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Abstract This chapter presents an overview of the most popular reduced order
models found in the approximation of partial differential equations and their con-
nection with machine learning techniques. Although the presentation is applicable
to many problems in science and engineering, the focus is first order evolution prob-
lems in time and, more specifically, flow problems. Particular emphasis is put in the
distinction between intrusive models, that make use of the physical problem being
modeled, and non-intrusive models, purely designed from data using machine learn-
ing strategies. For the former, models based on proper orthogonal decomposition and
Galerkin projection are described in detail, whereas alternatives are only mentioned.
Likewise, some modifications that are crucial in the applications are detailed. The
progressive incorporation of machine learning methods is described, yielding first
hybrid formulations and ending with pure data-driven approaches. An effort has
been made to include references with applications of the methods being described.
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1 Introduction

Partial Differential Equations (PDEs) provide a mathematical model to represent
the many processes occurring in nature of significant importance. Hence, solving
these PDEs is of prime interest to researchers and engineers. Many high-fidelity
solution techniques have been developed which can solve the PDEs with the desired
accuracy. However, these methods are very computationally expensive in general.
The computational expense can become particularly prohibitive in the case of opti-
mization problems as they require a large number of simulations to be performed.
Moreover, a control problem might require solutions to PDEs in real-time, which is
seldom achievable given the high computational cost associated with solving PDEs.
Reduced order models (ROMs) offer an alternative approach to the high fidelity
models to obtain solutions with reasonable accuracy and at a reduced computational
cost. ROMs reduce the computational cost by approximating the large-scale systems
by much smaller ones.

Broadly speaking, any model which reduces the computational expense can be
regarded as a ROM. In the context of finite difference, finite element, or finite
volume discretizations, a ROM could mean using a coarser discretizing mesh [18,
60]. Similarly, using a larger time step for a time integration scheme could also imply
a ROM [60]. Furthermore, using simplified physics could be considered a ROM.
However, in the scientific community, ROMs are understood to represent a particular
class of model order reduction, called projection based methods (see Remark 1).
These methods involve finding a latent low-dimensional space to represent the actual
full order model (FOM) dynamics. The motivation of such methods relies on the
observation that even nonlinear dynamical systems can exhibit patterns that can be
used to characterize their behavior. Unsurprisingly the origin of these methods can
be traced back to identifying and studying coherent structures in turbulent flows in
fluid mechanics [83]. These methods are perhaps still the most commonly used in
flow problems, and hence, most of the explanations and literature in this chapter will
refer to flow problems.

Projection based ROMs consist of two steps:

1. Offline step: Finding the low-dimensional representation of the FOM
2. Online step: Solving for the unknowns in the reduced ordered space

where the offline step is very computationally intensive but needs to be performed
only once or a few times. Once the offline step has been performed, the low-cost
online step of the ROM can be performed several times to solve an optimization
problem or a real-time control problem, thus providing large computational savings
and real-time solutions.

The implementation strategy of the online step of ROMs is used to classify
them into intrusive and non-intrusive ROMs. The intrusive ROMs are physics based
in the sense that they require the governing equations, and possible access to the
computational code, to project the FOM onto a reduced order space to solve for the
unknowns. Non-intrusive ROMs, on the other hand, are purely data-driven and do
not require access to governing equations or the computational code.
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In the current data-centric era, Machine Learning (ML) has emerged as a viable
tool for reduced order modeling. ML has revolutionized a wide range of fields over
the past few decades. Scientific computing, and in particular reduced order modeling,
is no exception. Although the interest in exploring ML techniques for reduced order
modeling is relatively new, it has already shown great potential by replacing in part,
or entirely, the offline and online steps.

A variety of conventional (see Remark 2) and ML-based techniques have been
developed for offline and online phases till date and applied successfully in a variety
of contexts, e.g., solid mechanics [53, 147], material science [80], fluid mechanics
[15, 16, 32, 64, 68, 87, 98, 114, 130, 141], shape optimization [5, 25, 94, 93, 121]
and flow control [11, 70, 103, 111] problems. The proper orthogonal decomposition
based Galerkin projection (POD-G) method can be considered to be the most well-
established and commonly used method for reduced order modeling. This method
uses proper orthogonal decomposition (POD) to find the basis, called POD modes,
of the low-dimensional space. The FOM is then projected in an intrusive manner
onto these POD modes using mostly Galerkin projection to solve for the unknowns.

The organization of the chapter is as follows. Section 2 describes POD along with
its essential ingredient, the singular value decomposition (SVD). Section 3 describes
the Galerkin projection, hyperreduction, and stabilization of POD-ROMs.Section4
describes the non-intrusive ROMs with a brief explanation of dynamic mode de-
composition (DMD).Section 5 deals with the description of parametric ROMs. Fi-
nally,Section 6 describes the ML techniques used for the online and offline phases
of reduced order modeling.

Remark 1 In literature, the term reduced basis is also sometimes used for projection
based methods. However, more commonly reduced basis methods are meant to refer
to a particular class of projection based methods based on greedy algorithms1. This
later usage is also applicable in the context of this chapter.

Remark 2 All data-driven dimension reduction techniques can be classified as ML
techniques in the broader sense. For example, POD and DMD can be classified as
unsupervised ML techniques. However, these techniques were originally developed
for dynamical systems based on mathematical arguments. Therefore, such techniques
are referred to as conventional and we do not group them under the umbrella of ML
techniques.

2 Proper Orthogonal Decomposition

The basis commonly used, e.g., piecewise-linear basis in the finite element (FE)
method, Fourier modes, etc., can solve a large number of dynamical systems, but

1 Greedy algorithms are a class of algorithm which are based on choosing the option which produces
the largest immediate reward with the expectation that the successive application of greedy sampling
will lead to a global optimum. Greedy algorithms may use an error estimator to guide the sampling.
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these basis are generic and do not correspond to the intrinsic modes of the systems
which they solve. Hence, a large number of such basis functions need to be used
to capture the solution. The intrinsic modes which form the basis of the solution
space can be found using proper generalized decomposition, reduced basis method
or proper orthogonal decomposition (POD), among others. Proper generalized de-
composition and reduced basis methods are commonly based on a greedy approach
and a comprehensive review on them can be found in [42, 43] and [76], respectively.
POD [37] is perhaps the most commonly used method to find the basis, called POD
modes in the context of POD.

For clarity, let us first introduce the concept of function and vector based descrip-
tion of a variable in the context of numerical methods. Suppose that the analysis
domain is spatially discretized using an interpolation based method like finite ele-
ments, finite volumes, spectral elements, etc. The variable of interest can then either
be represented in the vectorial form as the collection of coefficients that multiply
the basis functions, or in a corresponding functional form which relies on the inter-
polation to define the variable over the entire domain. Throughout this chapter, the
functional representation is denoted using the lowercase letters, like 𝒒, and the vecto-
rial representation using the uppercase letters, like 𝑸. In the case of Greek alphabets,
where the case of alphabets is not obvious, functional representation is denoted by
showing the dependence on the spatial coordinates 𝒙 explicitly, like 𝜻 (𝒙). Also, a
variable with underbar 𝒂 represents the variable in a general form which could be
either functional or vectorial based on the context. In the case of the FE method, the
vectorial and functional representations of a variable 𝒖 are related as

𝒖(𝒙, 𝑡) =
𝑛𝑛∑︁
𝑘=1

𝝌𝑘 (𝒙)𝑈𝑘 (𝑡)

where 𝒖(𝒙, 𝑡) is the functional representation which depends on the spatial coordi-
nates 𝒙 in addition to time 𝑡, 𝑈𝑘 the 𝑘−th element of the vector 𝑼, 𝝌𝑘 (𝒙) the FE
interpolation function for the 𝑘−th node and 𝑛𝑛 the total number of nodes.

Now, POD consists of representing a variable 𝒖 as a linear combination of the
POD modes as

𝒖(𝑡, `) =
𝑛𝑏∑︁
𝑘=1

𝚿𝑘 (`)𝑈𝑘𝑟 (𝑡, `) (1)

where 𝚿𝑘 is the 𝑘-th POD mode, 𝑈𝑘𝑟 the 𝑘-th ROM coefficient, 𝑛𝑏 the number of
basis vectors and ` a parameter that characterizes the behavior of the system. 𝒖
and 𝚿 could be the functional or vectorial representation, as required, but the same
representation must be used for both variables.

POD relies on a singular value decomposition (SVD) to find the basis. Let us
describe how the basis is determined using the SVD of the data generated using
PDEs.
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2.1 Proper Orthogonal Decomposition Applied to Partial Differential
Equations

Let us consider a general unsteady nonlinear PDE describing the behavior of a real-
valued function 𝒖 of 𝑛 components and dependent on a parameter `. The evolution
of 𝒖 in the spatial domain Ω ⊂ R𝑑 , 𝑑 denoting the dimensions of the problem, and
time interval ]0, 𝑡f [ is given by

𝜕𝑡𝒖(𝒙, 𝑡, `) + N (𝒖(𝒙, 𝑡, `)) = 𝒇 (𝒙, 𝑡, `) in Ω, 𝑡 ∈ ]0, 𝑡f [, (2)

where N is a nonlinear operator, 𝒇 the forcing term and 𝜕𝑡 the time derivative.
Equation (2) is further provided with suitable boundary and initial conditions so that
the problem is well-posed. For simplicity, ` is considered to be fixed for now, and
hence, 𝒖 will not be stated explicitly as a function of the parameter ` from now on
tillSection 5, when parametric ROMs are discussed.

After the advent of the computational era, the most commonly used technique
to solve (2) is to discretize it in space using a discretization technique, e.g., the FE
method. This discretization leads to the a system of ordinary differential equations
(ODEs) which reads: find 𝑼 :]0, 𝑡f [→ R𝑛𝑝 such that

𝑴𝜕𝑡𝑼 + 𝑵(𝑼)𝑼 = 𝑭, (3)

where𝑼 is the vector of unknowns, 𝑴 ∈ R𝑛𝑝×𝑛𝑝 the mass-matrix, 𝑵(𝑼) ∈ R𝑛𝑝×𝑛𝑝
the matrix representation of the nonlinear differential operator N , 𝑭 ∈ R𝑛𝑝 the
resulting forcing vector, and 𝑛𝑝 the number of degrees of freedom. We shall denote
as B 𝑓 = R𝑛𝑝 the FOM space.

Finally, a time-integration technique can be applied to (3) to obtain a fully-discrete
system, which for a given time-step reads

𝑨(𝑼)𝑼 = 𝑹, (4)

where 𝑨(𝑼) ∈ R𝑛𝑝×𝑛𝑝 is the nonlinear system matrix and 𝑹 ∈ R𝑛𝑝 is the right-
hand-side which takes into account the contributions of the previous values of 𝑼 as
well. Equation (4) can then be solved for nt time-steps to get nt solution vectors.

To find the POD basis, all solution vectors are not generally required. Rather
it is desired to select a minimum, but sufficient, number of solution vectors that
contain all the important dynamic features of the system. A simple approach for a
uniform step time-integration scheme is to use solution vectors after every 𝑖-th time-
step, where 𝑖 is a natural number [17]. Another approach could be to capture each
cycle of a periodic phenomenon using a certain number of solution vectors [107].
Suppose, that we are able to gather a set of ns solution vectors, called snapshots,
{𝑼1,𝑼2, ...,𝑼𝑛𝑠} carrying all the important features of the system dynamics. To
simplify the exposition, we have assumed that the snapshots correspond to the first
𝑛𝑠 consecutive solution vectors, but this can be easily generalized. Note that the
term snapshots will be interchangeably used for the solution vectors, as well as
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their mean-subtracted form discussed in Section 2.2. Once the solution set has been
gathered, the SVD is used to find the basis or POD modes.

2.2 Singular Value Decomposition

SVD, also known as principal component analysis, is one of the most important
matrix factorization techniques used across many fields. The SVD of a matrix is
guaranteed to exist and can be considered unique for the basis generation purposes.
To perform the SVD, it is customary to first subtract the mean value𝑼 ∈ R𝑛𝑝 from the
solution vectors 𝑼 𝑗 to obtain 𝑺 𝑗 = 𝑼 𝑗 −𝑼, for 𝑗 = 1, 2, ..., 𝑛𝑠. The mean-subtracted
snapshots are then arranged into a matrix 𝑺 ∈ R𝑛𝑝×𝑛𝑠 as follows:

𝑺 =

 𝑺1 𝑺2 . . . 𝑺𝑛𝑠
 ,

a tall skinny matrix as, in general, 𝑛𝑠 ≪ 𝑛𝑝. It is now desired to find the basis of the
space B ⊂ B 𝑓 to which these snapshots belong using SVD. The SVD of 𝑺 gives

𝑺 = 𝚿′𝚲′𝑽𝑇 , (5)

where 𝚿′ ∈ R𝑛𝑝×𝑛𝑝 contains the left singular vectors, 𝚲′ ∈ R𝑛𝑝×𝑛𝑠 contains the
singular values and 𝑽 ∈ R𝑛𝑠×𝑛𝑠 contains the right singular vectors. Some important
properties of the SVD are listed below:

• Matrices 𝚿′ and 𝑽 are orthogonal i.e.

𝚿′𝑇𝚿′ = 𝚿′𝚿′𝑇 = 𝑰𝑛𝑝 and 𝑽𝑇𝑽 = 𝑽𝑽𝑇 = 𝑰𝑛𝑠 , (6)

where 𝑰𝑘 is the identity matrix in R𝑘 .
• Matrix 𝚲′ contains non-negative values along the diagonal, arranged in the de-

creasing order, and zeros elsewhere, i.e.,

Λ′𝑖𝑖 ≥ Λ′𝑗 𝑗 ≥ 0, ∀ 𝑖 < 𝑗 and Λ′𝑖 𝑗 = 0, ∀ 𝑖 ≠ 𝑗 (7)

Now, 𝚲′ has at most 𝑛𝑠 non-zero values. Assuming such a case, it is possible to

write 𝚲′ =
[
𝚲
0

]
, where 𝚲 ∈ R𝑛𝑠×𝑛𝑠 . Using this, the full SVD (5) can be converted to

its economy or reduced SVD form as

𝑺 = 𝚿′
[
𝚲
0

]
𝑽𝑇 = 𝚿𝚲𝑽𝑇 , (8)

where 𝚿 ∈ R𝑛𝑝×𝑛𝑠 . The full and reduced versions of SVD are shown in Fig. 1. Note
that (8) represents the exact decomposition of 𝑺. The set of columns {𝚿 𝑗 }𝑛𝑠𝑗=1 of the
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matrix 𝚿, represents the basis vectors of B. So

B = span{𝚿1,𝚿2, ...,𝚿𝑛𝑠}, where 𝚿 𝑗 ∈ R𝑛𝑝 , for 𝑗 = 1, ..., 𝑛𝑠.

So, the dimension of the solution space has been reduced from 𝑛𝑝 to 𝑛𝑠, with
𝑛𝑠 ≪ 𝑛𝑝. However, 𝑛𝑠 still could be of the order of hundreds or even thousands
and could still be considered computationally demanding. So, to unlock the full
potential of ROMs in terms of computational savings, truncation is performed to
yield a smaller number of basis vectors than the one provided by the economy SVD.

0

Ψ Ψ┴

…

Λ’

…

Λ

= =

Ψ’S VT Ψ VT

np x ns np x np np x ns

ns x ns

np x ns

ns x ns ns x ns

Full SVD Economy SVD

Fig. 1 Matrix representation of full and economy SVD. The lightening of the color of the circles
represents the ordered decreasing of the diagonal values of 𝚲′ and 𝚲.

2.2.1 Truncated SVD

As discussed above, in practice, the basis is truncated to get 𝑟 < 𝑛𝑠 number of
basis vectors. This leads to a reduced space B𝑟 ⊂ B ⊂ B 𝑓 , where dimB𝑟 = 𝑟 ,
dimB = 𝑛𝑠 and dimB 𝑓 = 𝑛𝑝 and 𝑟 < 𝑛𝑠 ≪ 𝑛𝑝. The truncation is motivated
by the ordered decreasing singular values in 𝚲, Property (7). A singular value Λ𝑖𝑖
represents the amount of energy or information with which the corresponding basis
vector 𝚿𝑖 contributes towards the solution. This contribution can be quantified using
the relative information content (RIC) given by

RIC =

∑𝑟
𝑘=1 Λ𝑘𝑘∑𝑛𝑠
𝑘=1 Λ𝑘𝑘

.

The singular and RIC values for the classical problem of the flow over a cylinder
approximated using the FE method are shown in Fig. 2. It can be seen that only a few
initial values contain the most of the energy. So, instead of using 150 basis vectors,
it is possible to use just a few of them to describe the flow dynamics around the
cylinder. Based on the reasoning discussed above, RIC is widely used as a truncation
criterion. The number of POD modes can then be decided such that RIC is equal
to a desired value, e.g., 0.9, meaning that the POD modes will retain 90% of the
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information. This truncation can be represented as a truncated SVD as

𝑺 ≈ �̂� = �̂��̂��̂�
𝑇
, (9)

where �̂� ∈ R𝑛𝑝×𝑟 contains the first 𝑟 columns of 𝚿 , �̂� ∈ R𝑟×𝑟 contains the top left
𝑟 ×𝑟 block of 𝚲 and �̂� ∈ R𝑛𝑠×𝑟 contains first 𝑟 columns of 𝑽. Note that the truncated
SVD only approximates matrix 𝑺, as shown in (9). However, the truncated SVD is
guaranteed to give the optimal approximation of 𝑺 in the low-dimensional space as
guaranteed by the Eckart–Young theorem [57].

Theorem 1 The rank-𝑟 truncated SVD �̂� provides the best rank-𝑟 approximation to
𝑺 in the 𝐿2 sense, i.e.,

arg min
�̂� of rank 𝑟

∥𝑺 − �̂�∥2 = �̂��̂��̂�
𝑇
.

Thus, the presence of patterns in the high dimensional data, shown by rapidly
decreasing singular values, and the optimality of SVD guaranteed by the Eckart–
Young theorem have resulted in the wide usage of POD to find the basis of the
reduced spaces.

Fig. 2 Singular and RIC
values for the flow over a
cylinder. The singular values
are represented on a log scale
for better visualization.
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2.2.2 SVD for Functions

The SVD (9) corresponds to solving the problem of minimizing

𝐽 (�̂�1, ..., �̂�𝑟 ) =
𝑛𝑠∑︁
𝑖=1

𝑺𝑖 − 𝑟∑︁
𝑗=1
(𝑺𝑖𝑇 �̂� 𝑗 )�̂� 𝑗


2

R𝑛𝑝

, subject to �̂�
𝑇

𝑖 �̂� 𝑗 = 𝛿𝑖 𝑗 . (10)

Many times we are dealing with functions, e.g., when using FE methods, defined
over the entire domain Ω, and not vectors corresponding to the degrees of freedom
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of the approximation. In such cases, it could be desired for the properties to hold in
the functional (continuous) sense rather than in the algebraic (discrete) sense. So,
let us suppose that instead of solving the minimization problem (10), it is desired to
minimize its functional counterpart

𝑗 (𝜙1 (𝒙), ..., 𝜙𝑟 (𝒙)) =
𝑛𝑠∑︁
𝑖=1

𝑠𝑖 (𝒙) − 𝑟∑︁
𝑗=1

(∫
Ω

𝑠𝑖 (𝒙)𝜙 𝑗 (𝒙)
)
𝜙 𝑗 (𝒙)


2

𝐿2 (Ω)

,

subject to
∫
Ω

𝜙𝑖 (𝒙)𝜙 𝑗 (𝒙) = 𝛿𝑖 𝑗 , (11)

where 𝑠𝑖 (𝒙) is the functional form of the vectors 𝑺𝑖 , 𝑖 = 1, ..., 𝑛𝑠, and 𝜙 𝑗 (𝒙),
𝑗 = 1, ..., 𝑟 , are the basis functions, which are 𝐿2 (Ω)-orthogonal. Note that (11)
minimizes the difference over the entire domain Ω. For the sake of clarity, we have
considered that the unknown of the problem is a scalar function, and so are the
snapshots and the basis, but the extension to the vector case is straightforward. Also
note that the difference between �̂� and 𝜙(𝒙) is not only of the vectorial and functional
representation. Rather �̂� and 𝜙(𝒙) are two different bases having different orthogonal
properties. The functional SVD (11) can be shown to be the same as minimizing

𝐽 (�̂�1, ..., �̂�𝑟 ) =
𝑛𝑠∑︁
𝑖=1

𝑴1/2𝑺𝑖 −
𝑟∑︁
𝑗=1

(
(𝑴1/2𝑺𝑖)𝑇𝑴1/2�̂� 𝑗

)
𝑴1/2�̂� 𝑗


2

R𝑛𝑝

,

subject to �̂�
𝑇
𝑴�̂� = 𝑰𝑟 , (12)

where 𝑴 is the mass-matrix as in (3) and 𝑰𝑟 ∈ R𝑟×𝑟 is the identity matrix. Note that
the 𝐿2 (Ω)-orthogonality of basis functions �̂�(𝒙) translates to orthogonality of the
corresponding basis vectors �̂� with respect to the mass-matrix 𝑴 as �̂�𝑇

𝑴�̂� = 𝑰𝑟 .
To find �̂�, we perform the SVD of �̃� = 𝑴1/2𝑺:

�̃� = �̃��̂��̂�
𝑇
,

and the desired basis can be recovered as

�̂� = 𝑴−1/2�̃�

Using the functional SVD produced more accurate results in [54]. Note, however,
that throughout this chapter the SVD term will refer to the one that solves problem
(10), unless stated otherwise, e.g., in Section 3.3.3.
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3 Reduced Order Modeling Using Proper Orthogonal
Decomposition

As discussed in Section 1, reduced order modeling consists of offline and online
steps. The offline step of finding the reduced order basis is discussed in Section 2.
Now we describe the most commonly used method for the online step, the Galerkin
projection, to find the ROM coefficients in (1).

3.1 Galerkin Projection

As �̂� forms the basis of the reduced solution space B𝑟 , and was calculated from
mean-subtracted snapshots, decomposition (1) can be written as

𝑼 ≈ �̂�𝑼𝑟 +𝑼, (13)

where the ROM coefficients 𝑼𝑟 ∈ R𝑟 are the components of 𝑼 in B𝑟 expressed in
the reference system defined by �̂�. Given 𝑼𝑟 , 𝑼 can be found using (13). Let us
insert (13) in the original matrix system (4). Omitting the explicit dependence of 𝑨
on 𝑼 from the notation, we can write (4) as

𝑨𝑼 ≈ 𝑨(�̂�𝑼𝑟 +𝑼) = 𝑹.

Taking knowns to the right-hand-side, we get

𝑨�̂�𝑼𝑟 = 𝑹 − 𝑨𝑼. (14)

This leads to a 𝑛𝑝×𝑟 over-determined system. Let us assume 𝑨 to be symmetric and
positive definite (SPD). A least-square strategy for approximating (14) with respect
to the norm induced by 𝑨−1, as described in [30, 35], leads to

�̂�
𝑇
𝑨�̂�𝑼𝑟 = �̂�

𝑇 (𝑹 − 𝑨𝑼). (15)

which is the Galerkin projection of the full order system (4) onto the reduced space.
Let us write (15) compactly as

𝑨𝑟𝑼𝑟 = 𝑹𝑟 (16)

where

𝑨𝑟 := �̂�
𝑇
𝑨�̂� ∈ R𝑟×𝑟 ,

𝑹𝑟 := �̂�
𝑇 (𝑹 − 𝑨𝑼) ∈ R𝑟 .

Applicable for the general matrices 𝑨, the so-called Petrov-Galerkin (PG) pro-
jection is found to provide more stable results, as compared to Galerkin projection,
in the case of 𝑨 not being a SPD matrix [35]. Using �̂�

𝑇
𝑨 as a suitable PG projector,
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the PG reduced order form of (4) is given by

𝑨𝑟 𝐴𝑼𝑟 = 𝑹𝑟 𝐴, (17)

where now

𝑨𝑟 𝐴 := �̂�
𝑇
𝑨𝑇 𝑨�̂� ∈ R𝑟×𝑟 ,

𝑹𝑟 𝐴 := �̂�
𝑇
𝑨𝑇 (𝑹 − 𝑨𝑼) ∈ R𝑟 .

This corresponds to a least squares strategy for solving (14) with respect to the
standard Euclidean norm in R𝑛𝑝 . Irrespective of the type of projection used, both
the final reduced order systems (16) and (17) are 𝑟 × 𝑟 systems as opposed to the
full order system (4) of size 𝑛𝑝 × 𝑛𝑝, with 𝑟 ≪ 𝑛𝑝. Thus the reduced order system
can be solved at a fraction of the cost of the full order system. All the concepts
described later apply to both the Galerkin and PG ROMs; however for simplicity, we
will describe them using the Galerkin-ROM (15).

3.2 Hyperreduction

The ROM discussed above can be solved at a reduced computational expense. How-
ever, assembling the system matrices has a cost of the same order as that of the FOM.
For linear problems, the assembling of matrices needs to be done once, and hence, is
not considered a bottle-neck to achieving reduced computation times. However, for
nonlinear problems the system matrices need to be assembled for every nonlinear it-
eration, i.e., multiple times for every time-step in general, and will lead to a significant
cost. Thus, it is important to use some techniques to determine the nonlinear terms
at a reduced cost. This is achieved using hyperreduction techniques and the resulting
models are called hyper-ROMs. There are many methods used for hyperreduction
including, but not limited to, empirical interpolation method [23] or its discrete
version discrete empirical interpolation method (DEIM) [38], Gauss-Newton with
approximate tensors [35], missing point estimator approach [12], cubature based
approximation method [9], energy conserving sampling and weighting method [61]
and adaptive mesh-refinement (AMR) based hyperreduction [118]. Here we briefly
describe DEIM and AMR based hyperreduction.

Remark 3 In the case of a polynomial nonlinearity in general, and quadratic nonlin-
earity in particular, the reduced nonlinear operator can be written as a tensor which
is not a function of 𝑼𝑟 , and hence, needs to be computed just once. However, hyper-
reduction techniques, like DEIM and AMR, described in this chapter are applicable
in a broader context.
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3.2.1 Discrete Empirical Interpolation Method

DEIM is a greedy algorithm and its origin can be traced back to the gappy POD
method [59] which was originally designed for image reconstruction. Just as ROM
approximates the solution space by a subspace, DEIM does the same but for non-
linear terms only. However, DEIM uses interpolation indices to find the temporal
coefficients instead of solving the reduced system.

Let us denote the vector of nonlinear terms as 𝑵(\) ∈ R𝑛𝑝 , depending on \. \ can
represent time 𝑡 or any other parameter in the case of parametric ROMs. However,
here we explain DEIM in the context of non-parametric nonlinear ROMs with \ = 𝑡.
For DEIM applied to parametric ROMs, see [10]. DEIM proposes approximating
the space to which the 𝑵 belongs by a subspace of lower dimension 𝑠, i.e., 𝑠 ≪ 𝑛𝑝

and not necessarily equal to the dimension 𝑟 of the ROM space. Let this subspace
be spanned by the basis 𝑩 = [𝑩1, ..., 𝑩𝑠] ∈ R𝑛𝑝×𝑠 . Thus we can write

𝑵(𝑡) ≈ 𝑩𝒅(𝑡) (18)

where 𝒅(𝑡) is the vector of coefficients. For simplicity, from now on the dependence
on 𝑡 will be omitted from the notation.

An efficient way to determine 𝒅 is to sample 𝑠 spatial points and use them to
determine 𝒅. This can be achieved using a sampling matrix 𝑯 defined as

𝑯 = [𝑯𝑠1 , ...,𝑯𝑠𝑠 ] ∈ R𝑛𝑝×𝑛𝑠

where 𝑯𝑠 𝑗 = [0, ..., 0, 1, 0, ...0]𝑇 ∈ R𝑛𝑝 , for 𝑗 = 1, ..., 𝑠, is the 𝑠 𝑗 -th column of the
identity matrix 𝑰𝑛𝑝 ∈ R𝑛𝑝×𝑛𝑝 . Using the sampling matrix 𝑯 we can write

𝑯𝑇𝑵 = 𝑯𝑇𝑩𝒅.

Suppose 𝑯𝑇𝑩 is non-singular, thus leading to a unique solution of 𝒅 as

𝒅 = (𝑯𝑇𝑩)−1𝑯𝑇𝑵. (19)

Using (19), we can write (18) as

𝑵 ≈ 𝑩(𝑯𝑇𝑩)−1𝑯𝑇𝑵. (20)

Now we need to define the basis 𝑩 and the sampling points 𝑠 𝑗 , 𝑗 = 1, ..., 𝑠, called
interpolation indices in DEIM, to approximate 𝑵 using (20) at a reduced cost. The
basis 𝑩 is found using POD for the nonlinear vector 𝑵. During the simulations, the
nonlinear vectors at different time-steps are gathered to form a snapshot matrix 𝑺𝑁
of nonlinear terms as

𝑺𝑁 =

𝑵1 𝑵2 . . . 𝑵𝑛𝑠
 .

The truncated SVD of rank-𝑠 is then performed as
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�̂�𝑁 = 𝑩𝚲𝑁𝑽
𝑇
𝑁 (21)

to obtain the basis 𝑩 of the desired order. The interpolation indices are then selected
iteratively using the basis 𝑩. This approach is shown in Algorithm 1, where [|𝜌 | 𝑦]
= max{|𝑿 |} means that 𝑦 is the index of the maximum value of the components of
vector 𝑿 = [𝑋1, ..., 𝑋𝑛𝑝], i.e., 𝑋𝑦 ≥ 𝑋𝑧 , for 𝑧 = 1, ..., 𝑛𝑝. The smallest 𝑦 is taken if
more than one component corresponds to the maximum value.

Algorithm 1 DEIM algorithm for the selection of interpolation indices
INPUT : Basis vectors {𝑩1, ..., 𝑩𝑠 }
OUTPUT : Interpolation indices 𝒔 = 𝑠1, ..., 𝑠𝑠

1: [ |𝜌 | 𝑠1 ] = max{ |𝑩1 | } ⊲ find the first index
2: 𝑩 = [𝑩1 ], 𝑯 = [𝑯 𝑠1 ] ⊲ initialize matrices based on the first value
3: for 𝑘 = 2; 𝑘 ≤ 𝑠; 𝑘 + 1 do ⊲ loop to find successively the remaining indices
4: 𝑯𝑇𝑩𝒅 = 𝑯𝑇𝑩𝑘 ⊲ solve for 𝒅
5: 𝑹𝑘 = 𝑩𝑘 − 𝑩𝒅 ⊲ calculate residual 𝑹𝑘

6: [ |𝜌 | 𝑠𝑘 ] = max{ |𝑹𝑘 | } ⊲ find the index 𝑠𝑘 where the residual has the maximum value
7: 𝑩← [𝑩 𝑩𝑘 ], 𝑯 ← [𝑯 𝑯 𝑠𝑘 ] ⊲ update the matrices for the next iteration
8: end for

3.2.2 Adaptive Mesh-Refinement Based Hyperreduction

AMR based hyperreduction proposes calculating the nonlinear terms on a mesh
coarser than the one used for the FOM. The points of the coarser mesh are located
using AMR. AMR based hyperreduction aims at concentrating the mesh in the
regions of higher physics and coarsening it everywhere else such that the overall
degrees of freedom are reduced. AMR uses a posteriori error-estimator to decide
these areas of higher physics based activity. In [118] the mesh was coarsened such
that the total error, in a certain norm, remained approximately the same before and
after hyperreduction. An a posteriori residual-based error estimator was used and a
coarse mesh containing 80% less degrees of freedom was achieved giving results
with a negligible error. Numerical analysis of the error estimator was also performed
in [49] and it was shown that the estimator provides an upper bound for the true error
and has the correct numerical behavior.

3.3 Stabilization Using Variational Multiscale Methods

Instabilities can arise when PDEs are solved using numerical methods, usually in
singular perturbation problems or when the approximation spaces of the different
unknowns need to satisfy compatibility conditions. This issue is further exacerbated
when POD-G is used to develop a ROM. This has to do with the fact that the ROM
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does not account for the impact of the FOM scales that are not captured by the
low-order space. This problem is well-known in other computational mechanics set-
tings, such as finite elements, where stabilized formulations have been developed to
address the instability of the Galerkin projection. The Variational Multiscale (VMS)
framework, originally proposed in [79], is a popular framework used to develop
stabilized formulations taking into account the effect of the discarded scales in a
multi-scale problem. A comprehensive review of VMS-based stabilization meth-
ods developed for fluid problems is provided in [51]. Inspired by this, VMS based
stabilization methods have been developed for projection based ROMs [118] and
successfully applied in the context of flow problems [119], fluid-structure interac-
tion [133, 134] and adaptive-mesh based hyperreduction [118]. A comprehensive
description of it is provided in [49, 118]. However, a summary of the method, which
uses the same VMS formulation to stabilize both FOM and ROM, is presented here
for completeness. Let us describe the formulation using a general unsteady nonlinear
convection-diffusion-reaction transport equation.

3.3.1 Variational Problem

Let us consider again problem (2) and write it in a slightly modified form, along
with the boundary and initial conditions. Let the boundary Γ of the domain Ω be
split into non-overlapping Dirichlet, Γ𝐷 , and Neumann, Γ𝑁 , parts. Given the initial
condition for the unknown 𝒖0, the problem aims at finding 𝒖 of 𝑛 components that
satisfies

𝜕𝑡𝒖 + N(𝒖; 𝒖) = 𝒇 in Ω, 𝑡 ∈ ]0, 𝑡f [,
D𝒖 = D𝒖0 on Γ𝐷 , 𝑡 ∈ ]0, 𝑡f [,

F (𝒖; 𝒖) = 𝒇 𝑁 on Γ𝑁 , 𝑡 ∈ ]0, 𝑡f [,
𝒖 = 𝒖0 in Ω, 𝑡 = 0,

where 𝒖0 is the prescribed Dirichlet boundary condition, D the Dirichlet operator,
𝒇 𝑁 the prescribed Neumann boundary condition and F the flux operator. Let us
define N as a general nonlinear operator of second order using Einstein’s notation:

N(𝒖; 𝒚) := −𝜕𝑖 (𝑲𝑖 𝑗 (𝒖)𝜕 𝑗 𝒚) + 𝑨 𝑓 ,𝑖 (𝒖)𝜕𝑖 𝒚 + 𝑨𝑐,𝑖 (𝒖)𝜕𝑖 𝒚 + 𝑺(𝒖)𝒚,

where 𝑲𝑖 𝑗 , 𝑨𝑐,𝑖 , 𝑨 𝑓 ,𝑖 and 𝑺 are matrices in R𝑛×𝑛 and are a function of 𝒖, 𝜕𝑖
denotes differentiation with respect to the 𝑖-th Cartesian coordinate 𝑥𝑖 and indexes
𝑖, 𝑗 = 1, ..., 𝑑. Let us also define the flux operator F using Einstein’s notation as

F (𝒖; 𝒚) := 𝑛𝑖𝑲𝑖 𝑗 (𝒖)𝜕 𝑗 𝒚 − 𝑛𝑖𝑨 𝑓 ,𝑖 (𝒖)𝒚,

where 𝒏 is the external unit normal to the boundaryΓwith 𝑛𝑖 being its 𝑖-th component.
To write the weak form of the problem, let the integral of the product of two

functions, 𝒇 and 𝒈 over the domain 𝜔 be defined by ⟨ 𝒇 , 𝒈⟩𝜔 . For simplicity the
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subscript 𝜔 is omitted in the case 𝜔 = Ω. Let us also introduce the form 𝐵𝜔 and the
linear form 𝐿𝜔 as

𝐵𝜔 (𝒖; 𝒚, 𝒗)𝜔 := ⟨𝜕𝑖𝒗, 𝑲𝑖 𝑗 (𝒖)𝜕 𝑗 𝒚⟩𝜔 + ⟨𝒗, 𝑨𝑐,𝑖 (𝒖)𝜕𝑖 𝒚⟩𝜔 + ⟨𝜕𝑖 (𝑨𝑇𝑓 ,𝑖 (𝒖)𝒗), 𝒚⟩𝜔
+ ⟨𝒗, 𝑺(𝒖)𝒚⟩𝜔 ,

𝐿𝜔 (𝒗) := ⟨𝒗, 𝒇 ⟩𝜔 + ⟨𝒗, 𝒇 𝑁 ⟩Γ𝑁
.

Let 𝒖(., 𝑡) and 𝒗 belong to the spaceB𝑐, the solution space of the continuous problem.
The weak form of the problem (in space) consists of finding 𝒖 :]0, 𝑡f [→ B𝑐 such
that

⟨𝜕𝑡𝒖, 𝒗⟩ + 𝐵(𝒖; 𝒖, 𝒗) = 𝐿 (𝒗), (22)

⟨𝒖, 𝒗⟩ = ⟨𝒖0, 𝒗⟩, at 𝑡 = 0 (23)

for all 𝒗 ∈ B𝑐,0, where B𝑐,0 is the space of time independent test functions that
satisfy D𝒗 = 0 on Γ𝐷 . For simplicity, we assume in what follows homogeneous
Dirichlet conditions so that 𝒗 ∈ B𝑐 = B𝑐,0.

3.3.2 Variational Multiscale Full Order Model Approximation

VMS method can be applied to other discretization techniques, but in what follows
we shall concentrate on the FE method. Thus, let us discretize the domain using
FEs. Let Pℎ = {𝐾} be a FE partition of the domain Ω, assumed quasi-uniform for
simplicity, with elements of size ℎ. From this, a conforming FE space Bℎ ⊂ B𝑐 may
be constructed using a standard approach. Note that now Bℎ = B 𝑓 , i.e., the FE space
is a particular realization of the FOM space introduced earlier.

Any time integration scheme may be used for the time discretization. For con-
ciseness, we shall assume that a backward difference scheme is employed with a
uniform time step Δ𝑡 and the time discretization is represented by replacing 𝜕𝑡 with
𝛿𝑡 , where 𝛿𝑡 involves 𝒖𝑛

ℎ
, 𝒖𝑛−1
ℎ

, ..., depending on the order of the scheme used. Us-
ing a superscript 𝑛 for the time step counter, and a subscript ℎ for FE quantities, the
fully discretized Galerkin approximation of problem (22) is to find {𝒖𝑛

ℎ
} ∈ Bℎ, for

𝑛 = 1, ..., 𝑛𝑡, 𝑛𝑡 being the number of time steps, that satisfy

⟨𝛿𝑡𝒖ℎ, 𝒗ℎ⟩ + 𝐵(𝒖ℎ; 𝒖ℎ, 𝒗ℎ) = 𝐿 (𝒗ℎ) ∀ 𝒗ℎ ∈ Bℎ,

where we have omitted the initial conditions and the time step superscript for sim-
plicity. This problem may suffer from instabilities and, hence, it requires the use of
stabilization methods like those based on VMS method.

The core idea of the VMS approach lies in the splitting B𝑐 = Bℎ ⊕ B′, where
B′is any space that completes Bℎ in B𝑐. We call B′ the space of sub-grid scales
or subscales (SGS), and the functions in the SGS spaces will be identified with the
superscript ′. Using the splitting 𝒖 = 𝒖ℎ + 𝒖′ and similarly for the test function
𝒗 = 𝒗ℎ + 𝒗′, the continuous problem (22) splits into
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⟨𝛿𝑡 (𝒖ℎ + 𝒖′), 𝒗ℎ⟩ + 𝐵(𝒖ℎ + 𝒖′; 𝒖ℎ + 𝒖′, 𝒗ℎ) = 𝐿 (𝒗ℎ), ∀ 𝒗ℎ ∈ Bℎ, (24)
⟨𝛿𝑡 (𝒖ℎ + 𝒖′), 𝒗′⟩ + 𝐵(𝒖ℎ + 𝒖′; 𝒖ℎ + 𝒖′, 𝒗′) = 𝐿 (𝒗′), ∀ 𝒗′ ∈ B′, (25)

which is exactly equivalent to (22) as no assumptions have been made so far. We
want to find the SGSs 𝒖′ using (25) and plug them into (24) to account for their effect
on 𝒖ℎ. To achieve this, several assumptions are made, which are briefly discussed
below (see [51]).

Important Considerations/Assumptions

• Choosing the subscale space B′. In fact, the approximation to B′ will be a con-
sequence of the approximation to 𝒖′. The choice of SGS space leads to algebraic
subgrid scales [44] or orthogonal subgrid scales, among other possibilities [45].

• While expanding (25), we come across the application of the operator N to
subscales asN(𝒖; 𝒖′). Because the subscale problem is infinite dimensional, the
following key approximation is used

N(𝒖; 𝒖′) |𝐾 ≈ 𝝉−1
𝐾 (𝒖)𝒖′ |𝐾 ,

where 𝝉𝐾 is a matrix of stabilization parameters that approximates the inverse
of the differential operator on each element 𝐾 . Different approximations for 𝝉𝐾
yield different VMS methods.

• Taking 𝛿𝑡𝒖′ into account or not. Taking it into consideration yields dynamic SGSs
[50], whereas, assuming 𝛿𝑡𝒖′ = 0 results in quasi-static SGSs.

• For 𝐵(𝒖; 𝒚, 𝒗), 𝒖 can be approximated as 𝒖 ≈ 𝒖ℎ instead of 𝒖 = 𝒖ℎ + 𝒖′ (this can
be relaxed, see [46]). The first approach is known as linear SGSs and the later as
nonlinear SGGs, in accordance with the inclusion of SGSs in only linear or both,
linear and nonlinear, terms, respectively. 𝒖 representing the nonlinearity will be
replaced by 𝒖∗ to represent any of the above possibilities in a general way.

• Approximate the SGSs in the interior of the elements only or consider their con-
tributions on the interelement boundaries as well [14, 47]. The use of interelement
boundary SGSs becomes crucial when discontinuous interpolations are used for
some components of the unknown [48] or when SGSs are used as a posteriori
error estimator [49].

The final problem can be written as finding 𝒖𝑛
ℎ
∈ Bℎ, for 𝑛 = 1, ..., 𝑛𝑡, that satisfy

⟨𝛿𝑡𝒖ℎ, 𝒗ℎ⟩ + 𝐵ℎ (𝒖∗; 𝒖ℎ, 𝒗ℎ) = 𝐿ℎ (𝒖∗; 𝒗ℎ), ∀ 𝒗ℎ ∈ Bℎ, (26)

with the forms 𝐵ℎ and 𝐿ℎ given as

𝐵ℎ (𝒖∗; 𝒖ℎ, 𝒗ℎ) = 𝐵(𝒖∗; 𝒖ℎ, 𝒗ℎ) + 𝐵′ (𝒖∗; 𝒖ℎ, 𝒗ℎ) (27)
𝐿ℎ (𝒖∗; 𝒗ℎ) = 𝐿 (𝒗ℎ) + 𝐿′ (𝒖∗; 𝒗ℎ) (28)
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where 𝐵′ (𝒖∗; 𝒖ℎ, 𝒗ℎ) and 𝐿′ (𝒖∗; 𝒗ℎ) are defined based on the choices made regard-
ing the considerations discussed above. 𝐵′ (𝒖∗; 𝒖ℎ, 𝒗ℎ) and 𝐿′ (𝒖∗; 𝒗ℎ) for different
combination of choices can be found in [118].

3.3.3 Variational Multiscale Reduced Order Model Approximation

A ROM for the FOM discussed above can be developed by constructing a ROM
space B𝑟 ⊂ Bℎ ⊂ B𝑐. Using the POD relying on SVD for functions, described in
Section 2.2.2, we may obtain a ROM space of dimension 𝑟

B𝑟 = span{�̂�1, �̂�2, ..., �̂�𝑟 },

such that 𝑟 = dimB𝑟 ≪ dimBℎ.
The proposed VMS formulation for ROM is exactly the same as the one used for

the FOM with one key difference, i.e., the functions are now approximated in B𝑟
instead of Bℎ. The rationale behind this is the fact that B𝑟 ⊂ Bℎ and, specifically, it
is possible to write the ROM basis functions as a linear combination of the basis of
the FE space Bℎ, and therefore the ROM basis functions are piecewise polynomials
defined on the FE partition Pℎ. The use of the same stabilization parameters for
the FOM and the ROM is also justified based on the above reasoning. Applying the
VMS concept to the ROM we will have the decomposition

B = Bℎ ⊕ B′ = B𝑟 ⊕ B′′,

where B′′ is any space that completes B𝑟 in B.

Remark 4 An interesting observation can be made when 𝐿2 (Ω)-orthogonal SGSs
are used in conjunction with 𝐿2 (Ω)-orthogonal basis �̂� obtained by solving (12).
Suppose that we were able to construct a POD basis of Bℎ , with 𝑛𝑝 = dimBℎ , i.e.,

Bℎ = span{�̂�1, �̂�2, ..., �̂�𝑛𝑝}.

Then, since the basis vectors obtained from the POD are 𝐿2 (Ω)-orthogonal, choosing
orthogonal subgrid scales allows us to write

B′′ = span{�̂�𝑟+1, �̂�𝑟+2, ..., �̂�𝑛𝑝} ⊕ B′,

i.e., we have an explicit representation of the ROM space of SGSs. So, when VMS-
ROM is used to approximate ROM SGSs, it accounts for the FOM subscales, present
in the subspaceB′, as well as the SGSs arising as a result of ROM trunctaion, present
in the subspace spanned by {�̂�𝑟+1, �̂�𝑟+2, ..., �̂�𝑛𝑝}.

Having in mind the previous discussion, the final reduced order problem can be
written as finding 𝒖𝑛𝑟 ∈ B𝑟 , for 𝑛 = 1, ..., 𝑛𝑡, that satisfy

⟨𝛿𝑡𝒖𝑟 , 𝒗𝑟 ⟩ + 𝐵𝑟 (𝒖∗; 𝒖𝑟 , 𝒗𝑟 ) = 𝐿𝑟 (𝒖∗; 𝒗𝑟 ), ∀ 𝒗𝑟 ∈ B𝑟 , (29)
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with the forms 𝐵𝑟 and 𝐿𝑟 given as

𝐵𝑟 (𝒖∗; 𝒖𝑟 , 𝒗𝑟 ) = 𝐵(𝒖∗; 𝒖𝑟 , 𝒗𝑟 ) + 𝐵′ (𝒖∗; 𝒖𝑟 , 𝒗𝑟 ) (30)
𝐿𝑟 (𝒖∗; 𝒗𝑟 ) = 𝐿 (𝒗𝑟 ) + 𝐿′ (𝒖∗; 𝒗𝑟 ). (31)

It can be seen that the Equations (29)-(31) look exactly the same as (26)-(28).
Furthermore, the expressions for 𝐵′ and 𝐿′ are also the same for the FOM and the
ROM if the same choices are made for both, regarding the considerations discussed in
Section 3.3.2. The only difference between the FOM and the ROM formulation is that
in the case of ROM, functions are approximated in B𝑟 instead of Bℎ. 𝐵′ (𝒖∗; 𝒖𝑟 , 𝒗𝑟 )
and 𝐿′ (𝒖∗; 𝒗𝑟 ) for different combination of choices can be found in [118].

3.3.4 Other Stabilized Reduced Order Models

Streamline-Upwind Petrov–Galerkin (SUPG), a popular scheme for stabilized FE
methods introduced in [27], has been used to deal with the instabilities in the context
of projection based ROMs as well [31, 67, 66, 82, 113]. In the case of existence of
compatibility conditions between the approximation spaces for difference unknowns,
enrichment of approximation spaces using the so called supremizers has been used
to provide the required stability to ROMs [22, 120]. A grad-div stabilization was
used for the POD-G method and an error analysis was carried out for the resulting
formulation in [65]. A streamline derivative stabilization term, as well as an a
posteriori stabilization method, were used in [13]. Least square Petrov-Galerkin
has also been used to stabilize the ROMs at the fully-discrete system level [35,
52] and compared with the Galerkin projection in [34]. A nonintrusive stabilization
method for projection based ROMs was proposed in [8] which can be applied as a
black-box post processing step. A POD mode dependent eddy viscosity stabilization
scheme was developed and applied to quasigeostrophic ocean circulation in [123].
In the domain of hyperreduction, algorithms like DEIM have been found to exhibit
numerical instabilities for second-order dynamical systems [61]. In such cases energy
conserving sampling and weighting method can be used, which provides the required
stability by conserving the energy.

4 Non-Intrusive Reduced Order Models

4.1 The General Concept

The Galerkin projection discussed in Section 3.1 is an intrusive approach, i.e., it
requires knowledge of the governing equations and/or access to the code used for
the FOM. There is another class of purely data-driven ROMs called non-intrusive
reduced order models (NIROMs) which provide solutions based only on the data
and without using the governing equations. NIROMs allow the decoupling of the
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FOM and the ROM implementations completely and are particularly useful in the
cases where the code used for the FOM is not open-source. NIROMs can be obtained
using conventional or ML-based techniques and the recent large-scale adoption of
NIROMs can be attributed to the increasing popularity of ML in scientific computing.
The ML-based NIROMs are later discussed in Section 6.2. For now, we describe
dynamic mode decomposition (DMD), which can be considered a conventional
non-intrusive extension of the POD.

4.2 Dynamic Mode Decomposition

Dynamic mode decomposition (DMD), originally introduced in [127] in the context
of fluid dynamics, aims at identifying spatio-temporal coherent structures in high-
dimensional data. DMD computes a set of spatial modes, as well as their temporal
evolution. It characterizes the temporal evolution simply as an oscillation of fixed
frequency with a growth or decay rate. So, while POD-G relies on solving a Galerkin
projected system to find the temporal evolution of the modes, DMD only requires the
data to define the temporal behavior of modes. An important consideration regarding
DMD modes is that they are not orthogonal by construction, and hence, may require
more modes than POD-G to capture the same phenomena. Recursive DMD [110],
a variant of the original DMD, has been developed to produce orthogonal modes
in a recursive manner. Furthermore, there is a lack of consensus regarding the best
criteria to be used for selecting the dominant DMD modes [111, 135]. A number of
other specialized DMD algorithms have been developed, including, but not limited
to, exact DMD [136], optimized DMD [39], extended DMD [143] and time-delayed
DMD [29]. DMD has been successfully applied across a wide range of applications
in fluid mechanics [6, 85, 122, 128].

Let us describe how a basic DMD algorithm can be used to obtain DMD modes
and DMD eigenvalues (which describe the temporal evolution) from data. The same
symbols and terminologies are used, where applicable, as was used to describe SVD
in Section 2.2. First, two different sets of snapshots are gathered; let us denote them
by {𝑺𝑖}𝑛𝑠

𝑖=1 and {𝑺∗𝑖}𝑛𝑠
𝑖=1. The snapshot pairs are such that 𝑺∗𝑖 is obtained by evolving

the system state by time-step Δ𝑡 using 𝑺𝑖 as the initial conditions, for 𝑖 = 1, ..., 𝑛𝑠,
and with Δ𝑡 small enough to resolve the temporal dynamics to the smallest desired
scale. The gathered snapshots are then arranged in matrices, 𝑺 and 𝑺∗, given by

𝑺 =

 𝑺1 𝑺2 . . . 𝑺𝑛𝑠
 and 𝑺∗ =

 𝑺∗1 𝑺∗2 . . . 𝑺∗𝑛𝑠
 .

Let 𝑻 ∈ R𝑛𝑝×𝑛𝑝 be a best-fit linear operator which relates 𝑺 and 𝑺∗ as

𝑺∗ = 𝑻𝑺 (32)

i.e. 𝑻 acts as a time-integrator.
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Now, it is desired to find the eigenvalues and eigenvectors of matrix𝑻. This matrix
𝑻 is a 𝑛𝑝×𝑛𝑝 matrix, and hence, it is impractical to perform its eigendecomposition.
DMD provides an efficient way of finding the 𝑟 leading eigenvalues and eigenvectors
of matrix 𝑻. Using 𝑺+ as the pseudo-inverse of 𝑺, (32) can be written as

𝑻 = 𝑺∗𝑺+ (33)

SVD can be used approximate the pseudo-inverse 𝑺+. Using a truncated SVD, it can
be written

𝑺 ≈ �̂��̂��̂�
𝑇
. (34)

As �̂� and �̂� are orthogonal and satisfy �̂�
𝑇
�̂� = 𝑰𝑛𝑝 and �̂�

𝑇
�̂� = 𝑰𝑛𝑠 , using (34)

allows us to write (33) as
𝑻 ≈ 𝑺∗�̂��̂�

−1
�̂�
𝑇
,

where �̂� is a diagonal matrix and can be easily inverted. We are only interested in
the first 𝑟 eigenvalues and eigenvectors of matrix 𝑻. The 𝑟-rank approximation of 𝑻,
denoted by 𝑻𝑟 ∈ R𝑟×𝑟 , is achieved by projecting 𝑻 on to the reduced space using
basis �̂� as

𝑻𝑟 = �̂�
𝑇
𝑻�̂�

= �̂�
𝑇
𝑺∗�̂��̂�

−1
�̂�
𝑇
�̂�

= �̂�
𝑇
𝑺∗�̂��̂�

−1
.

Now, the DMD eigenvalues can be found by performing the eigendecomposition of
the reduced operator 𝑻𝑟 as

𝑻𝑟𝑬 = 𝑬Υ

where the entries of the diagonal matrixΥ are the eigenvalues of the low-dimensional
𝑻𝑟 , as well as the high-dimensional 𝑻. 𝑬 contains the eigenvectors of 𝑻𝑟 and allows
us to obtain the eigenvectors of 𝑻, denoted as 𝝋 , as

𝝋 = 𝑺∗�̂��̂�
−1
𝑬

where the columns of 𝝋 ∈ R𝑛𝑝×𝑟 , called DMD modes, are the eigenvectors of 𝑻.
Once DMD eigenvalues and eigenvectors have been determined, the state of the
system at the 𝑘-th time-step, 𝑼𝑘 , is given by

𝑼𝑘 = 𝝋Υ𝑘−1𝑫,

where 𝑫 ∈ R𝑟 is the vector of mode amplitudes that can be computed using initial
conditions. The DMD of a flow over a cylinder is illustrated in Fig. 3.
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Fig. 3 Illustration of DMD applied to a flow over a cylinder. Three DMD modes and the temporal
evolution of their coefficients is shown.

5 Parametric Reduced Order Models

In the previous sections, we have discussed how to build a ROM during an offline
stage and how to use it for getting results quickly during an online stage. So far, we
have assumed that the unknown 𝑼(𝑡, `) was a function of 𝑡 only and the parameter
` ∈ D ⊂ R, was kept constant. So, in essence, the ROM was used to solve exactly
the same problem whose solution was used to generate the snapshots to be used
for the ROM basis generation. The aim of reduced order modeling is to perform
the computationally expensive offline stage once (or a few times) and then use the
generated ROM to perform many simulations in the cheap online phase for the new
values of the parameter `. This situation arises routinely in optimization and control
problems governed by parametric PDEs. The parameter can represent anything
including boundary conditions, geometry, viscosity, Reynold’s number, etc. For
simplicity, we assume that the parameter represents a scalar and its different values,
`1, ..., `𝑝𝑠, represent different configurations, however, the subsequent discussion
is equally valid where ` represents more than one parameters. The difficulty with
parametric reduced order models (PROMs) lies in the fact that the basis 𝚿`1 obtained
for `1 is unlikely to perform well for `2 as the behavior captured by the basis 𝚿`1

might be different from the behavior exhibited by the system for `2, i.e.

𝑼(`1) ≈ 𝚿`1𝑼𝑟 (`1),

but
𝑼(`2) 0 𝚿`1𝑼𝑟 (`2).

Several techniques have been developed to obtain a suitable basis for PROMs.
Hyperreduction techniques, like DEIM described in Section 3.2.1, can also be used
for PROMS [10] with \ = `. Here, we describe two popular techniques to obtain
a basis for PROMs, the global basis method and the local basis with interpolation
method. These techniques commonly use a greedy approach to sample suitable
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parameter values to obtain the snapshots. Thus, they are commonly referred to as
POD-greedy approaches.

5.1 Global Basis

Probably the most obvious approach is to sample different parameter values, obtain
snapshots corresponding to them and perform the SVD on all the snapshots to obtain
a single global basis �̂� such that

𝑼(`) ≈ �̂�𝑼𝑟 (`), ∀ ` ∈ D . (35)

A greedy approach can be used to sample 𝑝𝑠 parameter values to obtain the snapshots.
The global basis approach can provide a compact 𝑟 dimensional basis satisfying (35)
if the solution is not very sensitive to the parameter `, i.e., the solution manifold
has rapidly decaying Kolmogorov 𝑛-width. If the solution manifold has slow decay-
ing Kolmogorov 𝑛-width, it might require obtaining snapshots at a lot of sampled
parameter values, which can lead to a prohibitively expensive offline phase. Even
if the computational expense of the offline phase is completely ignored, achieving
a reasonable accuracy in the online phase will require a lot of POD modes. Hence,
truncating the global basis to a rank 𝑟 , ensuring a real-time execution of the online
phase with reasonable accuracy, will not be possible.

5.2 Local Basis with Interpolation

In the case that the global basis approach is not feasible, local basis can be developed
and used with interpolation. Similar to the global basis approach, 𝑝𝑠 parameter
values are sampled and the snapshots are obtained for them. However, instead of
performing a SVD of the matrix containing all the snapshots, a separate SVD is
performed for the snapshot matrix for every sampled parameter value ` to obtain a
corresponding local basis 𝚿`𝑖 , for 𝑖 = 1, ..., 𝑝𝑠. Now, the basis 𝚿`∗ can be obtained
at a requested, but unsampled, parameter value `∗ using interpolation.

If conventional interpolation techniques are used, the interpolated basis 𝚿`∗ is
likely to lose the key properties, e.g., orthogonality, after interpolation. Hence, inter-
polation using property preserving matrix manifolds is recommended to preserve the
key properties. Let G be such a manifold of orthogonal matrices. Also, let {`𝑖}𝑝𝑠𝑖=1 be
the set of sampled parameter values and {𝚿`𝑖 }

𝑝𝑠

𝑖=1 be the set of corresponding bases.
The basis 𝚿`∗ for the unsampled point `∗ ∉ {`𝑖}𝑝𝑠𝑖=1 can be obtained as follows.
First, a tangent space T (𝚿 ˜̀ ) is defined such that it is tangent to G at a reference
point 𝚿 ˜̀ ∈ {𝚿`𝑖 }

𝑝𝑠

𝑖=1. Now, 𝚿`𝑖 , 𝑖 = 1, ..., 𝑝𝑠, except the reference point 𝚿 ˜̀ , are
projected to the tangent space using a logarithmic map defined as

𝑇 (𝚿`𝑖 ) = 𝑹`𝑖 tan−1 (𝚵`𝑖 )𝑾𝑇
`𝑖
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with 𝑹`𝑖 , 𝚵`𝑖 and 𝑾𝑇
`𝑖

obtained from the following SVD:

(𝚿`𝑖 − 𝚿 ˜̀𝚿
𝑇
˜̀𝚿`𝑖 ) (𝚿𝑇˜̀𝚿`𝑖 )−1 = 𝑹`𝑖𝚵`𝑖𝑾

𝑇
`𝑖
,

where 𝑇 (𝚿`𝑖 ) is the projection of 𝚿`𝑖 on the tangent space T (𝚿 ˜̀ ), so that after
projecting {𝚿`𝑖 }

𝑝𝑠

𝑖=1 we obtain {𝑇 (𝚿`𝑖 )}
𝑝𝑠

𝑖=1. At this point, the standard interpolation
(for example using Lagrange interpolation) is performed using {𝑇 (𝚿`𝑖 )}

𝑝𝑠

𝑖=1, the pro-
jections on the tangent space, to obtain 𝑇 (𝚿`∗ ). Now, 𝑇 (𝚿`∗ ) needs to be projected
back to the manifold G. This can be done using an exponential map defined as

𝚿`∗ =
(
𝚿 ˜̀𝑾`∗ cos(𝚵`∗ ) + 𝑹`∗ sin(𝚵`∗ )

)
𝑾𝑇
`∗ ,

where 𝑹 ˜̀ , 𝚵 ˜̀ and 𝑾𝑇
˜̀ are obtained from the following SVD:

𝑇 (𝚿`∗ ) = 𝑹`∗𝚵`∗𝑾
𝑇
`∗ .

An illustrative implementation of matrix manifold interpolation is shown in Fig. 4.

𝚿𝜇1

𝚿𝜇2

𝚿𝜇𝑝𝑠𝚿𝜇∗

𝚿𝜇

𝑇(𝚿𝜇∗) 𝑇(𝚿𝜇𝑝𝑠
)

𝑇(𝚿𝜇2
)

𝑇(𝚿𝜇1
)

Fig. 4 Interpolation of a set of matrices {𝚿`𝑖
}𝑝𝑠
𝑖=1 using the matrix manifold G and the tangent

plane T(𝚿 ˜̀ ) .

Remark 5 The above described manifold based interpolation has been shown to be
applicable to the direct interpolation of reduced order system matrices/vectors as
well for linear systems [7]. Consider a spatially discretized reduced order parametric
linear system

𝑴𝑟 (`∗)𝜕𝑡𝑼𝑟 (`∗) + 𝑳𝑟 (`∗)𝑼𝑟 (`∗) = 𝑭𝑟 (`∗).

If {𝑴𝑟 (`𝑖)}𝑝𝑠𝑖=1, {𝑳𝑟 (`𝑖)}𝑝𝑠𝑖=1 and {𝑭𝑟 (`𝑖)}𝑝𝑠𝑖=1 are obtained offline, 𝑴𝑟 (`∗), 𝑳𝑟 (`∗)
and 𝑭𝑟 (`∗) can be obtained during the online phase using the manifold based inter-
polation. This ensures that the key properties, e.g., symmetric positive definiteness
(SPD), is preserved after the interpolation. This direct interpolation is more efficient
than first finding the interpolated basis 𝚿`∗ and then finding the reduced matrix
𝑿𝑟 (`∗) using 𝚿𝑇

`∗𝑿𝚿`∗ . However, this direct interpolation has been shown to work
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for linear problems only so far. The appropriate logarithmic and exponential maps
to be used to preserve different matrix properties can be found in [7].

6 Machine Learning Based Reduced Order Models

The impact of ML has been profound on scientific computing. In this section, the
applications of ML in the context of projection based ROMs are explored. However, it
is pertinent to mention the natural suitability of ML techniques to develop extremely
computationally inexpensive models, even beyond the context of projection based
ROMs. A lot of the success of ML techniques can be attributed to their ability to
find and learn nonlinear mappings that govern a physical system. For any system,
a few key inputs can be selected and a ML technique can be applied to learn the
(non)linear mapping that exists between its outputs and the selected inputs. Since
the online (testing) phase of ML algorithms is very fast, any such application would
result in a computationally inexpensive model, i.e., a ROM.

In the context of projection based ROMs, ML techniques have been applied to
achieve higher accuracy, improvement in speeds or a combination of both. ML
techniques have been applied to obtain nonlinear reduced spaces for ROMs which
offer a more compact representation than linear POD spaces. ML techniques have
also been used to obtain NIROMs by directly learning the nonlinear evolution of
reduced coordinates, previously referred to as ROM coefficients in the context of
POD. The term reduced coordinates is more popular in the literature in the context of
ML-based ROMs, and hence, it will be used from here on. ML can also improve the
accuracy of the intrusive Galerkin ROMs by providing closure models or corrections
based on finer solutions. Purely data-driven ML techniques can be very data hungry.
In order to reduce the reliance on data, and improve the generalization of the ML
models, physics has been embedded in ML techniques and then applied to reduced
order modeling. ML has even been used for system identification to discover simple
equations for the evolution of reduced coordinates. Let us describe the state-of-art
in the above-mentioned application domains.

6.1 Nonlinear Dimension Reduction

POD (or DMD) provides modes that approximate a linear subspace. However, the
evolution of many dynamical systems lies in nonlinear spaces. The linear approxima-
tion can lead to two issues. First, the POD modes might be unable to capture highly
nonlinear phenomena. Second, in the case that the linear representation can cap-
ture the dynamics with reasonable accuracy, using POD may require more reduced
coordinates than the nonlinear representation. So, instead of the linear mapping pro-
vided by the POD (13), a more robust mapping would be using a nonlinear function
𝜗𝐷 : R𝑟 → R𝑛𝑝 given by
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𝑼 ≈ 𝑼𝐷 = 𝜗𝐷 (𝑼𝑟 ), (36)

where 𝑼𝐷 ∈ R𝑛𝑝 is the mapped value and 𝑼 is the FOM solution. This nonlinear
mapping can be achieved using autoencoders (AEs) [21].

AEs are artificial neural networks (ANNs) used widely for dimension reduction.
The simplest AE, called undercomplete AE, consists of input and output layers of
the same size as the size of the FOM, 𝑛𝑝 in this case. Furthermore, it has a bottleneck
layer in the middle of the desired size 𝑟 , the same as the size of the reduced space.
The architecture of an undercomplete AE is shown in Fig. 5. In general, AEs are
quite deep, i.e., they consist of many layers, and use nonlinear activation functions.

Based on the task performed, an AE can be subdivided into two sub-parts: an
encoder and a decoder. The encoder compresses the high-dimensional data succes-
sively through its many layers to produce the low-dimensional representation. The
encoder can be represented by a function 𝜗𝐸 : R𝑛𝑝 → R𝑟 as

𝑼𝑟 = 𝜗𝐸 (𝑼).

The decoder reproduces the high dimensional representation from the low dimen-
sional one as per the mapping (36). To train an AE, 𝑼 is given both as the input and
the desired output and the loss function ∥𝑼𝐷 −𝑼∥22 is minimized, i.e., AE as a whole
is expected to behave like an identity map. Interestingly, the optimal solution using
the encoder and decoder of single layers with linear activation functions is shown
to be closely related to POD [20], i.e., POD can be considered to be a linear AE.
AEs have been used with simple feedforward [102], as well as convolutional [69,
92, 108] layers and have shown performance enhancement as compared to the linear
dimension reduction techniques. Furthermore, time-lagged AEs have been shown to
capture the slowly evolving dynamics of chemical processes with higher precision
[142].

An important issue of AEs is that they do not provide a systematic way of
determining the suitable dimension of the reduced space as they do not provide
hierarchical reduced coordinates, as POD does based on the RIC index. The number
of reduced coordinates needs to be provided a priori to an AE as the size of the
bottleneck. A smaller number of reduced coordinates cannot be selected as the
coordinates are not distributed hierarchically and each coordinate may correspond
to roughly the same RIC. A trial-and-error approach can be used to find the optimal
dimension of the reduced space, but this is not an efficient approach. Variational
autoencoders [90] can resolve this issue and provide a parsimonious set of the reduced
coordinates. In [58], 𝛽-Variational autoencoders [77] uses 𝛽 as a hyperparameter to
promote the sparsity of reduced coordinates by deactivating the unimportant nodes
of the bottleneck. 𝛽-Variational autoencoders were shown to represent ∼ 90% of the
energy for the problem of a flow over an urban environment, using five modes only,
in contrast to just ∼ 30% captured by the first five POD modes. AEs have also been
applied to discover nonlinear coordinate spaces for DMD [99, 112, 132].
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Fig. 5 Architecture of an undercomplete autoencoder with encoder-decoder parts. The number of
layers and the size of the bottleneck is set to three and two, respectively, for illustration purposes.

6.2 Machine Learning Based Non-Intrusive Reduced Order Models

As discussed in Section 4.1, the non-intrusive approach to reduced order modeling
relies on modeling the dynamics of reduced coordinates using data only, i.e., without
accessing the governing equations. ML techniques, like ANNs, can be used to learn
the nonlinear dynamics of the reduced coordinates to get a NIROM. A generic
schematic of such an approach is shown in Fig. 6. Once the reduced representation
is obtained, using POD or AEs, a trained ML model 𝜗𝑀𝐿 can be used to evolve
the reduced coordinates from 𝑼𝑛𝑟 to 𝑼𝑛+1𝑟 , where 𝑛 is the time-step counter. Inputs
additional to𝑼𝑛𝑟 can also be provided to𝜗𝑀𝐿 to better learn the mapping𝑼𝑛𝑟 → 𝑼𝑛+1𝑟 .

ML-based NIROMs have been successfully used for a variety of applications.
Deep feedforward neural networks (FNNs), combined with POD for dimensionality
reduction, were applied to get accurate results for the differentially heated cavity flow
at various Rayleigh numbers in [114]. The least squares support vector machine
[131] was used in [41] to relate reduced coordinates with the applied excitations
for predicting hypersonic aerodynamic performance. FNN were used to develop a
NIROM for the industrial thermo-mechanical phenomena arising in blast furnace
hearth walls in [129]. The multi-output support vector machine [145] was used to
model the dynamics of POD coefficients to predict the stress and displacement for
geological and geotechnical processes in [148].

Long short-term memory (LSTM) [78] and its variant bidirectional long short-
term memory (BiLSTM) [71] neural networks (NNs) have a memory effect and can
capture sequences like the time evolution of a process with higher accuracy than a
FNN. LSTM/BiLSTMs accepts a history of 𝑞 time-steps, {𝑼𝑛𝑟 ,𝑼𝑛−1

𝑟 , ...,𝑼𝑛−𝑞+1𝑟 }, to
predict the future value 𝑼𝑛+1𝑟 . Thus
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𝑼𝑛+1𝑟 = 𝜗𝐿𝑆𝑇𝑀 (𝑼𝑛𝑟 ,𝑼𝑛−1
𝑟 , ...,𝑼𝑛−𝑞+1𝑟 ).

LSTM and BiLSTM NNs have been widely used to predict the temporal evolution
of systems based on the past values. LSTM and BiLSTM NNs were used to model
isotropic and magnetohydrodynamic turbulence in [103], where the Hurst Expo-
nent [81] was employed to study and quantify the memory effects captured by the
LSTM/BiLSTM NNs. LSTM NNs were used in [137] to predict high-dimensional
chaotic systems and were shown to outperform Gaussian processes. The improved
performance of LSTM NNs was also shown for reduced order modeling of near-wall
turbulence as compared to FNNs in [130]. Finally, LSTM NNs were also used to
model a synthetic jet and three dimensional flow in the wake of a cylinder in [1].

Training ML algorithms in general, and LSTM/BiLSTM NNs in particular, can
be very computationally demanding. Transfer learning can be used to speed up the
training phase. Instead of initializing the weights of a network randomly, transfer
learning relies on using weights of a network previously trained for a closely related
problem for initialization. Providing better initial weights allows the training to
converge faster to the optimal weights. Transfer learning was used to speed-up the
training of LSTM and BiLSTM NNs modeling the three-dimensional turbulent wake
of a finite wall-mounted square cylinder in [146]. The flow was analyzed on 2D planes
at different heights, each modeled using a separate LSTM/BiLSTM NN. After the
first LSTM/BiLSTM NN was trained, the others were initialized using its weights,
as the flow in different planes is correlated.

Gaussian process regression [117] can be used to build NIROMs alongside pro-
viding uncertainty quantification. Gaussian process regression has been used to
develop NIROM for shallow water equations [101], chaotic systems like climate
forecasting models [138] and nonlinear structural problems [73]. In the domain of
unsupervised learning, cluster reduced order modeling has been applied to mixing
layers [86]. The cluster reduced order modeling groups the ensemble of data (snap-
shots) into clusters and the transitions between the states are dynamically modeled
using a Markov process.
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equa�ons

𝑼𝑟
𝑛𝑼𝑛 𝑼𝑟

𝑛 +1 𝑼𝑛 +1
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Addi�onal
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Fig. 6 Non-intrusive ROM obtained by replacing the Galerkin projection (a) with a ML approach
(b) to model the dynamics of the reduced coordinates𝑼𝑟 .
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6.3 Closure Modeling

Another common application of ML techniques is to provide closure modeling in
the context of intrusive ROMs. Galerkin projection is the most commonly used
intrusive technique to solve for the reduced coordinates. However, performing the
Galerkin projection can lead to inaccuracy and instability issues. These issue were
highlighted in Section 3.3, where the primary concern was to improve the stability of
ROMs. Here, the closure modeling of ROMs is presented with the primary objective
of improving their accuracy. Note that the stabilization and closure modeling are
related, yet they are distinct issues [13].

Let us present the closure problem in the context of truncated ROMs. Let us
suppose that numerical simulations are performed to gather snapshots 𝑼 ∈ R𝑛𝑝
for ns time-steps, grouped together to form a snapshot matrix 𝑺 ∈ R𝑛𝑝×𝑛𝑠 . Let
the snapshots belong to the space B with 𝚿 ∈ R𝑛𝑝×𝑛𝑠 being the basis of B. To
obtain a computationally efficient ROM, the basis 𝚿 is truncated to 𝑟 modes. This
results in a truncated basis �̂� ∈ R𝑛𝑝×𝑟 for the resolved reduced space and a basis
�̃� ∈ R𝑛𝑝×(𝑛𝑠−𝑟 ) for the unresolved reduced space. If we assume for a moment that
𝑛𝑠 is large enough (𝑛𝑠 ≥ 𝑛𝑝), we may consider that B = B 𝑓 and thus, 𝑼 can be
written as

𝑼 = �̂�𝑼𝑟 + �̃�𝑼, (37)

where 𝑼𝑟 ∈ R𝑟 is the vector of reduced coordinates captured by the reduced space
and 𝑼 ∈ R(𝑛𝑝−𝑟 ) contains the unresolved coordinates.

Let us assume that (3) represents the semi-discretized (in space) form of the
governing equations describing the behavior of 𝑼. A Galerkin projection of (3) onto
resolved and unresolved spaces, using �̂� and �̃�, respectively, along with using (37),
results in the following system:[

𝜕𝑡𝑼𝑟
𝜕𝑡𝑼

]
=

[
𝑮 (𝑼𝑟 ,𝑼)
�̃� (𝑼𝑟 ,𝑼)

]
,

where both, 𝑮 ∈ R𝑟 and �̃� ∈ R(𝑛𝑝−𝑟 ) , are functions of 𝑼𝑟 and 𝑼. The objective is
to solve for the dynamics of the resolved part 𝑼𝑟 only, i.e.,

𝜕𝑡𝑼𝑟 = 𝑮 (𝑼𝑟 ,𝑼).

Using the truncated basis to build the ROM implicitly implies, abusing of the nota-
tion,

𝜕𝑡𝑼𝑟 = 𝑮 (𝑼𝑟 , 0) = 𝑮 (𝑼𝑟 ),

which is not true in the nonlinear cases, as the behavior of the resolved scales is
governed by their interaction with the unresolved ones as well. So, it is desired to
model this interaction as a term 𝑪 (𝑼𝑟 ), which is a function of the resolved scales
𝑼𝑟 , so that

𝜕𝑡𝑼𝑟 = 𝑮 (𝑼𝑟 ) + 𝑪 (𝑼𝑟 ). (38)
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Closure error 
modeled by C(Ur)

FOM Projected FOM ROM with closure ROM without closure

Projection error

Fig. 7 An illustration of the ROM closure problem. The projection error is due to the use of the
space B𝑟 ⊂ B 𝑓 for approximating the unknowns. The closure error is due to neglecting the effect
of nonlinear interaction on the evolution of the resolved coordinates.

Fig. 7 represents the closure problem graphically. A variety of conventional
closure models have been developed for ROMs, see [4] for a review and [141] for a
comparison of results obtained using popular conventional techniques. Lately, ML
techniques have been widely used to obtain the closure models for ROMs. In [125],
a single layer FNN, trained using Bayesian regularization and extreme learning
machine approaches, was used to model ROM closure terms for flow problems
governed by viscous Burgers equations. The ROM closure terms were modeled as
a function of the Reynolds number and resolved reduced coordinates. An extreme
learning approach was also used in [124] to determine eddy viscosity for a LES-
inspired closure model. An uplifting ROM with closure was propsoed in [3]. LSTMs
were used to provide the closure term, as well as to determine the reduced coordinates
𝑼 of the unresolved space. Since the basis �̃� was already known via POD, (37) was
used to approximate 𝑼. A similar approach was used in [2] to develop a closure
model for pressure modes to accurately predict the hydrodynamic forces. A residual
neural network, a hundreds of layers deep FNN, was used to develop a closure model
for 1D Burgers equation in [144] .

ROM closure based on Mori-Zwanzig formalism [106, 150] are also popular. Such
approaches, in general, use closure models consisting of two terms

closure term = memory integral + contribution of initial conditions, (39)

where the memory integral is a non-Markovian 2 term and takes into account the
contribution of the past values of the resolved coordinates𝑼𝑟 to model the unresolved
ones 𝑼. This memory integral is very computationally expensive to compute. To
evaluate it efficiently, neural closure models using neural delay differential equations
were proposed in [149]. The number of past values required to accurately determine

2 A non-Markovian term implies that the future state depends not only on the current values, but
also on the past value, i.e., such processes have memory effects of the past values.
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the closure term was also determined. A conditioned LSTM NN was used to model
the memory term in [140]. To ensure the computational efficiency, the authors further
used explicit time integration of the memory term, while using implicit integration
for the remaining terms of the discrete system. The Mori-Zwanzig formalism and
LSTM NNs were shown to have a natural analogy between them in [100]. This
analogy was also used to develop a systematic approach for constructing memory
based ROMs. Recently, reinforcement learning techniques have also been applied to
build unsupervised reward-oriented closure models for ROMs [24, 126].

6.4 Correction Based on Fine Solutions

Reduced order modeling errors can be improved by introducing a correction term
in the fully discrete system, i.e., discretized in both space and time, and a general
concept to correct fully discrete reduced order problems based on the knowledge of
fine solutions can be developed. A fine solution is any solution that is considered
more accurate than the ROM solution. This is applicable to projection based ROMs,
as well as to the cases in which ROM represents a model with a coarser spatial
discretization or a larger time step.

Let 𝑼𝑐 be the solution of the coarse ROM system given by

𝑨𝑼𝑐 = 𝑹. (40)

Let the fine solution 𝑼 𝑓 be also available for the given problem. Let us assume that
the projection of the fine solution onto the coarse solution space, denoted by 𝑼𝑐 𝑓 , is
the best possible coarse solution. In this case, a correction vector 𝑪 can be added to
modify system (40) to obtain a new system

𝑨𝑼𝑐 𝑓 + 𝑪 = 𝑹, (41)

with𝑼𝑐 𝑓 as its solution. When the fine solution is not known, 𝑪 needs to be modeled
as a function of the coarse solution, i.e., 𝑪 = 𝑪 (𝑼𝑐).

A correction term using a least-squares (LS) approach was proposed for POD-
ROM in [17]. Special considerations regarding gathering training data and using
the appropriate initial conditions were also addressed with least-squares providing
a linear model of the correction term. A nonlinear correction term was determined
using ANN in [18]. The correction term was determined for a coarse mesh based
ROM using the solution of an AMR based FOM, and applied to fluid, structure and
FSI problems . A comparison of linear least-squares and nonlinear ANNs based
corrections was carried out for the wave equation in [60]. A nonlinear ANN based
correction for POD-ROM was used in [54]. Different combination of features to be
provided as the inputs to the ANNs were evaluated to develop an accurate model
while minimizing the complexity. The implicit and explicit treatment of the ANN
based correction was also evaluated. It was shown that the ROM was able to produce
good results for parametric interpolation, as well as temporal extrapolation. All of
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the above mentioned works relied on significantly less training data as compared to
NIROMs. A training-free correction was further proposed in [19] to account for the
loss of information due to the adaptive coarsening of the coarse mesh based ROM.
The correction was based solely on the data generated within the same simulation
and did not require any external data.

Remark 6 The correction based on fine solutions discussed in Section 6.4 and the
closure modeling discussed in Section 6.3 are similar to some extent. However, there
is a difference in their motivation, as well as the accepted definition in the literature.
Closure modeling for ROMs is understood to account for the error generated due
to the Galerkin projection, i.e., spatial discretization as given by (38). On the other
hand, the correction based on fine solutions works by introducing a correction at the
fully discrete level given by (41). Hence, the two approaches have been discussed
separately.

6.5 Machine Learning Applied to Parametric Reduced Order Models

Just as ML can make non-parametric ROMs robust by offering a non-intrusive
determination of reduced coordinates and/or obtaining a nonlinear approximation
to the reduced solution space, it offers the same for the parametric ROMs. One
way of applying ML to facilitate parametric reduced order modeling is to develop
a non-intrusive model of the reduced coordinates as a function of the parameter `,
possibly including time, to get

𝑼𝑟 (𝑡, `) = 𝜗𝑀𝐿 (𝑡, `),

where 𝜗𝑀𝐿 is the desired mapping capturing the parametric dependency as well.
Here again, it is assumed that ` ∈ D ⊂ R without loss of generality, as explained in
Section 5. The dynamics of the reduced coordinates can be modeled using gaussian
process regression [73, 74, 89] or ANNs [17, 54, 60, 75, 139] trained using the
parameter value as an additional input. ANNs have also been used to predict results
for times beyond the training time interval [54, 107].

The set of parameter values for which the given system’s behavior is similar,
such that it can be captured by the same basis, is not always obvious. ML-based
clustering algorithms can help in grouping this similar behavior and relating it with
appropriate parameter values. A shock sensor and clustering algorithm was used in
[56] to decompose the domain, used for aerodynamic simulations, into regions with
and without shocks. Accordingly, the snapshots were also decomposed into the two
groups and two separate ROMs were built for shock and shock-free subdomains,
leading to improved results. Optimal trees [26] were used to build an interpretable
classifier for unmanned air vehicle operation conditions in [88]. During the operation,
sensors provided the data related to the operating conditions. This data was then used
by the classifier to suggest the relevant ROM to be used from the library of ROMs
prepared in the offline stage.
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ML has also been used to obtain nonlinear solution manifolds for parametric
ROMs [92]. Deep convolutional auto-encoders were used in [69] to generate a
reduced parametric trial manifold. It was then combined with a LSTM NN to model
the dynamics of the reduced coordinates. Nonlinear reduced parametric manifolds
were also learned using AEs in [62] and a variation of it was developed in [63] to
speed up the offline training process.

6.6 Physics Informed Machine Learning for Reduced Order Models

ML tools, in general, require a large amount of data to provide accurate results.
Moreover, developing a model for generalized cases further increases the data re-
quirement. Generating and storing such amount of data is not always possible. An
efficient way of reducing the reliance on data, without affecting the accuracy or
generalizability, is to embed physics in the ML tools. Embedding physics in ML is
being increasingly used in the broader field of scientific computing; however, limited
work is done so far in the domain of reduced order modeling.

One way of employing physics is to use ANNs to solve PDEs directly by mini-
mizing the residual of the governing equations without using any FOM data. Such
ANNs are called physics informed neural networks [116] and can be used to directly
solve the reduced order system without relying on training-testing phases. Physics
reinforced neural networks, a variation of physics informed neural networks, were
proposed in [40] in the context of ROMs. In general, incorporating physics in ML
models involves a loss function consisting of two terms: a data-driven loss function
J𝐷 and a physics-based loss function J𝑃 . Let 𝑨 be a general operator that describes
the desired physics such that

𝑨(𝑼𝑟 ) = 0, (42)

where 𝑨 may account for temporal derivatives, nonlinearity, etc. The physics-based
loss function J𝑃 is given by

J𝑃 = ∥𝑨(𝑼𝑀𝐿)∥2, (43)

where 𝑼𝑀𝐿 is the output of the ML model. Furthermore, if the snapshots projected
onto the reduced space, denoted as R(𝑼), are known, J𝐷 is given by

J𝐷 = ∥𝑼𝑀𝐿 − R(𝑼)∥2. (44)

In general, the training phase involves minimizing the mean of (43) and (44) for
multiple time-steps and/or parameter values. The total loss function is given by

J = J𝐷 + YJ𝑃 , (45)

where Y is a hyperparameter that decides the weightage to be given to adherence
to the physics. Physics reinforced neural networks used the residual of the entire
governing equation to embed physics. Physics knowledge was embedded in [91] by
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incorporating the residual, arising from violating the conservation laws using finite
volume discretization, in the loss function. Embedding physics in a data-driven
ROM closure model reduced the data requirement by 50% in [105]. The physics was
incorporated by requiring some terms of the closure model to be energy dissipating,
while others to be energy conserving.

Introducing physics using (45), so that the training phase becomes a constrained
optimization problem, can be considered as applying weak constraints (note that
J𝑃 = 0 if 𝑼𝑀𝐿 is replaced by 𝑼𝑟 in Eq. (43)). The violation of the physics leads
to a large loss function, and hence, in an effort to minimize the loss function, the
ANN tries to adhere to the physics as well. The physics embedded in such a way is
prone to be violated in the testing phase when the ANN is exposed to cases beyond
the training phase. This is because architecturally, the ANN is still unaware of the
physics. Furthermore, Y acts as an additional hyperparameter which needs to be
tuned.

An alternative strategy is to amend the ANN structurally so that it enforces the
physical laws strongly. Such an ANN is hoped to be more robust in the testing phase
as it is not blind to the physics. Embedded physics in a coarse grained ROM for 3D
turbulence via hard constraints was achieved in [104]. The divergence free condition
was enforced using curl-computing layers which formed a part of the backpropagation
process as well. Backpropagation through the curl operator ensured that the network
is not blind and has intimate knowledge of the constraints through which it must
make predictions. Another way of embedding physics in the layers was proposed in
[115]. A physics-guided machine learning framework was introduced which injected
the desired physics in one of the layers of the LSTM NN. By incorporating physics,
an ANN applicable to more generalized cases was achieved as compared to the
purely data-driven approach.

6.7 Reduced System Identification

ML can also be used to find the equations representing the dynamics of a system
using data. An equation comprising of different terms with adjustable coefficients
is assumed to model the behavior of a system. Data is then used to find the value
of these adjustable coefficients. This technique is known as system identification
and is of particular interest in two scenarios. First, if the equations are not known,
as in the case of modeling climate, epidemiology, neuroscience, etc. Second, when
the equations describing the behavior of the reduced coordinates are required. The
resulting equation based representation of a system provides generalizability and
interpretability, not achievable by simply constructing a regression model based on
data. System identification is a broad field and many techniques have been applied
in this context, see [95] and [84] for details.

Reduced system identification aims to obtain sparse equations (consisting of a few
simple terms) to describe the evolution of reduced coordinates of a projection based
ROM. The sparse identification of nonlinear dynamics (SINDy) [28] algorithm can
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be used to get a simplistic dynamic model for the reduced coordinates. A library
of simple nonlinear terms, like polynomials or trigonometric functions, is provided.
SINDy then tries to find a mapping for the provided input-output data using the
minimum number of terms of the library, thus providing a minimalistic interpretable
model offering a balance of efficiency and accuracy.

SINDy has been applied to recover models for a variety of flow behaviors includ-
ing shear layers, laminar and turbulent wakes, and convection [33, 55, 96, 97]. The
vortex shedding behind a cylinder, for example, can be captured using three modes
only [109], first two POD modes and a shift mode as

𝜕𝑡𝑈𝑟1 = `𝑈𝑟1 −𝑈𝑟2 −𝑈𝑟1𝑈𝑟3,

𝜕𝑡𝑈𝑟2 = 𝑈𝑟1 + `𝑈𝑟2 −𝑈𝑟2𝑈𝑟3,

𝜕𝑡𝑈𝑟3 = 𝑈2
𝑟1 +𝑈

2
𝑟2 −𝑈𝑟3,

(46)

where𝑈𝑟1,𝑈𝑟2 and𝑈𝑟3 are the reduced coordinates related to first two POD modes
and the shift mode. SINDy was able to recover this minimalistic model using data,
identifying the dominant terms and the associated coefficients correctly [28]. SINDy
was also combined with an autoencoder to find the low dimensional nonlinear
representation, as well as to model the dynamics of the corresponding reduced
coordinates [36]. To improve the performance of SINDy, physics was also embedded
in it in the form of symmetry in [72] and of conservation laws in [97].

7 Concluding Remarks

Reduced order modeling can significantly accelerate numerical simulations. Thus
ROMs permit the solution of optimization and control problems, requiring many
simulation runs, at a reasonable computational expense. Traditionally, POD-G has
been the most popular approach used to obtain ROMs. Overtime, additional in-
gredients have been incorporated to improve the performance of these ROMs. For
example, hyperreduction techniques have been developed to efficiently deal with
nonlinear terms, stabilization techniques have been incorporated to deal with insta-
bilities, DMD has been introduced as a non-intrusive variant of POD-G and suitable
basis generation methods have been developed for parametric ROMs.

Like any other field, availability of data and open-access to ML models has led to
the increased popularity of ML techniques for reduced order modeling. ML has been
used to obtain ROMs with lower computational expense and enhanced accuracy as
compared to the conventional techniques. Not only this, but ML has also opened new
avenues of reduced order modeling which the conventional techniques were unable
to pursue, nonlinear dimension reduction being one of them. The reduced order
modeling community has been using ML in all the possible ways. On one hand, ML
has been used to improve primarily physics based ROMs by providing ML-based
closure models and correction terms. On the other hand, physics has been embedded
in primarily ML-based ROMs to improve their performance. Finally, NIROMs have
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been developed based entirely on ML. Thus, a range of reduced order modeling
techniques are at disposal with purely conventional techniques at one end of the
spectrum to purely ML techniques at the other end, with the hybrid techniques lying
in-between.
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