
A Finite Element Model for Free
Surface and Two Fluid Flows on

Fixed Meshes

Herbert Coppola Owen

Advisor: Ramon Codina

Escola Tècnica Superior d’ Enginyers

de Camins, Canals i Ports

Universitat Politècnica de Catalunya

April 2009

.

A mi familia,

.

ACTA DE QUALIFICACIÓ DE LA TESI DOCTORAL

Reunit el tribunal integrat pels sota signants per jutjar la tesi doctoral:

T́ıtol de la tesi: A Finite Element Model for Free Surface and Two Fluid Flows on Fixed

Meshes

Autor de la tesi: Angel Heriberto Coppola Owen

Acorda atorgar la qualificació de:

� No apte

� Aprovat

� Notable

� Excel·lent

� Excel·lent Cum Laude

Barcelona, de/d’ . de

El President El Secretari

. .

(nom i cognoms) (nom i cognoms)

El vocal El vocal El vocal

. .

(nom i cognoms) (nom i cognoms) (nom i cognoms)

Acknowledgments

Ramon, no doubt I have been lucky. Not only is he brilliant but also kind, fair and

patient. Thank you Ramon!

I would also like to thank the RMEE department of the Universitat Politècnica de

Catalunuya and CIMNE. Specially, Eugenio Oñate, for giving me the opportunity of

coming to Barcelona. Working with Guillaume Houzeaux, Santi Badia, Oriol Guasch,

Matias Avila, Christian Muñoz Joan Baiges, Shu-Ren Hysing, Noel Hernandez, and Javier

Principe has been very enriching. Special thanks go to Javier with whom I worked both

at Buenos Aires and Barcelona. He has helped me with both theoretical and practical

matters. With Ramon, Guillaume, Javier and Mariano Vazquez we started the code I have

used in this thesis. It has been very nice to do some team work. I have also learned from my

interaction with Gerardo Valdez, Romain Aubry, Monica de Mier, Ricardo Rossi, Carlos

Labra, Pooyan Dadvan, Michele Chiumenti, Anne Cécile Lesage and Vicente. Thanks to

the rest of my office mates: Roberto, Jeovan, Pablo and Maritzabel.

During my thesis I have worked with the people from Quantech in mould filling

simulations. Special thanks go to Martin Solina with whom I have interacted most.

Rainald Lohner received me for a stay at George Mason University. I would like to

thank him and his group: Fernando Camelli, Juan Cebral, Chi Yang, Fernando Mut,

Marcelo Castro, Joaquin Arteaga, Romain Aubry and Orlando Soto. Cielo, Martin and

the rest of the Colombian-Slovak group made our stay at USA more pleasant.

Marcela Goldschmit and Eduardo Dvorkin introduced me to computational

mechanics, allowed me to work with them at the Center for Industrial Research (CINI)

and motivated me to pursue doctoral studies abroad. I would like to thank them and all

7

of my companions at CINI.

The financial support received from the Agència de Gestió d’Ajuts Universitaris i de

Recerca of the Generalitat de Catalunya (Catalan Government) and the European Social

Fund through a doctoral grant is acknowledged.

Finally, I would like to thank my friends in Barcelona, Stevie, Riso, Vale, Bea, Daniel,

Adrian, Sergio and Joseph and the UPC rowing team who have helped me disconnect from

the doctorate. I also would like to mention my friends from St. John’s and the University

of Buenos Aires that, despite the distance, are always present. The support of my family

and the love of wife, Liliana, have helped me during the good and bad times.

Abstract

Flows with moving interfaces (free surface and two-fluid interface problems) appear in

numerous engineering applications. The methods presented in this thesis are oriented

mainly to the simulation of mould filling process. Nevertheless the methodology is

sufficiently general as to be applied to most free surface and two-fluid interface flows.

Numerical modeling provides an efficient way of analyzing the physical phenomena that

occur during casting and injection processes. It gives insight into details of the flow that

would otherwise be difficult to observe.

A fixed mesh finite element method, where the interface position is captured by the

Level Set function, is used. Low Froude number flows are particularly challenging for fixed

grid methods. An accurate representation is needed in the elements cut by the interface

for such flows. Two alternatives are proposed.

The first alternative is to use the typical two-phase flow model enriching the pressure

shape functions so that the discontinuity in the pressure gradient at the interface can be

better approximated. The improvement in the representation of the pressure gradient is

shown to be the key to ingredient for the successful modeling of such flows.

The influence of the second fluid can be neglected on a wide range of applications

to end up with a free surface model that is simpler than the two-phase flow model. The

discontinuity in the pressure gradient disappears because only one fluid is simulated. The

particularity of this second approach is that a fixed mesh is used. Boundary conditions

are applied accurately using enhanced integration and integrating only in the filled part

of cut elements. A fixed mesh ALE approach is developed to correctly take into account

that the domain is moving despite a fixed mesh is used.

9

10

Pressure segregation methods are explored as an alternative to the monolithic

discretization of the Navier Stokes equations. They uncouple the velocity and pressure

unknowns, leading to smaller and better conditioned subproblems. Pressure correction

and velocity correction methods are presented and compared numerically. Using a discrete

Laplacian a numerically stable third order velocity correction method is obtained.

The methods are applied to three dimensional mould filling problems borrowed

directly from the foundry with very satisfactory results. The free surface monolithic

model turns out to be the most robust and efficient option. The comparison with a

commercial code shows the accuracy and efficiency of the method we propose.

Contents

1 Introduction and basic model 15

1.1 Introduction . 15

1.1.1 Classification of methods for flows with interfaces 16

1.1.2 Organization . 19

1.1.3 Notation Issues . 21

1.2 Two fluid Navier–Stokes equations . 23

1.2.1 The (one fluid) Navier–Stokes equations 23

1.2.2 The two fluid Navier–Stokes equations 25

1.2.3 Basic discretized problem . 28

1.2.4 Stabilized problem . 31

1.2.5 Matrix version of the problem . 38

1.2.6 Material properties approximation 39

1.2.7 Mixed boundary conditions on curved walls 41

1.3 The Level Set equation . 45

1.3.1 Interface Capturing Techniques . 45

1.3.2 Implementation of the level set method 47

1.3.3 Reinitialization . 49

1.3.4 Coupling between the flow equations and the Level Set 50

2 An enriched pressure two-phase flow model 53

2.1 Discontinuous Gradient Pressure Shape Functions 54

11

12 CONTENTS

2.2 Numerical Examples . 59

2.2.1 Two–fluid cavity . 60

2.2.2 3D vertical channel . 65

2.2.3 Sloshing problem . 67

2.3 Conclusions . 68

3 A free surface model 73

3.1 ALE description of the Navier–Stokes equations 75

3.2 FM-ALE free surface model . 77

3.3 Eulerian simplified free surface model . 83

3.4 Numerical examples . 86

3.4.1 Two–fluid cavity . 86

3.4.2 3D vertical channel . 90

3.4.3 Sloshing problem . 91

3.5 Two computationally demanding examples 92

3.5.1 3D dam-break wave interacting with a circular cylinder 93

3.5.2 3D Green water problem . 94

3.6 Conclusions . 96

4 Pressure Segregation Methods 101

4.1 Pressure correction methods . 103

4.1.1 Fractional Step (non Predictor Corrector) schemes 103

4.1.2 Predictor Corrector scheme . 105

4.2 The Pressure Schur Complement approach 108

4.3 Velocity correction methods . 116

4.3.1 The Discrete Pressure Poison Equation 117

4.3.2 Approximation of DM−1G . 118

4.3.3 Fractional step scheme . 120

4.3.4 Predictor corrector scheme . 122

4.3.5 Stabilized Scheme . 124

CONTENTS 13

4.3.6 Remarks on the ASGS and non split OSS stabilized cases 125

4.4 Open boundary conditions . 127

4.5 Numerical examples . 129

4.5.1 Driven Cavity . 130

4.5.2 Flow behind a cylinder . 148

4.5.3 Convergence test . 156

4.5.4 Results with the rotational form . 161

4.6 Conclusions . 165

5 Mould Filling 171

5.1 Introduction . 171

5.2 Free surface monolithic model . 176

5.2.1 Hollow mechanical piece . 177

5.2.2 Alloy wheel . 183

5.2.3 Shovel . 185

5.2.4 Results with the FM-ALE model 190

5.3 Free surface velocity correction model . 191

5.4 Enriched pressure two phase flow monolithic model 194

5.4.1 Hollow mechanical piece . 195

5.4.2 Wheel . 202

5.4.3 Shovel . 205

5.5 Enriched pressure two phase flow velocity correction model 209

5.5.1 Hollow mechanical piece . 209

5.5.2 Wheel . 210

5.5.3 Shovel . 212

5.6 Conclusions . 212

6 Conclusions 217

6.1 Achievements . 217

6.2 Open lines of research . 220

14 CONTENTS

Chapter 1

Introduction and basic model

1.1 Introduction

Flows with moving interfaces (free surface and two–fluid interface problems) appear in

numerous engineering applications. The numerical simulation of interface flows can be a

great ally in the understanding and improvement of such applications. The great number

of publications on the subject is the best evidence of the interest on the subject. The fields

of application are as wide as can be observed from the following examples: drop formation

in ink-jet devices [104], ship hydrodynamics [76–78,88] and mould filling [31, 80, 97].

The methods presented in this thesis will be oriented mainly to the simulation of

mould filling processes. Nevertheless the methodology is sufficiently general as to be

applied to most free surface and two–fluid interface flows. Numerical modeling provides an

efficient way of analyzing the physical phenomena that occur during casting and injection

processes. It gives insight into details of the flow that would otherwise be difficult to

observe. When coupled with the appropriate models, it can also provide information

about heat transfer and solidification. The numerical results can help shorten the design

process and optimize casting parameters to improve the castings, reduce scrap and use

less energy.

In this thesis we will deal with both free surface and two-fluid interface problems. The

15

16 CHAPTER 1. INTRODUCTION AND BASIC MODEL

former are a special case of the latter where the influence of one of the fluids on the other

one is negligible. In most casting applications the free surface model can be used because

one is only interested in the behavior of the fluid and the influence of the air is negligible.

Obviously free surface flows can be modeled as two fluid flows where the properties of

one of the fluids are much smaller than those of the other one. Special models that take

into account the particularities of free surface flows can also be developed (see Chapter

3). The term interface flows refers to both free surface and two–fluid interface flows.

The objective of this thesis is to develop or improve techniques that can be used

in finite element mould filling software. The range of numerical methods available for

interface flows is as wide as the range of applications. As in most CFD applications,

several spatial discretization methods can be used, among them: finite differences, finite

elements, finite volumes and even meshless methods. On the other hand the existence of

a moving interface gives raise to a huge number of methods to deal with such flows. In the

next subsection we will present a brief classification of the most relevant ones. The first

and perhaps the most significant classification depends on the nature, fixed or moving,

of the grid used. In this thesis we will use a fixed mesh approach, in particular the Level

Set method. Both the discretization method and the fixed grid approach were selections

made prior to the beginning of this thesis. The choice of the best discretization method

is a problem dependent question that we do not intend to answer in this thesis. The

classification of the different moving interface methods presented in the next subsection

intends to clarify where we stand and show some of the alternatives we could have,

something we hope will be useful for the reader that steps into the subject. On the other

hand, we hope that it can show that the methodology we will work with is a pretty

reasonable choice.

1.1.1 Classification of methods for flows with interfaces

The classification of the methods used for free surface and two fluid flows is not an

easy task mainly because of the wide range of schemes that exist. Some interesting

1.1. INTRODUCTION 17

classifications and comparisons can be found in [70, 103, 109,112,116]

As we have already mentioned one of the classifications depends on the nature, fixed

or moving, of the grid used. Another common option is to classify methods into interface

tracking and interface capturing [70]. In tracking schemes the position of discrete points

xi lying on the interface is tracked for all time by integrating the evolution equation

dxi
dt

= ui

where ui is the velocity with which interface point xi moves Moving mesh methods are

interface tracking schemes where the points i correspond to nodes placed on the interface.

In capturing methods, the interface is not explicitly tracked, but rather captured using

some interface function (ψ) defined over the whole mesh that allows to determine which

fluid occupies any point in the domain. The evolution equation for the interface function

is given by
∂ψ

∂t
+ (u · ∇)ψ = 0.

The third classification would separate methods into Eulerian ones which solve the

Navier–Stokes equations on fixed grids and Lagrangian (or Arbitrary Eulerian Lagrangian,

ALE) ones which solve them on a grid that follows (or partially follows) the characteristics

of the flow.

In order to try to unify the three previous classifications one could speak about moving

mesh, interface tracking or Lagrangian schemes and fixed mesh, interface capturing or

Eulerian ones. Despite this might seem the most natural way of unifying the previous

classifications, there are some methods that would not fit properly into such unification

and could be considered as an exception to the rule. In the pursuit for better methods it

is not uncommon to see authors that try to blend components from the two main class

of methods we have defined. For example Front Tracking Methods [112] which have their

roots in the MAC method of Harlow and Welch [54] are, as their name indicates, tracking

schemes but they use a fixed mesh to model the flow. In Chapter 3 we will present a

model for free surface flow that uses a ALE approach on a fixed mesh and thus, would

on one hand be classified into the Lagrangian group and on the other into the fixed mesh

18 CHAPTER 1. INTRODUCTION AND BASIC MODEL

group.

Neglecting some particular schemes, the unified classification we have presented can

be considered valid for most cases. In most interface capturing techniques a fixed

computational domain is used and an interface function is used to capture the position

of the interface. The interface is captured within the resolution of the fixed mesh and

the boundary conditions at the interface are somehow approximated. In most interface

tracking techniques the mesh is updated in order to track the interface. The simplest

approach is to deform the mesh without changing its topology, but it is valid only for

very simple flows. As the flow becomes more complex and unsteady remeshing and

consequently the projection of the results from the old to the new mesh are needed

[3, 64, 71, 87].

For the same mesh size moving grid techniques lead to a more accurate representation

of the interface at a higher computational cost. In Chapter 2 we will use a fixed

grid method and introduce modifications to the basic formulation to enhance the

representation of the flow at the interface. The idea of enriching the representation of an

unknown at a material discontinuity is not new and several approaches can be found in

the literature [19, 81].

Fixed mesh methods generally share two basic steps, one where the motion in both

phases is found as the solution of the Navier–Stokes equations with variable properties

and the other one, where an equation for an interface function that allows to determine

the position of the interface, and thus the properties to be assigned in the previous step, is

solved. The different methods differ mainly in the method used to determine the position

of the interface but also differences can be found in the way to approximate the properties

to be used close to the interface. In Section 2 we will deal with the first step and in Section

3 with the second one.

A mentioned previously, we capture the interface using the so called level set method

(see [18,106] and [89,90,104] for an overview), also called pseudo–concentration technique

[110] and very similar to the volume of fluid (VOF) technique [57,79]. This formulation has

been widely used to track free surfaces in mould filling (see for example [31,73,80,94,97],

1.1. INTRODUCTION 19

among other references) and other metal forming processes.

1.1.2 Organization

This thesis is organized as follows. The present Chapter presents an introduction to the

numerical simulation of free surface and two–fluid interface flows and the basic model used

to simulate interface flows on fixed meshes. Also in the next subsection some preliminary

or notation issues will be included.

The next Section deals with the solution of the Navier–Stokes equations for flows

with interfaces. First the equations to be solved are presented. Then their space and

time discretization is described. Finally two stabilization techniques that allow us to

model flows with important convective effects and also enable the use of equal order finite

element interpolations for the velocity and pressure are introduced. A Monolithic or

Mixed discretization is used.

The third Section deals with the Level Set Method used to determine the position

of the front. The relations with some of the other most popular interface capturing

techniques, pseudo-concentration and VOF, are analyzed. The space and time

discretization of the Level Set equation is undertaken and the problem is stabilized.

Finally some technical issues such a reinitialization and calculation of extension velocities

are briefly discussed.

This first Chapters describes the basic elements of a typical Finite Element Level Set

model for interface flows. The next two Chapters present developments we propose to

improve the simulation of two phase flows. These developments gain special importance

in the simulation of low Froude number flows, that is, when the gravitational forces are

bigger than the inertial ones. Something we would like to remark is that our improvements

are focused on the modelling of the Navier–Stokes equations and not on the step that deals

with the Level Set equation. The poor behavior that can be observed using the typical

model for low Froude number flows and the degree of improvement we have obtained

justify such choice. Strangely, specially in the level set community, much more attention

20 CHAPTER 1. INTRODUCTION AND BASIC MODEL

is paid to the solution of the Level Set equation than to the solution of the two fluid

Navier–Stokes equations.

Chapter 2 presents our first original contribution [36,37], a way of improving Eulerian

two-phase flow finite element approximation with discontinuous gradient pressure shape

functions. Chapter 3 presents our second important contribution [29,38], another way of

improving interface flows that is applicable only to free surface flows. An ALE formulation

is used but the mesh remains fixed (FM-ALE).

Taking into account that the objective of our research is to be used efficiently in finite

element mould filling software, we try to concentrate on those items we find hinder our

objective most. The most relevant one is the size of the problems we can handle and

the efficiency with which we can tackle them. The step that solves the Navier-Stokes

equations is by far more computationally expensive than the one that solves the Level

Set equations and is therefore the one we wish to improve. When solving the Navier-

Stokes equations the most expensive step, specially as the size of the problem grows, is

the solution of the resulting linear system. Two types of solvers are available, direct and

iterative. The former have the advantage that the obtention of a solution is guaranteed

after a fixed number of steps that does not depend on the condition of the matrix of the

system to be solved. The latter, despite their convergence is not guaranteed in practical

situations, as it depends on the condition number of the matrix to be solved, have the

advantage that the computational cost increases much more slowly than that of direct

solvers as the size of the system to be solved increases. Therefore they are the undisputed

option as the size of the systems to be solved grows, as happens in industrial 3D mould

filling simulations. Our initial experience with iterative solvers was not very satisfactory

and most of our problems were solved using direct solvers. Despite we implemented and

tested a modern sparse direct solver called MUMPS [1, 2] that brought about significant

improvements with respect to our previous direct solver, it is still too expensive for real

industrial problems. After making some further experience with iterative solvers and their

preconditioners we have obtained much better results as shown in Chapter 5.

In Chapter 4 we explore pressure segregation methods [4] (also known as Fractional

1.1. INTRODUCTION 21

Step methods) for the Navier–Stokes equations. Since their appearance in the late

1960’s, with the pioneering works of Chorin [20] and Teman [107], these methods have

enjoyed widespread popularity. Their common feature is the decoupling of the velocity

and pressure interpolation. Such uncoupling yields an important computational cost

reduction, on one hand because the systems are uncoupled, and on the other, perhaps

the key one, because each of the resulting systems are better conditioned than the one

resulting from the monolithic system. Both pressure correction and velocity correction

methods (a more recent option) will be explored. Besides, the predictor corrector versions

will also be tested. Predictor corrector methods also decouple the solution of the velocity

and pressure, but they iterate until convergence so as to recover the monolithic solution.

Fractional Step methods can be seen as a predictor corrector scheme that is only allowed

to iterate once. The choice between monolithic or pressure segregation schemes is, up

to what we understand, an open question and there are important research groups that

stick to one or the other formulation. Obviously it is also a problem dependent question.

Our intention is to build some solid knowledge on which to base our selection (for the

problems we are interested in) resorting mainly to numerical experimentation.

In Chapter 5 we apply the tools developed in the previous Chapters to mould filling

problems. The free surface model is compared against the enriched pressure two phase

model. The results obtained with the monolithic scheme are compared against the ones

obtained with the velocity correction scheme. Moreover the results are compared against

the ones obtained with a commercial code. The advantages introduced by the two models

we propose are clearly noticeable on low Froude number flows.

1.1.3 Notation Issues

Functional Spaces

In order to introduce the notation to be used in this work, a brief summary of some

concepts on functional analysis will be presented. For a more detailed presentation any

standard text on the subject can be consulted [85]

22 CHAPTER 1. INTRODUCTION AND BASIC MODEL

Let Ω ⊂ R
d, d = 2 or 3, be a bounded domain. C∞

0 (Ω) is the set of infinitely

differentiable real functions with compact support on Ω. Lp (Ω) , 1 ≤ p < ∞ is the space

of real functions defined on Ω with p-th power absolutely integrable with respect to the

Lebesgue measure. It is a Banach space with the associated norm

‖u‖Lp(Ω) :=

(∫
Ω

|u (x)|p dΩ

)1/p

.

L2 is of special interest since it is a Hilbert space endowed with the scalar product

(u, v)Ω =

∫
Ω

u (x) v (x) dΩ

and the norm

‖u‖L2(Ω) := (u, u)
1/2
Ω .

The Sobolev space Wm,p (Ω) is the space of functions in Lp (Ω) whose weak derivatives of

order less than or equal m belong to Lp (Ω), being m an integer and 1 ≤ p < ∞. When

p = 2, the space Wm,2 (Ω) = Hm (Ω) is a Hilbert space endowed with a scalar product

and a norm. For example, for m = 1 the scalar product is

((u, v))Ω = (u, v)Ω +

d∑
i=1

(∂iu, ∂iv)

and the norm is

‖u‖H1(Ω) := ((u, u))
1/2
Ω .

The d -dimensional vector functions with components in one of the previous spaces will

be denoted by boldface letters, for example L2 (Ω) = (L2 (Ω))
d
.

Time discretization

In order to try to unify the notation we will introduce here the key concepts on time

discretization to be used in this work. Considering a uniform partition of the time interval

of size δt, and denoting by fn an approximation to a time dependent function f at time

tn = nδt, for a parameter θ ∈ [0, 1], we will denote

fn+θ = θfn+1 + (1 − θ) fn,

1.2. TWO FLUID NAVIER–STOKES EQUATIONS 23

δfn+1 = δ(1)fn+1 = fn+1 − fn,

δ(i+1)fn+1 = δ(i)fn+1 − δ(i)fn, i = 1, 2, 3, ...

Let us also define

Dt (·) =
δ (·)
δt

.

The discrete operators δ(i+1) are centered. We will also use backward difference operators

Dkf
n+1 =

1

γk

(
fn+1 −

k−1∑
i=0

αik f
n−i
)
,

D1f
n+1 = δfn+1 = fn+1 − fn,

D2f
n+1 =

3

2

(
fn+1 − 4

3
fn +

1

3
fn−1

)
,

as well as the backward extrapolation operators

f̃n+1
i = fn+1 − δ(i)fn+1 = fn+1 −O (δti) ,

f̃n+1
1 = fn,

f̃n+1
2 = 2fn − fn−1.

1.2 Two fluid Navier–Stokes equations

1.2.1 The (one fluid) Navier–Stokes equations

Before introducing the two fluid Incompressible Navier–Stokes equations, the typical

one fluid version will be presented, as it the starting point from which the former are

derived. The Navier–Stokes equations are the basic equations of fluid mechanics for

incompressible flow and can be derived from the continuum mechanics conservation laws,

see for example [8].

The Navier–Stokes equations, using an Eulerian description, for a fluid moving in the

open domain Ω bounded by Γ = ∂Ω during the time interval (t0, tf) consist in finding a

24 CHAPTER 1. INTRODUCTION AND BASIC MODEL

velocity u and a pressure p such that

ρ
[
∂tu + (u · ∇)u

]
−∇ · σ = f in Ω × (t0, tf), (1.1)

∇ · u = 0 in Ω × (t0, tf), (1.2)

where ρ is the density, σ the stress tensor and f the vector external body forces, which

includes the gravity force ρg and buoyancy forces, if required. Using the constitutive

equation for a Newtonian and isotropic fluid

σ = −pI + 2µε (u)

where µ is the dynamic viscosity, I is the identity tensor and ε(·) the symmetric gradient

operator, the momentum equation (1.1) can be rewritten in one of its usual forms

ρ
[
∂tu + (u · ∇)u

]
−∇ · [2µε(u)] + ∇p = f in Ω × (t0, tf), (1.3)

which we will call divergence form. For a constant µ and using the incompressibility

constraint imposed by the continuity equation (1.2) the most usual form

ρ
[
∂tu + (u · ∇)u

]
− µ∆u + ∇p = f in Ω × (t0, tf),

which we will call Laplacian form, can be obtained.

Denoting by an over-bar prescribed values, the boundary conditions to be considered

are:

u = u on Γdu × (t0, tf),

n · σ = t on Γnu × (t0, tf),

u · n = 0, n · σ · g1 = t1, n · σ · g2 = t2 on Γmu × (t0, tf),

(1.4)

where n is the unit outward normal to the boundary ∂Ω and vectors g1 and g2 (for the

three-dimensional case) span the space tangent to Γmu. Observe that Γdu is the part of

the boundary with Dirichlet velocity conditions, Γnu the part with Neumann conditions

(prescribed stress) and Γmu the part with mixed conditions. These three parts do not

intersect and are a partition of the whole boundary ∂Ω. Initial conditions

u = u0 in Ω × {t0} ,

1.2. TWO FLUID NAVIER–STOKES EQUATIONS 25

have to be appended to the problem.

In order to obtain the weak or variational formulation of the Navier–Stokes equations

written in divergence form ((1.3) and (1.2)) we introduce the spaces

V 0≡
{
v ∈ H1 (Ω) | v = 0 on Γdu , v · n = 0 on Γmu

}
,

V ≡{v ∈ H1 (Ω) | v = u on Γdu , v · n = 0 on Γmu

}
,

V t≡L2 (t0, tf ; V) ,

Q≡
⎧⎨⎩ L2 (Ω) if Γnu �= ∅

L2 (Ω) /R if Γnu = ∅
Qt≡L1 (t0, tf ;Q)

The weak form is then obtained by multiplying each of the momentum equations (1.3) by

an arbitrary element of V 0, v, and the continuity equation (1.2) by an arbitrary element

of Q, q, and integrating the term corresponding to the stress tensor by parts.

The weak form of problem (1.3, 1.2) with the boundary conditions we have just defined

is: Find u ∈ V t , p ∈ Qt such that

ρ

∫
Ω

∂tu · v dΩ + ρ

∫
Ω

[(u · ∇)u] · v dΩ + 2

∫
Ω

µε (u) : ε (v) dΩ

−
∫

Ω

p ∇ · v dΩ = ρ

∫
Ω

f · v dΩ +

∫
Γnu

t · v dΓ +

∫
Γmu

(t1g1 + t2g2) · v dΓ

∫
Ω

q ∇ · u dΩ = 0

for all (v, q) ∈ V 0 ×Q.

1.2.2 The two fluid Navier–Stokes equations

The two fluid Navier–Stokes equations on a domain Ω = Ω1 ∪ Ω2 separated by a moving

interface Γint can be obtained starting from the Navier–Stokes equations defined on each

domain [18] , written in divergence form

ρ1

[
∂tu1 + (u1 · ∇)u1

]
−∇ · σ1 = f1 in Ω1 × (t0, tf),

26 CHAPTER 1. INTRODUCTION AND BASIC MODEL

∇ · u1 = 0 in Ω1 × (t0, tf),

and

ρ2

[
∂tu2 + (u2 · ∇)u2

]
−∇ · σ2 = f 2 in Ω2 × (t0, tf),

∇ · u2 = 0 in Ω2 × (t0, tf),

In order to simplify the presentation we will suppose that the only Neumann boundary in

both Ω1 and Ω2 corresponds to the interface and that Γmu = ∅. The boundary conditions

at the interface are obtained as follows. Since the flow is viscous

u1 = u2 on Γint.

On the other hand, the balance of surface forces on the interface gives

(σ1 − σ2) · n = k κ n on Γint (1.5)

where the term on the right hand side models the surface tension; k is a constant coefficient

that depends on the two fluids in contact (usually σ is used in the literature but we have

used k to avoid confusions), κ is the local curvature of the interface and n is the normal

pointing towards the positive curvature region. In mould filling simulations the effects

of surface tension are usually negligible and therefore will not be taken into account

in this thesis (k = 0). Nevertheless they will be included in the derivation of the two

fluid Navier–Stokes equations. Using the same functional spaces as in the one fluid case,

the momentum equations corresponding to each of the two fluids are multiplied by an

arbitrary element of V 0, v, and integrated over their corresponding domains, the term

corresponding to the stress tensor is integrated by parts, and the variational formulations

corresponding to each of the two fluids are added. The same procedure is followed for the

continuity equation using an arbitrary element of Q, q. Finally, defining

u, p, ρ, µ,f ,σ =

⎧⎨⎩ u1 p1, ρ1, µ1, f1, σ1 x ∈ Ω1,

u2 p2, ρ2, µ2, f2, σ2 x ∈ Ω2,
(1.6)

1.2. TWO FLUID NAVIER–STOKES EQUATIONS 27

the unified variational formulation is obtained. Find u ∈ V t , p ∈ Qt such that∫
Ω

∂tρu · v dΩ +

∫
Ω

ρ [(u · ∇)u] · v dΩ +

∫
Ω

σ (u) : ε (v) dΩ (1.7)

=

∫
Ω

f · v dΩ +

∫
Γint

[(σ1 − σ2) · n] · v dΓ ∀ v ∈ V 0∫
Ω

q ∇ · u dΩ = 0 ∀ q ∈ Q.

Using the equation for the interfacial forces, (1.5), we finally obtain∫
Ω

∂tρu · v dΩ +

∫
Ω

ρ [(u · ∇)u] · v dΩ +

∫
Ω

σ (u) : ε (v) dΩ

=

∫
Ω

f · v dΩ +

∫
Γint

k κ n · v dΓ ∀ v ∈ V 0∫
Ω

q ∇ · u dΩ = 0 ∀ q ∈ Q.

In equation (1.7) we have obtained the term∫
Γint

[(σ1 − σ2) · n] · v dΓ

because we started from the divergence form of the equations. This is desirable since, as

we have already said, its value is given by (1.5). If the Laplacian form had been used, the

integral on the interface would have been replaced by∫
Γint

{[(−p1I + µ1∇u1) − (−p2I + µ2∇u2)] · n} · v dΓ

which is not related to the balance of surface forces on the interface. Therefore the

divergence form will always be used in this thesis, unless otherwise indicated.

Before continuing with the discretization of the equations some dimensionless numbers

can be presented. The Froude number represents the relation between the inertial and

gravitational forces and is defined by

Fr =
U2

gL

where g is the gravity acceleration, U is a characteristic velocity and L a characteristic

length. Two Reynolds numbers can be defined

Re1 =
ULρ1

µ1

28 CHAPTER 1. INTRODUCTION AND BASIC MODEL

Re2 =
ULρ1

µ2
.

If surface tension is taken into account, the Weber number is defined as

We =
U2Lρ1

k

where k has been defined in (1.5).

1.2.3 Basic discretized problem

In this subsection we will introduce the space and time discretization of the weak two

fluid NS equations. Also the linearization of the convective term will be described.

The linearization of the convective term can be performed at the continuous or

variational level indistinctly. The approximation we will use is well known and reads

as follows:

[(u · ∇) u]i+1 ≈ (ui · ∇)ui+1 + β
(
ui+1 · ∇)ui − β

(
ui · ∇)ui

where i is the iteration counter and β can be zero or one. When β = 0 the method is known

as Picard linearization and when β = 1 it is known as Newton-Raphson linearization.

The former is simpler and has the advantage that it can be shown to converge linearly

if the convection is not too high. For the latter, a quadratic convergence can be proved

but only if the initial guess is close enough to the exact solution [21]. Therefore, the

typical numerical strategy is to first solve some Picard iterations to take advantage of its

robustness and then to switch to the Newton-Raphson method for improved convergence.

Regarding the time discretization of problem (1.7) two options will be presented. The

first one is the generalized trapezoidal rule, which gives place to the following problem:

given un, find un+1 ∈ V and pn+1 ∈ Q such that∫
Ω

ρn+θ un+θ − un

θδt
· v dΩ +

∫
Ω

ρn+θ
[(

un+θ · ∇)un+θ
] · v dΩ

+2

∫
Ω

µn+θε
(
un+θ

)
: ε (v) dΩ −

∫
Ω

pn+θ ∇ · v dΩ

=

∫
Ω

fn+θ · v dΩ +

∫
Γnu

tn+θ · v dΓ +

∫
Γnu

(
tn+θ
1 g1 + tn+θ

2 g2

) · v dΓ

1.2. TWO FLUID NAVIER–STOKES EQUATIONS 29

∫
Ω

q ∇ · un+θ dΩ = 0

for all (v, q) ∈ V 0 × Q. Once the algorithm has produced a solution at tn+θ, the

velocity field at tn+1 can be updated from the velocity at tn+θ by using the relation

un+1 = [un+θ − (1 − θ)un]/θ. The force term fn+θ in the momentum equation has

to be understood as the time average in the interval [tn, tn+1], even though we use the

superscript n+θ to characterize it. The same applies for tn+θ, tn+θ
1 and tn+θ

2 . The pressure

value has been identified as the pressure at tn+θ, although this is irrelevant for the velocity

approximation. The values of interest of θ are θ = 1/2, that corresponds to the second

order Crank-Nicolson scheme and θ = 1, that corresponds to the backward Euler method.

The second option is to use backward differencing (BDF) time integration schemes

using the discrete operators defined in Section 1.1. The time discretized problem then

reads: given un, find un+1 ∈ V and pn+1 ∈ Q such that∫
Ω

ρn+1

δt
Dku

n+1 · v dΩ +

∫
Ω

ρn+1
[(

un+1 · ∇)un+1
] · v dΩ

+2

∫
Ω

µn+1ε
(
un+1

)
: ε (v) dΩ −

∫
Ω

pn+1 ∇ · v dΩ

=

∫
Ω

fn+1 · v dΩ +

∫
Γnu

tn+1 · v dΓ +

∫
Γnu

(
tn+1
1 g1 + tn+1

2 g2

) · v dΓ

∫
Ω

q ∇ · un+1 dΩ = 0

for all (v, q) ∈ V 0 × Q. The first order versions of both methods coincide. For the

second order time discretizations the benefits of each of the methods are subtle for the

one fluid NS equations. For the two fluid case we prefer the BDF scheme. Since the fluid

properties (ρ and µ) at a given point vary in time, as defined in (1.6), it is much better to

use the properties at time tn+1 which can be obtained from the level set function (whose

value is known at tn+1) than those at time tn+θ which need to be somehow approximated.

The final ingredient for obtaining the basic (without stabilization) discretized problem

is the space discretization, that we build with the finite element method (see for example

[60] or [66]). The key step is to construct the discrete linear subspaces V h ⊂ V , V 0h ⊂ V 0

and Qh ⊂ Q that approximate the continuous spaces. Let V ∗
h and Q∗

h be the finite element

30 CHAPTER 1. INTRODUCTION AND BASIC MODEL

spaces to interpolate vector and scalar functions, respectively, constructed in the usual

manner from a finite element partition Ω =
⋃

Ωe, e = 1, ..., nel, where nel is the number of

elements. In this thesis the same interpolation will be used for both the velocity and the

pressure, except in Chapter 2 where the pressure space will be enriched. In particular P1-

P1 interpolations (continuous and linear in both velocity and pressure) will be preferred.

From spaces V ∗
h and Q∗

h one can construct the subsets V h,u and Qh for the velocity

and the pressure, respectively. The former incorporates the Dirichlet conditions for the

velocity components (and also the mixed conditions corresponding to the normal velocity)

and the latter has one pressure fixed to zero if the normal component of the velocity is

prescribed on the whole boundary. The space of velocity test functions, denoted by V h,

is constructed as V h,u but with functions vanishing on the Dirichlet boundary.

The monolithic discrete problem associated with the Navier–Stokes equations,

discretizing in time using a BDF scheme, and linearizing the convective term using a

Picard scheme (in order to simply the presentation), can be written as follows: Given a

velocity un
h at time tn and a guess for the unknowns at an iteration i − 1 at time tn+1,

find un+1,i
h ∈ V h and pn+1,i

h ∈ Qh, by solving the discrete variational problem:∫
Ω

ρ

δt
Dku

n+1
h · vh dΩ +

∫
Ω

ρ(un+1,i−1
h · ∇)un+1,i

h · vh dΩ

+

∫
Ω

µε(un+1,i
h) : ε(vh) dΩ −

∫
Ω

∇ · vhpn+1,i
h dΩ −

∫
Ω

vh · f dΩ

−
∫

Γnu

tn+1 · vh dΓ −
∫

Γnu

(
tn+1
1 g1 + tn+1

2 g2

) · vh dΓ = 0,

∫
Ω
qh∇ · un+1,i

h dΩ = 0 ,

for i = 1, 2, ... until convergence, that is to say, until un+1,i−1
h ≈ un+1,i

h and pn+1,i
h ≈ pn+1,i−1

h

in the norm defined by the user. In order to simplify the notation we use ρ ≡ ρn+1 and

µ ≡ µn+1.

The enrichment technique presented in Chapter 2 can be understood as a modification

of the pressure space Qh to Q̂h, with Qh ⊂ Q̂h. Apart from this, the resulting formulation

follows exactly the previous setting.

1.2. TWO FLUID NAVIER–STOKES EQUATIONS 31

1.2.4 Stabilized problem

The discretized problem presented in the previous Subsection needs to be stabilized before

it can be solved numerically for two well known reasons. The first one is related to the

instabilities that appear in convection-dominated flows using reasonably sized meshes.

The second one is related to the use velocity and pressure finite element spaces that do

not satisfy the div-stability restriction (inf-sup condition) [12] , as is the case of equal

interpolation for both unknowns that we use in this thesis.

A wide range of stabilization techniques can be found in the literature, among them

we can mention, using their commonly used acronyms : SUPG [14], PSPG [108], GLS [62],

CBS [34,119], FIC [86], ASGS [24] and OSS [23,25]. In this work two of them will be used:

the Algebraic version of the Subgrid Scale stabilization method, referred to as ASGS [24]

and the Orthogonal Sub-scale stabilization method, referred to as OSS [23, 25]. In a

recent article [28] we have compared numerically the two methods we will use in this work

with the Characteristic-Based-Split (CBS) stabilization technique for the incompressible

Navier–Stokes equations.

The two Subgrid Scale (SGS) formulations we present deal with convection and

pressure stabilization using the same approach. The idea of SGS methods was proposed

in [61], although it is inherent in other numerical formulations. The key idea is to

approximate u ≈ uh + ũ and p ≈ ph, that is, the velocity is approximated by its finite

element component plus an additional term that is called subgrid scale or subscale.

We call un+1 ≈ un+1
∗ := un+1

h + ũn+1and pn+1 ≈ pn+1
h the velocity and the pressure at

tn+1. As previously mentioned, the spatial interpolation for un+1
h and pn+1

h are constructed

using the standard finite element interpolation. In particular, equal velocity-pressure

interpolation is possible.

The important point is the behavior assumed for ũn+1. It is assumed that it vanishes

on the interelement boundaries, that is, it is a bubble-like function [7, 13]. However,

contrary to what is commonly done, we do not assume any particular behavior of ũn+1

within the element domains. We will show later on how to approximate it.

32 CHAPTER 1. INTRODUCTION AND BASIC MODEL

If in the space continuous and time discrete problem u is replaced by un+1
∗ :=

un+1
h + ũn+1, p is replaced by pn+1

h , the terms involving ũn+1
h are integrated by parts, and

the test functions are taken in the finite element space, one gets

δt

∫
Ω

[
µ∇un+1

h : ∇vh + ρ
(
un+1
h · ∇un+1

h

) · vh − pn+1
h ∇ · vh + qh∇ · un+1

h − fn+1 · vh
]

dΩ

+

∫
Ω

ρ
[
un+1
h − un

h

] · vh dΩ − δt
∑
e

∫
Ωe

ũn+1 [µ∆hvh + ρun+1
h · ∇vh + ∇qh

]
dΩ = 0,

(1.8)

where for simplicity we have used a first order scheme and the Laplacian form and u = 0

on ∂Ω. The notation ∆h is used to indicate that the Laplacian needs to be evaluated

element by element. Equation (1.8) must hold for all test functions vh and qh in their

corresponding finite element spaces.

The equation for the subscales ũn+1 is obtained by taking the velocity test function in

its space and q = 0. The next step is to model the resulting equation. The first possibility,

which gives rise to the ASGS method [24], is to take

ũn+1 = −τ1Rn+1
h ,

where τ1 is a numerical parameter and Rn+1
h is the residual defined as:

Rn+1
h = ρun+1

h · ∇un+1
h − µ∆hu

n+1
h + ∇pn+1

h − fn+1 + ρ
un+1
h − un

h

δt
.

The second option, which gives rise to the OSS method [23,25], is to impose the subscales

to be orthogonal to the finite element space,

ũn+1 = −τ1P⊥
h Rn+1

h = −τ1(Rn+1
h − Ph(R

n+1
h)),

where Ph is the projection onto the finite element space. The advantage of this approach

is discussed in [25]. From the accuracy point of view, it is less diffusive that the ASGS

approach and yields better resolution of sharp gradients of the unknowns.

In the previous approximations for ũn+1, the temporal variation of the subscales has

been considered negligible, in [25] they are called quasi-static subscales. It is the option

1.2. TWO FLUID NAVIER–STOKES EQUATIONS 33

commonly used in the literature. If temporal variation of the subscales would not be

neglected they would need to be tracked. This promising approach has been proposed

in [25], but little has been done up to the moment. A recent article can be found in [30].

With all the approximations introduced heretofore, the final discrete problem to be

solved for un+1
h and pn+1

h using the ASGS method is∫
Ω

[ρ
δt

(un+1
h − un

h) · vh + µ∇un+1
h : ∇vh + ρ(un+1

h · ∇un+1
h) · vh − pn+1

h ∇ · vh

−fn+1 · vh
]
dΩ +

∑
e

∫
Ωe

τ1(µ∆hvh + ρun+1
h · ∇vh) · Rn+1

h dΩ = 0,

∫
Ω

[
qh∇ · un+1

h

]
dΩ +

∑
e

∫
Ωe

τ1∇qh · Rn+1
h dΩ = 0.

In the OSS case a preliminary version can be obtained by replacing Rn+1
h with P⊥

h Rn+1
h

to obtain,∫
Ω

[ρ
δt

(un+1
h − un

h) · vh + µ∇un+1
h : ∇vh + ρ(un+1

h · ∇un+1
h) · vh − pn+1

h ∇ · vh

−fn+1 · vh
]
dΩ +

∑
e

∫
Ωe

τ1(µ∆hvh + ρun+1
h · ∇vh) · P⊥

h Rn+1
h dΩ = 0,

∫
Ω

[
qh∇ · un+1

h

]
dΩ +

∑
e

∫
Ωe

τ1∇qh · P⊥
h Rn+1

h dΩ = 0.

In the previous equation some terms turn out to be zero and others are neglected before

the final version presented in [25] is obtained. Actually in [25] only the constant density

case has been analyzed. For the two fluid case we have adapted the equations from [32].

When the previous OSS formulation was tested on two phase flow problems, where the

density can vary in three orders of magnitude, much poorer results than with the ASGS

formulation were obtained. Detailed inspection of the problem showed that the residual

on integration points on opposite side of the interface varied roughly proportionately to

the density. Then it became obvious that the projection of a residual with such variations

might be the source of the errors we were observing. The solution we adopted was to use

a modified projection

Phρ(R
n+1
h) = ρPh(

Rn+1
h

ρ
).

34 CHAPTER 1. INTRODUCTION AND BASIC MODEL

This has been a key element in the successful solution of different density flows using the

OSS formulation.

From the theoretical point of view, the use of Phρ(R
n+1
h) can be related to the fact

that the L2 projection Ph is introduced in [25] as an approximation to a τ1 weighted

projection where for the variable density case τ1 can be defined at element level as

τ1 =

[
ρ

(
4υ

(he)2
+

2|ue|
he

)]−1

where he and |ue| are a typical length and a velocity norm of element e, respectively. It

now becomes obvious that a ρ−1 weighted projection might be a better approximation to

the τ1 weighted projection than a straightforward L2 projection.

We now proceed to obtain the final version of the of the OSS stabilized problem for

the variable density flows. The transient term in Rn+1

h

ρ
belongs to the finite element space

and therefore its orthogonal projection is zero. Note that for variable density flows this

does not happen if unweighted projection, Ph(R
n+1
h), is used. Regarding the force term,

in most cases (but not in variable density flows under gravity forces) it belongs to the

finite element space and therefore its orthogonal projection is zero. In other cases it can

be neglected because it introduces an error of the same order as the optimal error that

can be expected [25]. In our formulation we have nevertheless conserved this term in the

residual to be used in the stabilization. For the low Froude number flows that we shall

be interested in our mould filling simulations the two most important terms are the force

term and the pressure gradient. In the limiting case of flows at rest they balance each

other. Therefore, for the cases we are interested in, it seems much more logical to preserve

the force term.

As explained in [25], second order derivatives of finite element functions within element

interiors can be neglected and the consistency of the OSS method can be preserved. For

linear elements these terms are zero. Instead, for the ASGS stabilization, if the viscous

terms are neglected consistency is lost. Despite the ASGS method is consistent, its

implementation for linear elements, is identical to the implementation of a non consistent

scheme. We can conclude that the OSS scheme is much better suited for linear elements

1.2. TWO FLUID NAVIER–STOKES EQUATIONS 35

than the ASGS scheme. In [65] an improvement, that uses an L2 projection for the

diffusive term in the residual, is introduced to mitigate the weakness of the ASGS method

for linear elements.

Taking into account the previous comments, the final discrete problem to be solved

for un+1
h and pn+1

h using the OSS method is∫
Ω

[ρ
δt

(un+1
h − un

h) · vh + µ∇un+1
h : ∇vh + ρ(un+1

h · ∇un+1
h) · vh − pn+1

h ∇ · vh − fn+1 · vh
]
dΩ

+
∑
e

∫
Ωe

τ1ρ (un+1
h · ∇vh) ·

[(
ρ un+1

h · ∇un+1
h + ∇pn+1

h − fn+1
)

−ρPh
(

un+1
h · ∇un+1

h +
∇pn+1

h

ρ
− fn+1

ρ

)]
dΩ = 0,

∫
Ω

[
qh∇ · un+1

h

]
dΩ

+
∑
e

∫
Ωe

τ1∇qh ·
[(
ρ un+1

h · ∇un+1
h + ∇pn+1

h − fn+1
)

−ρPh
(

un+1
h · ∇un+1

h +
∇pn+1

h

ρ
− fn+1

ρ

)]
dΩ = 0.

The key terms for the stabilization of the convective and pressure terms are

τ1ρ
(
un+1
h · ∇vh

) · ρ (un+1
h · ∇un+1

h

)
and τ1∇qh · ∇pn+1

h respectively. These terms appear

in both formulations we have presented but also in most other stabilization techniques.

The reasons for having worked with two stabilization techniques are both practical

and theoretical. On the practical side we have worked with the ASGS technique because

it was the technique that was implemented in the monolithic version of our code. For the

segregation methods, that will be presented in Chapter 5, our code only had a preliminary

version that used the OSS method. Another reason for using ASGS is that it is a more

widely used technique than OSS. Actually not ASGS on its own, but if one also counts GLS

that is very similar to ASGS. As has already been mentioned, some of the advantages and

disadvantages of OSS have been discussed in [25] but up to now there is no clear favorite

method. As we have already mentioned, for P1-P1 elements OSS seems a better choice.

The OSS stabilization can be reformulated so that instead of working with the

orthogonal projection of the convective and pressure terms together, two separate

36 CHAPTER 1. INTRODUCTION AND BASIC MODEL

projections can be used [25]. We will call this version the split OSS. As in the non

split version, for the variable density case, we shall work with the projections weighted

by 1
ρ
. Moreover, for the low Froude number flows instead of working with ∇pn+1

h , as is

usually done, we shall work with ∇pn+1
h − fn+1 for the same reasons we have explained

for the non split version.

The split OSS version we use reads

∫
Ω

[ρ
δt

(un+1
h − un

h) · vh + µ∇un+1
h : ∇vh + ρ(un+1

h · ∇un+1
h) · vh − pn+1

h ∇ · vh

−fn+1 · vh
]
dΩ +

∑
e

∫
Ωe

τ1ρ (un+1
h · ∇vh)

· [(ρ un+1
h · ∇un+1

h

)− ρPh
(

un+1
h · ∇un+1

h

)]
dΩ = 0, (1.9)

∫
Ω

[
qh∇ · un+1

h

]
dΩ

+
∑
e

∫
Ωe

τ1∇qh ·
[(∇pn+1

h − fn+1
)− ρPh

(∇pn+1
h

ρ
− fn+1

ρ

)]
dΩ = 0.

In some situations the introduction of a pressure subscale p̃n+1 can also be advantageous

[25] because it helps to enforce the incompressibility of the flow that can be excessively

relaxed when only the velocity subscale is introduced. It is approximated as

p̃n+1 = −τ2
[∇ · un+1

h − ξPh
(∇ · un+1

h

)]
,

with ξ = 1 in the OSS case and zero otherwise. For the OSS method this term would

control ∇ · u in the space orthogonal to the finite element space, but since we want this

to happen in the whole space we have used ξ = 0 for both OSS and ASGS cases.

As a summary to the ideas presented up to now we rewrite the monolithic divergence

form Navier-Stokes equations using Picard linearization, BDF time discretization and

ASGS stabilization. Given a velocity un
h at time tn (and also at previous times as required

by Dk) and a guess for the unknowns at an iteration i− 1 at time tn+1, find un+1,i
h ∈ V h

1.2. TWO FLUID NAVIER–STOKES EQUATIONS 37

and pn+1,i
h ∈ Qh, by solving the discrete variational problem:∫

Ω

ρ

δt
Dku

n+1
h · vh dΩ +

∫
Ω

ρ(un+1,i−1
h · ∇)un+1,i

h · vh dΩ

+

∫
Ω

µε(un+1,i
h) : ε(vh) dΩ −

∫
Ω

∇ · vhpn+1,i
h dΩ −

∫
Ω

vh · f dΩ

+

nel∑
e=1

∫
Ωe

τn+1,i−1
1

[
µ ∆vh + ρ (un+1,i−1

h · ∇)vh

]
·
[ρ
δt
Dku

n+1
h

−µ∆un+1,i
h + ρ (un+1,i−1

h · ∇)un+1,i
h + ∇pn+1,i

h − f
]

dΩ

+

nel∑
e=1

∫
Ωe

τn+1,i−1
2 (∇ · vh)(∇ · un+1,i

h) dΩ = 0,

∫
Ω

qh∇ · un+1,i
h dΩ +

nel∑
e=1

∫
Ωe

τn+1,i
1 ∇qh ·

[ρ
δt
Dku

n+1
h

−µ ∆un+1,i
h + ρ(un+1,i−1

h · ∇)un+1,i
h + ∇pn+1,i

h − f
]

dΩ = 0 ,

for i = 1, 2, ...until convergence, that is to say, until un+1,i−1
h ≈ un+1,i

h and pn+1,i
h ≈ pn+1,i−1

h

in the norm defined by the user.

The parameters τ1and τ2 are chosen in order to obtain a stable numerical scheme with

optimal convergence rates (see [24] and references therein for details). They are computed

within each element domain Ωe. We take them as:

τ1 =

[
4µ

(he)2
+

2ρ|ue|
he

]−1

τ2 =
(he)2

τ1

where he and |ue| are a typical length and a velocity norm of element e, respectively. At

least three option can be suggested for he: the maximum element length, the minimum

one and the one in the direction of the flow. The strategy we are using in our code is to

take the minimum element length for the diffusive term and one in the direction of the

flow for the convective term. Thus to be more precise we should write [33],

τ1 =

[
4µ

(hemin)
2

+
2ρ|ue|
hedir flow

]−1

τ2 =
(hemin)

2

τ1

38 CHAPTER 1. INTRODUCTION AND BASIC MODEL

1.2.5 Matrix version of the problem

In order to introduce some of the notation to be used in Chapter 4 we will present the

matrix version of the problem using Picard linearization, BDF1 time discretization and

split OSS stabilization.

The projections Ph
(

un+1
h · ∇un+1

h

)
and Ph

(
1
ρ
∇pn+1

h

)
, will be treated iteratively using

the same iterative loop as for the linearization of the convective term. We will call them

yn+1
h = Ph

(
un+1
h · ∇un+1

h

)
,

zn+1
h = Ph

(
1

ρ

(∇pn+1
h − fn+1

))
.

They are the solution of(
yn+1
h ,v∗

h

)
=
(

un+1
h · ∇un+1

h ,v∗
h

) ∀ v∗
h ∈ V ∗

h,(
zn+1
h ,v∗

h

)
=

(
1

ρ

(∇pn+1
h − fn+1

)
,v∗

h

)
∀ v∗

h ∈ V ∗
h,

where V ∗
h is the space V h enlarged with the continuous vector functions associated to the

boundary nodes.

The resulting algebraic system prior to linearization, supposing Laplacian form in

order to simplify the presentation, is then

M
Dk

δt
Un+1 + K

(
Un+1

)
Un+1 + GPn+1 + Su

(
τ1; U

n+1
)
Un+1 − Sy

(
τ1; U

n+1
)
Yn+1 (1.10)

+Sd (τ2) Un+1 − Sw (τ2) Wn+1 = Fn+1,

DUn+1 + Sp (τ1) Pn+1 − Sz (τ1)Zn+1 = 0,

MπY
n+1 − C

(
Un+1

)
Un+1 = 0,

MπZ
n+1 − GπP

n+1 = 0,

where U, P, Y and Z are the arrays of the nodal unknowns for u, p, y and z, respectively.

If we denote the node indexes with superscripts a,b, the space indexes with subscripts i, j

and the standard shape functions of node a by Na, the components of the arrays involved

the previous equations are:

Mab
ij =

(
Na, ρN b

)
δij ,

1.2. TWO FLUID NAVIER–STOKES EQUATIONS 39

Mπ
ab
ij =

(
Na, N b

)
δij ,

K
(
Un+1

)ab
ij

=
(
Na, ρ un+1

h · ∇N b
)
δij +

(∇Na, µ∇N b
)
δij ,

Gabi =
(
Na, ∂iN

b
)
,

Gπ
ab
i =

(
Na, ∂iN

b/ρ
)
,

Su
(
τ1; U

n+1
)ab
ij

=
(
τ1u

n+1
h · ∇Na, ρ un+1

h · ∇N b
)
δij ,

Sy
(
τ1; U

n+1
)ab
ij

=
(
τ1u

n+1
h · ∇Na, ρN b

)
δij ,

Sd (τ2)
ab =

(
τ2∇ ·Na,∇ ·N b

)
,

Sw (τ2)
ab =

(
τ2∇ ·Na, N b

)
,

Dab
j =
(
Na, ∂jN

b
)
,

Sp (τ1)
ab =

(
τ1∇Na,∇N b

)
,

Sz (τ1)
ab
j =
(
τ1∂jN

a, ρN b
)
,

C
(
Un+1

)ab
ij

=
(
Na,un+1

h · ∇N b
)
δij ,

Fai = (Na, fi) ,

where δij is the Kronecker δ.

It is understood that all the arrays are matrices (except F, which is a vector) whose

components are obtained by grouping together the left indexes in the previous expressions

(a and possibly i) and the right indexes in the previous expressions (b and possibly j).

Equation (1.10) needs to be modified to account for the Dirichlet boundary conditions

(matrix G can be replaced by -DT when this is done).

1.2.6 Material properties approximation

For the continuous problem definition, equation (1.6) is all that is needed to define the

material properties for the two fluid Navier-Stokes equations. When the problem is

discretized, the material properties (ρ, µ) need to be somehow approximated in elements

cut by the interface. The simplest approach is to take ςk as either ς1 or ς2 depending

40 CHAPTER 1. INTRODUCTION AND BASIC MODEL

on the value of the level set function at each integration point (k), where ς stands for µ

or ρ. The approximation depends on the integration rule used on elements cut by the

interface. The typical approach is to use the same integration rule as on non cut elements.

In Chapter 2 an enhanced integration rule for cut elements is presented. Another option

can be found in [81].

Following the nomenclature used in the Level Set community [90] equation (1.6) is

usually written as

ς = ς1 + (ς2 − ς1)H (ψ) ,

where ς, as we have said, stands for µ or ρ , H is the Heaviside function,

H (ψ) =

⎧⎨⎩ 0 if ψ ≤ 0,

1 if ψ > 0,

and ψ is the level set function. We will therefore call this approach Heaviside.

The option most commonly used by Level Set practitioners is to smear-out the

Heaviside function using

Hε (ψ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if ψ < −ε,

1
2

+ ψ
2ε

+ 1
2π

sin
(
πψ
ε

)
if − ε ≤ ψ ≤ ε,

1 if ψ > ε,

where ε is a tunable parameter that determines the size of the bandwidth of numerical

smearing. In [90] ε = 1.5∆x is suggested making the interface width equal to three grid

cells, where ∆x is the grid size for a finite difference discretization. It is interesting to

note that in this case the material properties are also approximated in some elements not

cut by the interface. We will call this approach Smoothed Heaviside.

In Section 1.1 we have said the Level Set method is also known as pseudo–concentration

technique [110]. The only significant difference between the two methods is the way in

which the material properties are approximated. A typical option found in works that use

the pseudo–concentration technique is to calculate the material properties at integration

points k belonging to cut elements according to

ςk = ξk ς1 + (1 − ξk) ς2.

1.2. TWO FLUID NAVIER–STOKES EQUATIONS 41

The pseudo–concentration function, ξ, is for practical matters equivalent to the level set

function and can be related to it according to

ξ = k1ψ + k2

where k1and k2 are two constants taken so that 0 ≤ ξ ≤ 1. Usually k2 = 0.5 is used. We

will call this approach Pseudo–concentration properties.

1.2.7 Mixed boundary conditions on curved walls

In equation (1.4) we have defined mixed boundary conditions for the Navier Stokes

equations as the conditions that prescribe a zero velocity in the normal direction to the

boundary and a traction in the tangential direction. Two typical cases are slip boundary

conditions where the tangential traction is zero and wall boundary conditions where the

tangential traction depends on the velocity. For the numerical simulation of turbulent

flows on complex geometries, such as the mould filling examples to solve in this thesis, the

use of wall laws is mandatory since the simulation of the boundary layer is computationally

too expensive.

In real problems one usually deals with domains with curved boundaries where mixed

boundary conditions must be applied. When such domains are discretized using the finite

element method, the normal to the different element faces belonging to the boundary

that meet at a node do not coincide. In order to apply the zero normal velocity

condition to the discretized problem, once the system that describes the problem without

boundary conditions has been obtained in Cartesian coordinates, the degrees of freedom

corresponding to nodes on the curved boundary must be rotated into a local system

such that the normal component can be prescribed to zero. The problem with curved

boundaries is that the normal defined at the node does not coincide with the normal to

each of the element faces on the boundary that meet at the node. Therefore, the normal

velocity to the faces will not be exactly zero and there will be some flow through the faces

(the condition n · u =0 will not be exactly satisfied at the discrete level). The normal at

the node is usually defined in such a way that the flow through the element faces on the

42 CHAPTER 1. INTRODUCTION AND BASIC MODEL

boundary associated with the velocity at the node is zero [48]. Such nodal normals are

called consistent normals because they are the best solution to satisfy mass conservation.

Figure 1.1: Spurious velocities obtained for a downward gravity force

Even when consistent normals are used, problems that have not been discussed until

quite recently [9] can be observed. If one tries to simulate a fluid at rest under gravity

forces in a domain with curved boundaries using mixed boundaries conditions spurious

velocities will appear. Figure 1.1 shows the spurious velocities obtained in a circular

domain of radius r = 1.0 with slip boundary conditions for ρ = µ = 1.0 and g = 10.0 in

the downward direction . For real flows these spurious velocities can be hidden by the

real velocities and not be noticed. As the Froude number decreases they become more

noticeable, specially on coarse meshes.

For constant density flows on fixed domains two very trivial solutions can be proposed.

The first one is to replace the problem by an equivalent one where gravity forces disappear.

The second solution is to integrate over the mixed boundary the traction corresponding

to the hydrostatic pressure. In flows with variable density (such as two phase flows) the

previous solutions cannot be applied. In [9] the proposed solution consists in applying

a ”do nothing” boundary condition [92] on mixed boundaries. Actually the normal

component to the node is subtracted from the usual ”do nothing” boundary conditions

but this has no effect on the flow but only on the resulting reactions. Therefore unless one

1.2. TWO FLUID NAVIER–STOKES EQUATIONS 43

is interested on the reactions on the boundary the usual ”do nothing” boundary condition

can be applied. In [9] only slip boundary conditions are discussed but the method could

easily be extended to other mixed boundaries.

”Do nothing” boundary conditions consist in sending to the matrix side (instead of

right hand side) the traction boundary conditions when tractions are not known. Despite

at the continuous level this leads to an ill-posed problem, for the discrete finite element

problem it typically yields very good results. It is commonly used at outflow boundaries

where both normal and tangent components of the traction vector are unknown. For the

mixed boundary cases we are analyzing the tangent components of the traction vector

are known and therefore we belive that the ”do nothing” boundary condition should be

applied only in the normal direction and not in all the directions as proposed in [9]. That

is to say, instead of integrating (on the matrix side)

−
∫

Γmu

v · [−pn+µ
(
n· (∇u + (∇u)t

))]
dΓ = −

∫
Γmu

v · [n · σ] dΓ

as proposed in [9], one should only integrate

−
∫

Γmu

v · [(n · σ · n)n] dΓ

For a flow at rest we have obtained the exact solution with both formulations. For a

problem with non zero velocities, the first condition we must expect from the proposed

formulations is that in the case with planar boundaries the solution obtained without

any modification should remain unaltered when the modification for curved boundaries is

applied. This is what happens when the open boundary condition in the normal direction

we propose is applied. When the modification proposed in [9] is used the boundary

conditions in the tangential direction are altered and so is the solution.

In order to show what happens in a numerical example, the test case we propose

is Stokes flow in a channel. Taking into account symmetry only half of the channel is

simulated. On the symmetry face a slip boundary condition is applied. Despite the test

case does not have curved boundaries, the proposed correction should also work on planar

boundaries. Moreover, the absence of curved boundaries allows us to solve the problem

44 CHAPTER 1. INTRODUCTION AND BASIC MODEL

with no special correction. In Figure 1.2 we compare the solutions obtained with both

corrections against the solution obtained without any correction. The results obtained

without any boundary correction are exactly the same as those obtained with the ”do

nothing” boundary condition applied only in the normal direction. On the other hand

the use of the ”do nothing” boundary condition in all directions [9] leads to an incorrect

solution.

Figure 1.2: Velocities in a channel: (top) no modification, (middle) modification proposed in [9],

(bottom) our modification

The test case that has been presented is an extreme case to show the improvement

introduced by our modification to the method proposed in [9]. Since the implementation

and computational cost of both methods is nearly the same we believe the ”do nothing”

BC only in the normal direction should be used. In the mould filling examples shown in

Chapter 5 this correction has been a key element for obtaining correct solutions.

1.3. THE LEVEL SET EQUATION 45

1.3 The Level Set equation

1.3.1 Interface Capturing Techniques

As we have already mentioned, fixed mesh methods generally share two basic steps. In

the previous Section we have presented the two fluid Navier–Stokes equations that allow

us to deal with the first step. In this Section we present an equation for an interface

function that allows to determine the position of the interface, and thus the properties to

be assigned in the previous step.

Several methods can be used to determine the position of the interface. We will use

the so called level set method (see [18, 106] and [90] for an overview) but other methods

could also have been used. Among those more closely related to the level set method

we would like to mention the pseudo–concentration technique [110] and volume of fluid

(VOF) technique [57,70,103]. Whether they are different methods or different names for

the same method is a question that can raise some discussion.

In all three methods, a transport equation,

∂tφ+ (u · ∇)φ = 0

for a function that coincides with the name of the method is solved. In the case of the

level set the function we will use the letter ψ for φ. The basic idea of the level set method

is to embed the propagating interface Γint (t) as the zero level set of a higher dimensional

function ψ, defined as ψ (x, t = 0) = ±d, where d is the distance from x to Γint (t = 0),

chosen to be positive in one fluid and negative in the other. Setting the initial zero level

set so that it coincides with the initial interface Γint (t = 0) = {x | ψ (x, t = 0) = 0} , the

previous transport equation contains the embedded motion for Γint (t) as the level set

ψ = 0. It is interesting to remark that ψ is a continuous function.

In the pseudo–concentration method, the scalar function φ can be considered a

fictitious fluid property that is advected by the flow and indicates the presence of fluid

one or fluid two at a certain point x. In this sense it is equivalent to the level set method.

Typically φ = 1 is assigned to the region occupied by fluid one and φ = 0 to the region

46 CHAPTER 1. INTRODUCTION AND BASIC MODEL

occupied by fluid two. In this sense the pseudo–concentration method is similar to the

VOF method we will describe next. The position of the front is defined by the isovalue

contour φ (x) = φc, where φc ∈ [0, 1] is a critical value defined a priori (typically φc = 0.5).

This critical value used is irrelevant before the problem is discretized, but is needed when

the finite element discretization is introduced. The transport of a function that varies

abruptly from 0 to 1 introduces problems when solved numerically, therefore it is usually

smoothed redefining the pseudo–concentration for each node of the finite element mesh

according to the following expression [110]:

φ = φc + sgn (φ0 − φc) k d

where φ0 is the non-smoothed value, k is a constant, d is the distance from the point

under consideration to the front and sgn (·) is the signum of the value enclosed in

brackets. Then the only differences with the level set function are that the pseudo-

concentration slope can have any value and that the critical value used is 0.5 instead of

0. Those two differences have no practical importance and therefore the two methods

can be considered identical, at least in the way in which they capture the interface (some

differences in the way they approximate the material properties close to the interface

have been discussed in the previous Section). It is interesting to remark that the pseudo–

concentration method appeared before the level set method [91]. The latter method

has obtained more widespread use thanks to its clear presentation and mathematical

formalism. In any case we consider that it is the same method with two different names.

In the VOF method the scalar φ represents the fractional volume of a certain fluid in

the corresponding computational cell. Typically φ = 1 is assigned to cells occupied by fluid

one and φ = 0 to cells occupied by fluid two. Cells cut by the front have some φ ∈ [0, 1]

depending on the percentage of each fluid present. The VOF is typically associated to

discretizations with constant interpolations within each cell, such as finite volumes. The

following analogy can be proposed: if Finite Volumes are seen an P0 Finite Elements, then

the VOF method can be seen as a P0 discretization of the pseudo–concentration or level

set method. One particularity of the VOF method is that the position of the interface

1.3. THE LEVEL SET EQUATION 47

is not obtained directly from the value of φ, but reconstructed from it. Several interface

reconstruction techniques can be found in the literature (see [70, 103, 116] for reviews).

Another particularity is that in most versions of the VOF method the transport equation

is not discretized and solved algebraically but rather solved geometrically.

Since we are using a finite element discretization the level set method is the natural

choice, but different discretizations for the Navier-Stokes and interface capturing equations

could also be used.

1.3.2 Implementation of the level set method

As we have already mentioned, the basic idea of the level set method is to define a smooth

scalar function, say ψ(x, t), over the computational domain Ω that determines the extent

of subdomains Ω1 and Ω2 and allows to represent the interface implicitly. For instance,

we may assign positive values to the points belonging to Ω1 and negative values to the

points belonging to Ω2 . The position of the fluid front is then defined by the iso-value

contour ψ(x, t) = 0. The evolution of the front ψ = 0 in any control volume Vt ⊂ Ω which

is moving with a divergence free velocity field u leads to:

∂tψ + (u · ∇)ψ = 0 (1.11)

This equation is hyperbolic and therefore boundary conditions for ψ have to be specified

at the inflow boundary, defined as:

Γinf := {x ∈ ∂Ω | u · n = 0}

Function ψ is the solution of the hyperbolic equation (1.11) with the boundary conditions:

ψ = ψ on Γinf × (t0, tf),

ψ(x, 0) = ψ0(x)

The initial condition ψ0 is chosen in order to define the initial position of the fluid front to

be analyzed. The boundary condition ψ determines which fluid enters through a certain

point of the inflow boundary.

48 CHAPTER 1. INTRODUCTION AND BASIC MODEL

In order to obtain the weak or variational formulation of the Level Set equation (1.11)

we introduce the spaces

X0≡
{
x ∈ L2 (Ω) | x = 0 on Γinf

}
,

X≡{x ∈ L2 (Ω) | x = ψ on Γinf

}
,

Xt≡L2 (t0, tf ;X) ,

The weak form is then obtained by multiplying the transport equation for the front (1.11)

by an arbitrary element of X0, x.

The weak form of problem 1.11 with the boundary conditions we have just defined is:

Find ψ∈Xt such that ∫
Ω

∂tψ x dΩ +

∫
Ω

[u · ∇ψ] x dΩ = 0

for all x ∈ X0.

The spatial discretization is the same one used for the Navier-Stokes equation, that

is P1 elements. The temporal evolution is treated via the backward differencing (BDF)

time integration scheme. Due to the pure convective type of equation (1.11), we use the

SUPG [14] technique to stabilize it. Since equation (1.11) does not have a diffusive term,

the use the SUPG technique is equivalent to the use of the ASGS technique presented in

the previous chapter.

The discrete problem, both in space and time, stabilized using the SUPG or ASGS

technique then reads: Given a velocity un+1
h at time tn+1 and a ψnh at time tn (and also

at previous times as required by Dk), find ψn+1
h ∈ Xh (a discrete linear subspace of X)

by solving the discrete variational problem:∫
Ω

1

δt
Dkψ

n+1
h xh dΩ +

∫
Ω

[
un+1
h · ∇ψn+1

h

]
xh dΩ

+

nel∑
e=1

∫
Ωe

τn+1
[
un+1
h · ∇xh

] [1

δt
Dkψ

n+1
h + un+1

h · ∇ψn+1
h

]
dΩ = 0

As in the previous chapter, the parameter τ is chosen in order to obtain a stable numerical

scheme with optimal convergence rates. It is computed within each element domain Ωe

1.3. THE LEVEL SET EQUATION 49

as:

τ =
he

2|ue| ,

where he is the element length in the direction of the flow and |ue| the velocity norm of

element e.

1.3.3 Reinitialization

For the numerical solution of the level set equation it is preferable to have a function

without large gradients. Since the only requirement such a function must meet is ψ = 0

at the interface, a signed distance function (| ∇ψ | = 1) is used. Under the evolution of

the level set equation, ψ will not remain a signed distance function and thus needs to be

reinitialized. Several approaches can be found in the literature [18, 83, 90, 104, 106]. The

one we will use consists in redefining ψ for each node of the finite element mesh according

to the following expression:

ψ = sgn(ψ0)d

where ψ0 stands for the calculated value of ψ, d is the distance from the node under

consideration to the front, and sgn(·) is the signum of the value enclosed in the parenthesis.

In [21] three ways of calculating d are discussed. There the one we will use here

is called ’interpolation of a straight line’ and is described briefly for the case of linear

elements. The free surface is approximated by triangular planes p (lines in 2D). Then the

perpendicular distance dip of each grid point i to each plane p can be computed. The

minimum distance from each nodal point to the planes is the required distance between

the point and the front (di = minp{dip}). For the bigger examples we have reinitialized

the signed distance function only on five layer of nodes to each side of the interface to

reduce the computational cost. Another option can be found in [32].

The approach we use is typically not favored in the level set community because it is

considered slow [90]. A great deal of effort has been put into reinitialization techniques

and a complete review of most recent advances can be found in [90]. Most of them are

50 CHAPTER 1. INTRODUCTION AND BASIC MODEL

based in solving an equation of the form

∂tψ + |∇ψ| = 1

up to steady state, where t is not the real time but some pseudo time. When the steady

state is reached the transient term disappears and then the signed distance function

(| ∇ψ | = 1) is recovered. Although most of the options presented seem very promising,

for the moment we do not feel it worth for us to put an effort into the subject because

despite our reinitialization technique may be slow, it is, according to what we have

observed, not the key item that makes our method slow. On the other hand, as we

have already mentioned a lot work has been done on the subject and our initial effort

should, in any case, concentrate in testing some of the available options [32].

Another technique that is somehow related to reinitialization is the construction of

extension velocities [90, 104]. The range of use of the level set technique is much wider

than flows with interfaces. There are lots of application where the velocity is only defined

on the interface and not in the rest of the domain. In theory, the only velocities needed

to transport the interface are those on the interface, but since in the level set method the

interface is transported embedded in a higher dimensional function the velocities in the

rest of the domain have to be found from the velocities on the interface. Such velocities are

called extension velocities. In the case of flow simulations the use of extension velocities

is not mandatory but it has been suggested that using only the real velocities on the

interface and extension velocities in the rest of the domain can help to maintain the level

set a signed distance function, thus reducing the need for reinitialization [104].

1.3.4 Coupling between the flow equations and the Level Set

In the previous Section we have presented the two fluid Navier-Stokes equations and in

this Section we have dealt with the Level Set equation. Obviously both equations are

coupled. In the flow equations the fluid properties (ρ and µ) depend on the level set

function, ψn+1
h . On the other hand, the level set function is transported using the velocity

un+1
h . The approach we will use to uncouple them is to use the un

h (or 2un
h − un−1

h when

1.3. THE LEVEL SET EQUATION 51

a second order backward difference is used) instead of un+1
h when calculating ψn+1

h . This

introduces a restriction on the time step size so that the front does not advance more than

one layer of elements at a time. In any case advancing more elements at a time might

make us lose the physics of the problem and therefore we believe this time step restriction

is logical.

Another option could be to use a block iterative procedure to couple both equations.

Then the velocity to be used in transport of the level set would be un+1,i
h where the

superscript i refers to the iteration number. It could be the same iterative loop used

for the non-linearity introduced by the convective term of the Navier-Stokes equations or

some other purposely introduced iterative loop. In [21] such strategy has been tested but

the uncoupled option has been preferred.

52 CHAPTER 1. INTRODUCTION AND BASIC MODEL

Chapter 2

An enriched pressure two-phase flow

model

As we have mentioned in Chapter 1, numerical methods for flows with interfaces can be

classified into fixed grid and moving grid techniques. For the same mesh size the latter

lead to a more accurate representation of the interface at a higher computational cost.

In this paper we will use a fixed grid method and introduce modifications to the basic

formulation to enhance the representation of the interface.

The initial motivation for this work came from the impossibility to model a terribly

simple flow; in fact, not even a flow, but two different density fluids at rest (the lighter one

on top) inside a closed cavity. The hydrostatic pressure gradient is discontinuous at the

interface. This cannot be correctly represented by the usual finite element shape functions

when the front crosses an element. Since the velocity and pressure are coupled, the error

in the representation of the pressure gives rise to spurious velocities that, depending of

the properties used, can completely distort the interface that should otherwise remain

horizontal.

The idea of enriching the representation of an unknown at a material discontinuity

is not new and several approaches can be found in the literature [19, 45, 81]. In the next

Section we will outline some of the differences between the previous methods and ours.

53

54 CHAPTER 2. AN ENRICHED PRESSURE TWO-PHASE FLOW MODEL

As we have already mentioned for the evolution of the fluid interface, we use the level

set method [18, 106]. The contribution we intent to introduce in this chapter does not

depend on the approach used to capture the interface and should also be valid using any

of the other cited techniques.

The numerical formulation presented here to solve the incompressible Navier–Stokes

equations uses a time discretization based on the standard trapezoidal rule and a stabilized

finite element method referred to as Algebraic Sub-Grid Scales (ASGS) [24]. P1-P1

elements will be used. In the elements cut by the interface the P1 pressure shape functions

are supplemented with an additional shape function that is zero at all the element nodes,

continuous within the element and has a constant gradient on each side of the interface.

This shape function is local to each element and the corresponding degree of freedom can

therefore be condensed prior to assembly, making the implementation quite simple on any

existing finite element code. The details will be discussed in the next Section.

In Chapter 1 we have described the mathematical model used to solve the Navier–

Stokes equations when no enrichment functions are used and the Level Set Method. In

the next Section the enrichment functions used and some implementation details are

discussed. Finally we present three simple numerical examples where the improvements

obtained with the proposed formulation show up clearly.

The work we will describe in this chapter has been presented in [37]. Further numerical

examples can be found in [36].

2.1 Discontinuous Gradient Pressure Shape

Functions

In fixed grid finite element methods the whole domain Ω is subdivided into elements Ωe.

Within each element the unknowns are interpolated as

φh|Ωe =

NNODE∑
I=1

N I
eΦ

I
e ,

where NNODE is the number of element nodes.

2.1. DISCONTINUOUS GRADIENT PRESSURE SHAPE FUNCTIONS 55

In typical finite element methods, ∇N I
e are continuous within each element and

therefore ∇φh|Ωe is continuous. When the interface crosses an element the discontinuity

in the material properties leads to discontinuities in the gradients of the unknowns that

the interpolation used cannot capture. For example, as mentioned previously, for two

different density fluids at rest the interpolation errors in the pressure give rise to spurious

velocities that can render the solution meaningless. Also, viscosity discontinuities can

lead to discontinuous velocity gradients.

Enrichment methods add degrees of freedom at elements cut by the interface in order

to reduce interpolation errors. In our particular case we add only one pressure degree

of freedom per cut element. Therefore the pressure in elements cut by the interface is

interpolated as

ph|Ωe =

NNODE∑
I=1

N I
eP

I
e +NENR

e P ENR

e . (2.1)

The shape functionNENR
e we introduce has a constant gradient on each side of the interface,

its value is zero at the element nodes and is C0 continuous in Ωe. The added degree of

freedom is local to the element and can therefore be condensed after the element matrix

has been computed and before assembly. The resulting pressure finite element space is

made of functions that are discontinuous across interelement boundaries, and thus it is

a subspace of L2(Ω), but not of H1(Ω), as would be the case using P1 − P1 elements.

However, our method is still conforming. If we had tried to use the previous enrichment

functions for the velocity we would have obtained a non conforming method.

Minev and co workers [81] also use enrichment functions for two–fluid flows. They

use discontinuous gradient velocity shape functions and discontinuous pressure shape

functions because they include surface tension. No discontinuous gradient pressure shape

functions are included. The velocity enrichment functions are not only local to each

element, as in our case, but also continuous across elements. This is possible because

they are the product of a bubble function times some other function. Tempted by the

fact of being able to condense the enriched degree of freedom while using H1 functions,

we initially tried to use the enrichment they use for the velocity for the pressure, but

56 CHAPTER 2. AN ENRICHED PRESSURE TWO-PHASE FLOW MODEL

obtained very unsatisfactory results in the hydrostatic two–fluid case. This led us to look

for enrichment functions that could model constant gradients on each side of the interface.

Also for two–fluid problems, Chessa and Belytschko [19] use an enrichment method

called XFEM, initially developed by the second author for modeling cracks. As in the

case of Minev et al., they use discontinuous gradient velocity shape functions and not

discontinuous gradient pressure shape functions. The enrichment they use is continuous

and cannot be condensed prior to matrix assembly. It is computationally much more

expensive because the mesh graph needs to be updated as the interface moves from one

element to another.

1

2 3

B
A

Figure 2.1: 2D Enrichment function for a cut element

In Fig. 2.1 we show a sketch of the enrichment function we use for an element cut by

the interface in the 2D case. The element has nodes named 1, 2 and 3 and the interface

cuts the element edges at points A and B. A way to build such function is as follows.

Suppose that node 1 belongs to Ω1 and nodes 2 and 3 belong to Ω2. Let Ωe
1 = Ω1 ∩ Ωe

and Ωe
2 = Ω2 ∩ Ωe. In Ωe

2 we want NENR to have constant gradient and to have a zero

value at x2 and x3. We can therefore define

NENR|Ωe
2

= k1 N1
∣∣
Ωe

2
,

where k1 is a constant to be defined. By definition we want NENR (xA) = 1. As we are

2.1. DISCONTINUOUS GRADIENT PRESSURE SHAPE FUNCTIONS 57

using linear elements to interpolate the level set function we have that

N1 (xA) =
Ψ2

Ψ2 − Ψ1
,

where Ψi is the value of ψ at node i, and therefore

k1 =
Ψ2 − Ψ1

Ψ2
.

Now we have k1 we can find

NENR (xB)|Ωe
2

= k1 N1 (xB)
∣∣
Ωe

2
= k1 Ψ3

Ψ3 − Ψ1
.

We can proceed to find NENR|Ωe
1
. We want it to have a constant gradient in Ωe

1 and to be

zero at x1. Then

NENR|Ωe
1

= k2 N2
∣∣
Ωe

1
+ k3 N3

∣∣
Ωe

1
.

Using once more that NENR (xA) = 1 and the fact that N3 (xA) = 0 we get

k2 =
1

N2 (xA)
=

Ψ1 − Ψ2

Ψ1
.

Since we want the enrichment function to be continuous in Ωe we need

NENR (xB)|Ωe
2

= NENR (xB)|Ωe
1
,

then, as N2 (xB) = 0,

k3 = NENR (xB)|Ωe
2

1

N3 (xB)
= k1 Ψ3

Ψ3 − Ψ1

Ψ1 − Ψ3

Ψ1
,

k3 = −k1 Ψ3

Ψ1
.

We have obtained an enrichment function that is proportional to N1 on Ωe
2 and a linear

combination of N2 and N3 on Ωe
1, where the values of k1, k2, k3 only depend on the values

of the level set function at the element nodes. It is very easy to obtain the enrichment

function and its Cartesian derivatives from the usual shape function. It seems worthwhile

58 CHAPTER 2. AN ENRICHED PRESSURE TWO-PHASE FLOW MODEL

to remark that NENR|Ωe does not belong to the space formed by N1|Ωe, N2|Ωe , N3|Ωe .

The same ideas have been used to obtain NENR for 3D elements.

In order to capture the discontinuities and take advantage of the enrichment functions

used, the integration rules need to be modified in elements cut by the front. The method

we use is to divide each tetrahedral (triangular in 2D) element into up to six tetrahedral

(three triangular in 2D) sub elements. For each sub element the same integration rule as

for the non–cut elements is used (see Figure 2.1).

1

2 3

Figure 2.2: Enhanced integration rule for a 2D cut element

When using enrichment functions for the pressure, the material properties µ, ρ are

taken as µ1, ρ1 or µ2, ρ2 depending on which part of the domain (Ω1 or Ω2) the integration

point is found, that is, the material properties are approximated using the approach called

Heaviside in Chapter 1.

Since the pressure space is enriched, a remark is needed concerning pressure stability.

If we had used a velocity-pressure interpolation satisfying the inf-sup condition, the

enrichment of the pressure could have led to an unstable velocity-pressure pair. However,

we are using a stabilized finite element formulation. Even though we have no stability

analysis for the enriched pressure space, we have not encountered any type of stability

misbehavior.

A final remark is required concerning the extension of the proposed enrichment to

higher order elements. Since the intention is to add a pressure field able to deal with

2.2. NUMERICAL EXAMPLES 59

discontinuous pressure gradients, but constant in each fluid phase, exactly the same

methodology as described for P1 elements can be applied to higher order elements.

The construction of the enriched pressures can be based only in the linear part of the

interpolation basis functions of these higher order elements. This is particularly simple

when they are implemented using a hierarchical basis. The case of quadrilateral elements

(or hexahedra in 3D) can be dealt with by splitting the quadrilateral into triangles (or

tetrahedra).

2.2 Numerical Examples

In this section we present three numerical examples where the improvements obtained

with the proposed formulation show up clearly. The first two examples are related to the

original two–fluid hydrostatic problem but modified so that they have nonzero velocities.

The results obtained with the enriched formulation are compared with those obtained

with a typical finite element formulation with no enrichment nor improved integration.

Since we are trying to prove that the benefits come from the pressure enrichment and

not from the improved integration, an intermediate case where no enrichment is used and

we only modify the integration is also presented. Regarding the approximation of the

material properties in elements cut by the interface, we have mentioned three possibilities

in Chapter 1, Heaviside, Smoothed Heaviside and pseudo-concentration properties. When

we use improved integration, with or without enriched pressures, the natural choice is

to use Heaviside properties. When no improved integration nor pressure enrichment is

used any of the three options can be used. In the examples we present in this chapter we

have used Heaviside or pseudo-concentration properties. Smoothed Heaviside properties

have been tested but the results were similar to those obtained with the other properties

approximations and will not be presented.

60 CHAPTER 2. AN ENRICHED PRESSURE TWO-PHASE FLOW MODEL

Mesh Npoin Nelem Elem length

coarse 128 214 1.0

medium 472 862 0.5

very fine 11615 22828 0.1

Table 2.1: Meshes used for the two fluid cavity flow

2.2.1 Two–fluid cavity

The first example, called the two–fluid cavity, is a square domain filled with equal amounts

of two different density fluids and a fixed horizontal velocity (0.1 m/s) on the bottom

wall. The walls are supposed frictionless. Heaviside properties are used to approximate

the material properties in elements cut by the interface. It is a very simple example but it

can be representative of the numerical problems that can appear in much more complex

problems such as the two–phase flow in a stirred reactor.

Three 2D unstructured triangular meshes were used (see Table 2.1) . The square

domain has a side length L = 10 m. The material properties used (SI units) are

ρ1 = 1000, µ1 = 10 for the fluid on the bottom, and ρ2 = 900, µ2 = 9 for the one

on top. The viscosity of the bottom fluid is 1000 times the viscosity of water so as

to obtain a relatively low Reynolds number (Re = 100) in order to avoid unnecessary

complications. The simulations where run for 100 seconds with a 0.5 second time step

size. In all the examples presented in this paper the acceleration of gravity is g = 10.

In Fig. 2.3 we show the shape of the interface for the three meshes in the three different

conditions mentioned previously: with no enrichment nor improved integration, using only

modified integration but no pressure enrichment and finally with both pressure enrichment

and improved integration. Using the finest mesh the three methods give nearly the same

result. Only in the case with no enrichment nor improved integration, slight oscillations

can be observed. Despite we have not got physical measurements, the solutions with this

mesh can be taken as a reference against which we can compare the results obtained with

2.2. NUMERICAL EXAMPLES 61

Figure 2.3: Shape of the interface for the different meshes and numerical conditions at t = 100s

62 CHAPTER 2. AN ENRICHED PRESSURE TWO-PHASE FLOW MODEL

the other two meshes. Using the medium mesh, only the simulation with both pressure

enrichment and improved integration attains results nearly as good as those obtained

with the very fine mesh. The other two cases show a distorted interface shape. Finally,

using the coarse mesh, the shape of the interface using pressure enrichment and improved

integration shows slight errors but is much better than the other two cases, where it can

be clearly observed that mass is not conserved.

The flow pattern is compared in Fig. 2.4. Using the finest mesh there is not much

difference between the three methods. Two recirculations can be found, one in the bottom

fluid and one in the top one. With the medium mesh, the results obtained with pressure

enrichment remain very similar to the ones obtained with the previous mesh. In the other

two cases the flow pattern is strongly modified by the errors that originate close to the

interface. With the coarse mesh the results deteriorate in all three cases as expected,

but it can be observed that in the case with pressure enrichment the solution is still

better than that obtained with a medium mesh in the other two cases. Even though the

global flow pattern obtained with the very fine mesh is nearly the same in all three cases,

a zoom at the velocity vectors close to the interface (see Fig. 2.5) reveals that even in

this case, the pressure enrichment produces a better solution. The spurious oscillatory

behavior obtained close to the interface in the cases without pressure enrichment has been

observed not only in space but also in time. The effect of reducing the time step size has

been analyzed, but no significant improvements have been obtained compared to those

resulting from the pressure enrichment.

Finally, it has been observed that the convergence in the L2 velocity norm within

each time step is much better using the enriched formulation than without it, for all

three meshes. Using a 0.0001 relative convergence tolerance for the velocity, the two

formulations without enrichment converge in twice or more iterations than the enriched

one. The enriched case takes 2 iterations to converge with the fine mesh, 3 with the

medium mesh, and 4 with the coarse one.

2.2. NUMERICAL EXAMPLES 63

Figure 2.4: Flow pattern for the different meshes and numerical conditions at t = 100s

64 CHAPTER 2. AN ENRICHED PRESSURE TWO-PHASE FLOW MODEL

Figure 2.5: Detailed flow pattern for the finest meshes and different numerical conditions close

to the interface

Figure 2.6: Interface shape and vertical velocity band plot together with velocity vectors using

pressure enrichment

2.2. NUMERICAL EXAMPLES 65

2.2.2 3D vertical channel

The second example is a 20 m high vertical channel with a square cross section (side

length L = 5 m). The channel is fed from the bottom with a heavier fluid at a constant

(both in space and time) 1 m/s velocity and the upper face is left free so that the lighter

fluid can escape. No friction is assumed on the walls. The initial interface is flat and at

2.5 m from the entrance. The solution for this problem is very simple. The velocity in

the whole domain, included the interface, should be equal to the inlet velocity and the

interface should remain flat.

A 3D unstructured tetrahedral mesh with 1106 nodes and 4921 elements is used. The

material properties used (SI units) are ρ1 = 1000, µ1 = 100 for the fluid on the bottom,

and ρ2 = 10, µ2 = 1 for the one on top. The time step size is 0.1 s. The Reynolds number

based on the length of the square section is Re = 50. In the case with no improved

integration nor pressure enrichment both Heaviside or pseudo-concentration properties

have been tested.

Figure 2.7: Interface shape and vertical velocity band plot together with velocity vectors using

only improved integration

66 CHAPTER 2. AN ENRICHED PRESSURE TWO-PHASE FLOW MODEL

Figure 2.8: Interface shape and vertical velocity band plot together with velocity vectors using

jump properties and no enrichment nor modified integration

In Figures 2.6, 2.7, 2.8 and 2.9 we show the shape of the interface and the velocity

field for four different cases. In Fig. 2.6 the results with pressure enrichment are shown.

The interface remains flat as expected and its displacement corresponds to the amount

of injected fluid. When a modified integration but no pressure enrichment is used (see

Fig. 2.7) the results are very poor. The velocity shows important oscillations close to the

interface and there is an important mass loss. The mass loss is so important that the

free surface remains nearly at its initial height. Without using pressure enrichment nor

modified integration and approximating the material properties with the option described

as Heaviside properties, the results (shown in Fig. 2.8) are as bad the those described

for the previous case. Finally, when pseudo-concentration properties are used (see

Fig. 2.9), without pressure enrichment nor modified integration, the mass conservation

improves with respect to the previous two cases, but is worse than that obtained with

the formulation proposed in this chapter. As in the other two cases without pressure

enrichment, the errors in the prediction of the vertical velocity close to the interface can

2.2. NUMERICAL EXAMPLES 67

be twice the inlet velocity. The source of these errors is the impossibility of the shape

functions to capture the discontinuous pressure gradient that exists at the interface. When

the pressure is enriched the velocity errors nearly disappear. The slight errors that remain

can be attributed to the fact that the numerical resolution of the level set is not exact

and therefore the deviations in the shape of the interface give rise to small variations in

the velocity.

Figure 2.9: Interface shape and vertical velocity band plot together with velocity vectors using

variable properties and no enrichment nor modified integration

2.2.3 Sloshing problem

As a final example, we consider a sloshing problem. It is a simple problem of free

oscillation of an incompressible liquid in a container. Following [99], [100], and [98] we

consider a liquid column of width b with an initial surface profile corresponding to the

first antisymmetric mode of vibration. The height of the free interface is

η (x, 0) = 1.0 + a sin
π

b
x

68 CHAPTER 2. AN ENRICHED PRESSURE TWO-PHASE FLOW MODEL

where a is the amplitude of oscillation. Thus, the initial condition for the level set function

is

ψ (x, y, 0) = η (x, 0) − y

where x = 0 at the middle of the container and y = 0 at the bottom. Using the same

parameters as in the cited papers, the amplitude is taken as a = 0.01 and the kinematic

viscosity as ν = 0.01. The previous papers use a Lagrangian formulation and therefore

only one fluid is solved and the computational domain is allowed to deform. Since we use

an Eulerian formulation the computational domain does not deform but a second fluid

is also simulated. The density and dynamic viscosity of the second fluid are 100 times

smaller than those of the bottom one so that it does not affect significantly the flow of the

heavier fluid. The container walls are assumed to be impermeable and allow for free slip.

The domain we use has a width b = 1 and a height h = 2 and is filled with equal amounts

of each fluid (see Fig. 2.10). Heaviside properties are used to approximate the material

properties in elements cut by the interface. The mesh has 1394 triangular elements and

747 nodes and is refined close to the interface.

In Fig. 2.11 we show the position of the interface after 11 seconds, using: (1) enriched

pressures, (2) only improved integration and (3) no modification. Figure 2.12 shows the

computed time history of η
(
b
2
, t
)

for the three cases together with the results presented by

Ramaswamy et al. [100] Both figures show that in the cases without pressure enrichment

there is a significant mass loss. The enriched simulation agrees closely with the results

reported by Ramaswamy et al. [100]

2.3 Conclusions

In this chapter we have presented an enrichment for the pressure finite element shape

functions that allows to improve the solution of two phase flows. The benefits introduced

by the method show up clearly as the gravitational forces increase. The Froude number

Fr =
U2

gL
,

2.3. CONCLUSIONS 69

Figure 2.10: Mesh and initial interface position for the sloshing problem. Top: general view.

Bottom: detail.

Figure 2.11: Interface position at t = 11s for the sloshing problem

70 CHAPTER 2. AN ENRICHED PRESSURE TWO-PHASE FLOW MODEL

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0 5 10 15 20 25

H
ei

gh
t o

f w
av

e
[m

]

Time [sec]

Ramaswamy et al.
Enriched press.

Only mod. integrat
No modification

Figure 2.12: Time histories of surface elevation amplitude for the sloshing problem

characterizes the ratio of the inertial to the gravitational forces in free-surface flows, where

U is a characteristic velocity, g is the value of the gravitational acceleration and L is a

characteristic length. A modified Froude number can be used for two fluid flows

Frm =
U2

gL

ρ1

(ρ1 − ρ2)
,

where ρ1 is the density of the heavier fluid and ρ2 is the density of the lighter one. The

errors without using the enrichment increase as the Froude number tends to zero. As the

gravitational forces tend to dominate the flow, small errors in the pressure can give rise

to big errors in the velocities. Therefore the type of enrichment presented in this paper

is specially useful for low modified Froude number flows. The enrichment used is local

to each element cut by the interface and can therefore be condensed prior to assembly,

making the implementation quite simple on any finite element code.

It is interesting to note that, at least for the problems presented in this paper, the

proposed solution can reduce the errors by one or two orders of magnitude (see vertical

tube results) and thus make problems solvable with quite coarse meshes.

Despite we have not presented numerical results for the increase in CPU time for

2.3. CONCLUSIONS 71

obtaining the system to be solved per iteration introduced by the enrichment and improved

integration, we have observed that it is generally less or much less than 10 percent. Taking

into account that the method allows to reduce the number of iterations per time step and

also to use coarser meshes the mentioned CPU time increase is by far counter balanced.

We have not presented results for the pressure because it is difficult to do so with

a typical post-processing program in the enriched elements, but it is evident from the

improvements shown for the velocities and shape of the interface that the pressure, since

it is the only unknown we have modified, must have also improved.

The examples shown in this paper demonstrate that the proposed enrichment can

introduce significant improvements. It allows to avoid spurious velocities and enhances

mass conservation.

72 CHAPTER 2. AN ENRICHED PRESSURE TWO-PHASE FLOW MODEL

Chapter 3

A free surface model

Free surface flows are a special kind of flows with moving interface where the influence

of one of the fluids over the other one is negligible. As discussed in Chapter 1, CFD

approaches for moving interfaces problems are typically categorized into two main groups:

Eulerian, fixed mesh or interface capturing techniques [18, 31, 57, 73, 90, 106, 110] and

Lagrangian, and in the more general case Arbitrary Lagrangian Eulerian (ALE), moving

mesh or interface tracking techniques [98–100]. The model we will propose is clearly a

fixed mesh, interface capturing technique but it is not so obvious wether to classify it

as an Eulerian or as a Lagrangian formulation. Actually the model we propose has two

versions: a simplified one which solves the momentum equations in an Eulerian manner

and another one that uses an ALE formulation but on a fixed mesh.

As we have mentioned previously, in interface capturing techniques a fixed

computational domain is used together with an interface function to capture the position

of the interface. The interface is captured within the resolution of the fixed mesh

and the boundary conditions at the interface are somehow approximated. In interface

tracking techniques the mesh is updated in order to track the interface. The simplest

approach is to deform the mesh without changing its topology, but this is possible only

for very simple flows. As the flow becomes more complex and unsteady, remeshing is

required, and consequently the projection of the results from the old to the new mesh are

needed. In 3D calculations, these operations can introduce costs that can render moving

73

74 CHAPTER 3. A FREE SURFACE MODEL

mesh techniques unfeasible. This is the main reason why we prefer to use fixed mesh

methods. Both approaches can deal with two phase or free surface flows. In moving mesh

simulations [71, 87, 98] it is very common to see real free surface simulations where only

one fluid is modelled and the mesh follows the movement of the interface. On the other

hand, in finite element fixed mesh simulations free surface flows are typically treated as a

particular case of two phase flows where the second fluid is air or some pseudo fluid with

a density and viscosity much smaller than the first fluid.

The typical Eulerian approach can work well in a great number of situations but

in some cases it can fail miserably. For example, flow of different density fluids under

the action of gravity. This problem has been analyzed in the previous chapter (see

also [36, 37]). The main problem is that since we are using a fixed mesh some elements

are cut by the interface, where the pressure gradient is discontinuous. Such a pressure

field cannot be accurately represented by the finite element shape functions and if the

two most important terms in the momentum equation are the pressure gradient and the

gravitational forces, huge errors can be introduced in the velocity field that can spoil

the simulation. In the previous chapter we proposed a solution based on enriching the

pressure shape functions in the elements cut by the interface that is valid for two phase

flows. In this chapter we will propose an alternative solution that is valid only for free

surface flows. This might seem a disadvantage with respect to the previous method that

can deal with the more general case of two phase flows. We nevertheless believe that a

solution that takes advantage of the particularities of free surface flows deserves special

attention due to the fact that a great proportion of two phase flows of practical interest

are free surface flows. Since the effect of surface tension is negligible in the flows we are

interested in we will not take such effects into account in the model we propose.

The solution we propose in this paper is to model free surface flows on fixed grids in

a very similar way to the one used for two phase flows but modelling in principle only

the part of the domain filled by the liquid. Since we are using a fixed grid method we

will have elements that are totally filled by liquid and others only partially. The main

question is what to do in partially filled elements. What we propose to do is to integrate

3.1. ALE DESCRIPTION OF THE NAVIER–STOKES EQUATIONS 75

only in the part filled by the fluid. In order to do so we use special integration rules in

elements cut by the front that have been introduced in the previous chapter. This will

allow us to impose the correct boundary conditions on the free surface, the key to the

success of the method.

As we have already mentioned, fixed mesh methods generally share two basic steps.

In the first one, the motion in both phases is found as the solution of the Navier–Stokes

equations for one phase flow with variable properties. In the second one, an equation for

an interface function that allows to determine the position of the interface, and thus the

properties to be assigned in the previous step, is solved. The model we will present has

two versions, one that solves the Navier–Stokes equations in an Eulerian manner and the

other one that uses an ALE formulation. In both versions a level set function is used to

determine the position of the interface.

In the next section we introduce the ALE formulation that is used by one of versions of

the model we propose. Obviously when the domain velocity is zero the ALE formulation

reduces to the Eulerian description presented in Chapter 1. In the next Section we present

the free surface model that uses the fixed mesh ALE formulation. In the third Section a

simplified Eulerian version of the free surface model is presented. In the fourth Section

we analyze three numerical examples that have already been used in Chapter 2. We

demonstrate that the free surface model, in any of its two versions, allows to obtain results

that are similar or better to the ones obtained with enriched pressure shape functions and

much better than those obtained with a typical two phase Eulerian model.

Most of the work we will describe in this Chapter has been published in [38]. Further

numerical examples have been included in [39].

3.1 ALE description of the Navier–Stokes equations

The velocity and pressure fields of an incompressible fluid in a moving domain Ω during

the time interval (t0, tf) can be described by the incompressible Navier–Stokes equations

76 CHAPTER 3. A FREE SURFACE MODEL

in the ALE form:

ρ
[∂u
∂t

+ ((u − ud) · ∇)u
]
−∇ · [2µε(u)] + ∇p = f , (3.1)

∇ · u = 0, (3.2)

where ud is the domain velocity. The boundary and initial conditions are the same as

introduced in Chapter 1. In [29] we present a detailed derivation of the ALE method for

the Navier–Stokes equations.

Following the steps described in Chapter 1 the problem can be discretized both in

space and time. The ASGS monolithic discrete problem associated with the Navier–

Stokes equations (3.1)-(3.2), discretizing in time using the generalized trapezoidal rule,

and linearizing the convective term using a Picard scheme, can be written as follows:

Given a velocity un
h at time tn, a domain velocity un+θ

d,h at time tn+θ, and a guess for the

unknowns at an iteration i−1 at time tn+1, find un+θ,i
h ∈ V h,u and pn+θ,i

h ∈ Qh, by solving

the discrete variational problem:∫
Ω

ρ
un+θ,i
h − un

h

θδt
· vh dΩ +

∫
Ω

ρ((un+θ,i−1
h − un+θ

d,h) · ∇)un+θ,i
h · vh dΩ

+

∫
Ω

2µε(un+θ,i
h) : ε(vh) dΩ −

∫
Ω

∇ · vhpn+θ,i
h dΩ −

∫
Ω

vh · f dΩ

+

nel∑
e=1

∫
Ωe

τn+θ,i−1
1

[µ
ρ

∆vh + ((un+θ,i−1
h − un+θ

d,h) · ∇)vh

]
·
[ρ
θδt

(un+θ,i
h − un

h)

−∇ · [2µε(un+θ,i
h)] + ρ((un+θ,i−1

h − un+θ
d,h) · ∇)un+θ,i

h + ∇pn+θ,i
h − f

]
dΩ

+

nel∑
e=1

∫
Ωe

τn+θ,i−1
2 (∇ · vh)(∇ · un+θ,i

h) dΩ = 0,

∫
Ω

ρqh∇ · un+θ,i
h +

nel∑
e=1

∫
Ωe

τn+θ,i
1 ∇qh ·

[ρ
θδt

(un+θ,i
h − un

h) −∇ · [2µε(un+θ,i
h)]

+ ρ((un+θ,i−1
h − un+θ

d,h) · ∇)un+θ,i
h + ∇pn+θ,i

h − f
]

dΩ = 0 ,

for i = 1, 2, ... until convergence, that is to say, until un+θ,i
h ≈ un+θ,i−1

h and pn+θ,i
h ≈ pn+θ,i−1

h

in the norm defined by the user.

In the ALE case the parameters τ1 and τ2 depend on the ALE velocity ua = u−ud :

τ1 =
ρ(he)2

4µ+ 2ρhe|ue
a|
, τ2 = 4µ+ 2ρhe|ue

a| .

3.2. FM-ALE FREE SURFACE MODEL 77

Once the algorithm has produced a converged solution, the velocity field at tn+1 can

be updated from the velocity at tn+θ by using the relation un+1 = [un+θ − (1 − θ)un]/θ.

3.2 FM-ALE free surface model

In this section we present a new free surface model on fixed meshes. We will start from a

typical Eulerian simulation for a two phase flow and describe the way in which our model

departs from it.

As it has already been mentioned, a typical Eulerian simulation includes two main

steps. One which solves Eulerian two fluid Navier–Stokes equations and the other one

which determines the interface position. Both are solved over the entire mesh. When free

surface flow is considered, the properties used in the second fluid are much smaller than

those in the main fluid. The model we propose solves the Navier–Stokes equations only

on one fluid bounded by a moving free surface whose position, as in the typical model,

is determined by the level set function. Therefore the domain Ω where we solve the

Navier–Stokes equations does not extend over the whole mesh, but only over totally filled

elements and over the filled part of elements cut by the interface. This is an important

difference with typical finite element simulations (Eulerian, Lagrangian or ALE) where

the domain that is simulated extends over the whole mesh. In order to be able to use

a domain that includes portions of elements, special integration rules have to be used.

The integration rule we use here has been presented in the previous chapter and consist

in dividing the elements cut by the front into sub elements only for integration purposes.

In a finite element setting the free surface boundary condition is a natural boundary

condition, and by using enhanced integration we are able to impose it correctly even if

the finite element faces do not coincide with the interface. The possibility of imposing the

correct boundary conditions on the interface without having to resort to a moving mesh

formulation is one of the key assets of the method. It allows us to take advantage of the

best of both worlds (Eulerian and Lagrangian). If instead of n · σ = 0, we would like

to impose some prescribed value n · σ = t on the free surface, the procedure would be

78 CHAPTER 3. A FREE SURFACE MODEL

slightly more complicated. Enhanced surface integration rules would have be to defined.

The idea could be very similar to the enhanced volume integration used to integrate only

on the filled part of cut elements. In each cut element, the front (as defined by the level

set) would be divided into triangles where the usual surface integration rules would be

used. Thus one would be able to build the term corresponding to the Neumann boundary

condition applied on the interface,
∫

Γ
v · t dΓ.

(a) positive velocity

(b) negative velocity

Figure 3.1: One dimensional FM-ALE example

The second main difference with typical fixed mesh interface simulations is that we

3.2. FM-ALE FREE SURFACE MODEL 79

use an ALE description when solving the Navier–Stokes equations. The particularity of

our ALE description is that it is used on a fixed mesh. It is called FM-ALE and has been

introduced in a paper on lost foam casting [59]. In this chapter we extend it to free surface

flows. The idea behind the FM-ALE method is quite simple; if one wants to simulate a

moving domain on a fixed grid using an ALE description what one must do is to project

the results obtained on the deformed domain on the portion of the fixed mesh occupied

by the fluid at each time step.

The method we propose consist of three main steps in going from time n (where

velocities and interface position are given) to time n + 1:

1) Find the interface position at step n + 1 by solving the level set equation. The

velocities obtained at step n are used in this step.

2) Obtain the domain velocity and fluid velocity at time n on the new domain

determined in the previous step.

3) Solve the Navier-Stokes equations on the new domain using an ALE description.

The way in which to solve the first and third steps has already been discussed. We

will now describe the way in which to deal with the second step. The key point here is

how to define the domain velocity at time n + 1. It will depend on the fluid velocity at

time n and on the interface position at times n and n+1. We will use the one dimensional

example shown in Figure 3.1 to explain how it is obtained. Contrary to what happened

in the original FM-ALE paper [59] where the domain could only expand, in a free surface

simulation the domain can either expand or contract.

The domain velocity at time n + 1 will depend on the fluid velocity at time n and

on the level set function at times n and n + 1. In order to describe the method we will

classify the nodes into empty and filled nodes. The nodes belonging to cut elements will

be additionally described as front nodes. The domain velocity will be set to zero at nodes

that belong to the fluid but not to the front at times n+1 and n on the fixed mesh. That

is the case of node 1 in Figures 3.1a and 3.1b, where Figure 3.1a represents the case where

the domain has a positive x velocity (it is expanding) and Figure 3.1b represents the case

where the domain has a negative x velocity (it is contracting). The domain velocity will

80 CHAPTER 3. A FREE SURFACE MODEL

be set to

un+1
d = n(un · n),

at nodes that belong to the front or to the air at time n. The normal direction n is

obtained from the level set function at each node as

n =
∇ψn+1

|∇ψn+1| ,

Such is the case of nodes 2, 3, 4 and 5 at Figure 3.1a and nodes 4 and 5 at Figure 3.1b.

Using the previous conventions, in the expanding case (Figure 3.1a) the domain velocity

is defined on all the nodes. In the contracting case it is not be defined at nodes 2 and 3.

There it is obtained by solving

∆ud = 0,

with the boundary conditions defined previously. Once the domain velocities have been

obtained, the displacements in one time step are simply δx = udδt. They allow us to

obtain the deformed mesh, shown in the middle line. Finally the mesh velocities and fluid

velocities at time n can be obtained on the fixed mesh at time n + 1 (bottom line) by

interpolating (or by projecting) on the deformed mesh as shown in dotted lines. These

two values are the ones needed to solve the Navier–Stokes equations in ALE form.

Following our presentation in [29] the second step can be divided into four substeps:

• Virtually deform the mesh at time n (Mn) to a virtual mesh at time n+ 1 (Mn+1
virt)

using classical ALE concepts and compute the mesh velocity un+1
d .

• Write down the ALE Navier Stokes equations on Mn+1
virt .

• Define a new mesh at time n + 1 (Mn+1) formed by totally filled elements of the

background mesh and the filled part of cut elements.

• Project the ALE Navier Stokes equations from Mn+1
virt to Mn+1.

How we compute the mesh velocity un+1
d has already been described. This defines

the displacements and therefore Mn+1
virt can be obtained. Mn+1

virt is shown in blue in the

3.2. FM-ALE FREE SURFACE MODEL 81

schematic of the FM-ALE approach presented in Figure 3.2. Writing down the ALE

Navier Stokes equations on Mn+1
virt (see [29]) leads to a system of equations that is not

actually formed when the FM-ALE approach is used. Instead the ALE Navier Stokes

equations are projected onto to Mn+1. For the definition of the new mesh at time n+ 1,

free surface problems involve Neumann boundary conditions on the interface that can

be easily imposed when enhanced integration is used in the elements cut by the front as

we have already mentioned. For other problems, that require Dirichlet conditions on the

interface, we mention two possibilities in [29]; adding new nodes or imposing boundary

conditions approximately.

Projecting the ALE Navier Stokes equations from Mn+1
virt to Mn+1 implies projecting

both un
virt and un+1

d,virt from Mn+1
virt to Mn+1. It is important to stress that, as it is well

known in the classical ALE approach, un is known on Mn+1
virt because the nodes of this

mesh are obtained from the motion of the nodes of Mn with the mesh velocity un+1
d,virt.

The projection of un
virt onto Mn+1 clarifies the effect of the mesh motion in the context of

fixed mesh methods. In particular, there is no doubt about the velocity at previous time

steps of newly created nodes. Since the mesh velocity is computed on Mn+1
virt it also needs

to be projected to compute on Mn+1.

It is interesting to note that pn+1 is not the projection of pn+1
virt onto Mn+1. Pressure

pn+1 is determined by imposing that un+1 is divergence free, which at the discrete level

is not equivalent to impose that un+1
virt is divergence free.

We will now go back to describe a particularity of the method, concerning the solution

of the level set equation. We have already mentioned the level set equation is solved over

the whole mesh and therefore the velocities on the region formed by non filled elements

must be defined in some way. As we have mentioned in Chapter 1, this is not a big

problem, since in theory the only velocities needed to transport the interface position are

those on the interface defined by ψ = 0. Several options to define extension velocities that

allow us to obtain a velocity field on the whole mesh from the velocities on the interface

can be found in the literature [90]. The approach we will use is a relatively simple one [59]:

on the part of the mesh formed by empty elements a stationary Stokes problem will be

82 CHAPTER 3. A FREE SURFACE MODEL

solved. On the air front nodes the velocities obtained when solving the fluid will be used

as Dirichlet boundary conditions. The boundary conditions used when solving for the

extension velocities have little influence on the resulting fluid flow and will be taken as in

a typical Eulerian two fluid simulation. The fluid properties used when solving the Stokes

problem in the empty region are those of the fluid. The advantages of the method used

to obtain the extension velocities is that they are divergence free and satisfy boundary

conditions.

From the description of the FM-ALE formulation it is seen that the major differences

with respect to the classical ALE approach are the following:

- Given a position of the fluid front on the fixed mesh, elements cut by the front are

split into subelements (only for integration purposes), so that the front coincides with the

edges of the subelements. This allows to prescribe n · σ = 0 as boundary condition. In

fact, it is only necessary to modify the integration rule, as explained earlier. Once this is

done, the flow equations can be solved.

- After deforming the mesh from one time step to the other using classical ALE

procedures, results are projected back to the original mesh (through interpolation,

projection with restrictions as explained in [58] or any other technique).

- The definition of the fluid front is represented by the level set function, and not by

the position of the material points at the free surface as in a classical ALE method. Note

that the previous step implies that front nodes cannot be tracked.

A schematic of the FM-ALE approach for free surface flows is presented in Figure 3.2.

In essence, this formulation is the same as the one presented in [59] with two major

differences:

- In [59], where the fluid domain always expands, it was enough to move the nodes

adjacent to the front. In the present model, since the domain can also contract, a more

general definition for the mesh velocities had to be adopted. The mesh velocities at time

n+ 1 depend on the fluid velocities at time n and on the level set function both at times

n and n + 1. When the domain contracts some nodes of the fluid domain are moved by

solving equation (3.2) with boundary conditions determined from the rules used to define

3.3. EULERIAN SIMPLIFIED FREE SURFACE MODEL 83

y=0

t
n

Mesh velocities

y=0

t
n+1

Mesh to compute at

Deformed mesh

t
n+1

Figure 3.2: Two dimensional FM-ALE schematic

the mesh velocity on the rest of the nodes.

- In the lost foam model of [59], the front velocity is given and the pressure is unknown.

In the present free surface model, the front velocity is unknown and the traction is given

(n · σ = 0).

3.3 Eulerian simplified free surface model

In the previous section we have presented a version of the free surface model that solves

the Navier–Stokes equations on the fluid only using an ALE description. In this Section

we will introduce a simpler version, the main difference being that an Eulerian description

is used. The model will therefore be more closely related to the typical Eulerian two phase

model. Nevertheless the key element of the model, solving the Navier–Stokes equations

only in the fluid region Ω (totally filled elements plus filled part of cut elements), will

remain unaltered.

The way to understand this model is to think of it as a typical two phase flow

model, with a second fluid with negligible properties and where the null traction boundary

condition has been added on the interface. This boundary condition allows us to uncouple

84 CHAPTER 3. A FREE SURFACE MODEL

the solution of the fluid from that of the air making the problem much simpler. We will

often refer to the second fluid as air even if it may be some other fluid. Suppose that

we are solving a typical two phase flow model using enhanced integration in the elements

cut by the front. When one looks at the discrete momentum equation it is clear that the

contribution to the matrix and right hand side corresponding to the transient, convective,

diffusive and external force terms will tend to zero in the air elements and in the part

of the cut elements filled by air. Thus all the terms in the momentum equation, except

for the pressure gradient, tend to the same value if one uses the free surface model we

propose or a two phase model with a negligible second fluid. In order to interpret what

happens with the pressure term when using the free surface methodology as compared to

the two phase case, one has to observe that if all other terms tend to zero in the region not

occupied by the liquid then the solution there would have a null pressure gradient. If one

introduced such information a priori in the two phase case, then the systems resulting from

the momentum equation would be identical when the fluid properties tend to zero. The

problem with the two phase model, when used with the typical finite element functions, is

that they cannot represent a pressure gradient that is zero in one part of the element and

different from zero in the other. As we have already said, since the velocity and pressure

are coupled, the impossibility of accurately representing the pressure can introduce errors

in the velocity that can render the solution meaningless. Enriching the pressure shape

functions is a way to solve such problem [37], the free surface formulation we present here

is another solution, perhaps simpler. They will be compared numerically in Section 5.4.

Finally one also has to look at the continuity equation. The contribution to the system

matrix would be different if one uses equation (1.2). But it could be replaced by

ρ∇ · u = 0. (3.3)

From the continuum point of view both equations are equivalent. The numerical

approximation of equation (3.3) would lead to identical system matrices if one uses the

free surface model or the two phase model. Using equation (3.3) can be seen as weighting

the incompressibility constraint depending on the density of the fluid. In the free surface

3.3. EULERIAN SIMPLIFIED FREE SURFACE MODEL 85

case what we are doing is only imposing incompressibility in the region where fluid exists.

It is a pretty logical hypothesis.

One important point to remark is that as we are using enhanced integration we are

able to integrate only in the domain filled by liquid and thus we can impose the Neumann

boundary condition corresponding to the free surface (n ·σ = 0) accurately exactly where

the interface is located according to the level set function. This is a key point for the

success of the method. On the other hand, since we are only simulating one fluid we do

not have a discontinuous pressure gradient and therefore no special shape functions are

needed.

As in the FM-ALE free surface model described in the previous Section, the level set

equation must be solved on the whole mesh, not only in the liquid region. In order to

reduce computational labor the level set equation could be solved only in a small region

close to the interface using the narrow-band approach [104]. Once again, the velocity must

be defined in the empty region somehow, in order to transport the level set function. In

this case the solution adopted is very similar to the one used in the previous Section except

for the fact that instead of solving the steady Stokes equations with fluid properties we

will use the transient Navier-Stokes equations with air (or some pseudo fluid) properties.

The boundary conditions will be the same as in the FM-ALE model. The reason for this

choice is that we are justifying this model based on what happens in the Eulerian two

phase case and therefore it seems logical to solve for the air as similarly as possible as

done in that model. We would nevertheless like to point out that the way in which the

air is solved is not of great importance.

Contrary to what happens in the FM-ALE model where the velocities in the empty

region are only needed to transport the level set, in the Eulerian free surface model there

is another reason for obtaining those velocities. Since the fluid domain is moving and the

mesh is fixed there will be nodes that in step n+1 belong to the fluid but in the previous

step belonged to the empty region. In such nodes we will use the velocities calculated

for the empty region when modeling the transient term. The validity of such approach is

justified once again pointing out that it is with what happens in the case of a two phase

86 CHAPTER 3. A FREE SURFACE MODEL

flow when the properties of the second fluid tend to zero.

3.4 Numerical examples

In this section we present three numerical examples where one can appreciate the benefits

the proposed formulation can provide compared to a typical two-phase flow model applied

to free surface flow. The examples are almost the same ones used in Chapter 2. The results

obtained with the free surface model will be compared with the results obtained with a

typical two-phase flow model and also with the enriched pressure model presented in the

Chapter 2.

3.4.1 Two–fluid cavity

The first example, called the two–fluid cavity, is a square domain filled with equal amounts

of two different density fluids and a fixed horizontal velocity (0.1 m/s) on the bottom wall.

In the free surface case only the lower half of the mesh is filled by fluid. The walls are

supposed frictionless and the top face is left open. It is a very simple example but it

can be representative of the numerical problems that can appear in much more complex

problems.

The same three unstructured triangular meshes as in Chapter 2 were used (see Table

2.1) . The square domain has a side length L = 10 m. The material properties used (SI

units) are ρ1 = 1000, µ1 = 10 for the fluid on the bottom. The viscosity of the bottom

fluid is 1000 times the viscosity of water so as to obtain a relatively low Reynolds number

(Re = 100) in order to avoid unnecessary complications. The simulations where run

for 100 seconds with a 0.5 second time step size. In the two phase flow simulations the

properties of the second fluid used are 100 times smaller than those of the first fluid so as

to be in a free surface case. They differ from those used in the previous Chapter where

they were similar to the properties of the first fluid because now we want the second fluid

not to influence the first one. With such density difference the problem turned out to be

more difficult to solve and therefore for this example the acceleration of gravity is reduced

3.4. NUMERICAL EXAMPLES 87

Free Surface
FM-ALE model

Enriched pressure
two-phase model

Normal two-phase
model

Figure 3.3: Shape of the interface for the different meshes and numerical models at t = 100 s

88 CHAPTER 3. A FREE SURFACE MODEL

Free Surface
FM-ALE model

Enriched pressure
two-phase model

Normal two-phase
model

Figure 3.4: Flow pattern for the different meshes and numerical models at t = 100 s

3.4. NUMERICAL EXAMPLES 89

to g = 1.0. In the rest of the examples it is g = 10.0.

In Fig. 3.3 we show the shape of the interface for the three meshes with three

different models: The FM-ALE free surface model, the enriched pressure two–phase model

(Chapter 2) and the normal two–phase model.

Using the finest mesh the free surface model and the enriched pressure two–phase

model give nearly the same result. The normal two–phase model fails to predict the

correct interface position. There is an erroneous fall of the interface created by an incorrect

velocity field as is shown in Fig. 3.4. Despite that we have not got physical measurements,

the two correct solutions obtained with this mesh can be taken as a reference against which

we can compare the results obtained with the other meshes. Using the medium mesh,

only the free surface model attains results as good as those obtained with the fine mesh.

The enriched pressure two–phase model produces some distortion of the interface. Using

the normal two phase model the solution obtained on the medium and coarse meshes is

so bad that the interface has disappeared from the mesh at t = 100 s and therefore no

results are shown. Even with the coarse mesh the free surface model manages to obtain

the correct interface position. With the enriched pressure two–phase model an important

mass loss can be observed when using the coarse mesh.

The flow pattern is compared in Fig. 3.4. Again, using the finest mesh there is

not much difference in the calculated fluid velocities between free surface model and the

enriched pressure two–phase model. The velocities drawn in the empty region in the free

surface case are simply the velocities used to transport the level set function. With the

normal two–phase model spurious velocities that distort the whole flow field and ruin

mass conservation can be observed close to the interface. The free surface model manages

to obtain the correct flow field both with the medium and coarse meshes. With the

enriched pressure two–phase model spurious velocities are obtained close to the interface

with the medium mesh. They increase in the coarse mesh. For the normal two–phase

model no results are shown for the medium and coarse meshes because, as we have already

mentioned, the fluid has disappeared at t = 100 s.

The results obtained with the Eulerian simplified free surface model have not been

90 CHAPTER 3. A FREE SURFACE MODEL

Figure 3.5: Flow field and interface position at t = 100 s using the Eulerian free surface model

shown up to now because they are very similar to those obtained with the FM-ALE free

surface model. They are presented in Figure 3.5 for the medium and coarse meshes so

that they can be compared with the results shown previously (Figures 3.3 and 3.4) for the

FM-ALE model. In the rest of the examples presented in this Chapter both free surface

models have always given nearly the same results and therefore only the results obtained

with the FM-ALE model will be shown.

3.4.2 3D vertical channel

All the details (geometry, mesh, material properties, etc.) of the second example are

identical to those presented in Chapter 2 and therefore they are not repeated.

In Figure 3.6 we show the shape of the interface and the velocity field obtained

with the free surface FM-ALE model proposed in this Chapter. For the results with

the enriched pressure two phase model see Figure 2.6. Both models provide the correct

solution; the interface remains flat and its displacement corresponds to the amount of

3.4. NUMERICAL EXAMPLES 91

Figure 3.6: Interface shape and vertical velocity band plot together with velocity vectors using

the FM-ALE free surface model

injected fluid. When the normal two phase flow model is used (see Fig. 2.8) the results

are very poor. The velocity shows important oscillations close to the interface and there

is an important mass loss. The mass loss is so important that the free surface remains

nearly at its initial height. The source of the errors in the normal two phase flow model

is the impossibility of the shape functions to capture the discontinuous pressure gradient

that exists at the interface. One way to solve the problem is to enrich the pressure shape

functions so as to represent the discontinuous pressure gradient more accurately. The

other way to solve the problem is to use a free surface model and thus avoid the existence

of a discontinuous pressure gradient by modeling only one fluid. The slight errors that

remain in the velocity field with the two successful models can be attributed to the fact

that the numerical resolution of the level set is not exact and therefore the deviations in

the shape of the interface give rise to small variations in the velocity.

3.4.3 Sloshing problem

The third example coincides exactly with the one presented in Chapter 2 and the details

are not repeated. The mesh and initial interface position have been given in Chapter 2.

92 CHAPTER 3. A FREE SURFACE MODEL

In Fig. 3.7 we show the position of the interface after 11 seconds, using the free surface

FM-ALE model. This results have to be compared with those presented in Fig. 2.11.

Figure 3.8 shows the computed time history of η
(
b
2
, t
)

for the three cases together with

the results presented by Ramaswamy et al. [100]. Using the normal two phase model there

is a significant mass loss. The results obtained with the free surface and enriched pressure

two phase models agree closely with the ones reported by Ramaswamy et al. [100]

Figure 3.7: Interface position at t = 11s for the sloshing problem

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0 5 10 15 20 25

H
ei

gh
t o

f w
av

e
[m

]

Time [sec]

Ramaswamy et al.
FMALE Free Surf.

Enriched press.
Normal 2 phase

Figure 3.8: Time histories of surface elevation amplitude for the sloshing problem

3.5 Two computationally demanding examples

In the previous section simple numerical examples that show the benefits of the proposed

method have been presented. In this Section two additional examples not included in [38]

3.5. TWO COMPUTATIONALLY DEMANDING EXAMPLES 93

are presented. The objective is to show that the methods works satisfactorily for complex

problems and give some idea of the size of the problems that can be solved.

In Sections 3.2 and 3.3 we have explained how to extend the velocities to the empty

region. We proposed to solve the Stokes or Navier Stokes equations in the empty region

and mentioned that other options could also be used. In order to reduce the computational

cost a cheaper velocity extrapolation is used in these examples. First the nodes in the

empty region are classified into levels. The first level corresponds to the empty nodes of

cut elements. Then, starting by n = 1, level n+1 is formed by the empty nodes connected

to the level n until all of the nodes in the empty region have been classified. Once this

has been done the velocities of each of the empty nodes with level greater than one, can

be calculated as the average of velocities of the nodes in the lower level connected to it.

The calculation is ordered so that all the nodes in the lower level are calculated before

stepping to the next level. On the boundaries the velocities are corrected so that they

satisfy Dirichlet boundary conditions. Despite this extension velocity is not divergence

free we have found that it does not introduce any significant difference in the resulting

flow in the fluid compared to solving the flow equations in the empty region and the

computational cost is much lower. It is also used in Chapter 5 where industrial mould

filling examples are presented.

3.5.1 3D dam-break wave interacting with a circular cylinder

The first problem is a 3D dam-break wave interacting with a circular cylinder borrowed

from [77]. The domain is 20 m long and 5 m wide. In [77] a constant 10 m height has

been used but we have preferred to increase the height at the right end of the domain

because we have observed that otherwise the water would reach the upper surface and

extend through it. The initial volume is 4 m long, 5 m wide and 7 m high. The circular

cylinder, which has a radius r = 1 m and height h = 5 m, is placed in the middle of the

tank. An unstructured triangular mesh with 1968844 elements and 348963 nodes is used.

Water properties, ρ = 1000.0 and µ = 1.0×10−3 (SI units), are used in the simulation.

94 CHAPTER 3. A FREE SURFACE MODEL

The Reynolds number based on a typical velocity (10 m/s) and the diameter of the

cylinder is Re = 2.0×107. Despite the flow is turbulent, as the Reynolds number indicates,

we have been able to run this example without using any turbulence model [49, 63, 95].

The viscosity introduced by the stabilization method seems to be enough to make the

solution of the Navier Stokes equations possible. The walls of the domain are supposed

frictionless. A total of 34 seconds have been run with a 0.01 time step.

In Figure 3.9.the evolution of the interface is shown. The results are similar to the

ones obtained in [77] but not identical. This is not surprising due to complexity of the

flow and the fact that no turbulence model has been used.

Split OSS stabilization has been used for the Navier Stokes equations. For the

convective nonlinearity Picard iteration is used. The tolerance is set to one percent

variation in the L2 norm of the velocity and a maximum of 10 iterations are allowed.

Typically only one or two iterations are needed. For the solution of the monolithic system

a preconditioned GMRES iterative solver [102] is used. The stopping criteria for the solver

is that the residual is smaller than 10−8 times the right hand side. It usually converges

in approximately 30 iterations. An ILUT preconditioner with threshold 0.001 and filling

25 is used [102]. For the Level Set equation the convergence of the GMRES solver is very

easy even without preconditioner.

The total CPU time for the simulation has been 530932 seconds. The resolution of

the Navier Stokes equations takes most of the time, with 232416 seconds for the matrix

assembly and 225672 seconds for the linear solver. The runs were performed on a PC with

AMD Athlon(tm) 64 X2 Dual Core Processor 4400+ running at 2.2 GHz with 3 Gbyte of

RAM using the Intel Fortran compiler under Ubuntu.

3.5.2 3D Green water problem

The second example has been experimentally studied by the Maritime Research Institute

Netherlands (MARIN) to evaluate the effects of green water flow over the deck of ships.

As in the previous example it is a 3D dam-break wave but in this case it hits a box with

3.5. TWO COMPUTATIONALLY DEMANDING EXAMPLES 95

t=0.4 s t=2.0 s

t=4.4 s t=5.2 s

t=8.4 s t=9.2 s

t=11.2 s t=33.2 s

Figure 3.9: Free surface evolution

96 CHAPTER 3. A FREE SURFACE MODEL

dimensions 0.161×0.403×0.161m. The tank has an open roof of dimensions 3.22×1×1 m

and the initial water volume is 0.55 m high and 1.228 m long. The smaller dimensions

make this problem somehow simpler than the previous one but the advantage is that

experimental data is available in [35]. The problem has also been analyzed numerically

in [41, 47, 69].

An unstructured triangular mesh with 1166780 elements and 206153 nodes is used.

The numerical strategy is the same as in the previous example. A total of 6 seconds

have been run with a 0.0025 time step. The total CPU time for the simulation has been

314644 seconds. The resolution of the Navier Stokes equations takes most of the time,

with 116755 seconds for the matrix assembly and 112844 seconds for the linear solver.

The pressures at four of the gauges whose position is described in [35] are compared

with our numerical results in Figure 3.10. P1 and P3 are located at the face that receives

the wave impact, while P6 and P8 are found at the top of the box. The agreement between

the numerical results and the experimental ones is very satisfactory. Some small delay

(0.4 s) can be observed for the moment the return wave hits the box again at about 5.0 s.

The reason for this delay should be explored further.

In Figure 3.11.the evolution of the interface is shown. The agreement with the

photographs presented in [35] is very satisfactory. It is important to point out that

a smooth interface is obtained in the region far from the wave (t = 2.3 s). This

good behavior can be attributed to the correct treatment of boundary conditions at the

interface.

3.6 Conclusions

In this Chapter we have introduced a formulation for free surface flows on fixed meshes.

The key difference with typical Eulerian formulations for free surface flows is that we do

not solve the Navier–Stokes equations on the whole mesh. Taking advantage of the fact

that we have a boundary condition at the free surface we can model the flow only in the

fluid region. By doing so we are able to avoid the difficulty of modeling a discontinuous

3.6. CONCLUSIONS 97

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6

pr
es

su
re

 [P
a]

time [s]

experimental
numerical

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1 2 3 4 5 6

pr
es

su
re

 [P
a]

time [s]

experimental
numerical

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6

pr
es

su
re

 [P
a]

time [s]

experimental
numerical

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 1 2 3 4 5 6

pr
es

su
re

 [P
a]

time [s]

experimental
numerical

Figure 3.10: Pressure at points P1, P3, P6 and P8

98 CHAPTER 3. A FREE SURFACE MODEL

t=1.0 s

t=2.3 s

t=2.0 s

t=0.4 s

t=0.6 s

t=0.4 s

t=0.6 s

t=1.0 s

t=0.4 s

t=0.6 s

t=2.0 s

t=1.0 s

t=0.4 s

t=0.6 s

Figure 3.11: Free surface evolution for the 3D Green water problem

3.6. CONCLUSIONS 99

pressure gradient in the cut elements. The use of enhanced integration allows us to impose

the Neumann boundary condition at a surface that does not coincide with element faces

quite simply. On the other hand the model differs from ALE or Lagrangian simulations

on the fact that we use a fixed mesh. Two versions of the model have been proposed, one

that uses an ALE formulation on fixed meshes (FM-ALE) and the other one that is more

closely related to Eulerian formulations. The second formulation is a simplification or

approximation of the first one. Nevertheless, no significant difference has been observed

between the numerical results obtained with the two versions.

The FM-ALE version calculates the velocities in the empty region only to transport

the level set function. The other version also uses the velocities in the empty region to

model the transient term in nodes that go from the empty region to the filled one in a way

that mimics what happens in a two phase flow with negligible properties in the second

fluid. The model takes into account the fact that in a free surface flow the velocities in

the fluid region influence the velocities in the empty region but not the other way around.

The numerical results have shown that the formulation can provide very satisfactory

results for low Froude number flows where the typical two phase flow model fails.

Compared with the enriched pressure two phase model presented in Chapter 2 the free

surface model has produced equal or better results in all the analyzed cases.

The free surface model is simpler than the enriched pressure two phase model because

no enrichment is needed. On the other hand, since the flow equations are solved in the

liquid and the empty region separately, the computational cost is reduced.

The examples shown in this paper demonstrate that the free surface model can

introduce significant improvements compared with a typical two phase flow finite element

model. It allows to avoid spurious velocities and enhances mass conservation.

100 CHAPTER 3. A FREE SURFACE MODEL

Chapter 4

Pressure Segregation Methods

In this Chapter we will explore pressure segregation methods that should allow us reduce

the computational cost of solving the Navier-Stokes equations. Since their appearance in

the late 1960’s with the works of Chorin [20] and Teman [107] have enjoyed widespread

popularity. The key for such success is that they allow to uncouple the velocity and

pressure unknowns, leading not only to smaller, but also, better conditioned subproblems.

The idea is to continue the work presented by Santiago Badia in a recent thesis [4]

concentrating mainly on the implementation and numerical testing of the algorithms

presented therein, specially for the interface flows we are interested in. The objective

of this chapter is to gain some practical experience with pressure segregation methods,

test our implementations and select which method we should use for our mould filling

problems.

Following [4] pressure segregation methods can be classified into pressure correction

methods and velocity correction methods. The former are the most well known and

include the Chorin-Teman projection method and the Van Kan method [117]. The latter

are more recent [52,67]. The velocity correction approach we will use has been developed

in [4] . Both versions will be tested. A complete review on pressure segregation methods

can be found in [50]. They are usually also called projection methods or fractional step

methods.

The most typical approach is to first uncouple the velocity and pressure at the space

101

102 CHAPTER 4. PRESSURE SEGREGATION METHODS

continuous level and then discretize the problem. The approach we will use in this work

is to introduce the splitting at the purely algebraic level, once the discretization has been

performed. Such approach is advocated in [93,96,113]. The main difference between both

approaches is the way in which the boundary conditions are approximated. In any case,

when using the discrete approach a further approximation is usually introduced (specially

when dealing with continuous pressure interpolations) that makes both approaches very

similar.

Predictor corrector (see [11] and references therein) versions of both velocity correction

and pressure correction methods will also be presented. These methods obtain the

splitting in a very similar way to the previous methods, but an iterative procedure is

introduced that, when converged, leads to the same solution as the monolithic system. In

fact, the non predictor corrector versions can be seen as the first iteration of the predictor

corrector versions.

Finally we will reinterpret pressure correction schemes as an iterative procedure for

solving the Pressure Schur Complement as suggested by Turek in [113, 115]. This new

perspective is interesting because depending on the preconditioner chosen other well

known methods (such as the SIMPLE scheme) can also be described. On the other hand,

using such approach, the rotational version of the pressure correction schemes, introduced

in [111] and highly favored in [50], can be seen as the use of a different preconditioner from

the one used to obtain the standard version. In fact, it is the preconditioner introduced

in [17] and recommended in [115]. In [4] the use of the rotational version has not been

tested because it is not considered necessary when the splitting is done at the purely

algebraic level (see remark 3.1). In [115], despite a discrete splitting is used, the rotational

version is preferred and therefore we believe that it could be interesting to test it.

4.1. PRESSURE CORRECTION METHODS 103

4.1 Pressure correction methods

4.1.1 Fractional Step (non Predictor Corrector) schemes

As we have already mentioned, the splitting will be introduced at the pure algebraic level,

that is, starting from the monolithic discretized problem written in matrix form (1.10).

In order to simplify the presentation, only homogeneous Dirichlet boundary conditions

will be taken into account and the stabilization terms will not be included. Using a BDF1

time discretization, the problem then reads:

1

δt
M
(
Un+1 − Un

)
+ K

(
Un+1

)
Un+1 + GPn+1 = Fn+1,

DUn+1 = 0.

The spliting can now be introduced, giving rise to an exactly equivalent problem

1

δt
M
(
Ũn+1 − Un

)
+ K

(
Un+1

)
Un+1 + γGPn = Fn+1, (4.1)

1

δt
M
(
Un+1 − Ũn+1

)
+ G

(
Pn+1 − γPn

)
= 0, (4.2)

DUn+1 = 0, (4.3)

where Ũn+1 is an auxiliary variable and γ is a numerical parameter, whose values of

interest are 0 and 1. At this point the first and essential approximation is introduced

K
(
Un+1

)
Un+1 ≈ K

(
Ũn+1

)
Ũn+1. (4.4)

Expressing Un+1 in terms of Ũn+1 using 4.2 and inserting the result in 4.3, the set of

equations to be solved is

1

δt
M
(
Ũn+1 − Un

)
+ K

(
Ũn+1

)
Ũn+1 + γGPn = Fn+1, (4.5)

δtDM−1G
(
Pn+1 − γPn

)
= DŨn+1, (4.6)

1

δt
M
(
Un+1 − Ũn+1

)
+ G

(
Pn+1 − γPn

)
= 0. (4.7)

which has been ordered according to the sequence of solution, for Ũn+1, Pn+1 and Un+1.

The uncoupling of the variables has been made possible thanks to approximation 4.4.

104 CHAPTER 4. PRESSURE SEGREGATION METHODS

Depending mainly on the type of finite element discretization used, a second

approximation is typically introduced. When continuous pressure interpolations are used,

it is much cheaper to approximate

DM−1G ≈ L, with components Lab = −
(
∇Na,

1

ρ
∇N b

)
(4.8)

where L is the standard approximation to the Laplacian operator divided by the density

when a constant density is used. When this approximation is used the system turns out

to be very similar to the one that would be obtained if the splitting had been introduced

prior to the discretization. If DM−1G needs to be explicitly build, as in [114], a diagonal

M matrix has to be used. It can be obtained either by lumping the standard one or by

using nodal integration. The extension of projection methods to variable density flows is

quite recent [10, 51]

When the second approximation (DM−1G ≈ L) is used and γ = 0 the original scheme

proposed by Chorin [20] and Teman [107] is recovered. It is usually referred to as non-

incremental scheme. When γ = 1 is used the incremental version, introduced by Van

Kan [117], is obtained.

If a BDF2 time discretization had been used, following the same steps we would have

arrived to

1

2δt
M
(
3Ũn+1 − 4Un + Un−1

)
+ K

(
Un+1

)
Un+1 + GPn = Fn+1,

2

3
δtDM−1G

(
δPn+1

)
= DŨn+1,

1

2δt
M
(
3Un+1 − 3Ũn+1

)
+ G

(
δPn+1

)
= 0.

where δPn+1 = Pn+1 − Pn, using the notation introduced in Chapter 1.

A remarkable fact about the previous schemes is that, despite the pressure gradient

is treated explicitly in the equation for Ũn+1, they turn out to be stable in time. For a

complete review on stability results see [5, 52].

The name pressure correction that we shall use in this work originates from the fact

in the incremental version a first order extrapolation of the pressure P̃n+1 = Pn is used

4.1. PRESSURE CORRECTION METHODS 105

to obtain Ũn+1 and in the second step a correction δPn+1 is obtained. Also in the non-

incremental case an extrapolation of the pressure is used, in this case of order zero,

P̃n+1 = 0. The error introduced by the splitting is one order higher that the error of the

extrapolation used for P̃n+1. If the error
∥∥∥Pn+1 − P̃n+1

∥∥∥ in any norm ‖.‖ is of order p,

then from (4.7) we can see that O
(∥∥∥Un+1 − Ũn+1

∥∥∥) = δt O
(∥∥∥Pn+1 − P̃n+1

∥∥∥) = p + 1.

The non-incremental scheme has a splitting error of order 1 and the incremental one of

order 2. In this work the incremental version will always be used and the non-incremental

scheme will no longer be presented. The temporal order of the method is given by the

minimum between the order of the error introduced by the discretization of the temporal

derivative and the order of the error introduced by the splitting. Even if a first order time

discretization (BDF1) is used, the use of the incremental version will be advantageous

when the splitting error is bigger than the error introduced by the discretization of the

temporal derivative. The idea of using higher order extrapolations for the pressure seems

tempting. The order of the spliting error would be reduced and the solution would rapidly

tend to the monolithic solution. Unfortunately numerical experience [4, 52] shows that

pressure extrapolations of order higher than one typically lead to unstable solutions.

In the introduction we have mentioned that the schemes obtained at the discrete

[4,93,96,113] and continuous [20,50,107] level are very similar when the discrete Laplacian

is approximated by the continuous one. The difference is the Dirichlet boundary condition

applied on the end of step velocity U. When the splitting is introduced at the continuous

level only the normal component is prescribed. Instead when the discrete approach is

used all components are prescribed.

4.1.2 Predictor Corrector scheme

The predictor corrector method we will describe has been proposed in [33,105]. Without

taking into account the stabilization terms and using a BDF1 discretization it reads

1

δt
M
(
Un+1,i+1 − Un

)
+ K

(
Un+1,i

)
Un+1,i+1 + GPn+1,i = Fn+1, (4.9)

δtL
(
Pn+1,i+1 − Pn+1,i

)
= DUn+1,i+1, (4.10)

106 CHAPTER 4. PRESSURE SEGREGATION METHODS

where the superscript i indicates the iteration number. In [4,33,105] it is supposed that the

uncoupling is dealt with in the same iterative loop as the one used for the linearization of

the convective term. In our implementation we have used nested loops for the uncoupling

and the linearization of the convective term. The uncoupling loop has been set as the

outer loop. In this way, when only one linearization iteration is permitted per uncoupling

iteration, the usual predictor corrector method with a single loop is recovered. On the

other hand when only one uncoupling iteration is permitted the fractional step version is

recovered.

It is obvious that when the method converges (Pn+1,i+1 = Pn+1,i) the solution of the

original monolithic scheme (1.10) is recovered. DM−1G could have been used instead of

L. How this would affect convergence could be interesting to analyze. The inclusion of

the term δtL (Pn+1,i+1 − Pn+1,i) is motivated by what happens in the fractional step (non

predictor corrector) scheme.

If instead of using a first order scheme, a BDF2 time discretization had been used,

the iterative scheme would read [26]

1

2δt
M
(
Un+1,i+1 − 4Un + Un−1

)
+ K

(
Un+1,i

)
Un+1,i+1 + GPn+1,i = Fn+1,

δt
2

3
L
(
Pn+1,i+1 − Pn+1,i

)
= DUn+1,i+1.

Contrary to what happens in the fractional step version, for Pn+1,0 and Un+1,0

extrapolations of order higher than one can be used without compromising the stability

because at each time step the method converges to the monolithic solution. In [26] the use

of a second order extrapolation reduces the number iterations needed to converge to the

monolithic solution compared to a first order extrapolation in some numerical examples.

In [33] the predictor corrector version is initially written with both Ũ and U, but as

in the converged case Ũ = U, finally the scheme is written with only one velocity as in

(4.9,4.10). In practice one usually does not converge up the absolute zero but only up to

some finite tolerance or even some fixed number of iterations. In such case, we believe that

one should work with both velocities (Ũ and U). The split predictor corrector scheme,

4.1. PRESSURE CORRECTION METHODS 107

using a BDF1 time discretization, would then read:

1

δt
M
(
Ũn+1,i+1 − Un

)
+ K

(
Ũn+1,i

)
Ũn+1,i+1 + GPn+1,i = Fn+1, (4.11)

δtL
(
Pn+1,i+1 − Pn+1,i

)
= DŨn+1,i+1, (4.12)

1

δt
M
(
Un+1 − Ũn+1,i+1

)
+ G

(
Pn+1,i+1 − Pn+1,i

)
= 0. (4.13)

Equation 4.13 is solved at the end of the iterative process, that is when (4.11) and (4.12)

have converged to the user prescribed tolerance.

The OSS stabilized scheme

So as to conclude this section we will present the Split OSS stabilized version of the

pressure correction predictor corrector scheme using a BDF1 time discretization and the

matrices introduced in Chapter 2. Using the notation introduced in Chapter 1 the matrix

version of the problem reads as follows:

1

δt
M
(
Ũn+1,i+1 − Un

)
+ K

(
Ũn+1,i

)
Ũn+1,i+1 + GPn+1,i

+Su
(
τn+1,i
1 ; Ũn+1,i

)
Ũn+1,i+1 − Sy

(
τn+1,i
1 ; Ũn+1,i

)
Yn+1,i

+Sd
(
τn+1,i
2

)
Ũn+1,i+1 − Sw

(
τn+1,i
2

)
Wn+1,i = Fn+1,

δtDM−1G
(
Pn+1,i+1 − Pn+1,i

)− Sp
(
τn+1,i+1
1

)
Pn+1,i+1 + Sz

(
τn+1,i+1
1

)
Zn+1 −DŨn+1,i+1 = 0,

MπY
n+1,i+1 − C

(
Ũn+1,i+1

)
Ũn+1,i+1 = 0,

MπZ
n+1,i+1 − GπP

n+1,i+1 = 0,

MπW
n+1,i+1 − DŨn+1,i+1 = 0,

1

δt
M
(
Un+1 − Ũn+1,i+1

)
+ G

(
Pn+1,i+1 − Pn+1,i

)
= 0.

We have included the terms corresponding to τ2 �= 0 that have been neglected in [4,33,105].

These terms help to enforce incompressibility. In two fluid flows, where it is important

to conserve the mass of each fluid, the influence of such terms is something that seems

interesting to explore numerically.

108 CHAPTER 4. PRESSURE SEGREGATION METHODS

If the difference between U and Ũ is neglected, as has been done in the previous

publications [4,33,105], it has been observed [33,105] that the previous equations can be

seen as an iterative procedure for solving the monolithic problem freezing the pressure

gradient in the momentum equation. The term δtL (Pn+1,i+1 − Pn+1,i) has been motivated

by what happens in the fractional step case. If it had been omitted the same iterative

procedure could have been used thanks to the inclusion of matrix Sp. In [33, 105] both

options have been tested and it has been pointed out that without the inclusion of the

Laplacian convergence turns out to be much harder.

4.2 The Pressure Schur Complement approach

Following Turek [113,115], in this section we will present the Pressure Schur Complement

approach that allows us to obtain another interpretation of pressure correction methods.

An interesting feature of this approach is that is allows to describe not only pressure

corrections methods but also other well known solution schemes, such as SIMPLE or

Uzawa iterations. Related approaches can also be found in [5].

In order to present the method we will start from the matrix version of Navier Stokes

equations obtained after discretization both in space and time (BDF1) using the notation

introduced in Chapter 1. For simplicity the stabilization terms will be omitted. The

problem is then to find Un+1 and Pn+1 given Un, Fn+1 and δt such that

1

δt
M
(
Un+1 − Un

)
+ K

(
Un+1

)
Un+1 + GPn+1 = Fn+1,

DUn+1 = 0.

The previous equations can be rewritten as

MUn+1 + δtK
(
Un+1

)
Un+1 + δtGPn+1 = δtFn+1 + MUn,

DUn+1 = 0.

where in order to adapt the presentation to the one used in [115] S and F∗ are defined:

S = M + δtK
(
Un+1

)

4.2. THE PRESSURE SCHUR COMPLEMENT APPROACH 109

F∗=δtFn+1 + MUn

Then the (nonlinear) algebraic problem to be solved is: given Un, F∗ and δt, solve for

U = Un+1 and P = Pn+1

SU + δtGP = F∗, (4.14)

DU = 0. (4.15)

S and F∗ may vary depending on the time discretization or on the linearization used for

the convective terms but the system to be solved is always of the form (4.14,4.15).

Assuming S−1 exists, problem (4.14,4.15) is equivalent to the following scalar pressure

Schur complement formulation

−DS−1GP = − 1

δt
DS−1F∗. (4.16)

Once the pressure P is known, the corresponding velocity vector U satisfies

U = S−1 (F∗ − δtGP) .

The idea is to present the problem as a scalar problem for P so that the knowledge about

efficient iterative schemes for such problems can be applied. One of the possibilities is to

perform a preconditioned Richardson iteration, where C−1 is an appropriate preconditioner

for the pressure Schur complement −DS−1G. The basic iteration for the pressure Schur

complement equation is then: given Pi obtain Pi+1

Pi+1 = Pi − C−1

(
−DS−1G Pi +

1

δt
DS−1F∗

)
. (4.17)

In [115] it is proposed that

C−1 = αRT−1 + αDM−1
P , (4.18)

where T :=−DM−1
L G, ML and MP are the diagonal (lumped) mass matrices corresponding

to the velocity and pressure respectively and αR, αD are damping parameters. We then

110 CHAPTER 4. PRESSURE SEGREGATION METHODS

have

Pi+1 = Pi − [αRT−1 + αDM−1
P

](−DS−1G Pi +
1

δt
DS−1F∗

)
(4.19)

= Pi +
[
αRT−1 + αDM−1

P

](− 1

δt
DS−1F∗ +

1

δt
DS−1δtG Pi

)

= Pi +
[
αRT−1 + αDM−1

P

]⎛⎜⎝− 1

δt
DS−1

(
F∗ − δtG Pi

)︸ ︷︷ ︸
Ũi+1

⎞⎟⎠
Now the previous iterative procedure can be split into 4 substeps that are equivalent to

those we have proposed for the predictor-corrector scheme in the previous section. Given

Pi and F∗ perform the following 4 substeps to obtain Pi+1:

1. Solve for Ũi+1

SŨi+1 = F∗ − δtG Pi

2. Calculate a right hand side FP for the preconditioning step

FP = − 1

δt
DŨi+1

3. Solve an update-equation for the pressure

TQi= FP

4. Update the new pressure

Pi+1 = Pi + αRQi+αDM−1
P FP (4.20)

Step 1 corresponds to the first step of our predictor corrector scheme (4.11). When

αR = 1 and αD = 0 steps 2, 3 and 4 are equivalent to the second step of the predictor

corrector scheme (4.12). The step that obtains U (4.13) has not been included because as

in the predictor corrector case it is performed once the iterative procedure has converged.

Using the notation we have just introduced it reads

U =Ũ − δtM−1
L G Q

4.2. THE PRESSURE SCHUR COMPLEMENT APPROACH 111

where we have omitted the superindexes for Ũ and Q to indicate that they correspond to

the converged solutions. If only one iteration is performed the fractional step scheme is

recovered.

If αR = 1 and αD = µ δt the rotational version of the pressure correction schemes

introduced in [111] and highly favored in [50] is obtained. The difference is that, as

presented in [115], it is derived on the discrete level as an optimal preconditioner for the

Stokes part of the Schur complement equation instead of as modifications to the differential

operators at the continuous level. In [4] the rotational version is not considered necessary

when the splitting is done at the purely algebraic level (see remark 3.1). Since in [115]

splitting is introduced at the discrete level and the preconditioner with a non-zero αD

(corresponding to the rotational form) is preferred, we believe that it would be interesting

to test it for our problems. Recently, in [5] it has been recognized that remark 3.1 in [4]

was not correct. It is clarified that the error in the pressure close to Dirichlet boundaries is

also present when the splitting is done at the purely algebraic and the discrete Laplacian

is used.

An alternative interpretation for the error in the pressure close to Dirichlet boundaries

can be found in [15]. Despite the solution is coincident with the rotational version no

reference is made to [111]. Why the standard fractional step scheme introduces a spurious

boundary condition close to Dirichlet boundaries and how the rotational form corrects

this error is easier to see when the fractional step scheme is introduced at the continuous

level than when it is introduced at the discrete level, as we do in this work. Therefore we

refer the reader to [50, 111] where the continuous approach is used.

Rotational form for pressure stabilized schemes

When we tried to implement the rotational version of the fractional step scheme we found

that it had not been applied to pressure stabilized elements. From (4.20) one can see

that the pressure is obtained by adding two corrections to extrapolation of the pressure

P̃n+1(= Pn in the incremental case). The first correction is the one used both in the

standard and rotational versions of the method and the second one only in the rotational

112 CHAPTER 4. PRESSURE SEGREGATION METHODS

version. We can call them δP1 and δP2 respectively. How to obtain δP1 in the pressure

stabilized case has already been described and is well known. In order to obtain δP2 a

naive approach can be to proceed as in the non stabilized case, that is

δP2 = αDM−1
P FP = −µM−1

P DŨi+1.

When we implemented this option pressure stability was lost.

In the non stabilized case, the approximation to the inverse of the pressure Schur

complement (4.18) is built as the sum of two inverses. The first one approximates

the inverse of the pressure Schur complement closely when the transient term is more

important than the viscous and convective terms (it is related to δP1) and the second one

when the viscous term is dominant (it is related to δP2). For the pressure stabilized case

we now proceed as in the non stabilized case. Using Split OSS and only stabilizing the

pressure to simplify the presentation, the algebraic problem to be solved is: given Un, F∗

and δt, solve for U = Un+1 and P = Pn+1

SU + δtGP = F∗,

DU + SpP = SzZ.

It leads to the following scalar pressure Schur complement formulation(
−DS−1G +

1

δt
Sp

)
P =

1

δt
SzZ − 1

δt
DS−1 (F∗) .

As in the non stabilized case we can define the approximation to the pressure Schur

complement as the sum of two inverses C−1 = C−1
1 +C−1

2 . The first one should approximate

the pressure Schur complement closely when the transient term dominates and the second

one when the viscous term dominates. Similarly to what is done in the non stabilized

case for the stabilized case we have

C−1
1 =

(
−DM−1

L G +
1

δt
Sp

)−1

and

C−1
2 =

(
1

µδt
MP +

1

δt
Sp

)−1

.

4.2. THE PRESSURE SCHUR COMPLEMENT APPROACH 113

In the stabilized case C2 is no longer diagonal and a system needs to be solved for δP2(
1

µ
MP + Sp

)
δP2 = −DŨi+1 − SpP

i + SzZ.

Fortunately the matrix is well conditioned and the system is easy to solve.

We can now proceed as we have done in the non stabilized case to show that one

iteration of the preconditioned Richardson iteration for the pressure Schur complement

corresponds to the fractional step scheme (standard or rotational form). By doing this we

can arrive to the fractional step pressure stabilized rotational scheme written in the usual

form and show the error introduced by the splitting. We now rewrite the preconditioned

Richardson iteration for the stabilized pressure Schur complement

Pi+1 = Pi − [C−1
1 + C−1

2

](−DS−1G Pi +
1

δt
DS−1F∗ +

1

δt
SpP

i − 1

δt
SzZ

)

= Pi +
[
C−1

1 + C−1
2

]⎛⎜⎝− 1

δt
DS−1

(
F∗ − δtG Pi

)︸ ︷︷ ︸
Ũi+1

− 1

δt
SpP

i +
1

δt
SzZ

⎞⎟⎠ .

As in the non stabilized case we can now split the iterative procedure into 4 substeps

1. Solve for Ũi+1

SŨi+1 = F∗ − δtG Pi

2. Calculate a right hand side FP for the preconditioning step

FP = − 1

δt
DŨi+1 − 1

δt
SpP

i +
1

δt
SzZ

3. Solve an update-equation for the pressure

C1δP
i
1= FP (4.21)

C2δP
i
2= FP (4.22)

4. Update the new pressure

Pi+1 = Pi + δPi1 + δPi2

114 CHAPTER 4. PRESSURE SEGREGATION METHODS

Since we are interested in the fractional step scheme that involves only one iteration

the values at i+ 1 are associated with the values at n + 1. For the prediction (i = 0) we

use values at n and we omit the indexes in δP1 and δP2. From the first step we can write

1

δt
M
(
Ũn+1 − Un

)
+ KŨn+1 + GPn = Fn+1. (4.23)

From (4.21) we have

(−δtDM−1G + Sp
)
(δP1) + SpP

n − SzZ
n+1 + DŨn+1,i+1 = 0. (4.24)

Using the exact continuity equation

DUn+1 + SpP
n+1 − SzZ

n+1 = 0 (4.25)

and

Pn+1 = Pn + δP1 + δP2, (4.26)

we can rewrite (4.24) as

(
δtDM−1G

)
(δP1) + SpδP2 + DUn+1 − DŨn+1,i+1 = 0,

that multiplied by 1
δt

MD−1 gives

G (δP1) +
1

δt
M
(
Un+1 − Ũn+1

)
= − 1

δt
MD−1SpδP2. (4.27)

Equations (4.23,4.27 and 4.25) are the pressure stabilized rotational counterpart of (4.5,4.2

and 4.3).

Adding (4.23) and (4.27) and using (4.26) we obtain

1

δt
M
(
Un+1 − Un

)
+ KŨn+1 + GPn+1 − G (δP2) +

1

δt
MD−1SpδP2 = Fn+1

which can be compared with the exact momentum equation,

1

δt
M
(
Un+1 − Un

)
+ KUn+1 + GPn+1 = Fn+1,

to clarify the error we have introduced with the splitting. In the standard (non rotational,

δP2 = 0) case we recover the original approximation (4.4). When the rotational form is

4.2. THE PRESSURE SCHUR COMPLEMENT APPROACH 115

used, the approximation is KUn+1
≈ KŨn+1 −G (δP2)+ 1

δt
MD−1SpδP2 where δP2 has been

defined in (4.22).

Actually in our implementation we have omitted the term in the right hand side

of (4.27). This implies perturbing the continuity equation (4.25) with SpδP2. Now the

approximation used in the momentum equation is KUn+1
≈ KŨn+1−G (δP2). Contrary to

what happens in the usual pressure correction fractional step scheme our implementation

introduces a perturbation in both the momentum and continuity equations and not only

in the momentum equation.

Relation with other methods

Finally it is interesting to show, following [115], how some other well known schemes can

also be described as pressure Schur complement techniques. Uzawa like iterations can

be associated to the choice αR = 0. In fact for stationary calculations that is the choice

Turek [115] recommends, with αD � µ. SIMPLE like schemes can be associated to a Schur

complement iteration when the preconditioner for the pressure Schur complement is taken

as C−1 = −DS̃−1G, where S̃ is some approximation to S, for example its diagonal or the

diagonal matrix obtained by summing its rows (if it does not lead to a zero diagonal).

Instead of using a Richardson preconditioned iteration to solve for (4.16) as in (4.17)

a more elaborate preconditioned scheme, such as preconditioned GMRES, could be used.

This leads to a method very similar to the one proposed in [42, 43, 68, 74]. The use

of a GMRES iteration should make the method more robust and improve convergence

compared to a Richardson iteration. We have implemented a preliminary version of the

method proposed in [42,43,68,74] but very limited testing has been done and no conclusion

can be drawn for the moment. Regarding the approximation of the inverse of the Schur

complement for the pressure, C−1, a more elaborate version was introduced in [74]. In the

Stokes case it reduces to (4.18) but when the convective term is present it is supposed to

improve the approximation. It reads

C−1
∗ = M−1

P APT−1 (4.28)

116 CHAPTER 4. PRESSURE SEGREGATION METHODS

where the matrices M−1
P and T−1 are the ones introduced in (4.18). Actually in

[42, 43, 68, 74] the cheaper approximation L−1 is used instead of T−1. Ap is a discrete

approximation to the convection-diffusion operator on the pressure finite element space

that includes the terms used to stabilize the convective part,

Ap =
1

δt
Mp+Kp(U) + Sc (τ1; U) .

Kp and Sc are given by

Kp (U)ab =
(
Na, ρ uh · ∇N b

)
+
(∇Na, µ∇N b

)
,

Sc (τ1; U)ab =
(
τ1uh · ∇Na, ρ uh · ∇N b

)
,

where, as in Chapter 1, we denote the node indexes with superscripts a, b and the

standard shape functions of node a by Na. The approximation of the inverse of the

Schur complement for the pressure, C−1
∗ has been used in methods that converge to the

monolithic solution at each time step. It could also be interesting to test it in fractional

step like methods. Since C−1
∗ is a better approximation than C−1 in the Navier Stokes

case it could be used in (4.19) to obtain an enhanced fractional step scheme.

4.3 Velocity correction methods

In this Section the velocity correction pressure segregation methods based on a Discrete

Pressure Poison Equation, as suggested in [6] will be introduced. They are called velocity

corrector methods because it is the velocity, and not the pressure, that is extrapolated

in the first step of the method. In [4] the appearance of velocity correction method is

attributed to Guermond and Shen [52] but it can also be related to the scheme introduced

by Karniadakis, Israeli and Orzag [67]. Moreover we would like to mention that an

algorithm presented [44] and recommended in [48] has several similarities with the velocity

correction method proposed in [6].

The main particularity of the method proposed in [4] is that it is obtained at the

discrete level, as has been done for the pressure correction scheme. The continuity

4.3. VELOCITY CORRECTION METHODS 117

equation is replaced by a discrete pressure Poisson equation obtained from the monolithic

discretized problem. The predictor-corrector version is also presented.

4.3.1 The Discrete Pressure Poison Equation

The discrete pressure Poisson equation (DPPE) is obtained from the monolithic problem

discretized both in space and time. The matrix form of the monolithic problem

(1.10), supposing only homogeneous Dirichlet boundary conditions and neglecting the

stabilization terms for a BDF1 time discretization reads:

1

δt
M
(
Un+1 − Un

)
+ K

(
Un+1

)
Un+1 + GPn+1 = Fn+1, (4.29)

DUn+1 = 0. (4.30)

If the momentum equation (4.29) is multiplied by δtDM−1 and the resulting equation is

subtracted from the continuity equation (4.30), the DPPE is obtained

δtDM−1GPn+1 = δtDM−1
(
Fn+1 − K

(
Un+1

)
Un+1

)
+ DUn. (4.31)

The system formed by (4.29, 4.31) is equivalent to the original monolithic discretized

scheme (4.29, 4.30) and the boundary conditions arise naturally from the original scheme.

There is no advantage in solving the coupled system that uses the DPPE equation directly.

The advantage is that the segregation is now straight forward.

It is also interesting to point out that an alternative DPPE can be obtained if the

momentum equation (4.29) is multiplied by δtDM−1
L instead of δtDM−1 where ML is the

lumped mass matrix. It reads

δtDM−1
L GPn+1 = δtDM−1

L

(
Fn+1 − K

(
Un+1

)
Un+1 − 1

δt
M
(
Un+1 − Un

))
+ DUn+1. (4.32)

The system formed by (4.29, 4.32) is also equivalent to the original monolithic discretized

scheme (4.29, 4.30). This does not happen if one naively approximates DM−1G by DM−1
L G

in (4.31). In that case, the system formed by (4.29) and the approximation to (4.31) is

only an approximation to the original monolithic discretized scheme. We would like

118 CHAPTER 4. PRESSURE SEGREGATION METHODS

to point this out because we had initially taken the naive approach. In that case, the

predictor corrector scheme does not converge to the monolithic solution. Moreover, from

the implementation point of view, we belive that (4.32) is also advantageous because it

leads to the use of the same matrix, 1
δt

M+K (Un+1), in both the DPPE and the momentum

equation. Instead if (4.31) is used, in the DPPE only K (Un+1) appears.

As we discuss in Subsection 4.3.3, an extrapolation is needed for Un+1 to obtain

the fractional step scheme. When DM−1G is used, the extrapolation is only needed for

δtDM−1K (Un+1) Un+1. Instead if the lumped mass matrix is used, it is needed for both

δtDM−1
L K (Un+1) Un+1 and D

(−M−1
L MUn+1 + Un+1

)
. Our numerical experience indicates

that the use of the extrapolation in the second term introduces no difficulties because ML

is a good approximation to M.

Before introducing the resulting fractional step and predictor corrector velocity

correction schemes we will discuss the approximation of DM−1G (or DM−1
L G).

4.3.2 Approximation of DM−1G

When using continuous pressure interpolations, the construction of DM−1G is relatively

expensive even if a diagonal mass matrix is used. Therefore, it is usually approximated

as

DM−1G ≈ L, with components Lab = − (∇Na,∇N b
)
.

In [6] the following enhanced approximation is introduced

DM−1GPn+1= LPn+1+
(
DM−1G − L

)
Pn+1≈ LPn+1+

(
DM−1G − L

)
P̃n+1
p (4.33)

where P̃n+1
p is an extrapolation of order p of Pn+1 obtained from previous known values

in the case of the fractional step scheme. The DPPE then reads

δtL
(
Pn+1 − P̃n+1

p

)
= δtDM−1

(
Fn+1 − K

(
Un+1

)
Un+1 − GP̃n+1

p

)
+ DUn. (4.34)

In the predictor corrector case, in the first iteration P̃n+1
p will be used, but in the rest of

the iterations the value from the previous iteration will be used. The DPPE then reads

δtL
(
Pn+1,i+1 − Pn+1,i

)
= δtDM−1

(
Fn+1 − K

(
Un+1

)
Un+1 − GPn+1,i

)
+ DUn. (4.35)

4.3. VELOCITY CORRECTION METHODS 119

with Pn+1,i = P̃n+1
p for i = 0 . As we explain in the next Subsection, the velocity Un+1 is

extrapolated from the values at previous time steps.

In the predictor corrector case, one could even decide to use a separate iterative

loop for solving for the previous approximation, as we have already suggested for the

convective term in the pressure correction scheme. In that case, the iteration index i

would not correspond to the outer iterative loop for the uncoupling of the unknowns but

to an internal iterative loop for solving iteratively the exact DPPE without needing to

form DM−1G. We could then rewrite (4.35) as using a Richardson iteration to solve for

DM−1GPn+1 = X

with

X = DM−1
(
Fn+1 − K

(
Un+1

)
Un+1

)
+

1

δt
DUn.

The iterative procedure would then read

LPn+1,i+1 = X − DM−1GPn+1,i + LPn+1,i. (4.36)

This iterative process allows us to solve for DM−1GPn+1 without needing to assemble

DM−1G. Its efficiency, as compared to solving directly for DM−1G is something we will have

to test numerically. Moreover, now one can use a non diagonal mass matrix, something

that is not possible if one wants to solve directly for DM−1G.

Seen as an iterative solver for DM−1G, it is obvious that the previous approach can

be applied not only to the predictor corrector scheme but also the fractional step scheme.

If only one iteration is allowed, we recover the enhanced approximation suggested in [6]

if Pn+1,i=0 = P̃n+1
p (Pn+1,i=0 = Pn+1,j in the predictor corrector case, where j is the outer

loop for the uncoupling of the unknowns) and the usual one (DM−1G ≈ L) if Pn+1,0 = 0.

We have discussed the approximation (or solution) of DM−1G when dealing with

the velocity correction method but the same ideas can be applied to pressure correction

methods. Obviously the same approximation (or iterative solution scheme) can be used

for DM−1
L G.

A more elaborate and robust option might be to solve for the discrete Laplacian with

a conjugate gradient method using as preconditioner the continuous Laplacian.

120 CHAPTER 4. PRESSURE SEGREGATION METHODS

4.3.3 Fractional step scheme

In order to obtain the fractional step scheme we start from the coupled system written

with a DPPE (4.29, 4.31). The method is called a velocity correction method because it is

the velocity that is extrapolated from values at previous time steps instead of the pressure.

In the first step the pressure is obtained from the DPPE using an extrapolation of order

q (denoted by Ũn+1
q) of the velocity Un+1. Then, Un+1 is obtained from the momentum

equation (velocity correction step).

Using a BDF1 time discretization, the split scheme reads

δtDM−1GPn+1 = δtDM−1
(
Fn+1 − K

(
Ũn+1
q

)
Ũn+1
q

)
+ DUn, (4.37)

1

δt
M
(
Un+1 − Un

)
+ K

(
Un+1

)
Un+1 + GPn+1 = Fn+1. (4.38)

Using approximation (4.33) for DM−1G we can obtain the following system:

δtL
(
Pn+1−P̃n+1

p

)
= δtDM−1

(
Fn+1 − K

(
Ũn+1
q

)
Ũn+1
q −GP̃n+1

p

)
+ DUn,

1

δt
M
(
Un+1 − Un

)
+ K

(
Un+1

)
Un+1 + GPn+1 = Fn+1.

A first order method in time can be obtained taking q = p = 0,

δtLPn+1 = δtDM−1Fn+1 + DUn,

1

δt
M
(
Un+1 − Un

)
+ K

(
Un+1

)
Un+1 + GPn+1 = Fn+1.

For a scheme with second order accuracy in time BDF2 time discretization and q = p = 1

must be used. The resulting system is then

2

3
δtL
(
Pn+1−Pn

)
=

2

3
δtDM−1

(
Fn+1 − K (Un) Un−GPn

)
+ D

(
4

3
Un − 1

3
Un−1

)
,

1

2δt
M
(
3Un+1 − 4Un + Un−1

)
+ K

(
Un+1

)
Un+1 + GPn+1 = Fn+1.

The first remarkable fact about the previous equations is that despite we are using a

velocity correction method which should be characterized by the fact that in going from

one step to the next only an extrapolation for the velocity is used, actually extrapolations

4.3. VELOCITY CORRECTION METHODS 121

for both the velocity and the pressure are used. The need for the pressure extrapolation

comes from the use of an approximation of DM−1G (enhanced or not). The reason for

needing the pressure extrapolation is therefore different to the reason for needing the

velocity extrapolation (that is the true spirit of the velocity correction method) but, in

any case, if the approximation of the discrete Laplacian is used, both are needed. Instead

in the pressure correction method, only an extrapolation of the pressure is needed no

matter whether the discrete Laplacian or an approximation to it is used.

Therefore, we can say that in order to obtain a ’pure’ velocity correction scheme the

discrete Laplacian must be used. As we have mentioned in the pressure correction case,

extrapolations of order higher than one should help to reduce the splitting error but can

cause instabilities. In [4] a third order method that used BDF3 time discretization and

second order extrapolations for both the velocity and the pressure with the enhanced

approximation for the discrete Laplacian was tested. Numerical experimentation showed

that it was unstable as happens for third order pressure correction methods.

In this work we have solved the discrete Laplacian, directly or using a Richardson

iteration, to obtain a ’pure’ third order velocity correction method that only uses second

order velocity extrapolation. This has allowed us to obtain a third order method that has

shown to be stable in numerical examples we present at the end of this chapter. When

the same cases are run with the third order method with an approximation of the discrete

Laplacian used in [4] they are unstable (also if a pressure correction method is used).

Moreover we have used the velocity correction BDF3 scheme with an approximation to

the discrete Laplacian with a first order pressure extrapolation and second order velocity

extrapolation. In that case, the third order accuracy is lost but stability is recovered.

Therefore we can guess that the instability observed in [4] was caused by the use of second

order pressure extrapolations and that different conclusions could have been drawn if a

’pure’ velocity correction scheme had been used. Instabilities for third order velocity

correction schemes are also observed in [50] where the fractional step scheme is obtained

at the continuous level precluding the possibility of using a discrete Laplacian.

Second order velocity extrapolations may work better than second order pressure

122 CHAPTER 4. PRESSURE SEGREGATION METHODS

extrapolations because the velocity satisfies an evolutionary equation; instead the pressure

adapts itself instantaneously to satisfy the incompressibility constraint. From the

convergence analysis of different pressure segregation methods it is known that the error

estimates for the velocity are sharper than for the pressure [4]. Even in the monolithic

case, where the order of the velocity error depends only on the time integration scheme

used, pressure errors of order equal or higher than two cannot always be obtained for time

integration schemes of order two or higher [56].

The third order accurate scheme used in the numerical examples is obtained by

combining a BDF3 time discretization and a second order velocity extrapolation (q = 2).

It reads

6

11
δtDM−1GPn+1 =

6

11
δtDM−1

(
Fn+1 − K

(
Ũn+1
q

)
Ũn+1
q

)
+D

(
18

11
Un − 9

11
Un−1 +

2

11
Un−2

)
,

1

6δt
M
(
11Un+1 − 18Un + 9Un−1 − 2Un−2

)
+ K

(
Un+1

)
Un+1 + GPn+1 = Fn+1.

Although we do not have an analytical proof but only numerical evidence, this is one

of the few [67, 84] third order schemes in which velocity and pressure are segregated of

which we are aware.

4.3.4 Predictor corrector scheme

Starting from the coupled system where mass conservation is enforced by the DPPE

(4.29, 4.31) the obtention of the predictor corrector scheme arises naturally. No additional

terms have to be introduced as happens in the pressure correction case. Denoting by a

superscript i the ith iteration of the scheme, the resulting predictor corrector method for

a BDF1 time discretization and Picard linearization of the convective term is:

δtDM−1GPn+1,i+1 = δtDM−1
(
Fn+1 − K

(
Un+1,i

)
Un+1,i

)
+ DUn,

1

δt
M
(
Un+1,i+1 − Un

)
+ K

(
Un+1,i

)
Un+1,i+1 + GPn+1,i+1 = Fn+1.

DM−1G can be approximated or solved as we have already discussed. If approximation

(4.35) is used we obtain

δtL
(
Pn+1,i+1 − Pn+1,i

)
= δtDM−1

(
Fn+1 − K

(
Un+1,i

)
Un+1,i−GPn+1,i

)
+ DUn,

4.3. VELOCITY CORRECTION METHODS 123

1

δt
M
(
Un+1,i+1 − Un

)
+ K

(
Un+1,i

)
Un+1,i+1 + GPn+1,i+1 = Fn+1.

The method has to be properly initialized, preferably starting the process with a splitting

error at least of the same order as the time discretization. For the previous equations

Un+1,0 = Ũn+1
q and Pn+1,0 = P̃n+1

p , with p = q = 0 can be used but a better convergence

is obtained if a second order splitting (p = q = 1) is used [4].

The second order method, using BDF2 time discretization, reads

2

3
δtL
(
Pn+1,i+1 − Pn+1,i

)
=

2

3
δtDM−1

(
Fn+1 − K

(
Un+1,i

)
Un+1,i−GPn+1,i

)
+D

(
4

3
Un − 1

3
Un−1

)
,

1

2δt
M
(
3Un+1,i+1 − 4Un + Un−1

)
+ K

(
Un+1,i

)
Un+1,i+1 + GPn+1,i+1 = Fn+1,

with appropriate initializations Un+1,0 = Ũn+1
q and Pn+1,0 = P̃n+1

p . As in the pressure

correction case for the predictor corrector scheme high order extrapolation can be used

because the stability is not compromised. When the iterative procedure converges the

solution of the monolithic system is recovered.

If the discrete Laplacian with lumped mass matrix is used, as in (4.32), the BDF2

velocity correction scheme reads

2

3
δtDM−1

L GPn+1,i+1 =
2

3
δtDM−1

L

(
Fn+1 − K

(
Un+1,i

)
Un+1,i

)
+DM−1

L M

(
−Un+1,i +

4

3
Un − 1

3
Un−1

)
+ DUn+1,i,

1

2δt
M
(
3Un+1,i+1 − 4Un + Un−1

)
+ K

(
Un+1,i

)
Un+1,i+1 + GPn+1,i+1 = Fn+1.

Now only Un+1,0 needs to be initialized.

Instead of treating the nonlinearity with the same loop as the coupling of the variables

an internal loop could be used for the convective nonlinearity, as has been mentioned in

the pressure correction scheme. In that case the term corresponding to matrix K in

the momentum equation would be replaced by K (Un+1,i+1) Un+1,i+1 and an internal loop

would be used to solve it. As in the pressure correction case, we have implemented nested

loops with the linearization of the convective term treated in the inner loop in order to

have a method that allows us to recover the usual predictor corrector version without

124 CHAPTER 4. PRESSURE SEGREGATION METHODS

nested loops and the fractional step scheme. For the velocity correction case we have also

implemented the alternative that deals with the convective nonlinearity in the outer loop.

This version resembles the monolithic version more closely and it is cheaper because the

matrix needs to be assembled only once per outer iteration.

4.3.5 Stabilized Scheme

In this section we will present the stabilized version of the problem, using split OSS

stabilization, a BDF1 time discretization and the matrices introduced in Chapter 1. The

matrix version of the problem reads as follows:

(
δtDM−1G − Sp

(
τn+1,i
1

))
Pn+1,i+1

= δtDM−1
[
Fn+1 − K

(
Un+1,i

)
Un+1,i

−Su
(
τn+1,i
1 ; Un+1,i

)
Un+1,i + Sy

(
τn+1,i
1 ; Un+1,i

)
Yn+1,i

−Sd
(
τn+1,i
2

)
Un+1,i + Sw

(
τn+1,i
2

)
wn+1,i

]
+DUn − Sz

(
τn+1,i
1

)
Zn+1,i,

1

δt
M
(
Un+1,i+1 − Un

)
+ K

(
Un+1,i

)
Un+1,i+1 + GPn+1,i+1

+Su
(
τn+1,i
1 ; Un+1,i

)
Un+1,i+1 − Sy

(
τn+1,i
1 ; Un+1,i

)
Yn+1,i

+Sd
(
τn+1,i
2

)
Un+1,i+1 − Sw

(
τn+1,i
2

)
wn+1,i = Fn+1,

MπY
n+1,i+1 − C

(
Un+1,i+1

)
Un+1,i+1 = 0,

MπZ
n+1,i+1 − GπP

n+1,i+1 = 0,

MπW
n+1,i+1 − DUn+1,i+1 = 0.

As in the pressure correction case, we have included the terms corresponding to τ2 �= 0

that have been neglected in [4] because they help to enforce incompressibility, something

that is particularly important for two fluid flows. Approximation (4.35) can be introduced

to avoid dealing with DM−1G.

4.3. VELOCITY CORRECTION METHODS 125

Since the fractional step scheme can be seen as the first iteration of the predictor

corrector scheme we only present the stabilized version for the P-C case. The stabilized

fractional step schemes can be found in [4] using both split and non-split OSS. In the

first iteration the velocity is extrapolated from values at previous time steps. This

extrapolation is used not only for the viscous and convective term, but also for the

stabilization terms associated to the momentum and continuity equations. Further the

projection array Y is also extrapolated for i = 0. When the approximation (4.35) for

DM−1G is used we also set Pn+1,0 = P̃n+1
p .

From the theoretical point of view, to obtain a scheme of order r a time discretization

a scheme of order r must be used together with an extrapolation of the velocity (and

of the pressure when a continuous Laplacian is used) of order r − 1. From the practical

point of view one can use extrapolations of order higher than r−1 to reduce the splitting

error. In the fractional step version the extrapolations must be chosen so that the scheme

is stable. In the predictor corrector case no restriction exists and they should be chosen

so as to minimize the number of iterations of the method. In our simulations we have

typically used p = q = 1 for the BDF1 time discretization and p = 1, q = 2 for the BDF2

case both for the fractional step and predictor corrector schemes.

4.3.6 Remarks on the ASGS and non split OSS stabilized cases

The use of the velocity correction scheme with ASGS or non split OSS stabilization shows

some particularities, specially when combined with the enriched pressure two phase model

presented in Chapter 2. The ASGS stabilized case is presented but the same observations

apply to the non split OSS stabilized case. In order to simplify the presentation the

stabilization terms related to τ2 are neglected because they show no special behavior when

ASGS or non split OSS stabilization are used . Moreover the presentation is restricted to

linear elements to avoid the inclusion of viscous terms in the stabilization. In Chapter 1

only the matrix version of the problem for the split OSS stabilized case had been presented

so the first step is to introduce the matrix version of the monolithic problem using ASGS

126 CHAPTER 4. PRESSURE SEGREGATION METHODS

stabilization that reads

1

δt
MUn+1 + K

(
Un+1

)
Un+1 + GPn+1 + Su

(
τ1; U

n+1
)
Un+1 + Sup

(
τ1; U

n+1
)
Pn+1

= Fn+1 + Suf
(
τ1; U

n+1
)

+
1

δt
MUn,

DUn+1 + Spu (τ1) Un+1 + Sp (τ1)Pn+1 = Spf (τ1) .

The use of ASGS stabilization introduces some new matrices and vectors that are defined

as follows

Sup
(
τ1; U

n+1
)ab
i

=
(
τ1u

n+1
h · ∇Na, ∂iN

b
)
,

Suf
(
τ1; U

n+1
)a
i

=
(
τ1u

n+1
h · ∇Na, fi + (ρ/δt) uni

)
,

Spu (τ1)
ab
j =

(
τ1∂jN

a, ρ un+1
h · ∇N b + (ρ/δt) N b

)
,

Spf
(
τ1; U

n+1
)a

= (τ1∂iN
a, fi + (ρ/δt) uni) .

Moreover Su is redefined to include the transient terms

Su
(
τ1; U

n+1
)ab
ij

=
(
τ1u

n+1
h · ∇Na, ρ un+1

h · ∇N b + (ρ/δt) N b
)
δij.

The DPPE for the can now be obtained by multiplying the momentum equation by

δtDM−1 and substracting the continuity equation. It reads

[
δtDM−1 (G + Sup) − Sp

]
P

= −Spf + SpuU + δtDM−1

[
Fn+1 + Suf +

1

δt
MUn − (K + Su) U

]
, (4.39)

where the dependencies of stabilization matrices and vectors on τ and Un+1 have been

eliminated to simplify the notation. In [4] the term SupP is sent to the right hand side to

end up with

[
δtDM−1G − Sp

]
P

= −Spf + SpuU + δtDM−1

[
Fn+1 + Suf +

1

δt
MUn − (K + Su)U − SupP̃

n+1

]
.

One advantage of doing this is that a symmetric matrix is obtained. The disadvantage

is that despite we are using a velocity correction method we need an extrapolation for

4.4. OPEN BOUNDARY CONDITIONS 127

pressure (P̃n+1) even if a discrete Laplacian is used. We have not found any problems in

using the approach proposed in [4] in the examples shown in this Chapter.

In order to combine the velocity correction scheme with the enriched pressure two

phase model presented in Chapter 2, equation (4.39) has been preferred. The reason for

doing so is that for the pressure extrapolation, P̃n+1, the pressure from the previous step is

used. When an enriched pressure is used this would introduce important complications.

The pressure enrichment at step n would be needed when solving for step n + 1. A

correct integration would then imply combining the enhanced integration from step n

with the enhanced integration from step n + 1. In order to avoid these complications in

the examples presented in Chapter 5 equation (4.39) has been used.

4.4 Open boundary conditions

In the previous sections we have supposed mainly Dirichlet velocity boundary conditions

as is usually done in the literature. In this section we will try to clarify what to do with

the pressure on Neumann velocity boundaries, Γnu. In [48] such boundaries are classified

into open boundaries and traction boundaries. The term open boundaries is reserved

exclusively for Neumann velocity boundaries that arise from the fact of having to cut

the domain in order to be able to perform a simulation, for example, the outflow of the

domain when simulating the flow behind a cylinder. Those Neumann velocity boundaries

that are present in the real problem, such as a free surface, are called traction boundaries.

On both of them n ·σ = t. The difference is that on traction boundaries the value of t is

known from the physical problem but on open boundaries some approximation is needed.

Several options are discussed in [48] for such an approximation. The fact of not knowing

the value for t gives some freedom on the choices to use in the open boundaries case. In

any case, it will always be an approximation. In the monolithic case written in divergence

form the open boundary condition usually used is n ·σ = 0. Since we want our predictor

corrector versions to converge to the monolithic solution we will prefer our segregated

versions also to satisfy that condition. Therefore the same treatment will be favored in

128 CHAPTER 4. PRESSURE SEGREGATION METHODS

both cases (open or traction boundaries).

In fractional step schemes obtained at the continuous level the pressure is prescribed

to zero on Γnu. Actually in [50] it is pointed out that in the incremental version it is the

pressure increment that is prescribed to zero on the Neumann velocity boundary. That

is, the pressure is prescribed to the value from the previous time step on Γnu. Then

the pressures on Γnu for all time steps coincide with the initial one that is usually zero.

When the approximation DM−1G ≈ L is used, the scheme obtained at the discrete is also

forced to satisfy p = 0 on Γnu. Then it is evident that even in a predictor corrector

case (for example 4.9, 4.10) the solution will not be able to coincide with that of the

monolithic system if there are open boundaries. If at the open boundary we have n·σ = 0,

projecting on the normal direction we get n ·σ · n = 0 and therefore p = 2 µ ni ∂jui nj ,

that in the monolithic case can be different from zero. One possible solution is to use

p = 2 µ ni ∂jui nj on Γnu instead of p = 0 when solving the equation for the pressure in

the segregated case [101].

When the only approximation introduced in DM−1G is to use a diagonal mass matrix

the equation for the pressure can be solved without any boundary condition as is done

in [115]. Then when the iterative procedure converges one recovers exactly the solution

of the monolithic system.

As we have already mentioned, in [4] the approximation DM−1G ≈ L has been

enhanced by using (4.34) in the fractional step case and (4.35) in the predictor corrector

case. Even in that case, when solving the system, the pressure has been imposed to

zero on Γnu. As in the case when DM−1G ≈ L is used, such prescription precludes the

possibility of reaching the monolithic solution when there are open boundaries. The first

solution that comes to the mind is not to fix any prescription on the pressure, but if

that is done, the pressure would be undefined up to an additive constant, something that

does not happen in the monolithic case with open boundaries. The solution we propose

will be presented for the preconditioned Richardson iteration to solve DM−1G we have

suggested, taking as a starting point the enhanced approximation proposed by [4], but is

also applicable when only one iteration is done and the approximation is recovered.

4.5. NUMERICAL EXAMPLES 129

The preconditioned Richardson iteration used to solve

DM−1GPn+1 = X

in the case with no Neumann velocity boundary conditions (4.36) is modified only in the

definition of the preconditioning matrix L (that is replaced by L∗). In the case with open

boundaries it reads

L∗Pn+1,i+1 = X − DM−1GPn+1,i + L∗Pn+1,i.

The matrix L∗ is obtained by modifying matrix L in the degrees of freedom corresponding

to open boundaries as is usually done when the pressure is prescribed. The difference is

the right hand side is not altered. In this way the pressure is not prescribed to any value.

Only the preconditioner for the Richardson iteration is altered. We have used this strategy

even when only one Richardson iteration is done (the discrete Laplacian is approximated

by the continuous one) and have found satisfactory results for both the pressure correction

and velocity correction schemes. We believe that prescribing the pressure or its increment

to zero when the discrete approach is used to obtain the segregation follows what is done

when the splitting is obtained at the continuous level. The small modification we propose

seems more natural when the scheme is obtained at the discrete level.

4.5 Numerical examples

In this section we present three numerical examples to compare the velocity correction and

pressure correction schemes introduced in this Chapter. The results are also compared

against the solution obtained with a monolithic solver. BDF1, BDF2 and BDF3 time

discretizations are used. For BDF2 and BDF3 discretizations second order velocity

extrapolation is used. In the velocity correction fractional step schemes, when used with

the discrete Laplacian, this lead to a third order splitting error. For the pressure, first

order extrapolation is used for all time discretizations. It will be shown that second order

pressure extrapolations not only makes the pressure correction scheme unstable as is well

known but also the velocity correction scheme with continuous Laplacian approximation.

130 CHAPTER 4. PRESSURE SEGREGATION METHODS

In the first example the evolution of the flow to the steady state in a driven cavity will

be used to compare the two schemes. In the second example the flow behind a cylinder,

the most classical example for transient flow, is analyzed. It is shown that the third order

VC scheme with discrete Laplacian remains stable when the other third order schemes

diverge. Finally a convergence test is performed to show that the velocity correction

scheme allows to obtain third order accuracy in the L2 norm of the velocity. For the first

and third examples Split OSS stabilization is used and for the second one ASGS is used.

In order to simplify the presentation of the examples the following nomenclature is

used. The pressure correction and velocity correction schemes are denoted ’PC’ and

’VC’ respectively. Fractional step versions are denoted by ’FS’. To identify the predictor

corrector scheme we shall use ’Imon’ because ’PC’ has already been used for the pressure

correction scheme. In our examples we use both the discrete Laplacian (with Lumped

mass matrix) denoted by ’LD’ and its approximation by the continuous Laplacian denoted

by ’LC’.

4.5.1 Driven Cavity

The first example is a cavity flow problem at Reynold number Re = 100. The domain is

a unit square discretized with a 21 × 21 triangular mesh. The velocity is prescribed to

zero at the bottom and lateral boundaries and to (1,0) at the top boundary and upper

corners (leaky lid).

Despite we are dealing with a stationary problem we have chosen to run a transient

calculation from an initial zero velocity on all of the nodes except those on the upper

boundary. The time step used is δt = 1.0. The goal is to test the evolution of the

proposed methods towards the stationary solution and their numerical dissipation.

VC - PC comparison using a fractional step scheme with continuous Laplacian

Figures 4.1 and 4.2 show the transient residual evolution using VC and PC fractional

step schemes with continuous Laplacian and both BDF1 and BDF2 time discretizations.

4.5. NUMERICAL EXAMPLES 131

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 tr

an
sr

es
 v

el

time

Mono-bdf1
FS-VC-bdf1-Lc
FS-PC-bdf1-Lc

Figure 4.1: Transient residual BDF1 - PC vs. VC using a continuous Laplacian

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 tr

an
sr

es
 v

el

time

Mono-bdf2
FS-VC-bdf2-Lc
FS-PC-bdf2-Lc

Figure 4.2: Transient residual BDF2 - PC vs. VC using a continuous Laplacian

132 CHAPTER 4. PRESSURE SEGREGATION METHODS

The objective is to compare VC and PC schemes using a dissipation argument based

on the evolution of the transient residual. With the first order time discretization no

significant difference is observed between the VC and PC schemes. For BDF2 during the

first 20 seconds the PC method follows the monolithic solver closer than the VC method

but after that the opposite is observed.

In the previous examples it can also be interesting to analyze the L2 error for both the

velocity and the pressure obtained by comparing with the monolithic solution (Figures

4.3 to 4.6). The L2 pressure error is much smaller when a VC scheme is used with both

time integration schemes. For the velocity the PC scheme shows some slight advantage

when the first order method is used. In the BDF2 case, after some few steps the VC

scheme shows smaller velocity errors. Therefore we can conclude that (at least for this

case) the VC scheme provides better results.

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 v
el

time

FS-VC-bdf1-Lc
FS-PC-bdf1-Lc

Figure 4.3: Velocity error BDF1 - PC vs. VC using a continuous Laplacian

4.5. NUMERICAL EXAMPLES 133

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 p
r

time

FS-VC-bdf1-Lc
FS-PC-bdf1-Lc

Figure 4.4: Pressure error BDF1 - PC vs. VC using a continuous Laplacian

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 v
el

time

FS-VC-bdf2-Lc
FS-PC-bdf2-Lc

Figure 4.5: Velocity error BDF2 - PC vs. VC using a continuous Laplacian

134 CHAPTER 4. PRESSURE SEGREGATION METHODS

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 p
r

time

FS-VC-bdf2-Lc
FS-PC-bdf2-Lc

Figure 4.6: Pressure error BDF2 - PC vs. VC using a continuous Laplacian

LC - LD comparison using PC and VC fractional step schemes

In this subsection the main objective is to analyze the influence of using a continuous or

discrete Laplacian. A fractional step scheme with both pressure and velocity correction

versions will be used. As in the previous case, our first indicator is the evolution of the

transient residual.

We first analyze the results obtained with the pressure correction scheme. When the

first order time integrator is used, very little difference can be observed between using a

continuous or discrete Laplacian (Figure 4.7). With the second order time integrator the

discrete Laplacian provides better results (Figure 4.8).

Our second indicator is the L2 error for both the velocity and the pressure. Using the

BDF1 scheme, the discrete Laplacian provides better results for the velocity error (Figure

4.9). The advantage is much more notorious for the pressure error (Figure 4.10). For

both the velocity and the pressure error the advantage of using the discrete Laplacian

shows up more clearly for the second order scheme as shown in Figures 4.11 to 4.12 .

4.5. NUMERICAL EXAMPLES 135

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 tr

an
sr

es
 v

el

time

Mono-bdf1
FS-PC-bdf1-Lc
FS-PC-bdf1-Ld

Figure 4.7: Transient residual BDF1 - Lc vs. Ld using the PC scheme

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 tr

an
sr

es
 v

el

time

Mono-bdf2
FS-PC-bdf2-Lc
FS-PC-bdf2-Ld

Figure 4.8: Transient residual BDF2 - Lc vs. Ld using the PC scheme

136 CHAPTER 4. PRESSURE SEGREGATION METHODS

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 v
el

time

FS-PC-bdf1-Lc
FS-PC-bdf1-Ld

Figure 4.9: Velocity error BDF1 - Lc vs. Ld using the PC scheme

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 p
r

time

FS-PC-bdf1-Lc
FS-PC-bdf1-Ld

Figure 4.10: Pressure error BDF1 - Lc vs. Ld using the PC scheme

4.5. NUMERICAL EXAMPLES 137

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 v
el

time

FS-PC-bdf2-Lc
FS-PC-bdf2-Ld

Figure 4.11: Velocity error BDF2 - Lc vs. Ld using the PC scheme

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 p
r

time

FS-PC-bdf2-Lc
FS-PC-bdf2-Ld

Figure 4.12: Pressure error BDF2 - Lc vs. Ld using the PC scheme

138 CHAPTER 4. PRESSURE SEGREGATION METHODS

In the velocity correction case, using BDF1, again very little difference is observed

in the evolution of the transient residual between the continuous and discrete Laplacians

(Figure 4.13). Using BDF2, contrary to what we would expect, the transient residual is

reduced more rapidly when the continuous Laplacian is used (Figure 4.14).

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 tr

an
sr

es
 v

el

time

Mono-bdf1
FS-VC-bdf1-Lc
FS-VC-bdf1-Ld

Figure 4.13: Transient residual BDF1 - Lc vs. Ld using the VC scheme

As in the pressure correction case, for the first order scheme the discrete Laplacian

provides better results for the velocity error and specially for the pressure error (Figures

4.15 and 4.16).

With the second order scheme, up to t = 35s the continuous Laplacian provides

smaller velocity errors but after that the discrete Laplacian works better (Figure 4.17).

For the pressure error, the results are significantly improved when the discrete Laplacian

is used (Figure 4.18). This somehow contradicts what we had observed for the evolution

of the transient residual in the BDF2 VC case. Which should be a better indicator of the

goodness of a method, the evolution of the transient residual or the pressure error, is not

so clear to us.

Despite this is a very small example and the computational times are not very

4.5. NUMERICAL EXAMPLES 139

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 tr

an
sr

es
 v

el

time

Mono-bdf2
FS-VC-bdf2-Lc
FS-VC-bdf2-Ld

Figure 4.14: Transient residual BDF2 - Lc vs. Ld using the VC scheme

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 v
el

time

FS-VC-bdf1-Lc
FS-VC-bdf1-Ld

Figure 4.15: Velocity error BDF1 - Lc vs. Ld using the VC scheme

140 CHAPTER 4. PRESSURE SEGREGATION METHODS

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 p
r

time

FS-VC-bdf1-Lc
FS-VC-bdf1-Ld

Figure 4.16: Pressure error BDF1 - Lc vs. Ld using the VC scheme

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 v
el

time

FS-VC-bdf2-Lc
FS-VC-bdf2-Ld

Figure 4.17: Velocity error BDF2 - Lc vs. Ld using the VC scheme

4.5. NUMERICAL EXAMPLES 141

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 p
r

time

FS-VC-bdf2-Lc
FS-VC-bdf2-Ld

Figure 4.18: Pressure error BDF2 - Lc vs. Ld using the VC scheme

significative in Table 4.1 we present the total CPU times for VC and PC schemes using

both Laplacians. More significative results are presented in the cylinder example. The

use of the discrete or continuous Laplacian has very little influence for this example. The

PC scheme takes more time than the VC scheme. This is related to the fact that using

the VC scheme the convective non linearity takes less iterations to converge.

PC VC

L cont 9.58s 7.19s

Ldisc 9.83s 6.98s

Table 4.1: Total cpu time for the fractional step schemes

142 CHAPTER 4. PRESSURE SEGREGATION METHODS

VC - PC comparison using the predictor corrector scheme with LC

Since predictor corrector methods converge to the monolithic solution the most important

result for comparison purposes is the number of iterations per time step. The velocity

correction scheme works significantly better that the pressure correction version specially

in the BDF2 case, as can be seen in Figures 4.19 and 4.20. We have used the usual

predictor corrector scheme where no nested loops are used. A maximum of 20 predictor

corrector iterations per time step with a tolerance of 10−5 based on the variation of the

L2 norm of the velocity divided by the norm of the velocity has been used. Between 5

to 8 time steps have been need so that the predictor corrector iterations fall bellow the

maximum permitted limit of 20 iterations.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5 10 15 20 25 30 35 40 45 50

ni
te

r

time

Imon-VC-bdf1
Imon-PC-bdf1

Figure 4.19: Number of iterations BDF1

Regarding the transient residual and the velocity error VC and PC work similarly.

The behavior of the pressure velocity errors does not provide much information. Except

for the pressure error with the BDF1 time discretization where the VC scheme shows

lower errors, in the rest of the cases the PC scheme shows smaller errors specially in

the second half of the run as can be seen in Figures 4.21 to 4.24 . This should not be

4.5. NUMERICAL EXAMPLES 143

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5 10 15 20 25 30 35 40 45 50

ni
te

r

time

Imon-VC-bdf2
Imon-PC-bdf2

Figure 4.20: Number of iterations BDF2

interpreted as a real advantage of the PC scheme because it is probably related to the fact

that it is doing more iterations per time step. Therefore the comparison of the velocity

and pressure errors does not seem to be an interesting indicator in the predictor corrector

case.

Richardson iteration for the discrete Laplacian

Two options have been proposed to solve the discrete Laplacian in this Chapter. The

first one is the straightforward use of the conjugate gradient algorithm. The second one is

to use a Richardson iteration preconditioned with the continuous Laplacian. The choice

between the two options is based on a cost argument represented by the CPU time per time

step. The results for both the VC and PC fractional step schemes are shown in Figures

4.27 and 4.28. The straightforward use of the CG algorithm proves more efficient with

both schemes.

144 CHAPTER 4. PRESSURE SEGREGATION METHODS

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 tr

an
sr

es
 v

el

time

Mono-bdf1
Imon-VC-bdf1
Imon-PC-bdf1

Figure 4.21: Transient residual BDF1

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 tr

an
sr

es
 v

el

time

Mono-bdf2
Imon-VC-bdf2
Imon-PC-bdf2

Figure 4.22: Transient residual BDF2

4.5. NUMERICAL EXAMPLES 145

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 v
el

time

Imon-VC-bdf1
Imon-PC-bdf1

Figure 4.23: Velocity error BDF1

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 p
r

time

Imon-VC-bdf1
Imon-PC-bdf1

Figure 4.24: Pressure error BDF1

146 CHAPTER 4. PRESSURE SEGREGATION METHODS

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 v
el

time

Imon-VC-bdf2
Imon-PC-bdf2

Figure 4.25: Velocity error BDF2

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 p
r

time

Imon-VC-bdf2
Imon-PC-bdf2

Figure 4.26: Pressure error BDF2

4.5. NUMERICAL EXAMPLES 147

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5 10 15 20 25 30 35 40 45 50

cp
u_

tim
e

step

Richardson it
CG for disc Lapl

Figure 4.27: CPU time per time step - PC case

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 5 10 15 20 25 30 35 40 45 50

cp
u_

tim
e

step

Richardson it
CG for disc Lapl

Figure 4.28: CPU time per time step - VC case

148 CHAPTER 4. PRESSURE SEGREGATION METHODS

4.5.2 Flow behind a cylinder

The second example is the flow behind a cylinder at Reynold number Re = 190. This

example is essentially 2-D but it has been run with a 3-D mesh. The mesh, provided

by Professor Rainald Lohner, has a special placement of points in the vicinity of the

cylinder [75]. It is formed by 108147 tetrahedral linear elements and 30000 nodes. In

Figure 4.29 the surface mesh is shown. The computational domain is Ω = [0, 19]×
[0, 8]× [0, 0.2] \D, with the cylinder D of diameter 1 centered at (4, 4). The velocity at

x = 0 is prescribed to (1, 0, 0). At y = 0, y = 8, z = 0 and z = 0.2 the normal component

of the velocity is set to zero and the tangential components are left free. At the outflow

(x = 19) zero traction is prescribed. The time step is δt = 0.05 and the total time is

t = 100.0.

Figure 4.29: Mesh used for the flow behind a cylinder

The objective of this subsection is to observe the frequency and amplitude errors

compared to the monolithic solution for the different pressure segregation schemes. Both

BDF2 and BDF3 time integration scheme are used . The velocity and pressure contours

obtained with the velocity correction BDF2 fractional step scheme with continuous

Laplacian are shown in Figure 4.30. Note that the pressures in the outlet are not

prescribed to zero as mentioned in the section on open boundary conditions.

4.5. NUMERICAL EXAMPLES 149

V[m/s]

P[N/m²]

Figure 4.30: Pressure (top) and velocity (bottom) at t = 100s

150 CHAPTER 4. PRESSURE SEGREGATION METHODS

VC - PC comparison using the fractional step scheme with both Laplacians

Figures 4.31 and 4.32 show the Lift and Drag coefficients for the fully developed flow

using VC and PC BDF2 fractional step schemes with both Laplacians. For the Lift

coefficient, all of the schemes give pretty accurate results. Therefore we shall use the

Drag coefficient to compare the different schemes.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 82 84 86 88 90 92

C
l

time

Monolithic
PC-Lcont
VC-Lcont
PC-Ldisc
VC-Ldisc

Figure 4.31: Lift coeficient

The first observation is that the VC scheme provides much better results than the PC

scheme both with the discrete and continuous Laplacians. The results obtained with the

discrete Laplacian are better than those obtained with the continuous Laplacian as one

could expect but even the VC scheme with continuous Laplacian shows smaller errors than

the PC scheme with discrete Laplacian. When the VC scheme with a discrete Laplacian

is used the errors are very small, much smaller than those obtained with a continuous

Laplacian (which are already quite small). Therefore we can say that when the rest of

the errors are sufficiently small, the real advantage of using a discrete Laplacian can be

observed.

An explanation for the advantage of the VC scheme is that we are using a second

4.5. NUMERICAL EXAMPLES 151

 1.44

 1.46

 1.48

 1.5

 1.52

 1.54

 1.56

 85 86 87 88 89 90

C
d

time

Monolithic
PC-Lcont
VC-Lcont
PC-Ldisc
VC-Ldisc

Figure 4.32: Drag coeficient

order extrapolation for the velocity but only a first order extrapolation for the pressure.

The reason for doing this is that, as is well known for pressure correction schemes, second

order extrapolations for the pressure lead to unstable schemes. We have verified this

behavior also in this example. The pressure correction scheme with second order pressure

extrapolation diverges after some few steps. We have also tested the VC scheme with

continuous Laplacian that uses a second order pressure extrapolation and introduces a

third order splitting error to verify that it is unstable as already pointed out in [4]. The VC

scheme with continuous Laplacian and first order pressure extrapolation works fine so we

can attribute the instability to the use of second order extrapolations for the pressure as in

the pressure correction scheme. The excellent results obtained with the VC scheme with

discrete Laplacian can be attributed to the fact that it needs no pressure extrapolation

and only uses a second order velocity extrapolation leading to a third order splitting

error. In the VC scheme with continuous Laplacian the use of a first order extrapolation

inhibits the third order accuracy as will be shown in the convergence example in the

next subsection. Finally, since the VC scheme with continuous Laplacian uses a mix of a

152 CHAPTER 4. PRESSURE SEGREGATION METHODS

second order extrapolation for the velocity and a first order extrapolation for the pressure

it seems reasonable that it introduces less error that the PC scheme that only uses a first

order pressure extrapolation independently of which Laplacian is used.

In order to verify that the advantage of the VC scheme comes from the use of a second

order extrapolation we have tested it with an first order extrapolation for the velocity.

In Figure 4.33 the results obtained with such VC scheme with Discrete Laplacian are

compared to the results already shown in Figure 4.32 for the monolithic and PC schemes.

Using a first order extrapolation for the velocity in the VC scheme the results have a

similar accuracy to the ones obtained with the PC scheme and a much lower accuracy

than the ones obtained with a second order extrapolation for the velocity. Therefore we

can conclude that the advantage of the VC scheme comes from the fact that it only needs

a second order extrapolation when the discrete Laplacian is used. It introduces a third

order splitting error.

 1.44

 1.46

 1.48

 1.5

 1.52

 1.54

 1.56

 85 86 87 88 89 90

C
d

time

Monolithic
PC-Ldisc
VC-Ldisc

Figure 4.33: Drag coeficient using a first order extrapolation for the VC scheme

In Table 4.2 we compare the total CPU time for the different fractional step versions.

The VC schemes turn out to be slightly slower (≈ 5%) than their PC counterparts but

4.5. NUMERICAL EXAMPLES 153

PC VC

L cont 66979s 69642s

Ldisc 80274s 83020s

Table 4.2: Total cpu time for the fractional step schemes

they provide more accurate results. The use of the continuous Laplacian provides smaller

(≈ 15%) CPU times than the discrete Laplacian but also less accurate results. The use of

the VC scheme with discrete Laplacian is the slowest option but it provides results that

are nearly identical to the monolithic ones.

Since we have obtained a VC scheme with a third order splitting error it seems

reasonable to combine it with a third order time discretization such as BDF3. The

results obtained with the BDF3 VC fractional step scheme for the drag coefficient where

practically identical to the ones obtained with the BDF2 scheme. In order to see the

enhancement obtained with the BDF3 time discretization a more sensitive value than the

drag coefficient needs to be used. In Figure 4.34 the horizontal velocity at a node located

at (9.759, −0.0426, 0.2) is presented using both the monolithic solver and the fractional

step VC scheme with discrete Laplacian. It can be observed that the errors introduced by

switching from a third order time discretization to a second order one are more important

than the errors introduced by the splitting. We have verified that if a smaller time step is

used the results obtained with both the BDF2 and BDF3 become closer. They are very

similar to the ones obtained with the BDF3 scheme and the original time step showing

the advantage of using a third order scheme.

VC - PC comparison using the predictor corrector scheme with both

Laplacians

In the case of the predictor corrector (Imon) versions the comparison of the Lift and Drag

coefficients provide little or no information since all of them converge to the same result.

154 CHAPTER 4. PRESSURE SEGREGATION METHODS

 0.7

 0.75

 0.8

 0.85

 0.9

 86 88 90 92 94 96 98 100

vx

time

VC_bdf3
VC_bdf2

Mono_bdf3
Mono_bdf2

Figure 4.34: Horizontal velocity at a node behind the cylinder

In this case we will be interested in the number of iterations needed to converge to such

result. The lower the number of iterations the better the method. When the flow is fully

developed the number of iterations per time step remains constant. The convergence

tolerance we have used is 10−5 based on the variation of the L2 norm of the velocity

divided by the norm of the velocity. The number of iterations per time step for each of

the schemes are shown in Table 4.3

PC VC

L cont 9 7

Ldisc 7 6

Table 4.3: Number of iterations per time step

We can see that the results for the number of iterations agree with what we have

observed for the fractional step case for the accuracy of the different options. The

VC scheme with discrete Laplacian produces the best results and the PC scheme with

4.5. NUMERICAL EXAMPLES 155

continuous Laplacian the worse ones. Another important parameter to take into account

when comparing different schemes is the computational efficiency. In Table 4.4 we compare

the total CPU time for the different schemes. The VC schemes turn out to be more

efficient (≈ 20%) than their PC counterparts. On the other hand, when converging to the

monolithic solution, the use of the continuous Laplacian provides smaller (≈ 15%) CPU

times.

PC VC

L cont 290891s 241132s

Ldisc 336465s 288588s

Table 4.4: Total cpu time for the predictor corrector schemes

Richardson iteration for the discrete Laplacian

As in the cavity case, it is interesting to compare the straightforward use of the conjugate

gradient algorithm with the use a Richardson iteration preconditioned with the continuous

Laplacian. The cylinder case is a more interesting example than the cavity because we

are dealing with a 3-D mesh. We compare the total CPU time when both VC and PC

fractional step schemes are used in Table 4.5.

PC VC

Straight forward CG 80274s 83020s

Richardson iteration 80595s 82375s

Table 4.5: Total cpu time with different options for solving the discrete Laplacian

It can be seen that there is no significant difference between using either of the two

options. Both of them could be considered as valid and further tests should be performed

to select the most efficient option. Taking into account implementation ease, Richardson

156 CHAPTER 4. PRESSURE SEGREGATION METHODS

iteration might be an attractive option because it can be very simple to code in a program

that uses the continuous Laplacian.

4.5.3 Convergence test

The third example is used to test the time convergence rate numerically. It has been

borrowed from [52].

The Stokes problem is solved on the unit square,]0, 1[2. The force term is set so that

exact solution is

p (x, y, t) = cos (πx) sin (πy) sin (t)

u (x, y, t) = π sin (2πy) sin2 (πx) sin (t)

v (x, y, t) = −π sin (2πx) sin2 (πy) sin (t) .

The domain is discretized using Q2/Q2 finite elements of size h = 1/40. Boundary

and initial conditions are forced to satisfy the previous equations. The time step size we

use varies from 0.0025s to 0.1s and the results at t = 1.0s are presented.

In Figure 4.35 we present the convergence results for the L2 norm of the velocity

error using a monolithic formulation. This results can be used as a reference against

which the results obtained with the fractional step results can be compared because they

have no splitting error. It can be observed that the monolithic BDF1 scheme shows the

correct order of convergence. For the third order scheme the error due to the temporal

discretization is smaller than the error due to the spatial discretization. For the second

order scheme the error due to the temporal discretization is only noticeable for the bigger

time steps.

In Figure 4.36 the results obtained with the pressure correction fractional step scheme

are presented. The discrete Laplacian is used and some interesting observations on what

happens when the continuous Laplacian is used shall be postponed until the end of the

subsection. The results with BDF3 are not included because as we are using a first order

pressure extrapolation the results cannot be third order accurate. Both schemes show the

correct order until the spatial discretization error becomes dominant. Comparing with

4.5. NUMERICAL EXAMPLES 157

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0.01 0.1

L2
 v

el
oc

ity
 e

rr
or

dt

Mono_bdf1
Mono_bdf2
Mono_bdf3

slope 1
slope 2
slope 3

Figure 4.35: Convergence test with monolithic solver

the monolithic example one can see that in the BDF2 case the errors due to the time

discretization are much smaller than those due to the splitting. Therefore this is a good

example to test a pressure segregation scheme.

Finally we present the results with the velocity correction fractional step scheme where

we expect to obtain third order accuracy (Figure 4.37). Both BDF2 and BDF3 results

show third order convergence. In the BDF2 case this can be explained by the fact that the

error due to the temporal discretization is small compared with the splitting error which

is third order accurate. The spatial error is important and it limits the range where third

order accuracy can be observed. Therefore the results have been repeated on a mesh with

size h = 1/200.

In Figure 4.38 the convergence results using a monolithic formulation on the fine mesh

are presented. As one would expect the error due to the spatial discretization is reduced

53 times thanks to the use of Q2/Q2 finite elements. With the BDF2 scheme the second

order slope can easily be observed. For the third order scheme the spatial discretization

error soon becomes dominant and the third order slope can only be seen for the two bigger

158 CHAPTER 4. PRESSURE SEGREGATION METHODS

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0.01 0.1

L2
 v

el
oc

ity
 e

rr
or

dt

PC_bdf1
PC_bdf2

slope 1
slope 2

Figure 4.36: Convergence test with pressure correction scheme

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0.01 0.1

L2
 v

el
oc

ity
 e

rr
or

dt

VC_bdf1
VC_bdf2
VC_bdf3

slope 1
slope 2
slope 3

Figure 4.37: Convergence test with velocity correction scheme

4.5. NUMERICAL EXAMPLES 159

time steps.

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0.01 0.1

L2
 v

el
oc

ity
 e

rr
or

dt

Mono_bdf2
Mono_bdf3

slope 2
slope 3

Figure 4.38: Convergence test with monolithic solver on fine mesh

For the velocity correction scheme both BDF2 and BDF3 schemes show third order

accuracy because as we have already mentioned for the coarse mesh the splitting error is

more important than the time discretization error (Figure 4.39).

Finally we present some results with the VC BDF3 scheme and continuous Laplacian

(Figure 4.40). The third order is lost and only second order accuracy is obtained due to

the error introduced by the approximation of the discrete Laplacian by the continuous

one. Remember we are using a first order extrapolation for the pressure because we have

seen that a second order extrapolation leads to an unstable scheme. We have also included

in the comparison the results obtained with the discrete Laplacian solved by a Richardson

iteration. Actually only three Richardson iterations have been allowed per time step. It

is interesting to note how two extra Richardson iterations allow to recover results that

are nearly third order accurate and very close to the ones obtained when the discrete

Laplacian is solved with a conjugate gradient method.

160 CHAPTER 4. PRESSURE SEGREGATION METHODS

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0.01 0.1

L2
 v

el
oc

ity
 e

rr
or

dt

VC_bdf2
VC_bdf3

slope 2
slope 3

Figure 4.39: Convergence test with velocity correction scheme on fine mesh

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0.01 0.1

L2
 v

el
oc

ity
 e

rr
or

dt

VC_bdf3_Ld
VC_bdf3_Lc

VC_bdf3_3RIC_it
slope 2
slope 3

Figure 4.40: Convergence test with BDF3 VC scheme and different Laplacians

4.5. NUMERICAL EXAMPLES 161

4.5.4 Results with the rotational form

In this subsection we present some results using the rotational form of the pressure

correction fractional step scheme in the previous three examples. The objective is to

verify the correct implementation in the rotational version in the pressure stabilized case

and gain some idea of the advantages of the rotational form.

First the driven cavity example is analyzed. In Figure 4.41 we show the transient

residual evolution using the PC BDF1 fractional step scheme with standard and rotational

versions. Both the continuous and discrete Laplacians have been used. It can be

observed that better results are obtained with the rotational version independently of

which Laplacian is used.

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 tr

an
sr

es
 v

el

time

Mono-bdf1
FS-PCrot-bdf1-Lc

FS-PC-bdf1-Lc
FS-PCrot-bdf1-Ld

FS-PC-bdf1-Ld

Figure 4.41: Transient residual BDF1 - Influence of the rotational form using both Laplacians

In Figures 4.42 and 4.43 the velocity and pressure errors are presented. Again the

rotational version provides improved results independently of which Laplacian is used.

Using the BDF2 scheme the advantage of the rotational version in the evolution of the

transient residual and the pressure and velocity errors has also been confirmed.

For the second example, the flow behind a cylinder, the drag coefficient is used to

162 CHAPTER 4. PRESSURE SEGREGATION METHODS

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 v
el

time

FS-PCrot-bdf1-Lc
FS-PC-bdf1-Lc

FS-PCrot-bdf1-Ld
FS-PC-bdf1-Ld

Figure 4.42: Velocity error BDF1 - Influence of the rotational form using both Laplacians

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 p
r

time

FS-PCrot-bdf1-Lc
FS-PC-bdf1-Lc

FS-PCrot-bdf1-Ld
FS-PC-bdf1-Ld

Figure 4.43: Pressure error BDF1 - Influence of the rotational form using both Laplacians

4.5. NUMERICAL EXAMPLES 163

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 tr

an
sr

es
 v

el

time

Mono-bdf2
FS-PCrot-bdf2-Lc

FS-PC-bdf2-Lc
FS-PCrot-bdf2-Ld

FS-PC-bdf2-Ld

Figure 4.44: Transient residual BDF2 - Influence of the rotational form using both Laplacians

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 v
el

time

FS-PCrot-bdf2-Lc
FS-PC-bdf2-Lc

FS-PCrot-bdf2-Ld
FS-PC-bdf2-Ld

Figure 4.45: Velocity error BDF2 - Influence of the rotational form using both Laplacians

164 CHAPTER 4. PRESSURE SEGREGATION METHODS

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

L2
 e

rr
or

 p
r

time

FS-PCrot-bdf2-Lc
FS-PC-bdf2-Lc

FS-PCrot-bdf2-Ld
FS-PC-bdf2-Ld

Figure 4.46: Pressure error BDF2 - Influence of the rotational form using both Laplacians

evaluate the advantages introduced by the rotational form. The BDF2 scheme with both

Laplacians has been tested. Contrary to what happens in the previous example, for the

cylinder the drag obtained with the rotational version is indistinguishable from the one

obtained with the standard version (Figure 4.47). We believe that this can be attributed

to the fact that in this example the viscous forces are less important.

For the example used in the convergence test the errors in the pressure at t = 1.0s

for a 0.01s time step are used to compare the standard and rotational versions. Both

the continuous and discrete Laplacians have been used. When the standard version is

used the errors concentrate close to the upper and lower boundaries where the exact

pressure has a non zero normal gradient. This can be explained by the fact that the non

rotational pressure correction fractional step enforces a Non-physical boundary condition

∂np
n+1 = ∂np

n [50] at the Dirichlet boundaries. We have added the results with the

discrete Laplacian to show the same behavior is observed irrespective of which Laplacian

is used. When the rotational version is used the error is smaller and concentrates only in

the corners. This has also been observed in [50] where it has been conjectured that it is

4.6. CONCLUSIONS 165

 1.44

 1.46

 1.48

 1.5

 1.52

 1.54

 1.56

 85 86 87 88 89 90

C
d

time

Lc-std
Lc-rot
Ld-std
Ld-rot

Figure 4.47: Drag coefficient rotational and standard form with both Laplacians

due to the lack of smoothness in the domain.

4.6 Conclusions

In this Chapter we have presented pressure correction and velocity correction pressure

segregation schemes. We have implemented them in our code and tested them to gain

some experience in their comparative behavior. Both the discrete Laplacian and the

(more usual) approximation by the continuous one have been implemented. For the

solution of the discrete Laplacian two options have been implemented. The first one is

the straightforward application of a conjugate gradient iterative procedure. The second

option is to use a preconditioned Richardson iteration with the continuous Laplacian as

preconditioner.

The rotational version of the pressure correction scheme has also been implemented.

Some particularities arise when a pressure stabilized scheme is used. Up to the moment

it had only been used with elements that satisfy the Inf-Sup condition and do not require

166 CHAPTER 4. PRESSURE SEGREGATION METHODS

Figure 4.48: Pressure error for the non rotational form with continuous (left) and discrete (right)

Laplacians

Figure 4.49: Pressure error for the rotational form with continuous (left) and discrete (right)

Laplacians

4.6. CONCLUSIONS 167

pressure stabilization. Moreover it has been shown numerically that the advantages

introduced by the rotational version are present when either the continuous or discrete

Laplacians are used.

Three numerical example have been used. The first one is the evolution of the flow in

a driven cavity to the steady state. It has already been used in [4] where only results with

the continuous Laplacian have been presented. In this thesis the effect of using a discrete

Laplacian has also been taken into account. As in [4] the evolution of the transient residual

is used to compare the two methods. In this thesis the errors obtained by comparing the

velocity and the pressure with the monolithic solution are also presented. The pressure

and velocity correction schemes show a similar behavior with some advantage for the

velocity correction version. This agrees with what has been observed in [4]. With the

discrete Laplacian a similar behavior is observed but most of the results are improved. The

enhancement due to the use of the discrete Laplacian is most noticeable in the pressure

errors. In the predictor corrector case, the number of iterations needed to converge to

the monolithic solution also show some improvement when the velocity correction scheme

is used. For this example the preconditioned Richardson iteration used to solve for the

discrete Laplacian proves more costly than the straightforward use of conjugate gradient

method. It is interesting to note that no instabilities have been observed despite we have

used a second order extrapolation for the velocity that leads to a third order splitting

error when the velocity correction BDF2 scheme with discrete Laplacian is used.

For the cylinder example the absence of stability problems due to the second order

velocity extrapolation is once again verified. The correct behavior in this example is

particularly important because it is a complicated oscillatory transient flow typically used

as a benchmark for transient flow algorithms. The real advantage of using a second order

extrapolation for the velocity becomes clearly noticeable in this example. When used with

a discrete Laplacian in the velocity correction scheme it leads to a third order splitting

error evidenced in the clear superiority observed in the prediction of the drag coefficient.

The use of the continuous Laplacian diminishes the advantage of the VC scheme despite it

is still superior to the pressure correction scheme. The reason is that when a continuous

168 CHAPTER 4. PRESSURE SEGREGATION METHODS

Laplacian approximation is used a pressure extrapolation is also needed. If a second

order extrapolation for the pressure is used to obtain a third order splitting error we have

observed that the method becomes unstable. This agrees with the well known behavior for

pressure correction schemes where second order pressure extrapolations make the scheme

unstable. We believe that the impossibility of obtaining stable third order results in [4]

can be attributed to the use of the continuous Laplacian approximation with second

order pressure extrapolation and that different conclusion could have been obtained if the

discrete Laplacian had been tested.

Since the VC scheme with discrete Laplacian provides a third order splitting error it

has also been combined with a BDF3 time discretization to obtain a third order temporal

error. The enhancement introduced by the BDF3 time discretization is not noticeable

in the drag coefficient and a more sensitive parameter such as the horizontal velocity in

some node behind the cylinder has been used to show the advantage introduced by the

third order time discretization.

Regarding the use of the discrete Laplacian in the VC case we have already mentioned

that it provides much better results because it allows to obtain a third order splitting

error. In the pressure correction case it also introduces some advantage but it is much less

significant than in the velocity correction case. Despite the use of the discrete Laplacian

leads to a an increase in the computational cost of 15% the advantages observed in the

velocity correction case easily justify this cost.

In the predictor corrector case the velocity correction scheme also shows advantage

over the pressure correction scheme. It leads to fewer predictor corrector iterations per

time step and consequently a reduced computational cost of approximately 20% . In the

predictor corrector case the use of the continuous Laplacian results in an increase of CPU

times of approximately 15%. Regarding the use of the preconditioned Richardson iteration

to solve for the discrete Laplacian in this example it has resulted in approximately the

same computational times as the straightforward use of a conjugate gradient solver.

In the convergence test borrowed from [52] the expected convergence slope for the

L2 velocity error is verified. For the pressure correction scheme a second order slope

4.6. CONCLUSIONS 169

is observed with the BDF2 time discretization. With the first order time discretization

second order slope is observed when the splitting error is dominant and first order slope is

observed when the temporal discretization error is dominant. For the velocity correction

case it is observed that both BDF2 and BDF3 schemes show third order accuracy. For the

second order time discretization this can be explained by the fact that the splitting error

which is third order accurate is dominant. When the continuous Laplacian approximation

is used the third order accuracy obtained with the velocity correction scheme is lost. This

is caused by the use of a first order pressure extrapolation. It has also been shown that the

use of a preconditioned Richardson iteration with only three iterations allows to recover

results that are nearly third order accurate and very close to the ones obtained with the

discrete Laplacian.

Regarding the use of the rotational form in the pressure correction scheme,

improvements have been observed in the first and third examples. It is interesting to

note that this improvements have been observed irrespective of whether the continuous

or discrete Laplacian is used. Moreover we understand that this is the first time the

rotation form has been used with a pressure stabilized scheme. In the cylinder example

the use of the rotational form has introduced no improvement. The rotational form to the

velocity correction pressure stabilized scheme can be an interesting extension for future

developments. The results on the advantages of the rotational version for real applications

are not conclusive for the moment. Following [15] we can say that their importance

grows in applications in which the stresses or other pressure dependent quantities must

be computed at solid walls. Moreover since pressure segregation methods are quite often

applied to problems in which the viscosity is small, the improvement introduced by the

rotational form in such cases can be negligible. This is what we believe happens in the

cylinder case.

From the previous examples we can conclude that the superior behavior of velocity

correction methods can be attributed to the fact that second order velocity extrapolations

lead to stable schemes. Instead second order pressure extrapolations lead to unstable

schemes. This not only happens in the pressure correction case but also in the velocity

170 CHAPTER 4. PRESSURE SEGREGATION METHODS

correction with continuous Laplacian approximation. Therefore we can say that the use

of a discrete Laplacian is more significant in the velocity correction scheme because it

provides a ’pure’ VC scheme where no pressure extrapolation is needed. The use of the

Richardson iteration with a limited number of iterations as in the convergence test can

be a cost effective option in this direction.

Regarding the extension to interface problems, the velocity also seems better to

extrapolate than the pressure. For example, in the simple 3D vertical tube presented

in Chapter 2 the velocity extrapolation would be exact while the pressure extrapolation

would be quite poor specially close to the interface. Despite this example is ideal and very

simple it can be quite representative of what happens during mould filling simulations.

For the enriched pressure model presented in Chapter 2 the use of a velocity extrapolation

makes the method much simpler than a pressure extrapolation because the pressure is

enriched and the velocity is not. If a pressure extrapolation were used, when solving for

time step n + 1 one would need the pressure extrapolation p̃n+1 = pn that includes an

enriched component that depends on the position of the interface at time n. This does

not seem appealing. For the previous reasons for interface problems we have chosen to

implement the velocity correction scheme.

Chapter 5

Mould Filling

5.1 Introduction

In this chapter the utility of the methods presented in previous chapters is explored in

the context of mould filling applications. Examples borrowed directly from the foundry

are used to test the improvements introduced by the proposed methods.

The numerical simulation of mould filling processes has become a widespread tool for

improving casting technology. Regions with high velocities that can lead to premature

wear of the mould can be predicted. The quality of the resulting piece can also be

improved, for example, by determining regions of possible air entrapment. An overview

of computational methods for free surface flows in casting and Industry-Standard Mold-

Filling codes can be found in [40].

Contrary to what one might intuitively think, we have observed that in mould filling

problems, lower filling velocities typically lead to more complex simulations. That is to

say, low Froude number flows pose special difficulties for two phase flows. The lower the

Froude number, the higher the importance of the gravitational forces. Since the spatial

distribution of the gravitational forces is determined by the position of the interface, the

coupling between the position of the interface and the resulting flow increases as the

Froude number decreases. An accurate representation of the pressure in the elements cut

171

172 CHAPTER 5. MOULD FILLING

by the interface is needed for such flows. By enriching the pressure finite element shape

functions or by using a free surface model we have obtained important improvements in

simple examples. In this work we extend the application of both models to real mould

filling problems.

In Chapter 2 an enriched pressure interpolation for two phase flows that provides

significant improvement over the usual two phase flow model in low Froude number

simulations has been presented. In Chapter 3 a free surface model on a fixed mesh that

only simulates the region occupied by the fluid and neglects the influence of air has been

presented. This method has also shown good results for low Froude number flows thanks

to a careful treatment of the elements cut by the front that allows to accurately impose the

boundary conditions at the interface. Moreover in Chapter 4 pressure segregation methods

that allow to uncouple the solution of the velocity and the pressure have been presented.

For interface problems velocity correction methods have been implemented. Therefore we

are left with a total of four options to solve for mould filling interface flows. The two

models for interface flows, the enriched pressure two phase model and the free surface

model, are combined with two solution strategies, the monolithic solver and the velocity

correction solver. As we have mentioned in the conclusions of the previous Chapter, we

have preferred the velocity correction scheme instead of the pressure correction, not only

because it provides better results in the one fluid case, but also because the velocity seems

easier to extrapolate than the pressure in interface problems.

For the velocity correction scheme only the discrete Laplacian will be used. The

reason for doing this, despite it can be computationally more expensive, is that it

implies one approximation less. In the free surface case the results obtained with the

velocity correction scheme are for the moment not very satisfactory. As we shall show in

Section 5.3, the convergence has been complicated and the computational time has risen

significantly. Therefore it does not seem wise for the moment to add an additional source

of error. In the enriched pressure two phase model the velocity correction scheme provides

results that are comparable with the ones obtained with the monolithic solver. When the

enriched pressure is used the pressure is discontinuous on cut element faces and therefore

5.1. INTRODUCTION 173

we prefer to postpone the exploration of the use of the continuous Laplacian until the

enriched pressure velocity correction scheme seems a more interesting option to use. For

the moment the free surface model with a monolithic scheme seems to be the best option

as we shall show in Section 5.2.

This Chapter will be organized as follows. In Section 5.2 results with the free surface

model used with a monolithic solver are presented. The application of the free surface

model with a velocity correction scheme is presented in Section 5.3. Sections 5.4 and 5.5

deal with the application of the enriched pressure two phase flow model with monolithic

and velocity corrections schemes respectively.

Three mechanical pieces will be used to test the different methods. The first one

is a hollow mechanical piece made of steel with physical properties: ρ = 7266.0 and

µ = 6.7 × 10−3 (SI units). This piece is interesting because it has relatively thin walls

which make the mesh quite complex. The code is forced to obtain acceptable results

with few elements in the thickness. The arrangement we simulate consists of two pieces

together with the filling channel used during the actual filling process. The inlet velocity

is 0.113 m/s and the size of each piece is approximately 0.16 × 0.16 × 0.13 m3 . The

whole filling process takes 11 seconds.

Two unstructured triangular meshes have been used. The coarse one has 72032

elements and 16149 nodes and the fine one has 575803 elements and 116214 nodes. They

are shown in Figure 5.1. The Reynolds number based on the inlet velocity and the length

of the filling channel is Re = 2.45 × 104 , and the Froude number is Fr = 0.0065 .

The second example is an automotive alloy wheel. The flow is created by applying a

pressure on the fluid as is done in the actual filling process for this piece. The flow rate

is then determined by the resistance exerted on the fluid. We have observed the friction

may be high in the vertical tube through which the molten metal is injected. Therefore,

for this case, we will simulate the whole filling channel.

The pressure at the inlet varies linearly from 2.21×104N/m2 at the beginning of the

simulation to 1.17 × 105N/m2 after 4.4 seconds. The physical properties we have used

are those of aluminum, ρ = 2700.0 and µ = 1.3×10−3 (SI units). The Reynolds number

174 CHAPTER 5. MOULD FILLING

Figure 5.1: Coarse and fine meshes for the hollow mechanical piece

5.1. INTRODUCTION 175

based on a typical velocity inside the wheel (0.5 m/s) and the wheel radius (0.5 m) is

Re = 5.19 × 105 . The Froude number is Fr = 0.05 . The mesh is formed by 489313

tetrahedral elements and 109318 nodes.

The third piece was presented to us as a really demanding case. It is the shovel for

a power shovel. The filling process takes approximately half a minute and the shovel is

nearly one meter long. The inlet velocity we have used during the simulation is 0.5 m/s .

The Reynolds number based on the previous velocity and length is Re = 4.44× 105 , and

the Froude number is Fr = 0.031 . As in the first example the material used is steel. The

mesh used for this example consists of 412848 tetrahedral elements and 87010 nodes.

Since the flow in mould filling problems is turbulent the viscosity in the previous

equations has been calculated using the Smagorinsky model as µ = µL + µT , where µL

is the molecular, constant, viscosity and µT = µT (u) is the additional turbulent viscosity

defined by µT = C2 h2
√

2 ε (u) : ε (u) , where h is the size of the element where it is

computed and C2 is the Smagorinsky constant. The objective of this thesis is not related

to the analysis of the influence of the turbulence model and therefore a simple model has

been chosen. The Smagorinsky model is also used for mould filling simulations in [16,46]

and in the commercial code Vulcan [118] used to compare against our results in the next

Section.

Due to the high Reynolds number of the problems we are dealing with, no slip

boundary conditions would require extremely fine meshes along the boundary that would

make them computationally unfeasible. The solution we have adopted is to use wall

functions [72] that describe the behavior of the flow near a solid wall. The normal

component of the velocity is set to zero. In the tangential direction a traction that

depends on the velocity at the boundary and is opposed to the direction of the flow is

applied:

τw = −ρ u
2
∗

|u| u

176 CHAPTER 5. MOULD FILLING

where u∗ can be determined from the following set of equations

u+ =
1

κ
ln
(
1 + κ y+

)
+ 7.8

[
1 − e−y

+/11.0 − y+

11.0
e−0.33y+

]

u+ =
ρ |u|u∗
τw

,

y+ =
ρδu∗
µ

.

δ is the distance between the computational boundary and the wall, κ = 0.41 is the Von

Karman constant and y+ and u+ are non dimensional distances and velocities, respectively.

5.2 Free surface monolithic model

In this Section we present the results obtained with the free surface monolithic model for

the previous three pieces. We observe that this model provides the best results of all four

analyzed options and therefore this results can be considered as a reference against which

the results obtained with the other models can be compared. It has allowed us to use

bigger time steps and a lower Smagorinsky parameter than the other methods. Moreover,

the convergence of both the nonlinearity and the iterative solver are significatively better

than when the enriched pressure two phase flow is used. This leads to significantly

improved computational costs. The monolithic scheme does not have splitting errors,

that need to be corrected iteratively, as happens when a predictor corrector scheme is

used.

Split OSS stabilization has been used for the Navier Stokes equations but some cases

have also been run with Non Split OSS and ASGS and no significant difference has been

observed. For the convective nonlinearity Picard iteration is used. The tolerance is set

to one percent variation in the L2 norm of the velocity and a maximum of 7 iterations

are allowed. Typically the nonlinearity converges in less than three iterations. For the

solution of the monolithic system a preconditioned GMRES iterative solver [102] is used.

The stopping criteria for the solver is that the residual is smaller than 10−6 times the right

hand side. A maximum of 500 iterations are allowed but the solver usually converges in

5.2. FREE SURFACE MONOLITHIC MODEL 177

less than 30 iterations. The Krylov dimension is set to 50. An ILUT preconditioner with

threshold 0.001 and filling 20 is used [102]. For the Level Set equation the convergence of

the GMRES solver is very easy even without preconditioner.

In Chapter 3 two alternatives have been proposed for solving the free surface problem;

a FM-ALE model and a simplified Eulerian model. The results obtained with both

models are very similar. The results obtained with the simplified Eulerian model shall

be presented because they are computationally cheaper. At the end of this Section the

results obtained with the FM-ALE model are discussed.

5.2.1 Hollow mechanical piece

Figure 5.2 shows the evolution of the interface for four time steps during the filling process

when the coarse mesh is used. In the first step the interface is still inside the filling channel.

For the second one it has entered both pieces. In the third one the interface reaches the

bottom of each piece. As we will comment later, this is one of the most complicated

moments in the simulation. In the final figure more than half of each piece has been

filled. The evolution of the front is very similar in both pieces. Despite a coarse grid has

been used the evolution of the interface is captured quite satisfactorily as one can observe

by comparing with the results shown for the fine mesh in Figure 5.3. For both meshes

the time steps size is 0.02 seconds. The Smagorinsky model has been used to take into

account turbulence and the constant has been set to C2 = 0.05.

Knowing how the interface evolves is important during the mould design as it can be

used to change the position of the inlets or alter the filling velocity to improve the quality

of the resulting piece. When defects appear, having some insight on the way the flow

evolves is of great help to the foundry person because it is very difficult to actually see

what is happening inside the mould.

The evolution of the interface using the fine mesh in shown Figure 5.3. The shape of

the interface is smoother than the one obtained with the coarse mesh but there is no mayor

difference in the way the flow evolves. The most noticeable change is that for each time

178 CHAPTER 5. MOULD FILLING

Figure 5.2: Interface position at t = 1.6, 3.2, 4.8 and 7.6 s using the coarse mesh

step the results obtained with the fine mesh show a bigger percentage of filled volume.

This is related to numerical mass losses and is analyzed in more detail in Figure 5.4. Since

foundry pieces are usually complex and it is common to fill several pieces at the same

time (not only two as in the example) it is important to have a code that can provide the

user with acceptable results even with coarse meshes.

In Figure 5.4 we compare temporal evolution of the injected and filled volumes using

both meshes. The injected volume is the same for both meshes. The difference between

the filled and injected volumes is the numerical mass loss. It is reduced as the mesh

is refined as one could expect. The amount of mass loss can give us some idea on the

quality of our results and indicate the most complex moments during the simulation. In

our example, we can see that the most important mass loss occurs when the filled volume

is between 0.0004 m3 and 0.0006 m3. It corresponds to the moment when the bottom of

each piece is being filled. This suggests that a mesh refinement close to that area might

improve the solution. When the fine mesh is used the mass loss is very small. Even with

the coarse mesh mass conservation is much better than when the enriched pressure two

5.2. FREE SURFACE MONOLITHIC MODEL 179

Figure 5.3: Interface position at t = 1.6, 3.2, 4.8 and 7.6 s using the fine mesh

phase flow monolithic model is used, as we shall show in Section 5.4.

In Figure 5.5 the results on the coarse mesh with an increased Smagorinsky constant

(C2 = 0.2) are presented. It can be observed that the results are not significantly affected

by the change in the Smagorinsky constant.

Total Matrix N. Stokes Solver N. Stokes

Coarse mesh, C2 = 0.2 8638s 69.5% 18.9%

Coarse mesh, C2 = 0.05 12593s 69.6% 20.2%

Fine mesh, C2 = 0.05 90038s 45.2% 45.6%

Table 5.1: Cpu time

In Table 5.1 the computational times for the previous simulations are presented. It

can be observed that the solution of the Navier Stokes equations requires most of the time.

For the coarse mesh the assembly of the matrix takes approximately three times more

than the solution of the linear system. With the fine mesh both tasks take approximately

180 CHAPTER 5. MOULD FILLING

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0 2 4 6 8 10 12 14

vo
lu

m
e

[m
^3

]

time [s]

Injected vol
Filled vol - coarse mesh

Filled vol - fine mesh

Figure 5.4: Filled volume vs. injected volume for both meshes

Figure 5.5: Interface position at t = 1.6, 3.2, 4.8 and 7.6 s using the coarse mesh with a higher

Smagorinsky constant

5.2. FREE SURFACE MONOLITHIC MODEL 181

the same time.

Comparison with a commercial code

In order to have some idea on the efficiency of our code we compare the results we

have obtained with our model against the results obtained with the commercial code

Vulcan [118]. Vulcan uses a fixed mesh finite element pressure correction predictor

corrector scheme.

Figure 5.6: Interface position at t = 1.6, 3.2, 4.8 and 7.6 s using the commercial code with the

fine mesh

The results obtained with Vulcan on the fine mesh are shown in Figure 5.6. They are

quite similar to the ones we have obtained with our code. The most noticeable difference

is the shape of the interface in the last to two figures. With our model a nearly flat surface

is obtained. Instead with the commercial codes spurious oscillations can be observed. The

enhanced behavior of our code can be attributed to the correct treatment of boundary

conditions on the interface.

With the coarse mesh, the results obtained with Vulcan show bigger spurious

oscillations (Figure 5.7). Moreover the effect of numerical viscosity becomes quite

182 CHAPTER 5. MOULD FILLING

noticeable. Instead, with our code, the results obtained on the coarse mesh were much

closer to the ones obtained in the fine mesh. As we have already mentioned, the correct

behavior of our code even on coarse meshes is a very important feature for mould filing

simulations where the complexity of real pieces inhibits the possibility of using too fine

meshes.

Figure 5.7: Interface position at t = 1.6, 3.2, 4.8 and 7.6 s using the commercial code with the

coarse mesh

The comparison of the computational times obtained with Vulcan against the ones

obtained with our code shows that despite our code is only an academic version it can

provide competitive results. For the simulation on the fine mesh Vulcan takes nearly

twice the time needed by our code. With the coarse mesh it takes 3.2 times more than

our code, making the advantage even more notorious. In the simulations with our code

we have used a fixed time step size that results in a total of 550 steps. Instead Vulcan

uses a variable time step size. A total of 815 and 1225 step have been required on the fine

and coarse meshes respectively. The increase in the number of steps with the coarse mesh

observed with Vulcan may be related to the increase of the spurious oscillations close to

the interface.

5.2. FREE SURFACE MONOLITHIC MODEL 183

5.2.2 Alloy wheel

For the automotive alloy wheel the time steps size we have used is 0.01 seconds and

the Smagorinsky constant is C2 = 0.05. In Figure 5.8 the evolution of the interface

for different time steps is presented. For the first time step the whole domain is shown

and for the remaining steps only the details at the wheel are shown. Once the molten

metal reaches the top of the filling tube it slides through the bottom of the spokes until

it reaches the their end. Then it turns and fills the lower part of the wheel. Finally it

raises through the vertical walls of the wheel. Simultaneously the filling of the spokes is

completed. Since we are using a free surface model air is not taken into account so there

is no possibility for the formation of air bubbles as happens when the enriched pressure

two phase flow model is used (Section 5.4). The possibility of modifying the free surface

model so that it can take into account the formation of bubbles will be discussed at the

end of the Chapter. Moulds can be classified into two groups depending on whether they

allow air to escape though their walls or not. When the air is allowed to escape, such as

in sand moulds, the importance of taking into account its effect is less important.

The pressure contour lines are presented in Figure 5.9. A fixed scale with a maximum

of 5000 N/m2 has been used to focus on the pressures inside the wheel. In the filling tube

the pressure is nearly hydrostatic but due to the scale we have used it is not shown.

Using a higher Smagorinsky constant (C2 = 0.2) very similar results have been

obtained. The higher viscosity imposes an small increase of resistance to the flow. As this

piece is filled by an imposed pressure this results in a slightly retarded front. The results

have not been shown because the difference is hard to appreciate.

The total CPU time for the simulation has been 38579 seconds. As in the previous

example, the resolution of the Navier Stokes equations took most of the time, with 18220

seconds for the matrix assembly and 15470 seconds for the linear solver.

184 CHAPTER 5. MOULD FILLING

t=2.4 s

t=3.0 s

t=3.8 s

Figure 5.8: Interface evolution at t=2.4, 3.0 and 3.4 s

t=2.4 s

t=3.0 s

P[N/m²]

t=3.8 s

Figure 5.9: Pressures at t=2.4, 3.0 and 3.4 s

5.2. FREE SURFACE MONOLITHIC MODEL 185

5.2.3 Shovel

For the shovel a 0.01 seconds time step has been used with two Smagorinsky constants,

C2 = 0.05 and C2 = 0.2. Contrary to what happens in the other two pieces, for this

case the effect of the Smagorinsky constant is more noticeable, at least during part of the

simulation.

Figure 5.10 shows the evolution of the interface for selected time steps using C2 = 0.2.

The filling channel used for this piece splits into two branches. One of the branches is

closer to the inlet than the other one. As the interface reaches the first branch the molten

metal starts falling through it. Approximately one second takes place before the flow

starts falling through the second branch. Therefore the side of the shovel closer to the

first branch is filled earlier than the part connected to the second branch. When the

molten metal exits each of the two branches it slides into two circular parts with a hole in

the middle located beneath the end of each branch. Once each of these two parts are full

the flow spreads through the base of the shovel and finally raise along the lateral walls to

complete the filling process.

For C2 = 0.05 the filling is similar to the one with C2 = 0.2 except when the molten

metal goes into the circular part with a hole in the middle. When the lower constant is

used one portion of the flow deposits in the bottom of the circular part and the other

surrounds the hole in the middle. Instead, when the higher constant is used all of the flow

deposits in the bottom of the circular part. A comparison of the filling of the circular part

with the two Smagorinsky constants is shown in Figure 5.11. Using a finer mesh it has

been observed that part of the flow surrounds the hole in the middle (Figure 5.12). In this

sense the results with the lower constant seem better. Unfortunately the flow becomes

too complex for the mesh when the smaller constant is used and an important mass loss

is introduced as we shall show in Figure 5.13. The mass loss when the smaller constant

is used occurs mainly during t = 3.5 s to t = 7.0 s, the time needed to fill the circular

part. With the higher Smagorinsky constant the mass loss is significantly reduced and

therefore the results can be preferred despite the lack of precision in the filling of one of

186 CHAPTER 5. MOULD FILLING

t=11.2 s

t=3.8 s

t=7.6 s

t=17.6 s

Figure 5.10: Interface position using C2 = 0.2

5.2. FREE SURFACE MONOLITHIC MODEL 187

the circular parts.

t=3.2 s t=3.8 s t=4.4 s t=5.0 s

Figure 5.11: Detail of the interface position using C2 = 0.2 (top) and C2 = 0.05 (bottom)

Taking into account that this is a complex piece we have decided to simulate it with

a fine mesh formed by 1619428 tetrahedral elements and 319052 nodes. The same time

step as in the coarse mesh and a C2 = 0.2 Smagorinsky constant have been used. The

results have served as a reference to compare the results obtained with the original mesh.

Moreover the simulation on the fine mesh has been used to explore the current limits of

our model on a typical PC. The results are shown in Figure 5.12.

In Figure 5.13 we compare temporal evolution of the injected and filled volumes for

the previous three cases: coarse mesh with C2 = 0.05 and C2 = 0.2 and fine mesh with

C2 = 0.2. As we have already mentioned, the mass loss concentrates mainly during the

filling of the two circular parts located at the bottom of the shovel and it is significantly

higher when the coarse mesh with the low Smagorinsky constant is used. During the rest

of the simulation very little mass loss is observed for the three cases. It is interesting to

note that the mass loss is very similar for the two meshes when C2 = 0.2 is used.

In Table 5.2 the CPU times for the shovel simulations are presented. For the fine

188 CHAPTER 5. MOULD FILLING

t=11.2 s

t=3.8 s

t=7.6 s

t=17.6 s

Figure 5.12: Interface position using the fine mesh

5.2. FREE SURFACE MONOLITHIC MODEL 189

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 5 10 15 20

vo
lu

m
e

[m
^3

]

time [s]

Injected vol
Filled vol - C^2 = 0.2

Filled vol - C^2 = 0.05
Filled vol - Fine mesh

Figure 5.13: Filled volume vs. injected volume

Total Matrix N. Stokes Solver N. Stokes

Coarse mesh, C2 = 0.2 271681s 50.8% 34.8%

Coarse mesh, C2 = 0.05 371473s 56.8% 30.6%

Fine mesh, C2 = 0.2 863309s 40.1% 39.8%

Table 5.2: Cpu time

190 CHAPTER 5. MOULD FILLING

mesh the cost of matrix assembly is approximately equal to the cost of the linear solver.

For the coarse mesh the matrix assembly is more expensive.

Both for the shovel and the alloy wheel it has not been possible to obtain satisfactory

results with the commercial code used for the hollow mechanical piece.

5.2.4 Results with the FM-ALE model

As we have anticipated at the beginning of this Section, for the mould filling examples

we have not observed any significant difference between the results obtained with the

simplified Eulerian model and those obtained with the FM-ALE model. The same

behavior has also been observed in the simpler examples presented in Chapter 3. The

variations introduced in the evolution of the free surface or the filled volume by the use

of the FM-ALE model instead of the simplified Eulerian model are hardly noticeable and

therefore the Figures are not be repeated.

In Table 5.3 we present the CPU times obtained with the FM-ALE so that they

can be compared against the ones obtained with the simplified Eulerian model. The

computational times for the Navier Stokes matrix assembly and solution of the linear

system are similar to the ones obtained with the simplified Eulerian model. The total

CPU time increases significantly due to the additional steps required by the FM-ALE

model. For the moment little effort has been put into optimizing those steps because as

both models produce similar results it has been cheaper to use the simplified Eulerian

model.

Total Matrix N. Stokes Solver N. Stokes

Hollow Coarse, C2 = 0.05 25568s 44.0% 11.8%

Hollow Fine, C2 = 0.05 186951s 26.2% 28.9%

Wheel, C2 = 0.05 80199s 24.5% 21.3%

Shovel, C2 = 0.2 447467s 30.8% 16.1%

Table 5.3: Cpu time

5.3. FREE SURFACE VELOCITY CORRECTION MODEL 191

Despite we have not found significant differences between the results obtained with

the FM-ALE model and the simplified Eulerian model we belive that in more demanding

examples the FM-ALE model may prove advantageous. In [29] we have extended the

application of the FM-ALE model to a wider range of problems, including fluid structure

interaction. An example of a cylinder moving in a rectangular domain is presented where

the advantage of using the FM-ALE model is easily observed. It is mentioned that a

large time step is used in order to observe the improvements introduced by the FM-ALE

model.

5.3 Free surface velocity correction model

The use of a velocity correction scheme for the free surface model has resulted in the worse

results of all four analyzed options. The reason for the poor behavior of this method is still

not clear and further research is needed. In Figure 5.14 we show the advancement of the

front for a successful run with the free surface velocity correction model. It corresponds

to the hollow mechanical piece with the coarse mesh and a 0.005s time step. A high

Smagorinsky constant (C2 = 0.4) is used in order to make method more robust. In

Chapter 3 two alteratives have been proposed; one is to use a FM-ALE method and the

other one is to use simplified Eulerian model. When the monolithic scheme is used both of

them give very similar results but the simplified Eulerian model is faster. In the velocity

correction case the predictor corrector convergence has been easier (but still complicated)

with the FM-ALE method and therefore for the results presented in this section it will

always be used. The reason might be that the use of the FM-ALE method provides a

better velocity extrapolation.

In order to obtain the results shown in Figure 5.14 very low tolerances have been

needed both for the predictor corrector iteration and for the velocity and pressure solvers.

A predictor corrector scheme with separate loops for the nonlinear and predictor corrector

iterations has been used because we have observed that it leads to a more robust scheme.

The predictor corrector iteration, that is the most difficult loop to converge for this

192 CHAPTER 5. MOULD FILLING

Figure 5.14: Interface position at t = 1.6, 3.2, 4.8 and 7.6 s using the velocity correction scheme

on the coarse mesh

problem, is solved in the inner loop so that error in coupling of the velocity and pressure

does not spoil the nonlinear convergence. The stopping criteria for the predictor corrector

iteration is set so that the variation of the velocity in the L2 norm is lower than 0.01%. The

maximum number of predictor corrector iterations is set to 60. In practice the maximum

number of iterations was nearly never reached but during several parts of the simulation

more than 10 iterations were used. For the nonlinear iteration a higher tolerance of 1.0%

and a maximum of 7 iterations were allowed. The parameters for the nonlinear iteration

coincided with those used in a monolithic run used as a reference. For the velocity and

pressure solvers a tolerance of 10−9 was used.

The combination of a low tolerance for the predictor corrector iteration and for the

solvers has made the method very expensive. The total CPU time for this run has been

349398 s. A high percentage of this time, 285343 s, corresponds to the velocity and

pressure solvers. For a similar monolithic run the time for the solver is only 14537 s,

that is approximately 20 time less. Other alternative runs with higher predictor corrector

5.3. FREE SURFACE VELOCITY CORRECTION MODEL 193

or solver tolerances were tested to try to reduce computational times. Some of those

runs managed to provide acceptable results for the advancement of the front but showed

spurious negative pressures close to the interface. Others would diverge unexpectedly. For

the run presented in Figure 5.14 no spurious negative pressures were observed. For an

identical run except for the fact that a higher solver tolerance of 10−7 was used, spurious

pressures appeared at t = 2.8 s and then at t = 6.5 s when a 40% of the piece had been

filled the results diverged.

In Section 5.5 acceptable results have been obtained with the enriched pressure two

phase flow surface velocity correction model without the need to use such low tolerances.

Therefore the poor behavior observed with the free surface model seems to be related to

the combination of the free surface model, that works very well in the monolithic case,

with the velocity correction scheme. The good results obtained with very low tolerances

indicate that the problem is not related to an error in the implementation of the free

surface velocity correction model.

The spurious pressures that appear close to the interface might indicate that the

velocity extrapolation used by the velocity correction scheme close to the interface is

poor. The velocities in the region that becomes part of the fluid at each time step can be

better extrapolated when the FM-ALE version is used than when the simplified Eulerian

is used. The fact that a better behavior is observed when the velocity correction is used

with the FM-ALE method can be an evidence that better extrapolations velocities close

to the interface help to improve the solution.

A strategy to improve the extrapolation velocities close to the interface could make

the free surface velocity correction model more feasible. We propose to improve Ũn+1
q

prior to starting each time step. We can call the improved extrapolation
˜̃
U
n+1

q . It differs

from Ũn+1
q only in a small region close to the interface. This region is formed by only

2 or 3 layers of elements. In the nodes from the small region close to the interface in

contact with the region where the velocities are not modified the velocities are prescribed

to the values Ũn+1
q . Then the Navier Stokes equations are solved only in the small region

to obtain
˜̃
U
n+1

q . Since only a small region is being solved, one can expect convergence

194 CHAPTER 5. MOULD FILLING

of the iterative solver to be very easy. Moreover even if a low tolerance is required for

the predictor corrector iteration the computational cost should not increase significantly

because only a small region is being solved. A monolithic solver might even be used in

this small region.

For the finer mesh and for the other two examples poor results were also obtained

with the free surface velocity correction model. In those cases the cost of using very

low tolerances makes the simulations too expensive. Therefore we believe that a better

strategy should first be obtained with the coarse mesh before stepping to the bigger

examples.

5.4 Enriched pressure two phase flow monolithic

model

In this section we repeat the previous three examples using the enriched pressure two phase

flow monolithic model. The general flow pattern remains very similar to the one obtained

with the free surface model but some interesting differences can be observed. Despite

some moulds have walls that allow air to escape, in our examples we have supposed that

air is only allowed to escape through specified outlets. Therefore regions of entrapped air

can be observed when the two phase flow model is used.

As we have observed in the previous examples, mass conservation can be an indicator

of the accuracy of the results. With the enriched pressure two phase flow model mass

conservation is poorer than with the free surface model. Moreover we have observed

that typically mass is lost when ASGS stabilization is used and gained when OSS is

used. Instead, a we have already mentioned, with the free surface model no significant

dependence on the stabilization method has been observed.

The numerical strategy is the same as for free surface monolithic model.

5.4. ENRICHED PRESSURE TWO PHASE FLOW MONOLITHIC MODEL 195

5.4.1 Hollow mechanical piece

Figure 5.15 shows the evolution of the interface obtained on the coarse mesh with ASGS

stabilization, a C2 = 0.4 Smagorinsky constant and a 0.005 seconds time step. Compared

to the free surface model case, we have needed a higher Smagorinsky constant and a

smaller time step. When the same Smagorinsky constant and time step as in the free

surface case is used, the mass loss is too big and the results do not have much interest.

Even with the parameters we have used, the mass loss is higher than the one observed

with the free surface model with more demanding parameters. However, the evolution of

interface is similar to the one obtained with the free surface model but retarded due to the

mass loss. In the upper part of the filling channel entrapped air can be observed. This is

obviously different to what happens with the free surface model where no air entrapment

can occur because air is not simulated.

Figure 5.15: Interface position at t = 1.6, 3.2, 4.8 and 7.6 s using the coarse mesh with ASGS

stabilization, C2 = 0.4 and δt = 0.005 s

With OSS stabilization, both split and non split, two main differences have been

observed. Mass conservation is improved; actually there is some mass gain but it is smaller

than the mass loss observed with ASGS. On the other hand, less viscosity is introduced

196 CHAPTER 5. MOULD FILLING

so the nonlinear convergence becomes more difficult and it is hard for some cases to

converge. In order to improve the nonlinear convergence anisotropic shock capturing [22]

has been introduced. With the coarse mesh we have been able to use the same time step

(0.02 s) and Smagorinsky constant (C2 = 0.05) as in the free surface case. Moreover very

little dependence on the Smagorinsky constant has been observed. The evolution of the

interface and mass conservation obtained with C2 = 0.2 are very close to those obtained

with C2 = 0.05. In Figure 5.16 the evolution of the interface obtained on the coarse mesh

with split OSS stabilization and C2 = 0.05 is presented. As in the ASGS case the results

are similar to the ones obtained with the free surface model but the interface is advanced

(instead of retarded) due to the mass gain.

Figure 5.16: Interface position at t = 1.6, 3.2, 4.8 and 7.6 s using the coarse mesh with OSS

stabilization, C2 = 0.05 and δt = 0.02 s

Figure 5.17 shows the evolution of the filled and injected volumes obtained with ASGS

(C2 = 0.4, δt = 0.005 s) and split OSS (C2 = 0.05, δt = 0.02 s) stabilization. In order to

show how mass conservation degrades with ASGS stabilization the filled volume obtained

with C2 = 0.1, δt = 0.01 s is also included in the comparison.

The fluid mass loss comes from several sources. Despite we are solving the

5.4. ENRICHED PRESSURE TWO PHASE FLOW MONOLITHIC MODEL 197

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0 2 4 6 8 10 12 14

vo
lu

m
e

[m
^3

]

time [s]

Injected vol
Fil vol - OSS, dt=0.02, C^2=0.05

Fil vol - ASGS, dt=0.005, C^2=0.4
Fil vol - ASGS, dt=0.01, C^2=0.1

Figure 5.17: Filled volume vs. injected volume for the coarse mesh

incompressible Navier Stokes equations the numerical results are not exactly divergence

free. Since our meshes are quite coarse there will be errors in the satisfaction of both the

continuity and momentum equations. Pressure stabilization also affects the satisfaction

of the incompressibility condition. The errors in the transport of the Level Set function

can also cause fluid loss. After solving the level set function it needs to be reinitialized;

this may also introduce errors. There might also be some coupling between the previous

sources of error.

When the fine mesh is used the mass loss obtained with ASGS stabilization is reduced.

Results obtained with C2 = 0.1 and δt = 0.01 s are shown in Figure 5.18. Some mass loss

can be observed but the evolution of the interface is acceptable. When the Smagorinsky

constant is increased to C2 = 0.4 and the time step is reduced to 0.005 s mass conservation

improves as shown in Figure 5.19.

When split OSS stabilization is used with the parameters used for the coarse mesh,

C2 = 0.05 and δt = 0.02 s the run diverges. Increasing the Smagorinsky constant to

C2 = 0.1 and reducing the time step to 0.01 s good results have been obtained. The

evolution of the filled volume is presented in Figure 5.19. The behavior is the same as the

198 CHAPTER 5. MOULD FILLING

Figure 5.18: Interface position at t = 1.6, 3.2, 4.8 and 7.6 s using the fine mesh with ASGS

stabilization, C2 = 0.1 and δt = 0.01 s

one observed with the coarse mesh but the errors are significantly smaller when ASGS

stabilization is used.

The flow pattern during the filling process is also important to the foundry person.

For example, regions of high velocities can lead to premature mould wear and should be

avoided. Figure 5.20 shows the flow field at different time steps obtained with the fine

mesh and ASGS stabilization.

We believe that the effectiveness of the method we propose depends strongly on the

pressure enrichment we introduced in Chapter 2. In order to prove this we have run the

problem with C2 = 0.4 and δt = 0.005 s on the fine mesh without using the pressure

enrichment. The results are much poorer than those shown previously. By the time the

filled volume fraction reaches a 14 percent of the mould the mass loss is so important

that most of the injected fluid is being lost numerically. The results lose any sense and

therefore the runs was stopped. The evolution of the filled and injected volumes is shown

in Figure 5.21. It can be observed that the mass loss is similar with ASGS and OSS

5.4. ENRICHED PRESSURE TWO PHASE FLOW MONOLITHIC MODEL 199

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0 2 4 6 8 10 12 14

vo
lu

m
e

[m
^3

]

time [s]

Injected vol
Fil vol - OSS, dt=0.01, C^2=0.1

Fil vol - ASGS, dt=0.005, C^2=0.4
Fil vol - ASGS, dt=0.01, C^2=0.1

Figure 5.19: Filled volume vs. injected volume for the fine mesh

t=4.8 s t=7.6 s

t=1.6 s t=3.2 s

V[m/s]

Figure 5.20: Velocity field at t = 1.6, 3.2, 4.8 and 7.6 s using the fine mesh with ASGS

stabilization, C2 = 0.1 and δt = 0.01 s

200 CHAPTER 5. MOULD FILLING

stabilization but in the OSS case spurious velocities appear that lead to oscillations in

the filled volume.

 0

 5e-005

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 0.5 1 1.5 2 2.5 3 3.5 4

vo
lu

m
e

[m
^3

]

time [s]

Injected vol
Filled vol - ASGS

Filled vol - OSS

Figure 5.21: Filled volume vs. injected volume without using enrichment

Total Mat. N. Stokes Solv. N. Stokes

Coarse mesh, OSS, C2 = 0.05, δt = 0.02 s 26218s 74.4% 21.0%

Coarse mesh, ASGS, C2 = 0.4, δt = 0.005 s 82434s 59.2% 35.9%

Fine mesh, OSS, C2 = 0.1, δt = 0.01 s 457920s 62.8% 31.6%

Fine mesh, ASGS, C2 = 0.1, δt = 0.01 s 343364s 51.2% 44.3%

Fine mesh, ASGS, C2 = 0.4, δt = 0.005 s 642212s 39.3% 44.9%

Table 5.4: Cpu time

In Table 5.4 the computational times for the previous simulations are presented. As

in the free surface case, the solution of the Navier Stokes equations requires most of the

time. With the coarse mesh and OSS stabilization we have been able to run with the

same time step and Smagorinsky constant as in the free surface case. Therefore it is

interesting to compare the computational times for this run against the ones obtained

5.4. ENRICHED PRESSURE TWO PHASE FLOW MONOLITHIC MODEL 201

with the free surface model. The total computational time is slightly more than twice

the computational time obtained with the free surface model. The free surface model

does an average of 2.25 nonlinear iterations per time step and the enriched pressure two

phase flow model 2.8, that is approximately 25% more. Therefore only a small part of

the advantage of the free surface model comes from the reduced number of nonlinear

iterations. Looking at the time needed to compute the Navier Stokes matrix, the free

surface model requires less than half of the time required by the two phase flow model.

A small part of this advantage can be attributed to the reduced number of nonlinear

iterations but most of it comes from the fact that empty elements do not need to be

assembled. Since the run starts with a piece that is nearly empty at the beginning of the

run the cost of the matrix assembly is very small. Since the run stops when the piece is

full, in average between the start and the end of the simulation, approximately only half

of the elements need to be assembled when the free surface is used. The time needed by

the solver is also approximately twice when the two phase flow model is used. Typically

less number of solver iterations are needed per nonlinear iteration when the free surface

model is used. Two reasons for this behavior can be given. First, since during part of the

simulation the domain that needs to be solved is smaller it seems logical that the matrix is

better conditioned. Moreover during most of the simulation the free surface model leads

to an non-confined domain. Instead the two phase flow model leads to a nearly confined

domain because the flow is only allowed to escape through small air outlets. Typically

(not only in interface flows) linear systems arising from the discretization of the Navier

Stokes equations on non-confined domains are better conditioned than those obtained on

confined or nearly confined domains.

On the coarse mesh, for the ASGS stabilized case, a four times smaller time step has

been used to obtain an acceptable mass conservation. The total CPU time is nearly four

times bigger than the one obtained with OSS and δt = 0.02 s. On the fine mesh, the CPU

time for the run with ASGS stabilization and δt = 0.01 s is nearly four times bigger than

the time obtained with the free surface model and δt = 0.02 s. One possible explanation

is that it is twice more costly due to the use of the smaller time step, and twice due to the

202 CHAPTER 5. MOULD FILLING

use of two phase flow model instead of the free surface model. For the same time step,

the results with OSS stabilization take more time than the ones with ASGS stabilization.

We believe this can be attributed to the fact that the OSS run needs an average of 2.7

nonlinear iterations per time step and the ASGS run only 1.8. For the ASGS run this

time for the solver and for the matrix are similar. Instead for the OSS run, the matrix

assembly takes twice more than the solver. We have observed that for this run the solver

converges in less iterations when split OSS stabilization is used. Finally the ASGS run

with δt = 0.005 s needs nearly twice the time than the one with δt = 0.01 s due to the

use of a smaller time step.

We can conclude that for the same conditions two phase flow model takes

approximately twice more time than the free surface model. Moreover since the free

surface model allows to use bigger time steps to obtain similar results its advantage

becomes more notorious.

5.4.2 Wheel

In Figure 5.22 the evolution of the interface obtained with ASGS stabilization, C2 = 0.2

and δt = 0.01 s is presented. For the first time step the whole domain is shown and for

the remaining steps only the details at the wheel are shown. It is interesting to see that

at some points inside the spokes air is entrapped. This could lead to fabrication defects

and should be avoided. At time step t = 3.8 s an air bubble that is rising to escape as it

reaches the upper interface can be seen.

In Figure 5.23 the velocity field for different time steps is presented. Since we are using

an inlet pressure that varies linearly with time, while the interface is inside the filling tube

the velocities remain quite constant. The increase in the inlet pressure is compensated

mainly by an increase in the free surface height. Therefore the position of the free surface

raises linearly with time and the velocity in the tube is approximately constant. As

the flow enters the wheel and starts sliding down the wheel spokes the increase in the

hydrostatic pressure stops but the inlet pressure continues growing linearly. Therefore

5.4. ENRICHED PRESSURE TWO PHASE FLOW MONOLITHIC MODEL 203

t=2.4 s
t=3.8 s

t=3.0 s

Figure 5.22: Interface evolution at t = 2.4, 3.0 and 3.8 s

204 CHAPTER 5. MOULD FILLING

the flow accelerates until the interface reaches the vertical walls. Finally, the flow rate

stabilizes once again until the end of the simulation. At t = 3.8 s a region of high velocities

can be observed at the position where the bubble is located.

t=2.4 s
t=3.8 s

t=3.0 s

V[m/s]

Figure 5.23: Velocity norm at t = 2.4, 3.0 and 3.8 s

The total CPU time for this run has been 148418 s. The assembly of the Navier

Stokes matrix requires 80760 s and the solver 62541 s. The proportion is similar to the

one observed with the free surface model but the times are approximately three times

higher despite the same time step is being used.

For this example we have observed that OSS stabilization leads to quite poor results.

The nonlinear convergence becomes quite complex and contrary to what happens in the

other examples, shock capturing does not help to improve the results. Therefore for this

piece we will only present results obtained with ASGS stabilization. It is important to

note that the mesh is quite coarse for the flow we are simulating.

As in the previous example, the simulation was also run without using the pressure

5.4. ENRICHED PRESSURE TWO PHASE FLOW MONOLITHIC MODEL 205

enrichment. The results without pressure enrichment are much poorer than those obtained

with pressure enrichment. In Figure 5.24 the evolution of the interface for the case without

enrichment is shown. Up to t = 2.4 s the results are similar to those obtained with the

enriched model. As the flow starts sliding down the wheel spokes the numerical mass loss

becomes much more important than in the case with enrichment. For time t = 3.0 s the

mass loss is easily noticeable and at t = 3.8 s it is very important.

t=2.4 s
t=3.8 s

t=3.0 s

Figure 5.24: Interface evolution for the case without enrichment

5.4.3 Shovel

Figure 5.25 shows the results obtained with ASGS stabilization, C2 = 0.4 and δt = 0.005 s.

We have used those parameters because when the time step is increased and the

Smagorinsky constant decreased the mass loss increases significantly. As in previous

pieces, the evolution of the interface is similar to the one obtained with the free surface

model but retarded due to the mass loss. When split OSS stabilization with C2 = 0.2

and δt = 0.01 s is used the behavior of the flow is very similar to the one obtained with

206 CHAPTER 5. MOULD FILLING

ASGS but as mass is gained instead of lost the front is advanced instead of retarded. The

same behavior has already been observed in the hollow mechanical piece and therefore

the evolution of the interface for the OSS run is not presented for the shovel.

In Figure 5.26 the comparison of the filled and injected volumes is presented. The run

with split OSS stabilization, C2 = 0.2 and δt = 0.01 s gains mass and the run with ASGS

stabilization, C2 = 0.4 and δt = 0.005 s loses mass. We have also introduced the results

obtained with ASGS stabilization, C2 = 0.2 and δt = 0.01 s to show that it introduces

an important mass loss.

In the case without enrichment the mass loss is so important that after some time

most of the injected fluid is being lost numerically and therefore the runs were stopped.

Figure 5.27 presents the comparison of the filled and injected volumes obtained with

C2 = 0.4 and δt = 0.005 s. Both ASGS and Split OSS stabilized runs show a similar

behavior but with OSS stabilization the filled volume stalls at 22% and with ASGS at

17%. The advantage of using pressure enrichment can easily be observed by comparing

with the results presented in Figure 5.26.

In Table 5.5 the computational times for the shovel simulations are presented. The

run with split OSS stabilization uses the same time step and Smagorinsky constant as one

of the runs presented in the free surface monolithic section. The comparison of the CPU

time shows that the enriched pressure two phase flow model takes more than twice the

time than the free surface model. The time required by the solver for the Navier Stokes

equations is three times bigger when the enriched pressure two phase flow model is used.

For the ASGS run, the use of a smaller time step makes the CPU time to increase to

nearly twice the time needed with OSS stabilization.

Total Matrix N. Stokes Solver N. Stokes

OSS, C2 = 0.2, δt = 0.01 s 590362s 38.4% 56.3%

ASGS, C2 = 0.4, δt = 0.005 s 1106010s 37.1% 57.3%

Table 5.5: Cpu time

5.4. ENRICHED PRESSURE TWO PHASE FLOW MONOLITHIC MODEL 207

t=11.2 s

t=3.8 s

t=7.6 s

t=17.6 s

Figure 5.25: Interface position using ASGS stabilization, C2 = 0.4 and δt = 0.005 s.

208 CHAPTER 5. MOULD FILLING

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 5 10 15 20

vo
lu

m
e

[m
^3

]

time [s]

Injected vol
Fil vol - OSS, dt=0.01, C^2=0.2

Fil vol - ASGS, dt=0.01, C^2=0.2
Fil vol - ASGS, dt=0.005, C^2=0.4

Figure 5.26: Filled volume vs. injected volume

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 1 2 3 4 5 6 7

vo
lu

m
e

[m
^3

]

time [s]

Injected vol
Filled vol - ASGS

Filled vol - OSS

Figure 5.27: Filled volume vs. injected volume for the case without enrichment

5.5. ENRICHED PRESSURE TWO PHASE FLOW VELOCITY CORRECTION MODEL209

5.5 Enriched pressure two phase flow velocity

correction model

In this section some of the cases presented in the previous section are repeated with a

predictor corrector velocity correction model. The objective is to show that very similar

results to the ones presented with the monolithic model can be obtained.

The numerical strategy we have used consists of a external predictor corrector loop

with a maximum of 7 iterations and a stopping criteria set so that the variation of the

velocity in the L2 norm is lower than 1.0%. The non linearity is dealt in a internal loop

with a maximum of 3 iterations and a stopping criteria of 0.8% variation of the velocity

in the L2 norm. For the solution of the velocity equations a GMRES solver with a simple

LU-SGS [75] preconditioner is used. The stopping criteria used is that the residual falls

below 10−6 times the right hand side and a maximum of 300 iterations are allowed. For

the pressure a discrete Laplacian is used. It is solved with a Conjugate Gradient solver

when Split OSS stabilization is used and with a GMRES solver when ASGS is used (see

Subsection 4.3.6). No preconditioner is used for the pressure. The same stopping criteria

as for the velocity is used. Complex preconditioners have been avoided so that the method

can be parallelized in the future.

5.5.1 Hollow mechanical piece

The evolution of the interface obtained with ASGS stabilization, a C2 = 0.4 Smagorinsky

constant and a 0.005 seconds time step on the coarse mesh is indistinguishable from the

one obtained with the monolithic model and the same parameters (Figure 5.15) and is

therefore not repeated. The mass loss also remains unaltered from the one shown for the

monolithic model in Figure 5.17.

Instead with Split OSS stabilization the results obtained with the velocity correction

method were poorer than the ones obtained with the monolithic model. In the monolithic

case OSS stabilization made possible the use of a big time step (0.02 s) and small

210 CHAPTER 5. MOULD FILLING

Smagorinsky constant (C2 = 0.05). With those parameters the velocity correction run

diverged. A 0.002 s time step and C2 = 0.4 Smagorinsky constant were needed to obtain

acceptable results.

For the fine mesh the run with ASGS stabilization, a C2 = 0.4 Smagorinsky constant

and a 0.005 seconds time step was also repeated with the velocity correction scheme. The

results are again very close to the ones obtained with the monolithic model. As in the

coarse mesh, the convergence with Split OSS stabilization is difficult and therefore no

results are presented.

Total Mat. N. Stokes Solv. N. Stokes

Coarse mesh, ASGS, C2 = 0.4, δt = 0.005 s 148148s 76.1% 21.3%

Coarse mesh, OSS, C2 = 0.4, δt = 0.002 s 274638s 54.7% 42.8%

Fine mesh, ASGS, C2 = 0.4, δt = 0.005 s 910100s 69.8% 27.3%

Table 5.6: Cpu time for the velocity correction runs

In Table 5.6 the computational time for the velocity correction runs is presented.

Both ASGS runs (coarse and fine) takes approximately 50% more CPU time than the

corresponding monolithic runs. The time for the solver is approximately the same but

the matrix assembly takes more than twice the time than the monolithic run. With OSS

stabilization the use of a very small time step leads to high CPU times.

5.5.2 Wheel

When the run presented in the monolithic case (ASGS stabilization, C2 = 0.2 and

δt = 0.01 s) was repeated with the velocity correction scheme it diverged. A smaller

time step (δt = 0.005 s) and a bigger Smagorinsky constant (C2 = 0.4) were needed to

obtain acceptable results. The evolution of the interface is shown in Figure 5.28. Although

the time step and a Smagorinsky constant are not the same as in the monolithic run the

results are very similar.

5.5. ENRICHED PRESSURE TWO PHASE FLOW VELOCITY CORRECTION MODEL211

t=2.4 s

t=3.0 s

t=3.8 s

Figure 5.28: Interface evolution at t=2.4, 3.0 and 3.8 s

212 CHAPTER 5. MOULD FILLING

The total CPU time for this run has been 611339 seconds. The assembly of the Navier

Stokes matrix requires 412355 s and the solver 191228 s. The CPU time is four times

bigger than in the monolithic case, in part due to the use of a smaller time step.

5.5.3 Shovel

The run with ASGS stabilization, C2 = 0.4 and δt = 0.005 s presented in the monolithic

case was repeated with the velocity correction scheme. The evolution of the interface is

very close to the one obtained with the monolithic model and is therefore not repeated.

The total CPU time for this run has been 1627990 seconds. The assembly of the Navier

Stokes matrix requires 1053970 s and the solver 532796 s. An in the hollow mechanical

piece example the total time increases approximately 50% due to the increase in the cost

of the matrix assembly. The solver cost decreases approximately 20%.

5.6 Conclusions

In this Chapter we have explored the suitability of methods developed in previous chapters

for the simulation of mould filling problems borrowed directly from the foundry. Low

Froude number examples have been chosen because we have found that they are typically

more difficult to solve than high Froude number examples. They require an accurate

treatment in the region close to the interface.

In this thesis, two methods have been proposed to improve the simulation of Low

Froude number interface flows: an enriched pressure two phase flows model (Chapter 2)

and free surface model (Chapter 3). The results presented in this Chapter show that both

of them provide significant improvements over the usual two phase flows model. In the case

of the enriched pressure two phase flow model the improvement comes from the enhanced

approximation of the discontinuous pressure gradient in the elements cut by the interface.

In the free surface model the problem with the discontinuous pressure gradient disappears

because only one fluid is simulated. The advantage of the free surface method we propose

relies on the accurate imposition of boundary conditions at the interface thanks to the

5.6. CONCLUSIONS 213

use of enhanced integration.

The comparison between both models shows that the free surface model provides

significantly better results than the enriched pressure two phase flows model. For runs

with the same time step and Smagorinsky constant the free surface model provides two

or three times lower CPU costs. The main advantage comes from the fact that only the

domain filled by fluid is being solved. A typical mould filling simulation that starts with

an empty piece and ends when the piece is full. Therefore, in average, the cost of matrix

assembly is half of the one required by the enriched two phase model that must solve

both the fluid and the air. The cost of the solver is also reduced thanks to the solution

of a smaller domain. Moreover it has been observed that with the free surface model

bigger time steps and smaller Smagorinsky constants can be used. The combination of

the reduced computational time observed for identical runs with the possibility of using

bigger time steps leads to a CPU time reduction of nearly an order of magnitude when

the free surface model is used.

Additionally we have observed a much better mass conservation when the free surface

model is used. The results obtained with the free surface model show little dependence on

which stabilization technique is used. Instead when the enriched pressure two phase flows

model, not only mass conservation is poorer, but it also depends on which stabilization

method is used. With ASGS mass is lost and with OSS it is gained. The reason for this

difference should be explored further. The strong dependence of the enriched pressure two

phase flows model on the stabilization technique used is a negative aspect of the method.

Both the enriched pressure two phase flows model and free surface model have

also been implemented with a velocity correction pressure segregation scheme with the

objective of obtaining a more efficient scheme. The use of the velocity correction scheme

with the enriched pressure two phase flows model has provided results that are very similar

to the ones obtained with the monolithic model. The computational times are higher when

the velocity correction method is used but further work in order to reduce the time of the

matrix assembly should lead to similar efficiency for both methods. However since we have

observed that the enriched pressure two phase flows model is not competitive with the

214 CHAPTER 5. MOULD FILLING

free surface model for the moment this does not seem to be a priority. The improvement

of the efficiency of the velocity correction method used with the free surface model would

be more important. Unfortunately this combination is not working satisfactorily for the

moment.

Some ideas to improve the behavior of the velocity correction scheme with the free

surface model have been proposed. We belive that the correct combination of pressure

segregation methods with the free surface model seems very promising in the medium

or long term. In the short term, the use of pressure segregation methods does not seem

crucial unless further examples where the relative cost of the solver increases are found.

We believe the use of a pressure segregation method has two key benefits. The first one

is that it leads to better conditioned systems at the cost of uncoupling the velocity and

the pressure. This pays off when the cost of solving the linear system becomes dominant.

For the examples we have run we have observed that cost of solution of the linear is

equal of smaller than the cost of the matrix assembly even in the biggest problems we

have run. For bigger problems, the relative weight of solver cost is expected to increase

since the cost of the matrix assembly grows linearly with the size of the problem but

the cost of the solver grows at a rate greater than one. The solution of bigger problems

would need the program to be parallelized because for the moment we have reached the

size of problems that can be solved with a serial code. Therefore, as long as the cost

of the solver does not become dominant, the interest in the velocity correction scheme is

related to the parallelization of the code. The second benefit of using pressure segregation

methods is also associated with the parallel implementation. Complex preconditioners are

hard to parallelize and it is therefore advantageous to have a method that does not need

preconditioning.

The comparison with a commercial code shows that both methods we propose provide

better results in the hollow mechanical piece. For the other examples while the methods

we propose have provided satisfactory results the commercial code has not. Therefore

we can conclude that our methods are more robust than the commercial code. Moreover

we have shown that using the free surface model we obtain smaller CPU times than the

5.6. CONCLUSIONS 215

commercial code.

When the enriched pressure two phase flows model is used both the fluid and the air

are simulated as an incompressible flow. Therefore air bubbles can be formed. Specially

in moulds that do not allow air to escape through their walls, the formation of entrapped

air regions can lead to defects and should be avoided. In this sense the two phase flows

model may the considered better than the free surface model that does not take air into

account. In order to overcome this problem the free surface model can be modified to

take air into account as is done for example in [77] or [16]. The Navier Stokes equations

are solved only in the fluid and in the air bubbles it is assumed that the timescales

associated with the speed of sound in the bubble are much faster than the timescales

of the surrounding fluid. The pressure in the bubble is therefore spatially constant [77].

In [16] a model that treats air as an ideal gas and can deal with the spliting and merging

of bubbles has been developed. Numerical examples are presented where the increase in

the CPU time introduced by taking into account the air is less than ten percent. We

believe that the possibility of taking into account air in our free surface model could be

an interesting enhancement. Moreover, we belive that treating air as an ideal gas might

be a better approximation than modelling it as an incompressible flow. In its interaction

with a much denser fluid air can undergo significant pressure changes that should result

in a volume change something the incompressible flow model can not take into account.

For the problems we are dealing with, the use of relatively coarse meshes is currently

unavoidable. The physics is therefore not fully solved and convergence problems may

occur. For such problems, the use of artificially high Smagorinsky constants is accepted

to make the method more robust.

216 CHAPTER 5. MOULD FILLING

Chapter 6

Conclusions

Since each of the Chapters in this thesis, except the first one, have their own section

devoted to conclusions, in this Chapter we shall simply try to review our most important

contributions and discuss future lines of research.

6.1 Achievements

The objective of this thesis is the improvement of two phase flows finite element modeling

on fixed meshes and its application to mould filling problems. We believe that our first

achievement was the identification of Low Froude number flows on fixed meshes as an area

that deserved further research. The problem was brought to us by Professor Buscaglia [82].

He pointed out the impossibility of simulating two different density fluids at rest under

gravity forces when the mesh is not aligned with the interface. We then found that the

problem extended to all low Froude number flows and that in mould filling simulations

such flows were typically the most demanding cases.

The correct representation of the pressure gradient in the elements cut by the front is

needed for low Froude number flows. An enriched pressure two phase model is presented

in Chapter 2. The impossibility of fixed mesh methods of correctly representing the

discontinuous pressure gradient in elements cut by the interface is identified as the key

problem for the correct simulation of low Froude number flows. The solution we propose is

217

218 CHAPTER 6. CONCLUSIONS

to enrich the pressure shape functions in the elements cut the interface. The enrichment

is local to each element and can therefore be condensed prior to assembly making the

implementation quite simple on any 2D or 3D finite element code. The advantage

compared to XFEM methods, that also enrich the shape function in the elements cut by

the front, is that no additional degrees of freedom need to be added to the system matrix.

Once XFEM is well developed for 3D problems it can be an interesting alternative to our

method. In order to take advantage of the enrichment enhanced integration rules that

subdivide cut elements according to the position of the interface have been used. The

enriched pressure two phase model has been introduced in [37] and further examples have

been presented in [36].

As an alternative to the previous model a free surface model on fixed meshes has been

developed. By free surface we understand that only one fluid is simulated and the influence

of the second fluid on the first one is neglected. There are a wide number of flows where

this hypothesis is valid. The simulation of such flows is simpler than two phase flows and

therefore we believe it is advantageous to use this model when possible. As only one fluid

is simulated the problem with the discontinuous pressure gradient disappears. Actually

the possibility of discontinuous velocity gradient also disappears and surface tension could

easily be introduced at the free surface. The key ingredient of our free surface method is

the use of enhanced integration that allows us to impose Neumann boundary conditions

at the interface accurately. The free surface model has been introduced in [38] and further

examples have been presented in [39].

Simulating a free surface flow on a fixed mesh introduces the particularity that despite

the mesh is fixed the domain that is being simulated is moving. We have extended the

FM-ALE approach proposed in [59] to correctly take into account this effect. Moreover

in [29] we have generalized the FM-ALE concept to other fields such as fluid structure

interaction to correctly take in account the movement of the domain when fixed meshes

are used.

We have explored pressure segregation methods with the objective of improving our

computational efficiency and facilitating the possibility of a parallel implementation in the

6.1. ACHIEVEMENTS 219

future. Both pressure correction and velocity correction methods have been implemented

in our code. The numerical comparison on one phase flows shows that the velocity

correction scheme provides some advantages over the pressure correction scheme. The

most notorious advantage is the possibility of obtaining a numerically stable third order

fractional step scheme. In [6], where the velocity correction method that we use has

been introduced, obtaining a third order stable scheme had not been possible. The key

difference is that we have used both continuous and discrete Laplacian approximations

whereas in [6] only a continuous Laplacian had been used. For the velocity correction

fractional step scheme we observe that only the discrete Laplacian allows to obtain a

pure velocity correction method in the sense that it is completely independent of the

pressure extrapolation. When a continuous Laplacian is used, a second order pressure

extrapolation is needed to obtain a third order scheme. This has been identified as the

source of the instability and it disappears when a discrete Laplacian is used.

The fact that the velocity correction scheme works better on one phase flows and the

observation that the velocity can be better extrapolated than the pressure for interface

flows has motivated us to use velocity correction schemes for such flows. For the moment

the results are not as satisfactory as we would have desired. For the interface problems

we are dealing with the monolithic solver has turned out to be more efficient. Actually,

initially we had expected the monolithic system to be harder to solve than what we have

found. With the enriched pressure two phase model the velocity correction has provided

satisfactory results but somehow slower than the monolithic version. The combination

with the free surface model still requires further work.

Both the enriched pressure two phase model and the free surface model have been

successfully applied to complex mould filling problems. The advantages they introduce in

low Froude number flows have also been verified in mould filling problems by comparing

with a commercial code. The free surface model has proven to be a more efficient option.

Not only does it provide lower (≈ 50%) CPU time than the enriched pressure two phase

model, but it also allows to use bigger time steps (and lower Smagorinsky constants)

leading to efficiency advantages of nearly an order of magnitude. Despite our code is only

220 CHAPTER 6. CONCLUSIONS

an academic version we have shown it can provide both better results and computational

times than the commercial code.

For the solution of real mould filling problems, where the use of wall laws is mandatory,

we found problems with non Dirichlet curved boundaries under gravity forces. We

developed a solution for this problem that uses ’do nothing’ boundary conditions. Actually

we then found out that a very similar strategy had recently been proposed in [9]. The

advantage of our method is that it introduces no modification on planar boundaries.

Both ASGS and OSS stabilization have been used for two phase flow problems. In

the OSS case we have found that the straight forward application of what is done in

one phase flows leads to very poor results. An enhancement that takes into account the

density variation in the projection of the residual has been introduced.

6.2 Open lines of research

As we have already anticipated in the achievements Section, other methods could also be

used to improve the representation of the pressure in cut elements. The XFEM method

seems to be the most popular option, but alternatives such as the one proposed in [53]

may also be extended to two phase flows. Moreover we believe the ideas developed in [27]

could be combined with the formulation proposed in [53] to obtain an improved method.

Despite we have concentrated in improving the representation of the discontinuous

pressure gradient because we have found that its misrepresentation has the greatest effect

on the modeling of low Froude number flows, other discontinuities exist at the interface.

Surface tension introduces a discontinuity in the pressure that could be represented using a

discontinuous pressure enrichment. Even in the case without surface tension the pressure

can be discontinuous due to the discontinuity in the viscous terms. We have preliminarily

explored the use of a discontinuous velocity gradient enrichment but the advantages it

introduces are much smaller than those introduced by the pressure enrichment.

The combination of the velocity correction scheme with the enriched pressure two

phase model has provided satisfactory results but the efficiency must still be improved so

6.2. OPEN LINES OF RESEARCH 221

that it can be competitive against the monolithic model. The combination with the free

surface model has been much less successful. Since the free surface model has provided

better results than the enriched pressure two phase model in the monolithic case, the

combination with the velocity correction can be considered a priority, specially if bigger

problems than the ones presented in this thesis must be solved.

Our free surface model does not take air into account. As we have mentioned in

the conclusions of Chapter 5 modifications such as those presented in [77] or [16] can be

introduced to calculate the pressure in air bubbles. This pressure is then applied as a

normal traction at the free surface to take into account the effect of air. In flows where

the air is compressed in its interaction with the fluid this model would provide a more

accurate representation than a two phase flow incompressible model. The implementation

of this modification in our code could extend the range of problems we can solve.

The solution of interface flows on fixed has two basic steps. This thesis has focused

on problems relating the solution of the Navier Stokes equations. Now that sufficient

progress has been made in this area it seems logical that improvements should also be

introduced in the transport of the Level Set equation. The key point is the reinitialization

of the Level Set function so that it remains smooth (close to a signed distance function).

During the reinitialization process the interface displacement must be minimized, that

is, mass must be locally conserved. A fresh approach that could easily be extended to

unstructured meshes has been presented in [55].

Two alternatives for the solution of the Navier Stokes equations have been used in

this thesis: the straightforward solution of the monolithic system and pressure segregation

methods. Usually CFD groups stick to one or the other approach. Closing the gap between

the two alternatives is an interesting line of research.

222 CHAPTER 6. CONCLUSIONS

Bibliography

[1] P. Amestoy, I. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous

multifrontal solver using distributed dynamic scheduling. SIAM Journal of Matrix

Analysis and Applications, 23:15–41, 2001.

[2] P. Amestoy, I. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed

symmetric and unsymmetric solvers. Computer Methods in Applied Mechanics and

Engineering, 184:501–520, 2000.

[3] R. Aubry. Three dimensional Lagrangian fluid flow with thermal coupling. PhD

thesis, Escola Tècnica Superior d’Enginyers de Camins, Canals i Ports, Universitat

Politècnica de Catalunya, Barcelona, 2006.

[4] S. Badia. Stabilized Pressure Segregation Methods and their Application to Fluid-

Structure Interaction Problems. PhD thesis, Escola Tècnica Superior d’Enginyers

de Camins, Canals i Ports, Universitat Politècnica de Catalunya, Barcelona, 2005.

[5] S. Badia and R. Codina. Algebaric pressure segregation methods for the

incompressible Navier-Stokes equations. Arch Comput Methods Eng, 15:343–369,

2008.

[6] S. Badia and R. Codina. Pressure segregation methods based on a discrete pressure

Poisson equation. an algebraic approach. International Journal for Numerical

Methods in Fluids, 56:351–382, 2008.

223

224 BIBLIOGRAPHY

[7] C. Baiocchi, F. Brezzi, and L. Franca. Virtual bubbles and Galerkin/least-squares

type methods (Ga.L.S). Computer Methods in Applied Mechanics and Engineering,

105:125–141, 1993.

[8] G. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press,

1967.

[9] M. Behr. On the application of slip boundary conditions on curved boundaries.

International Journal for Numerical Methods in Fluids, 45:43–51, 2004.

[10] J. Bell and D. Marcus. A second-order projection method for variable-density flows.

JCP, 101:334–348, 1992.

[11] J. Blasco, R. Codina, and A. Huerta. A fractional step method for the

incompressible Navier-Stokes equations related to a predictor-multicorrector

algorithm. International Journal for Numerical Methods in Fluids, 28:1391–1419,

1998.

[12] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer Verlag,

1991.

[13] F. Brezzi, L. Franca, T. Hughes, and A. Russo. b =
∫
g. Computer Methods in

Applied Mechanics and Engineering, 145:329–339, 1997.

[14] A. Brooks and T. Hughes. Streamline upwind / Petrov-Galerkin formulations for

convection dominated flows with particular emphasis on the incompressible Navier-

Stokes equation. Computer Methods in Applied Mechanics and Engineering, 32:199–

259, 1982.

[15] D. Brown, R. Cortez, and M. Minion. Accurate projection methods for the

incompressible Navier-Stokes equations. JCP, 168:464–499, 2001.

[16] A. Caboussat. Numerical simulation of two–phase free surface flows. Archives of

Computational Methods in Engineering, 12:165–224, 2005.

BIBLIOGRAPHY 225

[17] J. Cahouet and J. Chabard. Some fast 3d finite element solvers for the generalized

Stokes problem. IJNMF, 8:869–895, 1988.

[18] Y. Chang, T. Hou, B. Merriman, and S. Osher. A level set formulation of Eulerian

interface capturing methods. Journal of Computational Physics, 124:449–464, 1996.

[19] J. Chessa and T. Belytschko. A extended finite element method for two–phase

fluids. Journal of Applied Mechanics, 70:10–17, 2003.

[20] A. Chorin. A numerical method for solving incompressible viscous problems. Journal

of Computational Physics, 2:12–26, 1967.

[21] R. Codina. A Finite Element Model for Incompressible Flow Problems. PhD

thesis, Escola Tècnica Superior d’Enginyers de Camins, Canals i Ports, Universitat

Politècnica de Catalunya, Barcelona, 1992.

[22] R. Codina. A discontinuity-capturing crosswind-dissipation for the finite element

solution of the convection-diffusion equation. Computer Methods in Applied

Mechanics and Engineering, 110:325–342, 1993.

[23] R. Codina. Stabilization of incompressibility and convection through orthogonal

sub-scales in finite element methods. Computer Methods in Applied Mechanics and

Engineering, 190:1579–1599, 2000.

[24] R. Codina. A stabilized finite element method for generalized stationary

incompressible flows. Computer Methods in Applied Mechanics and Engineering,

190:2681–2706, 2001.

[25] R. Codina. Stabilized finite element approximation of transient incompressible

flows using orthogonal subscales. Computer Methods in Applied Mechanics and

Engineering, 191:4295–4321, 2002.

226 BIBLIOGRAPHY

[26] R. Codina and S. Badia. On some pressure segregation methods of fractional-step

type for the finite element approximation of incompressible flow problems. Computer

Methods in Applied Mechanics and Engineering, 195:2900–2918, 2006.

[27] R. Codina and J. Baiges. Approximate imposition of boundary conditions in

immersed boundary methods. International Journal for Numerical Methods in

Engineering, Submitted.

[28] R. Codina, A. Coppola-Owen, P. Nithiarasu, and C.Liu. Numerical comparison

of CBS and SGS as stabilization techniques for the incompressible Navier-Stokes

equations. International Journal for Numerical Methods in Engineering, 66:1672–

1689, 2006.

[29] R. Codina, G. Houzeaux, H. Coppola-Owen, and J. Baiges. The fixed-mesh ALE

approach for the numerical approximation of flows in moving domains. Journal of

Computational Physics, 228:1591–1611, 2009.

[30] R. Codina, J. Principe, O. Guasch, and S. Badia. Time dependent subscales in the

stabilized finite element approximation of incompressible flow problems. Computer

Methods in Applied Mechanics and Engineering, 196:2413–2430, 2007.

[31] R. Codina, U. Schäfer, and E. Oñate. Mould filling simulation using finite elements.

International Journal of Numerical Methods for Heat & and Fluid Flow, 4:291–310,

1994.

[32] R. Codina and O. Soto. A numerical model to track two-fluid interfaces based on a

stabilized finite element method and the level set technique. International Journal

for Numerical Methods in Fluids, 40:293–301, 2002.

[33] R. Codina and O. Soto. Approximation of the incompressible Navier–Stokes

equations using orthogonal–subscale stabilization and pressure segregation on

anisotropic finite element meshes. Computer Methods in Applied Mechanics and

Engineering, 193:1403–1419, 2004.

BIBLIOGRAPHY 227

[34] R. Codina, M. Vázquez, and O. Zienkiewicz. A general algorithm for compressible

and incompressible flow—Part III. The semi-implicit form. International Journal

for Numerical Methods in Fluids, 27:13–32, 1998.

[35] S. E. R. I. Community. http://wiki.manchester.ac.uk/spheric/index.php.

[36] A. Coppola-Owen and R. Codina. An improved level-set approach using finite

elements with discontinuous gradient pressure shape functions. In P. Bergan,

J. Garćıa, E. Oñate, and T. Kvamsdal, editors, International Conference on

Computational Methods in Marine Engineering MARINE 2005, pages 463–477.

CIMNE, 2005.

[37] A. Coppola-Owen and R. Codina. Improving Eulerian two-phase flow finite element

approximation with discontinuous gradient pressure shape functions. International

Journal for Numerical Methods in Fluids, 49:1278–1304, 2005.

[38] A. Coppola-Owen and R. Codina. A finite element model for free surface flows on

fixed meshes. International Journal for Numerical Methods in Fluids, 54:1151–1171,

2007.

[39] H. Coppola-Owen and R. Codina. Free surface flows on fixed meshes. In P. Bergan,

J. Garćıa, E. Oñate, and T. Kvamsdal, editors, International Conference on

Computational Methods in Marine Engineering MARINE 2007, pages 463–477.

CIMNE, 2007.

[40] M. Cross, K. Pericleous, T. Croft, D. McBride, J. Lawrence, and A. Williams.

Computational modeling of mold filling and related free-surface flows in shape

casting: An overview of the challenges involved. Metallurgical and Materials

Transactions B, 37B:879–885, 2006.

[41] R. Elias and A. Coutinho. Stabilized edge-based finite element simulation of free-

surface flows. International Journal for Numerical Methods in Fluids, 54:965–993,

2007.

228 BIBLIOGRAPHY

[42] H. Elman. Preconditioning strategies for models of incompressible flow. Journal of

Scientific Computing, 25:347–366, 2005.

[43] H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative Solvers.

Oxford University Press, 2005.

[44] M. Engelman, V. Hartounian, and I. Hasbani. Segregated finite element algorithms

for the numerical solution of large-scale incompressible flow problems. International

Journal for Numerical Methods in Fluids, 17:323–348, 1993.

[45] T. P. Fries. The intrinsic XFEM for two-fluid flows. International Journal for

Numerical Methods in Fluids, 60:437–471, 2009.

[46] D. Gao. A three dimensional finite element-volume tracking model for mould filling

in casting processes. International Journal for Numerical Methods in Fluids, 29:877–

895, 1999.

[47] J. Garcia-Espinosa, A. Valls, and E. Oñate. ODDLS: A new unstructured mesh

finite element method for the analysis of free surface flow problems. International

Journal for Numerical Methods in Engineering, 76:1297–1327, 2008.

[48] P. M. Gresho and R. Sani. Incompressible flow and the finite element method. John

Wiley & Sons, 2000.

[49] O. Guasch and R. Codina. A heuristic argument for the sole use of numerical

stabilization with no physical LES modeling in the simulation of incompressible

turbulent flows. Journal of Computational Physics, submitted.

[50] J. Guermond, P. Minev, and J. Shen. An overview of projection methods for

incompressible flows. Computer Methods in Applied Mechanics and Engineering,

195:6011–6045, 2006.

[51] J. Guermond and L. Quartapelle. A projection fem for variable density

incompressible flows. JCP, 165:167–188, 2000.

BIBLIOGRAPHY 229

[52] J. Guermond and J. Shen. Velocity-correction projection method for incompressible

flows. SIAM Journal on Numerical Analysis, 41:112–134, 2003.

[53] A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s

method, for elliptic interface problems. Computer Methods in Applied Mechanics

and Engineering, 191:5537–5552, 2002.

[54] F. Harlow and J. Welch. Numerical study of large-amplitude free-surface motions.

Physics of Fluids, 9:842–851, 1966.

[55] D. Hartmann, M. Meinke, and W. Schröder. Differential equation based constrained

reinitialization for level set methods. Journal of Computational Physics, 227:6821–

6845, 2007.

[56] J. Heywood and R. Rannacher. Finite element approximation of the nonstationary

Navier-Stokes problem. IV: Error analysis for second-order time discretization.

SIAM Journal on Numerical Analysis, 27:353–384, 1990.

[57] C. Hirt and B. Nichols. Volume of fluid (VOF) method for the dynamics of free

boundaries. Journal of Computational Physics, 39:201–225, 1981.

[58] G. Houzeaux and R. Codina. Transmission conditions with constraints in finite

element domain decomposition methods for flow problems. Communications in

Numerical Methods in Engineering, 17:179–190, 2001.

[59] G. Houzeaux and R. Codina. A finite element model for the simulation of lost foam

casting. International Journal for Numerical Methods in Fluids, 46:203–226, 2004.

[60] T. Hughes. The Finite Element Method. Prentice-Hall, 1987.

[61] T. Hughes. Multiscale phenomena: Green’s function, the Dirichlet-to-Neumann

formulation, subgrid scale models, bubbles and the origins of stabilized formulations.

Computer Methods in Applied Mechanics and Engineering, 127:387–401, 1995.

230 BIBLIOGRAPHY

[62] T. Hughes, L. Franca, and M. Balestra. A new finite element formulation for

computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition:

a stable Petrov-Galerkin formulation for the Stokes problem accommodating equal-

order interpolations. Computer Methods in Applied Mechanics and Engineering,

59:85–99, 1986.

[63] T. Hughes, L. Mazzei, and K. Jansen. Large eddy simulation and the variational

multiscale method. Computing and Visualization in Science, 3:47–59, 2000.

[64] S. Idelsohn, E. Oñate, F. D. Pin, and N. Calvo. Fluid-structure interaction using

the particle finite element method. Computer Methods in Applied Mechanics and

Engineering, 195:2100–2123, 2006.

[65] K. Jansen, S. Collis, C. Whiting, and F. Shakib. A better consistency for low-order

stabilized finite element methods. Computer Methods in Applied Mechanics and

Engineering, 174:153–170, 1999.

[66] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite

Element Method. Cambridge University Press, 1987.

[67] G. Karniadakis, M. Israeli, and S. Orzag. High order splitting methods for the

incompressible Navier-Stokes equations. Journal of Computational Physics, 59:414–

443, 1991.

[68] D. Kay and D. Loghin. A Green’s function preconditioner for steady state Navier-

Stokes equations. Technical Report NA-99/06, Oxford University Computing Lab,

1999.

[69] K. Kleefsman, G. Fekken, A. Veldman, B. Iwanowski, and B. Buchner. A volume-of-

fluid based simulation method for wave impact problems. Journal of Computational

Physics, 206:363–393, 2005.

BIBLIOGRAPHY 231

[70] D. Kothe. Perspective on eulerian finite volume methods for incompressible

interfacial flows. In H. Kuhlmann and H. Rath, editors, Free Surface Flows, pages

267–331. Springer-Verlag, 1999.

[71] A. Larese, R. Rossi, E. Oñate, and S. Idelsohn. Validation of the particle

finite element method (PFEM), for simulation of free surface flows. Engineering

Computations, 25:385–425, 2008.

[72] B. E. Launder and D. B. Spalding. The numerical computation of turbulent flows.

Computer Methods in Applied Mechanics and Engineering, 3:269–289, 1974.

[73] R. Lewis, A. Usmani, and J. Cross. Efficient mould filling simulation in metal

castings by an explicit finite element method. International Journal for Numerical

Methods in Engineering, 20:493–506, 1995.

[74] D. Loghin and A. Wathen. Schur complement preconditioners for the Navier-Stokes

equations. International Journal for Numerical Methods in Fluids, 40:403–412, 2002.

[75] R. Löhner, C. Yang, J. Cebral, F. Camelli, O. Soto, and J. Waltz. Improving

the speed and accuracy of projection-type incompressible flow solvers. CMAME,

195:3087–3109, 2006.

[76] R. Löhner, C. Yang, and E. Oñate. Large-scale simulation of flows with violent

free surface motion. In P. Bergan, J. Garćıa, E. Oñate, and T. Kvamsdal,

editors, International Conference on Computational Methods in Marine Engineering

MARINE 2005, pages 55–81. CIMNE, 2005.

[77] R. Löhner, C. Yang, and E. Oñate. On the simulation of flows with violent free

surface motion. CMAME, 195:5597–5620, 2006.

[78] R. Löhner, C. Yang, E. Oñate, and S. Idelsohn. An unstructured grid-based, parallel

free surface solver. Applied Numerical Mathematics, 31:271–293, 1999.

232 BIBLIOGRAPHY

[79] J. López and J. Hernández. Analytical and geometrical tools for 3D volume of fluid

methods in general grids. Journal of Computational Physics, 227:5939–5948, 2008.

[80] V. Maronnier, M. Picasso, and J. Rappaz. Numerical simulation of three-

dimensional free surface flows. International Journal for Numerical Methods in

Fluids, 42:696–716, 2003.

[81] P. Minev, T.Chen, and K.Nandakumar. A finite element technique for multfluid

incompressible flow using Eulerian grids. Journal of Computational Physics,

187:255–273, 2003.

[82] F. Mut. Algunas contribuciones al level set method en elementos finitos

estabilizados. Master’s thesis, Instituto Balseiro, Universidad Nacional de Cuyo,

2003.

[83] F. Mut, G. Buscaglia, and E. Dari. New mass-conserving algorithm for level set

redistancing on unstructured meshes. Journal of Applied Mechanics, 73:1011–1016,

2006.

[84] N. Nikitin. Third-order-accurate semi-implicit Runge-Kutta scheme for

incompressible Navier-Stokes equations. International Journal for Numerical

Methods in Fluids, 51:221–233, 2006.

[85] J. Oden and L. Demkowicz. Applied Functional Analysis. CRC Press, 1996.

[86] E. Oñate. A stabilized finite element method for incompressible viscous flows using

a finite increment calculus formulation. Computer Methods in Applied Mechanics

and Engineering, 182:355–370, 2000.

[87] E. Oñate, S. Idelsohn, F. D. Pin, and R. Aubry. The particle finite element method.

an overview. International Journal of Computational Methods, 1:267–307, 2004.

BIBLIOGRAPHY 233

[88] E. Oñate, S. Idelsohn, and C. Sacco. Finite element solution of free surface ship wave

problems. International Journal for Numerical Methods in Engineering, 45:503–528,

1999.

[89] S. Osher and R. Fedkiw. Level set methods: and overview and some recent results.

Journal of Computational Physics, 169:463–502, 2001.

[90] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces. Springer–

Verlag, 2003.

[91] S. Osher and J. Sethian. Fronts propagating with curvature dependent speed:

algorithms based on Hamilton-Jacobi formulations. Journal of Computational

Physics, 79:12–49, 1988.

[92] T. Papanastasiou, N. Malamataris, and K. Ellwood. A new outflow boundary

condition. International Journal for Numerical Methods in Fluids, 14:587–608, 1992.

[93] J. Perot. An analysis of the fractional step method. Journal of Computational

Physics, 108:51–58, 1993.

[94] E. Pichelin and T. Coupez. Finite element solution of the 3D mold filling problem

for viscous incompressible fluid. Computer Methods in Applied Mechanics and

Engineering, pages 359–371, 163.

[95] J. Principe, R. Codina, and F. Henke. The dissipative structure of variational

multiscale methods for incompressible flows. Computer Methods in Applied

Mechanics and Engineering, accepted.

[96] A. Quarteroni, F. Saleri, and A. Veneziani. Factorization methods for the numerical

approximation of Navier-Stokes equations. Computer Methods in Applied Mechanics

and Engineering, 188:505–526, 2000.

234 BIBLIOGRAPHY

[97] M. Quecedo and M. Pastor. Application of the level set method to the finite

element solution of two-phase flows. International Journal for Numerical Methods

in Engineering, 50:645–663, 2001.

[98] R. Radovitzky and M. Ortiz. Lagrangian finite element analysis of Newtonian fluid

flows. Journal of Computational Physics, 43:607–619, 1998.

[99] B. Ramaswamy. Numerical simulation of unsteady viscous free surface flow. Journal

of Computational Physics, 90:396–430, 1990.

[100] B. Ramaswamy, M. Kawahara, and N. T. Lagrangian finite element method for the

analysis of two-dimensional sloshing problems. International Journal for Numerical

Methods in Fluids, 6:659–670, 1985.

[101] G. Ren and T. Utnes. A finite element solution of the time-dependent incompressible

Navier-Stokes equations using a modified velocity correction method. International

Journal for Numerical Methods in Fluids, 17:349–364, 1993.

[102] Y. Saad. Iterative methods for sparse linear systems. PWS, 1996.

[103] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and

interfacial flow. Annu. Rev. Fluid Mech., 31:567–603, 1999.

[104] J. Sethian and P. Smereka. Level set methods for fluid interfaces. Annu. Rev. Fluid

Mech., 35:341–372, 2003.

[105] O. Soto, R. Löhner, J. Cebral, and R. Codina. A time–accurate implicit–monolithic

finite element scheme for incompressible flow problems. In Eccomas CFD 2001, CD

proceedings, 2001.

[106] M. Sussman, A. Almgren, J. Colella, L. Howell, and M. Welcome. An adaptive level

set approach for incompressible two phase flows. Journal of Computational Physics,

148:81–124, 1999.

BIBLIOGRAPHY 235

[107] R. Temam. Sur l’approximation de la solution des équations de Navier–Stokes par

la méthode des pas fractionaires (I). Archives for Rational Mechanics and Analysis,

32:135–153, 1969.

[108] T. Tezduyar. Stabilized finite element formulations for incompressible flow

computations. Advances in Applied Mechanics, 28:1–44, 1991.

[109] T. Tezduyar. Interface-tracking, interface-capturing and enhanced solution

techniques. In Proceedings of the First South-American Congress on Computational

Mechanics, Santa Fe - Parana, Argentina, 2002.

[110] E. Thompson. Use of the pseudo-concentration to follow creeping viscous during

transient analysis. International Journal for Numerical Methods in Engineering,

6:749–761, 1986.

[111] L. Timmermans, P. Minev, and F. V. de Vosse. An approximate projection

scheme for incompressible flow using espectral elements. International Journal for

Numerical Methods in Fluids, 22:673–688, 1996.

[112] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han,

S. Nas, and Y.-J. Janz. A front-tracking method for the computations of multiphase

flow. Journal of Computational Physics, 169:708–759, 2001.

[113] S. Turek. A comparative study of time-stepping techniques for the incompressible

Navier-Stokes equations: from fully implicit nonlinear schemes to semi-implicit

projection methods. International Journal for Numerical Methods in Fluids, 22:987–

1011, 1996.

[114] S. Turek. On discrete projection methods for thr incompressible Navier Stokes

equations: An algorithmical approach. Computer Methods in Applied Mechanics

and Engineering, 143:271–288, 1997.

[115] S. Turek. Eficient Solvers for Incompressible Flow Problems. Springer-Verlag, 1999.

236 BIBLIOGRAPHY

[116] S. Van der Pijl. Free boundary methods for multi-phase flows. Technical Report

02-13, Delft University of Technology, 2002.

[117] J. van Kan. A second-order accurate pressure correction scheme for viscous

incompressible flow. SIAM Journal of Scientific Computing, 7:870–891, 1986.

[118] Vulcan. http://www.quantech.es/quantechatz/vulcan.html.

[119] O. Zienkiewicz and R. Codina. A general algorithm for compressible and

incompressible flow—Part I. The split, characteristic-based scheme. International

Journal for Numerical Methods in Fluids, 20:869–885, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

