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Abstract

This work introduces a numerical framework for addressing Fluid-Structure Interaction problems involving thin
structures subject to finite strain deformations. The proposed approach utilizes an embedded mesh method to
establish a coupling interface between the fluid and structural domains. The novelty of the work is the incorporation
of a recently developed locking-free stabilized formulation of solid-shell elements to handle the structural domain.
The framework employs established techniques to handle pressure jumps in the fluid domain across the embedding
interface and enforce boundary conditions, such as discontinuous shape functions for the pressure unknowns designed
to segregate nodal contributions of the cut elements, and Nitsche’s method for the weak imposition of transmission
conditions in the fluid. The present approach is validated through a series of benchmark cases in both 2D and
3D environments, progressively increasing in complexity. The results demonstrate good agreement with existing
literature, establishing the presented framework as a viable method for addressing Fluid-Structure Interaction
problems involving thin structures subject to large strains.
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1. Introduction

The Fluid-Structure Interaction (FSI) problem is commonly formulated by solving the partial differential equa-
tions governing the fluid, structure, and the coupling conditions at the boundaries where the domains interact.
Several families of numerical techniques exist to deal with this complex phenomenon, which need to define the
strategy used to solve each of the components of the problem: the equations of fluid mechanics, the equations of
solid mechanics, and the algorithmic approach for the coupling between both of them. This kind of problem can
be approached by using either a monolithic or a partitioned scheme. The monolithic approach involves solving the
fluid, structure, and interface equations as a unified system. Consequently, both domains advance simultaneously,
requiring the solution of a large system of equations. On the other hand, the partitioned scheme employs separate
solvers for each domain. Here, smaller independent systems of equations are solved separately, and the solution is
obtained iteratively in a staggered manner. While the monolithic scheme results in a larger system of equations
due to its simultaneous treatment of fluid, structure, and coupling equations, the partitioned approach involves
solving smaller systems independently, coupling them iteratively. This efficiency makes the partitioned approach
the preferred choice in many computational mechanics codes.

However, the partitioned scheme has its drawbacks. Firstly, the coupling algorithm is not guaranteed to converge
consistently [1]. Secondly, the added-mass instability arises when the density of the structure is comparable to or
lower than that of the fluid. As implied by its name, this instability results in an added-mass effect or increased
inertia of the structure due to the surrounding fluid not being able to occupy the same physical space simultaneously
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[2]. While the stability and convergence of the coupling process primarily depends on the ratio of the apparent
added mass to the structural mass [3], the elasticity coefficients and time steps have to be taken into account to
obtain stable solutions [4]. It is important to remark that the added-mass instability is not an inherent concern
for all FSI problems. It rather becomes important in applications such as hemodynamics, where the blood as well
as other biological tissues have similar densities [5, 6, 7, 8], but is does not appear in cases where the density of
the solid is greater than that of the fluid, such as in aeroelasticity problems [9, 10, 11]. Lastly, it is important to
emphasize that the added-mass effect is not present in the monolithic approach, because the energy balance between
fluid and structure is automatically satisfied [2].

In the context of partitioned schemes, coupling can be implemented using either a strong or a weak approach.
Strong coupling schemes necessitate a sub-iteration algorithm involving both domains for each time step. Although
this type of coupling is computationally expensive, it yields the same solution as the monolithic scheme after the
iterative process. In contrast, weakly coupled schemes use the solution from one domain for each time step to
subsequently solve the other domain in a staggered manner. However, this approach can introduce instabilities
associated with the coupling procedure [12], including the added mass effect.

The numerical techniques to approach FSI problems can also be classified depending on whether or not fluid
the mesh conforms to an interface between fluid and structure [13] and therefore, on how to communicate the
information between the fluid, the solid and the mesh [10]. On the one hand, there are methods where the fluid
mesh conforms to an interface; the most common approaches of this type are Arbitrary Lagrangian-Eulerian (ALE)
methods [14] and deforming-spatial-domain or space-time procedures [15]. On the other hand, there are methods
where the fluid and structure meshes do not conform; methods that follow this approach are the Embedded Mesh
(EM) methods [16], where the embedded interface is implicitly represented by tools such as in cut-cell methods [17]
and level-set methods [18]. It is important to note that, regardless of whether the mesh conforms to an interface,
every FSI formulation requires the governing equations of both fields to satisfy the wall boundary conditions.

The ALE method considers a reference coordinate system for the fluid that moves accommodating the motion
of the solid. While this method excels at accurately depicting sharp interfaces, it comes with the disadvantage of
requiring adaptive meshes or re-meshing processes, which can be computationally expensive [19], depending on the
interface and the meshing algorithm [20].

Concerning EM methods, the solid and the fluid are discretized separately, and their meshes do not need to
coincide at an interface. This flexibility allows the solid, described in a Lagrangian way, to move through the
Eulerian-described fluid. Generally, EM methods can be classified into two types: Diffused Boundary Methods and
Sharp Interface Methods [21]. In the former, the embedded boundaries are smeared by distributing the singular
forces to the surrounding background mesh nodes. This family includes the classic Immersed Boundary (IB)
method, first proposed by Peskin in [16], the Direct Forcing IB method [22], and the Penalization method [23]. The
latter consist of methods that eliminate the smearing feature, such as Cut-Cell methods [24], Immersed Interface
methods [25], Hybrid Cartesian-IB methods, and Curvilinear IB methods [26]. All these methods require imposing
the boundary conditions in an unfitted manner. This is typically addressed by enforcing them in a weak sense.
Techniques such as the penalty method [27], the Lagrange multipliers method [28], or the Nitsche method [29, 30]
are commonly utilized to handle this issue.

The approach used in this work correspond to a EM method of the Cut Finite Element Method (Cut-FEM)
type [31, 32]. This family of methods allows to signal the exact position of the embedded interface by defining a
iso-surface function to pinpoint its location. We prefer to adhere to Cut-FEM type approaches as they enable the
attainment of accurate solutions through purely local boundary condition imposition [33]. A particular feature of
our approach is that in elements intersected by the embedded interface, the conventional FE space is replaced by
a discontinuous one. This substitution facilitates the disconnection of velocity and pressure fields in both sides of
an intersected element, enabling the representation of solution discontinuities arising from the immersion of a thin
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body.
This study is a direct continuation of two previous works. The first one is dedicated to the analysis of numerical

locking solid-shell elements and how to overcome it by using stabilized formulations [34], and the second one is
dedicated to the extension of the stabilized formulation to finite strain theory [35]. The present work is dedicated
to extend the concepts developed previously to the FSI problem by using an EM approach, wherein the solid
mesh is embedded inside the fluid mesh. The main contribution of this work consists in the employment of the
stabilized mixed displacement-stress formulations developed for solid-shell elements to handle FSI problems. For the
present study, both domains are approached by using mixed formulations: in the fluid domain a velocity-pressure
formulation, whereas in the solid domain a displacement-stress formulation. The use of mixed formulations is
usually associated to an incompatibility in the space of the unknowns if not interpolated properly [36]. For that
reason, the problem is approached by means of stabilized formulations. The stabilization techniques are based
on the VMS framework, which enables the use of equal-order interpolation for unknowns and, in the case of the
solid-shell elements, it also ensures that the formulation is free from the numerical locking that is inherent to them.

In addition to the stabilized Finite Element (FE) formulations utilized for solving each individual problem,
the present FSI approach requires several essential components to be achieved properly. Firstly, it is necessary
to implement a search algorithm to find the intersection of the solid interface inside the fluid elements, ensuring
the accurate definition of the intersection and the new integration points. This task is non-trivial, as search
algorithms can be computationally costly if not implemented efficiently. Secondly, there is a need to define shape
functions capable of handling pressure-segregated domains. Thirdly, a proper strategy must be chosen to impose the
transmission conditions at the interfaces of the solid and the fluid. Lastly, in strongly coupled schemes, it is crucial
to ensure the convergence of the transmission conditions. Therefore, a coupling strategy is required to minimize
the interface residuals. All of these challenges are thoroughly addressed in the present work.

This work is organized as follows: the geometrical approximation of the shell domain is briefly explained in
Section 2. It is followed by the introduction of the governing equations of the fluid and solid problems in Section 3,
where the solid dynamics equations in finite strain theory and Navier-Stokes continuum equations are summarized,
starting with the differential form of the corresponding boundary value problems in Subsection 3.1. The variational
form of the solid and fluid problems are explained in Subection 3.2, presented in their mixed displacement-stress
and velocity-pressure formulations, respectively. The time integration and linearization are described in Section 4.
Consecutively, the stabilization techniques are briefly summarized in Section 5. Then, a brief summary of the
construction of discontinuous shape functions is presented in Section 6. Details regarding the FSI problem, including
the transmission conditions and the coupling strategy, are explained in Section 7. Some numerical examples are
portrayed in Section 8. Lastly, the final remarks and conclusions are presented in Section 9.

2. Geometrical approximation of solid-shells using finite elements

2.1. Construction of the local basis

Let us summarize the construction of the geometrical approximation to solid-shells presented in [34]. Let us
first consider the shell as a surface, represented by Ω2D

s in R3. Suppose that we have a FE partition Th “ tKu of
Ω2D
s of diameter h, so that Ω̄2D “

Ť

KPTh K. Let K P Th be an element domain of the partition with isoparametric
coordinates pξ, ηq, its mapping from the reference domain K0 Ă R2 to K Ă R3 defined as

ϕK : K0 ÝÑ K

pξ, ηq ÞÑ px1, x2, x3q. (2.1)
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Consider nnod as the number of nodes of K, and a Lagrangian interpolation

ϕKpξ, ηq “
nnod
ÿ

A“1

NApξ, ηqxA, (2.2)

where NApξ, ηq is the shape function of node A onK0, and xA is the position vector of node A inK, A “ 1, . . . , nnod.
The collection of all mappings tϕK ,K P Thu provides a local parametrization of Ω2D

s . The vectors tangent to each
K P Th can be constructed as

g˚1,K “

ˇ

ˇ

ˇ

ˇ

BϕK
Bξ

ˇ

ˇ

ˇ

ˇ

´1
BϕK
Bξ

,
BϕK
Bξ

“

nnod
ÿ

A“1

BNA

Bξ
xA, (2.3)

g˚2,K “

ˇ

ˇ

ˇ

ˇ

BϕK
Bη

ˇ

ˇ

ˇ

ˇ

´1
BϕK
Bη

,
BϕK
Bη

“

nnod
ÿ

A“1

BNA

Bη
xA, (2.4)

which allow us to compute vectors normal to each K Ă Ω2D
s as

g˚3,K “ g
˚
1,K ˆ g

˚
2,K . (2.5)

If ξ and η are orthogonal coordinates, |g˚3,K | “ 1; otherwise, g˚3,K is normalized.
The basis vectors tg˚1,K , g

˚
2,K , g

˚
3,Ku, are discontinuous across elements if they are computed in this manner.

However, they can be used to obtain a continuous basis. First, we project the vector field g˚3,K , K P Th, onto
the space of continuous vector fields using a standard L2pΩ2D

s q projection, thus obtaining the nodal vectors ga3 ,
a “ 1, . . . , npts, for the nodal points npts of Th. Then it follows that

g3px
1, x2, x3q “

řnpts

a“1 N
apx1, x2, x3qga3

ˇ

ˇ

řnpts

a“1 N
apx1, x2, x3qga3

ˇ

ˇ

,

where Na is the global shape function of node a. Within each element K P Th we have

g3|Kpξ, ηq “

řnnod

A“1 N
Apξ, ηqgA3,K

ˇ

ˇ

ˇ

řnnod

A“1 N
Apξ, ηqgA3,K

ˇ

ˇ

ˇ

(2.6)

where A is the local numbering of the global node a. Figure 1 shows a cut of a surface and the conceptual difference
between g˚3,K and g3. Note that for linear elements g˚3,K will be constant on each K P Th.

Figure 1: Normal vectors to the shell g˚
3,K and their smoothing g3.

Let te1, e2, e3u be the canonical basis of R3. Once the continuous global vector field g3 is constructed, a
continuous local basis can be built at each point tg1, g2, g3u by defining

g1 “
g3 ˆ e3

|g3 ˆ e3|
(2.7)
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g2 “ g3 ˆ g1, (2.8)

the only exception being when g3 aligns with e3, case in which we set g1 “ e1 and g2 “ e2 or g1 “ ´e1 and
g2 “ ´e2 if g3 is opposite to e3. The covariant basis tg1, g2, g3u constructed this way will be such that tg1, g2u

will be approximately tangent to Ω2D
s and g3 approximately normal.

2.2. Extrusion of the shell mid-surface

The solid-shell domain where the calculations are performed is denoted as Ω3D
s , and it is computed from the

normal direction extrusion of Ω2D
s , which also represents the mid-surface of the shell. The construction of Ω3D

s can
be done element-wise due to the continuity of g3.

Consider the thickness of the shell to be defined by its values at the nodes of Th, denoted as ta, a “ 1, . . . npts.
For each K P Th, the thicknesses at the nodes will be tAK , A being the local number of node a, and the thickness
function can be constructed as

tKpξ, ηq “
nnod
ÿ

A“1

NApξ, ηqtAK . (2.9)

The 3D element K3D
0 “ K0 ˆ r´1, 1s can be constructed from the reference element K0, and the mapping

ψK : K3D
0 ÝÑ R3

pξ, η, ζq ÞÑ px1, x2, x3q “ ϕKpξ, ηq ` ζ
1

2
tKpξ, ηqg3|Kpξ, ηq, (2.10)

and then set K3D “ ψKpK
3D
0 q, i.e., the image of K3D

0 through ψK . The solid domain where the problem is posed
is then Ω3D

s “
Ť

KPTh K
3D. From the continuity of g3 and the intrinsic continuity of the thickness function, Ω3D

s

will be a smooth extrusion of Ω2D
s . This domain is depicted in Fig. 2.

Figure 2: Geometry of the shell: 2D surface (left) and 3D extruded volume (right).

2.3. Interpolation across the thickness

After constructing the element domain tK3Du, it only remains to define their degrees of freedom and basis for
the FE space. Let us consider continuous Lagrangian interpolations for the original partition tKu to define them
for the reference element K0 ˆ r´1, 1s. Let NA,A1

i pξ, η, ζq be the shape function of a node in K0 ˆ r´1, 1s that
corresponds to node A of K0 and node A1 of the discretization of r´1, 1s. The shape functions corresponding to
the solid-shell body NA,A1

i pξ, η, ζq are constructed by multiplying the mid-surface shape functions NApξ, ηq and the
standard one dimensional Lagrangian shape functions NA1pζq in the isoparametric space as

NA,A1 pξ, η, ζq “ NA pξ, ηqNA1 pζq . (2.11)
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At the global level the shape functions will be written as Napx1, x2, x3q, with a running again from 1 to npts.
The FE partition resulting from the extrusion of the FE partition of the shell surface Th “ tKu will be denoted
as T 3D

h “ tK3Du. From this point forward, the superscript 3D will be omitted for simplicity, since the following
formulations as well as the numerical experiments are presented by considering the 3D approximation of the shell.

3. Governing equations

3.1. Boundary value problems
3.1.1. Finite strain solid continuum equations

Consider the solid domain to be Ωsptq of Rd at the current time t ě 0, where d P t2, 3u is the number of space
dimensions; consequently Ωsptq is the current configuration and Γsptq “ BΩsptq is the domain boundary at time t.
The domain and its boundary defined in the reference configuration are denoted by Ω0

s “ Ωsp0q and Γ0
s “ BΩ0

s,
respectively. Let us consider the motion φ of the deformable solid through a time interval s0, T r, whose mapping
is described by φ : Ω0

s ÝÑ Ωsptq. The solid particles are labeled X P Ω0
s and x P Ωsptq for the initial and current

configurations, respectively, and the motion is defined as

x “ φ pX, tq . (3.1)

Consider the space-time domain D “ tpX, tq |X P Ω0, t Ps0, T ru where the problem is defined. This problem
consists of finding a displacement field us : D ÝÑ Rd and a second Piola-Kirchhoff (PK2) stress tensor field
Ss : D ÝÑ Rd b Rd such that

ρ0
s

B2usa
Bt2

´
B

BXA
tFsaBSsBAu “ ρ0

sbsa in Ω0
s, t P s0, T r , (3.2)

SsAB ´ 2
BΨs

BCsAB
“ 0 in Ω0

s, t P s0, T r , (3.3)

ρsJs “ ρ0
s in Ω0

s, t P s0, T r , (3.4)

us “ us,D on Γ0
s,D, t P s0, T r , (3.5)

ns ¨ pFs ¨ Ssq “ ts,N on Γ0
s,N , t P s0, T r , (3.6)

us “ u
0
s in Ω0

s, t “ 0, (3.7)

9us “ 9u0
s in Ω0

s, t “ 0. (3.8)

For clarity, we have used index notation in (3.2)-(3.3), with index a (in the deformed configuration) and A,B,C,D
(in the reference configuration) running from 1 to d, and using the summation convention.

Let us briefly discuss the above equations. Eq. (3.2) is the balance of linear momentum equation in a total
Lagrangian framework, where Fs “ Bx

BX is the deformation gradient, ρs is the density at time t, ρ0
s is the initial

density, Js “ detpFsq ą 0 is the determinant of the deformation gradient, Ss is the second Piola-Kirchhoff (PK2)
stress tensor whose symmetry is implied by the angular momentum equations, and ρ0

sb are the body forces. Eq. (3.3)
correspond to the constitutive equation, where the PK2 stress tensor is written in terms of the strain energy
function Ψs by taking derivatives with respect to the right Cauchy-Green tensor Cs “ F Ts ¨ Fs. Eq. (3.4) is the
mass conservation equation, Eq. (3.5) is the imposition of displacement boundary conditions us,D on the Dirichlet
boundaries, Eq. (3.6) is the imposition of prescribed tractions tN on the Neumann boundaries Γ0

s,N considering the
outward unit vector ns normal to the reference configuration boundary, and Eqs.(3.7)-(3.8) are the imposition of
initial displacements u0

s and velocities 9us,0 “
Bus
Bt

ˇ

ˇ

t“0
, respectively.

The material is considered as a non-linear isotropic hyperelastic model. Therefore, Ψs is built as a function of
the invariants of Cs, defined as

I1 “ tracepCsq “ Cs : I,
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I2 “ tracepCs ¨Csq “ Cs : Cs,

I3 “ detpCsq “ J2
s .

The compressible Neo-Hookean material stored energy function is defined in terms of the invariants as

Ψs “
µs
2
pI1 ´ 3q ´ µs ln Js `

λs
2
pln Jsq

2 (3.9)

where µs and λs are Lamé material coefficients. Therefore, Ψs measures the work done by stresses from the initial to
the current configuration, making the relationship between Ψs and Cs to be independent of the coordinate system
chosen. Note that in a rigid body motion, or absence of deformation, the deformation gradient is the identity and
the stored energy function vanishes. For this specific material, an expression for the PK2 stress tensor can be
obtained from Eq. (3.3), resulting in

Ss “ µs
`

I ´C´1
s

˘

` λs pln JsqC
´1
s . (3.10)

The solid mechanics problem is presented through a mixed displacement-PK2 stress formulation. The reason lies
in the fact that the interpolation of Ss allows to overcome numerical locking inherent to shell problems, as has been
proven in previous works [35, 34]. The finite strain formulation has already been developed in [34], and therefore
in the present work it is only briefly recalled for completeness. It is also worth mentioning that the extension
to incompressible materials can be achieved by adopting a decoupled representation of the strain energy function
which divides it into the deviatoric and volumetric parts [37, 38].

3.1.2. Navier-Stokes continuum equations

Let us consider a computational domain Ωf of Rd for dimensions d P t2, 3u, with boundaries Γf , in a time
interval s0, T r. The standard two-field Navier-Stokes problem for incompressible fluid consist in finding the velocity
uf and pressure pf such that

ρf
Buf
Bt

` ρfuf ¨∇uf ´∇ ¨ p2µf∇suf q `∇pf “ ff in Ωf ptq, t P s0, T r , (3.11)

∇ ¨ uf “ 0 in Ωf ptq, t P s0, T r , (3.12)

uf “ uf,D on Γf,Dptq, t P s0, T r , (3.13)

nf ¨ σf “ tf,N on Γf,N ptq, t P s0, T r , (3.14)

uf “ uf,0 in Ωf ptq, t “ 0, (3.15)

where Eqs. (3.11)-(3.12) are the balance of linear momentum and the incompressibility restraint, respectively,
Eqs. (3.13)-(3.14) are the Dirichlet and Neumann boundary conditions, and Eq. (3.15) is the velocity initial condi-
tion. In the balance of linear momentum equation, ρf is the fluid density, µf is the dynamic Newtonian viscosity,
∇suf “

1
2

´

∇uf ` p∇uf qT
¯

is the symmetrical gradient of the velocity vector, and ff is the body forces vector. In
the boundary condition equations, uf,D is the prescribed velocity in the Dirichlet boundary, nf is the unit normal
pointing outwards from the fluid in the interface, σf “ ´pI ` 2µf∇suf is the Cauchy stress tensor, and tf,N is the
prescribed fluid traction on the Neumann boundaries. Lastly, the initial velocity condition uf,0 is given to supply
the governing equations.

3.2. Variational form

Let us consider H1pΩq to be the space of L2pΩq functions whose derivatives belong to L2pΩq, for a domain Ω.
In a general manner, the integral of the product of two functions in a domain ω is denoted by x¨, ¨yω, omitting the
subscript when ω is either Ω0

s or Ωf depending on the problem being referred to. The variational form of the solid
or fluid flow problems are defined in the following.
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3.2.1. Variational form for the solid problem

For the solid problem the spaces are defined as U Ă H1pΩsq
d and T Ă L2pΩsq

dˆd for the displacements and
the PK2 stresses, respectively, for all time t P s0, T r . Functions in U satisfy the Dirichlet boundary conditions,
whereas we denote as U0 the space of functions that vanish on the Dirichlet boundary of the solid domain Γ0

s,D.
Let W “ U ˆ T and W0 “ U0 ˆ T be the spaces where the weak form of the solid problem is defined, so that the
unknowns Us “ rus,Sss

T and test functions Vs “ rvs,Tss
T are such that Us P W for each time t and Vs P W0,

respectively. By testing system (3.2)-(3.3) against arbitrary test functions Vs, the weak form of the problem consists
of finding Us : s0, T rÝÑW such that the initial conditions are satisfied and

B

vs, ρ
0
s

B2us
Bt2

F

`As pVs,Usq “ Fs pVsq @Vs PW0, (3.16)

where AspVs,Usq is a semilinear form defined on W0 ˆW as

AspVs,Usq :“

B

Bvsa
BXA

, FsaBSsAB

F

` xTsAB , SsABy ´

B

TsAB , 2
BΨs

BCsAB

F

, (3.17)

and FspVsq is a linear form on W0 defined by

FspVsq :“
@

vs, ρ
0
sb
D

` xvs, ts,N yΓ0
s,N

. (3.18)

3.2.2. Variational form for the fluid problem

For the fluid flow problem, the velocity and pressure spaces are defined as V Ă H1 pΩf q
d satisfying the Dirichlet

conditions and Q “ L2 pΩf q, respectively. Let also V0 Ă H1 pΩf q
d be the space of functions that vanish on

the Dirichlet boundary of the fluid domain Γ0
f,D. Let X :“ V ˆ Q and X0 :“ V0 ˆ Q, so that the unknowns

Uf “ ruf , pf s
T
P X for each time t and the test functions Vf “ rvf , qf s

T
P X0. By testing Eqs.(3.11)-(3.12) against

arbitrary test functions Vf , the weak form of the problem consists of finding Uf : s0, tf r Ñ X such that the initial
conditions are satisfied and

B

vf , ρf
Buf
Bt

F

`Af pVf ,Uf q “ Ff pVf q @Vf P X0, (3.19)

where Af pVf ,Uf q is a semilinear form defined on Xˆ X0 as

Af pVf ,Uf q “ xvf , ρfuf ¨∇uf y ` x∇svf , 2µf∇suf y ´ x∇ ¨ vf , pf y ` xq,∇ ¨ uy (3.20)

and Ff pVf q is a linear form on X0 defined by

Ff pVf q “ xvf ,ff y ` xvf , tf,N yΓf,N . (3.21)

4. Time integration and linearization

In order to create a proper linear system of equations once discretized in space, the variational forms defined
in Eqs. (3.16) and (3.19) need further treatment. In both cases the time derivative term has to be properly
approximated using a time integration scheme. In the solid case, the geometric and material stiffness terms have
to be linearized (first and third terms of Eq. (3.17)), while in the fluid case, only the convective term has to be
linearized (first term in Eq. (3.20)). The time integration and linearization of each individual problem is described
below.

4.1. Time integration

The time integration is performed by using an implicit scheme of the Backward Differentiation Formula (BDF)
type for both solid and fluid problems. As usual, first order time integration (BDF1) is used to initialize computa-
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tions, and it is followed by a second order time integration (BDF2) for the rest of the problem.
For this purpose, consider n as the time step counter and δt is the time step size of the uniform partition of

the time interval s0, T r, and Op¨q is the approximation order of the scheme depending on the time step size. For
the solid part, the second time derivative of the displacement B

2us
Bt2 “: as is approximated at a given time step

tn`1 “ tn ` δt as

BDF1 : an`1
s “

1

δt2
“

un`1
s ´ 2uns ` u

n´1
s

‰

`Opδtq, (4.1)

BDF2 : an`1
s “

1

δt2
“

2un`1
s ´ 5uns ` 4un´1

s ´ un´2
s

‰

`Opδt2q. (4.2)

Similarly for the fluid part, the first time derivative of the velocity Buf
Bt “: af is computed as

BDF1 : an`1
f “

1

δt

”

un`1
f ´ unf

ı

`O pδtq , (4.3)

BDF2 : an`1
f “

1

2δt

”

3un`1
f ´ 4unf ` u

n´1
f

ı

`O
`

δt2
˘

. (4.4)

4.2. Linearization

The finite strain solid mechanics equations yield a non-linear system that must be linearized in order to be
solved. The idea is to obtain a bilinear operator that allows to compute a correction δUs :“ rδus, δSss

T of the
guessed solution Un`1

s at a time tn`1. The linearization is performed by using a Newton-Raphson scheme on the
formulation presented in Eq. (3.16), meaning that the unknown for which we solve becomes the correction of the
solution. Therefore the new problem consists in finding δUs PW0 such that

A

vs, ρ
0
s

cs
δt2

δus

E

` Bs pVs, δUsq “ Fs pVsq ´As

`

Vs,U
n`1
s

˘

´
@

vs, ρ
0
sa

n`1
s

D

@Vs PW0, (4.5)

where Bs pVs, δUsq defined on W0 ˆW0 is the bilinear form obtained through the linearization of As pVs,Usq, and
it is defined as

Bs pVs, δUsq “
B

Bvsa
BXA

,
Bδusa
BXB

SsBA

F

`

B

Bvsa
BXA

, FsaBδSsBA

F

` xTsAB , δSsABy ´

B

TsAB ,CsABCDFsaC
Bδusa
BXD

F

, (4.6)

where Cs “ 4 B
2Ψs

BCsBCs
is the constitutive tangent matrix which relates variations of the PK2 stress tensor δSs and

the right Cauchy tensor δCs. In the same manner, the time derivative term is linearized as

B2u

Bt2

ˇ

ˇ

ˇ

ˇ

tn`1

“
cs
δt2

δu` an`1, (4.7)

where cs is a coefficient that depends on the integration scheme (cs “ 1 for BDF1 and cs “ 2 for BDF2), and an`1
s

is the acceleration obtained in the previous iteration, computed as stated in Eqs. (4.1) and (4.2). The bilinear form
Bs relies on the previous iteration values of the unknown Un`1

s through the evaluation of various tensor functions,
although this dependence has not been explicitly presented.

The Navier-Stokes equations have a non-linearity in the convective term presented in Eq. (3.16), that can be
linearized using a proper scheme. In this work, both fixed point and Newton-Raphson schemes are considered. Let
us consider ûf to be the previous iteration velocity in a given time step and cl a constant that determines the type
of linearization. The linearized problem consists in finding Uf P X such that

xvf , ρfaf y ` Bf pVf ,Uf q “ Ff pVf q ´ cl xvf , ρf ûf ¨∇ûf y @Vf P X0, (4.8)

where Bf is a bilinear form defined as

Bf pVf ,Uf q “ xvf , ρf ûf ¨∇uf y ` cl xvf , ρfuf ¨∇ûf y ` x∇svf , 2µf∇suf y ´ x∇ ¨ vf , pf y ` xq,∇ ¨ uy , (4.9)
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and the values cl “ 0 and cl “ 1 set the linearization as fixed point and Newton-Raphson schemes, respectively.

5. Stabilized Finite Element formulation

Given that the primary objective of this work is not to introduce the already established stabilized formulation
that we use, the details regarding the mathematical foundations are omitted. The stabilized formulation adopted
here follows the Variational Multiscale (VMS) framework, initially proposed by Hughes et al. [39] and further
developed in [40]. The fundamental concept within this framework is incorporating additional consistent terms into
the original Galerkin FE formulation, enhancing its stability without compromising accuracy. This enhancement is
achieved by introducing a finer resolution space, known as the sub-grid scale (SGS) space.

Let us start with the standard Galerkin FE approximation of the variational problem defined in Eqs. (4.5) for
the solid and in Eq. (4.8) for the fluid. In a general manner, if we consider a FE partition Ph of a domain Ω, the
diameter of an element domain K P Ph is denoted by hK , and the diameter of the element partition is defined as
h “ max thK |K P Phu. Under this definition, the FE partitions of the solid and fluid domains will be denoted as
Psh and Pfh , respectively.

5.1. Finite Strain stabilized formulation

The conforming FE spaces of the solid domain are constructed in the usual manner Uh Ă U and Th Ă T; therefore
Wh “ Uh ˆTh. The subspace of Uh of vectors that vanish on the Dirichlet boundary is denoted as Uh,0 Ă U0, and
Wh,0 “ Uh,0 ˆ Th. Therefore, the Galerkin FE approximation consists of finding δUs,h “ rδus,h, δSs,hs

T
P Wh,0

for a time tn`1, such that
A

vs,h, ρ
0
s

cs
δt2

δus,h

E

` Bs pVs,h, δUs,hq “ Fs pVs,hq ´As

´

Vs,h,U
n`1
s,h

¯

´

A

vs,h, ρ
0
sa

n`1
s,h

E

@Us,h PWh,0. (5.1)

The Galerkin FE approximation lacks of stability unless particular interpolations are used to interpolate the
displacement and PK2 stress fields, requiring to satisfy appropriate inf-sup conditions which can be achieved by
means of stabilization [36]. The stabilized formulation using the VMS approach for the solid mechanics problem
has been initially developed for the finite strain solids for the three-field formulations to obtain enhanced precision
in the stress field and to circumvent the numerical locking due to incompressibility [38]. It has also been extended
to solid-shell elements in order to formulate a locking-free approach in the approximation of thin structures [34].

For the mixed finite strain solid formulation we choose the SGS space to be the orthogonal complement to the
FE space, namely, we use the Orthogonal Subgrid Scale formulation (OSGS), which yields

A

vs,h, ρ
0
s

cs
δt2

δus,h

E

` Bs pVs,h, δUs,hq `
ÿ

K

xLs pVs,hq , τKRs
δU pδUs,hqyK

“ Fs pVs,hq ´As

´

Vs,h,U
n`1
s,h

¯

´

A

vs,h, ρ
0
sa

n`1
s,h

E

´
ÿ

K

A

Ls pVs,hq , τK

”

Rs
U

´

Un`1
s,h

¯

´Πh
´

Rs
U

´

Un`1
s,h

¯¯ıE

K
, (5.2)

where Πh is the L2 projection onto the FE space and Ls “ rLsu,L
s
Ss
T is the adjoint operator that comes from the

integration by parts of Bs, defined by components as

Lsu pVs,hqa “ ´
B

BXB

"

Bvs,ha
BXA

Ss,hBA

*

`
B

BXD
tTsABCsABCDFsaC u ,

LsS pVs,hqAB “
Bvs,ha
BXA

FsaB ` TsAB ,

The residual operators Rs
δU and Rs

U are defined as

Rs
δU pδUs,hq “ ´Bs pδUs,hq ,
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Rs
U

´

Un`1
s,h

¯

“ Fs ´As
´

Un`1
s,h

¯

,

where the components of Bs “ rBsu,B
s
Ss
T , As “ rAs

u,A
s
Ss
T , and Fs “ rFsu,F

s
Ss
T are defined as

Bsu pδUs,hqa “ ´
B

BXA

"

δus,ha
BXB

Ss,hAB

*

´
B

BXA
tFsaBδSs,hABu ,

BsS pδUhqAB “ δSs,hAB ´ CsABCDFsaC
Bδus,ha
BXD

,

As
u

`

Un`1
h

˘

a
“ ´

B

BXA
tFsaBSs,hBAu ,

As
S

´

Un`1
s,h

¯

AB
“ Ss,hAB ´ 2

BΨ

BCs,AB
,

Fsua “ ρ0
sbsa ,

FsS “ 0.

It is understood that Fs and Cs are computed with us,h. Tensor Cs is the fourth order tangent constitutive tensor.
The matrix τ´1

K is an approximation of the operator Bs withing each element K. The details on how to design
τK can be reviewed in [41]. In this case, τK is taken as a diagonal matrix where the stabilization parameters are

τK “

«

τuId 0

0 τSI

ff

, τu “ cu
h2
K

2µs
, τS “ cS ,

where cu and cS are algorithmic parameters to be chosen. In the examples below they are set as cu “ 0 and
cS “ 0.1, although it has been proven that the formulation is very insensitive to them, and they can be set in a
wide range of values. It has to be noted that this expression of the stabilization parameters mimics the classical
primal formulation of the mixed problem in the linear (infinitesimal strain) case [? ]. The possibility of using other
expressions with better convergence behavior in finite strain problems needs to be explored.

5.2. Navier-Stokes stabilized formulation

The standard Galerkin approximation of the Navier-Stokes can be constructed using conforming FE spaces for
the velocity Vh Ă V, the velocity test functions Vh,0 Ă V0 and the pressure Qh Ă Q, in the usual manner. If
Xh :“ Vh ˆQh and Xh,0 :“ Vh,0 ˆQh, the Galerkin FE approximation consists of finding Uf,h “ ruf,h, pf,hs

T for
a time tn`1 such that

xvf,h, ρfaf,hy ` Bf pVf,h,Uf,hq “ Ff pVf,hq ´ cl xvf,h, ρf ûf,h ¨∇ûf,hy @Vf,h P Xh,0. (5.3)

It is well known that the approximation in Eq. (5.3) has numerical instabilities that need to be addressed. The first
one arises when the nonlinear convective term dominates the viscous term, giving place to spurious boundary layers.
The second one is the incompatibility of Vh ˆQh which arises when using equal order interpolation, and therefore
the discrete compatibility or inf-sup condition is not satisfied. However, these can be overcome by using the VMS
approach presented below. This kind of stabilized formulations have been long established for the Navier-Stokes
problem, including compressible [42] and incompressible flows [43], as well as viscoelastic fluids [44, 45]. A complete
review on this approach can be found in [46].

For the stabilized Navier-Stokes formulation we choose the projection of the SGS to be the identity on the space
of FE residuals, resulting in the Algebraic Subgrid Scale formulation (ASGS), which yields

xvf,h, ρfaf,hy ` Bf pVf,h,Uf,hq ´
ÿ

K

@

Lf pVf,hq ,αKRf pUf,hq
D

K

“ Ff pVf,hq ´ cl xvf,h, ρf ûf,h ¨∇ûf,hy @Vf,h P Xh,0, (5.4)
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where Lf “
“

Lfu,L
f
p

‰T is the adjoint operator that comes from the integration by parts of Bf defined as

Lfu pVf,hq “ ´ρf ûf,h ¨∇vf,h ´∇ ¨ p2µf∇svf,hq ´∇qf,h,

Lfp pVf,hq “ ∇ ¨ vf,h,

and the residual Rf is defined as
Rf pUf,hq “ Ff ´ Bf pUf,hq ,

where the components of Bf “
“

Bfu,B
f
p

‰T and Ff “
“

Ffu,F
f
p

‰T are defined as

Bfu pUf,hq “ ρf ûf ¨∇uf,h ´∇ ¨ p2µf∇suf,hq `∇pf,h,

Bfp pUf,hq “ ´∇ ¨ uf,h,

Ffu “ ff ,

Ffp “ 0,

and the matrix αK of stabilization parameters is computed as

αK “

«

αuId 0

0 αp

ff

, αu “

„

c1
µf
h2
K

` c2
ρf |ûf |

hK

´1

, αp “
h2
K

αu
,

where |ûf | is the Euclidean norm of the velocity guess, and the algorithmic parameters are chosen as c1 “ 4 and
c2 “ 2 for linear elements.

6. Discontinuous shape functions

The pressure discontinuities in the fluid domain arising due to the presence of a solid interface embedded in it
are addressed by using the discontinuous shape functions presented by Ausas et al. in [47]. These shape functions
facilitate the segregation of degrees of freedom within an element into two entirely independent parts, with no
additional treatment required for neighboring elements. This local implementation simplifies the construction of
discontinuous shape functions, applying the same principles to both triangles and tetrahedral elements. This
approach is convenient at the computational level, because it does not require to add additional degrees of freedom,
which avoids the need of recomputing the domain’s graph at each time step. For simplicity, only a brief summary
of the implementation for triangular elements is provided.

Consider a triangle ABC, whose edges ĀB and ĀC are cut by the interface at points P and Q respectively. We
wish to construct a FE basis that is discontinuous across PQ. As illustrated in Fig. 3, the element is divided into a
positive (green) and a negative (red) side. At the same time, the element is divided into sub-elements that follow
the interface: in this case the sub-triangles are arbitrarily created as APQ, CQP and BCP .
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Figure 3: Partition of a triangle element into sub-elements following the interface.

To achieve a discontinuous approximation, the shape functions on the green side must exclusively depend on the
nodes belonging to the green side, while the shape functions on the red side must solely depend on the nodes that
belong to the red side. This explanation may seem redundant, but it is crucial to the construction of discontinuous
functions. Let NA, NB and NC be the shape functions of nodes A, B and C of a triangular element. The basic
idea is to "carry" the values of NA, NB and NC through their adjacent edges in their respective sides. By this
logic, the discontinuous shape functions take the form illustrated in Fig. 4, constructed as follows: point A is the
only point available at the green side; therefore, the value of the shape function NA at point A is carried to points
P and Q, and it is zero along the red side. The red side has points B and C; therefore, NB carries its value from
B to P and NC carries its value from C to Q, and are zero along the green side.

Let P` and P´ be the coordinates of point P reached from the green and the red sides of the triangle, respectively,
and likewise for Q` and Q´. With the above modifications, the discontinuous shape functions take the following
values at the nodes:

NApAq “ 1, NBpAq “ 0, NCpAq “ 0,

NApBq “ 0, NBpBq “ 1, NCpBq “ 0,

NApCq “ 0, NBpCq “ 0, NCpCq “ 1,

NApP`q “ 1, NBpP`q “ 0, NCpP`q “ 0,

NApP´q “ 0, NBpP´q “ 1, NCpP´q “ 0,

NApQ`q “ 1, NBpQ`q “ 0, NCpQ`q “ 0,

NApQ´q “ 0, NBpQ´q “ 0, NCpQ´q “ 1.

Figure 4: Discontinuous shape functions for cut elements.
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It is important to remark that these discontinuous shape functions fulfill important properties:

• They form a nodal basis, their values are one at their respective nodes and zero at the other nodes.

• Their sum equals a constant function equal to one along the element.

• Their extreme values are one and zero, and take place at the nodes.

It is worth mentioning that derivatives are zero in certain parts of the element, as the shape functions remain
constant on sides where the cut leaves only one node. This fact leads to an expected convergence rate of O

`

h3{2
˘

[47].

7. Fluid-Structure interaction

7.1. Transmission conditions

The FSI problem addressed in this study employs a partitioned scheme, where the fluid and the solid are solved
independently and coupled at the embedded interface. The solid domain is embedded within the fluid domain
with non-matching interfaces. It is crucial to note that, from the fluid’s perspective, the embedded interface is
perceived as a surface in 3D and, by extension, as a line in 2D cases. In the construction of the solid domain, as
detailed in Section 2, we use a volumeless surface of the solid domain Ω2D

s as a reference to extrude a volumetric
body for the solid-shell. For the transmission conditions, the same volumeless surface as the embedding interface
is used. Therefore, the coupling interface is defined as Γcutptq “ Ωf ptq

Ş

Ω2D
s ptq, where the Dirichlet-Neumann

coupling conditions must be satisfied. The fluid is solved considering the position, displacement, and velocity of
the solid-shell mid-surface, while the tractions acting on the solid are computed from the fluid. This is achieved
through a block-iterative scheme, where the solid and the fluid are sequentially solved with strong coupling.

The coupling consists of kinematic and dynamic conditions to be fulfilled. Firstly, the kinematic transmission
of no-slip wall condition is:

uf “
Bus
Bt

on Γcutptq, (7.1)

which ensures the continuity of the velocity in Ωf ptq across Γcutptq. In other words, the fluid adjacent to the interface
conducts the same movement as the solid. Secondly, the dynamic boundary condition of the equilibrium of surface
tractions along the interface is:

nf ¨ σf “ ns ¨ σs on Γcutptq. (7.2)

A crucial aspect of our approach is that the coupling interface corresponds to the mid-surface of the solid-
shell. By using this approximation, the process of transferring the shell velocity to the fluid is trivial because it
only requires to pass the shell’s mid-surface velocity. However, tractions require an special treatment due to the
discontinuity of pressures and the limitations of the discontinuous shape functions. Firstly, as has already been
explained in Section 6, due to the construction process of the discontinuous shape functions, its derivatives can be
zero in one of the sides of the element. In fact, in the case of triangular elements there is always a zero-derivative
in one of the sides. Consequently, computing the fluid tractions as tf “ nf ¨ p´pI ` 2µf∇suf q is not consistent
because the velocity gradient cannot be captured at both sides of the embedded interface at the same time. For
this reason, the approximation is performed by using only the pressure as

tf “ ´nfpf on Γcutptq. (7.3)

Note that this limitation can be overcome by using enriched spaces for shape function derivatives in cut elements,
as the one introduced in [48]. Likewise, velocity non-conformity can be dealt with using classical discontinuous
Galerkin (DG) techniques (see below). Secondly, tractions have to be integrated independently at both sides
of the embedded interface because they are physically independent of each other, and that is exactly what the
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discontinuous shape functions are trying to convey. Lastly, the traction integration is only performed at the mid-
surface’s normal direction and not in its transverse direction, as would occur at one of the ends of a cantilever
bar. This approximation is justified because the effect of tractions in the transverse direction of the shell should be
small for thin structures. However, as shown below in Section 8, the consequences of not including this contribution
becomes apparent when the embedded structure is relatively thick.

7.2. Weak imposition of velocities

To enforce the velocity transmission condition described in Eq. (7.1) on the fluid, several options are available.
One option involves creating new nodes in the element cuts, requiting a local re-meshing of the fluid mesh. However,
this approach requires the activation and deactivation of new nodes whenever the mesh cutting process is performed.
The mesh cutting process is performed on every coupling iteration, which is very expensive from the computational
standpoint. In this work, the chosen option involves the use of discontinuous shape functions configured at element
level, which allows the use of the same degrees of freedom already present in the fluid element. Considering that the
discontinuous shape functions already take into account the embedded interface, the prescription of weak Dirichlet
boundary conditions can be easily imposed by means of Nitsche’s method.

Let Ehcut be the edges of Pfh created by the intersections of Γcut, there is a contribution of boundary terms that
appear when the differential equations are integrated by parts that vanish on regular boundaries. However, test
functions vf,h do not vanish in Ecut and must be considered. Nitsche’s method consists in adding to the discrete
variational form of the problem in Eq. (5.4) the following terms:
ÿ

Ecut

xvf,h , pf,hnf ´ 2µfnf ¨∇suf,hy `
ÿ

Ecut

x´qf,hnf ´ 2µfnf ¨∇svf,h , uf,h ´ 9us,hy `
ÿ

Ecut

µN
hE

xvf,h , uf,h ´ 9usy ,

(7.4)

where 9us is the velocity of the solid in the coupling interface. In Eq.(7.4), the first term comes precisely from
the integration by parts, the second term is the adjoint consistency term, and the third term is the stabilization
term. The adjoint consistency term is designed according to [49, 50, 51]. The stabilization term penalizes the
restriction given by the boundary condition in Eq. (7.1) and is scaled by the characteristic length hE of Ecut and
the algorithmic parameter µN , which has units of viscosity, defined as

µN “ µf ` ρfhE |ūf |, (7.5)

where ūf is the maximum velocity of the fluid domain computed in the previous iteration.
It is crucial to emphasize that integrating Nitsche’s terms on both sides of the embedded interface is essential

because the modified shape functions render them entirely independent of each other. Therefore, the interface where
weak boundary conditions are imposed actually consists of two distinct decoupled overlapping interfaces.

In the present embedded approach, there are pressure discontinuities due to the embedded interface dividing
the fluid domain, which are captured by using discontinuous shape functions in the elements cut by the interface.
Furthermore, the velocity field is approximated by these functions in the cut elements, even if the velocity field
is continuous. This approach opens up the possibility to impose other boundary conditions where the velocity
field is not completely continuous, such as slip wall or wall law, where only the normal component of the velocity
is continuous [52]. This approach is useful because by having locally segregated velocities allows to avoid the
instabilities associated to badly cut elements. However, the use of these functions in the velocity field, whose space
is a subspace H1 pΩf q

d, makes the formulation to be non-conforming. The way to deal with this non-conformity
is the same as in DG techniques. The classical symmetric interior penalty method amounts to add a term similar
to (7.4) but summing for all edges (faces, in 3D) of elements in which the discontinuous interpolation has been used,
and replacing uf,h´ 9us by the jump in velocities and the flux operators by the mean of the flux operators between
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adjacent elements [50]. However, being the non-conformity restricted to the band of elements crossed by the solid,
we have numerically verified that it is not necessary to introduce the terms described.

7.3. Coupling strategy

Strongly coupled strategies require to ensure the convergence of the transmission conditions. This is typically
achieved through Newton-Raphson iterative procedures known for their efficiency [53]. However, in this work, an
Aitken relaxation scheme is implemented for simplicity, although it can be extended to more efficient methods [54].
Within each time step, this approach allows the application of dynamic relaxation to transmission conditions in
each coupling iteration, thereby enhancing the convergence rate. The Aitken relaxation procedure computes an
optimal relaxation parameter ωi`1 for each iteration i` 1, such that coupling displacements are:

ui`1
s,h Ð p1´ ωi`1qu

i`1
s,h ` ωi`1u

i
s,h, (7.6)

where ωi`1 is computed as follows:

1. At the beginning of a time step, set the initial relaxation parameter ω0 and initialize Aitken’s factor γi:

ωi “ ω0.

γi “ 0.

2. Compute the difference between the actual and previous iteration solutions:

∆ui`1
s,h “ u

i`1
s,h ´ u

i
s,h.

3. Compute Aitken’s factor:

γi`1 “ γi ` pγi ´ 1q
p∆uis,h´∆ui`1

s,h q
T

∆ui`1
s,h

|∆uis,h´∆ui`1
s,h |

2 .

4. Compute Aitken’s optimal relaxation parameter:

ωi`1 “ 1´ γi`1.

5. Update the iteration counter and all the arrays that depend on the iteration.

After the coupling strategy is performed, it is imperative to compute the coupling velocities based on the relaxed
displacements. This approach enables the fluid to update the solution of a time step in a staggered manner,
mitigating pressure spikes resulting from the movement of the embedding interface.

8. Numerical results

In this section, the embedded FSI approach is applied to classical benchmark problems commonly used in
the literature. The summarized ingredients described throughout the work include: (i) the use of a locking-free
formulation of solid-shell elements based on a mixed displacement-PK2 stress stabilization for finite strains, (ii)
capturing the discontinuities of the fluid domain using discontinuous shape functions, (iii) weak imposition of
boundary conditions at cut elements through Nitsche’s method, and (iv) coupling the fluid and solid domains using
Dirichlet-Neumann transmission conditions. However, to address them properly, they are tested in a staggered
manner of increasing difficulty. Initially, the embedding technique and the weak imposition of boundary conditions
are tested by solving fluid dynamic problems with a rigid stationary solid in a one-way coupling fashion. Using this
approach, the coupling interface transmits zero velocity to the fluid, while tractions are not transmitted to the solid.
First a stationary problem is solved and then a time-dependent one. Following this, a fully coupled FSI problems
is solved with a deformable solid and complete transmission conditions. Using the same methodology, a dynamic
problem that converges to a stationary solution is solved first, subsequently followed by a dynamic problem that
exhibits a periodic solution.
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8.1. Elbow pipe with internal wall

The initial example involves a 90˝-curved elbow pipe with an internal zero-thickness rigid wall embedded inside
the fluid domain, dividing the flow into two independent ducts. The internal wall is positioned such that the upper
duct maintains a constant cross-section, while the lower duct contracts by half after the curvature. This contraction
induces an acceleration of the flow, maintaining a constant total flow rate. This problem was initially proposed
by Idelsohn et al. [55] using a slip interface as internal wall. However, as summarized in Fig.5, here the no-slip
interface version of the problem portrayed in [56] is solved, which is later extended the to its 3D version.

Figure 5: 2D and 3D elbow with internal wall: geometry and boundary conditions

The boundary conditions of the 2D case consist in no-slip conditions at the upper and lower walls, and the
following velocities at the inlet:

uxpyq “

$

’

&

’

%

utop
x pyq if 1.25 ă y ă 2

0 if 0.75 ă y ă 1.25

ubot
x pyq if 0 ă y ă 0.75

(8.1)

where utop
x and ubot

x are the parabolic velocities for the upper and lower inlets, defined as

utop
x pyq “ ´12.642y2 ` 41.0864y ´ 31.6049, (8.2)

ubot
x pyq “ ´12.642y2 ` 9.4812y. (8.3)

Note that only 75% of the width of the channel is set as inlet so it is not influenced by the discontinuous interpolation
at the interface. For the 3D extension, slip lateral walls are used, so the solution is equivalent to the 2D counterpart.
The problem is solved for Re “ 1 using meshes of 122k unstructured triangular elements and 164k structured
tetrahedral elements in the 2D and 3D cases, respectively. Note that the 3D mesh is much coarser than the 2D
counterpart because of its additional dimension. Results are illustrated in Fig. 6 for the 2D case and in Fig.7 for
the 3D case.
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Figure 6: 2D elbow with internal wall: (a) velocity and (b) pressure.

Figure 7: 3D elbow with internal wall: (a) velocity and (b) pressure.

The purpose of these examples is to illustrate how the pressure can be computed in a discontinuous manner
through an interface. To show the the discontinuity, in Fig. 8 the pressure along a transverse line located near
the outlet is plotted, between coordinates p5, 6q-p6.5, 6q, where the different pressures of each side of the duct can
be clearly identified. The pressure jump in the 2D case is sharper when compared to the 3D case because of the
better resolution provided by the mesh. In order to make more comprehensive comparisons, the velocity profiles
are plotted at the outlet. Results show good agreement between the 2D and 3D versions and with respect to the
reference solutions shown in [56].
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Figure 8: Elbow pipe with internal wall: 2D and 3D elbow pressure through the coordinates p5, 6q-p6.5, 6q and velocity magnitude at
the outlet. References: Zorrilla et al. [56]

An important aspect of the current embedded approach must be considered. Firstly, by weakly enforcing the
velocity in the cut elements using Nitsche’s method, the kinematic constraint is transferred to the nodes through
the intersected edges. Secondly, the discontinuous shape functions of Ausas et al. have zero derivatives on one side
of the cut, making this element unable to properly capture velocity gradients. Consequently, when enforcing a zero
velocity constraint, as in this case, the condition is applied to the entire element, resulting in an artificial shrinkage
of the duct [53]. A possible remedy is to use regular shape functions for the velocity space, though it comes with
the hurdle of dealing with ill-conditioned elements when they are poorly cut. Nevertheless, the embedded approach
is expected to converge to the solution obtained with a body-fitted approach with mesh refinement. Recall also the
DG-like terms could be added, but we have found them unnecessary.

8.2. Vertical plate in a fluid tunnel

The third example consists in a fluid flowing through a tunnel with a vertical hyperelastic plate partially
blocking the flow. The solid is increasingly deformed by the fluid during the initial transient until it reaches a
stationary solution. This case has been previously studied by Zhang et al. [57] and Hang et al. [58] in 2D and
3D environments, respectively. The geometry and boundary conditions are summarized in Fig. 9. For the present
example, the reference values of H “ 1, L “ 1, b “ 0.8 and the plate thickness tp “ 0.04 are used. The geometry is
extended to 3D using a width of 0.5 for the tunnel and the plate.

Figure 9: 2D Vertical plate in a fluid tunnel - Geometry and boundary conditions.

The fluid domain boundary conditions consist in slip and no-slip walls for the top and bottom walls, respectively.
The inlet velocity is set as a parabolic profile that increases along the y-axis using the following function:

uf p0, y, 0, tq “

#

ûf p0, y, 0q
1´cospπ2 tq

2 if t ă tinit

ûf p0, y, 0q otherwise
; ûf p0, y, 0q “ 1.5

`

´y2 ` 2y
˘

,

considering the bottom left corner of the domain as the origin of the Cartesian coordinate system. Note that in
order to have a smoother initial transient, a cosine time function is used to slowly increase the inlet velocity to

19



reach its maximum using tinit “ 0.1 for the 2D case and tinit “ 0.5 for the 3D case. For the 3D extension of the
problem, no-slip boundary conditions are used at the lateral walls of the tunnel. The problem is solved using a
time step of δt “ 0.01 in both cases. The domain of the 2D case is meshed with 35k linear triangular elements in
the fluid and 300 line elements on the solid, which are extruded to 600 bilinear quadrilateral elements. Similarly,
the domain of the 3D case is meshed with 235k linear tetrahedral elements in the fluid and 200 triangular elements
on the solid, which are extruded to 1k linear prismatic elements. The solid boundary conditions consist in simply
fixing the lower end of the plate, and fixing the plate displacements in the z-axis direction for the 3D case. The
Dirichlet transmission conditions are set on the fluid by imposing the solid velocity on the elements cut by the
interface, while the Neumann transmission conditions are set by imposing the fluid tractions on the whole plate.
The properties of the fluid are ρf “ 1 and µf “ 0.1, whereas the solid is configured as a compressible Neo-Hookean
material with ρ “ 7.8, E “ 105 and ν “ 0.3.

Figure 10: 2D Vertical plate in a fluid tunnel - Stationary velocity magnitude.

Figure 11: 2D Vertical plate in a fluid tunnel - Stationary pressure.
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Figure 12: 3D Vertical plate in a fluid tunnel - Stationary velocity magnitude.

Figure 13: 3D Vertical plate in a fluid tunnel - Stationary pressure.

The fluid velocity and pressure fields are displayed in Figs.10-11 for the 2D case, and in Figs.12-13 for the 3D
case. For the solid domain, the vertical and horizontal displacement of the plate at its upper end is followed, as
shown in Fig. 14 for the 2D and 3D cases. Considering that our shell formulation follows a mixed approach that
uses displacements and the PK2 stress as unknowns, they are shown at the converged configuration in Figs. 15-16.
Although there is no data to compare the displacements in the y-axis, there are some authors that have reported
them in the x-axis [57, 59, 58]. Due to the different time functions used in the initial transient, there are slight
differences in the time evolution results between the 3D and the 2D cases. There is a difference in the final stationary
result, which can be attributed to the mesh refinement, which is much coarser than the one used in the 2D case.
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Figure 14: Vertical plate in a fluid tunnel - Horizontal and vertical displacement at the upper end. References: Zhang et al. [57], Han
et al. (2020) [59], Han et al. (2021) [58].

Figure 15: 2D Vertical plate in a fluid tunnel - Displacement and principal PK2 stress fields.
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Figure 16: 3D Vertical plate in a fluid tunnel - Displacement and PK2 principal stress fields.

8.3. Turek and Hron benchmark

The last example consists in one of the most widely used benchmark tests in the FSI context. It was designed
by Turek and Hron in [60], with three different variants referred as FSI1, FSI2 and FSI3. In this example, the FSI2
variant is used as a reference. The case consists in a channel flow around an elastic bar attached to a rigid cylinder,
which results in a self-induced oscillation. The domain and boundary conditions are summarized in Fig.17. The
domain dimensions for the fluid are set as H “ 0.41, L “ 2.5, a “ 0.2, b “ 0.2 and D “ 0.1. The boundary
conditions consists of no-slip conditions at the cylinder and the upper and lower walls, and the inlet velocity is
prescribed with a parabolic profile given by

uf p0, y, tq “

#

ûf p0, yq
1´cospπ2 tq

2 if t ă 2.0

ûf p0, yq otherwise
; ûf p0, yq “ 1.5ûin

y pH ´ yq
`

H
2

˘2

where ûin “ 1 is the average inflow velocity. For the solid domain, the bar of length 0.35 and thickness 0.02 is
aligned to the center of the cylinder. The domain is meshed with 45k linear triangular elements in the fluid and
100 line elements on the solid, which are extruded to 200 bilinear quadrilateral elements. The problem is solved
with a time step of δt “ 0.005. As for the boundary conditions, the bar is simply fixed at its left end. The Dirichlet
transmission conditions are set on the fluid by imposing the solid velocity on the elements cut by the interface, while
the Neumann transmission conditions are set by imposing the fluid tractions on the whole bar. The fluid density
and viscosity are ρf “ 1000 and µf “ 1, respectively, whereas the solid density, Young’s modulus and Poisson’s
ratio are ρs “ 104 Es “ 1.4 ¨ 106 and νs “ 0.4, respectively.

Figure 17: Turek benchmark - Geometry and boundary conditions.
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The results of the fluid domain are shown in Figs. 18 and 19 for velocity and pressure fields. For the solid
domain, the original paper reports the time evolution of the displacement at the right end of the beam. At the
fully developed state, when the oscillation’s amplitude and frequency stabilize, the authors report displacements of
´0.01458 ˘ 0.01244 and 0.00123 ˘ 0.0806, in the x-axis and y-axis, respectively. They also provide a one second
time span of the oscillations, which is used to compare our results in Figs. 20-21. The results obtained with our
approach show good agreement when comparing the oscillation frequencies with respect to those in reference [60].
However, the amplitudes we have obtained are slightly larger, specially in the x-axis direction. As explained in
Section 7, this can be attributed to several causes. Firstly, the material used in this work is a Neo-Hookean instead
of the Saint-Venant–Kirchhoff material law used in the original paper. Secondly, the time step differs from those
used in the original paper (δt “ 0.001, 0.002). Lastly, and perhaps the most significant difference, in our approach
the solid ’sees’ the beam as a line, not as a rectangle. This in particular means that tractions are not integrated
at the free end of the beam in the transverse direction, and they may be large enough to affect the physics of the
solution.

Figure 18: Turek benchmark - velocity norm at time t “ 7.61.

Figure 19: Turek benchmark - pressure at time t “ 7.61.
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Figure 20: Turek benchmark - Horizontal displacement at the right end of the bar. Reference: Turek and Hron [60].
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Figure 21: Turek benchmark - Vertical displacement at the right end of the bar. Reference: Turek and Hron [60].

9. Conclusion

In this work, a numerical framework for the approximation of FSI problems involving hyperelastic thin structures
using an embedded approach is presented. The main novelty of this approach consists in approximating the
solid domain by using a recently developed locking-free stabilized formulation for solid-shell elements [34, 35].
The embedding of the solid mesh into the fluid mesh is not straightforward because solid-shell elements are thin
volumetric bodies, which are not eligible to act as a embedding interface. For this reason, the issue is solved by
using the solid-shell mid-surface as the interface to perform the embedding into the fluid domain. As a consequence,
the transmission conditions of the Dirichlet-Neumann type require a special treatment.

This approach requires several key elements to function effectively. Firstly, from a computational standpoint,
it is essential to implement a search algorithm to identify the background elements cut by the interface and an
intersection algorithm to locate the intersections. This is achieved by utilizing a tree data structure that divides
the domain into smaller sub-domains for the search and a ray-tracing algorithm to pinpoint the intersection points
in each element. Secondly, from the fluid perspective, the embedded interface motivates the use of discontinuous
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shape functions to disconnect the pressures on each side of the interface. The fluid pressures are locally segregated
at the element level, avoiding an increase in the computational overhead. The discontinuous shape functions
are also suitable for weakly prescribing the Dirichlet transmission conditions using Nitsche’s method, as they are
imposed using the velocity of the embedded interface. Lastly, the Neumann transmission conditions are imposed by
computing the fluid tractions at the embedded interface. Therefore, they need to be transferred to the solid-shell
external surfaces.

The approach has undergone testing across various benchmark cases in both 2D and 3D environments, pro-
gressively increasing the difficulty in a staggered manner. Initially, one-way coupling cases have been addressed,
testing the element-embedded interface and the weak imposition of boundary conditions on the fluid side. The
evaluation has begun with a stationary problem, followed by a time-dependent problem featuring a periodic solu-
tion. Subsequently, a deformable solid has been introduced, and dynamic problems have been solved to assess the
entire coupling scheme. The results have demonstrated good agreement with existing literature, establishing the
presented framework as a viable method for approaching FSI problems with thin structures.
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