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ABSTRACT. In this study, we introduce a novel methodology for finite strain electromechanics
that effectively addresses the incompressible limit. The primary innovation of this work is the first-
time application of robust and accurate stabilized mixed formulations, previously developed by the
authors for hyperelasticity, within the realm of electromechanics. These formulations incorporate
the pressure field as an unknown variable, thereby facilitating the automatic attainment of the in-
compressible limit. Additionally, we consider the mechanical deviatoric stress tensor as a primary
unknown, allowing for the design of finite element technology capable of managing incompressible
behavior while ensuring high accuracy in the stress field and avoiding shear locking of thin solids.
To enable the use of equal-order interpolations, we employ the orthogonal subgrid scale method for
stabilization. Furthermore, the electromechanical problem is approached through a block-iterative
staggered method. We present a series of numerical examples to assess the robustness and applica-
bility of these formulations in solving complex finite strain electromechanics problems.

Keywords: Incompressible hyperelasticity, Electromechanics, Mixed formulations, Stabi-
lization methods, Orthogonal subgrid scales.

1. INTRODUCTION

Electroactive Polymers (EAPs) have emerged as a versatile class of smart materials
due to their ability to undergo large deformations in response to electrical stimuli [1, 2].
These materials have found applications in a wide range of fields, including soft robot-
ics, sensors, actuators, and artificial muscles [3, 4]. EAPs are broadly categorized into two
types: ionic and electronic. Ionic EAPs, such as ionic polymer-metal composites (IPMCs),
rely on ion transport mechanisms and generally require moisture to function. Electronic
EAPs, on the other hand, are driven by electric field-induced forces and include materi-
als like piezoelectric polymers and dielectric elastomers (DEs). Among these, DEs have
gained particular attention due to their high energy density, large actuation strains, and
fast response times [5].

DEs are a subset of electronic EAPs that function as soft capacitors. When a voltage
is applied across their compliant electrodes, the resulting electrostatic forces cause the
elastomer to deform [3, 5]. This actuation mechanism makes DEs highly promising for
applications requiring large, reversible deformations. Additionally, DEs exhibit excel-
lent scalability, lightweight properties, and high flexibility, making them suitable for soft
actuators and energy harvesting devices [6, 7, 8].

The study of DEs inherently involves complex, nonlinear solid mechanics due to the
large deformations and highly coupled electro-mechanical behavior they exhibit. When
subjected to electric fields, DEs undergo significant strains, often exceeding 100%, which
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places them well outside the linear elasticity regime [9]. As a result, classical linear me-
chanics approaches are insufficient to capture their full behavior. Nonlinear solid me-
chanics is essential for accurately modeling the material’s response to both mechanical
and electrical stimuli [10]. Many DEs exhibit behavior that is nearly or fully incompress-
ible, meaning their volume remains constant or nearly constant during deformation. This
incompressibility presents a significant challenge when modeling their mechanical be-
havior, as traditional material models may fail to capture this constraint accurately. The
incompressibility of DEs arises from their rubber-like nature, which causes large shape
changes without corresponding volume changes under applied stresses or electric fields.
To account for this, specialized constitutive models that incorporate incompressibility
are essential in the characterization of DEs. Neglecting this aspect can lead to inaccu-
rate predictions of material performance, such as incorrect strain distributions or stress
concentrations, especially under large deformations [11, 12, 13, 14, 15].

DEs are commonly modeled using the framework of continuum mechanics to capture
their coupled electro-mechanical behavior under large deformations [16, 17, 18, 19, 20, 21,
22, 23]. The reversible constitutive model of these materials is encapsulated within the
free energy density, in terms of invariants of the deformation gradient tensor and the ma-
terial electric field [24, 25, 26]. Complementary to this potential, which exhibits a saddle
point nature, is the internal energy density, which depends upon the deformation gradi-
ent tensor and the electric displacement field. Building upon this foundation, researchers
in [27, 28, 29] introduced an extension of the concept of polyconvexity, originally from
the field of hyperelasticity [30, 31, 32, 33, 34, 35, 36, 37], into this coupled electromechan-
ical scenario. This novel definition of polyconvexity played a pivotal role in establishing
the existence of minimizers in this context for the first time [38], serving as a sufficient
condition for the extension of the rank-one convexity criterion within electromechanics.

For the numerical simulation of DEs, the finite element method (FEM) is widely used
due to its flexibility in handling complex geometries and boundary conditions. In this
approach, the DE is discretized into finite elements (FEs), and the governing equations
derived from the principles of nonlinear elasticity and electrostatics. Special attention is
given to the near-incompressibility of DEs, which requires tailored FE formulations, such
as mixed methods introducing the pressure as a variable, either using appropriate inter-
polations for it or stabilization techniques, to avoid locking phenomena. This combina-
tion of continuum-based material models and FE analysis allows for accurate prediction
of the electro-mechanical response of DEs, providing valuable insights for optimizing
their performance in various applications.

Previous studies have adopted mixed formulations that incorporate not only primary
variables, such as displacements and electric potential, but also derived variables, like
strains and electric fields, into the set of unknowns [39, 40]. For example, Ortigosa et al.
[41] introduced an advanced mixed formulation in which fields central to polyconvexity
in electro-mechanics—namely, the deformation gradient tensor (F ), its cofactor, its de-
terminant, the electric displacement field d0, and an additional coupled field F ·d0—are
included alongside their respective work conjugates as unknowns. Here, the work con-
jugates act as Lagrange multipliers, weakly enforcing the necessary compatibility con-
ditions. Notably, this formulation addresses the fully incompressible case and employs
field discretizations that satisfy the inf-sup condition [42] without requiring additional
stabilization.

In the context of continuum mechanics, low-order displacement-based FEs exhibit
poor performance in nearly and fully incompressible conditions [43]. Issues such as
volumetric and shear locking, pressure oscillations, and sub-optimal results in bending-
dominated cases are common [44]. Mixed formulations are a well-established approach
frequently used to address these numerical instabilities. Under the assumption of infini-
tesimal strain, a mixed formulation based on displacements and pressure [13, 45, 46, 47]
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is essential for dealing with the incompressible limit. Various stabilization techniques,
particularly within the Variational Multi-Scale (VMS) framework [48], enable the use of
equal-order, piecewise linear interpolations for all primary fields. Given the strong per-
formance of mixed methods, [49] introduced a three-field displacement/pressure/devia-
toric stress formulation, which proved highly effective for incompressible problems re-
quiring precise stress and strain predictions (see also [11]). These FE technologies have
shown enhanced accuracy in stress computation, successfully capturing stress concen-
trations and strain localizations, while ensuring stress convergence as the mesh is re-
fined [50, 51, 52]. In previous studies, in the context of finite strain, the authors have
developed stabilized mixed formulations for hyperelastic materials. First, a stabilized
mixed displacement/pressure approach was introduced in [53] for nearly and fully in-
compressible hyperelastic material models, where stabilization was achieved using the
VMS framework. More recently, in [54] a mixed three-field formulation that incorporates
displacement, pressure, and deviatoric stress, utilizing equal-order interpolations for all
primary variables is proposed.

The present manuscript extends these concepts to propose a novel way to solve the
nonlinear electromechanics problem. Through the well-known deviatoric/volumetric
decomposition of the mechanical part of the strain energy function, we complement the
conservation of linear momentum equation with the constitutive equation of the pres-
sure. This equation is written so as to allow imposing the incompressibility constraint
on electromechanical materials in a natural way. Two different FE formulations are pre-
sented in this work. First, the upϕ formulation, which considers displacements, pressure
and electric potential field as primary unknowns. The resulting method is very simple
and only the addition of a scalar field as an extra primary variable is required with re-
spect to the irreducible one. Next, a step forward is made to introduce the mixed upS ′ϕ
formulation where deviatoric stresses are also considered as primary variables of the
problem. The only requirement is the introduction of the constitutive law for deviatoric
stresses in the system of equations to be solved. This technology is expected to enhance
stress accuracy as well as to increase the ability to capture stress concentrations with the
guarantee of stress convergence upon mesh refinement. To consider equal-order interpo-
lations for all master fields, the resulting formulations will be stabilized by means of the
VMS-Orthogonal SubGrid Scale (OSGS) method, which is a stabilization technique well
known for its low dissipative and highly accurate performance [55]. The objective of
this work is to develop block-iterative schemes to solve the electromechanical problem,
where coupling can be observed in both directions [56].

This work is organized as follows. In Section 2 some preliminaries are introduced to
provide some key concepts, methodologies and background knowledge. Next, in Sec-
tion 3, the nonlinear continuum electromechanics equations are summarized. Section 4
presents two stabilized mixed formulations which are able to tackle the incompressible
limit for electromechanics in finite strain theory. Afterwards, Section 5 briefly describes
the concept of block-iterative schemes for coupled problems and their application to the
electromechanical problem under investigation. In Section 6 several benchmarks and
numerical examples are tested to assess the present formulation and to validate its per-
formance. To end up, in Section 7 some conclusions of the proposed formulation are
drawn.

2. PRELIMINARIES

This section provides a foundational introduction to the key concepts, theories, method-
ologies and background knowledge necessary for understanding the main content for the
coupled problem presented in this work.



I. CASTAÑAR, J. MARTÍNEZ-FRUTOS, R. ORTIGOSA & R. CODINA 4

2.1. Notation. Throughout this paper, A : B = AijBij, ∀A,B ∈ R3×3, and the use of
repeated indices implies summation. The tensor product is denoted by ⊗ and the sec-
ond order identity tensor by I . The tensor cross product operation between two art-
ibrary second order tensor A and B entails [A B]il = EijkElmn AjmBkn. Furthermore,
E represents the third-order alternating tensor. Regarding the product between matrices
and vectors, or matrices and matrices, A·B = AijBjk, ∀A,B ∈ R3×3, or A·B = AijBj,
∀A ∈ R3×3,B ∈ R3. When the product involves a scalar, the symbol will be omitted to
improve the readability of the text.

2.2. Weak formulation. Let us introduce some notation for deriving the weak formula-
tion of the formulations we need to develop. As usual, the space of square integrable
functions in a domain v is denoted by L2 (v), whereas the space of functions whose first
derivative is square integrable is denoted by H1 (v). We shall use the symbol 〈·, ·〉v to re-
fer to the integral of the product of two functions in a domain v, not necessarily in L2(v).
The subscript is omitted when v = V, being V the domain of study.

2.3. Load increments to solve nonlinear equations. In the case of large deformations, it
is customary to solve the nonlinear equilibrium equations in an incremental manner for
steps n = 0, . . . , N, being N the maximum number of load increments. The external forces
are applied incrementally, their magnitude being controlled by an incremental factor λn

at a given load increment n, such that λn = n/N. For simplicity, we will consider the
load increments constants, although the extension to variable load increments would be
straightforward.

2.4. Spatial discretization. For all formulations, the standard FE approximation is con-
sidered as follows. Let Ph denote a FE partition of the domain of study V. The diameter
of an element domain K ∈ Ph is denoted by hK and the diameter on the FE partition by
h = max{hK|K ∈ Ph}. We can now construct conforming FE spaces Vh ⊂ V being V any
proper functional space where an unknown solution is well-defined, as well as the corre-
sponding subspace Vh,0 ⊂ V0, V0 being made with functions that vanish on the Dirichlet
boundary.

2.5. The VMS framework. To circumvent the complexities associated with mixed inter-
polations that satisfy the necessary inf-sup conditions [57, 58], we prefer utilizing stabi-
lized FE methods that allow for uniform interpolations across all variables. The formu-
lations introduced in this study are grounded in the VMS framework [48, 59]; thus, we
provide a summary of the formulation here, highlighting the aspects that are pertinent to
the problem under consideration

Let us consider a nonlinear stationary problem of the form A (U ) = λ f , where A (U )
is a nonlinear operator and λ the load factor. Suppose that this equation is solved by an
iterative scheme, so that given a guess for the solution, still denotedU , the correction δU
is computed from the equation

L (U ; δU ) = λ f −A (U ),

where L (U ; δU ) is linear in δU . The weak form of the problem results from the integration-
by-parts formula

B (U ;V , δU ) := 〈V , L (U ; δU )〉 = 〈V , λ f −A (U )〉 := L (V ,U ) ∀V ∈ V . (1)

We have considered homogeneous boundary conditions to simplify the explanation,
so that the spaces for the unknowns and the test functions are the same. In the second
term, the divergence of the appropriate fluxes is considered integrated by parts.
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Once the the FE approximation is set, the Galerkin approximation to Eq. (1) consists of
finding Uh ∈ Vh such that

B (Uh;Vh, δUh) = L (Vh,Uh) ∀V ∈ V .

This problem is well posed, i.e., it has a unique solution bounded in the norm of V
independently of h, if the following condition holds (see, e.g., [58]):

inf
Uh∈Vh

sup
Vh∈Vh

B (Uh;Vh, δUh)

‖Uh‖V‖Vh‖V
≥ KB > 0, (2)

for a certain constant KB. For all the problems presented in this work, Vh is obtained
from the Cartesian product of two or three spaces, and the previous inf-sup condition
poses stringent compatibility conditions on the choice of these FE spaces. Note that the
continuous counterpart of Eq. (2), replacing Vh by V , is known to hold for all problems
considered. This fact motivates the need to introduce stabilized FE methods. The key
idea of the VMS approach is to split the space V as V = Vh ⊕ Ṽ , where Ṽ is any space
to complete Vh in V . The elements of this space are denoted by Ũ and they are called
subgrid scales (SGSs).

This splitting will have the associated splitting of the unknowns and tests functions
U = Uh + Ũ and V = Vh + Ṽ , with Uh,Vh ∈ Vh and Ũ , Ṽ ∈ Ṽ . Because of the linearity
of problem (1) considered so far, we may write the continuous problem as: find δUh ∈ Vh
and Ũ ∈ Ṽ such that

B (Uh;Vh, δUh) + B
(
Uh;Vh, Ũ

)
= L (Vh,Uh) ∀Vh ∈ Vh, (3a)

B
(
Uh; Ṽ , δUh

)
+ B

(
Uh; Ṽ , Ũ

)
= L

(
Ṽ ,Uh

)
∀Ṽ ∈ Ṽ . (3b)

In order to avoid approximating derivatives of Ũ , and require only the unknown Ũ
itself, making use of the additivity of the integral we may write Eq. (3a) as

B (Uh;Vh, δUh) + ∑
K

〈
L ∗(Uh;Vh), Ũ

〉
K = L (Vh,Uh) ∀Vh ∈ Vh, (4)

where L ∗(U ;V ) is linear in V and it is defined as the adjoint operator of L (U ; δU ). In-
terelement boundary terms have been discarded, but they could be introduced following
the ideas in [60]. Eq. (4) will be our FE problem once Ũ is approximated in terms of Uh.
The description of how to attempt this will be omitted, and only the final result will be
stated. In any case, this approximation must be obtained from Eq. (3b), which may be
written as

B
(
Uh; Ṽ , Ũ

)
= ∑

K

〈
Ṽ , L (Uh; Ũ )

〉
K

= L
(
Ṽ ,Uh

)
− B

(
Uh; Ṽ , δUh

)
= ∑

K

〈
Ṽ , λ f −A (Uh)

〉
K −∑

K

〈
Ṽ , L (Uh; δUh)

〉
K ∀Ṽ ∈ Ṽ , (5)

where we have assumed the SGSs to behave as bubble functions, which means that they
vanish across inter-element boundaries. All VMS-type methods consist in approximating
Ũ from Eq. (5). This is the problem that requires approximation, with several options
detailed in [59]. Our preferred approach applies Fourier analysis to the problem. This
approximate Fourier analysis of the SGS problem was initially proposed in [61] and later
extended in [62]. The key heuristic assumption here is that the SGS is highly fluctuating,
thus being dominated by high wave numbers. Regarding the approximation of the SGSs
in the interior of the element domains, from Eq. (5) it turns out that we may approximate
it within each element K as (see [59]):

Ũ |K = τττKΠ̃ [λ f −A (Uh)−L (Uh; δUh)] |K,
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where Π̃ is the L2(V) projection onto the space of SGSs, which still needs to be chosen,
and τττK is a matrix of stabilization parameters that tries to approximate (in an integral
sense) operator L −1. We shall come back later on to its expression for the problems
we are considering. Regarding the space of SGSs and the associated projection Π̃, we
consider taking Ṽ = V⊥h , i.e., the L2(V)-orthogonal to the FE space. This leads to the
OSGS approach [61], case in which Π̃ = I−Πh, where Πh is the L2(V)-projection onto
the FE space and I the identity operator. The stabilized problem to be solved is: find
δUh ∈ Vh such that

B (Uh;Vh, δUh) + ∑
K

〈
L ∗(Uh;Vh), τττKΠ̃ [λ f −A (Uh)−L (Uh; δUh)]

〉
K

= L (Vh,Uh) ∀Vh ∈ Vh. (6)

A key property of the OSGS stabilization is that, thanks to the projection orthogonal
to the FE space, we keep the consistency of the formulation in a weak sense in spite of
including just the minimum number of terms to stabilize the solution. This property
allows us to propose a term-by-term type stabilization technique called Split-OSGS (S-
OSGS). The S-OSGS method is not just a simplification of the OSGS one. For smooth
solutions, both have an optimal convergence rate in mesh size. However, in problems
where the solution has strong gradients, we have found the S-OSGS more robust, simi-
larly to what it is explained in [50]. This method allows us to select only the terms that
contribute to the stability of the problem. Later, for each formulation developed in this
work, the operators and stabilization matrix used will be determined. It will be seen that
in our case, rather than a term-by-term stabilization, we simply need to include one term
from the linearization of the momentum equation and another one from the linearization
of the continuity equation. To emphasize that the operators involved in Eq. (6) do not
contain all the terms of the original problem, we will characterize them by the symbol ·̂
in the following.

3. NONLINEAR CONTINUUM ELECTROMECHANICS

This section outlines the system of coupled partial differential equations within the
framework of reversible electromechanics, where dissipative effects are neglected. It also
presents the constitutive relations that characterize the material’s response.

3.1. Kinematics: motion and deformation. Let us consider the motion of an electro-
active body which in its initial or material configuration is defined by an open, bounded
and polyhedral domain V of Rd, where d ∈ {2, 3} is the number of space dimensions.
The boundary of the reference configuration is ∂V with outward unit normalN . After the
motion, the body occupies a spatial configuration defined by a domain v with boundary
∂v. The motion is described by a pseudo-time t dependent mapping field φφφ which links
a material particle fromX ∈ V to the spatial configuration x ∈ v according to

φφφ : V −→ v(t), x = φφφ(X , t), ∀X ∈ V, t ≥ 0.

The displacement field is defined asu = x−X = φφφ(X , t)−X and Dirichlet boundary
conditions are imposed as u = uD on the boundary ∂Vu ⊂ ∂V. Associated with the
mapping φφφ, it is possible to define the deformation gradient tensor or fiber-map F , which
is defined as the material gradient operator ∇0(·) of the spatial configuration, namely

F = ∇0x =
∂φφφ(X , t)

∂X
.

In addition, J = det F > 0 represents the Jacobian or volume-map of the deformation.
We can also define the right Cauchy-Green strain tensor, C = F T ·F as a symmetric
kinematic measure.
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3.2. Solid Mechanics: Conservation of linear and angular momentum. One of the fun-
damental equations governing nonlinear electromechanics is the global conservation of
linear momentum. In the absence of inertial effects, this principle can be expressed as the
integral translation equilibrium equation, namely∫

∂Vt

t0 dA +
∫

V
f0 dV = 0,

where f0 represents the body force per unit undeformed volume V and t0 the traction
force per unit undeformed area, applied on the Neumman boundary ∂Vt ⊂ ∂V such
that ∂Vu ∪ ∂Vt = ∂V and ∂Vu ∩ ∂Vt = ∅. The local form of the conservation of linear
momemtum and the associated boundary conditions can be written as

−∇0 · {F ·S} = f0 in V, (7a)

{F ·S}·N = t0 on ∂Vt, (7b)
u = uD on ∂Vu, (7c)

where S represents the second Piola-Kirchhoff (PK2) stress tensor and ∇0 · (·) is the ma-
terial divergence operator. Furthermore, conservation of angular momentum leads to the
well-known symmetry tensor condition ST = S.

3.3. Electrostatics: Gauss’s and Faraday’s laws. In addition to the conservation of linear
and angular momentum presented in Subsection 3.2, the dielectric elastomer represented
by the continuum described in Subsection 3.1 is subjected in its material configuration V
to an electric volume charge ρe

0 per unit of undeformed volume and an electric surface
charge ωe

0 per unit of undeformed area applied on ∂Vω ⊂ ∂V. The integral version of
Gauss’s law can be written in a Lagrangian format as∫

∂Vω

ωe
0 dA +

∫
V

ρe
0 dV = 0.

The local form of Gauss’s law and its associated boundary conditions can be written
as

∇0 ·D0 = ρe
0 in V,

D0·N = −ωe
0 on ∂Vω,

where D0 is the Lagrangian electric displacement field. Furthermore, in the absence of
magnetic fields, the integral version of the static Faraday’s law can be written in a La-
grangian format for a closed curve C embedded in V ∪ ∂V as∮

C
E0·dX = 0,

where E0 is the Lagrangian electric field. The local form of the static Faraday’s law and
the associated boundary conditions can be expressed as

E0 = −∇0ϕ in V,
ϕ = ϕD on ∂Vϕ,

where ϕ is an electric potential field that can be introduced in the case of a contractible
domain. Dirichlet boundary conditions for the electric potential field are imposed on
∂Vϕ ⊂ ∂V, such that ∂Vϕ ∪ ∂Vω = ∂V and ∂Vϕ ∩ ∂Vω = ∅.
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3.4. Constitutive model: The free energy density. Let us focus on reversible electro-
elasticity, where thermal effects and electric polarization-induced hysteresis are neglected.
In this case, the free energy density Ψ per unit of undeformed volume can be solely de-
fined in terms of the deformation and the electric field, namely Ψ = Ψ(F ,E0). The
requirement for objectivity (i.e., invariance with respect to rotations in the material con-
figuration) implies that Ψ must be independent of the rotational components of the de-
formation. This can be achieved by re-expressing the free energy density in terms of the
right Cauchy-Green tensor C, resulting in Ψ = Ψ(C,E0).

Typically, the free energy density Ψ(C,E0) is additively decomposed into a purely me-
chanical component, denoted as Ψm(C) and an electromechanical (coupled) component,
denoted as Ψem(C,E0) [27], namely

Ψ(C,E0) = Ψm(C) + Ψem(C,E0). (8)

From the additive decomposition of the free energy density Ψ(C,E0) in Eq. (8), the
PK2 stress tensor can be derived by taking derivatives of Ψ(C,E0) with respect to the
right Cauchy-Green tensor, namely

S = 2
∂Ψ (C,E0)

∂C
= 2

∂Ψm (C)

∂C
+ 2

∂Ψem (C,E0)

∂C
:= Sm +Sem,

where Sm is the mechanical part of the PK2 stress tensor and Sem is the electromechanical
one. In addition, the Lagrangian electric displacement field D0 can be related with the
Lagrangian electric field E0 through the free energy density as follows:

D0 = −∂Ψ(C,E0)

∂E0
= −∂Ψem(C,E0)

∂E0
.

Without loss of generality, we will consider in this study Ψem(C,E0) to represent an
ideal dielectric elastomer, defined as follows [27]

Ψem(C,E0) = −
ε

2
JE0·C−1·E0, (9)

where ε is the electric permittivity of the dielectric and C−1 = F−1 ·F−T is the inverse
right Cauchy-Green tensor.

The main goal of this work is to study finite strain electromechanics including the
incompressible limit. The volumetric/deviatoric split of the mechanical part of the PK2
stress tensor is the starting point to develop mixed formulations capable of dealing with
these physical problems [53, 54]. Although in principle this split can be performed on the
entire stress field S = Sm +Sem, it can also be applied just on the mechanical component
of S, namely

Sm = S ′ − pJC−1, (10)

where S ′ represents the deviatoric PK2 mechanical stress tensor (see Remark 3.2 below)
and p is the pressure field of the mechanical stress tensor. We aim to address compress-
ible models that can reach to the incompressible limit. To characterize these models effec-
tively, it is customary to use a decoupled representation of the purely mechanical strain
energy density in the following specific form

Ψm (C) = W (C̄) + U (J) ,

where C̄ = J−2/3C is the volume-preserving part ofC. Let us remark that this decompo-
sition allows one to split the purely mechanical response of the material into the so-called
deviatoric and volumetric parts, respectively, measured in the initial configuration. We
can now derive the mechanical part of the PK2 stress tensor according to this split as

Sm = 2
∂Ψm

∂C
= 2

∂W
∂C

+ 2
∂U
∂C

= 2
∂W
∂C

+
dU
dJ

JC−1.
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By comparing this definition with Eq. (10) we obtain expressions for both the pressure
and the deviatoric PK2 mechanical stress

S ′ = 2
∂W
∂C

and p = −dU
dJ

. (11)

Several constitutive models for both deviatoric and volumetric components are shown
in [53]. Let us just describe the ones which will be applied in this work. Readers are
referred to [43, 12] for further details on this kind of models.

3.4.1. Deviatoric models. The strain energy density must be written in terms of the strain
invariants which are defined for the volume-preserving C̄ by

Ī1 = trace C̄, Ī2 =
1
2

[
(trace C̄)

2 − trace
(
C̄2)] = trace Cof C,

where Cof C represents the cofactor of C, and can be obtained as

Cof C = J2C−1 =
1
2
C C.

Let us present two suitable functions for the deviatoric component of the strain energy
function:

• Neo-Hookean model
This model results from considering only the first principal invariant

W ( Ī1) =
µ

2
( Ī1 − 3) , (12)

where µ > 0 is the shear modulus.
• Mooney-Rivlin model

This model is derived considering the dependance on the second invariant as

W ( Ī1, Ī2) = α1 ( Ī1 − 3) + α2 ( Ī2 − 3) , (13)

where α1 and α2 are material parameters that must satisfy µ = 2 (α1 + α2) > 0.

3.4.2. Volumetric models. Due to the decoupled form of the mechanical strain energy den-
sity, compressibility of the mechanical contribution is accounted for by the volumetric
strain energy function. Let us now show two models which depend upon the bulk mod-
ulus κ = 2µ(1+ν)

3(1−2ν)
, where ν is the Poisson ratio.

• Quadratic [63]

U(J) =
κ

2
(J − 1)2 ;

dU
dJ

= κ (J − 1) . (14)

• Simo-Taylor [64]

U(J) =
κ

4
(

J2 − 1− 2log J
)

;
dU
dJ

=
κ

2

(
J − 1

J

)
. (15)

We can introduce the split of the PK2 mechanical stress tensor in the local conservation
of linear momentum given in Eq. (7a) to obtain its split version as

−∇0 · {F ·Sem} −∇0 · {F ·S ′}+∇0 · {pJF−T} = f0 in V,

{F ·Sem +F ·S ′ − pJF−T}·N = t0 on ∂Vt,
u = uD on ∂Vu.
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Remark 3.1. The volumetric functions can be written as U(J) = κG(J). Therefore, Eq. (11) can
be used to obtain a proper way to impose the incompressibility of a hyperelastic material

p = −dU
dJ

⇔ p = −κ
dG
dJ

⇔ p
κ
+

dG
dJ

= 0. (16)

This equation can be applied regardless of the compressibility of the material under study. It is
interesting to observe that in the incompressible limit, when Poisson’s ratio ν→ 0.5 (for isotropic
materials) then κ → ∞ and Eq. (16) reduces automatically to

dG
dJ

= 0. (17)

Eq. (17) imposes directly that J = 1, which is in fact the condition that a material must satisfy to
be incompressible in finite strain theory.

Remark 3.2. Tensor S ′ is often referred to as the true deviatoric component of Sm. However, it
does not imply that the trace of S ′ must vanish. In fact, the ’true’ deviatoric component of Sm
satisfies the following equation (see for instance [65])

S ′ : C = 0,

which can be interpreted as the trace with respect to the metric tensor C. The above equation
enables the mechanic pressure p to be evaluated directly from Sm as

p =
1
3J
Sm : C.

Remark 3.3. It is important to note that, although we refer to p as pressure, it should not be
identified as the hydrostatic pressure. In this case, p is characterized by the volumetric/deviatoric
decomposition of the mechanical component of the PK2 stress tensor, Sm given in Eq. (10). How-
ever, the electromechanical part remains. To define the hydrostatic pressure, we would need to
decompose Sem into its deviatoric and volumetric components

Sem = S ′em − pem JC−1,

and the hydrostatic pressure would be recognized as phyd = p + pem.

Remark 3.4. As an alternative to the free energy density Ψ(C,E0), some authors utilize the
internal energy density e(C,D0). These two energy densities are connected via the following
partial Legendre transformation:

Ψ(C,E0) = − sup
D0

{E0·D0 − e(C,D0)}. (18)

In [27, 28], the authors proposed an extension of the concepts of rank-one convexity and poly-
convexity [38] from hyperelasticity [30, 66, 67] to the domain of nonlinear electromechanics. They
postulated an extended representation of the internal energy given by:

e(C,D0) = W (F , Cof F , J,D0,F ·D0) ,

which must be convex with respect to its 5 arguments in order to guarantee existence of minimisers
and material stability in the context of electromechanics [29]. Notice that for the electromechanical
model chosen in this work, in Eq. (9), its associated internal energy density (reversing the Legendre
transformation in Eq. (18)) is indeed

Ψem(C,E0) = −
ε

2
JE0·C−1·E0

⇒ eem(C,D0) =
ε

2
J−1D0·C ·D0 =

ε

2
J−1 (F ·D0)·(F ·D0) . (19)

The last expression in Eq. (19) is indeed convex (provided that J > 0) with respect to the two fields
{J,F ·D0} simultaneously (see [27]), thereby satisfying the definition of polyconvexity in elec-
tromechanics. For the isochoric mechanical contribution, the Neo-Hookean model W( Ī1) in (12) is
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convex simultaneously with respect to {F , J}. The isochoric Mooney-Rivlin model W( Ī1, Ī2) in
(13), specifically the second term depending linearly upon Ī2 is not polyconvex, i.e. is not convex
with respect to {J, Cof F }. This issue can be addressed by considering the polyconvex invariant
Īn
2 , with n ≥ 3/2. Nonetheless, despite its non-polyconvexity, Ī2 remains widely used, and we

will employ it in our numerical simulations. Importantly, we have not observed any material
instability linked to a potential loss of rank-one convexity in the overall free energy density due to
this term. Finally, both volumetric terms U(J) in Eqs. (14) and (15) are convex with respect to J,
hence polyconvex.

3.5. Electromechanics: Governing equations. In this subsection the entire set of gov-
erning equations in finite strain electromechanics is presented. To do so, the local form
of Faraday’s and Gauss’s laws introduced in Subsection 3.3 are considered in combina-
tion with the conservation of linear momentum detailed in Subsection 3.2. Furthermore,
the constitutive model described in Subsection 3.4 is also considered in order to close the
system of equations by relating deformation and electric displacements to stresses and
electric fields in the continuum. The governing equations in finite strain electromechan-
ics are:

−∇0 · {F ·Sem} −∇0 · {F ·S ′}+∇0 · {pJF−T} = f0 in V, (20a)
p
κ
+

dG
dJ

= 0 in V, (20b)

S ′ − 2
∂W
∂C

= 0 in V, (20c)

Sem − 2
∂Ψem

∂C
= 0 in V, (20d)

∇0 ·D0 = ρe
0 in V, (20e)

E0 +∇0ϕ = 0 in V, (20f)

D0 +
∂Ψem

∂E0
= 0 in V, (20g)

{F ·Sem +F ·S ′ − pJF−T}·N = t0 on ∂Vt, (20h)
u = uD on ∂Vu, (20i)

D0·N = −ωe
0 on ∂Vω, (20j)

ϕ = ϕD on ∂Vϕ. (20k)

The irreducible formulation, where displacements and electric potential fields are con-
sidered as the primary variables of the problem, cannot be applied to this type of coupled
problems. This formulation inherits volumetric, shear and torsional locking issues from
displacement-based formulations in nonlinear solid mechanics, with the constitutive ma-
trix approaching singularity in the incompressible limit [53, 54]. To address this issue,
this work presents two novel mixed formulations that introduce the pressure as an extra
unknown in the problem, allowing us to properly handle the incompressible limit.

4. STABILIZED MIXED FORMULATIONS FOR ELECTROMECHANICS

In this section, two different mixed formulations are considered to manage the prob-
lem described above: on the one hand, the mixed three-field upϕ formulation, in which
the addition of the pressure field as an extra primary variable with respect to the standard
displacement-electric potential based formulation is considered to be able to enforce the
incompressibility constraint; on the other hand, a mixed four-field upS ′ϕ formulation,
in which the deviatoric PK2 mechanical stress tensor is added as unknown of the prob-
lem. The final goal is to design a FE technology able to tackle simultaneously problems
which may involve incompressible behavior together with a high degree of accuracy of
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the stress field, as well as a robust behavior in solids with a very thin geometrical dimen-
sion [68, 69].

4.1. The upϕ formulation.

4.1.1. Governing equations. The first formulation we consider is the mixed three-field upϕ
formulation, which is introduced to deal with nearly and fully incompressible materials.
The problem consists of finding a displacement u : V → Rd, a pressure p : V → R and
an electric potential ϕ : V → R such that

−∇0 · {F ·Sem} −∇0 · {F ·S ′}+∇0 · {pJF−T} = f0 in V, (21a)
p
κ
+

dG
dJ

= 0 in V, (21b)

∇0 ·D0 = ρe
0 in V, (21c)

where F , S ′, J and dG
dJ are functions of the displacement field and Sem and D0 are func-

tions of both the displacement field and the electric potential. The problem must be
supplied with the already-defined boundary conditions.

4.1.2. Variational formulation. Let V , Q and N be, respectively, the proper functional
spaces where displacement, pressure and electric potential solutions are well-defined.
We denote by V0 functions in V which vanish on the boundary ∂Vu and by N0 func-
tions in N which vanish on the boundary ∂Vϕ. We shall be interested also in the spaces
W := V ×Q×N andW0 := V0 ×Q×N0.

The variational statement of the problem is derived by testing system (21) against ar-
bitrary test functions, V := [v, q, η]T, v ∈ V0, q ∈ Q and η ∈ N0. At load increment n,
the weak form of the problem reads: findU n := [un, pn, ϕn]T ∈ W such that the Dirichlet
conditions are satisfied and

Aupϕ (V ,U n) = λnF (V ) ∀V ∈ W0, (22)

where Aupϕ (V ,U ) is a semilinear form defined onW0 ×W as

Aupϕ (V ,U ) := 〈∇0v,F ·Sem〉+
〈
∇0v,F ·S ′

〉
−
〈
∇0v, pJF−T

〉
+

〈
q,

dG
dJ

〉
+
〈

q,
p
κ

〉
− 〈∇0η,D0〉 .

F (V ) is a linear form defined onW0 as

F (V ) := 〈v,f0〉+ 〈v, t0〉∂Vt
+ 〈η, ρe

0〉 − 〈η, ωe
0〉∂Vω

. (23)

4.1.3. Linearization. In order to solve the problem, the system needs to be linearized so
that a bilinear operator which allows to compute a correction δU of a given guess for the
solution is obtained, that we denote by U . As it is explained in Section 5, iterations until
convergence will be performed for each load increment. Thus, the unknown U n could
be written at the i-th iteration as U n,i = U n,i−1 + δU n,i, the first superscript denoting
the load increment and the second the iteration counter. However, load and iteration
counters of the given guess and the increment will be omitted to simplify the notation,
and we will simply write U n,i = U + δU .

After using a Newton-Raphson scheme, we obtain the following linearized form of
the problem. Given U as the guess for the solution at the previous iteration and at load
increment n, find a correction δU := [δu, δp, δϕ]T ∈ W0 such that

Bupϕ (U ;V , δU ) = λnF (V )− Aupϕ (V ,U ) ∀V ∈ W0, (24)
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where Bupϕ (U ;V , δU ) is the bilinear form obtained through the Newton-Raphson lin-
earization and it is defined onW0 ×W0 as

Bupϕ (U ;V , δU ) := 〈∇0v,∇0δu·Sem〉+
〈
F T ·∇0v, Cem :

(
F T ·∇0δu

)〉
+
〈
F T ·∇0v, Pem ·∇0δϕ

〉
+
〈
∇0v,∇0δu·S ′

〉
+
〈
F T ·∇0v, C′ :

(
F T ·∇0δu

)〉
−
〈
∇0v, Jp

(
∇0δu : F−1

)
F−T

〉
+

〈
∇0v, Jp

(
F−1·∇0δu·F−1

)T
〉
−
〈
∇0v, δpJF−T

〉
+
〈

q, f (J)∇0δu : F−T
〉
+

〈
q,

δp
κ

〉
−
〈
∇0η, Pem :

(
F T ·∇0δu

)〉
+ 〈∇0η, Eem ·∇0δϕ〉 , (25)

where f (J) is a function coming from the linearization of dG
dJ and depends upon the vol-

umetric strain energy function into consideration. In Eq. (25) it is understood that all the
tensors involved are computed with the given guess U .

From the linearization of the stresses, there appear the fourth order electromechanic
tensor Cem, the deviatoric part of the fourth order elastic tensor C′, the third order piezo-
electric tensor Pem and the second order dielectric tensor Eem defined as

Cem = 4
∂2Ψem (C,E0)

∂C ∂C
; C′ = 4

∂2W (C)

∂C ∂C
;

Pem = −2
∂2Ψem (C,E0)

∂C ∂E0
; Eem = −∂2Ψem (C,E0)

∂E0 ∂E0
.

These tensors are also evaluated with the given guess U .

4.1.4. Symmetrization. The symmetric form of the problem can be defined as

B sym
upϕ (U ;V , δU ) = λnF (V )− Asym

upϕ (V ,U ) ∀V ∈ W0, (26)

where

Bsym
upϕ (U ;V , δU ) := 〈∇0v,∇0δu·Sem〉+

〈
F T ·∇0v, Cem :

(
F T ·∇0δu

)〉
+
〈
F T ·∇0v, Pem ·∇0δϕ

〉
+
〈
∇0v,∇0δu·S ′

〉
+
〈
F T ·∇0v, C′ :

(
F T ·∇0δu

)〉
−
〈
∇0v, Jp

(
∇0δu : F−1

)
F−T

〉
+

〈
∇0v, Jp

(
F−1·∇0δu·F−1

)T
〉
−
〈
∇0v, δpJF−T

〉
+
〈

q, J∇0δu : F−T
〉
+

〈
q,

J
f (J)

δp
κ

〉
−
〈
∇0η, Pem :

(
F T ·∇0δu

)〉
+ 〈∇0η, Eem ·∇0δϕ〉 ,

Asym
upϕ (V ,U ) := 〈∇0v,F ·Sem〉+

〈
∇0v,F ·S ′

〉
−
〈
∇0v, pJF−T

〉
+

〈
q,

J
f (J)

dG
dJ

〉
+

〈
q,

J
f (J)

p
κ

〉
− 〈∇0η,D0〉 ,

where we have multiplied the second equation by the linearized term J
f(J) . Note that

to obtain a truly symmetric problem δp should be replaced by −δp; we maintain this
expression to highlight the positivity of the term involving κ−1.
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The symmetric form of the problem can be interesting from both the theoretical and
the practical points of view. From the theoretical point of view, the problem to be solved
corresponds to the minimization of a certain electromechanical energy, whereas from the
practical point of view the symmetry can be exploited when solving the linear system.
For simplicity, we will employ the non-symmetric form of the problem in what follows,
although the use of the symmetric version would be straightforward.

Remark 4.1. An alternative upϕ formulation to that in Eq. (22) was presented in [41], where the
three weak forms of the problem (corresponding with the conservation of linear momentum, the
incompressibility equation and Gauss’s law) were obtained as the stationary points of the following
functional

Π(u, p, ϕ) = inf
u

sup
ϕ,p

{∫
V

Ψ(C,E0) dV −
∫

V
pJ dV +

∫
V

Γ(p) dV − F (U )

}
, (27)

with

F (U ) := 〈u,f0〉+ 〈u, t0〉∂Vt
+ 〈ϕ, ρe

0〉 − 〈ϕ, ωe
0〉∂Vω

.

In the above variational principle, Γ(p) represents an energy density complementary to the
volumetric energy κG(J), and related to the latter according to the following Legendre transfor-
mation

Γ(p) = sup
J
{κG(J) + pJ} ,

so that the derivatives of both G and Γ permit to obtain either p as a function of J or J as a function
of p, respectively, according to

dG(J)
dJ

= − p(J)
κ

;
dΓ(p)

dp
= J(p).

For the two volumetric functions considered in Eqs. (14) and (15), these relations are as follows

G(J) =
(J − 1)2

2
⇒ p(J) = −κ(J − 1) ⇒ J(p) = − p

κ
+ 1,

G(J) =
J2 − 1− 2 log J

4
⇒ p(J) = −κ

2

(
J − 1

J

)
⇒ J(p) =

−p
κ

+

√
p2

κ2 + 1.

The resulting weak form obtained from the stationary points of Π in Eq. (27) is obviously sym-
metric, due to its variational nature. However, this weak form is slightly different to that encoded
in Aupϕ (V ,U ) in Eq. (22). This can be appreciated from the weak form that arises from the
stationary condition of Π(u, p, ϕ) with respect to q ∈ Q, yielding

DΠ[q] =
〈

q,
dΓ(p)

dp
− J
〉

= 0

where D f (x)[y] = d
dε

∣∣∣
ε=0

f (x + εy) stands for the derivative of the given function f (x) in the
direction of y. Clearly, the formulation developed in this work stems from Eq. (21b), where the
pressure field is “forced" to depend on the Jacobian J, whilst the formulation derived from the
variational principle Π(u, p, ϕ) in [41] ends up imposing J as a function of p. This can be recast
below

p
κ
=

dG(J)
dJ︸ ︷︷ ︸

upϕ formulation in this work

; J =
dΓ(p)

dp︸ ︷︷ ︸
upϕ formulation in [41]
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4.1.5. Galerkin spatial discretization. The Galerkin discrete version of problem (24) is: For
a given load increment λn and a fixed iteration, find δUh := [δuh, δph, δϕh]

T ∈ Wh,0 such
that

Bupϕ (Uh;Vh, δUh) = λnF (Vh)− Aupϕ (Vh,Uh) ∀Vh ∈ Wh,0.

The stability of the discrete formulation depends on compatibility restrictions on the
interpolation functions chosen for the displacement, pressure and electric potential fields,
as stated by the appropriate inf–sup condition [58]. According to these restrictions, mixed
elements with continuous equal order linear interpolation for all fields are not stable.
However, the inf–sup condition can be circumvented by using a stabilization technique.
This is why the so-called stabilized formulations have been proposed to approximate
this kind of problems. The main idea is to replace Eq. (24) by another discrete variational
problem in which the bilinear form Bupϕ is enhanced so that it has improved stability
properties. In order to overcome the instabilities previously discussed, we propose the
stabilization technique described in Subsection 2.5.

Remark 4.2. Let us consider now the symmetrized problem (26) and discuss the stability of this
linearized problem; again, the discussion could be extended to the original nonlinear problem.
Taking vh = δuh, ηh = δϕh (assuming homogeneous Dirichlet boundary conditions) and qh =
δph it is found that

Bsym
upϕ (Uh; δUh, δUh) := 〈∇0δuh,∇0δuh ·Sem〉+

〈
F T ·∇0δuh, Cem :

(
F T ·∇0δuh

)〉
+
〈
∇0δuh,∇0δuh ·S ′

〉
+
〈
F T ·∇0δuh, C′ :

(
F T ·∇0δuh

)〉
−
〈
∇0δuh, Jph

(
∇0δuh : F−1

)
F−T

〉
+

〈
∇0δuh, Jph

(
F−1·∇0δuh ·F−1

)T
〉

+

〈
δph,

J
f (J)

δph

κ

〉
+ 〈∇0δϕh, Eem ·∇0δϕh〉 .

Suppose that the given guess is away from buckling, so that the solution of the continuous
problem exists and is unique. Under this scenario, C′ is a positive-definite tensor, and the fourth
term including it provides control on the increment of the displacement field δuh. Furthermore,
the second order tensor Eem is also a positive-definite tensor, and hence, the last term allows us
to have control on the increment of the electric potential field δϕh. However, it is obvious that in
the nearly and fully incompressible cases, when κ → ∞, the increment of pressure δph is out of
control. The only possibility to have control on the pressure field is to satisfy the inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

〈∇qh,vh〉
‖qh‖Q ‖vh‖V

≥ β1, (28)

for a constant β1 > 0. Under appropriate conditions on the coupling, the proximity of the guess
Uh to the solution U n

h and the tensors Cem, Sem and S ′, this has to allow one to prove that the
global inf-sup condition of the problem, which can be written as

inf
δUh∈Wh,0

sup
Vh∈Wh,0

B sym
upϕ (Uh;Vh, δUh)

‖Vh‖W ‖δUh‖W
≥ β2,

will be satisfied for a constant β2 > 0. However, FE element interpolations satisfying the com-
patibility condition in Eq. (28) are not convenient from the implementation point of view. In
particular, it is not satisfied by the equal interpolation for all the unknowns, which is the approach
we favor.
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4.1.6. Stabilized formulation. According to the VMS framework explained in Subsection
2.5, the stabilized problem with S-OSGS is defined as

Bupϕ (Uh;Vh, δUh) + ∑
K

〈
L̂ ∗
upϕ(Uh;Vh), τττKΠ̃

[
λn f − ˆAupϕ(Uh)− L̂upϕ(Uh; δUh)

]〉
K

= λnF (Vh)− Aupϕ (Vh,Uh) ∀Vh ∈ Wh,0.

Let us remark that τττK is taken as a diagonal matrix of stabilization parameters, τK =
diag (τuId, 0), with Id the identity on vectors of Rd and parameter τu is a coefficient
coming from the study of the behavior of the stabilization parameters based on a Fourier
analysis of the problem for the SGSs. In this work, we propose to use the stabilization
parameter presented in [53] for finite strain solid mechanics problems

τu = c1
h2

K
2µ

, (29)

where c1 is an algorithmic parameter which must be determined. The split operators we
need to define to have control on the pressure field are

ˆAupϕ(U ) =

[
∇0 ·

{
pJF−T}
0

]
, L̂ ∗

upϕ(U ;V ) =

[
−∇0 ·

{
qf (J)F−T}
0

]
,

L̂upϕ(U ; δU ) =

[
∇0 ·

{
−Jp

(
∇0δu : F−1)F−T + Jp

(
F−1·∇0δu·F−1)T

+ δpJF−T
}

0

]
.

Thus, we introduce the term ∑K τu
〈
∇0 ·

{
qf (J)F−T} , Π̃

[
∇0 ·

{
δpJF−T}]〉

K on the left-
hand side of the system, which provides control over the pressure gradient.

4.2. The upS ′ϕ formulation.

4.2.1. Governing equations. The second formulation we consider is the mixed four-field
upS ′ϕ formulation. The objective of this formulation is the definition of a general frame-
work, which includes the mixed upϕ formulation presented in Subsection 4.1 to be able
to tackle the incompressibility limit and introduces S ′ as primary unknown to obtain a
higher accuracy in the computation of stresses in finite strain problems, and also avoids
possible locking when one of the dimensions of the body is small. The problem con-
sists of finding a displacement u : V → Rd, a pressure p : V → R, a deviatoric PK2
mechanical stress S ′ : V → Rd ⊗Rd and an electric potential ϕ : V → R such that

−∇0 · {F ·Sem} −∇0 · {F ·S ′}+∇0 · {pJF−T} = f0 in V, (30a)
p
κ
+

dG
dJ

= 0 in V, (30b)

S′ − 2
∂W
∂C

= 0 in V, (30c)

∇0 ·D0 = ρe
0 in V, (30d)

where F , J and dG
dJ are functions of the displacement field and Sem and D0 are functions

of both the displacement field and the electric potential. The problem must be supplied
with the already-defined boundary conditions.

4.2.2. Variational formulation. Let us consider the same spaces and test functions we have
defined previously for the mixed upϕ formulation. Let T be the proper functional space
where the deviatoric PK2 mechanical stress components are well-defined. We shall be
interested also in the spacesW := V ×Q× T ×N andW0 := V0 ×Q× T ×N0.

The variational statement of the problem is derived by testing system (30) against ar-
bitrary test functions, V := [v, q,T , η]T, v ∈ V0, q ∈ Q, T ∈ T and η ∈ N0. At load
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increment n, the weak form of the problem reads: findU n := [un, pn,S ′n, ϕn]T ∈ W such
that the Dirichlet conditions are satisfied and

AupS′ϕ (V ,U n) = λnF (V ) ∀V ∈ W0,

where AupS′ϕ (V ,U ) is a semilinear form defined onW0 ×W as

AupS′ϕ (V ,U ) := 〈∇0v,F ·Sem〉+
〈
∇0v,F ·S ′

〉
−
〈
∇0v, pJF−T

〉
+

〈
q,

dG
dJ

〉
+
〈

q,
p
κ

〉
−
〈
T , 2

∂W
∂C

〉
+
〈
T ,S ′

〉
− 〈∇0η,D0〉 ,

and F (V ) is the same linear form defined in Eq. (23)

4.2.3. Linearization. After using a Newton-Raphson scheme, we obtain the following lin-
earized form of the problem. Given U as the guess for the solution at the previous it-
eration and at load increment n, find a correction δU := [δu, δp, δS ′, δϕ]T ∈ W0 such
that

BupS′ϕ (U ;V , δU ) = λnF (V )− AupS′ϕ (V ,U ) ∀V ∈ W0, (31)
where BupS′ϕ (U ;V , δU ) is the bilinear form obtained through the Newton-Raphson lin-
earization and it is defined onW0 ×W0 as

BupS′ϕ (U ;V , δU ) := 〈∇0v,∇0δu·Sem〉+
〈
F T ·∇0v, Cem :

(
F T ·∇0δu

)〉
+
〈
F T ·∇0v, Pem ·∇0δϕ

〉
+
〈
∇0v,∇0δu·S ′

〉
+
〈
∇0v,F ·δS ′

〉
−
〈
∇0v, Jp

(
∇0δu : F−1

)
F−T

〉
+

〈
∇0v, Jp

(
F−1·∇0δu·F−1

)T
〉

−
〈
∇0v, δpJF−T

〉
+
〈

q, f (J)∇0δu : F−T
〉
+

〈
q,

δp
κ

〉
−
〈
T , C′ :

(
F T ·∇0δu

)〉
+
〈
T , δS ′

〉
−
〈
∇0η, Pem :

(
F T ·∇0δu

)〉
+ 〈∇0η, Eem ·∇0δϕ〉 .

Now Sem, F , J and the constitutive tensors are evaluated with the given guess U , but
S ′ is an independent variable.

4.2.4. Symmetrization. The symmetric form of the problem can be defined as

B sym
upS′ϕ (U ;V , δU ) = λnF (V )− Asym

upS′ϕ (V ,U ) ∀V ∈ W0, (32)

where

Bsym
upS′ϕ (U ;V , δU ) := 〈∇0v,∇0δu·Sem〉+

〈
F T ·∇0v, Cem :

(
F T ·∇0δu

)〉
+
〈
F T ·∇0v, Pem ·∇0δϕ

〉
+
〈
∇0v,∇0δu·S ′

〉
+
〈
∇0v,F ·δS ′

〉
−
〈
∇0v, Jp

(
∇0δu : F−1

)
F−T

〉
+

〈
∇0v, Jp

(
F−1·∇0δu·F−1

)T
〉

−
〈
∇0v, δpJF−T

〉
+
〈

q, J∇0δu : F−T
〉
+

〈
q,

J
f (J)

δp
κ

〉
− 〈T ,F ·∇0δu〉+

〈
T , D′ : δS ′

〉
−
〈
∇0η, Pem :

(
F T ·∇0δu

)〉
+ 〈∇0η, Eem ·∇0δϕ〉 .

Asym
upS′ϕ (V ,U ) := 〈∇0v,F ·Sem〉+

〈
∇0v,F ·S ′

〉
−
〈
∇0v, pJF−T

〉
+

〈
q,

J
f (J)

dG
dJ

〉
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+

〈
q,

J
f (J)

p
κ

〉
−
〈
T , D′ : 2

∂W
∂C

〉
+
〈
T , D′ : S ′

〉
− 〈∇0η,D0〉 .

It is important to note that the second equation has been multiplied by the linearized
term J

f(J) , and the third equation by D′, the deviatoric part of the flexibility tensor. Defin-
ing this 4th-order tensor requires obtaining the inverse strain energy function, which en-
tails solving a nonlinear problem. For simplicity, we will use the non-symmetric form of
the problem in the following analysis, although employing the symmetric version would
be straightforward.

4.2.5. Galerkin spatial discretization. The Galerkin discrete version of problem (31) is: For
a given load increment λn and a fixed iteration, find δUh :=

[
δuh, δph, δS ′h, δϕh

]T ∈ Wh,0
such that

BupS′ϕ (Uh;Vh, δUh) = λnF (Vh)− AupS′ϕ (Vh,Uh) ∀Vh ∈ Wh,0.

As before, the stability of the discrete formulation relies on compatibility restrictions
between the interpolation functions selected for the displacement, pressure, deviatoric
PK2 mechanical stress, and electric potential fields, as dictated by the appropriate inf-sup
condition [58]. To address the instabilities discussed earlier, we propose the stabilization
technique outlined in Subsection 2.5.

Remark 4.3. As for previous problems, let us consider the symmetrized problem (32) and discuss
the stability of this linearized problem. Taking vh = δuh, ηh = δϕh (assuming homogeneous
Dirichlet boundary conditions), qh = δph and Th = δS ′h it is found that

Bsym
upS′ϕ (Uh; δUh, δUh) := 〈∇0δuh,∇0δuh ·Sem〉+

〈
F T ·∇0δuh, Cem :

(
F T ·∇0δuh

)〉
+
〈
∇0δuh,∇0δuh ·S ′

〉
−
〈
∇0δuh, Jph

(
∇0δuh : F−1

)
F−T

〉
+

〈
∇0δuh, Jph

(
F−1·∇0δuh ·F−1

)T
〉
+

〈
δph,

J
f (J)

δph

κ

〉
+
〈
δS ′h, D′ : δS ′h

〉
+ 〈∇0δϕh, Eem ·∇0δϕh〉 .

In this case, we have the same control over the increment of the electric potential field as in
the upϕ formulation due to the second order dielectric tensor Eem. However, there is no term
that guarantees stability for the displacement increment, as none of them involve matrices that are
required to be positive definite. Consequently, control over the displacement increment cannot be
ensured. Additionally, the flexibility matrix is a positive-definite tensor, which provides control
over the increment of the deviatoric PK2 stress, δS ′h. It is again evident that in the nearly and
fully incompressible cases, as κ → ∞, the increment of pressure δph becomes uncontrollable.

Therefore, the Galerkin formulation is only stable if two inf-sup conditions are sat-
isfied, one between the displacements and the deviatoric PK2 mechanical stresses and
another one between the displacements and the pressure. This conditions are explained
in [49] for the linear Stokes problem, and are obviously inherited in the nonlinear prob-
lem considered now. Only deviatoric PK2 mechanical stresses can be controlled with the
Galerkin formulation, and in the case of compressible materials also the pressure, but this
control disappears as κ → ∞. Displacement gradients need to be controlled using an inf-
sup condition and pressures (regardless of the compressibility) using another one. The
alternative to using the Galerkin method with FE spaces satisfying the inf-sup conditions
is to use a stabilized FE method, as the one we describe next.

4.2.6. Stabilized formulation. According to the VMS framework explained in Subsection
2.5, the stabilized problem with S-OSGS is defined as

BupS′ϕ (Uh;Vh, δUh)
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+ ∑
K

〈
L̂ ∗
upS′ϕ(Uh;Vh), τττKΠ̃

[
λn f − ˆAupS′ϕ(Uh)− L̂upS′ϕ(Uh; δUh)

]〉
K

= λnF (Vh)− AupS′ϕ (Vh,Uh) ∀Vh ∈ Wh,0.

As in previous problems, τττK is taken again as a diagonal matrix of stabilization pa-
rameters, τK = diag (τuId, 0, τS′Id×d, ), with Id×d the identity on second order tensors
and parameters τu and τS′ are again coefficients coming from the study of the behavior
of the stabilization parameters based on a Fourier analysis of the problem for the SGSs.
In this case, we propose to use the stabilization parameters presented in [54] for finite
strain solid mechanics problems

τu = c2
h2

K
2µ

and τS′ = c3, (33)

where c2 and c3 are algorithmic parameters which must be determined. The split oper-
ators we need to define to have control on both the displacement and the pressure field
are

ˆAupS′ϕ(U ) =

∇0 ·
{

pJF−T}
0

−2 ∂W
∂C

 , L̂ ∗
upS′ϕ(U ;V ) =

−∇0 ·
{

qf (J)F−T}
0

F T ·∇0v


L̂upS′ϕ(U ; δU ) =

∇0 ·
{
−Jp

(
∇0δu : F−1)F−T + Jp

(
F−1·∇0δu·F−1)T

+ δpJF−T
}

0
−C′ :

(
F T ·∇0δu

)
 .

Thus, we introduce the term ∑K τu
〈
∇0 ·

{
qf (J)F−T} , Π̃

[
∇0 ·

{
δpJF−T}]〉

K on the left-
hand side of the system, which provides control over the pressure gradient. Furthermore,
the term ∑K τS′

〈
F T ·∇0v, Π̃

[
−C′ :

(
F T ·∇0δu

)]〉
K allows us to control the displacement

gradient thanks to the fact that C′ is a positive-definite tensor.

5. BLOCK-ITERATIVE SCHEME

The objective of this work is to approximate a coupled system in which the coupling
comes from different physical phenomena. Numerical methods applied to these coupled
problems lead to the solution of a set of nonlinear algebraic equations. The discretization
of the entire set of governing equations in finite strain electromechanics presented in
system (20) leads to a nonlinear algebraic system of equations of the form:

ADDD(DDD, ϕϕϕ) = fDDD

Aϕϕϕ(DDD, ϕϕϕ) = fϕϕϕ
(34)

where DDD is the vector of unknowns of the mechanical field, which depends upon the se-
lected formulation, containing the nodal unknowns of [u, p]T for the mixed upϕ formu-
lation and of [u, p,S ′]T for the mixed upS ′ϕ formulation. ϕϕϕ is the vector of unknowns
of the electric problem, which in this case only considers the electric potential field, ϕ.
Furthermore, fDDD and fϕϕϕ are the vectors of "force" terms. Thus, the alternatives to solve
the coupled problem are twofold and are described below.

Monolithic strategy. When the nonlinear equations in system (34) are treated simulta-
neously, this leads to the monolithic scheme of the problem. This strategy necessarily re-
quires the development of a special-purpose code. The scalability and computational cost
can become expensive as the number of variables and equations increases. It presents less
modularity in parallelization compared to the staggered strategy presented below. Also,
in general, these variables will not be homogeneous, as they arise from the discretiza-
tion of different physical phenomena. The solution to this nonlinear problem for a given



I. CASTAÑAR, J. MARTÍNEZ-FRUTOS, R. ORTIGOSA & R. CODINA 20

value of the load factor λn can be obtained by making use of a Newton-Raphson iteration
scheme according to[

BDDDDDD(DDDi, ϕϕϕi) BDDDϕϕϕ(DDDi, ϕϕϕi)
BϕϕϕDDD(DDDi, ϕϕϕi) Bϕϕϕϕϕϕ(DDDi, ϕϕϕi)

] [
δDδDδDi+1

δϕδϕδϕi+1

]
= λn

[
fDDD
fϕϕϕ

]
−
[
ADDD(DDDi, ϕϕϕi)
Aϕϕϕ(DDDi, ϕϕϕi)

]
, (35)

where {DDDi, ϕϕϕi} represents the value of fields {DDD, ϕϕϕ} at the Newton-Raphson iteration i
(and load step n, which is omitted to lighten the notation) and the four-block (stiffness)
matrix on the left-hand side stems from the linearization of system (34) with respect to
increments {δDδDδDi+1, δϕδϕδϕi+1}. The latter permits to update the values of {DDD, ϕϕϕ} according
to

DDDi+1 = DDDi + δDi+1, ϕϕϕi+1 = ϕϕϕi + δϕδϕδϕi+1.

Staggered strategy. The second alternative, is to treat each problem one at the time,
considering the coupling terms as forcing terms on the right-hand side of the equations.
This leads to several sets of algebraic equations, each of them to be solved solely for
the variables related to one problem [56]. Let us consider now the use of block-iterative
algorithms to solve problem (34). This will reduce the size of the resulting subproblems
at the expense of iterating.

To begin, we must first focus on the conservation of linear momentum presented in
Eq. (20a). In this case, the term that introduces coupling between variables is the elec-
tromechanical stress tensor Sem

(
uk+1,ϕk+1). Here, superscript k refers to the coupling

iteration counter within a load step n (again, omitted). The main idea to develop the
block-iterative scheme involves approximating the dependence of the stresses Sem on
the electric potential field from the previous coupling, such that Sem

(
uk+1,ϕk+1) ≈

Sem
(
uk+1,ϕk). Once this approximation is applied, we can omit the linearization ma-

trix BDDDϕϕϕ, as the electric potential for this coupling iteration is considered known. From
the first row of system (35), we can derive a linear system of equations to obtain the incre-
ment δDδDδD. Therefore, at load increment n, coupling iteration k + 1 and nonlinear iteration
i + 1, the first system of equations to be solved is

BDDDDDD(DDDi, ϕϕϕk)δDδDδDi+1 = λnfDDD −ADDD(DDDi, ϕϕϕk), (36a)

DDDi+1 = DDDi + δDδDδDi+1. (36b)

Note that the complete set of superscripts for DDDi+1 is DDDn,k+1,i+1. Once we solve the
nonlinear iterations and achieve convergence (measured with some fixed tolerance tol,
||DDDi+1 −DDDi|| ≤ tol), we obtain DDDk+1 = DDDi+1, the value for the mechanical unknowns
for the current coupling iteration. With this value, we can proceed to the second row of
system (35). In this case, since DDDk+1 is now known, the term BϕϕϕDDD must be omitted from
the linearization. This allows us to formulate a second system of equations to obtain the
increment of the electric potential δϕδϕδϕ. Therefore, at load increment n, coupling iteration
k + 1 and nonlinear iteration i + 1, the second system of equations to be solved is

Bϕϕϕϕϕϕ(DDDk+1, ϕϕϕi)δϕδϕδϕi+1 = λnfϕϕϕ −Aϕϕϕ(DDDk+1, ϕϕϕi), (37a)

ϕϕϕi+1 = ϕϕϕi + δϕδϕδϕi+1. (37b)

Again, once we solve the nonlinear iterations and achieve convergence (measured with
some fixed tolerance tol, ||ϕϕϕi+1 − ϕϕϕi|| ≤ tol), we obtain ϕϕϕk+1 = ϕϕϕi+1, the value for the
electric potential unknown for the current coupling iteration.

This procedure must be repeated until the values between coupling iterations con-
verge, also measured with a given tolerance. Once convergence is achieved, the next
load factor can be taken, and the process repeated. This method is the one considered in
all the numerical examples developed in this work.
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Algorithm 1 Block-iterative scheme to solve the nonlinear electromechanics problem
• n = 0; loop over the number of load increments, N.

Initialize ϕn=0 = 000,Dn=0 = 000.
n← n + 1, λn = n/N.
Initialize ϕn,k=0 ≡ ϕ0 ← ϕn−1,Dn,k=0 ≡ D0 ← Dn−1.
• k = 0; coupling loop, iterate until convergence.

• Solve the equations for the solid solver, usingϕk forϕ. At the load increment
n, omitting the superscript k + 1 for the unknowns, these equations are:

−∇0 · {F ·Sem} −∇0 · {F ·S′}+∇0 · {pJF−T} = λnf0 in V,

p
κ
+

dG
dJ

= 0 in V,

S′ − 2
∂W
∂C

= 0 in V,

{F ·Sem +F ·S′ − pJF−T}·N = λnt0 on ∂Vt,

u = uD on ∂Vu.
• Once converged, update the value for the mechanical unknowns DDDk+1 de-

pending on the selected formulation described in Section 4.
• Solve the equations for the electrostatics solver, using DDDk+1 for DDD. At the

load increment λn, omitting the superscript k + 1 for the unknowns, these
equations are:

∇0 ·D0 = λnρe
0 in V,

E0 +∇0 ϕ = 0 in V,

D0 +
∂Ψem

∂E0
= 0 in V,

D0 ·N = −λnωe
0 on ∂Vω,

ϕ = ϕD on ∂Vϕ.
• Once converged, update the value for the electric unknowns ϕϕϕk+1.
• Check convergence and update unknowns for the next coupling iteration.

When coupling conditions are satisfied up to a tolerance, the coupling iterative
loop ends.
k← k + 1.

End block-iterative loop.
End loop over the number of load increments.

The staggered approach may be beneficial for this type of coupled problem. On one
hand, the convex/concave nature of the free energy density (at least near the origin)
yields a saddle point problem [27]. On the other hand, the mechanical and electrical
properties may differ by several orders of magnitude, although appropriate scaling can
help mitigate this issue [70]. These factors can complicate the use of iterative solvers
for the monolithic approach, particularly in computationally intensive problems. Ad-
ditionally, by solving the mechanical and electrical problems separately, the staggered
approach is often less intrusive and more easily integrated into in-house computational
platforms.

To conclude this section, Algorithm 1 presents the staggered approach employed in
this work. Let us also note that the coupling and linearization loops could be collapsed
into a single loop instead of using nested loops. This would amount to replace ϕϕϕk by ϕϕϕi

in Eq. (36a) and DDDk+1 by DDDi+1 in Eq. (37a). In this case, convergence would be, at most,
linear.
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6. NUMERICAL EXAMPLES

In this section a series of numerical examples for electromechanics are presented to as-
sess the performance, robustness, accuracy and applicability of the proposed stabilized
mixed formulations. As a first case, a test with a manufactured solution is considered to
analyze the spatial discretization errors upon mesh refinement for both formulations pre-
sented in this work. The second example we aim to study involves the bending of a beam
induced by the application of an electric field. The objective of this example is to analyze
and examine the shear-locking behavior that our formulations may exhibit as the beams
become more slender, and thus determine the range of applicability of each formulation.
Finally, two 3D cases will be studied and carried out for the two formulations presented
in this work, in order to further analyze the drawbacks and advantages of each one.

Concerning the block-iterative scheme, for all examples a maximum of 10 iterations are
set for both the solid and the electric sub-problems, whose numerical relative tolerance
in the L2(V) norm is 10−5 unless specified. Also, for the coupling conditions, the relative
tolerance is 10−3. In order to solve the monolithic system of linear equations for each
sub-problem, we consider direct solvers, which are implemented in the PETSc parallel
solver library [71].

For all the numerical examples included next, hyperelastic models are considered fully
incompressible, and so the bulk modulus is κ = ∞ and the Poisson ratio ν = 0.5, unless
otherwise specified. The algorithmic parameters c1, c2 and c3 are determined in the first
numerical example and fixed for the rest of the study. As previously discussed, the non-
linearities in the problem are solved via a Newton-Raphson scheme. Depending on the
nonlinearities, the initial guess of the iterative procedure needs to be close enough to the
solution to guarantee convergence of the nonlinear iterations. In our case, the load incre-
ment is the parameter which controls the evolution of the nonlinear iterations, so we will
have to tune it depending on the nonlinearities of each numerical example.

6.1. A test with analytical solution. Let us first perform a simple test whose main objec-
tive is to numerically check the order of convergence of the proposed scheme with respect
to the mesh size. This problem will allow us to tune the optimal stabilization coefficients.
For this purpose we use the so-called method of manufactured solutions.

In this procedure, an exact analytical solution is defined a priori and later substituted
into the continuum equations in order to obtain associated forcing terms. These forcing
terms are then introduced as perturbations in the FE computation. The manufactured so-
lutions are composed of smooth functions. Dirichlet boundary conditions are prescribed
over the boundaries upon evaluation of the displacement and electric potential analytical
solutions.

The region we consider is the unit square plate V = [0, 1]× [0, 1] under plain strain as-
sumption and we impose the following manufactured displacement, pressure and elec-
tric potential fields

u(X, Y) = k [exp(X + Y),− exp(X + Y)] ,

p(X, Y) = µ sin(2πX) sin(2πY),

ϕ(X, Y) = k sin(2πX) sin(2πY).

where k = 0.01 and X and Y referring to the Cartesian axes in the reference configura-
tion. All quantities are assumed dimensionless in this example. It is important to note
that this displacement field gives an incompressible motion due to the fact that the Jaco-
bian J (u(X, Y)) = 1 for all X, Y. We set a Neo-Hookean (see Eq. (12)) material for the
deviatoric part of the stresses, with shear modulus µ = 107

3 and Poisson ratio ν = 0.5
and a quadratic law for the volumetric response (see Eq. (14)). The material is selected
to be an ideal isotropic dielectric elastomer (see Eq. (9)), being the electric permittivity
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of the dielectric ε = 1. Therefore, the manufactured deviatoric PK2 mechanical stress is
computed with respect to the manufactured displacement field as

S ′(X, Y) = µ

{
I − 1

3
trace [C (u(X, Y))]C−1 (u(X, Y))

}
.

We study the convergence behavior of the proposed method by running the case on
seven meshes obtained by refinement. The sequence is of structured grids of n2 linear
and quadratic quadrilateral elements, being n the number of FEs along each side of the
domain.
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FIGURE 1. Manufactured convergence test. Convergence rate for both
upϕ and upS ′ϕ formulations upon mesh refinement.

The normalized error has been computed in the L2 (V) norm for displacement, pres-
sure, deviatoric PK2 mechanical stress and electric potential fields. Figs. 1a and 1b show
the displacement and electric potential convergence rate upon mesh size, respectively. As
expected, both formulations exhibit a convergence order of k + 1, k being the polynomial
order of the FE interpolation. With respect to both pressure and deviatoric PK2 mechani-
cal stress fields, both present the expected convergence order of k upon mesh refinement
as it can be observed in Figs. 1c-1d. The reader can note that the schemes proposed show
the desired rate of convergence.
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FIGURE 2. Manufactured convergence test. Convergence rate for both
upϕ and upS ′ϕ formulations upon DOFs.

More interesting results are obtained when comparing these convergence rates with
respect to the number of degrees of freedom (DOFs) in Fig. 2. Figs 2a-2b-2c show the
displacement, electric potential and pressure convergence rates upon DOFs, respectively.
All fields are considered as primary unknowns of both formulations and therefore a simi-
lar accuracy for a given mesh size is expected, especially when linear elements are consid-
ered. Fig. 2d displays the deviatoric PK2 mechanical stress convergence rates upon DOFs
for both formulations. As expected, higher accuracy is achieved for a given mesh size for
the mixed upS ′ϕ formulation. For linear elements, to achieve the same accuracy, e.g.
0.01% of global error, the upϕ formulation requires 2.7·107 DOFs approximately, while
the upS ′ϕ formulation needs less than 105 DOFs (270 times lesser than the upϕ formu-
lation). Results clearly show that both the upS ′ϕ and the upϕ formulations deal appro-
priately with the incompressibility constraint but the four-field formulation exhibits a
higher accuracy in the stress field for linear elements, even for very coarse meshes.

Remark 6.1. Note that the upϕ formulation computes the stresses (locally) at the numerical
integration points, while the upS ′ϕ formulation adopts a continuous stress field. To compare
stress accuracy, a local smoothing technique has been applied to the original discontinuous stress
fields of the mixed upϕ formulation. So, Figs. 1d-2d present the continuous values obtained after
the smoothing operation.
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FIGURE 3. Manufactured convergence test. Convergence rate for upϕ for-
mulation upon mesh refinement. Study to determine the optimal param-
eter c1
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FIGURE 4. Manufactured convergence test. Convergence rate for upS ′ϕ
formulation upon mesh refinement. Study to determine the optimal pa-
rameter c2.
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FIGURE 5. Manufactured convergence test. Convergence rate for upS ′ϕ
formulation upon mesh refinement. Study to determine the optimal pa-
rameter c3.
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For the sake of completeness, a study of the stabilization parameter constants has been
conducted for both formulations. The objective of this study is to determine the values
of the constants that yield minimal errors while maintaining the expected convergence
orders and providing the minimal necessary stabilization to satisfy the inf-sup conditions
of the problem. First, let us focus on the upϕ formulation presented in Section 4.1.1. In
this case, we only need to adjust the value of parameter c1 of τu, defined in Eq. (29). The
results obtained for the variables of the mechanical sub-problem can be seen in Fig. 3.
The accuracy of the electric potential does not vary with the change in the constant.

As can be observed, the variation of the constant always maintains the expected con-
vergence order for all variables. It is interesting to note that, in the case of Q2 elements,
the precision is practically imperceptible with the variation of the parameter. On the
other hand, in the case of Q1 elements, we can observe that the higher the coefficient, the
greater the accuracy in displacements and the deviatoric PK2 mechanical stress, but the
lower the accuracy in the pressure field. Based on the results, we conclude that c1 should
be between 0.1 and 1.0, and we will set it to 0.1 from now on. For quadratic elements,
it could be taken smaller (in general, c1 can be decreased with the polynomial order, see
[72] and references therein) but, as it has already been mentioned, quadratic elements are
quite insensitive to the exact value of c1.

Regarding the upS ′ϕ formulation detailed in Section 4.2.1, we now need to adjust
the constants c2 and c3 defined in Eq. (33). To do this, we first set c3 = 1.0 and begin
varying the value of parameter c2. Once again, the accuracy of the electric potential is not
affected. In this case, Fig. 4 shows the convergence curves as a function of the variation
of constant c2. As can be observed, the conclusions regarding c2 are exactly the same as
those we previously reached for constant c1. Therefore, we set c2 = c1 = 0.1.

Once we have fixed the constant for τu, we move on to determine the optimal value for
constant c3, related to τS′ . The different convergence orders and accuracy with respect to
mesh refinement can be seen in Fig. 5. In this case, we observe that for Q1 linear elements,
the higher the constant, the lower the accuracy for all variables. On the other hand, when
considering Q2 quadratic elements, the effect is completely reversed for displacements
and deviatoric stresses, although all curves eventually tend to the same level of accuracy
as we refine the mesh. However, the pressure does not appear to show any differences
with the variation of the constant. For values of the constant below 0.1, the problem
fails to converge, indicating that the stabilization is insufficient to guarantee the inf-sup
conditions. Based on the results obtained, the optimal c3 value should be set between 0.1
and 0.5, with 0.1 being the chosen value from this point onward. This choice still yields
c2 = 0.1 as an adequate value to minimize errors. For quadratic elements, the same
comments as for c1 apply now.

6.2. Electrically induced bending beam. As a second example, we will analyze the bend-
ing effect on a beam induced by a discontinuous electric field. The geometry and bound-
ary conditions of the beam can be seen in Fig. 6. The problem consists of a rectangular
panel with height h and length l, clamped at the left end. Stress free boundary conditions
are applied at the remaining boundaries. The system is subject to a voltage differential
∆V to induce the bending of the beam and electric surface charge free boundary condi-
tions are applied on the edges. We consider a Mooney-Rivlin model (see Eq. (13)) for
the deviatoric component of the strain energy function with parameters α1 = 2.5 Pa and
α2 = 0.001 Pa. For the volumetric component a Simo-Taylor law is selected (see Eq. (15)).
The material is selected to be an ideal isotropic dielectric elastomer (see Eq. (9)), being the
electric permittivity of the dielectric ε = 1 F/m.

In order to test the evolution of the solution while refining our mesh, the problem has
been discretized into Q1 and Q2 structured meshes with N FEs along the length. Along
the height, 4 elements are considered for all cases studied in this numerical example.
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FIGURE 6. Electrically induced bending beam. Geometry

Let us study first a problem with Aspect Ratio (AR) 100, which means that the length
of the beam is 100 times higher than the height. To do so, we fix the length of the beam
l = 40 m and the height h = 0.4 m. To induce the bending of the beam, we fix the electric
potential at the top side (red line) ϕ = 0.1 V and at the mid line (blue line) ϕ = 0 V.

First, we aim to investigate the volumetric locking that the developed formulations
may experience when dealing with nearly incompressible materials. To this end, we first
consider a nearly incompressible material with a Poisson’s ratio of ν = 0.45, followed by
an almost incompressible material with ν = 0.49. The goal is to compare our mixed for-
mulations with the irreducible formulation (uϕ-formulation) [73], where displacements
and electric potential are treated as unknowns.

In Fig. 7, the relative displacements obtained at the free end of the beam for the three
proposed formulations can be observed. As can be seen, as the incompressibility of the
material increases, the locking exhibited by the uϕ-formulation for linear elements be-
comes more pronounced, yielding errors of 50% in horizontal displacements and 20% in
the vertical component. These errors are not observed in the mixed formulations, which
allows us to confirm that they are virtually free of volumetric locking. It is also worth
mentioning that this locking is corrected when quadratic elements are used, although it
surely exists for values of ν closer to 0.5. In conclusion, it is important to emphasize that
the irreducible formulation with linear elements is not suitable for nearly incompressible
cases, as it presents a high error due to volumetric locking.

Remark 6.2. Notice that the properties used do not correspond with those typical of dielectric
elastomers. As a result of that, the applied electric potential ∆V = 0.1 is much lower than what
is typically requested to achieve the type of electrically induced deformations observed in Figures
8 and 10. This is due to the fact that we considered "scaled" properties and therefore, the applied
electric potential is also scaled. In this example, the properties are such that the "scaled" shear
modulus µ̃ is µ̃ = 2(α1 + α2) = 2(2.5 + 0.001) ≈ 5. However, the typical values of µ for this
type of materials are around µ = 105 (Pa). The "scaled" permittivity considered is ε̃ = 1, while
the typical value is usually ε = 4.8ε0 = 4.8× 8.85× 10−12 (F/m). The "scaled" voltage gradient

is ∆V = 0.1, which entails that the "true" applied voltage gradient is ∆V
√

µ/µ̃
ε/ε̃ ≈ 2.17× 106

(V), which aligns more closely with expected values.

From now on, let us consider fully incompressible cases, so let us fix ν = 0.5. In Fig.
9, the values obtained for the relative displacement (with respect to the reference solu-
tion) can be observed for the two developed formulations using Q1 and Q2 elements. To
make a fair comparison between formulations and types of elements, the evolution of
displacements concerning the DOFs is studied. As can be seen, the introduction of the
deviatoric PK2 mechanical stress as a primary variable of the problem prevents the oc-
currence of shear locking, which can be observed in the upϕ formulation. It is interesting
to note that although the upϕ formulation with Q2 elements exhibits the fastest conver-
gence, it should be considered that the upS ′ϕ formulation with Q2 elements will provide
greater accuracy in the calculation of the deviatoric PK2 mechanical stress. Furthermore,
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FIGURE 7. Electrically induced bending beam. Displacement at point A
for uϕ, upϕ and upS ′ϕ formulations upon DOFs for AR = 100.

it is worth highlighting that linear elements with the upS ′ϕ formulation are very com-
petitive with Q2 elements for this type of problem. Fig. 8 shows the final deformation
obtained for both formulations with linear and quadratic elements. As previously dis-
cussed, both Q2 elements and the upS ′ϕ formulation with Q1 elements do not exhibit
shear locking and converge to the same solution. In contrast, for the upϕ formulation
with Q1 elements, shear locking is clearly observed, resulting in smaller deformations
than what should actually occur (see [68, 69] for further discussion).

For the sake of exhaustiveness, we analyze the same case, but now for a much slender
beam, where the length-to-height ratio is AR=500. Thus, we fix the length of the beam
l = 40 m and the height h = 0.08 m. To induce the bending of the beam, we fix the electric
potential at the top side (red line) ϕ = 0.03 V and at the mid line (blue line) ϕ = 0 V.

Fig. 11 shows the relative displacement concerning the DOFs for the beam with an
AR=500. As can be observed, since the beam is now thinner, the effect of shear locking is
greater in the upϕ formulation with Q1 elements. Again, the upS ′ϕ formulation does not
exhibit this locking for Q1 elements, nor do either of the two formulations when Q2 ele-
ments are considered. This clearly demonstrates the importance of accurately capturing
stresses in this type of problem, something that has already been studied and proven in
cases involving plates and shields in solid mechanics [68, 69]. Finally, in Fig. 10, the shear
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FIGURE 8. Electrically induced bending beam. Deformation of the beam
for AR=100. upϕ Q1 (red), upϕ Q2 (blue), upS ′ϕ Q1 (green), upS ′ϕ Q2
(black)

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(A) Relative vertical displacement
upon DOFs

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(B) Relative horizontal displacement
upon DOFs

FIGURE 9. Electrically induced bending beam. Displacement at point A
for both upϕ and upS ′ϕ formulations upon DOFs for AR = 100.

locking of the upϕ formulation with Q1 elements can again be observed. It is important
to note that, in this case, as the beam is more slender, the locking increases, resulting in a
larger discrepancy compared to the final solution presented by the other cases.
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FIGURE 10. Electrically induced bending beam. Deformation of the beam
for AR=500. upϕ Q1 (red), upϕ Q2 (blue), upS ′ϕ Q1 (green), upS ′ϕ Q2
(black)
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FIGURE 11. Electrically induced bending beam. Displacement at point A
for both upϕ and upS ′ϕ formulations upon DOFs for AR = 500.

6.3. 3D cases. To conclude this section, two distinct cases in three dimensions will be
analyzed to test the capability of our formulations under these conditions and highlight
some key differences among them. This analysis will allow us to observe the performance
of each formulation in a three-dimensional setting, identifying specific advantages and
limitations based on the context of each case.

6.3.1. Electrically induced bending plate. The objective of this numerical example is to com-
pare the solution obtained with the different formulations developed above in scenarios
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where the application of an electric field on the electro-active material leads to bending-
type deformations. This example considers an actuation device, as illustrated in Fig 12.

FIGURE 12. Electrically induced bending plate. Geometry

FIGURE 13. Electrically induced bending plate. Deformation of the plate
for several load increments. upϕ (red) and upS ′ϕ (green) formulations

The actuation device is a parallelepiped with sides a = 120 mm, b = 10 mm and
c = 1 mm. The plate is fixed at the X = 0 end, and stress-free boundary conditions are
applied to the remaining boundaries for the mechanical part. Two electrodes are placed
at Z = 0 and Z = c/2 to induce bending in the plate with a voltage ∆V = 0.15 mV.
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Pertaining to the discretization framework, a mesh with 180× 15× 4 trilinear Q1 FEs
has been judiciously employed to effectuate the interpolation of the unknowns of the
problem for both formulations.

In this illustrative instance, we examine a Neo-Hookean constitutive model for the
deviatoric part of the strain energy, with shear modulus µ = 0.485 Pa and Poisson ratio
ν = 0.5. A Simo-Taylor law for the volumetric model is set. The material is selected to
be an ideal isotropic dielectric elastomer, being the electric permittivity of the dielectric
ε = 1 F/m.

(A) upϕ formulation. Pressure field (B) upϕ formulation. Deviatoric PK2
mechanical stress field

(C) upS′ϕ formulation. Pressure field (D) upS′ϕ formulation. Deviatoric
PK2 mechanical stress field

FIGURE 14. Electrically induced bending plate. Pressure and deviatoric
PK2 mechanical stress fields for several load increments for both upϕ and
upS ′ϕ formulations

Fig. 13 illustrates the deformations obtained for the two formulations studied at dif-
ferent load steps. As expected, shear locking reappears in the upϕ formulation when
using Q1 FEs, consistent with previous findings. This issue is more pronounced due to
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the limitations of a linear interpolation, which fails to capture the gradients necessary for
describing complex deformations. The case was also analyzed using Q2 elements, yield-
ing the same deformations as the upS ′ϕ formulation with Q1 elements. This highlights
that the upS ′ϕ formulation effectively mitigates shear locking, even when using linear
elements. To conclude this example, Fig. 14 illustrates the pressure and deviatoric PK2
stress fields for both formulations. As expected, the upS ′ϕ formulation demonstrates a
superior ability to capture high stress concentrations compared to the upϕ formulation.

6.3.2. Complex electrically induced bending plate. This study explores the potential of EAPs
which are often modeled as incompressible. While not all DEs are strictly incompress-
ible, many exhibit an approximately incompressible behavior due to their high elasticity
and the nature of their polymeric base. By applying localized electric potentials through
strategically placed electrodes, complex deformation patterns can be induced, enabling
the material to function as a dynamic actuator, sensor, or vibration dampener in response
to external stimuli such as air flow, water currents, or mechanical vibrations. The exam-
ple considers a cantilever beam configuration with multiple electrode pairs distributed
along its surface and interior. By altering the voltage applied to these electrodes, the
deformation of the beam can be finely controlled, allowing for targeted responses to ex-
ternal perturbations. This capability has broad implications for applications requiring
adaptive control, including vibration isolation systems, flow control surfaces, and ad-
vanced sensing platforms.

FIGURE 15. Complex electrically induced bending plate. Geometry

This numerical example investigates the complex phenomenon of electrically induced
bending in a cantilever beam, building upon a similar geometry and boundary conditions
as in prior studies [41]. It considers the same cantilever beam as in the preceding numeri-
cal example, now subjected to a more complex set of boundary conditions for the electric
potential, as illustrated in Fig. 15. The same material properties, mesh discretization and
FEs as the ones taken for the previous numerical example are considered. Several elec-
trodes are placed as it is seen in Fig. 15 to reproduce a complex bending situation with a
voltage ∆V = 0.2 mV.

Fig. 16 shows the deformations observed for the two formulations across different
load steps. As expected, shear locking appears again in the upϕ formulation when Q1
finite elements are used, consistent with prior results. The analysis was also conducted
with Q2 elements, producing deformations equivalent to those obtained with the upS ′ϕ
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FIGURE 16. Complex electrically induced bending plate. Deformation of
the plate for several load increments. upϕ (red) and upS ′ϕ (green) for-
mulations

(A) Pressure field (B) Deviatoric PK2 mechanical stress field

FIGURE 17. Complex electrically induced bending plate. Pressure and
deviatoric PK2 mechanical stress fields for a fixed load increment for both
upϕ and upS ′ϕ formulations

formulation using Q1 elements. To conclude this analysis, Fig. 17 presents the pressure
fields and deviatoric PK2 mechanical stresses for the same load factor. In this case, the
improved accuracy provided by the upS ′ϕ formulation is more evident, particularly in
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the regions where stress concentrations occur, such as in the areas with curvature changes
in the plate.

7. CONCLUSIONS

In this work we have described new stabilized FE methods for the study of finite strain
electromechanics when considering incompressible materials including stress accurate
analysis.

First of all, the momentum equation is complemented with a constitutive law for the
pressure which emerges from the deviatoric/volumetric decomposition of the strain en-
ergy function to formulate the mixed upϕ formulation presented in Subsection 4.1. This
law is formulated properly to obtain a simple way to impose the incompressibility of the
material automatically. Furthermore, to design a FE technology with a high degree of
accuracy of the stress field, the constitutive law for deviatoric PK2 mechanical stresses is
added to the system to obtain a monolithic system of equations for the upS ′ϕ formula-
tion stated in Subsection 4.2.

For both formulations, we have proposed a term-by-term (S-OSGS) type stabilization
technique based on the decomposition of the unknowns into FE scales and SGSs. As it is
observed in Section 6, this stabilization technique is able to circumvent the compatibility
restrictions on the interpolation functions among the primary unknowns of the problem.
Furthermore, the proposed schemes show the desired rate of convergence upon mesh
refinement as it can be observed in the numerical example in Section 6.1. It is interesting
to remark that the S-OSGS stabilization technique allows us to obtain well-defined solu-
tions and to neglect terms that do not contribute to stability. This methods turns out to
be more robust for solving problems when large stress gradients are present.

Furthermore, the coupled system of algebraic nonlinear equations has been solved by
means of the staggered strategy described in Section 5. This approach is advantageous
for this type of coupled problem due to the saddle point issue associated with the con-
vex/concave nature of the free energy density [27]. By solving the mechanical and elec-
trical problems separately, the staggered approach proves to be less intrusive and more
easily integrated into in-house computational platforms.

The proposed formulations are convergent upon mesh refinement, virtually free of any
volumetric locking. The presented upS ′ϕ technology is suitable for engineering appli-
cations in which a higher accuracy of stresses is needed. A comparison with the upϕ
formulation is also carried out. Results clearly show that both formulations deal appro-
priately with the incompressibility constraint but the three-field formulation exhibits a
higher accuracy in the stress field, even for very coarse meshes.

It is important to highlight that, in many cases, dielectric elastomers exhibit a very
high length-to-thickness ratio, often requiring work with very thin materials. When such
materials are subjected to bending movements, it has been observed that the thinner the
material, the greater the shear locking that occurs in the upϕ formulation with linear
elements. However, when introducing deviatoric stresses as a variable, the upS ′ϕ for-
mulation does not exhibit this type of locking, making it a very appealing approach for
these materials.
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