified to take into account the influence of boundaries.
For a domain Ω ⊆ R3 with boundary ∂Ω ≡ Γ = Σ ∪ S such that Σ ∩ S = ∅ (Σ stands
for the domain exterior boundary while S stands for the surface of any interior body, see
Fig. 2.1) let us first address the following Helmholtz problem:

(
−∇2 − k2

0

)
p̂′ = ŝ (x, ω) in Ω

+ boundary conditions on Γ. (2.29)

To find a solution to (2.29) we consider the reciprocal or adjoint problem
(
−∇2

y − k2
0

)
Ĝ (x,y, ω) = δ (x− y) in Ω

+ boundary conditions on Γ, (2.30)



24 CHAPTER 2. AEROACOUSTICS

Figure 2.1: Geometry for the Kirchoff-Helmholtz formulation.

where the subscript y in the nabla operator denotes differentiation with respect to
the components of y. Ĝ is a Green function and satisfies the reciprocal theorem i.e.,
Ĝ (x,y, ω) = Ĝ (y,x, ω).

We can now find a formal solution p̂′ (x, ω) to (2.29) following the next steps (see
e.g., [145]): first replace x by y in (2.29) and multiply it by Ĝ (x,y, ω). Then subtract
the resulting equation from the product of (2.30) and p̂′ (x, ω). Finally, integrate the
result with respect to y over the whole domain and apply Green’s second identity (or the
divergence theorem) to obtain

p̂′ (x, ω) = −
∫

Ω

ŝ (y, ω) Ĝ (x,y, ω)dΩ

−
∫

Γ

[
p̂′ (y, ω)∇yĜ (x,y, ω)−∇yp̂

′ (y, ω) Ĝ (x,y, ω)
]
· n dΓ, (2.31)

where the unit normal n on Γ is directed towards the fluid. If x ∈ Γ then the acoustic
pressure in the l.h.s of (2.31) has to be divided by 2. On the other hand, Ω in (2.31) can
be of infinite radius i.e., Ω = R3. In this case the Sommerfeld radiation condition (see
Chapter 5) ensures that there is no contribution from the infinite surface Σ to the acoustic
pressure, so that Γ in the surface integral of (2.31) has to be replaced by S. If in addition
S = ∅, we recover (2.27). The expression (2.31) is known as the Kirchoff-Helmholtz
equation.

Equation (2.31) is valid for any Green function solving (2.30) and in particular it
allows the use of the simple free-space Green function, Ĝ0. The surface integral can be
evaluated if p̂′ and ∇p̂′ are known on Γ. However, it should be noted that these quantities
cannot be prescribed independently.

One could also consider avoiding the necessity to perform the surface integrals in
(2.31) by choosing modified Green functions that satisfy appropriate vanishing conditions
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on the surface. The problem is that finding these Green functions is only possible for solid
bodies having very simple geometries (spheres, cylinders, half-planes, etc.). An exception
that it is worthwhile to mention is the case of acoustically compact bodies. That is, when
the characteristic length of the body, say L, is small compared to the wavelength λ of the
sound generated by the source distribution ŝ, it is possible to compute approximate Green
functions with appropriate boundary behaviour for a large variety of geometry shapes.
These Green functions are termed compact Green functions, see e.g., [145, 146].

In the special case of Ĝ = Ĝ0 we obtain, using (2.24), the frequency domain Kirchoff-
Helmholtz equation

p̂′ (x, ω) = − 1

4π

∫

Ω

eik0|x−y|

|x− y| ŝ (x,y, ω) dΩ

− 1

4π

∫

Γ

p̂′ (y, ω)∂n

eik0|x−y|

|x− y| dΓ +
iωρ0

4π

∫

Γ

ûn

eik0|x−y|

|x− y| dΓ, (2.32)

where ∂n stands for the derivative in the normal direction to the surface and ûn is the
velocity component normal to the surface. Use has been made of the Fourier transform
of (2.14) (with f = 0) in (2.32).

The time domain version of the Kirchoff-Helmholtz equation can be found by Fourier
transforming (2.31) making use of the convolution theorem. This yields

p′ (x, t) =

∫ +∞

−∞

∫

Ω

s (y, τ)G (x,y, t− τ) dΩdτ

+

∫ +∞

−∞

∫

Γ

[
p′ (y, τ)∇yG (x,y, t− τ) −∇yp

′ (y, τ)G (x,y, t− τ)
]
·n dΓdτ.

(2.33)

In the special case of G = G0 (with G0 given by (2.23)), equation (2.33) becomes

p′ (x, t) =
1

4π

∫

Ω

[s]

|x− y| dΩ +
ρ0

4π
∂t

∫

Γ

[un]

|x− y|dΓ − 1

4π
∂i

∫

∂Ω

[p′]

|x− y|ni dΓ. (2.34)

The last two terms in (2.34) represent distributions of monopoles and dipoles sources on
the surface (see section 2.2.6, below).

2.2.5 Acoustic far field approximations

The Fraunhofer approximation

In many acoustic applications we will be mainly interested in knowing the acoustic field
far away from the sources that generate it. Some useful expressions can be derived in
these circumstances.

For simplicity, let us place the origin of coordinates inside the source region (see
Fig. 2.2). When |x| → ∞ and for y in the source region, it follows (using Taylor
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Figure 2.2: Far field approximations.

developments) that

|x− y| =
(
|x|2 + |y|2 − 2x · y

)1/2
= |x|

[
1 − 2x · y

|x|2
+

|y|2

|x|2

]1/2

≈ |x|
[
1 − x · y

|x|2
+ O

(
|y|2

|x|2

)]
(2.35)

so that

|x− y| ≈ |x| − x · y
|x| ,

|y|
|x| ≪ 1. (2.36)

Moreover, and using (2.36),

1

|x− y| ≈
1

|x| − x·y
|x|

≈ 1

|x|

(
1 +

x · y
|x|2

)
. (2.37)

Consequently,
1

|x− y| ≈
1

|x| +
x · y
|x|3

,
|y|
|x| ≪ 1. (2.38)

Let us consider now the retarded potential in (2.27). From the above results we can
approximate its value at the far-field as

p′ (x, t) =
1

4π

∫

R3

s (y, t− |x− y| /c0)
|x− y| dy

≈ 1

4π |x|

∫

R3

s

(
y, t− |x|

c0
+
x · y
c0 |x|

)
dy, (2.39)

where we note that we have only retained 1/ |x| from (2.38) to approximate the term
controlling the amplitude value in (2.39), while we have kept the whole of (2.36) for the
retarded time of the source distribution s. This is done to retain possible phase differences
between the waves generated at the various locations, y, of the source distribution.

The far-field approximation (2.39) is called the Fraunhofer approximation.
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Interchanging spatial and time derivatives

Another far-field approximation that is very frequently used in acoustics and aeroacoustics
is a rule for interchanging spatial and time derivatives. It is not difficult to show that, for
|x| → ∞ we can replace (see e.g., [146])

∂i ↔ − 1

c0

xi

|x|∂t. (2.40)

2.2.6 Monopoles, Dipoles and Quadrupoles

Some types of sources are of importance in acoustics theory and deserve special attention.
This is the case of monopolar, dipolar and quadrupolar sources.

A monopole point source is a volume source, see (2.4), of the type q (t) δ (x), which
results in an acoustic source s (x, t) = ρ0∂tq (t) δ (x), see (2.18). From (2.39) it is apparent
that, in free space, a point monopole will generate an acoustic field

p′ (x, t) =
ρ0

4π |x|∂tq

(
t− |x|

c0

)
. (2.41)

A dipole point source corresponds to an acoustic source of the type s (x, t) =
∇ · [f (t) δ (x)]. Making use of (2.25)-(2.27) it is not difficult to show that the acoustic
pressure generated by the point dipole is given by

p′ (x, t) = ∇ ·
(
f
(
t− |x|

c0

)

4π |x|

)
. (2.42)

The acoustic field generated by a dipole is equivalent to the one generated by two
monopoles of equal magnitude but opposite sign strengths placed a very short distance
apart.

A quadrupolar point source involves a double divergence instead of a single one like
in the dipole case. The source term is given by s (x, t) = (∇⊗∇) : [T (t) δ (x)] and the
generated acoustic field is

p′ (x, t) = (∇⊗∇) :

(
T
(
t− |x|

c0

)

4π |x|

)
. (2.43)

⊗ stands for the tensor product and : for a double contraction. The quadrupolar acoustic
field can also be recovered using combinations of two dipoles placed a short distance
apart. In the case of the two dipoles lying in the same axis we will talk of a longitudinal
quadrupole, while if the two dipoles are parallel one to the other and antiphase, we will
have a lateral quadrupole. In Fig. 2.3 we have plotted the squared pressure acoustic fields
generated by monopoles, dipoles and quadrupoles and we show an schematic draw of
them.

Finally, we note that a source of the type s (x, t) = ρ0∂tq (x, t) represents a distributed
monopole. A source s (x, t) = ∇ · f (x, t) corresponds to a distributed dipole and
s (x, t) = (∇⊗∇) : T (x, t) is a distributed quadrupole.
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Figure 2.3: Characteristic acoustic sources: monopole, dipole and lateral quadrupole.

According to the latter, the last term in (2.34) corresponds to a distributed surface
dipole. Using the Fraunhofer approximation (2.39) and the spatial-time derivatives
interchanging rule (2.40), we can approximate the far-field pressure generated by such
a dipole as

p′ (x, t) =
1

4π
∂i

∫

R3

fi (y, t− |x− y| /c0)
|x− y| dy

≈ 1

4π
∂i

[
1

|x|

∫

R3

fi

(
y, t− |x|

c0
+
x · y
c0 |x|

)
dy

]

≈ 1

4π |x|∂i

[ ∫

R3

fi

(
y, t− |x|

c0
+
x · y
c0 |x|

)
dy

]

≈ − xi

4π |x|2
∂t

[ ∫

R3

fi

(
y, t− |x|

c0
+
x · y
c0 |x|

)
dy

]
, (2.44)

where fi in (2.44) would correspond to p′ni in the special case of (2.34).

2.2.7 The multipole expansion

We will finish this reminder on physical acoustics presenting a well-known and useful
result: the multipole expansion of a source distribution (see e.g., [145, 233, 249] for a
proof).

The acoustic far field of a source distribution, s (x, t), of characteristic size, L, is the
same as that generated by the infinite series of point multipoles

∞∑

|α|=0

Sα (t)Dα [δ (x)] (2.45)
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with α := (α1, . . . , αn) standing for a multi-index in Rn (we will mostly use n = 2, 3) such
that |α| = α1 + . . .+ αn and Dα := ∂|α|/∂xα1

1 . . . ∂xαn
n . Sα is given by

Sα (t) =
(−1)|α|

|α|!

∫

R3

yα1

1 . . . yαn

n s (y, t) dy. (2.46)

It can be shown that that far-field acoustic pressure, p′ (x, t), is then given by [145]

p′ (x, t) ≈
∞∑

|α|=0

Dα

[
Sα (t− |x| /c0)

4π |x|

]
, |x| → ∞. (2.47)

For k0L ≪ 1, the acoustic pressure can be just approximated by the the first term
in the series (monopole). If this term vanishes for symmetry reasons, then the dipole
term would dominate, its amplitude being reduced by a factor ∼ (k0L) with respect to
the monopole one. If the dipole also vanishes, the quadrupole term dominates with an
amplitude reduction of ∼ (k0L)2 when compared with the monopole and so on.

The expansion (2.47) is at the basis of active noise control techniques [238] because
it allows to approximate any source field by a set of easier multipole sources. Hence,
it accounts for the possibility to generate a “cancelling” sound with more or less simple
devices.

2.3 Lighthill’s acoustic analogy

2.3.1 The concept of acoustic analogy

Central to aeroacoustics is the concept of acoustic analogy. An attempt to define what it
is understood by the term acoustic analogy was provided in [53]:

Definition 2.1 The term acoustic analogy refers to the recasting of the exact equations of
fluid motion in the form of an inhomogeneous wave equation appropriate to the fact that
in the far field (and ignoring here nonlinear waveform distortion) pressure fluctuations
propagate through still fluid at the ambient flow speed c0. Thus

(
1

c20
∂2

tt −∇2

)
h (x, t) = s (x, t) , (2.48)

for some h equivalent to p′ at the far-field. The r.h.s of (2.48) acts as a source term for
h and may include all propagation mechanisms such as scattering by turbulent eddies and
temperature inhomogeneities, refraction in the mean velocity and temperature fields, fluid
shielding of each eddy by the local (moving) fluid environment, nonlinear self-distortion
of propagating sound waves, etc.

Several acoustic analogies have been cited in the introduction of this Chapter. In
what follows, we will concentrate on Lighthill’s acoustic analogy derived in the pioneering
work [206, 207]. It will be shown how to obtain this analogy as well as its approximation
in the case of low Mach numbers, which will be used throughout this thesis.
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2.3.2 Lighthill’s acoustic analogy for low Mach number flows

As stated in definition 2.1, an acoustic analogy is based on a reordering of the equations
for fluid motion so as to obtain an inhomogeneous wave equation. Lighthill was the first
to reformulate the compressible continuity and momentum equations of a fluid in order
to do so. The source terms of the resulting inhomogeneous wave equation are expected
to be only important within the vortical (turbulent) region of the flow and, in a first
approximation, the generated sound is expected to have a negligible back-reaction on it
(see e.g., [101, 145, 146, 206, 208]). This is an acceptable hypothesis if the compressibility
of the source flow can be disregarded, i.e., in the case of low Mach numbers. We will see
that the powerfulness of Lighthill’s approach, at least for the cases we will be interested
in, precisely relies on whether incompressibility can be assumed or not.

To derive Lighthill’s equation we start from the continuity and momentum equations
(in Reynolds form) for a compressible flow with neither mass sources nor body forces
acting on it. Equations (2.3) and (2.10) then become

∂tρ+ ∇ · (ρu) = 0 (2.49)

∂t (ρu) + ∇ · Φ = 0. (2.50)

Next, we proceed analogously to what have been done to obtain (2.15), which was the
first step to achieve a wave equation. Hence, we take the time derivative of (2.49) and
subtract from it the divergence of (2.50). This yields

∂2
ttρ−∇ · (∇ ·Φ) = (∇⊗∇) : Φ. (2.51)

Given that only the divergence of the momentum flux tensor, Φ = ρ (u⊗ u) − σ
introduced in (2.9), appears in the equations of fluid motion, we can redefine the Cauchy
stress tensor, σ, for convenience so as to include a constant pressure p0:

σ ≡ − (p− p0) I + µ

[
∇u+ ∇u⊤ − 2

3
(∇ · u) I

]
. (2.52)

On the other hand, we note that in the case of an ideal, linear acoustic medium, the
momentum flux tensor adopts an easy expression as momentum transfer can only be
produced by pressure. In this case the momentum flux tensor becomes

Φ0 = (p− p0) I = c20 (ρ− ρ0) I, (2.53)

where we have used the fact that p′ = ρ′c20 in the last equality (remind that by definition
p′ := p− p0, ρ

′ = ρ− ρ0).
Taking into account that we can replace ∂2

ttρ by ∂2
tt (ρ− ρ0) in (2.51), we can take the

double divergence of (2.53), (∇⊗∇) : Φ0 = c20∇2 (ρ− ρ0), and subtracting it at both
sides of (2.51) arrive at

(
∂2

tt − c20∇2
)
(ρ− ρ0) = (∇⊗∇) : T (2.54)
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Figure 2.4: Equivalence of Lighthill’s acoustic analogy.

where
T := Φ − Φ0 = ρ (u⊗ u) +

[
(p− p0) − c20 (ρ− ρ0)

]
I − σ. (2.55)

Equation (2.54) is the celebrated Lighthill equation and the tensor T is known as
Lighthill’s stress tensor. Note that in order to derive (2.54) no approximation has been
performed. Hence, Lighthill’s equation has to be viewed as an alternative formulation
of the compressible fluid motion equations. Note also that (2.54) corresponds to an
inhomogeneous wave equation whose source term involves a double divergence, which
corresponds to a distributed quadrupolar source term (see section 2.2.6). Consequently,
Lighthill’s recasting of the fluid motion equations turns to be analogous to the problem
of obtaining the sound radiation of a distribution of quadrupole sources located in a
source region ΩS, into a stationary, ideal fluid occupying a domain Ωac (see Fig. 2.4 and
e.g., [54,101,145,206]). This is the reason why (2.54) is referred to as an acoustic analogy.
The strength of the quadrupole sources in (2.54) is given by T . In fact, (2.54) was the first
acoustic analogy to be derived and as no approximation has been performed to obtain it,
it is said to be an exact acoustic analogy. Since the appearance of (2.54) much work has
been carried out based on the acoustic analogy approaches as already explained in the
introduction.

As no approximations have been made to derive (2.54) it is obvious that this equation
retains all the complexity of the original compressible fluid motion equations. Therefore,
(2.54) must account not only for the aerodynamic sound generation but also for several
effects such as the convection by the flow, the refraction due to sound speed variations, the
self-modulation due to acoustic non-linearity or the attenuation due thermal and viscous
effects (see e.g. [145]). The Lighthill tensor, T , is responsible for all these outcomes. The
first term of the tensor in (2.55) is the non-linear Reynolds stress tensor ρ (u⊗ u), which
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is expected to be mainly important in the vortical region of the flow. The second term
of the tensor is the excess of momentum transfer by the pressure over that in an ideal,
linear fluid of density ρ0 and sound speed c0. The mean density variations and the wave
amplitude nonlinearities are responsible for it. Finally, the viscous stress tensor σ plays
a sound attenuation role. The practical utility of the Lighthill acoustic analogy precisely
relies on neglecting some of the effects described above by simplifying the expression for
the Lighthill tensor. As these effects mainly depend on the compressibility of the flow, we
will assume it to be incompressible (i.e., ∇ ·u = 0), which is an acceptable hypothesis in
the case of low Mach numbers (M2 ≪ 1 , M being the Mach number M = U/c0 with U a
characteristic flow velocity). Taking into account that we will be mainly interested in high
Reynolds number flows, typical of aeronautical and railway engineering applications, the
viscous stress in (2.54) will be neglected. Moreover, the mean density and sound speed
will be taken as uniform so that the second term in (2.54) becomes zero. The Lighthill
equation under these assumptions becomes

(
∂2

tt − c20∇2
)
(ρ− ρ0) = ρ0 (∇⊗∇) : (u⊗ u) , (2.56)

where we remind that u now accounts for a solenoidal velocity field.
However, the validity of the above equation (2.56) is by no means obvious. Crow [55]

investigated Lighthill’s equation (2.54) in terms of a perturbation series in the fluctuating
Mach number Mt = |u| /c0. Using the pressure fluctuations instead of the density ones,
it follows that,

(
M2

t ∂
2
tt −∇2

)
(p− p0) = ρ0 (∇⊗∇) : (u⊗ u) +M2

t (∇⊗∇) : T 1 + . . . (2.57)

with T 1 representing contributions to the source term from interactions between
incompressible and acoustic modes of the flow. Consequently, it seems quite inconsistent
to use the approximation (2.56) because this would correspond to neglect the O (M2

t )
terms in the r.h.s of (2.57), while retaining them in the l.h.s. Despite this apparent
drawback, Crow [55] showed using the method of Matched Asymptotic Expansions that
(2.56) is in fact valid for compact flows with small Mach number. This validity seems
to be due to the fact that ∂2

ttp
′ is negligible in those flow regions where (∇⊗∇) : T 1 is

not and vice versa. As a consequence, keeping the acoustic pressure double derivative in
the l.hs. of (2.57) and ignoring the T 1 contribution in the r.h.s results in an acceptable
slight error because the acoustic field becomes accurate to order Mach number. Not so
long ago, Ristorcelli [263] has proposed a closure model to resolve the above inconsistency
for weakly compressible flows that only makes use of the solenoidal velocity and pressure
fields.

Now, accepting (2.56) as valid for our purposes and if the Reynolds stress
tensor (source term) in (2.56) can be known somehow, equation (2.56) gives a useful
representation of the aerodynamically generated sound. However, rather than being
interested in solving (2.56) we will be mainly interested in its Fourier transform. In this
way we can directly obtain the density fluctuation (and hence the pressure fluctuation)
spectrum, which is the desired information in most engineering problems. The Fourier
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transform of (2.56) gives place to an inhomogeneous Helmholtz equation. This will allow
us to take benefit from several numerical techniques developed for it as well as for the
more general convection-diffusion-reaction equation, the former being a particular case of
it.

Taking into account that p′ = c20ρ
′, the counterpart of (2.56) in the frequency domain

becomes the inhomogeneous Helmholtz equation

(
−∇2 − k2

0

)
p̂′ = ρ0

(
û⊗ u

)
. (2.58)

The centerline of this thesis will be to solve the physical problem expressed by means
of equation (2.58) in a given computational domain Ω and with prescribed boundary
conditions on ∂Ω. This first involves finding the source term (Reynolds stress) and then
solving the inhomogeneous Helmholtz equation (2.58).

2.3.3 Formal integral solution

The free-space solution to equation (2.56) has been traditionally worked out by means of
the integral formulation presented in section 2.2.4. That is, the acoustic pressure at the far
field can be obtained by convolving the source term (Lighthill’s tensor double divergence)
with the free-space acoustic Green function as in (2.27) (see e.g., [54,101,233,249]). This
yields ( [54, 145, 146, 206]) for a point at the far field, |x| → ∞,

p′ (x, t) =
1

4π

∫

R3

1

|x− y|ρ0∂yi
∂yj
uiuj (y, t− |x− y| /c0) dy

≈ 1

4π
∂i∂j

∫

R3

1

|x− y|ρ0uiuj (y, t− |x− y| /c0) dy

≈ ρ0xixj

4πc20 |x|
∂2

tt

∫

R3

uiuj

(
y, t− |x|

c0
+
x · y
c0 |x|

)
dy, (2.59)

where we have made use of the Fraunhofer approximation (2.39) and the interchanging
of spatial and time derivatives (2.40) in the last line.

Equation (2.59) gives the acoustic pressure at a point x and time t once the
Reynolds stress is known (either by means of experiment, analytical development or CFD
computation). As already mentioned, this tensor is only expected to have a non-zero
value in the vortical (turbulent) region of the flow so that the integral in (2.59) becomes
finite. A dimensional analysis of the various terms appearing in (2.59) leads to the well-
known Lighthill’s eight power law, which states that the generated total acoustic power
depends on U8 (see [206]). It can also be shown that the ratio between the generated
acoustic power and the energy supplied to the flow in order to maintain turbulence is
proportional to M5. This verifies the fact that the aerodynamically generated sound is a
small side-effect of the whole flow motion.
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2.4 The presence of boundaries

2.4.1 The Ffowcs Williams-Hawkings equation

So far, we have placed the problem of aerodynamic sound generation and propagation
in free space, i.e., R3. However, in most practical cases the presence of boundaries plays
a crucial role. Think, for instance, in the case of noise generated by fan or helicopter
blades or in the case of noise generated by turbulence in shear layers separating an
exhausting high speed jet from the quiescent medium. In order to address these types
of problems, it could be possible to follow the procedure of the last section using an
appropriate Green function for the geometry at hand, instead of the one for free space
(see also the discussion on the Kirchoff-Helmholtz equation in section 2.2.4). However,
and as mentioned in section 2.2.4, this is not usually an easy task, specially in the case
of complex geometries. An alternative approach was proposed by Ffowcs-Williams and
Hawkings [72] (see also [71]), which consists in reformulating the source terms in (2.54) to
account for the presence of boundaries. This allows to keep making use of the free space
Green function when an integral formulation of the problem is carried out.

The Ffowcs Williams-Hawkings procedure starts by introducing a closed control
surface S in the flow. A function f (x, t) is defined such that

f (x, t) = 0 ∀x ∈ S

f (x, t) > 0 ∀x in the flow

f (x, t) < 0 ∀x inside S. (2.60)

If S moves with speed v, the following relation fulfils

∂tf + v · ∇f = 0. (2.61)

The Heaviside function H (f) is then defined having a unit value everywhere in the
flow and a zero value inside S. Multiplying the continuity and momentum equations
(2.49)-(2.50) by H (f) and following an analogous procedure to the one used to derive
Lighthill’s equation (2.56), we arrive at the differential form of the Ffowcs Williams-
Hawkings equation

�2
[
H (f) c20 (ρ− ρ0)

]
= (∇⊗∇) : [TH (f)] + ∇ · [s δ (f)] + ∂t [q δ (f)] , (2.62)

where T is the Lighthill tensor (2.55), δ is the Dirac delta at f = 0 and

s = −ρu⊗ (u− v) − (p− po) I + σ (2.63)

q = ρov + ρ (u− v) . (2.64)

Note that if no surfaces were present, H (f) = 1 and δ (f) = 0 so that Lighthill’s equation
(2.54) is recovered. Hence the difference between (2.54) and (2.62) is the appearance of
two new source terms, which according to section 2.2.6 represent distributions of dipoles
and monopoles placed at S.
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2.4.2 Formal integral solution

By convolving (2.62) with the free field acoustic Green function (2.23) we obtain the
integral Ffowcs Williams-Hawkings equation that accounts for the effects of boundaries
in the flow

H (f) c20 (ρ− ρ0) ≈
1

4π
∂i∂j

∫

Ω(τ)

[Tij ]

|x− y| dΩ

− 1

4π
∂i

∫

S(τ)

[ρui (uj − vj) + (p− p0) δij − σij ]

|x− y| nj dS

− 1

4π
∂t

∫

S(τ)

[ρ (ui − vi) + ρ0vi]

|x− y| nidS. (2.65)

The surface integrals in (2.65) are over the retarded time surface defined by f (y, τ) = 0
with the surface normal directed into the region where f > 0. (2.65) is a generalization
of the Kirchoff-Helmholtz equation (2.34) and also consists of distributed surface dipoles
and monopoles (second and third lines) plus a quadrupole contribution due to the velocity
Reynolds stress tensor. We remind that the delimiters [ ] indicate evaluation at retarded
times.

A particular interesting case of the Ffowcs Williams-Hawkings equation is that of the
control surface being stationary. In this case v = 0 and equation (2.65) reduces to Curle’s
equation [56]:

H (f) c20 (ρ− ρ0) ≈
1

4π
∂i∂j

∫

Ω

[Tij ]

|x− y| dΩ

− 1

4π
∂i

∫

S

[ρuiuj + (p− p0) δij − σij ]

|x− y| nj dS

− 1

4π
∂t

∫

S

[ρui]

|x− y|nidS. (2.66)

If in addition the surface S is rigid (u = 0 at S), (2.66) further simplifies to

H (f) c20 (ρ− ρ0) ≈
1

4π
∂i∂j

∫

Ω

[Tij]

|x− y| dΩ

− 1

4π
∂i

∫

S

[(p− p0) δij − σij ]

|x− y| nj dS. (2.67)

Using the above integral equations in order to compute the generated aerodynamic
sound field it is not an easy task and care has to be taken, specially in what concerns the
evaluation of the surface terms at the corresponding retarded times (see e.g. [8, 53, 145]).
However, accurate codes have been developed for some industrial applications, which
show good performance. Further details on this and further possibilities to perform
computations of aerodynamically generated noise will be given in next chapter.

On the other hand, it is worthwhile to mention that the integral formulations presented
above can be also developed in the frequency domain (see e.g., [8, 51, 53, 54, 72]).



36 CHAPTER 2. AEROACOUSTICS

2.5 Conclusions

After reviewing some fundamental concepts on physical acoustics, we have introduced
Lighthill’s acoustic analogy, which is central to aeroacoustics theory. For low Mach
numbers, the source term of this analogy can be approximated by the double divergence
of the Reynolds tensor for the incompressible velocity field. If one assumes the latter as
known data, a formal integral solution to the aerodynamic noise problem can be found by
convolving the source term with the acoustic free-space Green function. If boundaries are
present, Lighthill’s acoustic analogy can be reformulated so as to include their effect. This
leads to the also celebrated Ffowcs-Williams/Hawkings equation, whose integral solution
is widely used as a basis for computational aeroacoustics.

As an alternative to this conventional approach, a three-step methodology will be
introduced in next chapter. The methodology will basically consist of a CFD calculation to
obtain the incompressible velocity field, a computation of the acoustic source and its time
Fourier transform, and solving the time Fourier transform of Lighthill’s acoustic analogy.
Stabilised finite element methods will be used to implement it. Some special issues
concerning the computation of the aerodynamic and acoustic fields will be respectively
addressed in Chapters 4 and 5.



Chapter 3

Computational aeroacoustics

In this chapter we will propose and implement the three-step methodology briefly described
in Chapter 1 to compute aerodynamic noise generated by low speed flows. Use will be
made of Subgrid Scale (SGS) stabilised finite element methods. In what concerns the first
step of the method, i.e., the computational fluid dynamics simulation of incompressible
flows, special emphasis will be placed on a recently developed SGS procedure that, as a
novelty, accounts for the time tracking of the subscales keeping all non-linear terms in
their modelling. A SGS method will be also used to compute the acoustic field generated
in the third step of the method. Numerical examples of aeolian tones generated by flow
past single and parallel cylinders at different Reynolds numbers will be also presented to
test the good performance of the method.

3.1 Introduction

The first golden age of aeroacoustics lasted from the late 1940’s until the 1970’s (see
section 2.1). At that time, computer science had evolved enough so as to begin to
consider the idea of approaching the problem of aerodynamically generated noise using
computational resources. That was the beginning of Computational Aeroacoustics (CAA).
Its amazingly rapid development showing large potential, combined with the progress
in new air vehicles (for both civilian transportation and military applications) and the
stricter noise regulations yield the conclusion, at the beginning of the 1990’s, that a second
golden age of aeroacoustics was emerging [209, 293].

Up to nowadays, several CAA strategies have been developed in order to face a large
variety of aerodynamic noise problems typical of aeronautics, railways or automotive
sectors (among others). The physics underlying the various phenomena leading to the
generation of aerodynamic noise may be quite different from case to case, depending
on the compressibility of the flow, the possible interaction (feedback loops) between
the aerodynamic and acoustic fields, the possible shock wave formation, the importance
of non-linear propagation effects, etc.,. However it is our purpose to focus herein on
the numerical computation of aerodynamic noise generated by viscous low speed flows.
Computational Aeroacoustics of viscous subsonic flows has to face with several difficulties

37
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(some of them shared with other types of flows) such as (see e.g., [53]):

• The large audibility range of human hearing that comprises from 0 dB to almost
140 dB, which corresponds to intensity changes of several orders of magnitude.

• The wide frequency range perceived by human hearing that comprises from 20 Hz to
20.000 Hz (i.e., about 10 octaves whereas sight involves just one octave). Moreover,
hearing is specially sensitive in the [1000, 4000] Hz range, which is 4 to 5 octaves
higher than the energy containing scales.

• The high disparity between the energy of the aerodynamic field and the energy of
the aeroacoustic field the former generates (see section 2.3.3). The power ratio is of
order ∼ M5, with M being the Mach number. Hence, the acoustic field is a small
by product of the flow motion and its weak values sometimes may result masked by
the dispersion and diffusion errors of the numerical algorithms.

The following example can serve to illustrate the weakness of the acoustic field [53]:
The sound intensity emitted by a standard jet plane at taking off is as large as the
intensity emitted by the whole population of a middle town shouting simultaneously.
However, all this acoustic energy will not suffice to fry an egg!

• The large scale disparity between the sizes of the flow eddies and the wavelength of
the acoustic waves they generate.

• It is of crucial importance for the numerical solution to maintain the multipolar
character of the acoustic field. Substituting a quadrupolar source by a dipolar one
may lead to strong errors in the evaluation of both, the directivity and the intensity
of the acoustic field, unless integrations are very carefully performed (see section
2.4.2).

• Another important question (no to be addressed in this work) concerns the sound
propagation at large distances ∼ 300 m, where non-linear phenomena such as
steepening may play an important role (see e.g., [293]).

As mentioned, several numerical approaches have been developed to face the above
CAA problems in the past thirty years (see e.g., [8,32,53,68,293,297]). These approaches
include the Direct Numerical Simulation (DNS) (see e.g., [169, 227, 228]) the use of the
Kirchoff-Helmholtz integral over a surface enclosing all sources (e.g., [69, 87, 228, 293])
the use of asymptotic matching (e.g., [271] following [55]) and some less extended
alternatives such as the stochastic approach in [6] or the numerical techniques for near-
field computations in [58]. Recent developments have also included the use of dispersion-
relation-preserving schemes [282] and its grid-optimized version [34]. However, the most
extended way to perform CAA computations for low speed flows probably involves the
use of acoustic analogies. Acoustic analogies have been applied to solve some academic
problems, such as those related to the generation of sound fields by interacting vortices
(e.g., [173, 174]). More recently, problems such as computing the noise generated by
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turbulence past the trailing edge of a wing have been also addressed [219, 244, 292].
CAA problems of industrial interest are nowadays being attempted with the use of
supercomputing facilities.

Acoustic analogies in CAA are usually solved following an integral formulation.
The integral form of the Ffowcs-Williams and Hawkings equation (2.65) is frequently
used [8, 66, 217] neglecting the quadrupolar contribution (Reynolds stresses) and using
a CFD code to determine the velocity and pressure on the problem surfaces. However,
we will not follow this somehow standard approach here. As it has been explained in
Chapter 1, a three-step approach will be followed involving a CFD simulation, obtaining
an acoustic source term from it, and solving an inhomogeneous Helmholtz equation to
compute the generated aeroacoustic field. The differential equations in the first and
third step of the proposed method (Fig. 3.1) will be solved using subgrid scale (SGS)
stabilised finite element methods. The use of finite elements poses no mesh restrictions
when dealing with complex geometries, which makes the approach suitable for industrial
problems. Moreover, this procedure avoids some of the problems found when using the
standard integral approach such as evaluating the source term at appropriate retarded
times. It also avoids neglecting any term (noise sources inside the flow interior domain
are also considered), it accounts for the presence of boundaries in a natural way and
allows a direct visualization of the acoustic source term. The finally resulting method
resembles that in Refs. [243], [244] although it presents several differences concerning the
acoustic source term, the stabilised weak forms used in the numerical formulation, the
treatment of sound propagation under Galilean and Lorentz transformations [106] and
some implementation aspects. Finally it is worthwhile to mention that recent CAA has
been also carried out work in the framework of finite volumes (see e.g., the space-time
and solution-element approach in [31]).

The chapter is organized as follows. In section 3.2 the proposed CAA methodology
for low speed flows is presented. Next, in section 3.3 we state the initial and boundary
value differential problems to be solved. The functional framework to be used in this
and subsequent chapters is also introduced, as well as the variational formulation of
the former differential problems. In section 3.4 the Galerkin finite element approach
to solve the variational problems is presented and its drawbacks outlined. The stabilised
finite element methods that avoid the typical difficulties of the Galerkin approach are
formulated in section 3.5. In section 3.6 two numerical examples dealing with aerodynamic
noise generated by flow past a single cylinder and by two cylinders for different Reynolds
numbers are presented. Conclusions are finally drawn in section 3.7.

3.2 Proposed methodology to solve aeroacoustic

problems

Once the physical problem of the generation of aerodynamic sound has been presented in
the previous chapter, as well as one of the standard ways to solve it, we will next establish
the proposed alternative method to do so. Our main goal will be to find a numerical
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Figure 3.1: Scheme of the proposed methodology for computational aeroacoustics.

solution for the time Fourier transform of the original Lighthill acoustic analogy using the
Reynolds tensor to approximate Lighthill’s tensor (equation (2.58)).

The proposed methodology [105–107] is embedded in the framework of finite
element methods and can be conceptually divided in three steps. In the first step
a computational fluid dynamic (CFD) simulation of the incompressible Navier-Stokes
equations is performed to obtain the flow velocity field. In the second step the source
term in the r.h.s of (2.56) i.e., the double divergence of the Reynolds tensor, is computed
and time Fourier transformed. Finally, in the third step the result is inserted in the
inhomogeneous Helmholtz equation (2.58) and solved to obtain the acoustic pressure
field. A scheme of the approach is shown in Fig. 3.1.

In what follows, the three steps will be exposed in some detail.

3.2.1 First step: Computational Fluid Dynamic Simulation

The CFD computation aims at obtaining the flow velocity vector, u, from the solution
of the time evolving incompressible Navier-Stokes equations. The mathematical problem
consists in solving the latter equations in a given computational domain Ω ⊂ Rd (where
d = 2 or 3 is the number of space dimensions) with boundary ∂Ω and prescribed initial and
boundary conditions. The boundary ∂Ω can be split into two disjoint sets ∂Ω = ΓD ∪ ΓN

respectively accounting for those boundaries with prescribed Dirichlet and Neumann
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conditions. The problem to be solved can be straightforwardly derived from the results
in section 2.2.2 and reads

∂tu− ν∆u + u · ∇u+ ∇p = f in Ω, t > 0, (3.1)

∇ · u = 0 in Ω, t > 0, (3.2)

u (x, 0) = u0 (x) in Ω, t = 0, (3.3)

u (x, t) = uD (x, t) on ΓD, t > 0, (3.4)

n · σ (x, t) = tN (x, t) on ΓN , t > 0, (3.5)

with ν representing the kinematic flow viscosity, f the external force and tN the traction
on the boundary.

In the case of high Reynolds number problems we will be faced with the difficulty
to simulate turbulent flows. There exist mainly three options to do so (see e.g.,
[255], [265]) namely the RANS (Reynolds Averaged Navier-Stokes equations) approach,
the DNS (Direct Numerical Simulation) approach and the LES (Large Eddy Simulation)
approach. In general, the RANS approach turns to be not appropriate for aeroacoustic
simulations because it cannot properly capture time fluctuations. On the other hand,
DNS computational cost scales as Re9/4, which makes it not feasible for the typical high
Reynolds number problems found in aeronautics, railways or automotive applications.
Hence, the right option seems to be LES that performs a spatial scale decomposition
u = ū + u′, p = p̄ + p′ for the velocity and the pressure in (3.1)-(3.5). (ū, p̄) stands for
some large scales that are expected to be computationally resolvable while (u′, p′) stands
for the small scales, which are not expected to be computable.

In the standard LES approach, the scale decomposition is carried out by convolving
(3.1)-(3.5) with a filter function [255, 265]. As it is known, this gives place to a closure
problem because an extra term of the type R := u⊗ u−ū⊗ū, which has to be modelled,
appears in the equations. This term is known as the residual stress tensor. Once having
a model for R, the resulting LES equations can be discretised and a numerical solution
attempted. However, there is another possible strategy that consists in performing the
scale decomposition by means of a projection onto the finite element space [157]. In
this case, the large scales represent those scales that can be directly captured with the
computational mesh, while the small scales represent those scales that cannot be captured
by the mesh. An advantage of such a procedure is that it avoids some of the typical
problems encountered in standard LES such as the merging of errors arising from the
closure model and from the adopted numerical strategy.

This alternative approach to LES has been developed in the framework of Subgrid
Scale (SGS) stabilised finite element methods [150, 153] and constitutes a reliable
alternative to the standard LES simulation of turbulent flows (see e.g., [26, 44, 158, 159]).
In the following sections the SGS method adopted in this work [42–44,47] will be presented
in full detail, whereas considerations on its possibilities concerning the simulation of
turbulent flows will be addressed in chapter 4.
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3.2.2 Second step: The source term

The second step of the method consists in obtaining the acoustic source term, i.e.,
ρ0 (∇⊗∇) : (u⊗ u), from the flow velocity vector, u, computed in the first step of
the method. As the source term involves a double divergence it cannot be directly
computed using finite elements of class C0, unless it is integrated by parts transferring one
derivative to the test function. However, there also exists the possibility to approximate
the source term with first order derivative terms thanks to the incompressibility constraint.
Effectively,

(∇⊗∇) : T ≈ ρ0 (∇⊗∇) : (u⊗ u) = ρ0∇ · [(∇⊗ u) · u+ u (∇ · u)]

= ρ0∇ · [(∇⊗ u) · u] = ρ0u · ∇ (∇ · u) + ρ0 (∇⊗ u) : (∇⊗ u)⊤

= ρ0 (∇⊗ u) : (∇⊗ u)⊤ =: s (x, t) (3.6)

where ∇ · u = 0 has been used twice and we have defined s (x, t) in the last line (the
notation ∇⊗u ≡ ∇u will be used indistinctly throughout the thesis). This approximation
allows the direct visualization of the source term while keeping the advantages of using
C0−class finite elements.

The second step of the method finishes by performing the time Fourier transform of
s (x, t) to get ŝ (x, ω). To obtain the appropriate degree of accuracy for ŝ (x, ω) it would
be necessary to store a large amount of instantaneous velocity fields. This requires a huge
amount of computer memory resources. To avoid this problem, the following strategy has
been used. The frequencies at which the source term ŝ (x, ω) is wanted are chosen prior
to start the CFD computation. During the evolution of the CFD computation s (x, t) is
automatically computed at each time step as well as its contribution to ŝ (x, ω). At the
end of the simulation only ŝ (x, ω) is retained hence avoiding the need to store s (x, t),
except for the steps at which a visualization of the source term is desired. Moreover, if
there is a prior knowledge of the frequency range at which the analysis is to be performed
(this is often the case in several practical engineering problems where experimental data
is available) the computations can be further reduced. Consequently, although steps one
and two of the methodology have been differentiated for the sake of clarity, in practice
they are carried out simultaneously.

3.2.3 Third step: Computing the acoustic field

In the third step of the method, the inhomogeneous Helmholtz equation (2.58) obtained
from the time Fourier transform of (2.56) is solved using ŝ (x, ω) in (3.6) as the source
term. The mathematical problem to be faced is that of finding the acoustic pressure
p̂′ (x, ω) : Ωac → C, being Ωac ⊂ Rd, (d = 2, 3) a bounded computational domain with
boundary ∂Ωac = ΓD ∪ ΓB (ΓD ∩ ΓB = ∅) such that

−
(
∇2 + k2

0

)
p̂′ = ŝ in Ωac, (3.7)

p̂′ = p̂′D on ΓD, (3.8)

∇p̂′ · n = M [p̂′] + ĝ on ΓB. (3.9)
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In (3.7)-(3.9) k0 = ω/c0 is the wavenumber, n stands for the normal pointing outwards
the exterior boundary ΓB, ĝ : ΓB → C represents prescribed data on ΓB and M [p̂′] is an
integral operator defining a non-reflecting condition. If ΓB is far enough from the source
region, the non-local boundary condition specified by M [p̂′] can be replaced by the local
condition ik0p̂

′, so that (3.9) becomes a Sommerfeld’s radiation condition,

∇p̂′ · n = ik0p̂
′ + ĝ on ΓB. (3.10)

In all forthcoming simulations we will consider large enough computational domains so
that (3.10) applies. In fact ∇p̂ · n− ik0p̂ ∼ O (R−1) being R a measure of the radius of
the computational domain [163].

The third step of the method will be addressed in detail in Chapter 5 where (3.7)-
(3.10) as well as their convected counterpart will be solved using stabilised finite element
methods.

3.3 Variational problem statement

3.3.1 Functional framework

Prior to establish the variational or weak formulation of problems (3.1)-(3.5) and (3.7)-
(3.10), we will introduce the general functional framework that will be used throughout
this work. We will denote by Lp (Ω) the spaces of functions whose p power (1 ≤ p <∞)
is integrable in Ω (with respect to the Lebesgue measure). The spaces Lp (Ω) are Banach
spaces with associated norm

‖u‖p :=

(∫

Ω

|u (x)|p dx
) 1

p

, p <∞. (3.11)

The case p = ∞ corresponds to the space of bounded functions in Ω. The associated
norm is then given by the essential supremum of all functions bounded in Ω i.e.,
‖u‖∞ := ess supΩ |u (x)| . For 1 < p < ∞, Lp(Ω) are reflexive spaces with duals Lq(Ω),
being 1/p+ 1/q = 1. A case of special interest is that of L2(Ω), which is a Hilbert space
with scalar product

(u,v) :=

∫

Ω

u(x)v(x)dΩ (3.12)

and induced norm ‖u‖L2(Ω) ≡ ‖u‖ = (u,u)1/2. Boldface will be used to designate
the vector counterpart of Lp(Ω) corresponding to d-dimensional functions i.e., Lp(Ω) ≡
(Lp(Ω))d. From a physical point of view and in what concerns the Navier-Stokes equations
(3.1)-(3.5), L2 (Ω) can be identified with the space of velocity fields with bounded kinetic
energy, given that ‖u‖2 = 2E (u), with E (u) standing for the kinetic energy per unit
mass.

The Sobolev spaces Wm,p (Ω) are space of functions in Lp (Ω) such that their
derivatives up to order m ∈ N also belong to Lp(Ω). Wm,p (Ω) are Banach spaces with
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norm denoted by ‖·‖m,p. For p = 2, Wm,2 (Ω) are Hilbert spaces and the notation
Hm(Ω) ≡ Wm,2(Ω) will be used to refer to them. Moreover, Hm

0 (Ω) will stand for the
subspace of functions in Hm(Ω) vanishing on ∂Ω together with their derivatives in the
normal direction up to order m − 1. We note that the case m = 1 is of special interest.
H1(Ω) has associated the scalar product

(u,v)H1 :=
1

L2
(u,v) + (∇u,∇v) (3.13)

and the norm ‖u‖H1 = (u,u)
1/2

H1 . In (3.13) , L represents a characteristic length (for
instance, L = diam(Ω)) with L = 1 for dimensionless variables. On the other hand,
H−1 (Ω) stands for the topological dual of H1

0 (Ω). In the case of f and g being
distributions such that the product fg is integrable in the domain Ω, we will use the
brackets, 〈·, ·〉Ω to denote the integral

〈f, g〉Ω =

∫

Ω

fg dΩ (3.14)

so that, in particular, 〈·, ·〉 will correspond to the duality pairing between H1
0 (Ω) and

H−1 (Ω). For f, g ∈ L2 (Ω), 〈·, ·〉 will correspond to the inner product (·, ·). Again,
boldface will designate the vector counterparts of all these spaces.

For u being a velocity field, we have seen that, when v = u, the first term in (3.13)
corresponds to twice the kinetic energy. In what concerns the second term, it corresponds
to the enstrophy root square. The enstrophy E (u) is an important quantity given that
it determines the rate of dissipation of kinetic energy in a flow. In R

d, E (u) can be
represented in terms of the vorticity field, ω = ∇× u, as E (u) := ‖ω‖2

2. Hence, from a
physical point of view the space H1(Ω) can be identified with the space of velocity and
vorticity fields having bounded kinetic energy and enstrophy [75].

Finally, to deal with the time evolution of the pressure and velocity fields we will need
to introduce the spaces Lp (0, T ;Z(Ω)) that for 1 ≤ p <∞ are defined as

Lp (0, T ;Z(Ω)) :=

{
f : (0, T ) −→ Z(Ω)|

∫ T

0

‖f (x)‖p
Z dt <∞

}
, (3.15)

with Z(Ω) being any of the above introduced spatial functional spaces. ‖·‖X is used to
designate the norm in a Banach space, X. In the case p = ∞ we will have

L∞ (0, T ;Z(Ω)) :=

{
f : (0, T ) −→ Z(Ω)| ess sup

t∈(0,T )

‖f (x)‖p
Z <∞

}
. (3.16)

Once more, a bold character will be used for the vector counterpart of all these spaces.
The functional spaces presented above represent the general functional framework

were most problems in this thesis will be stated. However, additional functional spaces
will be required and introduced where appropriate throughout the work.
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3.3.2 Variational forms

Weak form of the Navier-Stokes equation

Once having introduced an appropriate functional framework, we are now in disposition
to present the variational or weak form of the Navier-Stokes equations (3.1)-(3.5). Let
us consider in what follows the case of homogeneous Dirichlet conditions (the extension
to the inhomogeneous case and Neumann boundary conditions can be done in the usual
manner) and use Vd

0 and Q0 to designate the functional spaces

Vd
0 ≡H1

0 (Ω) :=
{
u (x) ∈ H1 (Ω)d

∣∣u = 0 on ΓD

}
(3.17)

Q0 :=

{
q (x) ∈ L2 (Ω)

∣∣
∫

Ω

qdΩ = 0 if ΓN = ∅
}
. (3.18)

The weak or variational form corresponding to (3.1)-(3.5) is then found as usual by
multiplying these equations by test functions v ∈ Vd

0 , q ∈ Q0 and integrating over
the whole domain Ω. Hence, the variational problem consists e.g., in finding [u, p] ∈
L2
(
0, T ;Vd

0

)
×L1 (0, T ;Q0) such that

∫

Ω

v · [∂tu
n + (u · ∇u)] dΩ + ν

∫

Ω

∇v : ∇udΩ −
∫

Ω

p∇ · vdΩ =

∫

Ω

v · fdΩ (3.19)
∫

Ω

q∇ · udΩ = 0 (3.20)

for all [v, q] ∈ Vd
0 ×Q0. In order to shorten the notation in (3.19)-(3.20) and subsequent

equations, we will make use of (3.12), (3.14) and define

l (v) := 〈v,f〉 (3.21)

(note that the brackets in (3.21) correspond to the duality pair between H1/2 (ΓN ) and
H−1/2 (ΓN)). The weak form (3.19)-(3.20) can then be rewritten as

(∂tu,v) + 〈u · ∇u,v〉 + ν (∇u,∇v) − (p,∇ · v) = l (v) (3.22)

(q,∇ · u) = 0 (3.23)

Weak form of the inhomogeneous Helmholtz equation

The procedure to find the continuous weak form for the inhomogeneous Helmholtz
equation (3.7)-(3.9) in the third step of the proposed CAA method, is analogous to the one
developed in the previous section. We consider again homogeneous Dirichlet conditions
and introduce the functional space

W0 :=
{
q (x) ∈ H1 (Ωac) ; q = 0 on ΓD

}
. (3.24)
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We then multiply the differential equation by a test function w and integrate over the
acoustic domain Ωac. Using the notation introduced in the previous sections, the weak
problem can be formulated as: find p̂′ ∈ W0 such that

(∇p̂′,∇w) − k2
0 (p̂′, w) − ik0 〈p̂′, w〉ΓB

= 〈ŝ, w〉 + 〈ĝ, w〉ΓB
(3.25)

for all w ∈ W0. Note that the acoustic pressure is a complex number so that the integrals
in (3.25) involve the complex conjugate of the test function. Notice also that domain
integrations in the scalar products take place now in Ωac.

3.4 Galerkin finite element approximation

3.4.1 Time discretisation and finite element triplet

Time discretisation of the Navier-Stokes equations

To find a numerical solution to the Navier-Stokes equations (3.1)-(3.5) in the first step
of the proposed CAA methodology (section 2.5.1) we will have to discretise them in
time and space. The time discretisation scheme that has been used in this work is the
generalized trapezoidal rule. Let us consider a partition of the computational time interval
0 < t0 < . . . < tN = T with a constant time step size δt := tn+1 − tn, and let us introduce
the following notation for a generic time-dependent function ϕ (t),

δϕn := ϕn+1 − ϕn, (3.26)

ϕn+α := αϕn+1 + (1 − α)ϕn (3.27)

δtϕ
n := δϕn/δt (3.28)

where α ∈ [0, 1] and ϕn stands for the value of ϕ at time tn. According to (3.26)-(3.28), the
time discrete version of the Navier-Stokes (3.1)-(3.5) for homogeneous Dirichlet conditions
can be written as

δtu
n − ν∆un+α + N n (u) + ∇pn+1 = fn+α in Ω, (3.29)

∇ · un+α = 0 in Ω, (3.30)

u0 = u0 in Ω, (3.31)

un+α = 0 on ΓD, (3.32)

n · σn+α = tn+α
N on ΓN , (3.33)

with N n (u) representing an approximation to the convective term. Depending on the
value of α in (3.29)-(3.33) we will have a first or second order accurate in time scheme for
the solution. The most widely used schemes are
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First order schemes

• α = 0: Forward Euler scheme. Conditionally stable i.e., δt has to be small enough.
In this case the convection term is given explicitly, N n (u) = (un · ∇)un.

• α = 1: Backward Euler scheme. Unconditionally stable. In this case the convection
term is given implicitly, N n (u) = (un+1 · ∇)un+1. A linearisation process is needed
at each time step.

• It is also possible to use an explicit advection velocity even if α = 1, namely
N n (u) = (un · ∇)un+1. This results in an unconditionally stable scheme.

Second order schemes

• α = 1/2: Crank-Nicolson scheme. Unconditionally stable. This will be the
most used scheme in this work. The convection term is implicit and given by
N n (u) =

(
un+1/2 · ∇

)
un+1/2. A linearisation process is needed at each time step.

• α = 1/2: Adams-Bashforth/Crank-Nicolson scheme. Conditionally stable i.e., δt
has to be small enough. Instead of using α = 1/2 for the convection term, this term
is explicitly obtained from N n (u) = 1

2
[3 (un · ∇)un − (un−1 · ∇)un−1].

The above presented schemes use a one step approximation for the temporal derivative.
Higher step approximations are also possible (e.g., Gear schemes) although we will not
use them in this work.

Given that we aim at using a finite element method to solve the Navier-Stokes
equations, we will be interested in the time discretisation of the weak form (3.22)-(3.23)
rather than on (3.29)-(3.33). The time discrete spatial continuous weak form of the
Navier-Stokes problem can then be stated as: from known un, find un+α ∈ Vd

0 , pn+1 ∈ Q0

such that

(δtu
n,v) +

〈
un+α · ∇un+α,v

〉
+ ν

(
∇un+α,∇v

)
−
(
pn+1,∇ · v

)
= l (v) (3.34)

(
q,∇ · un+1

)
= 0 (3.35)

for all v ∈ Vd
0 , q ∈ Q0.

Finite element triplet

As just mentioned above, for the spatial discretisation of the Navier-Stokes equations
(3.1)-(3.5) and of the Helmholtz equation (3.7)-(3.9), finite elements will be used. Just to
set up some notation we remind that a finite element is a triple (Ωe,Pk (Ωe) ,Σe) consisting
of (see e.g. [22, 172]):

• Ωe: a geometrical object (subdomain of an Ω-partition).

• Pk (Ωe): a finite dimensional linear space of polynomials of degree ≤ k defined on
Ωe. We will generally denote by Vh the space Vh := {f ∈ C0 (Ω) | f |Ωe

∈ Pk (Ωe)}.
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• Σe: set of k-unisolvent degrees of freedom, i.e., ∀ fh (x) ∈ Pk (Ωe) ∃!F =
{F 1, . . . , F n} ∈ Σe| fh (x) =

∑n
a=1 N

a (x)F a with n = dimPk (Ωe). Na are termed
the base or shape functions and F a the nodal values.

3.4.2 Galerkin discrete weak forms

Galerkin finite element approximation of the Navier-Stokes equations

Let us now proceed to the spatial discretisation of (3.34)-(3.35). Given a finite element
partition of Ω with ne elements, nu nodes for the velocity, np nodes for the pressure and
the finite dimensional subspaces Vd

h,0 ⊂ Vd
0 and Qh,0 ⊂ Q0 to respectively approximate

the velocity and the pressure, the Galerkin finite element approach to (3.34)-(3.35) can
be stated as: from known un

h, find un+α
h ∈ Vd

h,0, p
n+1
h ∈ Qh,0 such that

(δtu
n
h,vh) + ν(∇un+α

h ,∇vh) + 〈un+α
h · ∇un+α

h ,vh〉
−
(
pn+1

h ,∇ · vh

)
+
(
qh,∇ · un+1

h

)
= l (vh) (3.36)

for all vh ∈ Vd
h,0, qh ∈ Qh,0. f and tN in l (vh) (r.h.s of (3.36)) are assumed to be

continuous in time and evaluated at the time step n + α.
On the other hand, uh and ph are of the type

uh =

(
nu∑

a=1

Na
uU

a
x ,

nu∑

a=1

Na
uU

a
y ,

nu∑

a=1

Na
uU

a
z

)
(3.37)

ph =

np∑

b=1

N b
pP

b (3.38)

with Na
u being the velocity shape functions,

(
Ua

x , U
a
y , U

a
z

)
the nodal velocity values for

every coordinate, N b
p the shape functions for the pressure and P b the nodal pressure

values. Substitution of (3.37)-(3.38) into (3.36) yields an algebraic system of equations
for the nodal velocities and pressures that has to be linearised and then solved at each time
step. The velocity and pressure at any point in Ω can be finally obtained by interpolation
from these nodal values.

It is well known that the Galerkin formulation (3.36) suffers from several numerical
problems. For instance, numerical instabilities are encountered for high Reynolds number
problems i.e., when the non-linear convective term in the equation dominates the viscous
one. Moreover, a compatibility condition (inf-sup or LBB condition) is required to control
the pressure term. This condition does not allow to use equal order interpolations to
approximate the velocity and pressure fields. This is certainly a problem because the
use of equal order polynomials results in a much easier implementation of the numerical
method as well as to the saving of computational time. On the other hand, further
numerical instabilities are found when small time steps are used, specially at early stages
of evolutionary processes. To circumvent all these difficulties that turn the Galerkin
formulation (3.36) useless in practice, stabilised finite elements are required. In section
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3.5 we will concentrate on Subgrid Scale (SGS) stabilised finite element methods, which
provide a very powerful framework to address the above mentioned numerical problems.

Galerkin finite element approximation of the inhomogeneous Helmholtz
equation

The discrete weak form corresponding to the Galerkin finite element approximation of
(3.25) can be stated as follows: given a finite element partition of Ωac with ne

′ elements
and np

′ nodes, and the finite dimensional subspaces Wh,0 ⊂ W0, find p̂′h ∈ Wh,0 such that

(∇p̂′h,∇wh) − k2 (p̂′h, wh) − ik 〈p̂′h, wh〉ΓB
= 〈ŝh, wh〉 + 〈ĝ, wh〉ΓB

(3.39)

for all wh ∈ Wh,0. Again,

p̂′h =

np
′∑

b=1

N b
p P̂

′b (3.40)

with N b
p being the acoustic pressure shape functions and P̂ ′b its nodal values.

The Galerkin weak form in (3.39) also presents numerical difficulties. The weak form
becomes non-positive definite for large wavenumbers and it can be shown that the problem
inf-sup constant presents an inverse dependence [163] with the wavenumber k. This leads
to a loss of stability and to the appearance of the so-called pollution error for large values
of k. A dispersion analysis shows that this error is related to the fact that discrete
waves propagate with a discrete wavenumber kh 6= k. The difference kh − k increases for
large wavenumbers and a phase error appears in the numerically computed waves. SGS
stabilised finite elements can also be used to address this problem as it will be outlined
in next section and analysed in full detail in Chapter 5.

3.5 Subgrid Scale (SGS) stabilised finite element

methods

3.5.1 Outline of the SGS stabilisation approach

In the past two decades, several stabilisation strategies have been developed to circumvent
the numerical instabilities that arise in the Galerkin finite element solution of partial
differential equations. We will concentrate here on the Subgrid Scale (SGS) approach (also
termed Variational Multiscale Method (VMM) or Residual-Based stabilisation) originally
developed by Hughes [150, 153] for the scalar convection-diffusion-reaction equation and
latter extended to other equations by many authors. For the sake of clarity, the main
ideas of the method will be first outlined for an abstract stationary variational problem
and then explicitly presented in detail for problems (3.34)-(3.35) and (3.25) in subsequent
sections.
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Let us consider the abstract variational continuous problem of finding y ∈ Y such
that

m (y, z) = n (z) (3.41)

for all z ∈ Z. m and n respectively represent (for simplicity) bilinear and linear continuous
weak forms, while Y and Z are infinite dimensional spaces. The subgrid scale approach
to find a numerical solution to (3.41) consists in first splitting Y and Z into Y = Yh ⊕ Ỹ
and Z = Zh ⊕ Z̃. Yh and Zh stand for the finite dimensional spaces (discrete spaces)
where the numerical solution belongs, while Ỹ and Z̃ represent infinite dimensional spaces
(continuous spaces) to respectively complete Yh, Zh in Y and Z. Variables y and z can
then be decomposed as y = yh + ỹ, z = zh + z̃ and substituted in (3.41) to obtain

m (yh, zh) +m (ỹ, zh) = n (zh) ∀zh ∈ Zh (3.42)

m (yh, z̃) +m (ỹ, z̃) = n (z̃) ∀z̃ ∈ Z̃. (3.43)

Consequently, (3.41) has been transformed into two equations, (3.42) governing the
dynamics of the resolvable “large” scales and (3.43) governing the dynamics of the “small”
subgrid scales. The key idea consists in finding an approximate solution or model for the
subscales equation, substitute it in the large scales equation and solve for them. In other
words, the subgrid scale approach aims at simulating the influence of those small scales of
the continuous problem, which cannot be captured by the numerical discretisation, onto
the numerical solution. The influence of these small continuous scales is what is not taken
into account in the Galerkin numerical approach to the problem.

Note that the separation between scales performed in the subgrid scale approach
(3.42)-(3.43) is based on a projection onto the spaces Zh and Z̃, and that the modelling
for the subscales is carried out once the problem has been already discretised.

3.5.2 A SGS stabilised finite element method for the Navier-

Stokes equations

To apply the SGS stabilised finite element method to (3.34)-(3.35), we will decompose
the velocity and velocity test functions as un = un

h + ũn, un+α = un+α
h + ũn+α and

v = vh + ṽ, which correspond to the space splitting Vd
0 = Vd

h,0 ⊕ Ṽd
0 and Vd,n+α =

Vd,n+α
h ⊕ Ṽd,n+α. For simplicity, it will be assumed that the velocity subscales will be

zero at the element boundaries as well as on ∂Ω. The former allows to understand the
velocity subscales as bubble functions vanishing on interelement boundaries (see e.g., [47]
and references therein). We will also decompose the pressure and pressure test function
as pn+1 = pn+1

h + p̃n+1, q = qh + q̃ corresponding to the space splitting Q0 = Qh,0 + Q̃0.
Inserting the above decompositions in (3.34)-(3.35) yields a system of equations

analogous to (3.42)-(3.43). The equation corresponding to the large scales (hence
analogous to (3.42)) becomes, after integrating some terms by parts and neglecting terms
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involving integrals over interelement boundaries [44, 47],

(δtu
n
h,vh) + ν(∇un+α

h ,∇vh) + 〈un+α
h · ∇un+α

h ,vh〉
− (pn+1

h ,∇ · vh) + (qh,∇ · un+α
h )

−
∑

Ωe

〈ũn+α, ν∆vh + un+α
h · ∇vh + ∇qh〉Ωe

+ (δtũ
n,vh) + 〈ũn+α · ∇un+α

h ,vh〉
− 〈ũn+α, ũn+α · ∇vh〉
− (p̃n+1,∇ · vh) = l (vh) . (3.44)

The first two lines of (3.44) contain the Galerkin terms previously found in (3.36). The
third line corresponds to terms that are already obtained in the stabilisation of the
linearised and stationary version of the Navier-Stokes equations [42,43] (Oseen problem).
It is well-known that the inclusion of these terms in the formulation allow to circumvent
the convection instabilities described in section 3.3.3, and to use equal interpolations for
the velocity and pressure fields. The fourth and fifth lines contain terms arising from the
effects of the velocity subscales, ũ, in the material derivative of the equation. The first
term in the fourth line accounts for the time derivative of the subscales, while we will
justify in section 3.4.3 that the second term provides global momentum conservation [47],
which is not satisfied in the Galerkin finite element approach. The fifth line corresponds
to a Reynolds stress for the subscales (note that −〈ũ, ũ · ∇vh〉 = −〈ũ⊗ ũ,∇vh〉). It will
be explained in section 3.4.3 that this term may be identified with the direct effects of the
subscale turbulence onto the large scales [47]. Finally, the term in the sixth line accounts
for the effects of the pressure subscales.

The key point of the formulation in (3.44) that distinguish it from the standard SGS
approach (i.e., that has resulted in the appearance of the additional fourth and fifth lines
in (3.44)) has been to keep all terms associated to the effects of the velocity subscales ũ
in the material derivative of the exact velocity field. Effectively,

D

Dt
u =

D

Dt
(uh + ũ)

= ∂tuh + ∂tũ+ ũ · ∇uh + uh · ∇uh + ũ · ∇ũ+ uh · ∇ũ. (3.45)

Note that ∂tuh and uh ·∇uh (once discretised in time) appear in the Galerkin formulation
(3.36) and that the last term in (3.45) contributes to the standard SGS stabilisation in
(3.44). The remaining terms ∂tũ, ũ · ∇uh and ũ · ∇ũ are the new terms respectively
accounting for the time dependence of the velocity subscales, momentum conservation
and the subscale Reynolds stresses. Given that we have written (3.45) prior to time
discretisation, we note that with the above formulation time and space discretisation do
commute (see [47] for details).

Our aim is to find now the solution un+α
h , ũn+α and pn+1

h , p̃n+1 in (3.44), given un
h, ũ

n

and for all vh ∈ Vd
h,0, qh ∈ Qh,0. Obviously, to do so we first need a value for the subscales

ũn+α, p̃n+1 that has to be obtained from the solution of the small subgrid scales equation
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of the problem (analogous to (3.43)). This equation can be written in differential form
as [44, 47]

δtũ
n + (un+α

h + ũn+α) · ∇ũn+α − ν∆ũn+α + ∇p̃n+1 = rn+α
u,h (3.46)

∇ · ũn+α = rn+α
p,h , (3.47)

with rn+α
u,h and rn+α

p,h representing residuals of the finite element components uh and ph

given by

rn+α
u,h = −P[δtu

n
h + (un+α

h + ũn+α) · ∇un+α
h − ν∆un+α

h + ∇ph − f ], (3.48)

rn+α
p,h = −P[∇ · un+α

h ]. (3.49)

Following [42, 44, 47] we will refer to the case P = I (identity) as the Algebraic Subgrid
Scale (ASGS) method, whereas P = Π⊥

h = I − Πh, Πh standing for the L2 projection
onto the appropriate velocity or pressure finite element space, leads to the Orthogonal
Subscales stabilisation (OSS) approach.

Using arguments based on a Fourier analysis for the subscales [44], the system of
equations (3.46)-(3.47) can be approximated as

δtũ
n +

1

τn+α
1

ũn+α = rn+α
u,h (3.50)

1

τn+1
2

p̃n+1 = rn+α
p,h + τ1δtr

n
p,h, (3.51)

where the stabilisation parameters τ1 and τ2 have the expressions

τn+α
1 =

(
c1
ν

h2
+ c2

∣∣un+α
h + ũn+α

∣∣
h

)−1

(3.52)

τn+1
2 =

h2

c1τ
n+1
1

. (3.53)

c1 and c2 in (3.52)-(3.53) are algorithmic parameters with recommended values of c1 = 4
and c2 = 2 for linear elements [41], while h stands for a characteristic mesh element size.
From a physical point of view, the approximation (3.50)-(3.51) to problem (3.46)-(3.47)
ensures that the kinetic energy of the modelled subscales resembles the kinetic energy of
the exact subscales [43].

The advantages of tracking the subscales in time and the relation between the
stabilisation parameter and the time step value are analysed in detail in [42, 47]. On the
other hand, we note that the value for the time discretisation parameter α appearing in
the equations for the subscales (3.50)-(3.51) does not have to necessarily coincide with the
one used for the large scales equation (3.44). Actually, it is strongly recommended to use a
first order time integration scheme for the subscales while using a higher-order scheme for
the large scales. This is so because subscales will be highly discontinuous functions and a
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more dissipative scheme is needed for them. Moreover, this approximation still keeps the
same order of accuracy in time of the finite element solution. A formal argumentation of
this point can be found in [46].

Equation (3.44) together with the subscales extracted from the solution of
the approximated equations (3.50)-(3.51) with stabilisation parameters (3.52)-(3.53)
constitute the methodology that will be used to solve the incompressible Navier-Stokes
equations, even in the case of dealing with turbulent flows. In fact, this approach has
been recently developed and presents several originalities and advantages when compared
with other methods. Some of them will be commented in the next section. The reader is
referred to [47] for further information on the subject.

3.5.3 Some physical properties of the formulation

In this section we will focus on the physical meaning of the two additional terms that
have appeared in the formulation (3.44). It has been advanced that these terms play
the role of conservation of momentum and of subscale turbulence (subscale Reynolds
stresses). In order to see this and to simplify the notation, we will consider (3.44) prior
to its time discretisation i.e., u, ũ, p, p̃ will be now time continuous functions and δtϕ

n

will be replaced by the time derivative ∂tϕ. Given that as mentioned, time and spatial
discretisation commute in our formulation, this poses no problem at all.

Conservation of momentum

Let us start by analysing the effect of 〈ũ · ∇uh,vh〉. The purpose of what follows is to
present a version of the results in [161], simplified and adapted to the present setting.

Let Vd
h be the velocity finite element space without imposing the Dirichlet boundary

conditions, that is, with degrees of freedom also associated to the boundary nodes. Let t
be the stress vector (traction) on the boundary Γ and consider the following augmented
problem instead of (3.44):

(∂tuh,vh) + ν(∇uh,∇vh) + 〈uh · ∇uh,vh〉
− (ph,∇ · vh) + (qh,∇ · uh) − 〈vh,f〉 − 〈vh, t〉Γ
+ (∂tũ,vh) + 〈ũ · ∇uh,vh〉 − 〈ũ, ũ · ∇vh〉
−
∑

K

〈ũ, ν∆vh + uh · ∇vh + ∇qh〉K = 0, (3.54)

where now vh ∈ Vd
h (not just Vd

h,0). Considering d = 3 and taking for example vh = (1, 0, 0)
and qh = 0, this equation yields

∫

Ω

[∂t(uh,1 + ũ1) − uh,1∇ · uh] dΩ +

∫

Ω

ũ · ∇uh,1dΩ +

∫

Γ

uh,1un ·ndΓ

=

∫

Ω

f1 dΩ +

∫

Γ

t1dΓ, (3.55)
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where now the zero Dirichlet condition for the velocity is not explicitly required. This
statement provides global momentum conservation if

−
∫

Ω

uh,1∇ · uhdΩ +

∫

Ω

ũ · ∇uh,1dΩ = 0. (3.56)

This is implied by the continuity equation obtained by taking vh = 0

(qh,∇ · uh) −
∑

K

〈ũ,∇qh〉K = 0, (3.57)

provided Vh/R ⊆ Qh,0, that is to say, the velocity component uh,1 belongs to the pressure
space (uh,1 can be considered modulo constants, since they do not affect neither the
first nor the second terms in (3.56)). This holds, in particular, for the “natural” choice
Vh/R = Qh,0, that is to say, equal velocity-pressure interpolations. For the standard
Galerkin method, this condition is impossible to be satisfied, since equal interpolation
does not satisfy the inf-sup condition. As a conclusion, the term 〈ũ · ∇uh,vh〉 provides
global momentum conservation, since without it in the discrete momentum equation, we
would have obtained −

∫
Ω
uh,1∇ · uh dΩ = 0 instead of (3.56), which is not implied by

(3.57).

A door to turbulence

Let us made now some speculative comments on the possibility to simulate turbulent flows
using the formulation in (3.44) and on the role of the remaining term −〈ũ, ũ · ∇vh〉. In
the standard LES approach to solve turbulent flows (see sections 2.5.1 and 4.3.3, see also
e.g., [255], [265]) an equation is obtained for the large, filtered scales of the flow, which we
will denote with an overbar. This equation includes an extra term when compared with
the incompressible Navier-Stokes equations (3.1)-(3.5): the divergence of the so-called
residual stress tensor or subgrid scale tensor R := u⊗ u − ū ⊗ ū. Tensor R has to be
modelled in terms of ū to obtain a self-contained equation, a problem known as the closure
problem, and, once this is done, the resulting LES equation can be solved numerically.

The residual stress tensor, R, is often decomposed into the so-called Reynolds, Cross
and Leonard stresses to keep the Galilean invariance of the original Navier-Stokes equation
in the LES equation. This invariance is automatically inherited by the formulation
presented above and we observe that analogous terms to the various stress types are
recovered in a “natural” way from our pure numerical approach (this was also the case
in [157]). Let us have a look at this point. We first consider the last four terms in the
material derivative (3.45) as they appear in the variational equation (3.44). The term
−〈ũ, ũ · ∇vh〉 can be rewritten as

− 〈ũ, ũ · ∇vh〉 = −〈ũ⊗ ũ,∇vh〉 (Reynolds stress), (3.58)

while the addition of the other three terms becomes, after integration by parts,

〈uh · ∇uh,vh〉 − 〈ũ,uh · ∇vh〉 + 〈ũ · ∇uh,vh〉 =

− 〈uh ⊗ uh,∇vh〉 (Convection of the large scales) (3.59)

− 〈uh ⊗ ũ+ ũ⊗ uh,∇vh〉 (Cross stress), (3.60)
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If we now pay attention to the convective term of the residual in the subscale equation
(3.50) and take, for simplicity, P = I, we observe that

〈(uh + ũ) · ∇uh, ṽ〉 =

− 〈uh ⊗ uh,∇ṽ〉 (Leonard stress) (3.61)

− 〈uh ⊗ ũ,∇ṽ〉. (3.62)

Hence, we can effectively conclude that the modifications introduced by the presence of the
divergence of R in the LES equations are somehow automatically included in our subgrid
scale stabilised finite element approach. So far we have given an interpretation to (3.59)-
(3.62) as contributions from the Galerkin, stabilisation and conservation of momentum
terms and also from the equation driving the dynamic evolution of the subscales (3.50).
In the present formulation, the remaining Reynolds stress term, (3.58), is then considered
to account for the direct subscale “turbulent effects” onto the large, resolvable, scales.

How good our formulation will work as a turbulent model will mainly depend on the
validity of the approximation made to derive the evolution equation for the subscales
(3.50), being the ASGS or the OSS methods two available possibilities. In order to check
this performance, benchmark problems for turbulent flows should be used. The model
should be able to reproduce the Kolmogorov energy cascade in the wavenumber Fourier
space that displays an inertial range where E(k, t) ∼ CKε

2/3
molk

−5/3 (εmol being the energy
dissipation rate, k the wavenumber modulus, CK the Kolmogorov constant in energy
space and E the kinetic energy, see e.g., [186, 232, 255]). Analogously , the pressure
spectrum fulfills Epp(k, t) ∼ CPε

4/3
molk

−7/3 ( [9, 245] c.f. [203]). The model should be also
able to capture the appropriate decay in time of the kinetic energy, the enstrophy and
other related statistical variables. Other more intricate questions such as if the model
allows for backscatter or if the dimension of the global attractor is properly reproduced
could be also addressed. We remind that the heuristic estimate for this dimension is
N ∼ (L/λK)3 ∼ Re

9

4 (where λK is the Kolmogorov length scale) and that the closest
estimate analytically proved is (roughly) (L/λK)4.8 (see [97]). Another standard test
for turbulence is the turbulent channel flow. In this case the model should be able to
approximate the turbulent boundary layer that, according to Prandtl theory, exhibits a
log behavior after the laminar sublayer. Finally, we should mention that in an attempt to
find a more mathematical foundation for the LES approach to turbulence, the concept of
suitable approximations to the Navier-Stokes equations has been introduced in [112,114],
see sections 4.2.3 and 4.3.3. It is expected that approximate solutions converge (in a weak
sense) to suitable solutions. This seems to be the case for low order finite elements and the
standard Galerkin method [109]. Hopefully, the above presented enhanced formulations
will have this property.

Let us conclude noting that the term −〈ũ, ũ · ∇vh〉 has been identified with the
direct contribution of the subscale turbulent effects onto the large scales. However, all
terms involving the subscales are indirectly affected by the turbulence effects because the
subscales are obtained from the non-linear equation (3.50) that involves (3.61)-(3.62). In
fact, it is argued in [26] that −〈ũ, ũ · ∇vh〉 has a little influence in the results. Let us
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also mention that instead of using an expression of ũ in terms of the residual, turbulence
modelling can be attempted by giving directly an expression of ũ⊗ ũ in terms of uh in
the spirit of Smagorinsky’s model (see [157] and also [104] for a review).

The possibility of using the SGS formulations as appropriate models for the simulation
of turbulent flows will be the subject of Chapter 4. Although some numerical examples will
be provided, the main effort will be placed in showing by means of heuristic reasoning, that
this is precisely the right way to proceed, rather than performing physical LES modelling.
Results of statistical fluid mechanics in combination with numerical developments will be
used to do so.

3.5.4 A SGS stabilised finite element method for the

inhomogeneous Helmholtz equation

We will now apply the SGS approach to solve the third step of the proposed CAA
methodology, i.e. to solve the Helmholtz equation weak form (3.25). We will proceed
as usual by performing the space splitting W = Wh ⊕ W̃, W0 = Wh,0 ⊕ W̃0, which
respectively allow the decompositions p̂′ = p̂′h + ˜̂p′, w = wh + w̃ for the acoustic pressure
and test function. Substitution in (3.25) yields the large scale and small scale equations.
The former is given by [39, 106]

(∇p̂′h,∇wh) − k2 (p̂′h, wh) − ik (p̂′h, wh)ΓB

+
∑

Ωel

〈˜̂p′,∇2wh + k2wh〉Ωel

= 〈ŝh, wh〉 + (ĝ, wh)ΓB
, (3.63)

where the first line contains the Galerkin terms already found in (3.39) and the second
one accounts for the stabilisation terms that take into account the influence of the small
scales into the large ones. The small scales can be approximated as (see e.g., [39, 106])

˜̂p′ = τacrp̂′,h = τac

(
−∇2p̂′h − k2p̂′h − ŝh

)
. (3.64)

The stabilisation parameter τac can be obtained from a dispersion analysis. The stencil
of (3.63), with (3.64) inserted in it, is considered for a particular mesh, e.g. a structured
mesh of bilinear quadrilateral nodes. Then a plane wave solution is assumed at each node
and a dispersion relation follows, from which a value for the stabilisation parameter can
be derived. This procedure was applied in [106] to find τac for the convected Helmholtz
equation in two dimensions. For the case of zero Mach number flow, the parameter thus
obtained reduces to minus the one found in [287] using the Galerkin least-squares (GLS)
stabilised finite element method for the Helmholtz equation. τac is given in this case by

τac = − 1

k2
+

6

k4h2

(4 − fx − fy − 2fxfy)

(2 + fx) (2 + fy)
,

fx = cos [k cos (θ) h] ,

fy = cos [k sin (θ) h] , (3.65)
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where θ is the angle of propagation of the plane wave and h is the characteristic mesh
element size. Eventhough the parameter τac depends on the direction θ and on the
particular mesh considered to derive it, numerical experiments [106, 287] show that the
choice θ = 0 provides stabilisation for a considerable variety of problems, involving
waves propagating in many directions. Moreover, (3.65) can be also shown to provide
stabilisation for non-structured meshes of quadrilateral and triangular elements [106].

Equation (3.63), together with the subscales in (3.64) and the stabilisation parameter
from (3.65), clearly diminish the pollution error found in the Galerkin approximation to
the problem and constitute the strategy adopted in this chapter to compute the acoustic
field. Obviously, (3.65) limits the acoustic pressure computation to two-dimensional cases
and a more general value for τac should be found for full three dimensional problems.

In Chapter 5, the above questions are analysed in full detail and a general framework
is given relating the Helmholtz and convected Helmholtz equations. A stabilisation SGS
method is proposed for the latter [106].

3.6 Numerical examples

3.6.1 Aeolian tone generated by a single cylinder at Re = 500

We consider the case of a two-dimensional cylinder with diameter D embedded in a flow
with free stream velocity in Cartesian coordinates (U0, 0). We define the Reynolds number
based on these variables as Re = ρ0U0D/µ, being ρ0 the fluid density. When the Reynolds
number is increased from low to large values, the solutions to the Navier-Stokes equations
change their configuration following a process of symmetry breaking (bifurcations), until
a fully developed turbulent flow is achieved at very high Reynolds numbers (see section
4.3.1).

We will concentrate here in the case where the flow looses its steadiness as well as its
up-and-down symmetry and a wake of alternating vortices is formed behind the cylinder.
The set of these shed vortices is known as the von Kármán vortex street. Vortex shedding
induces lift fluctuations on the cylinder (drag fluctuations also occur although they are
much smaller, see [102,248] c.f. [145,169]), which lead to the radiation of sound having a
dipole pattern. The frequency of the radiated sound is the same as the vortex shedding
frequency and is given by

f = St
U0

D
(3.66)

where St is the Strouhal number that has a Reynolds number dependency [145]

St = 0.198

(
1 − 19.7

Re

)
, Re ≤ 5 × 105. (3.67)

The radiated sound is known as an aeolian tone. In practical cases the cylinder can
often vibrate as a reaction to changes in lift. This motion tends to correlate the vortex
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Figure 3.2: Von Kármán vortex street at the lee of the cylinder for Re = 500 (Isovelocity
contourlines).

shedding along the length of the cylinder (three-dimensional case) resulting in a high
level of radiated noise. If, in addition, the frequency of the vortex shedding coincides
with a natural mode of vibration of the cylinder, the mechanism is further reinforced.
This mechanism is responsible, for instance, of wire whistles in power transmission lines
when wind is blowing and it is also of importance in other industrial problems such as
the aerodynamic noise radiated by train pantographs, or by tubular heat exchangers.

For this first numerical example we have chosen a case corresponding to Re = 500.
The two-dimensional incompressible Navier-Stokes equations have been solved using the
methodology described in section 3.4.2, in an unstructured mesh of linear triangular
elements (ne = 50 054, np = 25 636). The mesh element size, h, ranges from 3 × 10−3D
near the cylinder to 30D at the far field. The ASGS-NLTT (ASGS stabilisation with time
tracking and all non-linear terms in the equations) described in section 3.4.2 has been used
in the simulation. We remind that this approach allows to use equal interpolation for the
velocity and the pressure. On the other hand, 10 Picard non-linearity iterations have been
performed at each time step. The time step size used in the computation is δt = 0.00025 s.
A Crank-Nicolson scheme has been used for the large scales time evolution, while a first
order scheme has been used for the tracking of the subscales.

The Strouhal number according to (3.67) is St ≈ 0.19. We have taken the values
D = 0.0049 m and U0 = 1.512 m/s so that the expected frequency from (3.66) is
f ≈ 58.7 Hz.

As a result of the simulation, a periodic flow is established with a von Kármán vortex
street developing at the lee of the cylinder (see Fig. 3.2). The lift and drag coefficients of
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Figure 3.3: Re = 500. a) Normalized lift coefficient spectrum. b) Phase space limit cycle.

Figure 3.4: Acoustic source term: snaphshot of Reynolds tensor double divergence for Re = 500.
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Figure 3.5: Dipole pattern of Re (p̂′h) at f = 66Hz for Re = 500.

the cylinder, CL and CD, have been computed and present a time sinusoidal behaviour.
CL has an amplitude of 1.1 and oscillates at the computed vortex shedding frequency
of 66 Hz (St = 0.21). The mean value for CD is 1.39 with an amplitude of 0.12 and a
frequency that is twice the vortex shedding one (132 Hz). The discrepancy between the
computed frequency and the theoretical one is not strange if we take into account that
(3.66)-(3.67) are valid for three dimensional flows and that 3D effects become apparent
for Re > 300 (see Ref. [229]).

In Fig. 3.3a we have plotted the normalized spectrum of the lift coefficient. As
expected, it only shows a single peak at 66Hz. In Fig. 3.3b, we have presented a plot of
CL (t) versus CL (t+ tinc) with tinc = 0.05 s. According to the Whitney-Takens theorem,
the resulting graph is topologically equivalent to a phase space graph and we can observe
that Fig. 3.3b effectively shows the characteristic limit cycle of a periodic dynamics.

In Fig. 3.4 a snapshot of the acoustic source term in (3.6), s (x, t) = ρ0 (∇⊗ u) :
(∇⊗ u)⊤, is shown. This term rapidly decreases to zero when moving away from the
cylinder. This fact is of crucial importance because it actually justifies the acoustic
analogy approaches, which are based on a separation between an acoustic source region
and a wave propagating one [53, 55].

The acoustic field has been computed according to the methodology described in
section 3.4.4. In Fig. 3.5 the real part of the acoustic pressure, Re (p̂′h), is plotted.
Although some acoustic sources can be identified at the wake of the cylinder (see Fig. 3.4),
the far field acoustic field is clearly dominated by the lift fluctuations on the cylinder,
which generate outward propagating waves having a clear dipole pattern (see section
2.2.6).
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Figure 3.6: Aerodynamic noise generated by cylinders in parallel arrangement at Re = 1000.

3.6.2 Aerodynamic noise generated by parallel cylinders at Re =

1000

As a second numerical example, we address the computation of the aerodynamic sound
generated by a viscous flow past two parallel cylinders, according to the configuration
in Fig. 3.6. As observed in this figure, two cylinders of diameter D = 9.5 × 10−3 m
are immersed in a flow moving at speed U0 = 24.5 m. The characteristic Reynolds
number of the problem is given by Re = ρ0U0D/µ = 1000. We will show that vortices
are periodically shed behind the two cylinders. However, due to the fact that these
vortices become antiphase from one cylinder to the other, the resulting acoustic field will
considerably differ from the single cylinder case.

The CFD simulation has been performed in a structured mesh of ne = 51 485
elements (np = 51 881 nodes) strongly refined at the cylinder boundaries. The squared
computational domain has a diagonal of ∼ 1000D. Again, the ASGS-NLTT stabilised
finite element method has been used for the CFD calculation, with 10 Picard non-linearity
iterations being performed at each time step. The time step size used in the computation
is δt = 0.00008 s. A second order Crank-Nicolson scheme has been used for the large
scales time evolution, while a first order scheme has been used for the tracking of the
subscales.

Once the initial transients have been surpassed, an almost periodic flow is established
with vortices being shed past both cylinders. The vortices are antiphase from one to the
other i.e., when a vortex having positive vorticity detaches from the upper cylinder, an
equal strength vortex detaches from the bottom cylinder having negative vorticity, and
being located at a symmetric location with respect to the x−axis. This can be clearly
observed in Figs. 3.7a and b where the isovorticity and isovelocity contours of the flow
have been plotted. It is worthwhile to comment that although the wake sometimes looses
its symmetry downstream as time evolves, the vortex shedding remains periodic and
antiphase between both cylinders. This is no longer true for higher Reynolds numbers,
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a) Isovorticity contours b) Isovelocity contours

Figure 3.7: Vortices shed behind two cylinders in parallel arrangement at Re = 1000.
(Isovorticity and isovelocity contours)
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Figure 3.8: Time evolution of the cylinder lift coefficients. Continuous line: upper cylinder.
Dotted line: bottom cylinder. Re = 1000.

where eventually the two cylinders can emit vortices in phase, although in the mean the
shedding is antiphase.

In Fig. 3.8 we have plotted the time evolution for the lift coefficients CLu and CLb of
the two cylinders. Once the flow is fully developed, their mean values are ∼ 0.19 for the
upper cylinder and ∼ −0.19 for the one in the bottom. Their amplitudes are respectively
±1.6. In what concerns the drag coefficients, they are obviously almost identical for both
cylinders having a mean value of ∼ 1.53 and an amplitude of ∼ 0.23. In Figs. 3.9a and
b we show the normalised spectra for the lift and drag coefficients of the upper cylinder.
CLu presents a clear maximum at 588 Hz (St = 0.22) to be compared with the values
500 Hz (St = 0.19) arising from (3.66)-(3.67). The relative error has now increased when
compared with the previous single cylinder numerical example probably for two reasons:
first, the Reynolds number is now higher and second, equations (3.66)-(3.67) are intended
for single cylinders whereas now the wake e.g., of the upper cylinder is clearly influenced by
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Figure 3.9: Normalized lift and drag coefficient spectra for the upper cylinder. Re = 1000.

the wake of the bottom cylinder (see Fig. 3.7b). We actually do not know if the presence
of the second cylinder may alter the vortex shedding frequency when comparing with an
analogous single cylinder case, but it certainly increases the complexity of the simulation.
On the other hand, note that the normalised spectrum for the drag coefficient in Fig. 3.9b
presents the expected maximum at 1176 Hz (twice the lift coefficient frequency) but it
also presents a first subharmonic (lift coefficient frequency), a first harmonic and the first
harmonic of fractional order. It is obvious that the drag coefficient is harder to compute
given that it has twice the lift coefficient frequency. However, for the present simulation
it still has more than ten time steps per wavelength. The appearance of the “extra”
frequencies in Fig. 3.9b is attributed to the fact that there is no perfect symmetry between
the flow at the upper and bottom cylinders. In addition and as has been commented, the
wake breaks downstream loosing also its symmetry. These facts can easily be responsible
for the excitation of harmonics and subharmonics. Note that although the lift coefficient
seems less affected by these questions, the second and third harmonics also insinuate in
Fig. 3.9a.

In what concerns the acoustic field, it has again been computed using the procedure
described in section 3.4.4. and using the same mesh intended for the CFD computation.
In Fig. 3.10 we have plotted the real part of the acoustic pressure, Re (p̂′h), for f = 588 Hz.
As seen in the figure, two dipole radiating patterns can be clearly identified at each cylinder
corresponding to the lift fluctuations. A dipole pattern corresponding to the overall drag
fluctuations is also present. While the drag dipole is negligible when compared to the lift
dipole in the problem of aeolian tones generated by a single cylinder, it acquires a central
importance in the present problem when analysing the far field acoustic field. This is
due to the fact that the two lift dipoles tend to compensate each other radiating as a
longitudinal quadrupole, which is known to be a less efficient radiator than the dipole of
a single cylinder. On the contrary the cylinder drag dipoles tend to reinforce each other



64 CHAPTER 3. COMPUTATIONAL AEROACOUSTICS

Figure 3.10: Acoustic near field. Cylinders in tandem arrangement at Re = 1000.

Figure 3.11: Acoustic far field. Cylinders in tandem arrangement at Re = 1000.



3.7. CONCLUSIONS 65

resulting in a stronger overall drag dipole. This situation can be observed in Fig. 3.11
where it becomes apparent that the waves generated by the drag dipole at f = 588 Hz
are more intense than the ones generated by the overall lift dipole. It should be noted,
however, that as long as the Reynolds number of the problem is increased the breaking
of symmetry in the wake will become more important. As previously mentioned, the two
cylinders can then eventually radiate in phase for some short periods of time, which will
tend to reinforce the radiation of the overall lift dipole in front of the drag one. On the
other hand, note that the wavelength of the acoustic waves in Fig. 3.11 have the expected
value of λ = c0/f ∼ 0.58 m.

3.7 Conclusions

This chapter has been devoted to the presentation, development and numerical
implementation of a three-step methodology to solve Computational Aeroacoustics (CAA)
problems.

We have started by presenting the methodology main points and the initial and
boundary value differential problems associated to it. Then, after setting up the functional
framework that will be used throughout the thesis, we have stated the variational form
of the two differential equations that need to be solved, namely the incompressible
Navier-Stokes equation that accounts for the evolution of the aerodynamic field, and the
inhomogeneous Helmholtz equation that accounts for the acoustic field. After discretising
the first one in time, we have proceeded to both equations spatial discretisation using
the Galerkin finite element method (FEM). The different numerical instabilities inherent
to the Galerkin FEM approach to both problems have been commented and the Subgrid
Scale (SGS) stabilised finite element strategy to avoid them has been introduced.

The SGS stabilisation methods are based on performing a scale splitting of the
continuous variables into large scales, that can be resolved by the computational mesh
and hence belong to the corresponding finite element space, and small scales that cannot
be captured by the mesh, so that their influence onto the large scales has to be somehow
modelled. Concerning the Navier-Stokes equations, a very recently developed SGS
strategy has been implemented, one of its main features being that the subscales are
tracked in time. Moreover, the method accounts for some interesting physical properties
and may open a door to the simulation of turbulent flows without resorting to more
classical Large Eddy Simulation (LES) approaches. This important issue will be analysed
in detail in next chapter. In what refers to the inhomogeneous Helmholtz equation, a
SGS strategy has been also implemented that coincides with the more classical Galerkin
Least Squares (GLS) stabilisation method with appropriate redefinition of the stabilisation
parameter. The later is often found in computational acoustics from a dispersion analysis.
The extension of this procedure to the convected Helmholtz equation will be the subject
of Chapter 5.

We have ended the chapter by showing that the proposed CAA methodology is able to
properly reproduce the multipolar character of the acoustic field. To do so, two numerical
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examples have been presented dealing with aeolian tones generated by flow past a single
cylinder and with aerodynamic noise generated by flow past two cylinders in parallel
arrangement. It has already been checked that the directivity and wavelength of the
resulting acoustic fields have been correctly computed, showing the good possibilities of
the proposed CAA approach.



Chapter 4

The aerodynamic field

In this chapter we will concentrate on the first step of the proposed methodology to
perform computational aeroacoustics of low speed flows, namely the computational fluid
dynamics step. Special emphasis will be placed on some aspects concerning the simulation
of incompressible turbulent flows. First, some classical results of the existence theory of the
Navier-Stokes equations will be reviewed as well as some aspects of the Kolmogorov theory
for turbulent flows. Then, the Large Eddy Simulation (LES) computational approach will
be presented and some of its drawbacks outlined. Analysing the energy balance equations
of the Navier-Stokes and LES equations, as well as their Galerkin and Orthogonal Subgrid
Scale (OSS) numerical approximations, it will be shown by means of heuristic reasoning
that the use of LES models is in fact redundant, if an appropriate discretisation scheme
of the Navier-Stokes equations is carried out. This will be the main result of the chapter,
i.e., we will give support to the idea that a purely numerical approach should be followed
in the simulation of turbulent flows. Some numerical tests reinforcing this option will be
also included.

4.1 Introduction

As explained in Chapter 3, the proposed methodology to face CAA problems involves
a first CFD simulation of unsteady and/or turbulent flows in order to find Lighthill’s
tensor (see Fig. 3.1 and section 3.2). Two parallel lines have been followed in the past
years to simulate incompressible turbulent flows that can be of engineering interest. On
one side, the drawbacks of RANS (Reynolds Averaged Navier-Stokes) models combined
with the impossibility to perform DNS (Direct Numerical Simulation) computations
for large Reynolds number problems led to the development of a somehow in-between
approach, the LES (Large Eddy Simulation) strategy (see e.g. [265]). On the other
side, the numerical problems that arise when trying to solve the discrete differential
or weak versions of CDR (Convection-Diffusion-Reaction) equations have motivated the
development of several stabilisation strategies to mitigate them. A landmark in the
development of these stabilisation methods was the appearance of the subgrid scale (SGS)
stabilisation approach or, as originally termed, the variational multiscale method (VMM),

67
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in the framework of finite element methods [150, 153]. Both approaches, LES and SGS
applied to fluid dynamics, share some features like being based on a scale decomposition
of the continuous velocity and pressure fields of the Navier-Stokes equations. However,
in the former case this scale separation is performed at the continuous level while in the
latter it is inherently carried out in the discretisation process. The relation between both
methods is not fully understood at present and it is not clear whether they should be
used together or independently in the simulation of turbulent flows. In this chapter we
will aim at giving some support to the idea that no LES physical model should be used
if an appropriate discrete stabilisation scheme is implemented.

The key idea of LES is to perform an explicit computation of the large scales of
motion of the flow, which depend on the flow geometry and inputs, while modelling
the effects of the small scales (which are assumed to have a universal behaviour [186],
c.f. e.g., [255]) on the large ones. LES was originally motivated by meteorological
applications [211,272] but has been extended to a large variety of fields involving complex
fluid dynamics problems such as astrophysics [27], or a large variety of engineering
applications [126, 236, 273, 274, 291].

LES can be performed either in the physical domain or in the wavenumber domain.
Only the former case will be considered here. The standard LES approach can be thought
as consisting of four main steps (see [255] and also Fig. 4.1):

1. The definition of a filtering operation, usually by means of a convolution operator.

2. Filtering the Navier-Stokes equations, with the appearance of the divergence of the
residual stress tensor, and non-commutability terms.

3. Solving the closure problem by modelling the residual stress tensor.

4. Finding a numerical solution of the closed filtered equations.

Let us expand these points in some detail:

1. The filtering operation in the first step is usually performed by means of a
convolution of the velocity and pressure fields with a low pass filter operator,
(·) : v 7−→ v, so that the decomposition [u, p ] = [u, p ] + [u′, p′] is obtained
(see e.g., [201] cf. [255], [265]). [u, p ] stands for the large, filtered, scales while
[u′, p′] represent the small, residual, scales. The filtering operation can be either
performed explicitly (specially in dynamic models) or implicitly assumed (e.g. in
standard eddy-viscosity models such as the celebrated Smagorinsky model [272]).
Several possibilities can be considered, including differential filters [90, 91] or the
most widely implemented convolution with a box, sinc or Gaussian functions. A
Taylor development of the convolution operations allows a differential interpretation
of the filters, which yields simplified and local filtering operators [265].

A filter is said to be homogeneous if its width does not depend on the spatial
position, while it is inhomogeneous if it does so. As the filter width is related to
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the mesh element width, filtering in non-structured meshes correspond to the latter
case. Under these circumstances, the differentiation and the filtering operations do
not commute. This has to be taken into account when filtering the Navier-Stokes
equations. On the other hand, it is worthwhile to mention that implementing explicit
filters has received since now little attention in the FEM framework (see [170, 283]
for exceptions).

2. The second step of the LES approach consists in filtering the Navier-Stokes
equations. As these equations are to be solved in a bounded domain and, in the
most general case an unstructured mesh will be used, new terms will appear in
the filtered equations. That is to say, filtering in the most general case not only
leads to the appearance of the divergence of the so called residual stress tensor
(arising from filtering the non-linear convective term) but to the appearance of two
additional terms: the first one due to the non-commutability of the differential and
filter operators and the second one due to the finiteness of the computational domain.
These terms have been usually ignored since recently. In this sense see [81, 94, 96]
for a complete derivation of the LES equations, [96, 289] for attempts in finding
commutative filters and [64] for an analysis of the commutation error due to the
domain finite size.

3. The closure problem i.e., finding a model for the residual stress tensor, R :=
u⊗ u − u ⊗ u, has been since nowadays the leitmotiv of LES research. R can
be rearranged in order to depend only on filtered variables [201] and to maintain
some of the invariant properties (such as Galilean invariance) of the non-filtered
equations [91, 275]. There exist a large amount of different closure models for the
terms appearing in R and only an overview of some of them will be cited here.
Closure modelling can be divided in two general groups, namely functional modelling
and structural modelling [265]. Functional modelling aims at simulating the energy
transfer among the large and small scales. Hence it does not aim at modelling R

but rather its effects on the large scales. On the contrary, structural modelling aims
at finding a model for R usually by means of a formal series expansions, or the use
of some scale similarity hypothesis [7,225]. Mixed models (functional + structural)
are frequently used too (see e.g., [29, 37]).

The most celebrated functional model is, without any doubt, the Smagorinsky
model [272]. However, this model suffers of some drawbacks, specially concerning
its behaviour near walls and the fact that it does not allow backscatter (energy
transfer in the opposite direction of the energy cascade, i.e., from the small scales
to the large scales). The problem of backscatter has been addressed by means of
the addition of white noise [33] (c.f. [255]) and by the development of dynamic
models [28, 92, 212, 250, 255]. These models require an explicit filtering process and
aim at finding an optimum local value for the so-called Smagorinsky constant. Some
refinements have been given by the localised dynamic model [95] and the Lagrangian
dynamic model [226].
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Figure 4.1: Scheme of LES approach to the Navier-Stokes equations.

In what concerns structural models, only reference will be made to those based
on formal series expansions of the soft deconvolution problem [265, 277, 278]. The
deconvolution approach aims at reconstructing the unfiltered field from the filtered
one by inverting the filter operator (in fact an approximation to the inverse can
only be achieved). Well-known models such as the gradient or Clark model [37]
based on a Taylor series development of the filtered quantities can be embedded in
this framework. Another model based on a subdiagonal Padé series development
instead of a Taylor one is the rational LES model [16, 85]. A comparison between
both methods can be found in [168].

4. The last step of LES consists in solving the filtered equations using a numerical
method such as the finite difference method or the finite element method (remember
that we concentrate here on LES in the physical domain). The simulations and
testing of the closure models cited above are usually performed for simple geometry
flows, which allow comparison with DNS simulations (see e.g., [234, 295]) and
experimental data (see e.g., [30, 216, 224]). Isotropic turbulence is frequently used
[82, 194] as well as plane and rotating turbulent channels [167, 250–252, 295] and
wakes and jets [221, 247, 291].

A very detailed book dealing exclusively with LES is [265]. The subject is also treated
extensively in [255] and some review papers on the subject are [204, 225, 231].

The above described standard approach to LES presents several difficulties that
have motivated a more mathematical approach to the subject in recent years (see e.g.
[196–198]). Some of these difficulties are such as evaluating the error introduced when
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the commutation between the filtering and differentiation operators is assumed, knowing
which should be the appropriate choice for the LES boundary conditions or knowing
which should be the appropriate relation between the filter width and the mesh element
characteristic size. In addition, and what is probably more important, one should be able
to know which is the relation between the errors introduced by the physical LES model
and by the numerical discretisation procedure.

Some of these subjects have been addressed both from an analytical (see e.g., [17,171])
and numerical point of view (see e.g., [35,93,185,200,283]). In [112] a review of several LES
models was performed and some interesting conclusions were drawn out such as the fact
that filtering is not indispensable to achieve LES models, that aiming at an exact closure
for the residual stress tensor is a paradoxic program and that some LES models have the
remarkable propriety of regularising the original Navier-Stokes equations, leading to well-
posed problems. In this sense, it was concluded that a LES model should fulfil with two
main requisites, namely, it should regularize the Navier-Stokes equations yielding to well
posed problems and it should lead to suitable weak solutions (i.e., physically acceptable
solutions). In an attempt to provide a first step towards a mathematical definition of LES,
the notion of suitable approximations to the Navier-Stokes equations was then introduced
in [114]. In this context, it is worthwhile to mention that a DNS using the Galerkin
method with low order finite elements constitutes a suitable approximation to the Navier-
Stokes equations, which may justify the fact that sometimes better results are achieved
for low-order methods when no LES model is employed [109].

The second main research line that has very recently resulted in a plausible option to
simulate turbulent flows initiated in the framework of stabilised finite element methods.
As explained in Chapter 3, stabilised methods are needed to circumvent some of the
numerical difficulties that arise when discretising a differential equation or its weak
counterpart. The stabilisation procedure started with the work of Von Neumann [290]
(c.f. [39]) who realised that the discrete version of the scalar convection-diffusion-reaction
(CDR) equation was indeed infradiffusive. That is, the discrete version of the scalar CDR
equation using a centred finite difference scheme corresponds to the continuous one with
a lower coefficient of diffusion. To solve the problem, Von Neumann added some artificial
extra diffusivity to the discrete equation. However, this sometimes resulted in an excessive
diffusion. The procedure was improved in the beginning of the 80’s [151, 178] by adding
diffusion only along the streamlines. The results were less overdiffusive but in the FEM
framework the approach was not consistent. This was so because the convective term of
the equation was weighted with a modified test function, while the original one was used
for the remaining terms. To achieve consistency all the terms in the weak form of the
problem were finally weighted with the modified test function giving place to the final
form of the SUPG (Stream-Upwind Petrov-Galerkin) method [23].

On the other hand, it was found in [154] that the pressure gradient in the Stokes
problem could be viewed as a convective term. This made possible to apply the SUPG
strategy to it and hence to avoid using different interpolations for the velocity and the
pressure in order to satisfy the inf-sup condition. Initially, the velocity test function was
perturbed with a term proportional to the gradient of the pressure test function but soon
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Figure 4.2: Scheme of the SGS or VMM approach to the Navier-Stokes equations.

the whole Stokes operator was applied to the test functions [78,155] (c.f. [39]), [156]. This
yielded the Galerkin/Least-Squares (GLS) stabilising method, which is often used within
a space-time FEM approach (see [39] and references therein).

A conceptually revolutionary approach to the stabilising procedure was the
appearance of the Subgrid Scale (SGS) or Variational Multiscale (VMM) methodology
that has been described in the previous chapter. As explained, the SGS approach
( [149,150,153]) is based on a scale decomposition between scales that are resolvable by the
mesh and unresolvable scales. This scale separation is done by means of a projection onto
the finite element space. The original weak form of the problem becomes then split in two
equations: one equation governs the dynamics of the subgrid scales and its solution has to
be somehow modelled, while the second equation governs the dynamics of the resolvable
scales and its solution can be numerically computed. The approximated solution to the
first equation is introduced in the second equation in order to account for the effects of
the subgrid scales on the resolvable ones.

The SGS approach gives a general framework where to place the stabilisation problem.
Several well-known stabilised methods can be then embedded in this framework, their
differences mainly depending on how the approximated solution for the subscale equation
is found. The easiest solution for the subscales is obtained from an algebraic approach to
them, which was first derived in [153] using an approximation to the Green’s function for
the subgrid equation. Several options are possible e.g., the use of bubble functions [76],
or the orthogonal decomposition in [41, 42, 44].

Other stabilisation methods exist such as the Characteristic-Galerkin method (see
[61,218,253] (c.f. [39]), [296]) suitable for scalar equations or the Taylor-Galerkin method
[60] based on adapting the finite difference Lax-Wendroff scheme in the FEM framework.
However, these methods will not be used in this work so no further details on them will
be given.

It is worthwhile to remark that the final effect of almost all the stabilisation methods
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cited above consists in the addition of a common type term in the discrete weak form
of the problem. A complete comparison in the framework of the CDR equation is given
in [39].

Let us focus now on the SGS or VMM approach. When first applied to the Navier-
Stokes equations, its initial motivation was to solve some numerical problems such as the
necessity to satisfy the inf-sup condition (which implies the use of different interpolation
spaces for the velocity and pressure fields) or the numerical instabilities appearing for
convective dominated flows. Consequently, when the SGS was first applied to the
simulation of turbulent flows a physical LES model (Smagorinsky model [272]) was still
included although solely acting on the subgrid scale equation [157–159] (see also [170,198]).
The idea that the stabilisation terms in the SGS approach could be sufficient to simulate
turbulent flows was pointed out in the framework of orthogonal subgrid scale (OSS)
stabilisation methods [44] (see also [47]) as a natural extension to that work (see Fig. 4.2
for a general scheme to be compared with Fig. 4.1). This idea was later re-introduced
in [26,160] and further elaborated in [152]. Very good results were obtained for transitional
and fully developed turbulent flows in a channel giving support to the purely numerical
approach to solve turbulent flows. Excellent results with the sole stabilisation approach
can also be found in [12, 130, 266]. Actually, and as far as we know, this “numerical” line
of thinking initiated with the MILES (Monotone Integrated LES) approach [20] c.f. [284]
(see also [265] and references therein).

In this chapter a further argument supporting the non physical modelling approach
will be given. An important point a closure LES model should satisfy is that the rate of
kinetic energy transferred from the filtered large scales to the small ones should equal the
physical dissipation rate at the Kolmogorov length scale (see e.g., [211,255]). This is so for
the filter width lying in the inertial subrange of the flow under study. Considering the OSS
stabilised finite element method [42–44], it will be herein shown that the contribution to
the energy balance equation from the stabilisation terms that arise in the discrete weak
Navier-Stokes from purely numerical considerations, is in fact already proportional to the
physical dissipation rate (for a fine enough computational mesh so that its characteristic
element size lies in the inertial subrange of the considered turbulent flow). Consequently,
the inclusion of an extra physical LES model seems somewhat redundant and unnecessary.

The chapter is organized as follows. In section 4.2 we review some results of
the classical mathematical theory of the Navier-Stokes equations. Some standard
modifications of these equations for which uniqueness can be guaranteed are introduced.
Section 4.3 is devoted to turbulent flows. The issues of transition and a brief overview
of Kolmogorov’s theory are presented. Standard LES as well as the notion of suitable
approximations to the Navier-Stokes equations [112, 114] are reviewed. In section 4.4
the energy balance equations for the continuous Navier-Stokes and LES problems are
presented together with their discrete counterparts using the Galerkin and OSS stabilised
finite element methods. The main problem we would like to address in the chapter is
established, and the OSS stabilisation terms accounting for the energy transfer to subscales
that should be proportional to the physical dissipation rate are identified. In section 4.5
we proceed to the explicit discretisation of these terms, showing that their ensemble
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average can be written as products of geometrical factors and two point second and fourth-
order nodal velocity correlations, as well as triple-order velocity pressure correlations. In
section 4.6, results from fluid statistical mechanics are used to relate these correlations to
the physical dissipation rate. In section 4.7 some numerical simulations are provided and
conclusions are finally drawn in section 4.8.

4.2 The Navier-Stokes equations

4.2.1 Problem statement

Strong or differential form

The mathematical problem we are facing is that of solving the incompressible Navier-
Stokes equations for a flow in a bounded domain, Ω ⊂ Rd, d = 2, 3. As seen in
section 3.2, these equations are obtained from the mass and momentum conservation
equations assuming a constant density, ρ, and using the hypothesis of Newtonian fluid in
the constitutive equation. This last equation relates the Cauchy stress tensor with the
rate-of-strain tensor. The resulting equations are

∂tu+ u · ∇u− ν∆u+ ∇p = f in Ω × (0, T ) (4.1)

∇ · u = 0 in Ω × (0, T ) (4.2)

with u standing for the velocity vector, p for the pressure1, ν is the kinematic viscosity
and f represents the external force applied to the fluid. Equation (4.2) that corresponds
to the continuity equation (mass conservation) is usually known as the incompressibility
constraint. Equation (4.1) (momentum conservation) together with the constraint (4.2)
shows a large variety of intricate solutions thanks to the presence of the non linear term
u · ∇u. This results in very complex physics such as those exhibited by turbulent flows.

Equations (4.1) and (4.2) are to be complemented with appropriate boundary and
initial conditions. In what follows we will limit to homogeneous Dirichlet conditions for
the sake of simplicity. In case of the domain Ω being the cube T := (0, 2π)d, periodic
conditions will be also addressed. Hence, we will consider

u (x, t) = 0 on Γ ≡ ∂Ω Dirichlet conditions (4.3)

u, p periodic in Ω = T := (0, 2π)d Periodic conditions (4.4)

u (x, 0) = u0 (x) on Ω Initial conditions. (4.5)

The system of equations (4.1)-(4.2) together with the boundary conditions (4.3) or
(4.4), and the initial condition (4.5) constitute the classical or strong formulation of

1Actually, for (4.1)-(4.2) the pressure satisfies the Poisson equation ∆p = −ρ∂jui∂iuj at each time
instant, which is a necessary and sufficient condition to fulfil the incompressibility constraint and
determines ∇p with independence of the flow earliest evolution. In other words, at each instant of
time the velocity field determines the pressure field.
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the Navier-Stokes problem to be compared with the weak or variational formulation
introduced in section 3.3.2. The latter will be next reviewed and some variations
introduced.

Weak or variational form

Use will be made of the functional framework in section 3.2 to introduce the weak
formulation of the Navier-Stokes problem. Moreover, we will also use some functional
spaces incorporating the incompressibility constraint (4.2) and boundary conditions (4.3)-
(4.4). Let H1

0(Ω) and H1
per(Ω) be subspaces of H1(Ω) that respectively satisfy the

Dirichlet (4.3) and periodic (4.4) boundary conditions of the Navier-Stokes problem (4.1)-
(4.2). We then define the functional spaces

X(Ω) :=

{
H1

0(Ω) for Dirichlet conditions
H1

per(Ω) for periodic conditions
(4.6)

V (Ω) := {u ∈X(Ω)|∇ · u = 0} (4.7)

H(Ω) := V (Ω)L2

(Closure of V (Ω) in L2(Ω)). (4.8)

We will also consider the space of infinitely differentiable d-dimensional functions of
compact support in Ω, C∞

0 (Ω) ≡ (C∞
0 (Ω))d. Equipped with this space, we build the space

of test functions V := {v ∈ C∞
0 (Ω)|∇ · v = 0} .

The weak formulation of the Navier-Stokes problem can be then obtained as usual
by multiplying (4.1)-(4.2) by a test function and integrating over the whole domain Ω.
After integrating by parts the viscous term, the weak problem can be formulated as: find
u (x, t) ∈ V (Ω) for every t > 0 such that

d

dt
(u,v) + b (u, u, v) + ν (∇u,∇v) = 〈f, v〉 , ∀v (x) ∈ V (or V (Ω)) , (4.9)

in the distributional sense in (0, T ) or (0,∞) and with initial condition u (x, 0) = u0 (x).
In (4.9), b (·, ·, ·) represents the trilinear form

b(u,w,v) :=

∫

Ω

v · (u · ∇w)dx. (4.10)

Note that with this formulation the pressure is no longer an explicit variable of the
problem so that u (x, t) is required to directly satisfy the incompressibility constraint.

It is also possible to formulate the weak problem keeping the pressure as an explicit
variable and giving the weak form of the incompressibility constraint, like it was done
in section 3.3.2. Unfortunately, it is only known for the time behaviour of the pressure
to exist in a distributional sense. However, in practice we may expect a more regular
behaviour and, for instance, state the weak problem as that of finding [u (x, t) , p (x, t)]
∈ L2 (0, T ;X(Ω)) × L1 (0, T ;L2(Ω)/R) such that

d

dt
(u,v) + b (u, u, v) + ν (∇u,∇v) − (p,∇v) = 〈f, v〉 , (4.11)

(q,∇u) = 0, (4.12)
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∀ [v (x) , q (x)] ∈ X(Ω) × L2(Ω)/R and satisfying the initial condition u (x, 0) = u0 (x)
in the weak sense.

4.2.2 Existence and uniqueness theorems

The classical results on existence and uniqueness for the strong problem (4.1)-(4.2) and
its weak version (4.9) in the three-dimensional case (d = 3) are given by the following two
theorems (see e.g., [75, 285]):

Theorem 4.1 (Existence of weak solutions) For any u0 ∈ H(Ω), f ∈
L2
(
0, T ;H−1(Ω)

)
and T > 0, problem (4.9) has at least one weak solution such that

u,∇u ∈ L2 (Ω × (0, T )) and u is weakly continuous from [0, T ] in H(Ω), (i.e., ∀v ∈
H(Ω), t 7→ (u (x, t) ,v (x)) is a continuous scalar function) . Moreover, the following
energy inequality is satisfied (Leray’s inequality):

1

2
‖u(x, t)‖2

2 + ν

∫ t

0

‖∇u(x, s)‖2
2 ds ≤

1

2
‖u(x, 0)‖2

2 +

∫ t

0

〈f(x, s),u(x, s)〉ds, (4.13)

from which it turns out that u ∈ L2 (0, T ;V (Ω)) ∩ L∞ (0, T ;H (Ω)).

Theorem 4.2 (Existence and uniqueness of classical or strong solutions)
For any u0 ∈ V (Ω), f ∈ L2 (0, T ;H(Ω)) and T > 0, there exists T∗ (0 < T∗ < T ) ,
depending on data (Ω, ν,f, u0 and T ), such that there is a unique solution to problem
(4.1)-(4.2) in the time interval [0, T∗) that fulfils u, ∂tu, ∇u, ∇ · (∇u) ∈ L2 (Ω × (0, T ))
with u continuous from [0, T∗) in V .

The proof of existence and uniqueness of classical solutions in a finite time interval
[0, T∗) is due to Leray [202], who was the first to initiate the development of the
mathematical theory of the Navier-Stokes equations. In his pioneering works, Leray also
proved the existence of weak solutions in R3 [202]. In fact, he was the first one to introduce
the concept of weak form of a partial differential equation long before the theory of
distributions was built, or the functional framework of Sobolev spaces established. Leray’s
proof is based on the construction of approximated solutions to a modified Navier-Stokes
equation where the convective term is convolved with a function of class C∞

0 (see section
3.2 and section 4.2.4 below). Lately, Hopf [133] (c.f. [286]) made use of the Galerkin
method to prove the existence of weak solutions in Ω bounded in R

3.
Theorem 4.1 predicts the existence of weak solutions that fulfil the energy inequality

(4.13). In fact, weak solutions that do not satisfy this inequality could exist and this is the
reason why solutions that do comply (4.13) are often called Leray-Hopf weak solutions.
As opposite, (4.13) becomes an equality for classical solutions. This point can be easily
shown from direct manipulation of the differential Navier-Stokes equations and the result
simply states the energy conservation in the fluid. It is worthwhile to mention that the
convective term vanishes in the global energy balance. Its main role is that of being
responsible for the energy transfer between eddies of different sizes (between modes in
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the Fourier representation). We will come back to this point later on when describing
Kolmogorov’s theory on turbulent flows.

For flows in Ω ⊆ R2 things are much more satisfactory than in the three-dimensional
case. The problem is well-posed in the sense that existence and uniqueness of weak
solutions and of classical solutions can be guaranteed for enough regular data. A physical
explanation is at the core of these differences between the two and three-dimensional
situations. If we take the curl of equation (4.1) and make use of some standard vector
identities we can obtain an equation for the flow vorticity evolution, ω,

∂tω + u · ∇ω − ν∆ω − ω · ∇u = ∇× f in Ω × (0, T ) , (4.14)

where the term ω · ∇u is responsible for the phenomenon of vortex stretching. In two
dimensions this term identically vanishes whereas in three dimensions it acts as a vorticity
amplifier. Making use of the so-called ladder theorem for the Navier-Stokes equations, it
can be seen that it is precisely the presence of the vortex stretching term what precludes
the possibility of finding a regularity proof in three dimensions [59].

The above presented theorems 4.1 and 4.2 together with their counterparts in two
dimensions constitute the kernel of the classical theory of the Navier-Stokes equations. In
this context two main problems are still to be solved: the uniqueness of weak solutions
and the existence of classical solutions at any instant of time. The importance of these
two questions has been reflected with their considerations as one of the seven “Millenium
Problems” proposed by the Clay Mathematics Institute [235].

Several additional regularity results for the Navier-Stokes equations exist that are out
of the scope of this presentation (the interested reader can find an extensive bibliography
in [286]). In next section we will briefly outline some regularity results that are directly
linked with the central subject of this chapter, namely the numerical simulation of
turbulent flows using a LES or stabilised FEM approach.

4.2.3 Partial regularity and suitable solutions

Singularity set

Even though in its original work Leray already initiated the study of the size of the time
singularity set of weak solutions, it was not until the 70’s that Scheffer [268] proposed
the study of the time-space singularity set of the solutions. It is said that (x, t) is a
singular point of the solution u (x, t) iff, u(x, t) /∈ L∞(D) for any neighbourhood D
of (x, t) [25] (the remaining points are called regular points). Probably, Scheffer’s most
outstanding result was to prove that there exists a weak solution of (4.1) such that,
under certain conditions, its set of singular points, S:= {(x, t) ⊂ Ω × (0, T ) | u (x, t) /∈
L∞(D) ∀D | (x, t) ∈ D}, satisfies H 5

3 (S) = 0, where Hk denotes the k-dimensional
Hausdorff measure2. We remind for completeness that the Hausdorff k-dimensional

2In fact Scheffer showed D
5

3

H
(S) < ∞ but a minor modification of his arguments yields D

5

3

H
(S) = 0

(see e.g., [79]).
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measure of a set A is given by

Hk (A) := lim
r−→0

(
inf

{
N∑

n=1

rk
n

∣∣∣∣∣A ⊂ ∪N
n=1Bn,

with Bn an open ball of radius rn ≤ r

})
. (4.15)

(4.15) allows to define the Hausdorff dimension of A (which is one of the possible fractal
dimensions) as

DH (A) := inf
{
d > 0|Hd (A) = 0

}
. (4.16)

Caffarelli, Kohn and Nirenberg [25] (see also [213]) improved Scheffer’s results and
obtained the best partial regularity result known up to date, H1 (S) = 0. In other words,
the size of the set of singular points S of a weak solution of the Navier-Stokes equations
has to be lower than the dimension of a smooth curve.

Dissipative or suitable solutions

Apart from hypotheses concerning the regularity of the initial conditions and the force
datum, the main condition used in the proofs by Scheffer and Caffarelli et al. was the
fulfilment of a local energy condition, which motivated the definition of suitable solutions
to the Navier-Stokes equations [25,268]. Consequently, the result H1 (S) = 0 is not valid
for any weak solution but for those satisfying the following suitability condition (it has
to be pointed out that very recently it has been shown [127] that H1 (S) = 0 is also valid
for the more general Leray-Hopf weak solutions).

Definition 4.1 A weak solution of the Navier-Stokes equations, [u, p ], is suitable iff u ∈
L2 (0, T ;X(Ω)) ∩ L∞

(
0, T ;L2(Ω)

)
, p ∈ L

5

4 (Ω × (0, T )) and the following local energy
inequality is satisfied in the distributional sense

∂t

(
1

2
u2

)
+ ∇ ·

(
u

(
1

2
u2 + p

))
− ν∆

(
1

2
u2

)
+ ν (∇u)2 + f · u ≤ 0. (4.17)

The proof of existence of suitable weak solutions to the Navier-Stokes equations in
R3 and in a bounded domain Ω ⊂ R3 can be respectively found in [268] and [25]. There
is some hope that suitable solutions may play a relevant role in the resolution of the
outstanding problem of uniqueness of weak solutions and blowing up at finite time of
strong solutions. Although the relation among suitable, weak and classical solutions
is not fully understood (Are suitable solutions unique? If this was the case, are they
classical? Are Leray-Hopf weak solutions suitable? ) it is expected that the former may
help to distinguish physically acceptable solutions [63,112,114]. In this sense, Duchon and
Robert [63] analysed the explicit form of the distribution D(u) lacking in (4.17) to obtain
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an equality. Making use of periodic boundary conditions and neglecting the force term
for simplicity, they considered the local energy equation in the distribution sense

∂t

(
1

2
u2

)
+ ∇ ·

(
u

(
1

2
u2 + p

))
− ν∆

(
1

2
u2

)
+ ν (∇u)2 +D (u) = 0,

and observed that D(u) vanishes for smooth enough flows but has a non trivial expression
for non regular solutions. Hence, the lack of local kinetic energy conservation is not only
due to viscous dissipation but also to the lack of regularity of the solution. Solutions
D(u) ≥ 0 were considered physically acceptable as they do not allow local energy creation
and they are termed dissipative solutions. Dissipative solutions coincide with the notion
of suitable solutions introduced by Scheffer and Caffarelli et al., and they are expected to
be more regular than Leray-Hopf weak solutions, which fulfil the global energy inequality
(4.13). This point seems to be confirmed by the fact that solutions of the regularised
Navier-Stokes equations (e.g., Leray’s convolution model in next section) satisfyD(u) ≥ 0.

Later on it will be shown that the notion of suitable solutions is at the basis of
nowadays attempts to give a precise mathematical definition of LES. This relies on the
notion of suitable approximations to the Navier-Stokes equations.

4.2.4 Looking for uniqueness: modification of the original

equations

We could now question what should be done in order to guarantee uniqueness of the
Navier-Stokes weak solutions so as to allow them to become a classical deterministic
system. On one hand, we could wonder what should be proved to have a unique solution
for equation (4.1) and, on the other hand, we could attempt at modifying the original
equations to achieve uniqueness. The answer to the first query is rather amazing given
that the difference between what has to be proved to achieve uniqueness and what
has yet been proved seems very small. Unfortunately, this small difference remains
unbeatable. For instance, using the ladder theorem for the Navier-Stokes equations, it can
be checked that for (4.1) with periodic boundary conditions it would suffice to prove u ∈
L2
(
0, T ;H1

per(Ω)
)
∩L∞

(
0, T ;L3+ε(Ω)

)
for ε as small as wanted [59]. However, what has

been proved up to date is that u ∈ L2(0, T ;H1
per(Ω))∩L∞(0, T ;L2(Ω)) (see Theorem 4.1).

In the case of Dirichlet conditions in a bounded domain Ω it would be enough to see that
u ∈ L2

(
0, T ;H1(Ω)

)
∩L∞

(
0, T ;L4(Ω)

)
, or that u ∈ L2

(
0, T ;H2(Ω)

)
∩L∞

(
0, T ;L2(Ω)

)

(see e.g., [285]).
Concerning the second question, there exist several reguralisation techniques that

yield modified Navier-Stokes equations with the advantage of having a unique and suitable
weak solution. Probably, the most celebrated ones are Leray’s convolution model, Lion’s
hyperviscosity model and the Ladyženskaja and Kaniel non-linear viscosity model that
will be next presented.

Leray’s convolution model. Leray [202] (see e.g., [114]) proposed a model consisting
on a reguralisation of (4.1)-(4.2) by convolving the convective term with a non-negative,
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infinitely differentiable function of compact support in R
3. Let B (0, ε) be the open ball

of radius ε with centre at 0 and let ψε be a function such that

ψε ∈ C∞
0

(
R

3
)
, supp (ψε) ⊂ B(0, ε), ψε > 0,∫

Ω

ψε (x) dx = 1 and ψε (x) =
1

ε
ψε

(x
ε

)
.

Denoting with ∗ the convolution product, we have, ψε ∗ ω (x) =
∫
Ω
ψε (x− y)ω (y) dy.

For the tridimensional torus T = (0, 2π)3, the reguralised model proposed by Leray can
be written as

∂tuε + (ψε ∗ uε) · ∇uε − ν∆uε + ∇pε = ψε ∗ f
∇ · uε = 0
uε periodic
uε|t=0 = ψε ∗ u0.





(4.18)

The following theorem is satisfied [114] (see also [63, 202]):

Theorem 4.3 For any u0 ∈ H(Ω), f ∈ H(Ω) and for every ε > 0, problem (4.18)
has a unique solution in C∞(Ω) for every t. The velocity is uniformly bounded in
L2 (0, T ;V (Ω))∩L∞ (0, T ;H(Ω)) and there exists a subsequence that converges weakly in
L2 (0, T ;V (Ω)). Moreover the limit of the solution for ε → 0 is a suitable weak solution
of the Navier-Stokes equations.

The Lions hyperviscosity model. Lions [214, 215] (cf. [114]) proposed to alter the
Navier-Stokes equations through the inclusion of an additional viscosity term and obtained

∂tuε + uε · ∇uε − ν∆uε + ε2α (−∆)α uε + ∇pε = f in Ω × (0, T )
∇ · uε = 0 in Ω × (0, T )
uε|Γ = 0, ∂nuε|Γ = 0, ∂α−1

n uε

∣∣
Γ

= 0 or uε periodic
uε|t=0 = u0.





(4.19)

The following theorem is then fulfilled [114] (see also [113, 214, 215]):

Theorem 4.4 Consider f ∈ L2 (0, T ;V (Ω)) and u0 ∈ Hα(Ω) ∩X(Ω). Then, problem
(4.19) has a unique solution uε ∈ L∞ (0, T ;Hα (Ω) ∩X(Ω)) for any T > 0 if α ≥ d+2

4
.

Moreover, there exists a subsequence such that uε weakly converges towards a weak solution
u of (4.1) in L2 (0, T ;X(Ω)). For periodic boundary conditions the solution is suitable.

The Ladyženskaja and Kaniel non-linear viscosity model Ladyženskaja and
Kaniel ( [175,190,191], cf. [114]) proposed to reguralise the Navier-Stokes equations using
a non-linear viscosity term in contrast with the hypothesis of Newtonian fluid, in order
to deal with large velocity gradients.

Let T : R
3 × R

3 −→ R
3 × R

3 be a tensor function satisfying the next conditions

a) T is continuous and there exists µ ≥ 1
4

such that ∀ξ ∈R
3 × R

3 it follows |T (ξ)| ≤
c
(
1 + |ξ|2µ) |ξ|.
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b) T is coercive in the sense that ∀ξ ∈R
3 ×R

3 it follows T (ξ) : ξ ≥ c |ξ|2 (1 + c′ |ξ|2µ),
where : stands for the double contraction of two tensors.

c) T has the following monocity propriety: there exists a constant c > 0 such that for
any solenoidal vector fields ξ, η ∈W 1,2+2µ(Ω) having identical or periodic conditions
on Γ, it holds

∫

Ω

(T (∇ξ) − T (∇η)) : (∇ξ−∇η) ≥c

∫

Ω

|∇ξ−∇η|2 .

An explicit expression for the tensor T that fulfils the above conditions is given by

T (ξ) = β
(
|ξ|2
)
ξ (4.20)

with β (τ) being a monotonically growing function of τ ≥ 0, such that for large τ values
satisfies cτµ ≤ β (τ) ≤ c′τµ for µ ≥ 1

4
and c, c′ > 0.

The Ladyženskaja and Kaniel model is obtained taking ξ =∇u in (4.20) and including
tensor T (∇u) in the viscous term. We get (see [114, 190, 191] and [175]):

∂tuε + uε · ∇uε −
(
ν + ε2µ+1β

(
|∇uε|2

))
∆uε + ∇pε = f

∇ · uε = 0
uε|Γ = 0 o uε periodic
uε|t=0 = u0.





(4.21)

Theorem 4.5 Consider f ∈ L2
(
0,∞;L2 (Ω)

)
and u0 ∈ H(Ω). If the above conditions

a), b) and c) are satisfied, problem (4.21) has a unique weak solution for every T > 0 in
L2+2µ

(
]0, T [ ;W 1,2+2µ(Ω) ∩ V (Ω)

)
∩ C0 ([0, T ] ;H(Ω)). In the case of periodic boundary

conditions there exists a subsequence such that (uε, pε) tends towards a suitable solution
of (4.1).

In summary, we have seen from the above three examples that slight modifications
of the original equations (4.1)-(4.2) yield unique and suitable solutions (with some
restrictions on the data regularity as seen from theorems 4.3, 4.4 and 4.5). This can
be achieved either by “smoothing” the convective term, by including a hyperviscosity
term or by using a non-linear viscosity. This fact has posed some doubts on the validity
of the Navier-Stokes equations as a model to describe turbulent flows. Does any of the
above modified equations account for a better description? Although this is a possibility
to consider, there is a certain general agreement that this it is not the case. Effectively,
it is nowadays believed that the original Navier-Stokes equations suffice to account for all
flow physical phenomena, including turbulence.

4.3 Turbulence and Large Eddy Simulation

4.3.1 Transition to turbulence: dependence with Re

We have previously commented that the Navier-Stokes equations have a large variety of
complex solutions and we have just seen that it is nowadays agreed that they suffice to
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describe all fluid intricate behaviour, including the phenomenology of turbulent flows.
The process by which a dynamical system such as (4.1) transitions from a simple solution
(e.g., the laminar flow over a body) to a complex solution (e.g., the turbulent flow over
the body) is qualitatively described by the bifurcation theory. We will briefly describe by
means of an example how this process works.

Dimensionless equations

First of all, and for the sake of simplicity, we will write the Navier-Stokes equations
in dimensionless form. Being respectively U0 and L a characteristic problem velocity
and length, the independent dimensionless position x′ = x/L and time t′ = U0t/L
can be defined. Moreover, we can also define the dependent dimensionless velocity
u′(x, t) = u(x, t)/U0 and pressure p′ (x, t) = p (x, t) / (ρU2

0 ). Substituting them in (4.1)
yields

∂tu
′ + u′ · ∇u′ − 1

Re
∆u+ ∇p′ = f ′ a Ω × (0, T ) , (4.22)

where Re := U0L/ν is the Reynolds number, which as known expresses when a flow is
dominated by convection (large Re) o by viscosity (small Re). The Reynolds number
states the relative significance between the inertial and the viscous terms in (4.22).

Note that with the above procedure we have just simplified the parametric dependence
of the Navier-Stokes equations to a single parameter dependence, Re. Consequently, flows
with different combinations of U0, L i ν but equal Re will behave identically. This propriety
is referred to as Reynolds number similarity.

Stability and Reynolds number

The nature of system (4.22) solutions varies depending on Re. For values of the Reynolds
number in certain intervals, the solutions do not significantly change when Re is slightly
modified. In such cases the system (4.22) is said to be structurally stable. However, for
some values of Re this is no longer valid and substantial changes occur. The system
becomes structurally unstable and bifurcates. Without getting into technical details, we
will describe how a flow can transition from a laminar to a turbulent state through a
process of successive bifurcations using a simple example.

We consider the case already addressed in chapter 3 of flow past a circular cylinder [62].
For Re ≈ 0 we have a Stokes flow and the configuration is totally symmetric: the flow
is steady, time reversal and has up-and-down as well as fore-and-aft symmetries. When
Re ≈ 10, the fore-and-aft symmetry visibility breaks down and two steady recirculating
vortices appear at the lee of the cylinder. These vortices grow in size for increasing Re.
When Re ≈ 45 the flow becomes unstable and a Hopf bifurcation [62] takes place (two
complex eigenvalues of the linearised system associated to (4.22) cross the imaginary axis).
For a point in the fluid, the solution has changed from a fix point to a limit cycle in the
phase space and its time Fourier transform presents a single non-null frequency. The flow
has lost its steadiness as well as its up-and-down symmetry and a wake of alternating
vortices is formed behind the cylinder. The set of these shed vortices is known as the
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von Kármán vortex street. The system remains structurally stable for growing Re until
values of order Re ≃ 200 are reached. Then, another Hopf bifurcation occurs associated
to wake three-dimensional instabilities. The spectrum of the solution at a given point
now presents two discrete frequencies and the phase space dynamics takes place on a two-
dimensional torus (quasiperiodic flow). For Re ≃ 260 there is a further bifurcation and
finally, after one or two more bifurcations, the flow behaviour becomes chaotic and we
describe it as turbulent. The spectrum of a fluid point solution is no longer discrete but
continuous and the phase space torus breaks down being replaced by a strange attractor.
The corresponding Poincaré sections have now a Hausdorff dimension DH > 1.

The described behaviour for the flow past a cylinder can be generalized to many other
cases. If we consider a point x ∈ Ω and analyse the velocity vector u(x, t) when t → ∞
for growing Re, the following states can be distinguished:

1. u(x, t) converges to u(x) (fix point).

2. u(x, t) converges (with t) to a periodic state, characterized by a time Fourier
transform with a single non-null amplitude (periodic flow).

3. The time Fourier transform of u(x, t) has a discrete spectrum with more than one
non-null frequency (quasiperiodic flow).

4. The time Fourier transform of u(x, t) has a continuous spectrum and the Poincaré
sections have a Hausdorff dimension DH > 1 (chaotic flow).

The above description corresponds to one of the possible scenarios or routes of
transition to chaos and turbulence. To be precise, it corresponds to the Ruelle-Takens-
Newhouse scenario [239, 264] (cf. [62, 65]). However, other possibilities exist where
transition does not involve Hopf bifurcations, but others. In this sense it is worthwhile to
mention the period doubling or Feigenbaum scenario, associated to pitchfork bifurcations
(see [70], cf. [62, 65]), the intermitence scenario associated with saddle point bifurcations
(see [254], cf. [62, 65]) and the subcritical instability scenario [62]. The bifurcation theory
establishes a general mathematical framework that provides a qualitative explanation of
the transition to turbulence, although details may substantially vary from one flow to
another [62].

4.3.2 Turbulent flows: Kolmogorov’s theory, Statistical Fluid

Mechanics and Navier-Stokes equations

Let us now focus on flows with fully developed turbulence, i.e., flows in phase 4 of the
route to chaos described in the previous section. Without any doubt, the most well-
known and successful theory describing the behaviour of a turbulent flow is Kolmogorov’s
theory formulated in 1941 [186] (cf. [255]), henceforth referred to as K41. This theory is
described in detail in many books (see e.g., [59, 75, 80, 255]) and only its basis and some
results will be presented here.
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The Kolmogorov theory (K41).

The turbulent flow is considered to be composed by eddies of different sizes taking into
account that the region occupied by one eddy can include eddies of smaller sizes. The
various eddies are characterized by a length ℓ and a velocity U . For a flow with Reynolds
number Re := U0L/ν, the largest eddies have a characteristic length ℓ ∼ L and a
characteristic velocity, U ∼ U0. The symbol A ∼ B will be used here and in the sequel
to indicate that A is of “the same order” of B, or that A “behaves” as B.

Energy is transferred from the largest eddies to the smallest ones following a process
known as the energy cascade, first proposed by Richardson [262], cf. [255]. According
to this process, large eddies become unstable and break up transferring their energy to
smaller eddies. In turn, these eddies also become unstable with time and follow the
break-up process transmitting energy to yet smaller eddies. Hence, a cascade mechanism
transferring energy to smaller and smaller eddies is established until eddies having a
size such that a Reynolds number Re(ℓ) := Uℓ/ν small enough for them to be stable is
achieved. At this stage viscosity is able to dissipate kinetic energy. This mechanism of
transfer and dissipation of kinetic energy is continuously fed by the energy supplied by
the flow external forces, which will be assumed to only act at the large scales of the flow
for simplicity. The energy cascade takes place without loss of energy as dissipation takes
action at the end of the process. Consequently, the time mean rate of kinetic energy
that has been input into the flow has to equal the time mean dissipation rate εmol, at the
smallest scales.

From the previous description, we can conclude that there exists a certain interval,
SI, such that eddies with ℓ ∈ SI are neither influenced by the anisotropy of the largest
eddies of the flow, nor by the dissipation that takes place at the smallest scales. This
interval is known as the inertial subrange and experiments show that is more or less given
by SI ≃ [lDI , lEI ] := [60η, L/6], with η standing for the Kolmogorov scale, or Kolmogorov
dissipation length, which will be defined in short. In the inertial subrange, the spectrum
of the energy density in the wavenumber domain is given by

E(k, t) :=
L

2π

∑

|k|∞=k

1

2
|û(k, t)|2 (4.23)

and can only depend on εmol and k, i.e., E(k, t) ∼ εa
molk

b. From dimensional analysis
it is quite straightforward to show that a = 2/3 and b = −5/3, so that the celebrated
Kolmogorov spectrum for local isotropic turbulence is recovered

E(k, t) ∼ CKε
2/3
molk

−5/3. (4.24)

In (4.24) CK stands for a dimensionless universal constant (i.e., valid for any turbulent
flow). Using dimensional analysis, it can also be proved that the pressure spectrum
behaves as (see [9, 245] c.f. [203])

Epp(k, t) ∼ CPε
4/3
molk

−7/3, (4.25)
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Figure 4.3: Energy cascade mechanism in wavenumber space.

with CP standing again for a non-dimensional constant. It follows that CP ≈ 1.33C2
K,

see [232].
On the other hand, Kolmogorov’s dissipation length, η, corresponds to the length scale

where Re (η) = 1 (convection equals dissipation). From this relation and using (4.24) we
arrive at

η = cK

(
ν3

ε

) 1

4

, (4.26)

which is the unique length scale that can be built from ν and ε. It follows that
cK = 2π (3CK/2)3/4 . Making use again of dimensional analysis it is possible to relate
η with the flow Reynolds number. Using (4.26) and observing that εmol has to behave as
L−1U3 yields

η

L
∼ Re−

3

4 . (4.27)

Let us denote by kEI and kDI the wavenumbers respectively associated with the
extreme lengths lEI and lDI of the inertial subrange. Then, the spectrum of the energy
density in terms of the wavenumber k presents three distinguishable zones (see Fig. 4.3):

1. For k < kEI , E(k, t) corresponds to the energy of the flow macroscopic patterns
(eddies).

2. For kEI ≤ k ≤ kDI , it follows that E(k, t) ∝ k−5/3.

3. For k > kDI , even though Re is large (very small ν), viscous effects take place and
energy is dissipated.

Kolmogorov was able to state the above framework and further results with the sole
use of three main hypotheses concerning the statistics of the flow [186] (c.f. [255]). These
are [255]:
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1. Hypothesis of local isotropy. For high enough Reynolds number, the small-scale
turbulent motions (ℓ < lEI) are statistically isotropic (i.e., they are locally
homogeneous and invariant under rotations and reflections of the coordinate axes).

2. First similarity hypothesis. For any turbulent flow at sufficiently high Reynolds
number, the statistics of the small-scale motions (ℓ < lEI) have a universal form
uniquely determined by ν and εmol.

3. Second similarity hypothesis. For any turbulent flow at sufficiently high Reynolds
number, the statistics of the motions of scale ℓ in the range lDI < ℓ < lEI have a
universal form uniquely determined by εmol and independent of ν.

In 1962, Kolmogorov himself modified the above outlined K41 theory to adjust some
differences detected in the prediction of high order moments of the velocity field ( [187,246]
cf. [255]). These discrepancies are associated to rare fluctuations or bursts of vorticity
away from its mean value. This phenomenon is known as intermittency and allows
for the possibility that during the bursts, some characteristic flow lengths smaller than
Kolmogorov length may occur [59].

Statistical fluid mechanics

In the preceding section we have presented some K41 results that can be derived from
Kolmogorov’s hypotheses using dimensional analysis and heuristic reasoning. Actually
Kolmogorov’s hypotheses are inherently based on a statistical description of turbulent
flows and were originally formulated in terms of an N -point distribution in the four-
dimensional x − t space. Statistical fluid mechanics has become extremely useful in the
description of turbulent flows and has probably produced the main landmark results in
the field.

The fact that a probabilistic approach suits well for the description of the solutions
of a deterministic system, like the Navier-Stokes equations, could look amazing at first
sight. However, we have explained in section 4.3.1 how the solutions to the Navier-Stokes
problem present increasingly complex behaviour when the Reynolds number is augmented.
For sufficiently large Reynolds numbers, the velocity field becomes essentially random in
nature and a statistical approach to describe it appears as a very reasonable option. That
is, the Navier-Stokes equations exhibit what is known as deterministic chaos. The values
of the solutions are extremely sensitive to the initial conditions, so that in the long term
two close initial conditions may give place to completely different solutions.

It should be pointed out that statistical theory is not of immediate application to the
Navier-Stokes. For instance, the ergodic assumption that replaces ensemble averaging by
time averaging faces with the difficulty of the local existence of classical solutions. The
subject is rather technical and certainly out of the scope of this work. The reader is
referred to [75] for extensive information on the subject. In what follows we will limit
to briefly review some basic concepts of statistical fluid mechanics that are to be used
in forthcoming sections. We will follow [255] (to be consulted for details) and see how
statistical tools combined with Kolmogorov’s hypothesis can yield very powerful results.
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We remind that for a scalar random function U , the probability of any event is
characterised by the cumulative distribution function (CDF) defined by

F (V ) := P (U < V ) (4.28)

where P denotes the probability (in this case of U being smaller than V ). The CDF has
three main proprieties, namely F (−∞) = 0, F (∞) = 1 and F (V2) ≥ F (V1) for V2 > V1.

The probability density function (PDF) is defined as the derivative of the CDF function
and it accounts for the probability per unit distance in the sample space,

f(V ) :=
dF (V )

dV
. (4.29)

f(V ) is a non-negative function and it is normalised to unity (
∫

R
f(V )dV = 1) with

f(−∞) = 0, f(∞) = 0. The PDF (also the CDF) completely characterises a random
variable in the sense that two random variables having the same PDF are statistically
identical.

For any function Q(U) we can define its mean value as

〈Q(U)〉 :=

∫

R

Q(V )f(V )dV, (4.30)

with the particular case of Q(U) = U corresponding to the mean value or expectation of
U . Fluctuations in U are given by u′ := U − 〈U〉 and the nth central moment is defined
by

µn ≡ 〈un〉 :=

∫

R

(V − 〈U〉)n f(V )dV, (4.31)

with µ0 = 1, µ1 = 0 and µ2 = var(U) (var standing for the variance).
In the case of turbulent flows we will be interested in statistics concerning the velocity

field u(x, t). Our interest can either involve statistics at a single point or at several points
(N -point statistics). In the former case the one-point one-time joint CDF is given by

F (v,x, t) := P (ui (x, t) < vi, i = 1, 2, 3) (4.32)

with joint PDF

f(v;x, t) :=
∂3F (v,x, t)

∂v1∂v2∂v3
. (4.33)

The semi-colon in (4.33) indicates that f is a density with respect to v and a function
with respect to x and t (see [255]). Analogously to (4.30), the mean velocity field is given
by

〈u (x, t)〉 :=

∫

R3

vf(v;x, t)dv, (4.34)
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and the fluctuation is defined as u′(x, t) := u(x, t) − 〈u(x, t)〉. Of special interest
concerning one-point statistics are the one-point one-time covariances

〈
u′iu

′
j

〉
(dependence

on (x, t) is understood) known as Reynolds stresses.
We will be also interested in N -point N -time joint PDFs relating velocities at different

points and instants of time. If {xn, tn} with n = 1, 2, . . . , N denote a set of N positions
and times, a joint PDF for the velocity u(x, t) at these points can be build

fN(v1,v2, . . . ,vN ;x1, t1,x2, t2, . . . ,xN , tN). (4.35)

In what concerns the work in the remaining of this chapter, we will focus in statistics
for the case N = 2 that relates the velocity field at a given instant and at two different
points, say xa and xb, separated a distance rab =

∥∥ xa − xb
∥∥. Of special interest to us

will be the two-point velocity correlation function

Bab
ij =

〈
u′ai u

′b
j

〉
, (4.36)

the two-point fourth order velocity correlation function

Bab
ij,kl =

〈
u′ai u

′a
j u

′b
ku

′b
l

〉
, (4.37)

and the two-point velocity pressure correlation function

Bab
p,ij =

〈
p′au′bi u

′b
j

〉
, (4.38)

with p′ standing for pressure fluctuations.
On the other hand, the so-called structure functions are another quantity of crucial

importance in statistical fluid mechanics. The second-order velocity structure function for
points xa and xb is defined as the covariance of the difference in velocity between these
two points

Dab
ij =

〈(
ub

i − ua
i

) (
ua

j − ub
j

)〉
. (4.39)

It will be next shown how Kolmogorov’s hypotheses can be applied to these statistics to
obtain predictions that agree fairly well with experimental data. We have chosen this
example because the herein shown results, as well as the reasoning employed to derive
them, will be used in subsequent sections.

A first consequence of Kolmogorov’s hypothesis of local isotropy is that Dab
ij is an

isotropic function of rab = xa − xb (see [232, 255] for details). The only second-order
tensors that can be build from rab (to within scalar multiples) are δij and rab

i r
ab
j , so that

Dab
ij can be written as

Dab
ij = Dab

NN

(
rab
)
δij +

[
Dab

LL

(
rab
)
−Dab

NN

(
rab
)] rab

i r
ab
j

(rab)2 . (4.40)

In (4.40) the subscript L in the scalar function Dab
LL stands for longitudinal, while Dab

NN

is the normal or transverse structure function. If the coordinate frame is such that rab is
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in the x1 direction, it follows that Dab
ij = 0 for i 6= j and Dab

11 = Dab
LL, Dab

22 = Dab
33 = Dab

NN ,
which make apparent the meaning of Dab

LL and Dab
NN .

It is a consequence of the incompressibility constraint that for homogeneous turbulence
with zero mean value

∂ri
Dab

ij = 0. (4.41)

Differentiating (4.40) and taking into account (4.41) it follows that

Dab
NN = Dab

LL +
1

2
rab∂rabDab

LL (4.42)

so that for isotropic turbulence Dab
ij is solely determined by the scalar function Dab

LL.
We can next apply Kolmogorov’s first similarity hypothesis. According to it, for

ℓ < lEI D
ab
ij is uniquely determined by ν and εmol. Dab

ij can be made dimensionless by

means of
(
εmolr

ab
)2/3

that has dimensions of squared velocity. There only exists one
independent non-dimensional group that can be formed from rab, εmol and ν, which can
be taken to be rabε

1/4
molν

−3/4 = rabη−1. Hence there is a universal non-dimensional function
D̂ab

LL

(
rab/η

)
such that

Dab
LL =

(
εmolr

ab
)2/3

D̂ab
LL

(
rab/η

)
. (4.43)

Now, according to Kolmogorov’s second similarity hypothesis, for lDI < ℓ < lEI (large
values of rabη−1) Dab

LL does not depend on the viscosity ν. Given that there is no non-
dimensional group that can be formed from rab and εmol, in the inertial subrange Dab

LL will
behave as

Dab
LL = C

(
εmolr

ab
)2/3

, (4.44)

with C being a universal constant such that D̂ab
LL → C for large rabη−1.

Substituting (4.44) in (4.42) we obtain the value for the transverse structure function
Dab

NN

Dab
NN =

4

3
C
(
εmolr

ab
)2/3

, (4.45)

and inserting (4.44), (4.45) in (4.40) we get an expression for Dab
ij in the inertial subrange,

Dab
ij = C

(
εmolr

ab
)2/3

(
4

3
δij −

1

3

rab
i r

ab
j

(rab)2

)
. (4.46)

Consequently, we observe that the Kolmogorov hypotheses have allowed to express the
second order structure function in the inertial subrange solely in terms of εmol, rab and
the universal constant C. Experimental results show very close results to those predicted
by (4.46) (see e.g., [255]).
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Relation between K41 and the Navier-Stokes equations

One of the most surprising things about the K41 theory (apart from its experimental
success) is that it does not consider at all the Navier-Stokes equations. Kolmogorov
builds his theory from some basic hypothesis and heuristic reasoning, and using some
statistical fluid mechanics results and dimensional analysis as working tools. However,
we have seen in preceding sections that it is widely accepted that the Navier-Stokes
equations are able to describe the behaviour of turbulent flows. If this is the case, it
should be possible to obtain the K41 results directly from the Navier-Stokes equations.
Unfortunately this is not an easy task. As previously mentioned, a first difficulty appears
given that classical solutions only exist for very short periods of time (see theorem 4.2).
However, we are dealing with fully developed turbulent flows (stage 4 in section 4.3.1)
and thus considering long time behaviour.

A first approximation to relate K41 with the Navier-Stokes equations can be obtained
from the spatial Fourier transform of the latter. Effectively, equations (4.1)-(4.2) in the
wavenumber space become (for periodic boundary conditions)

∂tû(k, t) − i

L3

(
I − kk

k2

)
·
∑

k′+k′′=k

û(k′, t) · k′′û(k′′, t)

+ νk2û (k, t) = f̂ (k) , (4.47)

k · û (k, t) = 0,

with i =
√
−1, I being the identity tensor and I−kk/k2 being the projector to divergence-

free vector fields. We can observe that (4.47) gives further insight to the fact that the
convective term is responsible for the coupling between modes and consequently for the
transfer of energy among them, according to the energy cascade description. This term
does not play a role in the global energy balance (4.13), see section 4.4. below. On the
other hand, the energy balance (Leray’s inequality) suggests to define the time mean rate
of energy dissipation per unit mass, εmol ≡ εt2

mol, as

εt2
mol :=

ν

L3

〈
‖∇u‖2

2

〉
(4.48)

(the brackets stand here for an ensemble average, or time average under the ergodic
hypothesis).

It is already known that the flow kinetic energy is bounded so Leray’s inequality
guarantees that εt2

mol in (4.48) will be also bounded. On the other hand, we can observe
that the viscous term in (4.47) contains a k2 factor, which makes νk2û (k, t) larger for
high wavenumbers (small lengths). This is again in accordance with Komogorov’s idea
that dissipation takes place at the smallest scales of the flow.

The Navier-Stokes equations also play an important role in the derivation of some
important equations of statistical fluid mechanics such as the Kármán-Howarth equation,
which is viewed as an indirect validation for them. However, to recover the K41 results in
a rigorous manner, neither this last result nor the above global image from (4.47) suffice
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and new approaches are required. In this sense, it is worthwhile to mention that the main
mechanisms of the Richardson-Kolmogorov energy cascade have been recently proved in
a rigorous way starting from the Navier-Stokes equations [74] (see also [75]).

On the other hand, a central role in K41 is played by the Kolmogorov dissipation
length η. It has been attempted to obtain the value of this scale from the dimension of
the Navier-Stokes equations global or universal attractor 3. The key idea goes as follows:
for a three-dimensional flow with characteristic length scale L, we will need according to
K41 (see (4.27)),

N ∼
(
L

η

)3

∼ Re
9

4 (4.49)

degrees of freedom to solve it, given that there will be no active eddies for ℓ < η. Therefore
we can consider, for instance, to represent the flow using the spatial Fourier transform
components ranging from 1/L to 1/η sampled each 1/L. On the other hand, we can
identify the number of a system degrees of freedom, N , with the dimension of its global
attractor [59]. If (4.49) represents the attractor dimension of a turbulent flow according
to K41, what we need is to find the global attractor of the Navier-Stokes equations and
check if the same characteristic scale η is recovered.

The first problem of such a procedure concerns again the local character of classical
solutions (theorem 4.2) that does not ensure the existence of a global attractor. Up to
nowadays (4.49) has not been achieved, but very close results have been encountered.
The most precise ones are those in [97] where it has been shown that the dimension of
the attractor can be bounded by (L/η)4.8 (actually, the bound in [97] does not contain η
but a length that can be related to it). The desired value of 3 for the exponent can be
recovered if more spatial regularity is assumed so that ∇u ∈ L1 (0, T ;L∞(Ω)) [50]. The
statement of the problem of bounding the dimension of the Navier-Stokes attractor can
be found, for example, in [59, 97].

4.3.3 LES: Large Eddy Simulation

Up to now we have reviewed some aspects of the mathematical theory for the Navier-
Stokes equations and outlined some of its connections with the physical description of
turbulence. Given that in general it is not possible to solve these equations analytically,
numerical methods have become a very useful tool to understand several aspects of
turbulent flows such as the transition process to chaos or the complex physics of fully
developed turbulent flows. Numerical methods have become also an indispensable tool to
address many engineering problems involving turbulence.

We have already commented in sections 2.5.1 and in the introduction of Chapter 4
that there exist three main possibilities to perform Computational Fluid Dynamics (CFD)
of turbulent flows in the spatial domain (see e.g., [255,265]) namely RANS, DNS and LES

3A possible definition for the global attractor, A, is the set of points in phase space that can be arrived
at from an initial condition at an arbitrary long time in the past i.e., A = ∪ρ>0 ∩t>0 Bρ (t), with Bρ (t)
being a ball of radius ρ of initial conditions in phase space.
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Figure 4.4: Scale decomposition in large and small scales in LES.

methods. It has been argued that the later turns to be the appropriate approach for the
kind of problems we aim to solve and we will concentrate on it in this section. We remind
that the key idea of standard LES is to decompose the velocity and pressure fields at the
continuum level, so that [u, p ] = [u, p ] + [u′, p′] , with [u, p ] representing the large scales
of the flow that can be computed, whereas [u′, p′ ] accounts for the non-resolvable small
scales. As mentioned, the key point in LES consists in properly modelling the effects of
the non-computable small scales into the large ones.

Filtered Navier-Stokes equations

As stated in the introduction, the scale decomposition between large and small scales
(see Fig. 4.4) has been done traditionally by means of a filtering process (see e.g., [201]
cf. [255], [265]). Without detailing the possible low-pass filter operations [255, 265] and
assuming that the filter (·) : v 7−→ v commutes with the differential operators, we can
filter the Navier-Stokes equations (4.1)-(4.2) , with boundary conditions (4.3) or (4.4) and
initial condition (4.5) , to obtain the system

∂tu+ u · ∇u− ν∆u+ ∇p = f−∇ · R in Ω × (0, T ) (4.50)

∇ · u = 0 in Ω × (0, T ) (4.51)

u = 0 or u periodic on Γ (4.52)

u (x, 0) = u0 (x) in Ω. (4.53)

In (4.50), the tensor R := u⊗ u − u⊗u is known as the residual stress tensor,
subscale tensor or subgrid scale tensor. In order for (4.50)-(4.53) to be a closed system
of equations for [u, p ], it is needed to express R solely in terms of u. This question
is known as the closure problem. The various choices for R give place to different LES
models. Once a model has been chosen, the last step of LES consists in the discretisation
of (4.50)-(4.53) and in finding its numerical solution.

One could wonder about the possibility of finding an exact closure for (4.50)-(4.53) so
that R could be expressed in terms of u, without making any approximation. This is in
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fact possible if we make use of the Helmholtz filter that obtains u from the solution
of the Helmholtz equation, u − ε2∆u = u. It follows that u := (I − ε2∆)

−1
u,

with ε > 0 standing for the cut-off scale [90, 91, 112]. Taking into account that
u⊗ u = (u− ε2∆u)⊗ (u− ε2∆u) and applying the filter to u⊗u, we get u⊗u =
u⊗u− ε2∆u⊗u. Inserting these relations into the subgrid scale tensor we obtain

Rij = (ui − ε2∆ui) (uj − ε2∆uj) − uiuj

= uiuj − ε2uj∆ui − ε2ui∆uj + ε4∆ui∆uj − uiuj

= ε2∆(uiuj) − ε2uj∆ui − ε2ui∆uj + ε4∆ui∆uj

= 2ε2∇ui · ∇uj + ε4∆ui∆uj . (4.54)

This expression4 effectively allows to write R in terms of u without making
any approximation or ad hoc hypotheses. However, it is to be remarked
that the Helmholtz filter establishes an isomorphism between L∞ (0, T ;H(Ω)) and
L∞
(
0, T ;H(Ω) ∩H2(Ω)

)
, and between L2 (0, T ;V (Ω)) and L2

(
0, T ;V (Ω) ∩H3(Ω)

)
.

Consequently, the exact closure (4.54) has only served to build an isomorphism between
the weak solutions of (4.1)-(4.2) and the weak solutions of (4.50)-(4.53) [112]. Hence,
the number of degrees of freedom needed to solve both problems remains the same. This
result can be generalised to any exact closure of equations (4.50)-(4.53), so making LES
under these circumstances is as much involved as performing DNS. At first sight this
may look as a paradoxic fact given that finding an exact closure seems a reasonable goal.
However, this is not the case and LES is only meaningful for a non-exact closure so that
flow information is lost in the subscale modelling.

Some drawbacks of LES

As commented in the introduction of the chapter, LES presents several problems and
unsolved questions. The key subject still concerns finding a good model for the subgrid
scale tensor. However, it has just been pointed out that achieving an exact closure
is a paradoxic program, so this cannot be a motivation to find subscale models. On
the other hand, many of the existing LES models are based on physical and numerical
approximations and heuristic arguments, which perform more or less well depending on
the problem where they are applied. Generalisations are difficult to find although it
is recommended that the subscales satisfy certain properties such as to conserve the
invariance under transformations of the original Navier-Stokes equations. However, it is
not fully clear which should be the characteristics of a good LES model (apart from the
obvious fact that it should properly reproduce experimental data).

Another important question concerns the relation/interaction between errors arising
from the physical LES model and from numerical methods used to solve the discretised
problem [35, 93, 185, 200, 283]. It is also not clear which should be the relation between
the filter support ε and the characteristic mesh element size h [35, 93]. In addition, the

4A first order approximation on ε2 yields Rij ≃ 2ε2∇ui · ∇uj that is the de Clark et al. [37] modelling
for the Leonard stresses plus the cross stresses into which the subgrid scale tensor can be decomposed [90].
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problem of the commutation error of the filtering and differentiation operations needs also
to be addressed [64, 96, 289].

In summary, we could say that nowadays a satisfactory mathematical theory of
LES still does not exist although steps towards this direction are being carried out (see
e.g. [17, 171, 196–198]).

Suitable approximations to the Navier-Stokes equations

Recently, a detailed analysis of several LES models has been performed in an attempt to
clarify the situation somehow [112]. From this analysis several interesting conclusions have
been derived. For instance, it is observed that those models in section 4.2.4 presenting
uniqueness of solutions can be written in the form of LES equations. Effectively,

Leray’s convolution model. Without considering initial and boundary conditions for
brevity, Leray’s model (4.18) can be rewritten in the form (4.50)

∂tu+ u · ∇u− ν∆u + ∇p = (ψε ∗ f) −∇ · RLe, (4.55)

RLe := u⊗ (ψε ∗ u) − u⊗ u. (4.56)

This model has the inconvenience that is not invariant under transformations of the
coordinate axis although it can be rearranged to achieve this propriety [112]. The resulting
model is known as the Navier-Stokes alpha model (NS-α) [111].

The Lions hyperviscosity model. In this case we have

∂tu+ u · ∇u− ν∆u + ∇p = f −∇ · RLi,

RLi := ε2α (−∇)2α−1 u. (4.57)

The Ladyženskaja and Kaniel non-linear viscosity model For this model we
obtain

∂tu+ u · ∇u− ν∆u+ ∇p = f −∇ · RLa, (4.58)

RLa := −ε2µ+1β |∇u|2 ∇u. (4.59)

It is worthwhile to mention that the most celebrated LES model, the Smagorinsky
model [272] (cf. [255]) has the same structure as (4.58) taking µ = 1/2, β (τ) = τµ,
and ξ = S in (4.20), with S := 1/2

(
∇u+∇uT

)
. It follows RSm := −ε2 |S|S.

Hence, we can conclude that it is possible to obtain LES models with the remarkable
attribute of leading to well posed mathematical problems. Moreover, we can observe that
filtering is not the only way to attain LES models as shown e.g., for the Ladyženskaja and
Kaniel model. Even the celebrated Smagorinsky model can be recovered without filtering
in contrast to what is usually performed in literature.

Further models were analysed in [112] such as spectral viscosity models, subgrid
viscosity models, variational multiscales models, similarity models, etc. Although it does
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not seem possible to build a general mathematical framework for the whole of these
models, it was concluded that a LES model should satisfy at least two main requisites:
first, it should lead to a well-posed system of equations. Second, it should select physical
relevant solutions i.e., suitable in the sense specified in section 4.2.3 (see Definition 4.1).

In view of the above considerations, the notion of suitable approximations to the
Navier-Stokes equations was proposed in [114] as a first step towards a mathematical
definition of LES .

Definition 4.2 A sequence [uγ, pγ ], with γ > 0 and uγ ∈ L2 (0, T ;X(Ω)) ∩
L∞
(
0, T ;L2(Ω)

)
and pγ ∈ D′ (]0, T [ , L2(Ω)/R), is said to be a suitable approximation

to the Navier-Stokes equations (4.1)-(4.5) iff

1. There exist two finite dimensional vector spaces Xγ(Ω) ⊂ X(Ω) and Mγ(Ω) ⊂
L2(Ω)/R such that uγ ∈ C0 ([0, T ] ;Xγ(Ω)) and pγ ∈ L2 (]0, T [ ,Mγ(Ω)).

2. The sequence {uγ , pγ} (or a subsequence) converges to a weak solution of (4.1)-
(4.5), i.e., uγ ⇀ u (weak convergence) in L2 (0, T ;X(Ω)) and pγ → p in
D′(]0, T [ , L2(Ω)/R).

3. The weak solution [u, p ] is suitable.

Note that two parameters are involved in the definition 4.2: the parameter h associated
to the smallest scale in Xγ(Ω) (the dimension of Xγ(Ω) will be of order (L/h)3) and the
parameter ε associated to the cut-off scale (or to the diameter of the filter support). This
scale corresponds to the size of the smallest active eddies in the flow. The parameter γ
in the definition stands for a combination of h and ε to be determined in each case. It is
understood that γ → 0 for ε → 0 and h→ 0.

The following three step strategy is proposed in [114] for the practical construction of
suitable approximations.

1. Elaboration of a pre-LES model. This step consists in reguralising the Navier-
Stokes equations to obtain a well-posed problem and introduces the parameter ε.
For ε → 0 the pre-LES model has to converge to a suitable solution of the Navier-
Stokes equations. Hence, the pre-LES model corresponds to the process of obtaining
the filtered equations (4.50) in standard LES but, with the additional requisite that
once closed, the resulting equations have to be well-posed. That is to say, the
problem needs to have a unique solution that converges to a suitable weak solution
of the Navier-Stokes equations.

2. Discretisation of the pre-LES model. In this step we introduce the approximated
functions for the velocity and pressure fields, the finite dimensional spaces Xγ(Ω)
and Mγ(Ω), and the parameter h.

3. Determining the relation between ε and h. The relation between ε and h cannot be
arbitrary given that when taking the limits ε → 0 and h → 0, the solution has to
converge to a suitable solution of the Navier-Stokes equations.
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It can be checked that the Leray, (NS-α), Lions and Ladyženskaja-Kaniel models yield
suitable approximations of the Navier-Stokes equations [112]. Nevertheless, although
suitable approximations constitute a first substantial step towards a mathematical
definition of LES some problems remain. This is the case e.g., of the unknown relation
between errors induced by the pre-LES model and those of the discretisation. In this
sense it is worthwhile to wonder which is the role played by DNS in all this context. In
other words and to be precise, given Xγ(Ω) ⊂X(Ω) and Mγ(Ω) ⊂ L2(Ω)/R, we wonder
if ∀t ∈ [0, T ] the Galerkin approximation

(∂tuh,v) + b (uh,uh, ṽ) + ν (∇uh,∇v) − (ph,∇v) = 〈f , ṽ〉 ∀v ∈Xγ(Ω)

(q,∇uh) = 0 ∀q ∈Mγ(Ω) (4.60)

(uh (x, 0) ,v) = (u0,v) ∀v ∈Xγ(Ω)

with uh (·, t) ∈ Xγ(Ω) and ph (·, t) ∈ Mγ(Ω), is suitable. It has been proved that this is
in fact the case for the solution of (4.60) with periodic boundary conditions, and using
low order finite element spaces having a discrete commutation property and satisfying an
appropriate inf-sup condition [109]. Recently, the result has been extended for the case
of Dirichlet boundary conditions [110]. These results may justify somehow the fact that,
for low order finite elements, sometimes better results are obtained when no physical LES
modelling is used.

4.3.4 SGS versus LES

In the preceding section we have introduced the standard LES approach to solve turbulent
flows as well as some recent developments aiming to establish a mathematical definition
and framework for LES. On the other hand, in Chapter 3 a SGS (or VMM) stabilised
finite element method was introduced (in particular the OSS method with time tracking
and inclusion of all non-linear terms), and we claimed that SGS may constitute a valid
alternative for the simulation of turbulent flows.

Even though the final goal of LES consists of a numerical simulation, its statement
precedes this simulation. Starting from the description of the dynamics of the original
problem, LES modelling aims at stating a problem with similar behaviour for some macro
scales, obtained after a filter operation and a closure for the subgrid scale tensor. In
contrast, SGS models are numerical formulations without previous manipulation of the
original problem. From the comparison of both approaches it follows that:

• There is no filter operation in SGS but a closed expression for the subscales. The
different ways to obtain this expression give place to the different SGS models.

• There is no ambiguity in the SGS definition of a subscale: we would like that
uh = Ph(u) for a projection Ph onto the discrete space, from which u′ = u−Ph(u).
There is no closure problem except for the necessity to find an expression for Ph.
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• According to the definition 4.2, in SGS ε = h, i.e., the reguralisation term is
introduced by the numerical approximation. In other words, in SGS there is not pre-
LES model and the reguralisation comes from the effects of the numerical subscales.

• Whether for the SGS solution uh ⇀ u, ph ⇀ p and [u, p ] is a suitable solution is still
an open problem and it will depend on the model for the subscales. Convergence
to a weak solution of the continuous problem is however guaranteed by the Hopf
technique [133], in combination with stability results.

• The SGS stabilisation terms can be also written in terms of Reynolds, Leonard and
cross stresses. Moreover the SGS formulation retains the invariants of the original
Navier-Stokes equations.

From these observations we may conjecture that

• Probably, SGS is LES, according to the definition of suitable approximations ...

• ... But having SGS is LES necessary?

• In other words, turbulence needs to be a physical or a numerical model?

In Chapter 3 we have seen some properties of the SGS approach that make it a proper
candidate for the simulation of turbulence. In the next sections we will use a totally
different line of reasoning to give further support to the idea that no physical LES model
should be used in the simulation of turbulent flows [108]. It will be heuristically shown
that the rate of transfer of subgrid kinetic energy provided by the stabilisation terms
of the Orthogonal Subgrid Scale (OSS) finite element method is already proportional
to the molecular physical dissipation rate (for an appropriate choice of the stabilisation
parameter). This precludes the necessity of including an extra LES physical model to
achieve this behaviour and somehow justifies the purely numerical approach to solve
turbulent flows. The argumentation is valid for a fine enough mesh with characteristic
element size, h, so that h lies in the inertial subrange of a turbulent flow.

4.4 Energy balance equations

4.4.1 Energy balance equation for the Navier-Stokes problem

The strong formulation of the Navier-Stokes equations problem in a domain Ω ⊂ R3 has
been stated in (4.1)-(4.2), with boundary conditions (4.3)-(4.4) and initial condition (4.5).
This problem can be rewritten in conservative form for the case of homogeneous Dirichlet
conditions on the boundary (∂Ω ≡ ΓD) as

∂tu− 2∇ · [νS (u)] + ∇ · (u⊗ u) + ∇p = f in Ω × (0, T ) , (4.61)

∇ · u = 0 in Ω × (0, T ) , (4.62)

u (x, 0) = u0 (x) in Ω, t = 0, (4.63)

u (x, t) = 0 on ΓD × (0, T ) , (4.64)
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where as usual u stands for the flow velocity, p for the pressure, ν represents the kinematic
fluid viscosity (taken constant hereafter), S (u) := 1

2

(
∇u+ ∇uT

)
the rate of strain

tensor, f the external force and (0, T ) is the time interval of analysis.
Using the functional framework introduced in section 3.2, we can formulate the

weak form associated to problem (4.61)-(4.64) as: find [u, p] ∈ L2(0, T ;H1
0 (Ω)) ×

L1(0, T ;L2(Ω)/R) (for example) such that

(∂tu,v) + 2ν(S (u) ,S (v)) + 〈∇ · (u⊗ u) ,v〉 − (p,∇ · v) = 〈f ,v〉, (4.65)

(q,∇ · u) = 0, (4.66)

for all [v, q] ∈H1
0 (Ω) × L2(Ω)/R, and satisfying the initial condition in a weak sense.

In what follows we will assume the solutions to be classical, which allows setting
v = u, q = ct (constant) in (4.65)-(4.66) for each t ∈ (0, T ). Taking into account that we
have limited the analysis to homogeneous Dirichlet boundary conditions, we obtain the
energy balance equation

d

dt

(
1

2
‖u‖2

)
= −2ν ‖S (u)‖2 + 〈f ,u〉. (4.67)

Equation (4.67) states that the time variation of the flow kinetic energy depends on two
factors, namely, the molecular dissipation due to viscosity (which is clearly negative) and
the power exerted by the external force that can be either positive or negative. Identifying
the pointwise kinetic energy as k := u · u/2, the pointwise molecular dissipation as
εmol := 2ν [S (u) : S (u)] and the pointwise power of the external force as Pf := f · u we
can rewrite (4.67) as ∫

Ω

dk

dt
dΩ = −

∫

Ω

εmoldΩ +

∫

Ω

PfdΩ. (4.68)

According to the Kolmogorov description of the energy cascade in turbulent flows
described earlier [186] cf. [255], the flow can be viewed as driven by the external forces
acting at the large scales (low wave numbers) and generating kinetic energy, which is
transferred to the low scales (high wave numbers) by non-linear processes. When the
Kolmogorov length is reached, the viscous dissipation, εmol, in the r.h.s of (4.68) takes
part transforming the flow kinetic energy into internal energy (heat is released).

4.4.2 Energy balance equation for a Large Eddy Simulation

model

We have shown in section 4.3.3 that in the standard Large Eddy Simulation (LES)
of turbulent flows, a scale separation between large and small scales for the velocity
and pressure fields in the Navier-Stokes equations is carried out. This yields [u, p ] =
[u, p ] + [u′, p′], with [u, p ] standing for the large, filtered, scales and [u′, p′] representing
the small, residual, ones. Considering the same assumptions used to derive (4.50)-(4.53),
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we get the filtered incompressible Navier-Stokes equations in conservative form:

∂tu− 2∇ · [νS (u)] + ∇ · (u⊗ u) + ∇p = f −∇ · R in Ω × (0, T ) , (4.69)

∇ · u = 0 in Ω × (0, T ) , (4.70)

u (x, 0) = u0 (x) in Ω, t = 0, (4.71)

u (x, t) = 0 on ΓD × (0, T ) , (4.72)

which are analogous to (4.61)-(4.64) except for the divergence of the residual stress tensor
R := u⊗ u−u⊗u appearing in the r.h.s of (4.69). As already mentioned, an expression
for the latter in terms of u is needed to close the system of equations (4.69)-(4.72).

The weak formulation of problem (4.69)-(4.72) can be stated as: find [u, p] ∈
L2(0, T ;H1

0 (Ω)) × L1(0, T ;L2(Ω)/R) such that

(∂tu,v) + 2ν(S (u) ,S (v)) + 〈∇ · (u⊗ u) ,v〉 − (p,∇ · v)

= 〈f ,v〉 + 〈R,∇v〉 , (4.73)

(q,∇ · u) = 0, (4.74)

for all [v, q] ∈ H1
0 (Ω) × L2(Ω)/R, and satisfying the initial condition in a weak sense.

Taking into account that R is symmetric, we can rewrite the second term in the r.h.s
of (4.73) as 〈R,∇v〉 = 〈R,S (v)〉. In addition, and without loss of generality, we will
consider R deviatoric, its volumetric part being absorbed in the pressure term.

If we next set v = u, q = ct, for each t ∈ (0, T ) in (4.73)-(4.74) we can obtain an
energy balance for the filtered Navier-Stokes equations:

d

dt

(
1

2
‖u‖2

)
= −2ν ‖S (u)‖2 + 〈R,S (u)〉 + 〈f ,u〉. (4.75)

We can now define the filtered pointwise kinetic energy k := u · u/2, the pointwise
filtered molecular dissipation εmol := 2ν [S (u) : S (u)], the rate of production of residual
kinetic energy Pr := −R : S (u) and the pointwise power of the external filtered force
P f := f · u, so that we can rewrite (4.75) as

d

dt

∫

Ω

kdΩ = −
∫

Ω

εmoldΩ −
∫

Ω

PrdΩ +

∫

Ω

P fdΩ. (4.76)

For a fully developed turbulent flow with the filter width in the inertial subrange, the
filtered field accounts for almost all the kinetic energy of the flow. Thus,

∫
Ω
kdΩ ≈

∫
Ω
kdΩ

and the first terms in (4.68) and (4.76) become nearly equal. If the external force mainly
acts on the large scales of the flow, it will also happen that

∫
Ω
PfdΩ ≈

∫
Ω
PfdΩ. On

the other hand, the energy dissipated by the filtered field, εmol is relatively small and
can be neglected [255]. Consequently, comparing equation (4.76) with equation (4.68),
we observe that in order for the LES model to behave correctly it should happen that∫
Ω
PrdΩ ≈

∫
Ω
εmoldΩ. That is, the rate of production of residual kinetic energy should

equal, in the mean, the energy dissipated by viscous processes at the very small scales
(Kolmogorov length), which is the point of view expressed by Lilly [211].
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In the case of some celebrated LES models, such as the Smagorinsky model [272], Pr

is always positive and there is no backscatter, i.e., the energy is always transferred from
the filtered scales to the residual ones, but not vice versa. It is quite customary then
to term Pr as subgrid or residual dissipation and to denote it by εSGS, see e.g., [283].
However, this may lead to confusion, especially when introducing the discrete stabilised
numerical version of the original and filtered Navier-Stokes equations, so we will keep the
notation Pr in this work.

4.4.3 Energy balance equations in discrete problems: stabilised

numerical approach of the original and filtered Navier-

Stokes equations

Galerkin finite element approach

Following section 3.3.3 in the previous chapter we can state the Galerkin finite element
approximation to problem (4.65)-(4.66) as: given the finite dimensional spaces Vd

0,h ⊂
H1

0 (Ω) and Q0,h ⊂ L2(Ω)/R find [uh(t), ph(t)] ∈ L2(0, T ;Vd
0,h) × L1(0, T ;Q0,h) such that

(∂tuh,vh) + 2ν(S (uh) ,S (vh)) + 〈∇ · (uh ⊗ uh) ,vh〉
−(ph,∇ · vh) = 〈f ,vh〉, (4.77)

(qh,∇ · uh) = 0, (4.78)

for all [vh, qh] ∈ Vd
0,h ×Q0,h.

Note that equations (4.77)-(4.78) are still continuous in time. However, for the
developments to be presented hereafter time discretisation will be not required, so no
explicit expression for it will be given. Anyway, and whatever time discrete scheme is used,
it has been explained in section 3.4.2 that the Galerkin finite element approach (4.77)-
(4.78) presents several difficulties. We remind that numerical instabilities are encountered
when the non-linear convective term in the equation dominates the viscous one at high
Reynolds number problems. Moreover, the inf-sup condition is required to control the
pressure term and does not allow to use equal order interpolations to approximate the
velocity and pressure fields. In addition, numerical instabilities are also found when small
time steps are used.

In the introduction of this chapter we have referenced several stabilisation strategies
that have been developed to circumvent the above numerical instabilities of the Galerkin
finite element solution to the Navier-Stokes equations. We will focus in what follows on
the SGS approach. In particular, we will concentrate on the orthogonal subgrid scale
(OSS) approach developed in [42–44, 47], see section 3.5.2. This will simplify some of
the forthcoming analysis although the developments could be possibly extended to other
methods.
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Orthogonal subgrid scale stabilisation

The subgrid scale finite element stabilisation method applied to the present problem has
been already described in section 3.4.2, and we remind that it consists in first splitting
the continuous spatial spaces where the solution is found as H1

0 (Ω) = Vd
h,0 ⊕ Ṽd

0 and

L2(Ω)/R = Qh,0 ⊕ Q̃0, with Ṽd
0 and Q̃0 being any infinite dimensional spaces that

respectively complete the finite element spaces Vd
h,0 and Qh,0 in H1

0 (Ω) and L2(Ω)/R.
The velocity and pressure fields can then be decomposed as u = uh + ũ and p = ph + p̃
(the same holds for the test functions v = vh + ṽ, q = qh + q̃).

The weak form of the Navier-Stokes equations can now be split into two systems of
equations. This is done by first substituting u = uh + ũ and p = ph + p̃ in (4.65)-(4.66)
and taking [v, q ] = [vh, qh ], which corresponds to projecting (4.65)-(4.66) onto the finite
element spaces. Then, a second equation is obtained by projecting (4.65)-(4.66) onto the
finite element complementary spaces by setting [v, q ] = [ṽ, q̃ ].

After integrating some terms by parts and neglecting terms involving integrals over
interelement boundaries, the equation corresponding to the large scales (projection onto
the finite element spaces) becomes [44, 47],

(∂tuh,vh) + 2ν(S (uh) ,S (vh)) + 〈∇ · (uh ⊗ uh) ,vh〉
− (ph,∇ · vh) + (qh,∇ · uh)

−
∑

e

〈ũ, 2ν∇ · S (vh) + ∇ · (uh ⊗ vh) + ∇qh〉Ωe

+ (∂tũ,vh) + 〈∇ · (ũ⊗ uh) ,vh〉
+ 〈ũ · ∇ũ,vh〉
− (p̃,∇ · vh) = 〈f ,vh〉 . (4.79)

The meaning of the various terms (4.79) was already explained in section 3.4.2, although
we reproduce it here for the sake of completeness of the chapter. As mentioned there, the
first two lines of (4.79) contain the Galerkin terms previously found in (4.77)-(4.78). The
third line includes terms that are already obtained in the stabilisation of the linearised
and stationary version of the Navier-Stokes equations [42, 43] (Oseen problem). These
terms avoid the convection instabilities of the Galerkin formulation and also allow to use
equal interpolations for the velocity and the pressure. The first term in the fourth line
accounts for the time derivative of the subscales, while the second term provides global
momentum conservation [47]. The term in the fifth line has a second order dependence on
the velocity subscales and it is argued in [26] that has very little influence on the results.
Consequently it will be neglected in what follows, which will simplify the analysis. Finally,
the term in the sixth line accounts for the effects of the pressure subscales.

To solve (4.79) we need some expressions for the velocity and pressure subscales
[ũ, p̃ ]. These expressions can be found from the solution of the small subgrid scale
equation (projection onto the finite element complementary spaces). Given that the
latter equation cannot be solved exactly, an approximation for its solution is required. We
will use here the orthogonal subgrid scale (OSS) approach, which is based on choosing
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the spaces orthogonal to the finite element ones as the complimentary spaces in the
above formulation. Moreover quasi-static subscales will be considered (this correspond to
neglecting the time derivatives in (3.50)-(3.51)), leading to the approximation [42, 43]:

ũ ≈ τ1ru,h, (4.80)

p̃ ≈ τ2rp,h, (4.81)

where ru,h and rp,h represent the orthogonal projection of the residuals of the finite element
components uh and ph

ru,h = −Π⊥
h [∂tuh − 2ν∇ · S (uh) + ∇ · (uh ⊗ uh) + ∇ph − f ]

= −Π⊥
h [−2ν∇ · S (uh) + ∇ · (uh ⊗ uh) + ∇ph], (4.82)

rp,h = −Π⊥
h [∇ · uh]. (4.83)

Π⊥
h in the above equations stands for the orthogonal projection, Π⊥

h := I − Πh, with I
being the identity and Πh the L2 projection onto the appropriate finite element space. In
fact, the numerical analysis of the stationary and linearised problem is greatly simplified if
this projection is weighted elementwise by the stabilisation parameters, as shown in [45].
However, this is not essential for the following developments.

In the second line of (4.82) we have used precisely the fact that, once discretised,
∂tuh ⊂ Vd

h,0. We have also considered that the external force belongs to Vd
h,0 i.e., it only

acts at the large scales of the flow in accordance with the simplified vision of the energy
cascade presented at the end of section 2.1. We have also introduced another simplification
in the expressions for the velocity residual as only the finite element component has
been considered in the advective velocity term. Note, in addition, that no implicit time
dependence of the subscales has been considered (quasi-static approach). On the other
hand, the viscous term in the above equations has to be evaluated elementwise.

The stabilisation parameters appearing in (4.80)-(4.81) can be obtained from
arguments based on a Fourier analysis for the subscales [44] that yield,

τ1 =

[(
c1
ν

h2

)2

+

(
c2
|uh|
h

)2
]−1/2

, (4.84)

τ2 =
h2

c1τ1
. (4.85)

c1 and c2 in (4.84)-(4.85) are algorithmic parameters with recommended values of c1 = 4
and c2 = 2 for linear elements [41], while h stands for a characteristic mesh element
size. Again, we have neglected the subscale contribution in the advective velocity of
τ1 (compare with the parameter expressions (3.52)-(3.53)). The choice (4.84)-(4.85) for
the stabilisation parameters guarantees that the kinetic energy of the modelled subscales
approximates the kinetic energy of the exact subscales [44]. In the forthcoming analysis
we will consider τ1 and τ2 constant within each element and typified by a characteristic
element velocity to be defined later on.
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Equation (4.79) together with the approximation (4.80)-(4.81) for the subscales
constitute a plausible numerical approach to solve the incompressible Navier-Stokes
equations. It will be argued that this scheme should also be valid for the simulation of
turbulent flows without the necessity to perform a LES scale separation at the continuous
level, prior to the numerical discretisation.

Energy balance for the orthogonal subgrid scale finite element approach to
the Navier-Stokes problem

In order to find an energy balance equation for the OSS numerical approach to the
Navier-Stokes equations we can now set vh = uh and qh = ct in (4.79). This yields
(no approximation for the subscales is considered for the moment)

1

2

d

dt
‖uh‖2 = −2ν ‖S (uh)‖2

−
∑

e

〈ũ, 2νS (uh) + ∇ · (uh ⊗ uh)〉Ωe
+
∑

e

(p̃,∇ · uh)Ωe
+ 〈f ,uh〉, (4.86)

where Ωe denotes the domain of the e-th element. Here and below, the summations with
index e are assumed to be extended over all elements.

If we now consider the subscale approximation (4.80)-(4.83) in (4.86) we obtain

1

2

d

dt
‖uh‖2 = −2ν ‖S (uh)‖2 + 〈fh,uh〉

−
∑

e

τ1
(
Π⊥

h

[
− 2ν∇ · S (uh) + ∇ · (uh ⊗ uh) + ∇ph

]
,

2ν∇ · S (uh) + ∇ · (uh ⊗ uh)
)
Ωe

−
∑

e

τ2
(
Π⊥

h (∇ · uh) ,∇ · uh

)
Ωe
. (4.87)

Since we are interested in high Reynolds numbers, all the stabilisation terms multiplied
by the viscosity will be neglected, from where we obtain the following energy balance
equation for the OSS stabilised finite element approach to the Navier-Stokes equations:

1

2

d

dt
‖uh‖2 = −2ν ‖S (uh)‖2 + 〈fh,uh〉

−
∑

e

τ1
(
Π⊥

h [∇ · (uh ⊗ uh) + ∇ph] ,∇ · (uh ⊗ uh)
)
Ωe

−
∑

e

τ2
(
Π⊥

h (∇ · uh) ,∇ · uh

)
Ωe
. (4.88)

Let us define the pointwise numerical kinetic energy of the flow as kh := 1
2
|uh|2, the

pointwise molecular numerical dissipation for the large scales as εh
mol := 2νS (uh) : S (uh)

and the pointwise numerical power for the external force as P h
f := fh · uh. We will also

identify Phτ
r within each element with

Phτ
r := τ1Phτ1

r + τ2Phτ2
r (4.89)
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where

Phτ1
r := Π⊥

h

[
∇ · (uh ⊗ uh) + ∇ph

]
· [∇ · (uh ⊗ uh)] (4.90)

Phτ2
r := Π⊥

h (∇ · uh) (∇ · uh) . (4.91)

Equipped with these definitions, equation (4.88) can be rewritten as

d

dt

∫

Ω

khdΩ = −
∫

Ω

εh
moldΩ −

∑

e

∫

Ωe

Phτ
r dΩe +

∫

Ω

P h
f dΩ , (4.92)

which can be compared with the energy balance equation of the continuous problem
(4.68), using similar arguments to those in section 2.2.

It is clear that kh will account for nearly the whole pointwise kinetic energy of the flow
so that

∫
Ω
khdΩ ≈

∫
Ω
kdΩ. On the other hand, it will also occur that

∫
Ω
P h

f dΩ ≈
∫
Ω
PfdΩ,

given that the force only acts at the large scales. In addition the numerical molecular
dissipation of the large scales will be negligible, so that

∫
Ω
εh
moldΩ ≈ 0.

The next, crucial, question is if it should happen that
∑

e

∫
Ωe

Phτ
r dΩ ≈

∫
Ω
εmoldΩ for

the OSS formulation to be a good numerical approach for the Navier-Stokes equations,
in the case of fully developed turbulence. Actually, this should not be necessarily the
case for all the terms in Phτ

r , given that they have arisen in the equation motivated by
pure numerical stabilisation necessities. However, it is clear that at least some of these
terms should account for the appropriate physical behaviour and their domain integration
should approximate the mean molecular dissipation in (4.68). It will be one of the main
outcomes of this thesis to show, by means of heuristic reasoning, that actually the whole
Phτ

r satisfies this assumption. It should be also noted that in the definition of Phτ
r , the

approximation for high Reynolds number flows was already performed (stabilisation terms
multiplied by the viscosity have been neglected).

Energy balance for the orthogonal subgrid scale finite element approach to a
LES model

We could now proceed to discretise the LES equations (4.73)-(4.74) using the OSS
approach. The usual way to do so is by simply adding the Navier-Stokes stabilisation
terms to the Galerkin discretisation of the LES equations, i.e., terms containing the
residual stress tensor, R, are not included in the stabilisation terms (see e.g., [283]). This
approach is in fact non consistent unless linear elements are used. However, in the OSS
method this approach still makes sense given that the consistency error becomes optimal
(see [45]).

The following discrete energy balance equation for the LES model analogous to (4.92)
is obtained

∫

Ω

dk
h

dt
dΩ = −

∫

Ω

εh
moldΩ −

∑

e

∫

Ωe

Phτ

r dΩ −
∫

Ω

Ph

rdΩ +

∫

Ω

P
h

fdΩ , (4.93)
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with kh := 1
2
|uh|2, εh

mol := 2νS (uh) : S (uh), P
h

f := fh · uh, Ph

r :=

−R : S (uh) and Phτ

r := −∑e τ1(Π
⊥
h [∇ · (uh ⊗ uh) + ∇ph] ,Π

⊥
h [∇ · (uh ⊗ uh)])Ωe

−∑
e τ2(Π

⊥
h (∇ · uh) ,Π

⊥
h (∇ · uh))Ωe

. Following the argumentation lines in the above
sections it is clear that the kinetic energy term will approximate the one in the exact
energy balance equation (4.68). The same will prove true for the external force power
and, again, εh

mol will be negligible. However, we are now left with the curious fact that

the two terms involving Phτ

r and Ph

r should equal, in the mean, the molecular physical

dissipation. This seems at least redundant if the term containing Phτ

r that arises from
the discretisation of the original Navier-Stokes equation already presents this behaviour.
In other words, the process of first filtering at the continuum level, modelling, and then
proceeding to discretisation (LES method) looks unnecessary if an appropriate numerical
discretisation scheme is used. Obviously, for an inaccurate discretisation scheme the
addition of extra dissipation as that provided by LES may be useful, but this should not
be the case. In the following sections we aim at giving support to this idea by means of
some heuristic reasoning.

4.5 Subgrid energy transfer in the OSS FEM

4.5.1 Elemental ensemble average of Phτ
r for high Reynolds

numbers

Stabilisation parameters at high Reynolds numbers

In (4.84) an expression is given for the stabilisation parameter τ1. In the case of high
Reynolds number flows the viscosity term in this expression can be discarded in front of
the convective one, yielding

τ1 ≈
h

c2 |uh|
. (4.94)

On the other hand, using (4.94) in the expression for the parameter τ2 in (4.85) we
get

τ2 ≈
c2
c1
h |uh| . (4.95)

When using the above stabilisation parameters in a finite element implementation,
h represents a characteristic element length of Ωe, while uh stands for a characteristic
velocity at each element of the partition. Several options exist for the latter giving place
to different OSS stabilisation methods. One could take for example the velocity mean
value at the element or its root mean square value. Whatever choice is made the key
point for the forthcoming results is that τ1 should depend inversely on this characteristic
velocity while τ2 should be proportional to it. This behaviour will allow us to relate
Phτ

r with the molecular dissipation rate εmol, a fact that can be inversely be viewed as a
confirmation of the right choice for τ1 and τ2 in (4.94)-(4.95).
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As mentioned in the introduction, for a given computational mesh we will consider
the case of the characteristic element size h being fine enough so as to lay in the inertial
subrange. The inertial subrange can be thought as having limiting values [ lDI , lEI ] with
lDI ≈ 60η and lEI ≈ L/6. η represents the Kolmogorov length where dissipation takes
place and L corresponds to the flow scale typical of the largest, anisotropic eddies (see
e.g., [255]). Let us denote by U the ensemble average (or time average under the ergodic
assumption) of the chosen characteristic velocity at a given mesh element, to be used in the
expressions for the stabilisation parameters. Kolomogorov’s second similarity hypothesis
then guarantees that for an eddy of size ℓ, such that ℓ ∈ [ lDI , lEI ], U can only depend
on εmol and ℓ, actually U ∼ (εmolℓ)

1/3. It then follows that the elemental stabilisation
parameters become

τ1,ae ∼
h

U
∼ h

(εmolℓ)
1/3

, (4.96)

τ2,ae ∼ hU ∼ h (εmolℓ)
1/3 , (4.97)

where all constants have been included inside U . As previously mentioned, the symbol ∼ is
used here to denote behaves as, that is, the terms related by this symbol are approximately
equal up to constants. However, we will abuse of language and in what follows the equality
sign will be frequently employed in expressions containing approximated terms of the type
(4.96)-(4.97).

Elemental ensemble average of Phτ1
r

Let us denote by Πh
i

[
∇ · (uh ⊗ uh) + ∇ph

]
the i-th component of the projector in the

definition of the numerical subgrid kinetic energy transfer term Phτ1
r in (4.90) and denote

the i-th velocity component by uhi.
We consider a finite element partition of the domain Ω having np pressure nodes, nu

velocity nodes and ne elements. Following similar lines of what is done in [49] (although
with a very different objective) we define the average value in a mesh element Ωe of Phτ1

r

in (4.90) as

Phτ1
r,e =

1

Ve

∫

Ωe

(
Phτ1

r

)
dΩe

=
1

Ve

∫

Ωe

Πh,⊥
i

[
∇ · (uh ⊗ uh) + ∇ph

]
·
[
∇ · (uh ⊗ uh)

]
dΩe. (4.98)

An ensemble average (or time average under the ergodic assumption) of this quantity can
be performed to obtain

〈
Phτ1

r,e

〉
=

1

Ve

〈∫

Ωe

Πh,⊥
i

[
∇ · (uh ⊗ uh) + ∇ph

]
·
[
∇ · (uh ⊗ uh)

]
dΩe

〉
(4.99)

(Brackets are used in this section to denote ensemble average instead of duality
pairing). We next identify the terms

〈
Phτ1

r,e

〉
U

and
〈
Phτ1

r,e

〉
P

in (4.99) that will be treated
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independently in the analysis. We have

〈
Phτ1

r,e

〉
U

:=
1

Ve

〈∫

Ωe

Πh,⊥
i

[
∇ · (uh ⊗ uh)

]
·
[
∇ · (uh ⊗ uh)

]
dΩe

〉

=
1

Ve

〈∫

Ωe

∂i

(
uh

i u
h
j

)
∂k

(
uh

ku
h
j

)
dΩe

〉

− 1

Ve

〈∫

Ωe

Πh
i

[
∇ · (uh ⊗ uh)

]
∂j

(
uh

ju
h
i

)
dΩe

〉
(4.100)

and

〈
Phτ1

r,e

〉
P

:=
1

Ve

〈∫

Ωe

Πh,⊥
i

(
∇ph

)
·
[
∇ · (uh ⊗ uh)

]
dΩe

〉

=
1

Ve

〈∫

Ωe

∂iph∂j

(
uh

ju
h
i

)
dΩe

〉

− 1

Ve

〈∫

Ωe

Πh
i

(
∇ph

)
∂j

(
uh

ju
h
i

)
dΩe

〉
, (4.101)

Above and in the following, summation is understood over spatial repeated indexes.
Obviously, we have

〈
Phτ1

r,e

〉
=
〈
Phτ1

r,e

〉
U

+
〈
Phτ1

r,e

〉
P
. (4.102)

Elemental ensemble average of Phτ2
r

Proceeding analogously to what has been done in the previous section but for the Phτ2
r

term defined in (4.91), it can readily be checked that the elemental ensemble average of
Phτ2

r becomes

〈
Phτ2

r,e

〉
:=

1

Ve

〈∫

Ωe

Πh,⊥
(
∇ · uh

)(
∇ · uh

)
dΩe

〉

=
1

Ve

〈∫

Ωe

(
∂iu

h
i

)2
dΩe

〉
− 1

Ve

〈∫

Ωe

Πh
(
∇ · uh

) (
∂iu

h
i

)
dΩe

〉
. (4.103)

Elemental ensemble average of Phτ
r

From (4.89) and using the elemental stabilisation parameters (4.96)-(4.97) as well as (4.99)
and (4.103), we can define the ensemble average of the rate of production of kinetic energy
Phτ

r for high Reynolds numbers as

〈
Phτ

r,e

〉
:= τ1,ae

〈
Phτ1

r,e

〉
+ τ2,ae

〈
Phτ2

r,e

〉
. (4.104)



108 CHAPTER 4. THE AERODYNAMIC FIELD

4.5.2 FEM solution and treatment of the L2 projection in
〈
Phτ

r,e

〉

FEM solution for the velocity and pressure fields and L2 projection

The components of the discrete velocity field uh can be expanded as usual for a mesh
having nu nodes as

uh
i (x) =

nu∑

a=1

Na
u (x)Ua

i , (4.105)

where the velocity shape functions {Na
u (x) , a = 1, . . . , nu} are a basis of Vd

0,h and Ua
i are

the velocity nodal values, i.e., at the nodal points, xb, b = 1, . . . , nu, it holds that

uh
i (x

b) = U b
i . (4.106)

In case of uh being the finite element interpolant, the nodal values are exact and

uh
i (x

b) = U b
i = ui(x

b) ≡ ub
i . (4.107)

Let us also assume the following interpolation for the Reynolds stresses (see e.g., [40])

uh
i u

h
j (x) =

nu∑

b=1

N b
u (x)U b

i U
b
j (4.108)

in order to have simpler expressions and to make some of the forthcoming results useful
from a computational point of view.

Concerning the discrete pressure field, ph, it will be expanded as

ph (x) =

np∑

a=1

Na
p (x)P a, (4.109)

where the pressure shape functions
{
Na

p (x) , a = 1, . . . , np

}
are a basis of Qh,0 and P a

denotes the pressure nodal value at node xa. We note that one of the advantages
of using a stabilised finite element method such as the OSS in section 2.3.2 is that
one can choose Na

u = Na
p ≡ Na, hence circumventing the necessity of using different

interpolations for the velocity and pressure fields as demanded by the inf-sup condition
(see e.g. [42–44,150, 153]).

On the other hand, it will be necessary to give explicit expressions for the projected
terms Πh

i

[
∇·(uh ⊗ uh)

]
and Πh

i

(
∇ph

)
appearing in (4.100), (4.101) and (4.103). This can

be done as follows. Consider a function ψh computed from the finite element interpolation,
not necessarily continuous. Its L2 projection onto Vd

h,0 can be written as

Π(ψh) =
nu∑

a=1

Na (x)Πa, (4.110)
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with the coefficients Πa being given by the solution of the linear system

nu∑

a=1

M baΠa =

∫

Ω

N bψhdΩ, b = 1, . . . , nu (4.111)

M ba :=

∫

Ω

N bNadΩ. (4.112)

The mass matrix M in (4.112) can be approximated by means of a diagonal matrix
diag(M11, . . . ,Mnunu

) using a standard nodal quadrature rule. In this case

Πb = M−1
bb

∫

Ω

N bψhdΩ, (4.113)

so (4.112) becomes

Π(ψh) =
nu∑

a=1

M−1
aaN

a

∫

Ω

NaψhdΩ . (4.114)

〈
Phτ

r,e

〉
in terms of the finite element velocity and pressure fields

We next have to substitute the above expansions for the discrete velocity and pressure
fields in the expressions for

〈
Phτ1

r,e

〉
U
,
〈
Phτ1

r,e

〉
P

and
〈
Phτ2

r,e

〉
, respectively given by equations

(4.100), (4.101) and (4.103).

Convective term
〈
Phτ1

r,e

〉
U

corresponding to the velocity subscales (4.100). We will
first address the term in the second line of (4.100), which will be denoted by

〈
Phτ1

r,e

〉
U,1

.
Substituting (4.108) in this term yields

〈
Phτ1

r,e

〉
U,1

=
1

Ve

〈∫

Ωe

[∑

a

∂iN
aUa

i U
a
j

∑

b

∂kN
bU b

kU
b
j

]
dΩe

〉

=
1

Ve

[∑

a,b

〈
Ua

i U
a
j U

b
kU

b
j

〉∫

Ωe

∂iN
a∂kN

bdΩe

]
. (4.115)

The term in the third line of (4.100) will be denoted by
〈
Phτ1

r,e

〉
U,2

. After substituting
(4.108) and (4.114) in it, we get

〈
Phτ1

r,e

〉
U,2

= − 1

Ve

〈∫

Ωe

[∑

a,c

M−1
cc N

c

∫

Ω

N c∂iN
aUa

i U
a
j dΩ

∑

b

∂kN
bU b

kU
b
j

]
dΩe

〉

= − 1

Ve

{∑

a,b

〈
Ua

i U
a
j U

b
kU

b
j

〉∫

Ωe

[
∂kN

b
∑

c

M−1
cc N

c

∫

Ω

N c∂iN
adΩ

]
dΩe

}
.

(4.116)
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To facilitate the notation in expressions (4.115) and (4.116) we define the geometric
factors

Iab
ij :=

∫

Ωe

∂jN
b∂iN

adΩe (4.117)

and

Gab
ij :=

∫

Ωe

[
∂jN

b
∑

c

M−1
cc N

c

∫

Ω

N c∂iN
adΩ

]
dΩe. (4.118)

Both factors depend on the element Ωe. However, while Iab
ij has a local character in the

sense that it only depends on the shape functions and the type of element being used, Gab
ij

has a global character because it involves an integration over the whole computational
domain Ω. This global character is due to the fact that a projection is involved in〈
Phτ1

r,e

〉
U,2

.
Using the notation in (4.36)-(4.37) for the velocity correlation function

Bab
ij =

〈
Ua

i U
b
j

〉
. (4.119)

and for the two point fourth moment of the velocity field

Bab
ij,kl =

〈
Ua

i U
a
j U

b
kU

b
l

〉
, (4.120)

we can insert (4.117)-(4.120) in equations (4.115) and (4.116), to obtain the following
expansion for the convective term

〈
Phτ1

r,e

〉
U

:

〈
Phτ1

r,e

〉
U

=
〈
Phτ1

r,e

〉
U,1

+
〈
Phτ1

r,e

〉
U,2

=
1

Ve

∑

a,b

Bab
ij,kj

(
Iab
ik −Gab

ik

)
. (4.121)

Summation on the spatial dimension indexes i, j, k is assumed in (4.121), whereas
summation on nodes will be explicitly indicated throughout the text for the sake of clarity.

Pressure term
〈
Phτ1

r,e

〉
P

corresponding to the velocity subscales (4.101). It will be next
found an expression similar to (4.121) but for the pressure term

〈
Phτ1

r,e

〉
P
. Making use of

(4.108) and (4.109) in (4.101), we get for the term in the second line of (4.101), which we
denote

〈
Phτ1

r,e

〉
P,1

,

〈
Phτ1

r,e

〉
P,1

=
1

Ve

〈∫

Ωe

[∑

a

∂iN
aP a

∑

b

∂jN
bU b

jU
b
i

]
dΩe

〉

=
1

Ve

[∑

a,b

〈
P aU b

jU
b
i

〉∫

Ωe

∂iN
a∂jN

bdΩe

]
. (4.122)

Using now (4.108), (4.109) and (4.114) in the third line of (4.101), we obtain

〈
Phτ1

r,e

〉
P,2

= − 1

Ve

〈∫

Ωe

[∑

a,c

M−1
cc N

c

∫

Ω

N c∂iN
aP adΩ

∑

b

∂jN
bU b

jU
b
i

]
dΩe

〉

= − 1

Ve

{∑

a,b

〈
P aU b

jU
b
i

〉∫

Ωe

[
∂jN

b
∑

c

M−1
cc N

c

∫

Ω

N c∂iN
adΩ

]
dΩe

}
. (4.123)
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Given the geometric factors (4.117)-(4.118) and using the notation (4.38) for the two point
triple velocity-pressure correlation

Bab
p,ij =

〈
P aU b

i U
b
j

〉
, (4.124)

we can rewrite
〈
Phτ1

r,e

〉
P

as

〈
Phτ1

r,e

〉
P

=
〈
Phτ1

r,e

〉
P,1

+
〈
Phτ1

r,e

〉
P,2

=
1

Ve

∑

a,b

Bab
p,ij

(
Iab
ij −Gab

ij

)
, (4.125)

with summation implied on indexes i, j.

Divergence term
〈
Phτ2

r,e

〉
corresponding to the pressure subscales (4.103). It can be

readily checked that the expression analogous to (4.121) and (4.125) for the term
〈
Phτ2

r,e

〉

in (4.103) is given by

〈
Phτ2

r,e

〉
P

=
1

Ve

∑

a,b

Bab
ij

(
Iab
ij −Gab

ij

)
, (4.126)

with Bab
ij being the second-order velocity correlations (4.119).

Finite element expression for
〈
Phτ

r,e

〉
. Using the developments (4.121), (4.125) and

(4.126) in equations (4.102) and (4.104) we obtain the finite element expression for the
ensemble average of the rate of production of subgrid kinetic energy

〈
Phτ

r,e

〉
= τ1,ae

〈
Phτ1

r,e

〉
+ τ2,ae

〈
Phτ2

r,e

〉

=
1

Ve

∑

a,b

[
τ1,ae

(
Bab

ij,kj +Bab
p,ik

)
+ τ2,aeB

ab
ik

] (
Iab
ik −Gab

ik

)
. (4.127)

4.6 Numerical energy transfer and physical dissipation

4.6.1 Two point fourth-order velocity correlations for
〈
Phτ1

r,e

〉
U

Given that Iab
ij and Gab

ij in (4.117)-(4.118) are pure geometric factors, in order to relate the
expression (4.127) for

〈
Phτ

r,e

〉
with the physical molecular dissipation, εmol, we will have to

relate the various second-order and fourth-order velocity correlations Bab
ij , Bab

ij,kl and the
two point triple velocity-pressure correlation Bab

p,ij to it.
To do so, use will be made in what follows of some results of statistical fluid mechanics

and in particular of statistics concerning homogeneous isotropic turbulence. Although the
various correlations Bab

ij , Bab
ij,kl and Bab

p,ij do not involve the whole velocity and pressure
fields at the nodes, but their OSS finite element approximation, we will consider that the
results from statistical fluid mechanics can be still applied to them. Note that in the case
of [uh, ph] being the interpolant, see (4.107), no approximation would be needed. We then
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guess that the velocity and pressure from the OSS finite element solution will not differ
substantially from the interpolant, at least in what concerns their statistical behaviour.
This is also implicitly assumed in practical implementations of the results in [49].

Let us start with the two point fourth moment velocity correlation Bab
ij,kl, which by

virtue of its definition (4.120) fulfills

Bab
ij,kl = Bab

ji,kl = Bab
ji,lk = Bab

ij,lk. (4.128)

Use can be made of the quasi-normal approximation (Millionshchikov zero-fourth-
cumulant hypothesis, see e.g., [232]) in order to relate the fourth-order velocity correlations
with second-order velocity correlations. For the particular case of velocities being
considered at just two points, the quasi-normal approximation for the exact velocity field
establishes

〈
ua

i u
a
ju

b
ku

b
l

〉
=
〈
ua

i u
a
j

〉 〈
ub

ku
b
l

〉
+
〈
ua

i u
b
k

〉 〈
ua

ju
b
l

〉
+
〈
ua

i u
b
l

〉 〈
ua

ju
b
k

〉
. (4.129)

Assuming that this relation holds true for the finite element velocity field, we can rewrite
it using the notation (4.119)-(4.120) to obtain

Bab
ij,kl = Baa

ij B
bb
kl +Bab

ikB
ab
jl +Bab

il B
ab
jk. (4.130)

In our case, the two-point fourth-order velocity correlation in (4.121) and (4.127) is
contracted on the second and fourth indexes so that

Bab
ij,kj = Baa

ij B
bb
kj +Bab

ikB
ab
jj +Bab

ij B
ab
jk. (4.131)

The second-order velocity correlations can be related to the second-order velocity
structure function Dab

ij in (4.39) now given by

Dab
ij =

〈(
U b

i − Ua
i

) (
U b

j − Ua
j

)〉
. (4.132)

Developing (4.132) and under the assumption of homogeneous isotropic turbulence (which
implies that Bab

ij = Bba
ij , Baa

ij = Bbb
ij , see for example [232]) it is straightforward to see that

Bab
ij = Baa

ij − 1

2
Dab

ij =
1

3
|U |2 δij −

1

2
Dab

ij , (4.133)

with U representing the ensemble average of the velocity either at node a or b, since both
must be the same.

Substituting (4.133) into (4.131) yields

Bab
ij,kj =

5

9
|U |4 δik −

5

6
|U |2Dab

ik − 1

6
|U |2 δikDab

jj +
1

4

(
Dab

jjD
ab
ik +Dab

ij D
ab
jk

)
. (4.134)

The first term in (4.134) can be neglected in what follows given that it will vanish when
finally inserted in (4.121). This is so because it can be factorized out of the summation
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on nodes in this expression. The summation can be carried inside the integrals in (4.117)-
(4.118), which will then contain terms of the type ∂i (

∑
aN

a). Given that the shape
functions form a partition of unity,

∑
aN

a = 1 and the derivative of this term is obviously
zero (velocity boundary conditions need not to be considered at this point).

As previously mentioned, a computational mesh with its characteristic length h
lying in the inertial subrange [ lDI , lEI ] is considered. Combining the Kolmogorov first
and second similarity hypothesis, an expression for the second order structure function
Dab

ij can be found solely in terms of εmol and the distance between nodes xa and xb,
rab =

∥∥xa − xb
∥∥, for rab ∈ [ lDI , lEI ] (see section 4.3.2). The expression is given by (4.46),

which we rewrite for convenience as

Dab
ij = 2C

(
εmolr

ab
)2/3 Dab

ij , Dab
ij :=

1

6

(
4δij −

rab
i r

ab
j

(rab)2

)
. (4.135)

Substituting (4.135) in (4.134) gives

Bab
ij,kj = −11

18
|U |2 C

(
εmolr

ab
)2/3

δik +

[
− 5

3
|U |2C

(
εmolr

ab
)2/3

+
11

6
C2
(
εmolr

ab
)4/3

]
Dab

ik + C2
(
εmolr

ab
)4/3 Dab

ij Dab
jk. (4.136)

We can now make use again of Kolmogorov’s second similarity hypothesis, which as
explained in section 3.1.1 states that for an eddy of size ℓ ∈ [lDI , lEI ] (i.e. lying in
the inertial subrange) all velocity scales are proportional to (εmolℓ)

1/3. Since |U | is a
velocity, it follows that

|U | ∼ (εmolℓ)
1/3 (4.137)

and substituting in (4.136)

Bab
ij,kj = Cε

4/3
mol

{
− 11

18
ℓ2/3

(
rab
)2/3

δik +

[
− 5

3
ℓ2/3

(
rab
)2/3

+
11

6
C
(
rab
)4/3

]
Dab

ik + C
(
rab
)4/3 Dab

ij Dab
jk

}
=: ε

4/3
molKab

ik , (4.138)

where Kab
ik has been defined in the last line of (4.138).

In view of (4.138), equation (4.121) for
〈
Phτ1

r,e

〉
U

can be rewritten as

〈
Phτ1

r,e

〉
U

=
1

Ve

ε
4/3
mol

∑

a,b

Kab
ik

(
Iab
ik −Gab

ik

)
. (4.139)

4.6.2 Two point triple-order velocity pressure correlations for〈
Phτ1

r,e

〉
P

It is our aim now to find an expression analogous to (4.139) but relating the two point
triple-order velocity-pressure correlation Bab

p,ij with the rate of physical dissipation εmol.
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To do so we will closely follow [232] although with some particularities. We will abuse of
notation and use Bab

p,ij to denote the triple-order velocity-pressure correlations of either
the exact velocity field or the finite element approximated one. Whether equations are
valid for one or the other, or for both of them, can be easily determined by the context.
Likewise, we will identify r ≡ rab, being clear that this is the distance between nodes xa

and xb.
The tensor of second rank Bab

p,kl for the isotropic case can be written as

Bab
p,kl = P1 (r) rkrl + P2 (r) δkl, (4.140)

where

P1 (r) =
1

r2

[
Bab

p,LL −Bab
p,NN

]
, P2 (r) = Bab

p,NN , (4.141)

with the subscript L standing again for longitudinal and designating the direction of the
vector rab and N standing for normal and designating any perpendicular direction to it.

Consider the Poisson equation for the pressure at node a

∆p = −ρ∂ri
∂rj

(
ua

i u
a
j

)
(4.142)

where ∆ is the Laplacian operator that for functions only depending on r becomes

∆ =
d2

dr2
+

2

r

d

dr
. (4.143)

Multiplying both sides of (4.142) by ub
ku

b
l and performing an ensemble average of the

results yields

∆Bab
p,kl = −ρ∂ri

∂rj

(
Bab

ij,kl

)
. (4.144)

In the case of homogeneous isotropic turbulence, the tensor in the r.h.s of (4.144) is an
isotropic symmetric tensor of second rank that can be expressed as

∂ri
∂rj

(
Bab

ij,kl

)
= Q1 (r) rkrl +Q2 (r) δkl. (4.145)

Inserting (4.140) and (4.145) in (4.144) and equating the coefficients of rkrl and δkl

on both sides yields two differential equations for the unknowns P1 and P2:

d2P1

dr2
+

6

r

dP1

dr
= −ρQ1. (4.146)

d2P2

dr2
+

2

r

dP2

dr
+ 2P1 = −ρQ2. (4.147)

These equations can be uncoupled defining a new function P3 such that

P3 (r) = r2P1 (r) + 3P2 (r) = Bab
p,LL + 2Bab

p,NN . (4.148)
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Multiplying (4.146) by r2 and adding the result to (4.147) multiplied by 3 gives the
following equation for P3:

d2P3

dr2
+

2

r

dP3

dr
= −ρQ3, (4.149)

where

Q3 (r) = r2Q1 (r) + 3Q2 (r) . (4.150)

In order to find the two point triple-order velocity-pressure correlation Bab
p,kl in (4.140)

we need the values of P1 and P2, which can be obtained from the solutions of the equations
(4.146) and (4.149) together with (4.148). However, to solve these equations we first need
a value for their inhomogeneous terms Q1 and Q3. To do so, the use of the quasi-normal
approximation and of Kolmogorov’s similarity hypotheses will prove very useful again. We
remind that our interest is in finding the results for r in the inertial subrange [ lDI , lEI ].

Making use of the quasi-normal approximation (4.130) in (4.145) and taking into
account that due to the incompressibility constraint ∂ri

Bab
ij = ∂rj

Bab
ij = 0 (see [232]), it

follows that

Q1 (r) rkrl +Q1 (r) δkl = ∂ri
∂rj

(
Bab

ij,kl

)
= 2∂rj

Bab
ik ∂ri

Bab
jl (4.151)

and given that the second-order velocity correlation tensor Bab
ij for homogeneous isotropic

turbulence can be expressed as [232]

Bab
ij = −∂rB

ab
LL (r)

rirj

r
+
[
Bab

LL (r) +
r

2
∂rB

ab
LL

]
, (4.152)

we can obtain the following expressions for Q1, Q2 and Q3 solely in terms of the
longitudinal second-order velocity correlation Bab

LL:

Q1 (r) =
6

r2

[
d

dr
Bab

LL (r)

]2

+
1

r

d

dr
Bab

LL (r)
d2

dr2
Bab

LL (r) , (4.153)

Q2 (r) = −3

[
d

dr
Bab

LL (r)

]2

− r
d

dr
Bab

LL (r)
d2

dr2
Bab

LL (r) , (4.154)

Q3 (r) = − 1

r2

d

dr

{
r3

[
d

dr
Bab

LL (r)

]2
}
. (4.155)

Use has been made of (4.150) to obtain the expression for Q3.
Up to know we have followed [232], which should be consulted for details. We can

next use (4.133) to relate Bab
LL with the longitudinal velocity structure function Dab

LL and
the rate of dissipation εmol:

Bab
LL = Baa

LL − 1

2
Dab

LL = Baa
LL − C

2
(εmolr)

2/3 . (4.156)
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Substituting (4.156) in (4.153) and (4.155) results in

Q1 (r) =
17

27
C2ε

4/3
molr

−8/3, (4.157)

Q3 (r) = − 7

27
C2ε

4/3
molr

−2/3. (4.158)

The solutions to equations (4.146) and (4.149) with the inhomogeneous terms given by
(4.157) and (4.158) and appropriate boundary conditions can be found using the Green’s
function approach. This is the procedure we will follow next.

We will first address the problem of finding the solution P1 (r) of the inhomogeneous
equation (4.146). The solutions to the homogeneous counterpart of (4.146) are 1 and r−5

so that the problem Green’s function will be of the type

G1 (r, r0) =





A +Br−5 ≡ G<
1 (r, r0) lDI < r < r0

C +Dr−5 ≡ G>
1 (r, r0) r0 < r < lEI .

(4.159)

To determine the values of A,B,C and D we impose the boundary conditions at the
inertial range threshold values [ lDI , lEI ]

G1 (lDI , r0) = KD1, (4.160)

G1 (lEI , r0) = KE1, (4.161)

with KD1, KE1 constants. We also impose the continuity conditions

G>
1

(
r+
0 , r0

)
−G<

1

(
r−0 , r0

)
= 0 (4.162)

∂rG
>
1

(
r+
0 , r0

)
− ∂rG

<
1

(
r−0 , r0

)
= −1 (4.163)

with G≷
1

(
r±0 , r0

)
≡ limr→r0

r≷r0

G≷
1 (r, r0). Defining the constants

L∆E :=
l5EI

l5EI − l5DI

, L∆D :=
l5DI

l5EI − l5DI

, LED :=
l5EIl

5
DI

l5EI − l5DI

, (4.164)

as well as

A01 := L∆EKE1 − L∆DKD1, A11 := −LED (KE1 −KD1) , A21 := − LED

l5EI l
5
DI

, (4.165)

it can readily be checked that the following expression is obtained for the Green function
in (4.159)

G1 (r, r0) =






(A01 + A11r
−5) + 1

5
(L∆E − LEDr

−5) r0
+1

5
(A21 + L∆Dr

−5) r6
0 lDI < r < r0

(A01 + A11r
−5) + 1

5
(L∆D − LEDr

−5) r0
+1

5
(A21 + L∆Er

−5) r6
0 r0 < r < lEI .

(4.166)
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Using (4.166) and the inhomogeneous term Q1 (r) given by (4.157), P1(r) can be found
as

P1(r) = −ρ
∫ r

lDI

G>
1 (r, r0)Q1 (r0) dr0 − ρ

∫ lEI

r

G<
1 (r, r0)Q1 (r0) dr0

= −17

27
ρC2ε

4/3
mol

[
F01

1

r5
+ F11

1

r2/3
+ F21

]
=: −17

27
ρC2ε

4/3
molF

ab
1 (r) , (4.167)

where

F01 := −3

5

(
l
−5/3
EI − l

−5/3
DI

)
A11 +

3

10

(
l
−2/3
EI − l

−2/3
DI

)
LED

+
3

65

(
L∆Dl

13/3
EI − L∆El

13/3
DI

)
, (4.168)

F11 :=
33

130
(L∆E − L∆D) , (4.169)

F21 := −3

5

(
l
−5/3
EI − l

−5/3
DI

)
A01 +

3

65

(
l
13/3
EI − l

13/3
DI

)
A21

+
3

10

(
L∆Dl

−2/3
DI − L∆El

−2/3
EI

)
, (4.170)

and we have defined F ab
1 (r) in the last line of (4.167).

We can now proceed analogously to find the solution P3 (r) to equation (4.149). The
solutions for the homogeneous counterpart of this equation are 1 and r−1 so that the
Green function will behave as

G3 (r, r0) =





A+Br−1 ≡ G<
3 (r, r0) lDI < r < r0

C +Dr−1 ≡ G>
3 (r, r0) r0 < r < lEI .

(4.171)

To find A,B,C and D in (4.171) we impose the boundary conditions

G3 (lDI , r0) = KD3, (4.172)

G3 (lEI , r0) = KE3, (4.173)

as well as the continuity conditions

G>
3

(
r+
0 , r0

)
−G<

3

(
r−0 , r0

)
= 0 (4.174)

∂rG
>
3

(
r+
0 , r0

)
− ∂rG

<
3

(
r−0 , r0

)
= −1. (4.175)

Defining the new constants

ℓ∆E :=
lEI

lEI − lDI

, ℓ∆D :=
lDI

lEI − lDI

, ℓED :=
lEIlDI

lEI − lDI

, (4.176)

and

A03 := ℓ∆EKE3 − ℓ∆DKD3, A13 := −ℓED (KE3 −KD3) , A23 := − ℓED

lEI lDI
, (4.177)
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the Green function (4.171) can be written as

G3 (r, r0) =






(A03 + A13r
−1) + (ℓ∆E − ℓEDr

−1) r0
+ (A23 + ℓ∆Dr

−1) r2
0 lDI < r < r0

(A03 + A13r
−1) + (ℓ∆D − ℓEDr

−1) r0
+ (A23 + ℓ∆Er

−1) r2
0 r0 < r < lEI .

(4.178)

We can now find P3 (r) using (4.178) and the inhomogeneous term Q3 (r) in (4.158)

P3(r) = ρ

∫ r

lDI

G>
3 (r, r0)Q3 (r0) dr0 + ρ

∫ lEI

r

G<
3 (r, r0)Q3 (r0) dr0

=
7

27
ρC2ε

4/3
mol

[
F03

1

r
+ F13 + F23r

4/3

]
=:

1

27
ρC2ε

4/3
molF

ab
3 (r) , (4.179)

where

F03 := 3
(
l
1/3
EI − l

1/3
DI

)
A13 −

3

4

(
l
4/3
EI − l

4/3
DI

)
ℓED

+
3

7

(
ℓ∆Dl

7/3
EI − ℓ∆El

7/3
DI

)
, (4.180)

F13 := 3
(
l
1/3
EI − l

1/3
DI

)
A03 +

3

7

(
l
7/3
EI − l

7/3
DI

)
A23

− 3

4

(
ℓ∆Dl

4/3
DI − ℓ∆El

4/3
EI

)
, (4.181)

F21 := − 9

28
(ℓ∆E − ℓ∆D) , (4.182)

and F ab
3 (r) has been defined in the last line of (4.179).

Once we have P1 (r) from (4.167) and P3 (r) from (4.179), we can next obtain
P2(r) = Bab

p,NN(r) substituting (4.167) and (4.179) into (4.148):

P2(r) :=
1

81
ρC2ε

4/3
mol

{
17F01r

−3 + 7F03r
−1 + 7F13

+
[
17F11 + 7F23r

4/3
]
+ 17F21r

2

}
=:

1

81
ρC2ε

4/3
molF

ab
NN (r) , (4.183)

where F ab
NN has been defined in the last step.

Inserting (4.167) and (4.183) in (4.140) we find the expression for the two-point triple
order velocity-pressure correlation Bab

p,ij we were looking for:

Bab
p,ij = P1 (r) rirj + P2 (r) δij

=
1

27
ρC2ε

4/3
mol

[
17F ab

1 (r) rirj +
1

3
F ab

NN (r) δij

]

=: ε
4/3
molFab

ij (r) , (4.184)
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Fab
ij (r) being defined in the last line.

Finally, we can find an expression for the numerical kinetic energy transfer term〈
Phτ1

r,e

〉
P

in equation (4.125). Substituting (4.184) in (4.125) yields

〈
Phτ1

r,e

〉
P

=
1

Ve
ε
4/3
mol

∑

a,b

Fab
ij

(
Iab
ij −Gab

ij

)
. (4.185)

4.6.3 Two point second-order velocity correlations for
〈
Phτ2

r,e

〉

The last term that has to be dealt with is
〈
Phτ2

r,e

〉
in (4.126) arising from the pressure

subscale stabilisation. As previously seen, (4.126) only involves the second-order velocity
correlation tensor Bab

ij . From (4.133) and (4.135) it can readily be checked that the
expression analogous to (4.139) and (4.185) for the term

〈
Phτ2

r,e

〉
in (4.126) is given by

〈
Phτ2

r,e

〉
P

=
2C

Ve
ε
2/3
mol

∑

a,b

r2/3Dab
ij

(
Iab
ij −Gab

ij

)

=:
1

Ve

ε
2/3
mol

∑

a,b

D̃ab
ij

(
Iab
ij −Gab

ij

)
, (4.186)

with D̃ab
ij := 2Cr2/3Dab

ij .

4.6.4 Relation between
〈
Phτ

r,e

〉
and the rate of dissipation εmol

From equations (4.139), (4.185) and (4.186) substituted in (4.127) we get

〈
Phτ

r,e

〉
=

1

Ve

∑

a,b

[
τ1,aeε

4/3
mol

(
Kab

ik + Fab
ik

)
+ τ2,aeε

2/3
molD̃ab

ik

] (
Iab
ik −Gab

ik

)
(4.187)

and finally inserting expressions (4.96)-(4.97) for the stabilisation parameters in (4.187)
we obtain the final expression we were looking for

〈
Phτ

r,e

〉
= εmol

{
h

Ve

∑

a,b

[
ℓ−1/3

(
Kab

ik + Fab
ik

)
+ ℓ1/3D̃ab

ik

] (
Iab
ik −Gab

ik

)
}
, (4.188)

which states that the average value of Phτ
r on a mesh element is directly related to

the molecular physical dissipation by means of a factor that only depends on the mesh
geometry and the interpolation spaces used to approximate the continuous ones.

4.6.5 Discussion

In section 4.4.3 (Orthogonal Subgrid stabilisation paragraph) we wondered about the
possibility that some terms in Phτ

r integrated over the whole computational domain
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equated the overall physical dissipation in the energy balance equation. It was argued
that this should not necessarily be the case for all the stabilisation terms in Phτ

r , given
that they arise from purely numerical considerations rather than physical ones. However,
we have found in (4.188) that when using the OSS stabilised finite element method all
terms in the ensemble average of Phτ

r are proportional to the dissipation εmol. This would
not have been the case, for instance, for the Algebraic Subgrid Scale (ASGS) method (see
e.g. [39]). In this case, there would be a contribution of an extra stabilisation term in the
energy balance equation arising from time derivative of the velocity. This term would be
related to the dissipation εmol raised to a power different from one.

As observed from (4.188) the proportionality factor between
〈
Phτ

r,e

〉
and εmol is a rather

complicated function depending on the element and mesh geometry, as well on the chosen
finite element interpolation spaces. Although one could be tempted to think that its
optimum value should equal unity in order to have the desired physical behaviour, we
have no basis to assess this point given that, as stated, the terms in (4.188) have to
account not only for appropriate physical behaviour, but also for circumventing purely
numerical difficulties (e.g., to allow the use of equal interpolation spaces for the velocity
and the pressure).

In any case, what seems to follow from the above analysis is that it makes somehow
redundant and unnecessary the use of LES models. Effectively, should we have done the
above analysis for the energy balance equation (4.93), a result of the type Phτ

r = αεmol

(with α being a proportionality function analogous to the one in (4.188)) would have been
obtained. On the other hand, the term arising from the LES model would also behave as
Ph

r = βεmol so that its effects, if any, could be included in the Phτ

r term with appropriate
redefinition of the proportionality factor. Hence, if a good enough discretisation of the
Navier-Stokes equations is performed, the somehow artificial fact of filtering and modelling
at the continuous level should be unnecessary. In other words, the problem of simulating
turbulence is probably a purely numerical problem of correctly discretising the Navier-
Stokes equations rather than a problem of LES physical modelling. Whether the OSS
or other finite element methods are good enough to simulate turbulent flows has to be
tested by means of numerical experiments. In this sense, and as previously mentioned,
very good results have been recently obtained [12, 26, 130, 152, 160, 266].

Finally it is also worthwhile to mention that the results of the above analysis can be
viewed as a confirmation of the right choice for the stabilisation parameters τ1 and τ2 in
the OSS formulation.

4.7 Numerical Examples

Following the suggestion in [44], slightly extended in section 3.5.3 (see [47]), and in view
of the results of the preceding sections, it is certainly necessary to test the feasibility of
the presented SGS stabilisation strategies as alternatives to LES by means of numerical
examples (see also, e.g. [26]). In this section we present a first step towards this goal.
We will first address the simulation of decaying two-dimensional turbulence using several
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ASGS approaches (standard ASGS, ASGS with subscale time tracking and ASGS with
subscale time tracking and full nonlinear terms). It will be shown how the main physical
features of this problem are well reproduced without needing to resort to extra LES
models. Next, the three dimensional problem of a turbulent flow impinging on a plate
will be considered. Again, it will be seen how the OSS method analysed in the previous
section, complemented with time tracking, is able to properly reproduce the turbulent
pressure spectrum on the plate without the inclusion of extra LES terms. Moreover, we
will see the advantage of using the subscale time tracking in front of the standard ASGS
and OSS approaches.

4.7.1 Decay of two-dimensional incompressible turbulence

Introduction

Two dimensional turbulence is of importance in some areas of physics involving geophysical
flows, such as oceanography or meteorology. It may be also useful to test ideas and
theories regarding some aspects of three-dimensional turbulence, given that they share
some common phenomena [280]. However, there is an essential difference between two-
dimensional and three-dimensional turbulence: the lack of vortex stretching in the former.
That is, the term ω · ∇u in (4.14) identically vanishes for a two-dimensional flow. This
fact is of crucial importance for the following two reasons, among others.

On the mathematical side, and as already quoted in section 4.2.2, the presence of
ω · ∇u does not allow to find a regularity proof for the Navier-Stokes equations in three
dimensions, whereas existence and uniqueness of weak solutions can be proved in Ω ⊆ R2.
On the physical side, the vanishing of ω · ∇u pose severe constraints to two-dimensional
flows. Note for instance, that if f = 0 in (4.14), conservation of vorticity follows in the
inviscid case. This additional constraint had posed some doubts in the past concerning the
possibility of existence of two-dimensional turbulence. However, it is nowadays accepted
that two-dimensional weakly-viscous flows share typical behaviours compatible with a
possible definition of turbulence, such as mixing and unpredictability [203, 280].

Two landmark papers on two-dimensional turbulence are those of Kraichnnan [188]
and Batchelor [11]. The first one establishes energy and enstrophy cascade mechanisms
in forced two-dimensional turbulence, while the second addresses the free decaying of
homogeneous two-dimensional turbulence. It should be pointed out that while the forced
and unforced cases behave almost identically in three-dimensional turbulence, this is not
the case in two dimensions. Actually and in what concerns turbulence, two-dimensional
flows present a much larger variety of behaviours than three-dimensional flows as they
involve several types of cascades and turbulence. As stated in [280], “there is no life for
turbulence outside the direct energy cascade” in three dimensions (Kolmogorov cascade
[186]).

In what follows, we will concentrate on the simulation of free decaying homogeneous
two-dimensional turbulence. Given that in two dimensions the number of degrees of
freedom needed for a complete description of the flow is of O (Re) (to be compared with
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O
(
Re9/4

)
in three dimensions) detailed Direct Numerical Simulations of two-dimensional

turbulence have been performed in the past [21,38,195,220]. Closure models such as the
EDQNM (Eddy-Damped Quasi-Normal Markovian) model have been often used too [203].
In the next section, we will see that using the subgrid scale stabilised finite element method
presented in chapter 3 we will be able to reproduce some basic qualitative and quantitative
behaviour of decaying two-dimensional turbulence, using relatively coarse meshes.

Numerical results

We consider the problem of solving the incompressible Navier-Stokes equations in the two-
dimensional domain Ω = (0, 1)2 with periodic boundary conditions on ∂Ω. The differential
problem is written as

∂tu− ν∆u + u · ∇u+ ∇p = 0 in Ω, t ∈]0, T [, (4.189)

∇ · u = 0 in Ω, t ∈]0, T [, (4.190)

u periodic on ∂Ω, t ∈]0, T [, (4.191)

u = 0.05 [cos (8πx) , cos (8πy)] in Ω ∪ ∂Ω, t = 0. (4.192)

The integral-scale Reynolds number of the problem is given by Re = UL/ν, with U
standing for the rms velocity of the initial flow field (4.192). In our case Re = 5000.

Problem (4.189)-(4.192) has been solved in three different regular meshes of
quadrilaterals of 50 × 50, 100 × 100 and 200 × 200 elements and using three different
finite element stabilised formulations namely, the ASGS (Algebraic Subgrid Scale), the
ASGS-TT (Algebraic Subgrid Scale with Time Tracking) and the ASGS-NLTT (Algebraic
Subgrid Scale with Non-linear subscales and Time Tracking). The second order Crank-
Nicolson scheme has been used for the time integration of the finite element solution while
a first order scheme has been used for the subscales. As already mentioned, this choice is
justified in [46] and it still keeps the second order of accuracy in time of the finite element
solution. A time step of ∆t = 1 s has been taken. Five Picard non-linear iterations have
been performed for each time step (three for the subscales) and a direct solver has been
employed to solve all algebraic matrix systems.

From a phenomenological point of view all methods and meshes have yielded similar
results. The decay of isotropic two-dimensional turbulence is characterized by the singular
fact that coherent structures emerge and prevail on the long time. The time evolution of
the flow dynamics can be thought as consisting of different time events. In a first phase,
the initial flow field gets rapidly distorted with independence of the initial condition being
an ordered flow field like (4.192), a field of Gaussian vortices or a random vorticity field.
The early dynamics of vorticity is characterized by sheetlike structures rolling up around
emerging centres of concentrated vorticity. The resulting vortices may either form pairings
(merging of vortices of the same sign) or dipoles (vortices of opposite sign). The situation
is shown in Figs. 4.5a-4.6a, where we have plotted the modulus of vorticity at t = 25 s.
The number of vortices is constantly reduced as time evolves due to vortex merging
following the scenario described in [222]. This can be clearly observed in Fig. 4.5b-4.6b,
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corresponding to t = 60 s, where less and larger vortices than in Figs. 4.5a are present. As
time continues to evolve fewer and fewer coherent vortices remain as seen in Figs. 4.5c-4.6c
(t = 100 s) where there are only three vortices. The two central vortices having equal
sign will tend to merge as shown in Figs. 4.5d-4.6d and Figs. 4.5e-4.6e (t = 150, 200 s)
before the final state is achieved (see Figs. 4.5f-4.6f).

The quasiuniversal final state consists of two vortices of opposite sign with nearly
circular cross sections and with their maximums lying on the diagonal of the periodic
domain. The maximums are placed at the equilibrium positions of a two-dimensional
Ewald potential [220]. In Fig. 4.7a we have plotted the stream function corresponding to
Fig. 4.5d. We can observe that the flow is clearly dominated by just two patterns. In
Fig. 4.7b the flow has nearly achieved the final state. Hence, from the above description we
can see that decaying two-dimensional is able to generate a highly ordered state from an
initial “chaotic” state and thus constitutes a beautiful example of a self-organized system.

Although some issues of two-dimensional turbulence remain unsolved, several general
properties are well understood and satisfactory theories account for them [280]. For
instance, and contrary to what happens in the three-dimensional case, it is well known
that enstrophy decreases with time in the case of low viscosity, while energy remains
essentially constant. Whereas enstrophy is transferred from large to small scales, there
is no viscous sink of energy at the small scales in two-dimensional turbulence. Roughly
speaking, and with due care, one can say that in two-dimensional turbulence, enstrophy
plays somehow the role played by energy in three-dimensional turbulence.

As previously mentioned, the enstrophy and energy cascade mechanisms were
respectively described by Kraichnnan for the forced case [188] and by Batchelor for the
free decaying case [11]. Batchelor predicted an energy spectra E(k) ∼ k−3 for the flow in
the initial decay phase (see Fig. 4.5a), where k represents the modulus of the wavenumber
vector k = (kx, ky). In Fig. 4.8a we have plotted the energy spectrum E (kx, ky) for the
initial condition (t = 0 s). Obviously only the wavenumber (kx, ky) corresponding to
(4.192) has a non-null value. In Fig. 4.8b we have plotted E (kx, ky) for t = 25 s, which
corresponds to the velocity field whose vorticity has been plotted in Fig. 4.5a. As seen,
almost all wavenumbers have been excited by this time.
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a) t = 25 s b) t = 60 s

c) t = 100 s d) t = 150 s

e) t = 200 s f) t = 350 s

Figure 4.5: Vorticity modulus field at different time steps. a) t = 25 s, b) t = 60 s, c) t = 100 s,
and d) t = 150 s, e) t = 200 s and f) t = 350 s. Results corresponding to the 200×200
mesh and the ASGS-TT finite element method. The colour scale has been changed
from plot to plot for a better visualization of the flow.
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a) t = 25 s b) t = 60 s

c) t = 100 s d) t = 150 s

e) t = 200 s f) t = 350 s

Figure 4.6: Vorticity surfaces at different time steps. a) t = 25 s, b) t = 60 s, c) t = 100 s, and
d) t = 150 s, e) t = 200 s and f) t = 350 s. These results are those of Fig. 4.5 but
showing elevation surfaces.
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a) t = 150 s b) t = 350 s

Figure 4.7: Stream function at different time steps. a) t = 150 s, b) t = 350 s. Results
corresponding to the 200× 200 mesh and the ASGS-TT finite element method. The
colour scale has been changed from plot to plot for a better visualization of the flow.

a) t = 0 s b) t = 25 s

Figure 4.8: Energy spectra E (kx, ky) at different time steps. a) Initial condition t = 0 s, b)
t = 25 s.
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Figure 4.9: Energy spectra E (k) for various time steps. 100 × 100 mesh using the ASGS finite
element method.

In Fig. 4.9 we have plotted the energy spectrum E(k) for different time steps together
with the k−3 and k−4 slopes. The results of this figure have been obtained using the
ASGS finite element method with a mesh of 100 × 100 elements. We observe that for
t = 25 s (bold line) the expected k−3 energy spectrum dependence is achieved for a certain
wavenumber interval, although for the largest wavenumbers the spectrum decays with a
k−4 dependence. Actually, an energy spectrum ∼ k−4 is what is more often observed in
simulations of free decaying turbulence (see e.g., [200,203,280]). As time evolves and fewer
and larger coherent structures emerge, the slope becomes steeper and energy concentrates
near the wavenumber that corresponds to the quasiuniversal final state.

In Fig. 4.10 we present a comparison of E(k) at t = 25 s for various meshes and
stabilised finite element methods. It can be observed that all spectra follow the expected
k−3 law, at least for a considerable range of wavenumbers. The energy spectra of the
ASGS-TT and ASGS-NLTT finite element methods are very similar and no remarkable
differences can be detected between them, except for the latter being slightly more
dissipative at high wavenumbers for the finer meshes. The spectrum corresponding
to the ASGS method is also similar to the remaining ones but their values for high
wavenumbers are clearly larger than the ASGS-TT and ASGS-NLTT ones. That is to
say the latter methods are more dissipative, which make them possible candidates for the
proper simulation of three-dimensional turbulence, where dissipation at small scales (high
wavenumbers) is crucial.

As a conclusion and in accordance with the results found in [200], it seems that the
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Figure 4.10: Energy spectra E (k) for various meshes and stabilised finite element methods.
Dotted lines: ASGS, Dashed lines: ASGS-TT and Continuous lines: ASGS-NLTT

ASGS method suffices for a correct reproduction of the general behaviour of free decaying
two-dimensional turbulence. The ASGS-TT and the ASGS-NLTT methods perform also
well and might be appropriate options to simulate three dimensional turbulence given that
they are more dissipative than the ASGS approach (which does not suffice in the three
dimensional case [200]). In any case, what looks apparent from the above simulations is
that no extra LES model seems necessary to yield good results if an appropriate spatial
and time discretisation schemes are used.

4.7.2 Three-dimensional turbulent flow impinging on a plate

As a second numerical example to test the feasibility of the SGS stabilisation strategy
to simulate turbulent flows, the case of a three-dimensional flow impinging on a plate
has been considered. The mathematical problem to address consists in solving the
incompressible Navier-Stokes equations (4.1)-(4.2) for the flow over the plate, in a given
computational wind tunnel Ω, with boundary ∂Ω, once some initial and boundary
conditions have been imposed. The problem Reynolds number according to the plate
diameter D = 0.5 m and the maximum initial velocity U0 = 10 m/s is Re ∼ 2.75 × 105.

Some simulations using different SGS stabilised finite element methods have been
carried out. The case of the quite standard approach of combining SGS with the
Smagorinsky LES model has been also addressed. The result we are interested in consists
in reproducing the pressure spectrum at the central point of the plate. According to
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(4.25) in section 4.3.2, it should happen that Epp (k) ∼ k−7/3. Experimental data
exist for the present plate problem confirming that the point pressure spectra in the
frequency domain fulfils Epp (f) ∼ f−7/3, where f is the frequency. Results for the energy
spectrum dependence in the wavenumber domain can be transformed to results in the
frequency domain making use of Taylor’s hypothesis, also known as the frozen-turbulence
approximation (the same follows from the spatial to the time domain, see e.g., [129,255]).

The main computational features of the simulations are listed below:

• The computational wind tunnel is a rectangular hexahedral domain with dimensions
Ω = 9 × 2.5 × 1.8 m3 that guarantees no influence of the far field boundaries in the
numerical solution.

• An unstructured mesh of 1.336.823 elements (1.318.883 tetrahedral elements
+ 17.940 surface triangular elements) corresponding to 240.351 nodes (961.404 d.o.f)
has been used. The mesh has been strongly refined near the plate contours.

• Equal linear interpolation functions have been used for the velocity and the pressure
as allowed by the SGS stabilised finite element approach.

• In what concerns the spatial discretisation, use has been made of a nodal based-
implementation scheme [40] that allows to save a large amount of computational
time. This is so because all integrals involving combinations of shape function
products and their corresponding derivatives are carried out at the first stage of the
computation, which avoids to recompute the volume and surface integrals anymore.

• 5 linearisation Picard iterations have been used for each time step.

• A GMRES solver has been used to solve all matrix systems.

• The second order accurate in time Crank-Nicholson scheme has been used (see
section 3.4.1). The time incremental has been ∆t = 0.0015 s.

• In order to surpass the initial transients, the Smagorinsky model (4.58) has been
used with a constant C2

S = 0.01 to obtain extra dissipation. We note however, that
C2

S = 0.01 corresponds to a Smagorinsky constant of CS = 0.1, which is smaller
than the standard value of CS = 0.17 that yields the relevant value in the simulation
C2

S ∼ 0.03 (three times the used one).

Computational domain and boundary conditions

The computational domain is shown in Fig. 4.11, where we have plotted some general
and detailed views. The inner domain between the external rectangular parallelepiped
and the plate surface is required for an appropriate mesh transition size. The plate in
Fig. 4.11d has a slope of 18◦ with respect to the x-axis.

The Dirichlet boundary is built from ΓD = Γa
i ∪ Γp (with Γp standing for the plate

surface), while the mixed boundary is given by ΓM = Γa
u ∪ Γa

d ∪ Γa
o ∪ Γa

lat1 ∪ Γa
lat2. The

corresponding boundary conditions are given by:
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a) Exterior boundaries b) Inner domain

c) Plate boundary d) Plate dimensions

Figure 4.11: Wind tunnel computational domain. General and detailed views.

Dirichlet boundary ΓD:

uD = (ux, uy, uz)
⊤ =

{
(3.0864y2, 0, 0)

⊤
m/s on Γa

i

(0, 0, 0)⊤ m/s on Γp
(4.193)

Mixed boundary ΓM :

tx, ty = 0
uz = 0

}
on Γa

u,Γ
a
d

tx, tz = 0
uy = 0

}
on Γa

lat1,Γ
a
lat2 (4.194)

tM = (tx, ty, tz)
⊤ = (0, 0, 0)⊤ on Γa

o (4.195)

with tM standing for the traction at the mixed boundary.
In Fig. 4.12 we show some mesh details and it can be clearly observed that the mesh

has been strongly refined on the plate surface.

Pressure and velocity fields

For the present example we have tested the standard ASGS method, the OSS method
the OSS-TT (OSS method including time tracking, see section 3.4.2) and the LES
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a) Exterior boundaries b) Plate surface

Figure 4.12: Plate mesh: General and detailed views.

a) Isopressure surfaces on the plane x = 0 b) Isovelocity surfaces on the plane x = 0

c) Pressure on the plate surface d) Isopressure and velocity vectors

Figure 4.13: Pressure and velocity fields at a given time step.
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a) Isopressure flat surfaces

b) Isopressure transparent surfaces

Figure 4.14: Isopressure surfaces in the inner domain for a given time snapshot.
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Figure 4.15: Isovelocity surfaces in the inner domain for a given time snapshot.

Figure 4.16: Stream lines.
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Smagorinsky model combined with ASGS stabilisation. The first two methods have turned
to be non robust for the used mesh and the solutions have blown up after some hundred
computational steps. However, and as expected (see [44,46,47]), the OSS-TT approach has
shown better stabilisation properties and has yielded a fairly promising solution. Actually,
from a phenomenological point of view, the OSS-TT and the Smagorinsky methods have
shown similar results so we will not compare their qualitative performance until next
section. We will limit here to present the general behaviour of the pressure and velocity
fields.

It can be clearly observed from Figs. 4.13a,b and d, that a complex flow pattern
develops past the plate, involving the formation of large vortices. The pressure becomes
maximum on the upper leading edge of the plate (minimum under the plate) and decreases
on the surface, the minimum being reached at the rear edge where flow separates (see
Figs. 4.13a and c). In turn, the velocity becomes minimum at the leading edge and the
flow accelerates reaching maximum speed values when it leaves the surface (see Figs. 4.13b
and d). Large vortices are shed leading to a fully developed turbulent flow.

The intricate flow behaviour can also be observed in Figs. 4.14a and b, where we have
plotted the isopressure surfaces for the inner domain at a given time instant. In Fig. 4.15
we have plotted the isovelocity surfaces for the same time value, while in Fig. 4.16 the
stream lines for different points are plotted. As it can be observed, while some stream
lines smoothly follow the plate profile and leave it unaltered, others present a quite erratic
and chaotic path.

Point pressure spectrum and time evolution

As previously mentioned, experimental results performed in a wind tunnel exist for the
plate problem we are addressing. The experimental point pressure spectrum at the plate’s
central point is presented in Fig. 4.17. As seen, for the frequency range that comprises
from 10 Hz to 1000 Hz the spectrum clearly exhibits a f−7/3 slope in accordance to the
predicted pressure spectrum for isotropic turbulence (with the additional assumption of
Taylor’s hypothesis).

The spectra resulting from the computations are plotted in Fig. 4.18. According to
the computational time step, results are only to be expected up to ∼ 330 Hz. In Fig. 4.18
we can observe that the Smagorinsky model (blue line) quickly depicts the f−7/3 expected
slope, although for the spectrum higher frequency range it is more dissipative than the
OSS-TT solution (green line). The latter closely matches the f−7/3 line from 80 Hz to 330
Hz. In fact it should be noted that the low frequency spectrum is not of great importance
in the present simulations given that they have been started from previous and different
fully developed solutions.

In Fig. 4.19 we have plotted a zoomed interval of the pressure time evolution. We
can observe that the OSS-TT solution has a higher mean value than the Smagorinsky
one. This is an expected result given that the OSS-TT is intended to be less dissipative
than the Smagorinsky model. In addition, it can be observed that the OSS-TT curve also
exhibits more intricate dynamics than those of the Smagorinsky solution. In view of these
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Figure 4.17: Experimental pressure spectrum at the plate’s central point. Courtesy of GBF
Aachen, Dipl. Ing. Ralf Haase.
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Figure 4.18: Computed pressure spectrum at the plate’s central point. Smagorinsky (blue line),
OSS-TT (green line) and f−7/3 (red line)
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Figure 4.19: Zoom of the pressure time evolution at the plate’s central point. Smagorinsky (red
line), OSS-TT (green line)

results, one could expect a higher value for the dimension of the OSS-TT final attractor
than for the Smagorinsky one. Checking this fact constitutes a future research line that
would be worthwhile to explore.

It should be noted that the performance of the various SGS methods may strongly
depend on the mesh being used for the simulations. In [162], for instance, it was shown
that for very coarse meshes the dynamic Smagorinsky model performed better than the
VMM approach (the VMM in this reference still included a Smagorinsky model for the
finer scales). However for a more refined mesh, the latter exhibited a clearly better
behaviour. This type of mesh dependence analysis has not been performed here due its
high computational cost. In any case, what seems clear from the present example is that
a purely numerical approach to the problem with no use of physical LES models can yield
excellent results.

4.8 Conclusions

In this chapter we have reviewed some basic results of the classical mathematical theory
for the Navier-Stokes equations. We have commented on its main drawbacks, essentially
the lack of a proof for the uniqueness of weak solutions and for the existence of strong
solutions in the long time. Despite of the mathematical technicalities needed to assert it, it
is commonly accepted that the Navier-Stokes equations suffice to describe the behaviour of
any incompressible isentropic flow, including fully developed turbulent flows. On the other
hand, we have also reviewed Kolmogorov’s theory that precisely presents a totally different
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approach for the description of turbulent flows, based on statistical fluid mechanics and
heuristic reasoning.

Equipped with these mathematical and physical grounds, we then have focused on the
numerical simulation of turbulent flows, and in particular on the Large Eddy Simulation
(LES) method. We have reviewed recent attempts to give a precise mathematical
definition of LES that have led to the notion of suitable approximations to the Navier-
Stokes equations. This mathematical approach to LES poses some restrictions on the
possible modifications to the original Navier-Stokes equations in order to be able to
simulate turbulent flows. It also allows to address some unsolved questions of the
“standard” LES approach. Moreover, and in the same framework, one can also consider
the possibility of performing a non physical LES modelling approach. That is, if an
appropriate discretisation scheme is used, the simulation of turbulence could be made
without the addition of an extra LES model for the residual stress tensor. It has been
explained that an adequate discretisation scheme to do so could be that provided by
Subgrid Scale (SGS) stabilised finite element methods.

Then, our aim has been to explore the latter idea combining some results of
numerical mathematics with some results of statistical fluid mechanics. For a fine
enough computational mesh, it has been heuristically proved that the contribution to
the energy balance equation of the stabilisation terms of the Orthogonal Subgrid Scale
(OSS) stabilised finite element method is already proportional to the physical dissipation
rate for an appropriate choice of the stabilisation parameters. This has been done with the
sole use of the quasi-normal approximation for two point fourth-order velocity correlations
and using Kolmogorov’s first and second similarity hypotheses. It has been also assumed
that several statistical fluid mechanics results, which are valid for the exact velocity field,
hold true for the approximated finite element velocity field. Taking into account that
the stabilisation terms in the OSS method arise from pure numerical necessities it is a
noteworthy fact that they have the correct physical behaviour in the inertial subrange of
a turbulent flow. This somehow supports the idea that no extra physical LES modelling
should be added to the equations to achieve this behaviour, if an appropriate stabilisation
method is used. That is to say, the simulation of turbulence should probably rely on
optimum numerical modelling rather than in physical one.

Finally, some numerical examples have been presented showing the performance of
some SGS methods in the simulation of turbulent flows. The case of decaying isotropic
turbulence in two dimensions and the case of a three-dimensional turbulent flow impinging
on a plate have been considered. The obtained results give further support to the previous
heuristic proof, in the line that a pure numerical approach to turbulence can be possible.
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Chapter 5

The acoustic field

In this chapter we address the computation of the acoustic field generated by known flow
motion. This implies solving an inhomogeneous Helmholtz equation and in some cases,
its convected counterpart. When this is done by means of the standard Galerkin finite
element method, the solution is known to present the so called pollution error for large
wave numbers. The same problem appears in the case of the convected Helmholtz equation.
In order to avoid this situation, several numerical strategies have been proposed with
predominance of stabilised finite element approaches. In this line, we will propose here an
algebraic subgrid scale (ASGS) stabilised finite element method to improve the accuracy of
the Galerkin finite element solution to the two dimensional convected Helmholtz equation.
The method is formally equivalent to the Galerkin Least-Squares (GLS) method and, in
the case of no convection, the well known GLS results for the Helmholtz equation are
recovered. As an application, we have considered again the case of aerodynamic sound
radiated by incompressible flow past a two-dimensional cylinder, but now taking into
account the convected case. Following Lighthill’s acoustic analogy, we have used the time
Fourier transform of the double divergence of the Reynolds stress tensor as a source term
for the Helmholtz and convected Helmholtz equations and showed the benefits of using the
subgrid scale stabilisation.

5.1 Introduction

Acoustic waves propagating in a stationary background media are solutions of the well-
known wave equation. Acoustic waves are generated by sound sources, which may be
considered as regions of space in contact with the fluid (or subregions in motion of
the fluid itself) where energy of any origin is transformed into acoustic energy to be
propagated outward as sound waves. The wave equation can be easily derived from the
continuity and Euler equations for an isentropic flow, assuming quiescence and neglecting
all non-linear terms (see section 2.2.3 in Chapter 2). In the case of waves propagating
in a flow with uniform mean speed, a convected wave equation can be derived that is
valid for arbitrary values of the Mach number, up to transonic flows (see e.g. [101, 145]
and references therein). The convected wave equation becomes of importance in many

139
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practical problems in aeroacoustics involving aerodynamic sound generated by aircraft
engine fans and compressors [101, 145]. It is also worthwhile to mention that wave
equations are crucial in many other areas of physics such as electromagnetism, geophysics,
meteorology or general relativity.

Just as significant as the wave equation is its time Fourier transform: the Helmholtz
equation, which gives the spatial distribution of the acoustic field for a given wavenumber.
Analogously, the time Fourier transform of the convected wave equation describes the
spatial distribution of acoustic waves propagating in a background uniform flow. This
equation, known as the time-reduced version of the convected wave equation, will be
hereafter referred to as the convected Helmholtz equation.

When facing problems involving complex geometries, analytic solutions to the above
equations can hardly be found and one has to resort to numerical methods, such as the
finite element method (FEM). Finding a FEM solution to the Helmholtz and convected
Helmholtz equations is not a trivial task and two main difficulties have to be overcome (see
e.g. [118,163]). The first one appears when solving unbounded exterior acoustic problems
in finite computational domains (see Fig. 5.1). Some kind of absorbing boundary condition
(ABC) has to be placed at the boundary of the computational domain to account for
outward radiating waves. The second difficulty arises when dealing with wave phenomena
at high wave numbers (short wave lengths). In this case the discrete wave propagates
with a phase lag with respect to the exact one, see Fig. 5.2, and a pollution error appears
in the numerical solution of the problem (even if keeping the number of nodes per wave
length constant).

In what concerns the first problem (ABC) three main strategies have been developed,
namely the use of DtN (Dirichlet-to-Neumann) operators, the implementation of infinite
elements and the inclusion of a PML (Perfectly Matched Layer) at the domain boundary.
TheDtN approach [98,177] consists in relating the unknown solution and its derivatives at
the computational external boundary ΓR (see Fig. 5.1) by means of a global operator (DtN
operator) built from the analytical exact solution of a Dirichlet outward wave propagating
problem. The exact solution used in theDtN operator can be stated in an integral or series
representation, which has to be truncated when numerically implemented. The number of
terms in the series determines the accuracy of the solution. The second option consists in
using infinite elements (see e.g. [2,18,88]). In this case the computational domain, Ωac, is
discretised using standard finite elements, while the exterior infinite domain is discretised
using the so called infinite elements. These elements are a semi analytical construction
obtained through the tensor product of finite element shape functions and radial analytic
shape functions, for instance of the type ϕn (r) = eikr/rn in the case of ΓR being a sphere.
At present there are still several questions to be answered concerning the performance of
the method, specially in what refers to the convergence of the various formulations and
to ill-conditioning problems (see [118] and references therein). The third main approach
to solve the ABC problem consists in using the PML method [15,123]. This method was
originally developed for the computation of time-dependent electromagnetic waves and it
is based on adding an exterior absorbing layer to the computational boundary, ΓR, so that
any incident wave becomes absorbed. This is done by reformulating the original Helmholtz
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Figure 5.1: The problem of absorbing boundary conditions due to the finite computational
domain.

equation so that it includes an absorption term that only differs from zero beyond ΓR. The
PML approach is very popular and widely used although its implementation requires the
tunning of several numerical parameters and some stability issues still remain unresolved
(see [1, 13, 48, 128] c.f. [118]).

In this work, however, we will not address the ABC problem. All computations will
be performed in large enough computational domains that allow the global boundary
operators to be replaced by the local Sommerfeld radiation condition (see section 5.2.3).
Instead, we will concentrate on the second type of problem appearing in the numerical
solution of the Helmholtz equation, namely the appearance of the pollution error for large
wave numbers. To be precise, we will aim at finding some procedure to diminish this type
of error in the finite element solution of the convected Helmholtz equation.

A large amount of work has been carried out to find non-polluted numerical solutions
to the Helmholtz equation using finite element methods. The pollution error stems from
the fact that the weak form associated to the Helmholtz equation is non positive definite
for large wave numbers, although it satisfies a Gårding inequality that allows Galerkin
methods to be applied to it [163]. However, the inf-sup constant has an inverse dependence
with the wavenumber k that leads to a deterioration of the stability and to the appearance
of the pollution error for large values of k. A dispersion analysis of the weak form interior
numerical stencil reveals that this error is related to the fact that discrete waves propagate
with a discrete wavenumber, kh, instead of the continuous one. The difference between
both wavenumbers, k − kh, increases for large k′s and, as earlier mentioned, a phase
error appears in the numerically solved waves (see e.g. [5,119,120]). This is illustrated in
Fig. 5.2.

In order to avoid this problem several methods have been developed, some of them in
the more general context of the CDR (convection-diffusion-reaction) equations. The basic
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Figure 5.2: Dispersion error: the discrete wave propagates with a wave number, kh (dot-dashed),
that differs from the exact one, k (continuous).

idea of several of these methods is to add a stabilising term to the discrete weak form of
the problem that enhances the behaviour of the solution, diminishing the pollution effects.
This is the case in [119, 120, 287] where the GLS (Galerkin Least Squares) was applied
to the Helmholtz equation in one and two dimensions. An alternative approach is the
partition of unity method (PUM) [192, 223] in which the shape functions are multiplied
by free space homogeneous solutions of the Helmholtz equation. This is also done in
the GFEM (Generalized Finite Element Method) developed in [3, 4, 164], although in
this case only the fine scales are multiplied by the free space solutions, while standard
shape functions are used for the coarse ones. However, the GFEM is basically suitable
for structured meshes. The SGS (Subgrid Scale) approach in [150, 154] has been already
detailed in Chapter 3 and was applied to the Helmholtz equation using different models
for the subscales in [36, 240]. This method also motivated the inclusion of the element
boundary residues into the weak form [242]. Other approaches to find improved numerical
solutions for the Helmholtz equation have considered the use of bubble functions [77] or
enriching the standard polynomial field by means of plane waves. In the discontinuous
enrichment method (DEM) [67] standard shape functions are used for the coarse scales
while free space homogeneous solutions are added to them representing the influence of
the finer scales. The underlying idea is that particular solutions are properly resolved
by the coarse scales while the finer ones should contain solutions from the homogeneous
partial differential Helmholtz equation. In [241] and [57] comparisons of the performance
of some of these methods can be found and in [118] a recent and complete review of several
finite element methods for time harmonic acoustics is provided.

It is the main purpose of this chapter to solve the convected Helmholtz equation for
a background flow of constant speed, in the framework of finite element methods (FEM).
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In contrast with the Helmholtz equation and as far as we know, the convected Helmholtz
equation has received much less attention. In [125], some stabilising methods for the
CDR scalar equation were re-adapted to include the case of a production source term
and, recently, an analysis of the accuracy of the Galerkin solution to the convected wave
equation has been addressed in [83, 84]. Dispersion and amplitude errors for upstream
and downstream propagating waves using different finite element types have been studied
as well as their dependence on several parameters such as the Mach number magnitude
and the wave and flow orientations.

In this chapter, an algebraic subgrid scale finite element method for the convected
Helmholtz equation is proposed [106]. A stabilising term is added to the discrete weak
form of the problem containing a stabilisation parameter that is determined by means
of a dispersion analysis. As we will deal with selfadjoint operators, the herein proposed
method coincides with the GLS approach to the problem except for a minus sign that can
be included in the definition of the stabilisation parameter [39,118]. The GLS approach is
probably the cheapest and simplest way to provide stabilisation to the Helmholtz equation
because its implementation is made at almost no computational cost [118]. In [57], it was
concluded that the GLS performed superior to residual-free bubbles (only effective in one
dimension) but that the QSFEM (Quasi stabilised FEM) or increasing the degree of the
polynomial field were clearly better in lowering the dispersion error. However, the QSFEM
is rather difficult to adapt to non uniform meshes and irregular boundary conditions, as
already quoted in [57]. Some of the methods cited in the above paragraphs can also
yield better results than GLS but usually at the cost of more implementation difficulties
and higher computational cost. On the other hand, although it is often argued that the
GLS has the main drawback of its dependence on the direction of the plane wave used to
derive the stabilisation parameter, it has been shown that some standard values for this
direction angle yield good results for very general situations [287, 288]. Actually, it has
recently been checked by means of numerical experiments that the GLS clearly improves
the Galerkin FEM results in intricate acoustic fields such as e.g., the noise radiation in an
automotive interior or the scattering from a submarine-shaped obstacle [121]. In addition,
the stabilisation parameters usually derived for a particular mesh (e.g., a mesh of bilinear
elements) still work when changing to unstructured meshes [121,276]. As a consequence,
we may conclude that GLS still becomes an appealing option when considering its easy
implementation aspect and low computational cost, together with the clear improvement
of the standard Galerkin FEM results. It is worthwhile to mention that recent work
on GLS has involved adapting the stabilisation parameter for triangular and distorted
elements [122, 176].

The work presented in this chapter for the convected Helmholtz equation tends to
confirm the general features found in the GLS application to the Helmholtz equation. A
stabilisation parameter is derived for a structured mesh of quadrilateral bilinear elements,
which yields exact nodal values for a wave propagating at a given direction in a background
uniform flow of constant speed. This parameter also performs well if we use, instead, a
mesh of unstructured quadrilateral elements. We have decided not to work with many
simple problems with analytical solution (the performance of the method in these cases
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could be readily outlined from the herein presented results, the analysis in [83, 84] and
the GLS application to the Helmholtz equation) but to address a more intricate case
in the line of what is done in [121]. Hence the case of aerodynamic sound generated
by flow past a two dimensional cylinder has been considered again using the Lighthill
acoustic analogy approach (see sections 3.2 and 3.6.1) but now taking also into account
the convected Helmholtz equation. Following the proposed three step approach for CAA
in section 3.2, a first incompressible computational fluid dynamic simulation has been
performed in order to obtain the time evolution of the double divergence of the Reynolds
stress. This quantity has been time Fourier transformed to the frequency domain and
used as the acoustic source term for the Helmholtz and convected Helmholtz equation.
Even though an unstructured mesh of triangular elements has been used in this example,
the benefits of using the GLS stability parameter, derived from a quadrilateral bilinear
element mesh, become apparent and the dispersion error in the outward generated waves
is clearly reduced.

The chapter is organized as follows. In section 5.2 the relations among the wave
equation, the Helmholtz equation and their convected counterparts are established.
Fourier transform pairs together with Galilean and Lorentz transformations relate these
equations. Change of variables by means of these transformations offer a first possibility
to solve the convected Helmholtz equation. On the other hand, appropriate boundary
conditions are given for the latter and it is shown that this equation corresponds to a
particular case of the more general CDR equations. In section 5.3 we present the weak
form of the problem and the subgrid scale finite element method proposed to solve it.
The dispersion analysis to find the value for the stabilisation parameter is carried out. In
section 5.4 we present the numerical examples. We first show how the method yields an
exact nodal solution for a wave propagating in a mean flow of constant speed and we then
present the case of aerodynamic noise generated by flow past a two dimensional cylinder
for the convected Helmholtz equation. Finally, conclusions are drawn in section 5.5.

5.2 Steady and convected wave and Helmholtz

equations

5.2.1 Wave equation and convected wave equation

The inhomogeneous wave equation for the propagation of pressure perturbations in a
stationary, ideal medium is given by (acoustic wave equation, see section 2.2.3)

(
c−2
0 ∂2

tt −∇2
)
p (x, t) = s (x, t) (5.1)

where p (x, t) stands for the acoustic pressure, s (x, t) is the source term, c0 is the sound
speed in the medium and ∇2 represents the Laplacian operator (throughout this chapter
we will use ∇2 instead of ∆ for the Laplacian operator, as it is common practice in
acoustics). On the other hand, p will be used in this chapter to designate the acoustic
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pressure instead of the p′ used in previous chapters, as there will be now no possible
confusion with the aerodynamic pressure.

For acoustic waves propagating in an homentropic, irrotational flow, (5.1) is no
longer valid and has to be replaced by a linear equation for the time derivative
of the velocity potential or for the perturbation velocity potential [145]. However,
in the special case of a flow with mean velocity U0 (x) at a low Mach number
(M2 << 1, M = ‖M‖ , M (x) := U0 (x) /c0) variations in the mean density and sound
speed can be neglected and the acoustic wave propagation can be described by a relatively
simple equation, namely the convected wave equation

[
c−2
0 (∂t +U0 (x) · ∇)2 −∇2

]
p (x, t) = s (x, t) . (5.2)

It follows that

• If U0 is constant (uniform flow) (5.2) becomes valid for Mach numbers up to one
(transonic flows). Then, equations (5.1)-(5.2) become equivalent as they are related
by a simple Galilean transformation of the coordinate system

x′ = x+U0t. (5.3)

Uniform flow will be assumed from now on throughout the chapter unless specified.

• It is quite customary to use the material derivative Dt := ∂t +U0 ·∇ to rewrite (5.2)
as (

c−2
0 D2

tt −∇2
)
p (x, t) = s (x, t) (5.4)

showing the close resemblance with (5.1).

5.2.2 Helmholtz equation and convected Helmholtz equation

The time reduced versions of (5.1)-(5.2) are obtained by taking their Fourier transforms.
Assuming time harmonic motion and replacing ∂t by −iω in (5.1) yields the Helmholtz
equation (see Chapter 2)

(
−∇2 − k2

0

)
p̂ (x, ω) = ŝ (x, ω) , (5.5)

with k0 = ω/c0 being the wavenumber and ω the radian frequency. Analogously, replacing
∂t by −iω in (5.2) yields the convected wave equation

−
[
∇2 + (k0 + iM · ∇)2] p̂ (x, ω) = ŝ (x, ω) , (5.6)

with i =
√
−1. We identify, for subsequent sections, the Helmholtz and convected

Helmholtz differential operators as

LH :=
(
−∇2 − k2

0

)
(5.7)

LCH := −
[
∇2 + (k0 + iM · ∇)2] . (5.8)
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Figure 5.3: Equations framework

Note that, disregarding boundary condition contributions as it is common practice in the
present numerical context, both operators are selfadjoint i.e.,

LH
† = LH, LCH

† = LCH. (5.9)

As for (5.1)-(5.2), equations (5.5)-(5.6) can also be related but now via a full Lorentz
transformation (also known as a Prandtl-Glauert transformation in the aerodynamic
context). This offers a first possibility to solve the convected wave equation by first
converting it in the more simple Helmholtz equation, then solving for it and finally
reverting to the original variables (see Fig. 5.3 for a schematic representation of the
relations among all equations (5.1)-(5.2)-(5.5)-(5.6)). The full Lorentz transformation
relating (5.5)-(5.6) involves a rotation plus a boost in the x-direction. The idea is to
first rotate the coordinates so that the Mach vector M has only an x-component in the
new coordinate-system, x′ , and then to dilate them together with an appropriate change
of variables to obtain a Helmholtz equation in a second coordinate-system x′′. The two
changes will be briefly and independently presented for clarity and given in a compact
form at the end.

Rotation

Let us denote by R the rotation matrix that transforms the Mach number vector M so
that it only has x-component in the new coordinate-system x′, i.e., M ′ = RM with
M ′ = (M, 0, 0)⊤, or in components




M
0
0




′

=




Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz






Mx

My

Mz


 . (5.10)
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If we apply the change of coordinate-system

x′ = Rx ⇔ x′i = Rijxj ∀i, j = 1 ÷ d (5.11)

to the convected Helmholtz equation, (5.6), and take into account thatR is an orthogonal
matrix, (i.e., R−1 = R⊤) so that

RR⊤ = I ⇔ RijRik = δjk, (5.12)

it follows that the spatial derivatives transform as

∂i = ∂ix
′
k∂

′
k = Rki∂

′
k. (5.13)

Taking into account these results, it is quite straightforward to obtain (5.6) in the new
coordinates

−
[
∇′2 + (k0 + iM∂′x)

2
]
p̂ (x′, ω)

= −
(
∇′2 + k2

0 + 2iMk0∂
′
x −M2∂′2xx

)
p̂ (x′, ω) = ŝ

(
R⊤x′, ω

)
. (5.14)

Boost in the x-direction

We now perform a boost in the x-direction to (5.14) consisting in taking x′′ = Dx′ with
D being the diagonal matrix D = diag (β−1, 1, 1) (it has inverse D−1 = diag (β, 1, 1))
and β being defined as usual by β :=

√
1 −M2. We also take k′′0 = β−1k0 and

p̂′′ (x′′, k′′0) = p̂ (x′, k0) exp (ik′′0Mx′′). Again, after some straightforward algebra we can
obtain an expression for (5.14) in the new coordinates x′′:

(
∇′′2 + k′′20

)
p̂′′ (x′′, ω) = e(ik′′

0
Mx′′)ŝ

(
R⊤D−1x′′, βk′′0

)
. (5.15)

Full Lorentz transformation

From the previous results it should be noted that

• Equation (5.15) is a Helmholtz equation with a source term modified by an
exponential factor. As the source term is a known input quantity for the problem,
it will have to be expressed in terms of the new coordinates x′′ to solve (5.15).

• The full Lorentz transformation can be set in a compact form as

x′′ = DRx, k′′0 = β−1k0

p̂′′ (x′′, k′′0ω) = p̂ (Rx, ω) exp
[
iβ−1k0 (RM) · (DRx)

]
. (5.16)
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5.2.3 Boundary conditions for the convected Helmholtz problem

and strong formulation

In order to solve the Helmholtz and convected Helmholtz equations in a given domain we
have to complement them with appropriate boundary conditions. Let us first consider the
problem of finding p̂ : Ωac 7→ C for the Helmholtz equation, (5.5), in a domain Ωac ⊂ Rd

with smooth boundary ∂Ωac = ΓD ∪ ΓN ∪ Γ∞ such that

−
(
∇2 + k2

0

)
p̂ (x, ω) = ŝ (x, ω) in Ωac (5.17)

p̂ (x, ω) = p̂D (x, ω) on ΓD (5.18)

∇p̂ (x, ω) ·n = ĝ (x, ω) on ΓN (5.19)

∇p̂ (x, ω) ·n = ik0p̂ on Γ∞. (5.20)

In (5.19), (5.20) n represents the normal respectively pointing outwards of ΓN and Γ∞,
ĝ : ΓN 7→ C, represents data prescribed on ΓN and (5.20) represents the Sommerfeld
radiation condition (see section 3.2.3, equation (3.10)).

Let us now find the appropriate boundary conditions for the convected Helmholtz
equation. According to (5.17)-(5.20), we can consider the convected problem in the
x′′ coordinate system, i.e. we aim at solving (5.15) in a computational domain Ω′′

ac.
Considering Dirichlet, Neumann and Sommerfeld conditions we are left with the strong
or differential form of the Helmholtz problem: find the acoustic pressure p̂′′ : Ω′′

ac 7→ C ,
being Ω′′

ac ⊂ Rd a bounded domain with smooth boundary ∂Ω′′
ac = Γ′′

D ∪ Γ′′
N ∪ Γ′′

∞, such
that

(
∇′′2 + k′′20

)
p̂′′ (x′′, ω) = e(ik′′

0
Mx′′)ŝ

(
R⊤D−1x′′, βk′′0

)
in Ω′′

ac (5.21)

p̂′′ (x′′, ω) = p̂′′D
(
R⊤D−1x′′, βk′′0

)
on Γ′′

D (5.22)

∇′′p̂′′ (x, ω) · n = ĝ
(
R⊤D−1x′′, βk′′0

)
on Γ′′

N (5.23)

∇′′p̂′′ (x, ω) · n = ik0p̂
′′ (x, ω) on Γ′′

∞. (5.24)

As previously mentioned, solving (5.21) and reverting to the original coordinate-system
and variables is a suitable option to find the solution of the convected Helmholtz equation.
However, if we are interested in directly solving this equation we will need appropriate
boundary conditions for it. These conditions can be found by reverting the Helmholtz
boundary conditions in (5.22)-(5.23)-(5.24) to the original variables and coordinate system
through the Lorentz transformation in (5.16). This yields the following results:

Sommerfeld’s radiation condition

We start from the Sommerfeld’s radiation condition in the x′′ coordinate system, (5.24),
and revert the x-boost by substituting

x′′ = Dx′, (5.25)

k′′0 = β−1k0, (5.26)

p̂′′ (x′′, k′′0) = p̂ (x′, k0) exp (ik′′0Mx′′) , (5.27)
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in this equation. This yields
(
β−1n′

xβ∂
′
x + n′

y∂
′
y + n′

z∂
′
z

)(
p̂ (x′, k0) e

ik0Mβ−2x′

)

= (n′ · ∇′)
(
p̂ (x′, k0) e

ik0Mβ−2x′

)
= iβ−1k0p̂ (x′, k0) e

ik0Mβ−2x′

, (5.28)

from which it follows

n′ ·
[
∇′p̂+

(
ik0Mβ−2p̂, 0, 0

) ]
= iβ−1p̂, (5.29)

and then

n′ · ∇′p̂ = ik0β
−1
[
1 −Mβ−1

(
n′ ·M ′

) ]
. (5.30)

with M̄ being the normalised Mach number vector, M̄ = (1/M)M (in this case in the
x′ coordinate system).

We can next revert the rotation to finally obtain the Sommerfeld condition for the
convected Helmholtz equation in the x coordinate system. Doing so in (5.30) and using
the orthogonality of the rotation matrix yields

RjlnlRjm∂mp̂ = ik0β
−1
[
1 −Mβ−1

(
RklnlRkmMm

) ]
, (5.31)

that becomes

∇p̂ (x, ω) · n = ik0αS p̂ (x, ω) , (5.32)

αS := β−1
[
1 −Mβ−1

(
n · M̄

)]
. (5.33)

Neumann boundary condition

The Neumann boundary condition for the convected Helmholtz equation can be found
proceeding in an analogous way to what has been done for the Sommerfeld condition so
details will not be reproduced. The condition is given by

∇p̂ (x, ω) · n = −ik0αN p̂ (x, ω) + ĝ (x, k0) (5.34)

αN := β−2
(
n · M̄

)
= β−1 − αS. (5.35)

Note that, as expected αS = 1, αN = 0 for M = 0.

Taking into account (5.32)-(5.35), the strong formulation for the convected Helmholtz
equation problem can be written as: find the acoustic pressure p̂ : Ωac 7→ C , being
Ωac ⊂ Rd a bounded domain with smooth boundary ∂Ωac = ΓD ∪ ΓN ∪ Γ∞, such that

−
[
∇2 + (k0 + iM · ∇)2] p̂ (x, ω) = ŝ (x, ω) in Ωac (5.36)

p̂ (x, ω) = p̂D (x, ω) on ΓD (5.37)

∇p̂ (x, ω) · n = ik0αS p̂ on Γ∞ (5.38)

∇p̂ (x, ω) · n = −ik0αN p̂ (x, ω) + ĝ (x, k0) on ΓN . (5.39)
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5.3 Convected Helmholtz equation as a CDR equation

It will be next shown that the Helmholtz and convected Helmholtz equations correspond
to particular cases of the more general Convection-Diffusion-Reaction (CDR) equation.
Hence, stabilised numerical methods developed for this equation could in principle be
applied to the former [39]. The scalar CDR equation is given by

∂i (aiu) − ∂i (kij∂ju) + su = f in Ω, (5.40)

with u ∈ C and f ∈ C respectively being the scalar unknown and the scalar force term, ai

the components of the convection velocity vector, kij the diffusion parameters and s the
reaction term. (5.40) is to be completed with appropriate Dirichlet, Neumann or mixed
boundary conditions on ∂Ω for a given problem.

The Helmholtz equation, (5.21), corresponds to (5.40) with

ai = 0 ∀i, kij = δij , s = −k′′20 , (5.41)

and with δij standing for the Kronecker delta. In order to write the convected Helmholtz
equation (5.36) as a scalar CDR equation we expand the squared term in the convected
Helmholtz differential operator (5.8)

LCH = −
[
∇2 + (k0 + iM · ∇)2] = −∇2 − k2

0 − 2ik0M · ∇ + (M · ∇) (M · ∇) , (5.42)

and take into account that (remember M is constant)

∇2 = ∇ · (I · ∇) , (5.43)

2ik0M · ∇ = ∇ · (2ik0M) , (5.44)

(M · ∇) (M · ∇) = Mi∂iMj∂j = ∇ · (M ⊗M) . (5.45)

We then arrive at the following expression for (5.6)

−∇ · (2ik0M p̂) −∇ ·
{[
I − (M ⊗M)

]
· ∇p̂

}
− k2

0p̂ = ŝ. (5.46)

Equation (5.46) corresponds to equation (5.40) with the following identifications for the
convective velocity, dissipative and production terms

ai = −2ik0Mi, kij = δij −MiMj , s = −k2
0 . (5.47)

If we split the acoustic pressure into its real and imaginary parts, p̂ = p̂Re + ip̂Im,
a CDR real system of two unknowns corresponding to the vector counterpart of (5.40)
can be obtained for the Helmholtz and convected Helmholtz equations. These systems
are often more practical for computational implementations and will be next given for
completeness.

The vectorial CDR equation is written as

∂i (Aiu) − ∂i (Kij∂ju) + Su = f in Ω (5.48)
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where now u and f are vectors of nunk components and Ai, Kij and S respectively stand
for the nunk × nunk convection, diffusion and reaction matrices, with i, j = 1 ÷ d.

The Helmholtz equation, (5.21), can be split using p̂ = p̂Re + ip̂Im as the system

−
[(

∂′′2xx 0
0 ∂′′2xx

)
+

(
∂′′2yy 0
0 ∂′′2yy

)
+

(
∂′′2zz 0
0 ∂′′2zz

)
+

(
k′′20 0
0 k′′20

)](
p̂′′Re

p̂′′Im

)

=

(
cos (Mk′′0x

′′) − sin (Mk′′0x
′′)

sin (Mk′′0x
′′) cos (Mk′′0x

′′)

)(
ŝ′′Re

ŝ′′Im

)
in Ω′′

ac (5.49)

with boundary conditions (5.22)-(5.24) transformed written as

(
p̂′′Re

p̂′′Im

)
=

(
p̂′′DRe

p̂′′DIm

)
on Γ′′

D (5.50)

(
∂np̂

′′
Re

∂np̂
′′
Im

)
=

(
ĝ′′DRe

ĝ′′DIm

)
on Γ′′

N (5.51)

(
∂np̂

′′
Re

∂np̂
′′
Im

)
=

(
0 −k′′0
k′′0 0

)(
ĝ′′Re

ĝ′′Im

)
on Γ′′

∞. (5.52)

(5.49) corresponds to (5.48) taking

Ai = 0, Kij = Iδij , S = −k′′20 I . (5.53)

Similarly, for the convected Helmholtz equation, (5.36)-(5.39), we obtain

−
(
∂i 0
0 ∂i

)(
0 2k0Mi

2k0Mi 0

)(
p̂Re

p̂Im

)

−
(
∂i 0
0 ∂i

)[(
δij −MiMj MiMj

MiMj δij −MiMj

)(
∂j 0
0 ∂j

)(
p̂Re

p̂Im

)]

−
(
k2

0 0
0 k2

0

)(
p̂Re

p̂Im

)
=

(
ŝRe

ŝIm

)
in Ωac (5.54)

with boundary conditions
(

p̂Re

p̂Im

)
=

(
p̂DRe

p̂DIm

)
on ΓD, (5.55)

(
∂np̂Re

∂np̂Im

)
=

(
0 k0αN

−k0αN 0

)(
p̂Re

p̂Im

)
+

(
ĝRe

ĝIm

)
on ΓN , (5.56)
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(
∂np̂Re

∂np̂Im

)
=

(
0 −k0αS

k0αS 0

)(
p̂Re

p̂Im

)
on Γ∞. (5.57)

Equation (5.54) is a CDR system with

Ai =

(
0 2k0Mi

2k0Mi 0

)
, Kij =

(
δij −MiMj MiMj

MiMj δij −MiMj

)
, S = −k2

0I .

(5.58)

5.4 Numerical approximation using the Galerkin FEM

5.4.1 Continuous weak forms

As already stated in section 3.3.2, in order to solve the differential Helmholtz and
convected Helmholtz equations by means of a finite element method we first have to obtain
their continuous weak forms. This is done as usual multiplying (5.17) by a test function
and integrating over the computational domain Ωac. Following the notation introduced
in sections 3.3.1 and 3.3.2, the weak problem for the inhomogeneous Helmholtz equation
in (5.17) with boundary conditions given by (5.18)-(5.20) can be stated as: find p̂ ∈ W
such that

(∇p̂,∇w) − k2
0 (p̂, w) − ik0 (p̂, w)Γ∞

= 〈ŝ, w〉 + (ĝ, w)ΓN
(5.59)

for all w ∈ W0. Let us remind that the parenthesis with no subscript in (5.59) stand
for the scalar product in L2 (Ωac) and that the scalar products in the equation involve
the complex conjugate of the test function, given that the pressure is a complex function.
The brackets stand for the duality pair between H1

0 (Ωac) and H−1 (Ωac). On the other
hand, we have considered ĝ in L2 (ΓN).

Similarly, the weak problem for the convected Helmholtz equation, (5.36), with
boundary conditions given by (5.37)-(5.39) can be formulated as: find p̂ ∈ W such that

−2ik0 (M · ∇p̂,∇w) + ([I −M ⊗M ]∇p̂,∇w) − k2
0 (p̂, w)

−ik0αS (p̂, w)Γ∞

+ ik0αN (p̂, w)ΓN
= 〈ŝ, w〉 + (ĝ, w)ΓN

(5.60)

for all w ∈ W0. Use of the convected Helmholtz equation in the form of (5.46) has been
made in this expression.

5.4.2 Discrete weak forms

The discrete weak form corresponding to the Galerkin finite element approximation of
(5.59) can be stated as follows: given a finite element partition of Ωac (see Chapter 3)
with ne elements and np nodes, and the finite dimensional subspaces Wh, Wh,0 ⊂ W, find
p̂h ∈ Wh such that

(∇p̂h,∇wh) − k2
0 (p̂h, wh) − ik0 (p̂h, wh)Γ∞

= 〈ŝh, wh〉 + (ĝ, wh)ΓN
(5.61)
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for all wh ∈ Wh,0. In (5.61) p̂h will be of the type

p̂h (x) =

np∑

a=1

Na
p (x) P̂ a (5.62)

with Na
p (x) being the acoustic pressure shape functions and P̂ a its nodal values.

Let us denote by ‖·‖ the norm in L2 (Ωac). If we take wh = p̂h in (5.61) and ignore
the boundary terms in the sesquilinear form, we are left with the inequality

‖∇p̂h‖2 − k2
0 ‖p̂h‖2 ≤ ‖p̂h‖ ‖ŝh‖ , (5.63)

which states the fact that the discrete weak form (the same follows for the continuous
one) may become non positive definite for large wavenumbers. This may lead to the
appearance of stability problems and, consequently, to the necessity of using some
stabilising techniques to solve the weak form of the Helmholtz equation.

On the other hand, the Galerkin finite element approximation of the convected
Helmholtz equation weak form, (5.60), can be stated as: find p̂h ∈ Wh such that

−2ik0 (M · ∇p̂h,∇wh) + ([I −M ⊗M ]∇p̂h,∇wh) − k2
0 (p̂h, wh)

−ik0αS (p̂h, wh)Γ∞

+ ik0αN (p̂h, wh)ΓN
= 〈ŝh, wh〉 + (ĝ, wh)ΓN

(5.64)

for all wh ∈ Wh,0. If we now set wh = p̂h and ignore the boundary terms, it follows the
inequality

‖∇p̂h‖2 − ‖M · ∇p̂h‖2 − k2
0 ‖p̂h‖2 ≤ ‖p̂h‖ ‖ŝh‖ , (5.65)

which states that there is no control on the convective term and that analogously to (5.63),
the weak form can be non positive definite for large wave numbers (remember that M < 1
for our purposes). Hence, stability problems may also be expected for the Galerkin finite
element solution of the convected Helmholtz equation.

5.4.3 Well-posedness and convergence theorems

In the previous sections we have presented a general mathematical framework for the
Helmholtz and convected Helmholtz equations, showing that they correspond to particular
cases of the more general CDR (Convection-Diffusion-Reaction) systems. We have shown
how these equations can be related via some variable transformations and we have found
appropriate boundary conditions for them. In order to solve the equations using finite
element methods, we have presented their variational or weak continuous forms in the
last section, as well as their Galerkin discrete counterparts. The problems arising in
the numerical solution of the latter have been also insinuated, as earlier done in the
introduction of the chapter.

In this and next section we precisely aim at gaining some insight on the nature of the
numerical errors appearing in the Galerkin finite element solution of the Helmholtz and
convected Helmholtz equations. To do so we will first review some general theorems that
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assess under which conditions a weak problem is well-posed or not. We remind that a
boundary value problem is said to be well-posed if, for a given set of data, the solution
exists, is unique and it is stable (i.e., it is bounded by the data). We will also review some
convergence theorems that establish error estimates for the finite element approximations
of weak problems.

In the preceding chapters, a detailed explanation to justify the appearance of
instabilities in the numerical solution of the Navier-Stokes equations was not provided.
However, we have considered worthwhile to present such information for the Helmholtz
and convected Helmholtz equation, given that the final goal of this chapter precisely
consists in developing a a stabilisation procedure to mitigate them. In the presentation
we have closely followed the main lines in [163] although making use of some
particularisations. On the other hand, we note that bold characters will be used for
the variables in the following theorems, accounting for the fact that the complex pressure
field might be represented in vector notation.

Well-posedness of positive definite forms

A sesquilinear form a : V × V 7→ C, with V being a Hilbert space, is said to be V-elliptic
or positive definite if exists K > 0 such that

K ‖u‖2
V ≤ a (u,u)

for all u ∈ V.
The well-posedness (existence, uniqueness and stability) of positive definite weak

forms is established by the Lax-Milgram theorem.

Theorem 5.1 (Lax-Milgram) Let us consider the abstract variational problem of
finding u ∈ V such that

a (u,w) = l (w) ∀w ∈ V, (5.66)

where V is a Hilbert space (in fact it suffices V separable), a : V×V 7→ C, is a sesquilinear
form and l : V 7→ C is an antilinear functional. The solution to problem (5.66) exists and
is unique if the following conditions fulfill:

a) a (u,w) is continuous:

∃ Na > 0 | a (u,w) ≤ Na ‖u‖V ‖w‖V ∀u,w ∈ V

b) l (w) is continuous:

∃ Nl > 0 | l (w) ≤ Nl ‖w‖V ∀w ∈ V

c) a (u,w) is V-elliptic:

∃ K > 0 | K ‖u‖2
V ≤ a (u,u) ∀u ∈ V (5.67)
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Stability follows straightforwardly from conditions b) and c). We can see that

‖u‖V ≤ Nl

K
(5.68)

or alternatively, for l (w) = 〈s,w〉,

‖u‖V ≤ 1

K
‖s‖V ′

with V ′ being the dual space of V. Hence, the Lax-Milgram theorem effectively guarantees
well-posedness of the variational problem (5.66).

An important property of positive definite forms is that V-ellipticity is inherited by
Galerkin discrete weak forms, i.e., if the continuous weak forms of the Helmholtz and
convected Helmholtz equations, (5.59)-(5.60), wereH1-elliptic, their discrete counterparts,
(5.61),(5.64), would be alsoH1-elliptic. Unfortunately, H1-ellipticity of weak forms (5.59)-
(5.60) is only achieved at very low wave numbers. Hence, we cannot make use of the
Lax-Milgram theorem to ensure well-posedness for large wave numbers and an alternative
theorem dealing with indefinite weak forms is required in this case. On the other hand,
note that theorem 5.1 only applies to forms with both arguments belonging to the same
space.

Well-posedness of indefinite forms

A generalised form of the Lax-Milgram theorem that establishes under which conditions
a variational problem with an indefinite form can be well-posed is given by the Babuška
theorem.

Theorem 5.2 (Babuška) Let us consider the abstract variational problem of finding
u ∈ V such that

a (u,w) = l (w) ∀w ∈ W, (5.69)

where V,W are Hilbert spaces (it suffices V,W separables), a : V×W 7→ C is a sesquilinear
form and l : W 7→ C is an antilinear functional. The solution to problem (5.67) exists
and is unique if the following conditions fulfill:

a) a (u,w) is continuous:

∃ Na > 0 | a (u,w) ≤ Na ‖u‖V ‖w‖W ∀u ∈ V,w ∈ W

b) l (w) is continuous:

∃ Nl > 0 | l (w) ≤ Nl ‖w‖W ∀w ∈ W
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c) inf-sup condition1:

∃ β > 0 | β ≤ inf
u∈V

sup
w∈W

a (u,u)

‖u‖V ‖w‖W
u,w 6= 0. (5.70)

Note again that stability directly follows from the above conditions b) and c)

‖u‖V ≤ Nl

β
(5.71)

and that, for l (w) = 〈s,w〉
‖u‖V ≤ 1

β
‖s‖W ′

with W ′ being the dual space of W. Hence, the Babuška theorem ensures well-posedness
of the variational problem (5.69).

It should be remarked that, contrary to ellipticity, the inf-sup condition does not
carry over from continuous to discrete spaces Vh ⊂ V. This is so because the infimum in
the inf-sup condition cannot decrease if taken on a subspace Vh. Consequently, a value
for the inf-sup constant, β, can be found that may be suitable for the continuous weak
forms (5.59)-(5.60) but that it is not appropriate for the discrete weak forms (5.61),(5.64).
Hence a specific βh is needed for each particular discretisation.

One could compare the V-ellipticity constant, K, with the inf-sup constant, β, by
taking V = W in the Babuška theorem [163]. Taking into account that K is given by

K = inf
u∈V

a (u,u)

‖u‖2 ,

we see that the infimum is taken also over the second argument, whereas in the inf-
sup condition the supremum is taken over the second argument. Hence, it will follow
that K ≤ β and it could happen that K = 0 but still β > 0. This is in fact the
situation for the Helmholtz equation for large wave numbers. The weak form is non-
positive definite but satisfies the inf-sup condition. Actually, it can be shown for one-
dimensional Helmholtz problems that the inf-sup constant depends on k as β = O (k−1).
This guarantees existence and uniqueness but from the stability bounds it follows that
‖u‖V ≤ NlO (k). For large values of k the stability obviously deteriorates and this is at
the origin of the so-called pollution error to be defined in section 5.4.4. On the other
hand, we advance that the ASGS stabilised finite element method that will be presented
in section 5.5 precisely aims at modifying the discrete weak forms, (5.61), (5.64), so that
the resulting ones become unconditionally stable, circumventing the necessity to fulfill the
inf-sup condition.

1This condition is also known as LBB condition after Ladyzhenskaya-Babuška-Brezzi.
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Let us introduce now the concept of V-coercivity. Given a bounded domain, Ω, and
the Hilbert space H1 (Ω), it will be said that the sesquilinear form a : H1 × H1 7→ C is
H1-coercive if it satisfies the Gårding inequality

KG ‖u‖2
H1(Ω) ≤

∣∣∣a (u,u) + C ‖u‖2
L2(Ω)

∣∣∣ ∀u ∈ H1 (Ω) (5.72)

withKG, C positive constants. Note that this condition can be viewed as theH1-ellipticity
of the modified sesquilinear form aM (u,v) := a (u,v) + C (u,v).

The Helmholtz equation does in general satisfy the Gårding inequality (see [163]
for details). Satisfying H1-coercivity is important due to a convergence theorem to be
presented below, which, roughly speaking, ensures convergence of the Galerkin FEM
solution at least for fine enough meshes.

Convergence of positive definite forms

Convergence of the Galerkin finite element solution of positive definite problems is
established by Céa’s Lemma, which states as follows

Theorem 5.3 (Céa’s Lemma) Let us consider the abstract discrete variational problem
of finding uh ∈ Vh ⊂ V such that

a (uh,wh) = l (wh) ∀wh ∈ Vh. (5.73)

Let us assume that the weak form satisfies the assumptions of the Lax-Milgram theorem
and respectively denote by u and uh the exact and approximated solutions. Then the error
u− uh satisfies

‖u− uh‖V ≤ Na

K
inf

wh∈Vh

‖u−wh‖V (5.74)

with Na and K being the continuity and V-ellipticity constants.

Convergence of indefinite forms

Céa’s lemma can be generalised for the case of indefinite forms by means of the following
theorem.

Theorem 5.4 Let us consider the abstract discrete variational problem of finding uh ∈
Vh ⊂ V such that

a (uh,wh) = l (wh) ∀wh ∈ Wh. (5.75)

Let us assume that the weak form satisfies the assumptions of the Babuška theorem and
let us denote by u and uh the exact and approximated solutions. Then the error u− uh

satisfies the estimate

‖u− uh‖V ≤
(

1 +
Na

βh

)
inf

wh∈Vh

‖u−wh‖V (5.76)

with Na and βh being the continuity and discrete inf-sup constants.
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From the error estimates in the above theorems, (5.74), (5.76), it follows that the
convergence of any FEM solution to problems (5.73), (5.75) is accounted for two factors,
namely:

• Approximability : The factor infwh∈Vh
‖u−wh‖V characterises the approximability

of the exact solution in the discrete space Vh spanned by the FEM shape functions.
We can define the best approximation or optimal approximation of the exact solution
u in Vh as [5]:

uh
ba ≡ uh

opt := arg inf
wh∈Vh

‖u−wh‖V (5.77)

and the error of the best approximation as

eh
ba ≡ eh

opt :=
∥∥u− uh

opt

∥∥
V
. (5.78)

From a geometrical point of view, eh
opt represents the minimum distance between the

exact solution u ∈ V and the subspace Vh. The optimal error can be related to the
interpolation error found when approximating the exact solution with polynomials
of degree p. Given the p-th order interpolant of u, uI , and a characteristic measure
of the mesh element size, h, it follows that

‖u− uI‖Hs(Ω) ≤ Chm−s ‖u‖Hm(Ω) 0 ≤ s ≤ m. (5.79)

with m = p + 1. By definition, the optimal error is less or equal the interpolation
error so it will also satisfy inequality (5.79).

• Stability : The factors Na/K and 1+Na/βh in (5.74), (5.76) characterise the problem
stability. For positive definite problems Na/K is usually small and approximability
plays a predominant role in the convergence of the solution. As opposite, and in
what concerns the Helmholtz problem for large wave numbers (indefinite problem),
the discrete inf-sup constant, βh, has an O (k−1) dependence as the continuous inf-
sup constant, β. Consequently, 1 + Na/βh will have a large value and the error
estimate (5.76) will become very poor. In this situation stability will determine the
convergence behaviour.

Let us finally introduce a convergence theorem for weak forms satisfying the Gårding
inequality, (5.72).

Theorem 5.5 Consider the variational problem (5.66) with the sesquilinear form
a : H1 × H1 7→ C being H1-coercive (i.e., satisfying (5.72)). Consider in addition a
sequence of subspaces satisfying

V1
h ⊂ V2

h ⊂ · · · ⊂ VN
h ⊂ · · · ⊂ V (5.80)

as well as
inf

wh∈V
N
h

|||u−wh||| → 0, N → ∞ ∀u ∈ V (5.81)

with |||·||| standing for the energy norm |||u||| := aM (u,u)1/2, aM (u,v) := a (u,v) +
C (u,v). Then there exists a number N0 such that the discrete variational problem (5.73)
has unique solutions uN

h ∈ VN
h for all N ≥ N0 and

∥∥u− uN
h

∥∥
H1

→ 0 as N → ∞.
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It follows from theorem 5.5, that given a sequence of meshes with sizes {h} and
solutions {uh ∈ Vh} there exists a threshold mesh size, h0, such that for any h < h0 the
next error estimate holds

‖u− uh‖V ≤ C inf
wh∈Vh

‖u−wh‖V , ∀h < h0 (5.82)

with C being a constant independent of h. We say in this case that the error has a
quasioptimal convergence. The estimate (5.82) can also be written as

∥∥eh
∥∥
V
≤ C

∥∥eh
opt

∥∥
V
.

Well-posedness and convergence of the Helmholtz and convected Helmholtz
equations

We can summarise the situation for the Helmholtz equation given by the above well-
posedness and convergence theorems as follows. For low wave numbers the Helmholtz
variational problem (5.59) is well posed thus satisfying the conditions of the Lax-Milgram
theorem. Convergence of the Galerkin finite element solution will be optimal for the h-
version of the FEM, whenever the resolution is kept constant (number of nodal points
per wave length, see next section). Convergence will be controlled by the approximability
factor in Céa’s lemma.

For large wave numbers the situation is completely different. The weak form (5.59) is
no longer positive definite although an inf-sup constant, β, can be found so that existence
and uniqueness of the solution is ensured by the Babuška theorem. However, this constant
has an O (k−1) behaviour implying that the stability bound will depend on O (k), which is
very poor for large k (see (5.71)). The discrete βh also varies as O (k−1) so the convergence
error estimate (5.76) will be dominated by a rather unuseful large stability factor. For large
wave numbers, convergence will hence be driven by stability instead of by approximability.
In this situation, the FEM error will be larger than the optimal error, the difference being
known as the pollution error. Nevertheless, the Helmholtz weak form also satisfies the
Gårding inequality (5.72). Theorem 5.5 then guarantees that refining the mesh we will
achieve a threshold value, h0, beyond which convergence of the FEM solution will be
quasioptimal. It can then be seen that for the h-version of the FEM, the FEM solution
will present a rather intricate convergence pattern depending on the mesh size h. For
coarse meshes the solution will be dominated by the pollution error, while for fine enough
meshes quasioptimal convergence will be achieved.

In what concerns the convected Helmholtz equation, a very similar behaviour to
the one in the Helmholtz equation is expected to occur. This is so because we can
transform the convected Helmholtz equation into the Helmholtz one by means of the full
Lorentz transformation, (5.16). That the convected Helmholtz equation presents a similar
convergence pattern to the Helmholtz equation has been numerically checked in [83] for
the one dimensional case. The two dimensional case is more intricate due to the effects
of the mean flow and also presents pollution [84]. In the next section we will study the
pattern of convergence for the Helmholtz equation by means of some model problems.
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5.4.4 Pollution error and pattern of convergence

One dimensional model problem

In this section we will first make use of numerical simulations to analyse the behaviour of
the FEM solution of the following one dimensional model problem.

• Model problem 1: One dimensional Helmholtz equation

We consider the case of free propagation of a one dimensional plane wave, which
can be stated as: find the acoustic pressure p̂ : Ωac 7→ C, with Ωac = (0, 1), such
that

− d2
xxp̂− k2

0 p̂ = 0 in Ωac (5.83)

p̂ (0) = p̂ex (0) = 1 (5.84)

dxp̂ (1) − ik0p̂ (1) = g := dxp̂ex (1) − ik0p̂ex (1) (5.85)

where dx ≡ d/dx and p̂ex = exp (ik0x).

Dispersion and pollution

In the introduction we have mentioned the fact that, for large wave numbers, the FEM
discrete waves propagate with a discrete wave number, kh, which is different from the
continuous one, k. This phase lag due to the dispersive character of kh is at the origin of
the pollution error. We can easily see this following [57] and plotting e.g., the real part
of the exact, interpolant and Galerkin FEM solutions of model problem 1 for k0 = 10
(see Fig. 5.4a). Denoting by p̂I the interpolant of the exact acoustic pressure, p̂, the
interpolant error is defined as eint := ‖p̂− p̂I‖V , which is an upper bound to the best
approximation or optimal error. This error has a local character and it is sometimes
referred to as the local error. On the other hand and due to dispersion, the Galerkin
FEM solution can have an error, etot = ‖p̂− p̂h‖V , much larger than the interpolant one.
The difference between the FEM error and the interpolation error is what is called the
pollution error, i.e., epol = etot−eint and it is clear from Fig. 5.4a that this error is strongly
related to dispersion. The higher the dispersion is, the higher the pollution error will be.
In accordance with the results inferred from the well-posedness theorems of the previous
sections, we also observe that if the wave number is increased, the pollution error grows.
This can be seen in Fig. 5.4b where we have plotted the real part of the exact, interpolant
and Galerkin FEM solutions for k0 = 15. It is apparent that the phase lag is higher than
for the k0 = 10 case and consequently the pollution error will be also larger. Explicit
expressions can be found for the pollution error and for the phase lag dependence with
k0, for one-dimensional Helmholtz problems (see below, [163]). On the other hand, it
is important to note that unlike the interpolant error, the pollution error has a global
character.

In Fig. 5.5 we have plotted the dependence of the total and optimal errors in the H1-
seminorm with the mesh refinement (number of mesh elements). The difference between
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The total error is given by etot = p̂ − p̂h = eopt + epol. k0 = 10.
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Figure 5.4: Dispersion and pollution error.



162 CHAPTER 5. THE ACOUSTIC FIELD

Figure 5.5: Log-log graph of the total and optimal relative errors in the H1-seminorm for model
problem 1, with k0 = 50. Shaded area = pollution error. N = number of elements,
h = characteristic mesh element size.

both quantities has been defined as the pollution error (shaded area in the plot). The
results correspond to model problem 1 with k0 = 50. In what follows we will analyse the
behaviour of this graph (pattern of convergence) in some detail.

Pattern of convergence

Let us consider model problem 1 where we have discretised the computational domain
Ωac = (0, 1) with a mesh of characteristic element size h and number of elements N = h−1.
For a given wavelength, λ = 2π/k0, we can define the mesh resolution as the number
nres = λ/h = Nλ = 2π/ (k0h) = 2πN/k0. The limit of resolution corresponds to
two points per wavelength (nres = 2 ⇔ k0h = π) and in practical cases it is usually
recommended to take nres = 10. It seems quite obvious that nres (and hence k0h) should
be kept constant in the design of a mesh, for a given wave number k0. That is to say,
if we have solved a Helmholtz problem with nres = 10, and we want to solve the same
problem for the new wave number k′0 = 2k0, we will have to use a new finer mesh with
h′ = h/2 to keep the resolution constant.

In fact, it can be easily shown that the relative interpolation error, er,int :=
‖p̂− p̂I‖V / ‖p̂‖V , for an oscillatory solution is controlled by a term O (k0h)

α, with α = 1, 2,
respectively for the H1-seminorm and L2-norm [163]. Unfortunately, this is not the case
for the total or FEM solution error. We can observe this behaviour in Fig. 5.6 where we
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Figure 5.6: Log-log graph of the H1-seminorm of er,int (dashed lines) and er,Gal (cross dotted
lines) for k0 = {30, 50, 70}. Model problem 1.

have plotted the H1-seminorm errors of the interpolant and the Galerkin FEM solution
using linear shape functions, for wave numbers k0 = {25, 50, 100}. If one chooses a fixed
value for the product k0h (e.g., k0h = {0.25, 0.125} in Fig. 5.6), it can be checked that
er,int remains constant while er,Gal does not and increases for growing values of k0 (see
Fig. 5.6). On the other hand, it is clear from the figure that the higher k0 is, the higher
the pollution error becomes.

In what concerns the behaviour of the total or Galerkin FEM error, er,Gal, four clear
distinct intervals of convergence can be identified. Let us consider model problem 1 with
k0 = 30.

• First interval of convergence (N ≤ n0)
This case corresponds to using N mesh elements with N being smaller than the
threshold value of two point per wavelength (nres = 2). In our case k0 = 30 ⇒
λ ≈ 0.2 and n0 = k0/π ≈ 9.5. Hence if less than 9.5 elements are used, both, the
optimum relative error, er,opt, and the Galerkin FEM relative error, er,Gal, will be of
order 1, see Fig. 5.7a.

• Second interval of convergence (n0 ≤ N ≤ N0)
This second interval of convergence comprises from n0 to N0 = (k3

0/24)
1/2, see

Fig. 5.7b. The expression for N0 is found from heuristic arguments [164] and in
our example it takes the value ≈ 33.5. In this interval, er,opt in the H1-seminorm
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a) First interval N ≤ n0 b) Second interval n0 ≤ N ≤ N0

c) Third interval N0 ≤ N ≤ Ns d) Fourth interval N ≥ Ns

Figure 5.7: Convergence intervals for the H1-seminorm of er,int (dashed lines) and er,Gal (cross
dotted lines) for k0 = 30. Model problem 1.

decreases with a slope of −1 as predicted by (5.79) for linear elements. For the
recommended resolution of nres = 10, er,opt ≈ 10%. It can be shown as mentioned
above, that

eSH1

r,opt ≤ Copt
1 hk0 (5.86)

eL2

r,opt ≤ Copt
2 (hk0)

2 (5.87)

with Copt
1 , Copt

2 being constants. On the contrary the Galerkin FEM error, er,Gal,
oscillates with amplitudes larger than 100%. Hence, eventhough the Galerkin FEM
solution is well definied, it does not approximate at all the exact solution. The
Galerkin FEM solution is dominated in this second interval by the pollution error.

• Third interval of convergence (Preasymptotic range) (N0 ≤ N ≤ Ns)
The third interval, known as the preasymptotic range (see Fig. 5.7c), comprises
from N0 to Ns where Ns = k2/c, being c a theoretically small constant. In this
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interval the Galerkin FEM solution is still dominated by the pollution error. It can
be shown, for the H1-seminorm, that

‖p̂− p̂h‖SH1 ≤
(
1 + Ck2

0h
)

inf
wh∈Vh

‖p̂− wh‖H1 (5.88)

and that the Galerkin FEM relative error, er,Gal, satisfies

er,Gal ≤ Cfem
1 k0h+ Cfem

2 k3
0h

2, k0h < 1, (5.89)

with C, Cfem
1 , Cfem

2 constants. Comparing (5.89) with (5.86) we observe that the
second term in the r.h.s of (5.89) is the responsible for the pollution effect i.e., for
the deviation with respect to the interpolant error. For large values of k0 this term
dominates the error, which decays with a dependence N−2 (h2) towards the optimal
error, er,opt (that still decays with a slope of −1).

The preasymptotic range is the most interesting from a practical point of view,
because when solving engineering problems at large wave numbers it admits an
acceptable balance between the FEM solution error and the size of the mesh needed
to solve the problem.

• Fourth interval of convergence (Asymptotic range) (Ns ≤ N)
In this interval the pollution effect on the Galerkin FEM solution is negligible, see
Fig. 5.7d. Numerical experiments have shown that the constant c in the definition
of Ns must not be necessarily small and that it suffices that the condition k2

0h≪ 1
holds, for the Galerkin FEM solution to have a quasioptimal convergence (5.82).
From (5.89) it follows that

er,Gal ≤ k0h
(
Cfem

1 + Cfem
2 k2

0h
)
≈ Cfem

1 k0h, k2
0h≪ 1, (5.90)

so that the Galerkin FEM solution relative error, er,Gal, behaves like the optimal
relative error in (5.86). Hence, er,Gal will also decrease with a slope of −1 for
increasing N and the difference with er,opt will be due to the difference in the

constants appearing in (5.90) and (5.86), i.e. to log
(
Cfem

1 /Copt
1

)
.

Given that there is no pollution in the asymptotic range, it is clear that this one
is the ideal interval where to work. Unfortunately, the condition k2

0h ≪ 1 is very
restrictive and implies the use of very fine meshes for large wave numbers. A possible
solution to this situation is the use of stabilised finite element methods, which allow
to work in the preasymptotic range giving a solution that is very close to the optimal
one. This will be the task in section 5.5.

Pollution error definition

In view of the results in the above two subsections, a general definition for the pollution
error can be attempted (see [5, 163]).
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Definition 5.1 Consider a Helmholtz problem on a normed space V, with wave number
k0, exact solution p̂ 6= 0 ∈ V and finite element solution p̂h 6= 0 ∈ Vh ⊂ V. Suppose that
an estimate of the type

‖p̂− p̂h‖V
‖p̂‖V

≤ C (k0) inf
wh∈Vh

‖p̂− wh‖V
‖p̂‖V

, (5.91)

holds, which can also be written as

er,h ≤ C (k0) er,opt. (5.92)

Then, if the constant C (k0) has an expression of the type

C (k0) = C1 + C2k
β
0 (kα

0 h) (5.93)

with β > 0, α ≥ 0 and C1, C2 being constants independent of k0 and h, we say that the
finite element solution is polluted and the term C2k

β
0 (kα

0h) is called the pollution term.

Dispersion analysis in 1D

At the beginning of this section we have stated that the fact that the Galerkin FEM
solution is dispersive is at the origin of the pollution effect. For completeness, we will see
now by means of a very simple dispersion analysis that the discrete FEM wave effectively
propagates with a discrete wave number, kh

0 , that differs from the continuous one, k0.
The a-th equation of the tridiagonal system associated to the discrete weak form of

model problem 1, for nodes a− 1, a and a+ 1, is given by (see e.g. [119])

−P̂ a−1 + 2P̂ a − P̂ a+1 − 2αh
(
P̂ a−1 + 4P̂ a + P̂ a+1

)
= 0, αh :=

(k0h)
2

12
, (5.94)

where P̂ a = p̂h (xa) stands for the nodal value at node xa = ha and we have assumed
linear shape functions. From (5.94) we obtain the stencil

(
2αh + 1

)
P̂ a−1 + 2

(
4αh − 1

)
P̂ a −

(
2αh + 1

)
P̂ a+1 = 0. (5.95)

We can guess a solution Ua = ρa to (5.95). Substituting in (5.95) and dividing by ρa we
get (

2αh + 1
)
ρ2 + 2

(
4αh − 1

)
ρ−

(
2αh + 1

)
= 0, (5.96)

which for a propagating wave has the solution

ρ =
1 − 4αh +

√
12αh (αh − 1)

2αh + 1
. (5.97)

For αh > 1 we have a decaying wave, while for αh < 1 ⇔ k0h <
√

12 (two points per wave
length) we have an oscillating solution, which is the one we are interested in [119].
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If we demand that the discrete solution p̂h becomes exact at the nodes it follows

p̂h (xa) = P̂ a = p̂ (xa) ⇒ ρa = exp (ik0xa) = exp (ik0ha) = [exp (ik0a)]
a

⇒ ρ = exp (ik0h) = cos (k0h) + i sin (k0h) . (5.98)

Assuming a discrete wave number, kh
0 , such that ρ = cos

(
kh

0h
)

+ i sin
(
kh

0h
)
, it should

hold that Re
[(

1 − 4αh
)
/
(
2αh + 1

)]
= cos

(
kh

0h
)
. Consequently,

kh
0h = arccos

(
1 − 4αh

2αh + 1

)
≈ k0h− (k0h)

3

24
+ 3

(k0h)
5

640
+ . . . . . . ≤ k0h (5.99)

that implies

kh − k0 ≈
k3

0h
2

24
+ O

(
k5

0h
4
)
. (5.100)

Hence it is clear that contrary to the optimal and exact solutions, the Galerkin FEM
solution is dispersive. Consequently a phase lag appears between the exact wave solution
and the discrete one, see Fig. 5.4. Note also that the same dependence on kh and h has
been encountered for the phase lag than for the pollution error in (5.89).

Similar dispersion analysis to the one derived here can be performed for the Helmholtz
equation in two and three dimensions [89,287]. On the other hand, we remind again that
very close results to the ones described above for the one dimensional convected equation
can be found in [83].

Pattern of convergence for a two dimensional problem

We will end this section by having a look to the pattern of convergence of a two dimensional
Helmholtz problem. We advance that a very similar behaviour to the one encountered for
the one dimensional case will be observed.

Let us consider the following model problem:

• Model problem 2: Two dimensional Helmholtz equation

We consider the case of free propagation of a two dimensional plane wave, which
can be stated as: find the acoustic pressure p̂ : Ωac 7→ C, with Ωac = (0, 1) × (0, 1),
such that

−∇2p̂− k2
0 p̂ = 0 in Ωac (5.101)

∇p̂ · n = ik0p̂+ g on ∂Ωac. (5.102)

The wave number is given by k0 = (k0x, k0y) = k0 (cos θ, sin θ) and the boundary is
∂Ωac = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 with

Γ1 = [x, 0] , x ∈ [0, 1] (5.103)

Γ2 = [1, y] , y ∈ (0, 1] (5.104)

Γ3 = [x, 1] , x ∈ [0, 1) (5.105)

Γ4 = [0, y] , y ∈ (0, 1). (5.106)
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The data g in (5.102) has the values

g (x, y) = i (k0 − k0y) exp (ik0xx) on Γ1 (5.107)

g (x, y) = i (k0 + k0x) exp (ik0x + ik0yy) on Γ2 (5.108)

g (x, y) = i (k0 + k0y) exp (ik0xx+ ik0y) on Γ3 (5.109)

g (x, y) = i (k0 − k0x) exp (ik0yy) on Γ4. (5.110)

The exact solution to problem (5.101)-(5.110) is a plane wave propagating in the
direction of the wave number vector k0:

p̂ = exp (ik0xx+ ik0yy) . (5.111)

Let us solve problem (5.101)-(5.110) for various wavenumbers in a squared structured
mesh ofN×N elements (characteristic mesh size h = 1/N ) using bilinear shape functions.
In Fig. 5.8 the optimum relative error for a wave propagating in the θ = 45 direction,
and wavenumbers k0 = {5, 10, 50, 100} is plotted for increasing N . As expected, the
optimum relative error in the L2 norm, eL2

r,opt , decays with a slope of −2 for diminishing
h (increasing N). Instead, the optimum relative error in the H1-seminorm, eSH1

r,opt, decays
with a slope −1 for decreasing h. These behaviours are valid for k0h ≥ π, i.e., once the
resolution threshold of two elements per wavelength has been surpassed. If k0h ≤ π we
will have a 100% of optimum relative error as seen in Fig. 5.8 for k0 = 50, N < 15 and
k0 = 100, N < 30. It can also be observed that for a fixed h, the optimum relative error
increases with k0. Moreover, for k0h = const, eSH1

r,opt has the same value for all cases as
seen from the intersection of the horizontal lines, k0h = {0.1, 0.5}, with the eSH1

r,opt curves
in Fig. 5.8.

In Fig. 5.9 a comparison between the optimum relative error and the Galerkin-FEM
error is given in the H1-seminorm, for k0 = {10, 50}. The pollution error (difference
between both types of errors) can be clearly appreciated. As expected, this is larger for
k0 = 50 than for k0 = 10.

Let us concentrate now in the k0 = 50 case. Four convergence intervals can be
distinguished like in the one dimensional case. First, for N < 15 both relative errors
become 100% and consequently neither the Galerkin FEM solution nor the interpolant
approximate the exact solution of the problem. Second, for 15 < N < (k3

0/24)
1/2 ≈ 70

the Galerkin FEM relative error is clearly dominated by the pollution effect, while the
optimum relative error decays with a slope of −1. Third, for 70 < N < 2500 (N = 2500
comes from demanding k0h ≈ 1, i.e., N ≈ k2

0) we lay in the preasymptotic range. Although
the Galerkin FEM error is still influenced by the pollution effect, it rapidly decays with a
slope of −2. Fourth, the asymptotic range for k0 = 50 is not observed in Fig. 5.9 because
the simulation has a maximum of N = 200 elements. However, the asymptotic range
can be observed for the case k0 = 10 showing a −1 slope for both, the optimum and the
Galerkin FEM relative errors. The difference between the two error lines is due to the
difference in the logarithms of their corresponding bounding constants.
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Figure 5.8: Optimal relative errors in the L2 norm and the H1-seminorm for k0 = {5, 10, 50, 100}
and θ = 45. Model problem 2.

Figure 5.9: Optimal and Galerkin FEM relative errors in the L2-norm and the H1-seminorm
for k0 = {10, 50} and θ = 45. Model problem 2.
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Figure 5.10: Exact, interpolant and Galerkin FEM solution for k0 = 50, N = 40. Diagonal of
the Ωac domain in (5.101). Model problem 2.

In Fig. 5.10 we have plotted the exact solution, the interpolant and the Galerkin-FEM
solution for the diagonal of the computation domain ∂Ωac in (5.101) with k0 = 50, N = 40.
We can observe that while the interpolant and the exact solution have the same phase,
the Galerkin-FEM solution suffers from the pollution effect and becomes out of phase
due again to the fact that it propagates with a discrete, dispersive, wave number kh

0 . In
Fig. 5.11 a comparison between the Galerkin-FEM solution and the interpolant solution
for the cases k0 = {10, 50, 50} with N = {20, 20, 40} is given. The first case corresponds
to the preasymptotic range and the Galerkin-FEM solution resembles the interpolant
one. The second case lays in the second interval of convergence and the Galerkin-FEM
solution is clearly dominated by the pollution effect. As opposite, the interpolant solution
still recovers the oscillatory character of the exact solution. The third case still lays in the
second interval of convergence although it is closer to the preasymptotic range (N0 = 70
for the present problem). Although both solutions resemble the exact solution, their
relative errors are still high (see Figs. 5.9- 5.10).

From the above results, we can conclude that the FEM solution for the two
dimensional model problem 2 will essentially behave like the one dimensional one. Similar
conclusions can be derived for the two dimensional convected Helmholtz equation although
a more intricate behaviour is encountered due to the directional effects of the mean
flow [84].
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a) FEM solution k0 = 10, N = 20 b) Int solution k0 = 10, N = 20

c) FEM solution k0 = 50, N = 20 d) Int solution k0 = 50, N = 20

e) FEM solution k0 = 10, N = 40 f) Int solution k0 = 10, N = 40

Figure 5.11: Real part of Galerkin FEM and interpolant solutions for various combinations of
k0 and N . Model problem 2.
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5.5 Numerical approximation using an ASGS stabilised

FEM

5.5.1 Subgrid scale stabilisation

We have seen in the previous sections that the appearance of the pollution error in the
Galerkin FEM solution of the Helmholtz and convected Helmholtz equations is related
to the loss of stability of their associated weak forms. As mentioned in the introduction,
several stabilisation strategies have been developed to avoid this problem. The basic idea
of most stabilisation approaches is to modify the Galerkin discrete weak form with the
addition of some extra terms that allow to “circumvent” the inf-sup condition, so that
an unconditionally stable discretisation scheme is obtained. This is in fact the result of
applying the subgrid scale approach followed through all this thesis [150,154]. As shown in
Chapter 3 a modified equation is obtained for the large scales having better stabilisation
proprieties.

In this section we will focus on the two dimensional convected Helmholtz equation.
Results for the Helmholtz equation can be simply recovered by setting the Mach number
equal to zero (M = 0) whereas results for one dimensional cases can be obtained
suppressing one of the problem dimensions. The work developed below can be also found
in [106].

We remind from section 3.4.4 that the key idea of the SGS finite element approach
when applied to the convected Helmholtz equation (5.60) is to decompose the continuous
spaces W = Wh ⊕ W̃ , W0 = Wh,0 ⊕ W̃0, being W̃ and W̃0 any continuous spaces to
respectively complete Wh and W̃0 in W and W0. Then, any function in W can be split
as p̂ = p̂h + ˜̂p, p̂h representing the part of p̂ that can be captured with the finite element
mesh and ˜̂p the subscale or subgrid scale. Making the same decomposition for the test
function and substituting into (5.60), we obtain the following two equations respectively
governing the large scales and subscales behaviour

a (p̂h, wh) + a
(

˜̂p, wh

)
= l (wh) ∀wh ∈ Wh,0 (5.112)

a (p̂h, w̃) + a
(

˜̂p, w̃
)

= l (w̃) ∀w̃ ∈ W̃0 (5.113)

where a (·, ·) stands for the sesquilinear form (now written in components)

a (u, w) := −2ik0Mj (∂ju, w) + [δij −MiMj] (∂iu, ∂jw) − k2
0 (u, w)

− ik0αS (u, w)Γ∞

+ ik0αN (u, w)ΓN
(5.114)

and l (w) is the antilinear functional

l (w) = 〈ŝh, w〉 + (ĝ, w)ΓN
. (5.115)

The next goal consists in finding an approximate value for the subscales ˜̂p (i.e. an
approximate solution to (5.113)) and to substitute it into (5.112) to account for its effects
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on the large scales, resolvable by the finite element mesh. As explained in Chapter 3,
the various ways in how this can be done give place to different subgrid scale stabilising
methods.

If the algebraic subgrid scale (ASGS) approach is followed, it can be shown that the
large scale equation (5.112) is modified to (see e.g., [39])

a (p̂h, wh) +
∑

ne

(
−L†

CH (wh) , τSGS [LCH (p̂h) − ŝh]
)

Ωe

= l (wh) (5.116)

where LCH is the differential convected Helmholtz operator defined in (5.8) and τSGS

is a stabilisation parameter to be determined below. It is expected that the modified
sesquilinear form (5.116) together with an appropriate choice for the stabilisation
parameter τSGS will avoid some of the stability problems detected when solving the
convected Helmholtz equation [83, 84].

If instead of the ASGS method the GLS one is used, it can be shown that (5.116) is
modified to (see again [39])

a (p̂h, wh) +
∑

ne

(−LCH (wh) , τGLS [LCH (p̂h) − ŝh])Ωe
= l (wh) . (5.117)

Taking into account that the convected Helmholtz differential operator is selfadjoint (5.9),
it follows that both methods will yield the same results provided that the SGS stabilisation
parameter is identified with minus the GLS stabilisation parameter:

τSGS ≡ −τGLS . (5.118)

5.5.2 Stabilisation parameter from a dispersion analysis

In what follows, we will obtain τSGS for the convected Helmholtz equation in two
dimensions. A dispersion analysis will be performed considering a uniform mesh of element
size h× h and the use of bilinear elements (see [119,120,163,287]). Let us first explicitly
write the stabilised SGS sesquilinear form (5.116) for the two dimensional case without
considering the boundary terms, as we will be interested in results concerning interior
mesh nodes. This form is given by



174 CHAPTER 5. THE ACOUSTIC FIELD

Figure 5.12: Patch in a two-dimensional uniform mesh.

aSGS (p̂h, wh) = −2ik0Mx (∂xp̂h, wh)︸ ︷︷ ︸
Cx

−2ik0My (∂yp̂h, wh)︸ ︷︷ ︸
Cy

+
[
1 −M2

x

]
(∂xp̂h, ∂xwh)︸ ︷︷ ︸

Dxx

+
[
1 −M2

y

]
(∂yp̂h, ∂ywh)︸ ︷︷ ︸

Dyy

− 2MxMy (∂xp̂h, ∂ywh)︸ ︷︷ ︸
Dxy

−k2
0 (p̂h, wh)︸ ︷︷ ︸

S

+ τSGS4k2
0M

2
x

∑

nel

(∂xp̂h, ∂xwh)Ωel
+ τSGS4k2

0M
2
y

∑

nel

(∂yp̂h, ∂ywh)Ωel

+ τSGS8k2
0MxMy

∑

nel

(∂xp̂h, ∂ywh)Ωel
− τSGSk

4
0

∑

nel

(p̂h, wh)Ωel
(5.119)

where we have used the fact that (∇p̂h, wh) = − (∇wh, p̂h) for wh with support in the
interior of Ωac, and we have identified the terms Cx, Cy, Dxx, Dyy, Dxy and S to simplify
subsequent notation. The nodal unknowns for interior nodes corresponding to the patch
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in Fig. 5.12 can be represented by the 9-point difference star

[
P int

ab

]
:=




P̂ a−1,b+1 P̂ a,b+1 P̂ a+1,b+1

P̂ a−1,b P̂ a,b P̂ a+1,b

P̂ a−1,b−1 P̂ a,b−1 P̂ a+1,b−1



 . (5.120)

Analogously, when considering bilinear shape functions, the coefficients arising from
Cx, Cy, Dxx, Dyy, Dxy and S can be written in compact form for the 9-point difference
star in Fig. 5.12 as:

[
Cint

x,ab

]
:=

h

12




−1 0 1
−4 0 4
−1 0 1


 ,

[
Cint

y,ab

]
:=
[
Cint

x,ab

]⊤
(5.121)

[
Dint

xx,ab

]
:=

1

6




−1 2 −1
−4 8 −4
−1 2 −1



 ,
[
Dint

yy,ab

]
:=
[
Dint

xx,ab

]⊤
,
[
Dint

xy,ab

]
:=

1

4




1 0 −1
0 0 0
−1 0 1





(5.122)

[
Sint

ab

]
:=

h2

36




1 4 1
4 16 4
1 4 1


 . (5.123)

Taking into account the notation (5.120)-(5.123), the equation for the interior node
ab (with no force acting on it) of the algebraic linear system associated to the discrete
SGS weak problem can be written as

− 2ik0Mx

[
Cint

x,ab

]
:
[
P int

ab

]
− 2ik0My

[
Cint

y,ab

]
:
[
P int

ab

]

+
(
1 −M2

x

) [
Dint

xx,ab

]
:
[
P int

ab

]
+
(
1 −M2

y

) [
Dint

yy,ab

]
:
[
P int

ab

]

− 2MxMy

[
Dint

xy,ab

]
:
[
P int

ab

]
− k2

0

[
Sint

ab

]
:
[
P int

ab

]

+ τSGS4k2
0M

2
x

[
Dint

xx,ab

]
:
[
P int

ab

]
+ τSGS4k2

0M
2
y

[
Dint

yy,ab

]
:
[
P int

ab

]

+ τSGS8k2
0MxMy

[
Dint

xy,ab

]
:
[
P int

ab

]
− τSGSk

4
0

[
Sint

ab

]
:
[
P int

ab

]
= 0 (5.124)

where : stands for a double contraction. If we now assume a plane wave solution with an

effective wavenumber vector keff
0 =

(
keff

0x , keff
0y

)
(to be determined lately in this section)

so that at node mn
p̂mn = exp

[
i
(
keff

0x hm+ keff
0y hn

)]
(5.125)

and substitute this expression into (5.124), a dispersion relation is obtained from which
the following value for the stabilisation parameter τSGS can be derived by imposing that
the discrete equations are satisfied:

τSGS =
Anum +BnumMx + CnumMy +DnumM

2
x + EnumM

2
y + FnumMxMy

Aden +BdenMx + CdenMy +DdenM2
x + EdenM2

y + FdenMxMy
(5.126)
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with

Anum = −2

3

[
4 − cos

(
keff

0x h
)
− cos

(
keff

0y h
)
− 2 cos

(
keff

0x h
)

cos
(
keff

0y

)]

+
k2

0h
2

9

{[
2 + cos

(
keff

0x h
)] [

2 + cos
(
keff

0y h
)]}

(5.127)

Bnum = −2

3
k0h

[
sin
(
keff

0x h
)

cos
(
keff

0y h
)

+ 2 sin
(
keff

0x h
)]

(5.128)

Cnum = −2

3
k0h

[
sin
(
keff

0y h
)

cos
(
keff

0x h
)

+ 2 sin
(
keff

0y h
)]

(5.129)

Dnum =
2

3

{
2 − cos

(
keff

0x h
) [

2 + cos
(
keff

0y h
)]

+ cos
(
keff

0y h
)}

(5.130)

Enum =
2

3

{
2 − cos

(
keff

0y h
) [

2 + cos
(
keff

0x h
)]

+ cos
(
keff

0y h
)}

(5.131)

Fnum = 2 sin
(
keff

0x h
)

sin
(
keff

0y h
)

(5.132)

Aden = −k
4
0h

2

3

[
2 + cos

(
keff

0x h
)] [

2 + cos
(
keff

0y h
)]

(5.133)

Bden = 0 (5.134)

Cden = 0 (5.135)

Dden = 4k2
0Dnum (5.136)

Eden = 4k2
0Enum (5.137)

Fden = 4k2
0Fnum. (5.138)

It remains now to find the appropriate value for the effective wavenumber vector
in (5.127)-(5.138). This can be done in a quite straightforward manner by taking into
account the results from section 5.2.2. Our objective is to find the effective wavenumber
for a plane wave propagating at an arbitrary direction, say angle θ with the x-axis, in a
uniform flow characterised by a Mach vector M being at an angle ϕ with the x-axis (see
Fig. 5.13). All that we have to do is to revert the full Lorentz transformation (5.16) for
a plane wave

p̂′′ (x′′,k′′
0) = exp (ik′′

0 · x′′) . (5.139)

Hence, the plane wave propagating in the uniform medium will be given by

p̂′′ (x,k0) = exp
{
iβ−1 [Rk0 − k0RM ] · (DRx)

}
≡ exp

(
ikeff

0 · x
)
. (5.140)

Inserting the rotation matrix

R =

[
cosϕ − sinϕ
sinϕ cosϕ

]
(5.141)

in (5.140) we arrive to the following values for the components of the effective wavenumber
vector defined in the last equality of (5.140)

keff
0x = k0β

−2 [cos (θ − ϕ) cosϕ−Mx] − k0β
−1 sin (θ − ϕ) sinϕ (5.142)

keff
0y = k0β

−2 [cos (θ − ϕ) sinϕ+My] − k0β
−1 sin (θ − ϕ) cosϕ. (5.143)
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Figure 5.13: Scheme for a plane wave propagating with k0 in a uniform flow characterised by
M .

Note that keff
0 is nothing but k′′

0 expressed in the original coordinates and variables.
Expressions (5.142) and (5.143) are finally to be inserted in equations (5.127)-(5.138) to
find the appropriate value for the parameter τSGS.

Remarks

• If there is no convection i.e., M = (0, 0), it follows from (5.142)-(5.143) that

keff
0x = k0x, keff

0y = k0y, (5.144)

which inserted in (5.126) yields

τSGS =
Anum

Aden

= − 1

k2
0

+
6

k4
0h

2

[
4 − cos

(
keff

0x h
)
− cos

(
keff

0y h
)
− 2 cos

(
keff

0x h
)

cos
(
keff

0y

)]

[
2 + cos

(
keff

0x h
)] [

2 + cos
(
keff

0y h
)] .

(5.145)

As expected, (5.145) is nothing but minus the stabilisation parameter found from
the GLS stabilisation of the Helmholtz equation in [287].
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• The one dimensional counterpart of (5.141) can be obtained e.g., by setting My =
0 (ϕ = 0) and k0y = 0 (θ = 0◦) in it and by taking into account that the effective
wavenumber components (5.142) and (5.143) will become

keff
0x =

k0x

1 +M
≡ keff , keff

0y = 0. (5.146)

It then follows that τSGS is given by (we use M ≡Mx )

τSGS =
Anum +BnumM +DnumM

2

Aden +BdenM +DdenM2
, (5.147)

with

Anum = 2
[
cos
(
keff

0x h
)
− 1
]

+
k2

0h
2

3

[
2 + cos

(
keff

0x h
)]
, (5.148)

Bnum = −2k0h sin
(
keff

0x h
)
, (5.149)

Dnum = 2
[
1 − cos

(
keff

0x h
)]
, (5.150)

Aden = −k
4
0h

2

3

[
2 + cos

(
keff

0x h
)]
, (5.151)

Bden = 0, (5.152)

Dden = 4k2
0Dnum. (5.153)

• The non-convective one-dimensional case follows from setting M = 0 in (5.147) and
noting that now (5.146) yields keff

0 = k0. The stabilisation parameter then becomes

τSGS =
Anum

Aden
= − 1

k2
0

+
6

k4
0h

2

[1 − cos (k0h)]

[2 + cos (k0h)]
, (5.154)

which is nothing but minus the τGLS obtained for the one-dimensional Helmholtz
equation in [119, 120].

• It should be noted from the above formulation that while the flow orientation ϕ is
a given parameter, the plane wave orientation θ is an artifact of the analysis whose
"optimum" value may be unknown even after the problem is solved (see section
5.5.3).

In Fig. 5.14a we have plotted the dependence of −τSGS with k0h for various Mach
numbers in the one dimensional case, see (5.147). We can observe the role played by
the Doppler effect: for positive Mach numbers (downstream propagation) the effective
wavenumber keff

0 is smaller than k0 (see (5.146)) so that less stabilisation is required and
|τSGS| is smaller than for the Helmholtz case (M = 0, equation (5.154)). On the opposite,
for negative Mach numbers (upstream propagation) the effective wavenumber is larger
than k0 and consequently more stabilisation is required than for the Helmholtz case.



5.5. NUMERICAL APPROXIMATION USING AN ASGS STABILISED FEM 179

a) One dimensional −τSGS for various Mach numbers. Continuous line: M = 0,

dashed line: M = 0.08,−0.08, dotted-dashed line: M = 0.16,−0.16, dotted line: M = 0.24,−0.24.

b) −τSGS for various Mach numbers. Continuous line: Mρϕ = (0, 0◦),

dashed line: Mρϕ = (0.08, 30◦) , (0.08, 210◦), dotted-dashed line: Mρϕ = (0.16, 30◦) , (0.16, 210◦),

dotted line: Mρϕ = (0.24, 30◦) , (0.24, 210◦).

Figure 5.14: stabilisation parameter dependence with Mach number
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In Fig. 5.14b we have plotted the dependence of −τSGS with k0h for a plane wave
having a wavenumber vector in polar coordinates k0 = (k0, θ) = (24, 50◦) propagating
in uniform flows characterised by Mach number vectors M = (M,ϕ), with M =
{0.08, 0.16, 0.24} and ϕ = {30◦, 210◦}. τSGS has been computed from (5.126) and
compared with the non-convected stabilisation parameter given by (5.145). A very similar
behaviour to the one in Fig. 5.14a can be appreciated, |τSGS| now being smaller because
the projection of k0 onto M will be always smaller than for the one-dimensional case
(θ − ϕ = 0◦) yielding to a less significant influence of the convective term in (5.114).

5.5.3 Discussion

It is clear that due to the Doppler effect different mesh resolutions should be used to
properly capture an acoustic field containing upstream and downstream propagating
waves in a uniform mean flow. In [83] it was shown that even if we were able to
built a mesh keeping the number of points per wavelength constant (hence avoiding
the lack of resolution due to the Doppler effect), the pollution effects for the Galerkin
finite element solution of the convected wave equation still differ for upstream and
downstream propagation waves. It was also shown that a large degree of anisotropy
is detected when analysing the dispersion and amplitude error dependences on wave and
flow orientations [84]. As a conclusion, it was suggested that the use of mesh adaptative
strategies based, for instance, on a posteriori error estimations, may be useful to deal with
complex acoustic fields with waves propagating in many directions. Obviously, this can
be a good procedure although it requires either the performance of several simulations
(at least two) or a previous knowledge of the resulting acoustic field to build an adequate
mesh. However, the former might turn rather unpractical for large problems while the
latter rarely occurs.

An alternative (or complement) to the adaptative mesh strategy is the use of
stabilisation techniques. If we were able to compute the right amount of stabilisation
needed at each mesh zone to yield a good solution, it would not be necessary to modify
the mesh. In the previous sections we have presented a finite element method to do so.
Unfortunately, this stabilised formulation is not free of problems. Note that while the
flow orientation ϕ is a given quantity, the wavenumber direction θ will be unknown prior
to the solution of the problem. The resulting τSGS will consequently depend on the values
chosen for θ and the stabilisation effect may be significant for waves propagating in this
direction but much weaker or inexistent for other ones. As already mentioned in the
introduction, this is probably the main drawback of obtaining the stabilisation parameter
from a dispersion analysis in the GLS stabilisation for the Helmholtz equation [163,287].
However, it has been checked in [121, 287, 288] that some particular values for θ are able
to yield good results for a wide variety of problems with waves propagating in several
directions (recommended values are θ = {0◦, 22.5◦}). It is expected that this can also be
the case for the stabilisation parameter found in the present analysis. The results of the
examples in the next section seem to support this idea.
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5.6 Numerical examples

5.6.1 Free waves in one and two dimensions

We present in this section the effects of stabilisation on the previously analized model
problem 1 (equations (5.83)-(5.85)) and model problem 2 (equations (5.101)-(5.110)).

Concerning the former, the corresponding ASGS stabilised weak form is given by
(5.116) with one dimension suppressed, M1 = 0 and the stabilisation parameter τSGS in
(5.154). In Fig. 5.15 the effects of stabilisation can be clearly observed. We have plotted
the H1-seminorm error of the Galerkin FEM, interpolant and ASGS stabilised solutions.
It is apparent that once the resolution threshold of two points per wavelength (first interval
of convergence) has been surpassed, the ASGS solution (red line in the figure) decreases
with the same slope as the interpolant one and presents no pollution error.

The ASGS stabilised weak form for model problem 2 corresponds to weak form (5.116)
with M1 = 0 and τSGS given by (5.145). In Fig. 5.16 we present the values of −τSGSk

2
0

for increasing normalised wavenumbers k0h/π and for waves propagating in the directions
θ = {0◦, 22.5◦, 45◦}. In Fig. 5.16a, the results are shown for the range k0h/π ∈ [0, 1] that
corresponds to the second, preasymptotic and asymptotic convergence ranges (k0h ≈ π).
On the contrary, Fig. 5.16b shows the results for k0h/π up to 16 and we can observe
that −τSGSk

2
0 oscillates towards 1. In this case the ASGS method is not able to improve

the Galerkin solution and can even worsen it. Hence in order for the method to work
it is necessary that we are at least over the resolution threshold value. This point can
be also appreciated in Fig. 5.17 where we have plotted the H1-seminorm error of the
Galerkin FEM, interpolant and ASGS stabilised solutions for model problem 2. Again,
once surpassed the resolution threshold value, the ASGS solution presents no pollution
error.

In Fig. 5.18 analogous results to those of Fig. 5.10 are given together with the
corresponding result for the ASGS method. As seen the ASGS solution is in phase with the
exact and interpolant ones, as expected from the results in Fig. 5.17. Finally, in Fig. 5.19,
a comparison among the Galerkin-FEM, ASGS stabilised, Interpolant and Exact solutions
for a wave propagating in the direction θ = 45◦ with k0 = 50 is presented. A seen, the
ASGS solution considerably improves the Galerkin-FEM solution as insinuated by the
results in Fig. 5.17.

5.6.2 Two dimensional free wave propagating in a mean flow

As a second numerical example we consider the case of finding the acoustic pressure in
a computational domain, Ωac = (0, 1) × (0, 1), with inhomogeneous Dirichlet boundary
conditions on ∂Ωac and normal surface vector n pointing outwards of the domain (see
Fig. 5.13), such that
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Figure 5.15: H1-seminorm relative error for the Galerkin-FEM (cross-dotted), interpolant
(dashed) and ASGS stabilised (red continuous) solutions. Model problem 1.

a) 0 < k0h/π < 1 b) 0 < k0h/π < 16

Figure 5.16: −τSGSk2
0 from SGS vs normalised wavenumber k0h/π, for waves propagating in

the directions θ = {0◦, 22.5◦, 45◦}. Model problem 2.
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Figure 5.17: H1-seminorm relative error for: Galerkin-FEM (cross-continuous), interpolant
(circle-continuous) and ASGS stabilised (red continuous). Model problem 2.

Figure 5.18: Exact, ASGS stabilised, Interpolant and Galerkin FEM solution for k0 = 50, N =
40. Diagonal of the Ωac domain in (5.101). Model problem 2.
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a)Galerkin-FEM b) ASGS

c) Interpolant d) Exact

Figure 5.19: Comparison of the Galerkin-FEM, ASGS, Interpolant and exact solutions for a
wave propagating in the direction θ = 45◦ and k0 = 50. Model problem 2.

[
∇2 + (k0 + iM · ∇)2] p̂ = 0 in Ωac (5.155)

p̂ = exp
[
i
(
keff

0x x+ keff
0y y

)]
on ∂Ωac. (5.156)

The corresponding ASGS stabilised weak form for this problem is given by (5.116).
For the Mach number vector characterising the mean flow we take the values in polar
coordinatesM = (M,ϕ) = (0.6, 30◦) and for the wavenumber vector we use k0 = (k0, θ) =

(24, 50◦) to be inserted in (5.155)-(5.156). The effective wavenumber keff
0 =

(
keff

0x , keff
0y

)

in (5.156) is computed from (5.142)-(5.143).
The exact solution for the problem above is the plane wave

p̂ = exp
(
ikeff

0 · x
)

(5.157)
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propagating with an effective wavenumber in polar coordinates keff
0 =

(
keff

0 , θeff
)

=

(16.35, 68.8◦) . Hence, the effect of the mean flow on the original wave, having wavenumber
k0, is to reduce the modulus of the wavenumber and to change its direction upstream.

If we now proceed to solve (5.155)-(5.156) using the Galerkin finite element method
(5.64) on a uniform grid with elements of size h × h , with h = 0.025, we will observe
that even though keff

0 h = 0.4 (more than the recommended ten points per wavelength),
the method is unable to yield an accurate solution for the problem. On the contrary,
the stabilised SGS finite element approach using the modified weak form (5.116) and
the stabilisation parameter (5.126) has been designed to yield exact nodal values for this
case. This can be clearly appreciated in Fig. 5.20a and Fig. 5.20b where the imaginary
part of the Galerkin and SGS solutions have been respectively plotted. It is apparent
from Fig. 5.20a that the Galerkin solution distorts the shape of the wave and yields
much higher amplitudes than the correct ones. This can also be observed in Fig. 5.21,
where the imaginary part of the acoustic pressure in a one dimensional cut of the domain,
Ωac|x=0.25 := {(0.25, y) | 0 < y < 1}, is plotted for both cases, together with the exact
solution.

On the other hand, to make the stabilised ASGS method useful in as many
situations as possible, it should perform well for other meshes than the structured bilinear
quadrilateral elements for which the stabilisation parameter τSGS has been optimised. To
check this point we have constructed an unstructured mesh of quadrilateral elements
(see Fig. 5.22) and studied the dependence of the numerical solution relative error in
the L2-norm, ‖p̂h − p̂exact‖ / ‖p̂exact‖, when refining the mesh. p̂exact is given by (5.157)
and p̂h denotes the numerical solution obtained by either the Galerkin method or by
the stabilised ASGS one. Results are plotted in Fig. 5.23a together with the -2 slope
of the best approximation solution. It can be clearly observed that the ASGS stabilised
solution improves the results of the Galerkin method for all meshes. Moreover, we have
plotted the results of using the ASGS formulation with the stabilisation parameter, τSGS,
corresponding to θ = 0◦ instead of θ = 50◦. It can be seen that the solution is also better
than the Galerkin one (and for some meshes even better than the θ = 50◦ one). However,
this cannot be taken as a general result stating that any value of θ in τASGS would result
in an improvement of the solution (see the discussion in section 5.5.3).

Further tests are presented in Figs. 5.23b and 5.23c. In Fig. 5.23b we have
considered the same Mach number and meshes than for Fig. 5.23a, but for a plane wave
with wavenumber k0 = (24m−1, 80◦). This results in a free plane wave with effective
wavenumber keff

0 = (23m−1, 116◦), i.e. almost propagating in the normal direction to
the mean flow. It can be observed in Fig. 5.23b that once the resolution threshold is
surpassed (h−1 & 50) the ASGS solution error is clearly lower than the Galerkin one. The
ASGS solution taking θ = 0◦ in the stabilisation parameter also yields better solutions.
On the opposite, if using the ASGS stabilisation without taking into account convection
(5.145), large errors are encountered depending on the mesh, either when setting θ = 0◦

or θ = 80◦ in the stabilisation parameter.

Next we have repeated the test but for a plane wave having wavenumber k0 =
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a) Galerkin FEM solution

b) ASGS solution

Figure 5.20: Imaginary part of the Galerkin and ASGS finite element solutions to problem
(5.155)-(5.156) in text.
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Figure 5.21: Imaginary part of the reference, Galerkin and SGS solutions for a one dimensional
cut of the domain corresponding to the Dirichlet problem (5.155)-(5.156) in text.

Figure 5.22: Unstructred mesh of quadrilateral elements.
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Figure 5.23: Numerical solution error for propagating plane wave. a) Dashed-dotted: Galerkin,
Dashed: ASGS with θ = 50◦, Dotted: ASGS with θ = 0◦, Continuous line: -2
slope. b) Dashed-dotted: Galerkin, Dashed: ASGS with θ = 50◦, Dotted: ASGS
with θ = 0◦, Cross-dashed: ASGS (M = 0) and θ = 50◦, Cross-dotted: ASGS
(M = 0) and θ = 0◦, Continuous line: -2 slope. c) Dashed-dotted: Galerkin,
Dashed: ASGS with θ = 50◦, Dotted: ASGS with θ = 0◦, Cross-dashed: ASGS
(M = 0) and θ = 50◦, Cross-dotted: ASGS (M = 0) and θ = 0◦, Continuous line:
-2 slope.
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(24m−1, 190◦). Given that this will result in a very large effective wavenumber modulus,
we have reduced the speed of the uniform flow in order to achieve proper resolution
using the same meshes of the previous examples. A flow with Mach number M =
(0.2, 30◦) has been considered. The resulting free wave has an effective wavenumber of
keff

0 = (29.7m−1, 194◦), and is travelling almost in the reverse direction of the mean flow,
210◦. The numerical errors when using the various stabilisation and Galerkin methods are
plotted in Fig. 5.23c. In this case it can be also clearly observed how the ASGS method
gives a better solution than the Galerkin one, once the necessary resolution threshold has
been surpassed. It can also be seen that the ASGS method taking θ = 0◦, and the ASGS
without considering convection for θ = 0◦, 190◦ improve now the Galerkin solution.

On the other hand, note the disparity of errors for fixed h in Figs. 5.23a, Figs. 5.23b
and Figs. 5.23c (M = 0.2 for the latter) in accordance with the highly anisotropic
error values found in [84], when analysing the error dependence on the flow and wave
orientations. In this line, note that the improvement of the solution when using
stabilisation in the analysed cases, strongly depend on the relative direction of the wave
with respect to the mean flow. Better relative results have been obtained when comparing
with the Galerkin solution for waves propagating close or reversal to the flow direction,
than for waves propagating normal to it.

5.6.3 Aeolian tones for the convected Helmholtz equation

As a third numerical example, we will apply the methodology presented in the previous
sections to compute the aeroacoustic field generated by flow past a two dimensional
circular cylinder. The problem of aeolian tone generation by flow past a cylinder was
already addressed in section 3.6.1, see also section 4.3.1. However, use will be made here
of both, the Helmholtz and convected Helmholtz equations for comparison, and a higher
Reynolds number than in 3.6.1 will be considered (Re = 1000). The main purpose of
this example will be to check the performance of the stabilised formulation in a somehow
more intricate problem than the usual benchmark tests. We will check if the stabilisation
formulation derived in section 5.5 is able to yield good results for this case, which contains
waves propagating in several directions that have been computed in an unstructured mesh
of linear triangular elements (again a different mesh than the one used to optimise τSGS

for a single propagation direction).

The physical problem: Aeolian tones

We remind that the physical problem is that of computing the noise generated by flow
past a two-dimensional cylinder when a von Kármán vortex street of alternating vortices
is established behind it (see section 3.6.1). The cylinder has a diameter D and the
free stream velocity impinging on it is U0 = (U0, 0). The problem Mach number is
given by M = (M, 0) = (U0/c0, 0) and the Reynolds number based on these variables is
Re = ρ0U0D/µ.

As already explained, aeolian tones correspond to sound generated by the cylinder as
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a reaction to lift fluctuations. The frequency of the emitted noise, fvsh, is that of vortex
shedding and it can be computed from (3.66) and (3.67). The radiated noise exhibits a
clear dipole pattern.

In order to compute the aeroacoustic source term we have followed the three steps
approach described in section 3.2 and plenty developed, from a computational point of
view, throughout Chapter 3. Two cases have been considered: the first one corresponds
to the straightforward application of Lighthill’s acoustic analogy. This has given the
acoustic field as seen by an observer that is at rest with the cylinder and feels the uniform
inflow impinging on it at speed (U0, 0). Actually, we have been interested in knowing the
acoustic field spatial distribution at the vortex shedding frequency, which is given by the
time Fourier transform of Lighthill’s equation (see Chapters 2, 3)

−
(
∇2 + k2

0

)
p̂ = ŝL in Ωac (5.158)

∇p̂ · n = 0 on Γcyl (5.159)

∇p̂ · n = ik0p̂ on Γ∞, (5.160)

with ŝL standing for the Fourier transform of sL = ρ0 (∇⊗ u) : (∇⊗ u)⊤, k0 = ω/c0 =
2πfvsh/c0, Ωac ⊂ R2 being a bounded domain, Γcyl the cylinder boundary and Γ∞ the far
field boundary of Ωac.

The second case has consisted in considering the acoustic field as seen by an observer
at rest with the flow that sees the cylinder approaching at speed (−U0, 0). To obtain this
result we can perform a full Lorentz transformation of Lighthill’s equation (5.158) (note
that the source term is Galilean invariant so it will be not affected by the uniform mean
flow). This results in the convected Helmholtz equation:

[
∇2 + (k0 + iM · ∇)2] p̂ = ŝL in Ωac (5.161)

∇p̂ · n = −ik0αN p̂ on Γcyl (5.162)

∇p̂ · n = ik0αSp̂ on Γ∞. (5.163)

Notice that the low Mach number limitation for this example does not arise from
the convected wave equation, which is valid up to transonic flows, but from the use
of the Reynolds tensor as an approximation for Lighthill’s tensor, which is only valid for
incompressible flows (M < 0.3). Note also that the convected Helmholtz equation (5.161)-
(5.163) only applies to uniform flows, which is not the case for the vortex street past the
cylinder. However, Lighthill’s acoustic analogy establishes a clear separation between
the acoustic source zone, where acoustic waves are generated (in this case the boundary
of the cylinder and the periodic vortices past it) and the propagation zone (acoustic
media) where acoustic waves are radiated and propagate (in this case the remaining of
the domain). Hence one can imagine the problem as that of a set of acoustic sources
placed near the cylinder (with independence of the fact that they have been obtained
from a CFD computation of a non-uniform flow) radiating into an acoustic media that
may be at rest or moving e.g., at uniform speed. The convected Helmholtz equation can
be applied to this acoustic media.
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Numerical results

For the numerical example we have considered a circular cylinder of diameter D = 0.3 in
a circular computational domain ΩCFD of diameter 3 × 103D. We have taken a dynamic
viscosity coefficient of µ = 0.006 and an impinging flow velocity in Cartesian coordinates
of U0 = (20, 0), leading to Reynolds and Mach numbers at the far field (away from the
cylinder) of Re = 103 and M = (5.83 × 10−2, 0), for a sound speed of c0 = 343 (all units
are in SI). The incompressible Navier-Stokes problem has been solved in an unstructured
mesh of triangular elements ranging in size from ∼ 3 × 10−3D near the cylinder surface
to ∼ 30D at the far field.

In what concerns the acoustic field, computations have been performed in the same
domain used for the CFD computation, i.e., Ωac = ΩCFD. As there is no analytical solution
for this problem, the Galerkin finite element method has been first used to solve equations
(5.158)-(5.160) and (5.161)-(5.163) in a very fine mesh that has a high resolution at the
far field. It has been checked that the obtained results show no appreciable differences
with the results obtained using the SGS stabilisation in the same mesh. The solution
corresponding to this fine mesh will be termed hereafter as reference solution for the
simplicity of notation and used to assess the performance of the method in the line of
what is done in [121]. In order to verify the performance of the implemented ASGS
stabilisation for the convected Helmholtz equation, problem (5.161)-(5.163) has been also
solved in a rather coarse mesh that has a resolution of 7 − 8 nodes per wavelength at
the far field. The Galerkin finite element method and the ASGS stabilised finite element
method have been used to solve (5.161)-(5.163) in the coarse mesh and their solutions
have been compared with the reference solution to see which one performs better.

Let us first have a look at the results from the CFD computation. A periodic flow is
established with vortex shedding at a frequency of fvsh = 15.3 Hz (St = 0.229). This can
be appreciated in Fig. 5.24a and Fig. 5.24b, where the temporal evolution and normalised
spectrum of the lift coefficient are plotted. The lift coefficient has a mean amplitude
of ∼ 1.36. The computed frequency and Strouhal number are slightly higher than the
ones obtained from (3.66)-(3.67), fvsh = 13 Hz (St = 0.194). This is in part due to the
fact that (3.66)-(3.67) are valid for three dimensional cylinders, while we are performing
two dimensional simulations. The three dimensional effects begin to be significant for
Re > 300 and, as already mentioned in Chapter 3, two dimensional simulations tend to
over predict the values for fvsh and St (see [229] and references therein).

In Fig. 5.25a we have plotted a snapshot of the isovelocity contourlines at a given
instant of time showing the von Kármán vortex street. In Fig. 5.25b we present the
contourlines corresponding to the acoustic source term ρ0 (∇⊗ u) : (∇⊗ u)⊤ used as
an approximation for Lighthill’s tensor. It can be observed that the source term rapidly
decreases to zero when moving away from the cylinder surroundings. As explained in
section 3.6.1, the fast decay of the source term is of crucial importance and in fact justifies
the acoustic analogy approaches. Otherwise, it would not be possible to distinguish
between a source region and a propagating one (see e.g., [53, 55]).

In what concerns the acoustic results, the imaginary part of the reference acoustic
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a) CL time evolution. b) CL normalised spectrum.

Figure 5.24: Temporal evolution and spectrum of the cylinder lift coefficient, CL.

pressure for the convected Helmholtz equation (5.161)-(5.163) in the near field is shown
in Fig. 5.26. It can be clearly observed that although there is sound generated at the wake
of the cylinder, only sound having a dipole pattern and generated by lift fluctuations on
the cylinder propagates outwards, to the far field. In Fig. 5.27a, where the reference far
field solution is plotted, this becomes fully evident. In Fig. 5.27b we have presented the
results corresponding to the reference solution of the Helmholtz equation (5.158)-(5.160).
By comparison with Fig. 5.27a, we can observe as expected that the observer being at
rest with the flow sees the wave fronts bended upstream. This effect is not very strong
for this example because the Mach number is not very high, but it is clearly visible e.g.,
near the boundaries of the domain. While the solution in Fig. 5.27b is totally symmetric
this is not the case for the solution in Fig. 5.27a.

In Fig. 5.28a and Fig. 5.28b we have respectively plotted the Galerkin solution and
SGS solution corresponding to the coarse mesh case. It can be observed that the Galerkin
solution presents pollution error, which manifests as a phase lag in the wave fronts of
Fig. 5.28a when compared with those of the reference solution in Fig. 5.27a. This phase
error is considerably reduced when using the SGS stabilisation, see Fig. 5.28b. The
situation becomes more apparent in Fig. 5.29a where the results for a one dimensional
cut of the domain Ωac|θ=90◦ = {(r, 90◦) |D/2 < r < 1.5 × 103} are given. It can be seen
that the ASGS stabilised solution has almost the same phase as the reference one, while
the Galerkin solution clearly presents a phase lag. In Fig. 5.29b, we give the results for
another one dimensional cut, Ωac|θ=135◦ = {(r, 135◦) |D/2 < r < 1.5 × 103}, which is near
the limits of the silent cone in front of the cylinder. In this case the ASGS stabilisation
is not able to fully match the reference solution although it improves the results from
the Galerkin one. From Fig. 5.28 and Fig. 5.29 we can then conclude that the ASGS
stabilisation yields a solution clearly better than the Galerkin one.

The results for the ASGS solution in this section have been obtained using an angle
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a) Isovelocity contourlines showing von Kármán vortex street.

b) Snapshot of the acoustic source term (Lighthill’s tensor double divergence).

Figure 5.25: CFD results.
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Figure 5.26: Near field results for the imaginary part of the convected reference acoustic pressure.

of θ = 0◦ in the effective wavenumber components (5.142)-(5.143), to be inserted in the
expression (5.126) for the stabilisation parameter, τSGS.

5.7 Conclusions

In this chapter we have presented a general framework where to relate the wave and
convected wave equations, as well as their Fourier transform counterparts. The latter
correspond to specific cases of the more general CDR system of equations. Specific
boundary conditions for the convected Helmholtz equation have been also derived. We
have then introduced the Galerkin FEM approach to solve these equations and reviewed
the information available from well-posedness theorems. The pattern of convergence of
the Galerkin FEM solution has been analysed and the characteristic problem of the so
called pollution error for Helmholtz equations has been presented.

To avoid the pollution error, an algebraic subgrid scale finite element method to solve
the two dimensional convected Helmholtz equation has been proposed. The method does
in fact correspond to the application of the Galerkin / Least Squares approach with
appropriate redefinition of its stabilisation parameter, because the involved convected
Helmholtz differential operator is selfadjoint. The stabilisation parameter has been
derived from a dispersion analysis and it reduces to well known expressions for the one
dimensional and two dimensional Helmholtz equations in the case of no convection.

As an application, we have considered the case of a plane wave propagating in a
uniform flow. It has been shown that the proposed subgrid scale stabilised method
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a) Reference convected Helmholtz

b) Reference Helmholtz

Figure 5.27: Far field results for the imaginary part of the acoustic pressure.
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a) Galerkin convected Helmholtz

b) SGS convected Helmholtz

Figure 5.28: Far field results for the imaginary part of the acoustic pressure.
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a) Imaginary part of the reference, Galerkin and SGS solutions

for a one dimensional cut of the domain at 90◦ with respect to the x-axis.

Continuous line: reference solution, Dashed with circles: ASGS, Dotted cross: Galerkin.

b) Imaginary part of the reference, Galerkin and SGS solutions

for a one dimensional cut of the domain at 135◦ with respect to the x-axis.

Continuous line: reference solution, Dashed with circles: ASGS, Dotted cross: Galerkin.

Figure 5.29: Imaginary part of the solutions for one dimensional cuts.
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yields exact nodal solutions, while the Galerkin method is unable to give a valid solution.
Improvements have been also obtained for nonstructured meshes different to the one used
to derive the stabilisation parameter. A more involved case consisting of the aerodynamic
sound generated by flow past a two dimensional cylinder has been also considered. We
have limited to low speed cases and made use of Lighthill’s acoustic analogy. Although a
non structured mesh of triangular elements has been used for this problem, it has been
shown that using the subgrid scale stabilisation to find the solution of the convected
Helmholtz equation clearly improves the results that otherwise would have been obtained
using the Galerkin finite element method.

As a general conclusion we may say, on one hand, that the herein presented ASGS
stabilised method could prove very useful for problems where we have a certain degree
of a priori information on the wave propagation directions. This would be the case, for
instance, of duct acoustics (note that in this case two optimum stabilisation parameters
respectively accounting for upstream and downstream waves could be easily implemented).
On the other hand, we have also checked that the method could also be useful in much
more intricate problems such as the generation of aeolian tones described above.



Chapter 6

Applied example

In this chapter we explore the possibility of applying some of the strategies and methods
previously presented to problems of industrial interest. In particular, we concentrate on
the simulation of the airflow over the leading coach of a high-speed train. CFD is usually
employed in railway aerodynamics to derive mean values such as overall lift and drag
coefficients, or the torque experienced by the train. It is also used to determine the
influence of cross-winds or the wave front forming at a tunnel entrance. However, we
will concentrate here on the very different subject of using CFD to make predictions of
outward radiated aerodynamic noise. Similar strategies can be also applied to determine
the train’s interior noise due to surface pressure fluctuations. Computational limitations
will restrict our results to very low frequencies, out of the whole range of acoustic industrial
interest. However, the proposed methodology is still valid and suitable for implementation
in supercomputing devices to reach the desired frequency range.

6.1 Introduction

Apart from aeronautics where it experienced its major development, the field of
aeroacoustics and CAA has recently become of great importance in the railway industry.
With the development of high-speed trains, the aerodynamic sound has become the origin
of several problems (see e.g., [86,182,184,269,281]), which might be roughly divided into
three categories. The first concerns an important, although quite specific, problem. This
is the generation of a compression wave when a high-speed train enters a tunnel. The
wave propagates into the tunnel and if it is long enough, non-linear steeping causes the
generation of a micro-pressure wave at the tunnel exit. Its effects can be as noticeable as
the sonic boom generated by supersonic airplanes. For obvious reasons, this problem has
recently deserved great attention [139, 140, 143].

The second and widest problem concerns the train’s radiated exterior noise (see
e.g., [179–183]). For high-speed trains, the noise generated from the airflow impinging on
the pantograph zone, the bogie zone or the inter-coaches zone (see [117,132,181,184,259]),
can exceed by far classical noise sources such as wheel-rail interaction noise, engine noise,
or auxiliary equipment noise. The understanding of the implied physical phenomena as
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well as the localisation of the various source terms has allowed to design e.g., more silent
pantographs [165,166]. Recently, some attempts have been performed in order to compute
the aerodynamic noise generated by some of the above cited items [131,267]. On the other
hand, for magnetic levitation trains (maglevs) that can circulate at speeds U0 ≥ 500 km/h
further aerodynamic noise sources may be of importance, such as the noise generated by
the turbulent boundary layer (TBL) [181, 237].

The third problem concerns the aerodynamic sound contribution to the train’s overall
interior noise level. Although some rough models have been proposed that take into
account the TBL unsteady pressure loading, flow detachment and coherent structures in
order to perform initial predictions [205], it is clear that further research involving airflow
CFD simulations combined with the mechanical response of the train’s structural response
is necessary.

In Fig. 6.1a we show a simplified scheme of a train’s general exterior noise prediction
process. The first column concerns the modelling of the noise sources. For low-mid
speed trains (say trains circulating with velocity U0 ≤ 250 km/h) the main noise sources
correspond to the wheel-rail interaction (rolling noise), the engine noise and the auxiliary
equipment noise. In what refers to pass by noise, rolling noise is generally predominant
with the engine contribution depending on the train’s speed and on the type of train
(diesel or electrical). Exterior noise due to auxiliary equipment is usually of importance
for the train stopped in a station. In the case of mid-high speed trains and as mentioned
above, the interactions of the airflow with several appendices such as the pantograph or the
bogie’s area may be the cause of intense aerodynamic noise radiation. The speed at which
the aerodynamic noise contribution increases the pass-by sound pressure level by 1 dB
is known as the acoustical impact speed, Ui, whereas the velocity at which aerodynamic
noise equals the contribution from all other sources (essentially rolling noise) is known
as the acoustical transition speed, Ut. For a 12-coach ICE (German high-speed train)
Ui ≈ 220 km/h, while Ut ≈ 320 km/h [182].

In order to be able to predict railway exterior noise, one has to model all noise
sources in the first column of Fig. 6.1a, with the aim of finding acoustic power values
for them. Given the large disparity of these sources, a very wide range of techniques and
theories is needed to do so, involving several areas of vibroacoustics. Moreover, different
theoretical and experimental approaches are required depending on the analysed frequency
range. Even when focusing on aerodynamic noise sources, the physics of the underlying
phenomena can strongly vary. For instance, the celebrated Lighthill acoustic analogy
turns not to be valid for the simulation of cavity noise (e.g., generated at an airtake
inlet), given that there is a feedback interaction between the aerodynamic and acoustic
fields in this case. Consequently, it can be already intuited that a complete review of
railway noise source mechanisms is certainly out of the scope of this work and we will
limit ourselves to problems that can be addressed in the general framework depicted in
Fig. 3.1, section 3.2 in Chapter 3.

On the other hand, the second step in the prediction of exterior noise involves the
modelling of the noise radiation. Again several techniques and methods are combined
to do so, depending on the type of source and desired frequency range. Wave as well
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a) Outward radiated noise

b) Interior noise

Figure 6.1: Railways noise overview
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as ray methods are commonly used. When one is interested in how railway noise would
affect inhabited areas, it becomes necessary to simulate the whole environment taking
into account topography and building effects (third column in Fig. 6.1a).

In what concerns train’s interior noise prediction, a scheme analogous to Fig. 6.1a is
shown in Fig. 6.1b. In addition to the classical mechanical sources of low-mid speed trains
that affect interior noise, we observe that aerodynamic sources have to be taken also into
account. Concerning the latter, different aspects have to be considered. One one hand
flow separation at the first coach leading end, and at the bogie’s area, may cause strong
unsteady pressure loading. This will induce mechanical vibrations on the train surface,
which will be transmitted through the structure and finally result in the generation of
interior noise. On the other hand, the intense pressure fluctuations developed beneath
the turbulent boundary layer (TBL), known as blocked pressure, will be also a source of
structural vibrations that will generate interior noise.

Flow separation strongly depends on the geometry of the body immersed in the
airflow stream, so general models accounting for their effects on the train’s surface cannot
be built without very restrictive and simplifying hypothesis. Therefore, CFD turns to
be a good option to face this type of problems. On the contrary and under certain
considerations, TBLs share a universal character so that several semi-empirical models
exist for them. These models give expressions for the wall-presure wavenumber-frequency
spectrum, P (k, ω), which is commonly used to characterize the blocked pressure. For
an introduction to the subject one may consult [137, 145]. A comparison of the most
outstanding models for P (k, ω) can be found in [103], see also [24], and references
therein. On the other hand, it is worthwhile to mention that the TBL will be also a
source of aerodynamic noise. In what respects to exterior noise its contribution is of
little importance (with the possible exception of maglevs). In what concerns the pressure
loading, the TBL aerodynamic noise has again negligible influence, given that the TBL
blocked pressure is mainly due to the turbulence interaction with the mean shear flow
and to the turbulent eddies interaction. However, other aerodynamic noise sources may
affect interior noise. For instance, the acoustic waves generated by the flow impinging on
the pantograph may induce structural vibrations that will be a source of interior noise
(note that pantographs are generally placed at the end of the leading coach in high-speed
trains to avoid its direct exposition to the free stream velocity).

The second column in Fig. 6.1b concerns the simulation of the transmission paths from
the sources to the train’s interior. Transmission paths may be either aerial (e.g. engine
noise radiate acoustic waves outwards, which impinge on the train walls and windows
-parietal noise- causing them to vibrate and to radiate interior noise) or structural (e.g.,
engine vibrations are transmitted to the coach through the connection dampers and as a
result the coach subsystems also vibrate and radiate interior noise). Again the number
of experimental, numerical and analytical methods used to address the transmission
process is very wide and out of our scope. Finally, in the third column we see how
the information of the preceding columns can be combined to build an acoustic model
of the train. The various interior noise contributions can be combined to determine the
overall sound pressure value and to establish the ranking of influence of every noise source



6.1. INTRODUCTION 203

Figure 6.2: Scheme for the prediction of aerodynamic source contributions to train’s interior
noise

at each frequency.
As mentioned above, in this chapter we will focus on a case of Fig. 6.1a that can be

embedded in the CAA framework proposed in this thesis (see Fig. 3.1). In particular
we will address the problem of aerodynamic noise generation by flow separation at the
leading end of the first coach of a high speed train. We note that this problem is of
no practical importance when compared with exterior noise radiated by other sources,
such as sound generated by the pantograph or the bogie area. However, it is of great
importance for train manufacturers given that it may affect interior noise. In this sense,
observe that a scheme analogous to the one in Fig. 3.1 can be used to predict the influence
of aerodynamic sources on interior noise. This scheme is presented in Fig. 6.2. The first
step of the procedure consists of a CFD simulation but now the unsteady pressure p(x, t)
at the roof fairing is the desired result, instead of the double divergence of the velocity
Reynolds tensor. p(x, t) can be next time Fourier transformed to p̂(x, ω) and inserted as
an external input in a numerical model for the mechanical behaviour of the fairing (note
that we are neglecting fluid-structure interaction). This model will allow to compute the
inner roof vibration characterised by its velocity û(x, ω). The latter can be then spatial
Fourier transformed to û(k, ω), from which an acoustic power for the roof can be derived.
Finally, the inner roof acoustic power can be inserted in an acoustic model for the train
to determine the contribution of flow separation to interior noise. It should be noted that
alternatives to the scheme in Fig. 6.2 are also possible.

Although no inner noise predictions will be performed in this chapter, we have found
worthwhile to observe the conceptual similarity needed for both, the prediction of interior
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and exterior noise, in the herein treated problem. Moreover, note that the most difficult
step of the schemes in Fig. 3.1 and Fig. 6.2, namely the CFD simulation, is shared in both
cases.

The chapter is organized as follows. In section 6.2 we concentrate on the CFD
simulation of the airflow past a high speed train. In section 6.3 we present the results
that would be useful for interior noise prediction, namely the unsteady pressure loading
at several surface points. On the other hand, in section 6.4 we present the results
corresponding to the aerodynamic noise sources due to flow separation, i.e., the double
divergence of the Reynolds tensor for the velocity field. In section 6.5 we compute the
outward radiated noise at some chosen frequencies and finally, conclusions are drawn in
section 6.6.

6.2 CFD simulation of airflow past a high-speed train

6.2.1 Computational features

Again, the mathematical problem to be dealt with is that of solving the incompressible
Navier-Stokes equations (4.1)-(4.2) in a given computational domain Ω, with boundary
∂Ω, once some initial and boundary conditions have been specified. We will consider the
case of a train running at U0 = 69.5 m/s (≈ 250 km/h). The incompressibility constrain
will be assumed because the problem Mach number is of the order of M = 0.2.

Simulations have been performed using an ASGS strategy (see section 3.4 and details
below) and making use of a nodal based-implementation for the spatial discretisation
[40]. The nodal-based implementation has the advantage to save a considerable amount
of computational time because all integrals involving combinations of shape function
products and their corresponding derivatives are carried out at the beginning of the
computation. This requires some approximations but avoids the necessity to recompute
the volume and surface integrals anymore. Concerning the temporal discretisation, the
second order accurate in time Crank-Nicholson scheme has been used (see section 3.3.1).

The main computational features of the simulation are listed below:

• The train has been embedded in a 14 × 44 × 20 m3 rectangular hexahedral domain
that minimizes the influence of the far field boundaries (the free stream velocity is
reached inside the computational domain).

• An unstructured mesh of 1.884.524 elements (1.661.752 tetrahedral elements
+ 222.952 surface triangular elements) corresponding to 322.784 nodes (1.291.136
d.o.f) has been used. The mesh has been refined near the train contours.

• Equal linear interpolation functions have been used for the velocity and the pressure
as allowed by the ASGS stabilised finite element approach.

• 10 linearisation Picard iterations have been used for each time step.

• A GMRES solver has been used to solve all matrix systems.
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• The time increment has been ∆t = 0.002 s, once the initial transient period has
been surpassed. The maximum frequency that can be captured (Nyquist frequency)
is ∼ 250 Hz. The resulting pressure spectra to be presented below have a resolution
of 1.6 Hz as they have been calculated by means of the Fourier transform of a 300
steps interval (0.6 s) once the initial transients have finished. In order to exceed
the initial transients, an initial simulation of 400 time steps with ∆ t′ = 10∆t has
been carried out. In turn, this simulation has been started from a previous Stokes
calculation.

• In order to surpass the initial transients some extra dissipation to that provided by
the stabilisation terms has been needed. The Smagorinsky model with a constant
C2

S = 0.015 has been used to do so. Once the initial transients have finished
this value has proven to be too high to capture the flow fluctuations. Numerical
experiments have been carried out in order to see the effects of decreasing the
Smagorinsky constant value. It has been found that for C2

S/n with n ≥ 5, the
magnitude of the fluctuations does not change substantially. That is, the dissipation
provided by the ASGS stabilisation terms is the one governing the flow motion.

6.2.2 Computational domain and boundary conditions

The computational domain is shown in Fig. 6.3. Some general and detailed views
are shown as well as all boundaries. The intermediate volumes between the external
rectangular parallelepiped and the train surface are needed for an appropriate mesh
transition size.

The Dirichlet boundary is built from ΓD = Γa
i ∪ Γt while the mixed boundary is given

by ΓM = Γa
u ∪ Γa

d ∪ Γa
o ∪ Γa

lat1 ∪ Γa
lat2. The corresponding boundary conditions are given

by:
Dirichlet boundary ΓD:

uD = (ux, uy, uz)
⊤ =

{
(69.5, 0, 0)⊤ m/s on Γa

i

(0, 0, 0)⊤ m/s on Γt
(6.1)

Mixed boundary ΓM :

tx, ty = 0
uz = 0

}
on Γa

u,Γ
a
d

tx, tz = 0
uy = 0

}
on Γa

lat1,Γ
a
lat2 (6.2)

tM = (tx, ty, tz)
⊤ = (0, 0, 0)⊤ on Γa

o (6.3)

In Fig. 6.4 some mesh details are shown. As already mentioned, the mesh has been
refined at the train surface where the flow is expected to present a more complex pattern.
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a) Exterior boundaries b) Inner domain

c) Train boundary d) Leading coach profile

Figure 6.3: Train computational domain. General and detailed views.

a) Exterior boundaries b) Train surface

Figure 6.4: Train mesh: General and detailed views.
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6.2.3 Pressure and velocity fields

In this section the pressure and velocity fields for the train running at maximum speed
(U0 = 69.5 m/s) will be presented. The results correspond to an arbitrary chosen snapshot
at t = 13 s, once the initial transient period has been surpassed.

In Fig. 6.5 several isovelocities and pressure plots are shown. Figures Fig. 6.5a and
b correspond to the vertical plane y = −1 m, while figures Fig. 6.5c, d and Fig. 6.5e, f
respectively correspond to the vertical planes y = 0,+1 m. y = 0 corresponds to the train
centreline. The pressure plots show, as expected, a maximum value at the train nose, see
Fig. 6.5c, corresponding to a minimum velocity value, see Fig. 6.5d. From that point,
the velocity increases following the train profile and reaches its highest value when the
train’s full section is achieved at the leading end. Then flow separation takes place due
to the presence of an adverse pressure gradient. The isovelocity plots clearly show that
the complex pattern of generated vortices, which are responsible of the intense unsteady
pressure loading on the train’s surface. This unsteady flow field may induce undesirable
fairing and roof vibrations at low frequencies.

On the other hand, note that the pressure at the nose sides (Fig. 6.5a and Fig. 6.5e)
is smaller than that of Fig. 6.5b because the flow can escape laterally increasing its speed
(Fig. 6.5b and Fig. 6.5f).

It should be remarked that the herein presented simulation is not able to properly
capture the velocity gradient inside the boundary layer (see Fig. 6.5 and [269] for standard
values on the high-speed trains TBL thickness). Actually, a much finer mesh would be
needed to do so. However, this is not a big problem given that our aim is to find the
unsteady pressure distribution on the train surface, as well as the aerodynamic noise
generated by the large vortices due to flow separation. We remind that there is no
boundary layer for the pressure and that the wall equations clearly state that the pressure
does not depend at all on the velocity distribution beneath the TBL (see e.g. [255]). In
any case, what is guaranteed is that the energetic effects of the non-resolved scales on the
resolved ones will be taken into account thanks to the SGS strategy used in the simulation.
On the other hand, note that some standard approaches used in aeronautics in order to
solve the boundary layer, such as the Euler-Boundary layer interaction, cannot be applied
here because flow detachment takes place.

Fig. 6.6 presents the same results as Fig. 6.5 but for the case of three horizontal plane
cuts. The heights of these cuts are z = 2.6, 3, 3.3 m, z = 0 corresponding to ground.
It can be observed that lateral vortices are also formed and that its strength increases at
the train fairing.

In Fig. 6.7 we present the pressure distribution at the leading coach for t = 13 s. As
mentioned and expected, the maximum pressure is exerted at the nose of the train where
the velocity is minimum. Then, the pressure decreases until the windshield is reached
and a second pressure maximum appears due to a change in the train’s slope profile.
The pressure diminishes again and it does so very strongly at the upper part of the train
leading end. However, in the next few meters of the fairing the pressure grows suddenly
giving place to the strong adverse pressure gradient responsible for flow separation. The
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a) Pressure at y = −1 m, t = 13 s b) Isovelocity at y = −1 m, t = 13 s

c) Pressure at y = 0 m, t = 13 s d) Isovelocity at y = 0 m, t = 13 s

e) Pressure at y = +1 m, t = 13 s f) Isovelocity at y = +1 m, t = 13 s

Figure 6.5: Isovelocity and pressure field snapshots for t = 13 s. Vertical cuts.
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a) Pressure at z = 2.6 m, t = 13 s b) Isovelocity at z = 2.6 m, t = 13 s

c) Pressure at z = 3 m, t = 13 s d) Isovelocity at z = 3 m, t = 13 s

e) Pressure at z = 3.3 m, t = 13 s f) Isovelocity at z = 3.3 m, t = 13 s

Figure 6.6: Isovelocity and pressure field snapshots for t = 13 s. Horizontal cuts.
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Figure 6.7: Surface pressure distribution for t = 13 s. Train at U0 = 69.2 m/s.

Figure 6.8: Surface pressure distribution and velocity vector field for t = 13 s. Train at
U0 = 69.2 m/s.
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Figure 6.9: Isopressure surfaces for t = 13 s. Train at U0 = 69.2 m/s.

Figure 6.10: Isovelocity surfaces for t = 13 s. Train at U0 = 69.2 m/s.
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Point Code x y Point Code x y
P1 2.8 0.0 P10 8.6 0.5
P2 3.5 0.0 P11 9.1 0.5
P3 8.1 −0.5 P12 11.2 0.7
P4 8.6 −0.5 P13 14.2 0.7
P5 9.1 −0.5 P14 11.2 −0.7
P6 8.1 0.0 P15 14.2 −0.7
P7 8.6 0.0 P16 8.2 1.2
P8 9.1 0.0 P17 8.6 1.2
P9 8.1 0.5 P18 9.0 1.2

Table 6.1: Location of surface control points. x: distance from train’s nose, y: distance from
centreline

zone where this separation occurs is rather apparent in Fig. 6.7. In Fig. 6.8 we have
plotted the surface pressure distribution and a vertical cut containing the velocity vector
field. The vortices generated at the flow separation zone can be appreciated.

Finally, in Fig. 6.9 we show some pressure isosurfaces for the inner computational
domain in Fig. 6.3b. Although some spherical isosurfaces may be expected from Fig. 6.5a,c
and e and from Fig. 6.6a,c and e, the complex pattern of the flow is made apparent. In
Fig. 6.10 we have plotted the corresponding isovelocity surfaces, which show the formation
of two lateral rolling vortices.

6.3 Unsteady pressure loading

In order to be able to carry out interior noise predictions, the pressure spectrum at the
train’s surface is needed according to the scheme in Fig. 6.2. Although interior noise
prediction is not our objective in this work, it is worthwhile to have a look to the pressure
spectra at several control points. This is so because we can easily compare the obtained
pressure spectra using the ASGS approach with others in order to check their relative
performances. Moreover we have had access to some experimental values for these spectra
(although they cannot be reproduced here for confidentiality reasons) that will serve to
check the reliance of the simulation.

In Fig. 6.11 we show the position of the analysed control points on the train surface,
whereas their exact location is detailed in Table 6.1. In this table, the coordinate x stands
for the distance from the nose of the train while y stands for the distance from the train’s
centreline.

The resulting pressure spectra for the control points in Fig. 6.11 are given in Fig. 6.12.
The considered frequency range comprises [0, 200] Hz. All spectra show a similar shape,
i.e. some high low frequency components and a quite constant value (slowly decreasing
with frequency) for f > 40 Hz. The fluctuations vary from spectrum to spectrum. It can
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Figure 6.11: Location of surface control points.

be observed that the levels of the points placed at the leading end of the fairing tend to be
inferior to the levels of those located behind, at the flow separation zone. In what concerns
the low frequency components, they will be of no problem with regards to the dBA filtered
interior noise level (see section 2.2.1). On the contrary, the remaining portions of the
spectra combined with the fairing-roof mechanical response and its efficiency of radiation
will determine the aerodynamic loading influence in the interior of the train.

In Fig. 6.13 we have plotted the results of performing a simulation using the ASGS
stabilised finite element method and a LES simulation consisting of a Smagorinsky
model plus ASGS stabilisation terms, in the line of what it is usually performed in
commercial finite element codes. Remind that we have argued in the last paragraph
of section 4.4.3 (see also the discussion in section 4.6.5) that the latter approach was
redundant in our opinion. The results in Fig. 6.13 show that the solution provided by the
Smagorinsky+ASGS is much more dissipative than the ASGS one (actually it is smaller
by an order of magnitude).

When comparing the results in Fig. 6.12 and Fig. 6.13 with experimental data, it
becomes apparent that the Smagorinsky+ASGS solution is clearly too dissipative so
that the computed spectra are much weaker than the measured ones. Concerning the
ASGS results in Fig. 6.12, it follows that they are only reliable at very low frequencies
(f < 20 − 30 Hz). For higher frequencies, the measured data is also higher than the
computed one. The only way to solve this problem is to use a much finer mesh, which
implies the use of supercomputer facilities. That is, the problem we are facing nowadays
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a) Pressure at P1, P2 b) Pressure at P3, P6, P9, P16

c) Pressure at P4, P7, P10, P17 d) Pressure at P5, P8, P11, P18

e) Pressure at P12, P14 f) Pressure at P13, P15

Figure 6.12: Loading pressure spectra at some control points.
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Figure 6.13: ASGS versus ASGS+LES (Smagorinsky).

can only be addressed with the use of powerful parallel supercomputers, if the audible
acoustic frequency range is to be considered (remind from section 2.2.1 that it comprises
from 20 Hz to 20.000 Hz).

Despite our simulation cannot cover the audible acoustic frequency range, the
methodology applied to face the aerodynamic sound generation problem remains valid. In
the next sections, we will give some results for the acoustic field generated by the vortices
shed by flow separation at the leading end of the train for some very low frequencies.

6.4 Aerodynamic acoustic source

Prior to presenting the results for the acoustic field we will have a look at the acoustic
source term, computed as the Reynolds tensor double divergence, ρ0 (∇⊗ u) : (∇⊗ u)⊤.
In Figs. 6.14a and b we respectively present a vertical and a horizontal cut showing
the source term isocontours for t = 13 s (we note that the plot limiting values have
been adapted to attain a better visualization). It can be observed that the source term
localises at those zones where flow separation takes place and strongly decreases to zero
when moving away from them. The situation is more more apparent in Fig. 6.15, where
the source term isosurfaces have been plotted. We remind that the fast decay of the source
term is at the core and actually justifies the acoustic analogy approach.

From Fig. 6.15 it can be seen that the acoustic source zone extends quite a long way
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a) Acoustic source term at y = 0 m, t = 13 s b) Acoustic source term at z = 3 m, t = 13 s

Figure 6.14: Isocontours for the acoustic source term (Reynolds tensor double divergence) for
t = 13 s. Vertical and horizontal cuts.

Figure 6.15: Isosurfaces for the acoustic source term (Reynolds tensor double divergenece) for
t = 13 s. Train at U0 = 69.2 m/s.
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on the train’s fairing surface, but remains quite concentrated at the laterals of the train’s
head. It will be seen in the next section that this will give place to a quite intricate
acoustic field on the upper part of the computational domain (above the train), while
clearly identifiable plane waves will propagate along the train laterals.

We would like to remark that the direct visualization of the acoustic source term,
as that provided by the herein presented methodology, may be extremely useful when
addressing control noise problems.

6.5 Outward radiated aerodynamic noise

6.5.1 Computational features and boundary conditions

Let us focus now on the computation of the outward radiated aerodynamic noise. Results
will be presented for three frequencies on the lower part of the audible spectrum, namely
f = 20, 25, 30 Hz. It is expected that for these low frequencies the computed velocity field
becomes more or less reliable, at least in what concerns the vortex shedding due to flow
separation.

In order to compute the acoustic field, use has been made of the same computational
domain and mesh used and described in section 6.2.2. for the aerodynamic field. The
mesh has turned to be fine enough so as not to require the use of stabilisation for the low
frequencies being considered.

In what concerns the problem boundary conditions, no Dirichlet boundary exists. The
Neumann boundary is built from ΓN = Γa

d ∪ Γt, while the Sommerfeld boundary condition
has been applied to Γ∞ = Γa

u ∪ Γa
i ∪ Γa

o ∪ Γa
lat1 ∪ Γa

lat2 (see Fig. 6.3). The corresponding
boundary conditions are given by:

Neumann boundary ΓN :

∇p̂′ · n = 0 on ΓN (6.4)

Sommerfeld radiation condition Γ∞:

∇p̂′ · n = ik0p̂ on Γ∞, (6.5)

where we remind that ω = 2πf , k0 = ω/c0.

6.5.2 Acoustic field

The resulting acoustic field for the three analysed frequencies is first shown in Fig. 6.16.
In Figs. 6.16a and b we have plotted the imaginary part of the acoustic pressure, Im (p̂′),
corresponding to f = 20 Hz and for vertical and horizontal planes respectively located at
y = 0 m (train centreline) and z = 2.6 m. The same results are plotted for the frequency
f = 25 Hz in Figs. 6.16c and d, and for f = 30 Hz in Figs. 6.16e and f.

In Fig. 6.16b we observe a clear plane wave pattern generated by sources located at the
laterals of the train nose. The waves propagate up and downstream with the wavelength
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a) Im (p̂′) at y = 0 m for f = 20 Hz b) Im (p̂′) at z = 2.6 m for f = 20 Hz

c) Im (p̂′) at y = 0 m for f = 25 Hz d) Im (p̂′) at z = 2.6 m for f = 25 Hz

e) Im (p̂′) at y = 0 m for f = 30 Hz f) Im (p̂′) at z = 2.6 m for f = 30 Hz

Figure 6.16: Isocontours of the imaginary part of the acoustic pressure Im (p̂′) for various
frequencies. Vertical and horizontal cuts.
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Figure 6.17: Isocontours of the imaginary part of the acoustic pressure on the outer
computational domain for f = 25 Hz

Figure 6.18: Isosurfaces of the imaginary part of the acoustic pressure f = 25 Hz.
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Figure 6.19: Imaginary part of the acoustic pressure on the train’s surface for f = 25 Hz.

corresponding to the f = 20 Hz frequency (λ = c0/f ∼ 17 m). Unfortunately, the
outward radiated waves propagating to the upper part of the domain, Fig. 6.16a, do not
show the correct wavelength, a fact attributed to the limited size of the computational
domain in the vertical direction. Similar considerations apply to the f = 25 Hz case
presented in Fig. 6.16a and b. The acoustic field is now weaker than for the f = 20 Hz
case but a clear pattern of plane waves propagating up and downstream can be identified
having the correct wavenumber (λ = c0/f ∼ 13.7 m). Again problems arise due to the
finite extension of the computational domain in the vertical direction. This fact is more
clearly appreciated in Figs. 6.17 and 6.18, where we have respectively plotted Im (p̂′)
on the outer boundary of the computational domain and its isosurfaces. On the other
hand, we have plotted the train’s parietal noise in Figs. 6.19 for f = 25 Hz. Note that
the maxima and minima due to the lateral waves propagating downstream can be clearly
appreciated.

In what concerns the sound field for f = 30 Hz (Figs. 6.16e and f) it is worthwhile to
mention that it is much weaker than for the f = 20, 25 Hz cases. Actually, the pressure
range in Figs. 6.16a,b,c and d was limited to [−10 10] Pa to distinguish the generated
sound waves. In Figs. 6.16e and f it has been limited to [−3 3] Pa for the same purposes.
We note that upstream propagating plane waves can be still distinguished, but that the
plane waves propagating downstream become distorted, probably due to noise generated
by shed vortices also travelling downstream.

As a result of the acoustic simulation we may conclude that although we have been
able to capture some main features of the acoustic field (upstream and downstream
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a) Streamlines b) Lateral vortex formation

Figure 6.20: Flow past high-speed train using supercomputing facilities. Courtesy of Dr.
G. Houzeaux from BSC (Barcelona Supercomputing Center).

propagating waves), we face again computational limitations that can seriously distort
the expected results. In fact, the present simulation has clearly made apparent one of
the main difficulties of computational aeroacoustics, namely the need to combine very
fine meshes to properly capture the flow aerodynamics with large computational domains
needed to correctly compute the generated acoustic field.

6.6 Conclusions

In this chapter we have considered the possibility to apply the methodology proposed
for computational aeroacoustics of low speed flows to an example of industrial interest.
We have focused on aeroacoustics of high-speed trains. After reviewing some general
schemes on how to face the general problem of acoustic noise prediction in railways, we
have concentrated on exterior noise radiation due to flow separation at the nose of the
leading coach. Although this is not the main source of externally radiated aerodynamic
noise, flow separation may be of importance concerning interior noise at low frequencies.
The latter question is of great interest for high-speed train manufacturers and shares the
CFD step needed for exterior aerodynamic noise prediction. Hence, we have addressed a
case yielding some results of direct industrial interest, which also serves as a test to see
the type of results to be obtained and difficulties to be faced, in the prediction of external
aerodynamic noise.

In what concerns the CFD step, the ASGS approach has provided much better results
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than the Smagorinsky model, which has turned to be too dissipative. However, when
comparing with experimental data we have seen that the computed pressure spectra at
the train’s fairing only becomes reliable for very low frequencies. A much finer mesh is
then needed to cover the whole acoustic frequency range of interest.

Concerning the acoustic source term computation, we have seen that its direct
visualization can provide very useful information for noise control. As expected, the
source term is strongly localised in the vicinities of flow separation zones, this localization
justifying the acoustic analogy approach.

The computation of the aerodynamically generated acoustic field has outcome some
interesting features. On one hand, waves propagating up and downstream the laterals of
the train have been well-captured. On the other hand, the computational domain has
revealed too small to properly capture waves propagating in the vertical direction.

In summary, we may conclude that the proposed methodology in the framework
of stabilised finite element methods seems to be valid to reproduce the main physical
characteristics of the analysed aerodynamic noise generation problem. However, the herein
presented simulation suffers from one of the main difficulties of CAA, namely the need to
use extremely fine meshes to capture the aerodynamic velocity field, in combination with
large computational domains to properly capture the acoustic field. Alternative CAA
approaches exist aiming at the solution of this question. However, if one wants to cover
the whole acoustic frequency range for an industrial problem such as the herein proposed
for high-speed trains, the only way to proceed with some guarantee of success is to resort
to supercomputer facilities (see Figs. 6.20a and b). This is the future line of work we have
began to face.



Chapter 7

Conclusions and future work

Given that detailed conclusions have been given at the end of each chapter, in this section
we will limit to briefly review and summarise the main outcomes of this thesis. Future
lines of research to pursue the herein developed work will be also outlined.

The main contributions and conclusions of this thesis are:

• As a first outcome, a methodology for Computational Aeroacoustics (CAA) has
been proposed in the framework of stabilised finite element methods. The method
is based on a three step approach consisting of a first unsteady Computational
Fluid Dynamics (CFD) simulation for incompressible flow in the spatial domain.
This simulation serves to obtain the acoustic source term (double divergence of the
velocity field Reynolds tensor) responsible for the generation of aerodynamic noise.
In the second step of the method, the latter source term is Fourier transformed to
the frequency domain (in practice, this Fourier transform is performed during the
CFD computation for initially selected frequencies, to save the storage of a large
amount of time data). Finally, in the third step of the method a Helmholtz equation
is solved using the acoustic source obtained in the second step as the inhomogeneous
term (Lighthill’s acoustic analogy in the frequency domain).

The proposed approach makes use of stabilised finite element methods to solve
both, the incompressible Navier-Stokes equations in the first step of the method
and the inhomogeneous Helmholtz equation in the third step. The method has
some advantages when compared to more standard approaches such as allowing
a direct visualization of the acoustic source term, making use of C0-class finite
elements, maintaining the multipolar character of the acoustic field (given that noise
generated by flow motion is considered naturally in a addition to noise generated
by the flow/boundary interaction) and avoids the typical retarded time integration
problem of the classical time integral approach to CAA. These points have been
supported by presented simulations on aerodynamic noise generated by flow past
rigid bodies, showing very good performance when compared to other methods.

• The second main contribution of this work concerns some issues of the first step
of the method, namely the CFD simulation of turbulent incompressible flows.

223
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After reviewing some aspects of the mathematical theory of the Navier-Stokes
equations, and after showing its close relation with very recent approaches to Large
Eddy Simulation (LES), we have addressed the question if standard physical LES
modelling is in fact necessary. That is to say, we have aimed at giving support to the
idea that the simulation of turbulence should probably rely on appropriate numerical
simulation schemes rather than on physical modelling. A heuristic argument has
been developed to do so and some numerical examples have been also presented.

The heuristic argument states that the rate of transfer of subgrid kinetic energy
provided by the stabilisation terms in the Orthogonal Subgrid Scale (OSS) finite
element method is already proportional to the molecular physical dissipation rate.
Hence, the inclusion of an extra LES physical model in the equations to achieve this
behaviour seems at least redundant. To prove this result we have combined some
results of statistical fluid mechanics with some results of numerical methods. In
particular, we have assumed that the flow statistics, which are valid for the exact
velocity field, remain also valid for its finite element approximation. Concerning
the flow statistics, use has been made of Kolmogorov’s first and second similarity
hypotheses and of the quasi-normal approximation for two point fourth-order
velocity correlations. The argumentation is valid for a fine enough computational
mesh so that its characteristic length lies in the inertial subrange of a turbulent
flow.

On the other hand, two numerical examples, the decay of two-dimensional isotropic
turbulence and a three-dimensional turbulent flow impinging on a plate have shown
how the use of appropriate finite element stabilisation scheme (the herein ones
including the time tracking of subscales) may properly capture the behaviour of
turbulence.

• The third basic result of this thesis is the development of an algebraic subgrid
scale (ASGS) finite element method for the two dimensional convected Helmholtz
equation that improves the standard Galerkin solution to it. The method is formally
equivalent to the Galerkin / Least Squares (GLS) approach reverting the sign of its
stabilisation parameter. The latter has been obtained from a dispersion analysis
and it reduces to well-known GLS values for the Helmholtz equation in the case of
no convection.

Although the stabilisation parameter has been specifically derived for a structured
mesh of quadrilateral elements and it includes a preferred direction for which
yields exact nodal values, numerical examples have shown that it improves the
Galerkin solution in a large amount of cases. On one hand, it has been shown that
improvements can be obtained for plane waves propagating in different directions
with respect to the mean flow and using non-structured meshes of quadrilateral
elements. On the second hand, even for more intricate problems involving meshes
of triangular elements, the stabilised solution has shown superior behaviour than
the Galerkin solution. This has been the case of aerodynamic noise generated by
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flow past a cylinder.

It is also worthwhile to mention that the developed ASGS method can prove
very useful for problems where a certain degree of information on the wave
propagation directions is known a priori. This would be the case, for instance,
of duct acoustics where two stabilisation parameters accounting for upstream and
downstream propagating waves could be implemented. Finally, it should be noticed
from the formulation that a remarkable advantage of the method is that it can be
implemented at almost no computational cost.

Let us focus now on possible future lines of work and research that could be followed
in order to complement and improve the herein presented developments.

Concerning the CAA strategy, the following points should be considered.

• Some type of analysis should be performed in order to know the degree of precision
of the computed acoustic field. Although the validity of Lighthill’s acoustic analogy
has been extensively analysed for the continuous case by some authors, further work
is needed to asses similar results for the herein presented and similar numerical CAA
approaches.

• In the line of the previous point, it would be worthwhile to implement Ristorcelli’s
closure and compare its degree of accuracy with Lighthill’s acoustic analogy for some
benchmark problems.

• When applying the proposed CAA approach to problems of industrial interest
(high-speed train example in chapter 6) we have found that large computational
facilities are required in order to cover the whole acoustic frequency range. Hence,
implementation of the CAA approach in supercomputing facilities turns to be
mandatory to solve this kind of problems, a subject that is being currently
performed.

• In order to cover a wider class of problems, Lighthill’s acoustic analogy could be
extended to include thermo-acoustic sources to be also implemented in the stabilised
finite element framework we have used. A very similar approach to the one exposed
in his work could be followed.

In what refers to the work developed for the computation of the aerodynamic field,
the following would be useful:

• The heuristic argument developed for the OSS method could be extended to other
subgrid scale stabilised (SGS) finite element methods.

• It would be worthwhile to check if the various SGS methods constitute suitable
approximations to the Navier-Stokes equations. Since now it has only been proved
that the Galerkin finite element method for problems with periodic or Dirichlet
boundary conditions satisfy this assumption.
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• Further numerical experiments should be carried out to check the performance of
the SGS methods as alternatives to classical LES approaches for the simulation
of turbulent flows. We have seen that the inclusion of the time tracking for the
subscales has allowed to properly capture the energy spectrum for the decay of two-
dimensional isotropic turbulence and the pressure spectrum for a three-dimensional
turbulent flow impinging on a plate. However, more tests are required to assess
the validity of this approach. In particular, we should be able to reproduce
Kolmogorov’s energy spectrum for decaying three-dimensional turbulence as well
as the appropriate decay in time of energy, enstrophy and other related statistical
variables. Another standard test that should be carried out is the channel flow,
which will allow to see if the log behaviour after the laminar sublayer (Prandtl
theory) in the flow turbulent boundary layer is correctly captured. Other questions
such as if the SGS methods allow for backscatter or if the dimension of the global
attractor is properly reproduced should be also addressed.

Finally, related to the third step of the method, i.e., the computation of the acoustic
field, the following should be noted:

• The numerical study of the convected wave and Helmholtz equations is very recent.
Hence, the use of stabilisation techniques and other related approaches is still at its
first beginnings. We have proposed a simple extension of the ASGS approach for the
stabilisation of the two-dimensional convected Helmholtz equation, which could be
extended to the three-dimensional case. On the other hand, probably many other
stabilisation methods already developed for the more general convection-diffusion-
reaction systems or for the non-convected Helmholtz equation could be applied
and/or extended for the convected Helmholtz case. In this sense, a large amount of
work is still to be done and the possibilities are extremely vast.

• We have concentrated on the development of the ASGS method for the convected
Helmholtz equation and on testing its behaviour by means of some examples. A
numerical analysis of its performance including stability and convergence analysis
should be also carried out.
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