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DE POUPLANA5

Abstract. We present a finite element method for a generalized version of the Navier-Stokes6
equations that is applicable to (highly permeable) porous media flows. We rely on the variational7
multiscale (VMS) framework to produce a stabilized numerical method that allows the use of equal-8
order finite element spaces for all the problem unknowns, while also preventing the instabilities9
associated to convection-dominated flows or strong reaction terms. Two variants of the basic algo-10
rithm are considered and tested in a selection of numerical experiments designed to examine their11
performance when changing the relative magnitudes of the different terms in the momentum balance12
equation.13

Key words. finite element, stabilized, variational multiscale, VMS, OSGS, generalized Navier-14
Stokes, Darcy-Brinkman-Forchheimer, particle-laden flows15

AMS subject classifications. 65Z05, 65M60, 65N30, 65N1216

1. Introduction. Porous media flows are typically modelled by a pointwise gen-17

eralization of the classical Darcy equation, which results from postulating that the18

flow is in a state of permanent local mechanical equilibrium, with the pressure gradi-19

ent and external body forces balancing the interfacial viscous resistance caused by the20

fluid’s motion relative to the porous matrix. In these conditions, the fluid’s inertia,21

as well as the contribution of the viscous forces arising from the fluid motion relative22

to itself, can be neglected.23

The adequacy of the Darcy model in describing a wide range of porous media24

flows is empirically well established and has even been rigorously derived in a number25

of idealized scenarios by applying homogenization theory, with the Stokes equations26

as a description of the microscopic flow [19, 6]. However, the underlying assumptions27

of negligible inertia and clear separation of scales fail to hold in a number of practical28

scenarios encountered in the oil and gas [32, 29], biomedical [27, 17] or food [30] indus-29

tries, to name but a few. Nonetheless, the application of homogenization theory under30

relaxed assumptions is still possible, yielding generalized equations that encompass31

the Darcy equation as a limiting case [7, 5].32

Non-Darcy effects can be mathematically captured by incorporating a more so-33

phisticated, nonlinear resistance term into the momentum conservation equation,34

along with additional terms: the inertia term that stems from taking the material35

derivative of the flow when describing the local conservation of momentum in an Eu-36

lerian framework, and a viscous term (the Brinkman term) representing the intra-fluid37

viscous forces1. As a result, the equations of motion acquire the basic form of the38

Navier-Stokes equations for incompressible flow (generalized to include a viscous re-39

sistance term), with modifications to account for the varying porosity that affect both40

the momentum and mass conservation equations [3]. A widely used model conform-41

ing to the preceding description is that defined by the Darcy-Brinkman-Forchheimer42

(DBF) equations, applicable to high-permeability, low viscosity flows; see [18] for a43

˚CIMNE (gcasas@cimne.upc.edu).
:CIMNE (jgonzalez@cimne.upc.edu).
1Even though the relevance of this term in particular seems to be very restricted [1]
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discussion about the applicability regimes of various porous media flow equations,44

including DBF.45

From the numerical standpoint, the generalized equations bring about all the well-46

known problems associated with the discretization of the generalized Navier-Stokes47

system. That is, the Galerkin form of their finite element discretization suffers from48

instabilities that appear when the viscous term is dominated by any of the lower-order49

terms such as in convection-dominated or reaction-dominated flows. Furthermore, the50

use of equal-order interpolations for the velocity and the pressure leads to the vio-51

lation of the Ladyzhenskaya-Babuška-Brezzi (LBB) condition, requiring stabilization52

regardless of the situation.53

For the Navier-Stokes system, all of these numerical issues have been successfully54

addressed in the past [10, 11, 16] using the Variational Multi-scale (VMS) frame-55

work [21] to design stabilized methods. In [10], the so-called Algebraic Sub-Grid56

Scale (ASGS) formulation is applied to the Navier-Stokes system, including a reactive57

term (as well as additional terms related to Coriolis forces which we will not consider58

here), where optimal error estimates are proven for the linearized problem.59

Our goal in this work is to present a numerical method for highly permeable60

porous media flows. To accomplish this, we generalize the formulation presented61

in [10], allowing for the presence of an externally-imposed porosity field, and analyze62

the extent to which the various results obtained in this work carry over to the present63

setting. Indeed, our analysis shows that essentially the same stability and convergence64

properties are preserved for the problem analyzed herein if the porosity field is smooth65

and has bounded gradients that are sufficiently resolved by the mesh. This conclusion66

is backed up by a battery of numerical tests that explore the robustness of the method67

with respect to changes in the physical parameters. Over the course of drafting the68

present paper, we came across the work [22], which applies VMS to the so-called69

Navier-Stokes-Brinkman system, applicable to highly-permeable porous media flows70

with a uniform porosity field. Except for the presence of a nonlinear reaction term,71

the theory in [10] fully applies to this case, so no need for revisiting the theory was72

required there.73

The formulation presented here is general enough to encompass alternative vari-74

ants of the VMS formulation, defined by different choices of the space where the75

sub-grid scales (SGS) live (see subsection 3.2). This generality can be useful for re-76

searchers or engineers looking to explore alternative possibilities to the basic method.77

In particular, we consider the so-called Orthogonal Sub-Grid Scale (OSGS) [11, 12]78

alongside the ASGS in all our numerical tests.79

Our approach has some advantages over previous efforts that were able to succes-80

sively address the numerical challenges mentioned above, including the use of inf-sup81

stable element pairs [8], with the associated complexity increase in the associated82

data structures required; or the only precedent of a stabilized finite element method:83

the Local Projection Stabilization [28], which, apart from requiring the use of special84

enrichment functions, introduces some constraints on the mesh topology.85

The rest of the paper is organized as follows. The continuous problem is intro-86

duced in section 2. In section 3 we rewrite the strong problem in standard form and87

apply the VMS approach. In section 4 we provide a rationale behind the design of88

the unspecified algorithmic parameters. Their design is motivated by an argument89

based on the Fourier transform that can be found in [11, 26, 13] but that, to our90

knowledge, had not yet been applied to the Navier-Stokes system in its most recent91

form. In section 5 the convergence analysis in [10] is extended to the current setting,92

validating our choice of stabilization parameters. In section 6, we analyze the robust-93
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ness of the formulation with respect to variations in the physical parameters. Finally,94

in section 7 we present the results from the numerical experiments, followed by the95

main conclusions of our work in section 8.96

2. The porous Navier-Stokes problem. Let our problem spatial domain be97

Ω Ă Rd, with d P t2, 3u its dimension and let Γ :“ BΩ be its boundary. For simplicity,98

we will consider Ω to be polyhedral. Let α : Ω Ñ p0, 1s be a given scalar field over Ω99

representing the fluid volume fraction. We will assume this field to be differentiable,100

with a uniformly bounded gradient in Ω. The continuous form of the problem consists101

in finding (fluid-averaged) pressure and velocity fields, p and uuu, such that102

αuuu ¨ ∇uuu´ 2∇ ¨ pαν
DS

Π∇uuuq ` α∇p` σσσpα,uuuquuu “ fff in Ω,(2.1)103

εp` ∇ ¨ pαuuuq “ 0 in Ω,(2.2)104

where σσσ represents a viscous resistance tensor (the inverse of the permeability ten-105

sor), which we will assume to be symmetric and positive semidefinite, fff is a forcing106

term representing external body forces, such as gravity, which for simplicity we will107

assume to be independent of the solution. Finally, ε ě 0 represents a small compress-108

ibility, which we mainly include for numerical reasons (i.e., in order to implement the109

iterative penalty method [9]), as in some cases it helps to ensure the well-posedness of110

the problem; see subsection 7.2.111

By defining
DS
Π :“

D
Π

S
Π, where

D
Π and

S
Π are (commutative) orthogonal linear projection112

operators, and considering different versions of the latter two, we obtain alternative113

formulations found in different contexts in the literature. Our particular choice for114

these operators in the examples presented, corresponds to taking
D
Π and

S
Π as the115

operators that extract, respectively, the deviatoric and symmetric components of the116

tensor upon which they act. This yields117

(2.3) ´ 2∇ ¨ pαν
DS

Π∇uuuq “ ´2∇ ¨ pαν∇Suuuq `
2

3
∇pαν∇ ¨ uuuq,118

where ∇Suuu :“ 1
2 p∇uuu ` p∇uuuqJq. This particular formulation for the second term in119

(2.1) is based on the assumption that the bulk viscosity is zero (Stokes’ hypothesis)120

and it is consistent with the formulation used in multicomponent fluid formulations,121

where the full system involving several phases is solved in a segregated way, taking122

one phase at a time and assuming the porosity to be given [24, 23]. Note that for123

α ” 1 the incompressible Navier-Stokes system is recovered from (2.1) and (2.2).124

As mentioned, other combinations are possible. For instance, taking
D
Π”I, S

Π“∇Suuu,125

together with a particular expression for σσσ, we recover the DBF equations [8]2126

To complete the definition of the problem, it is necessary to supply the above127

equations with suitable initial and boundary conditions, whose form will be specified128

in the following sections. We are not aware of any analysis addressing the well-129

posedness of resulting problem in its full generality, although in [8] it is proven for the130

particular case of
D
Π ” I, S

Π “ ∇Suuu, a resistance term of the form σσσ “ σpα,uuuqI, with σ131

a scalar function defined in terms of additional scalar functions apαq, bpαq as132

(2.4) σpα,uuuq “ apαq ` bpαq|uuu|,133

2Although in other works we find
D
Π“

S
Π”I [28], even though the name used for the equations is

also DBF.
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and a combination of Dirichlet (walls and inlet) and Neumann (outlet) boundary134

conditions. While we have not attempted a generalization of the results presented135

in [8], we note that finding an alternative to the explicit use of Korn-type inequalities136

as done in this work may be nontrivial for
DS
Π“

D
Π

S
Π, by which the deviatoric part of the137

velocity gradient is removed from the viscous term. We will nonetheless proceed by138

assuming that the solution always exists, and that uniqueness holds for sufficiently139

large values of ν and of infΩtαu.140

2.1. Abstract reformulation of the problem (Strong form).141

Let X :“ V ˆ Q be the space of unknowns, with V the space of velocity components142

and Q that of the pressure; and let X 1 be the topological dual of X (the precise notion143

of duality to be employed will be determined later). Let us also denote by n “ d` 1144

the number of components of the elements U in X . Consider the following differential145

operator:146

L : V ˆ X Ñ X 1
147

pwww,Uq ÞÑ LwwwU,148

where Lwww : X Ñ X 1 is a linear differential operator defined by:149

(2.5) LwwwU “ ´BipKijBjUq ` Ac,ipwwwqBiU ` Af,iBiU ` SpwwwqU.150

In the equations above, the n ˆ n matrices Kij , Ac,ipwwwq, Af,i and Spwwwq are either151

constant or dependent on www; i, j run over all the spatial dimensions and Bi denotes152

differentiation with respect to the corresponding spatial coordinate. The usual sum-153

mation convention for repeated indices is assumed.154

Using these definitions, the boundary value problem defined by Equations (2.1)155

and (2.2), together with appropriate boundary conditions can be cast in the following156

standard form: Find U “ ruuu; ps P X such that157

LuuuU “ F in Ω,(2.6a)158

DU “ ggg on Γ,(2.6b)159

where F “ rfff ; 0s P X 1 and ggg belonging to the appropriate trace space; with ui, fi, gi160

(i “ 1 . . d) the Cartesian components of uuu and fff , and ggg. D is the trace operator that161

defines the boundary conditions:162

(2.7)
D : X Ñ L2pBΩqd

U ÞÑ DU “: DU ,
163

where we have emphasized the linearity of D (see for example [25]).164

The abstract setting above will allow us to directly apply the VMS theory to our165

particular equations. The specific forms that the different operators take for (2.1) and166

(2.2) (for d “ 3) are167
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(2.8)

Kij “ να

»

—

—

—

—

—

–

δij ` 1
3δ1iδ1j δ2iδ1j ´ 2

3δ1iδ2j δ3iδ1j ´ 2
3δ1iδ3j 0

δ1iδ2j ´ 2
3δ2iδ1j δij ` 1

3δ2iδ2j δ3iδ2j ´ 2
3δ2iδ3j 0

δ1iδ3j ´ 2
3δ3iδ1j δ2iδ3j ´ 2

3δ3iδ2j δij ` 1
3δ3iδ3j 0

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

,

Ac,ipwwwq “ α

»

—

—

–

wi 0 0 0
0 wi 0 0
0 0 wi 0
δi1 δi2 δi3 0

fi

ffi

ffi

fl

, Af,i “ α

»

—

—

–

0 0 0 δi1
0 0 0 δi2
0 0 0 δi3
0 0 0 0

fi

ffi

ffi

fl

,

Spwwwq “

»

—

—

–

σ11pwwwq σ12pwwwq σ13pwwwq 0
σ12pwwwq σ22pwwwq σ23pwwwq 0
σ13pwwwq σ23pwwwq σ33pwwwq 0

B1α B2α B3α ε

fi

ffi

ffi

fl

,

168

where δ‚‚ is the Kronecker delta and where in the reaction matrix the dependence of169

σσσ on α has been (and will henceforth be) omitted for brevity.170

The particular version of the trace operator that we will be interested in is given171

by172

(2.9)

DU : Γ Ñ R3

xxx ÞÑ

"

DD,U pxxxq if xxx P ΓD,
DN,U pxxxq if xxx P ΓN,

173

where Γ “ ΓD Y ΓN, ΓD X ΓN “ H and where the Dirichlet and Neumann linear174

operators are defined (for smooth enough fields where the boundary normal nnn is175

defined) by176

DD,U : ΓD Ñ R3

xxx ÞÑ uuu|Γpxxxq,
(2.10)177

DN,U : ΓN Ñ R3

xxx ÞÑ α
`

ν
DS

Π∇uuu|Γpxxxq ´ p|ΓpxxxqI
˘

¨ nnn,
(2.11)178

where |Γ denotes the trace of the function on Γ (we may assume α to be defined on179

the whole of BΩ). Moreover, we take180

(2.12) gggpxxxq “

#

000 if xxx P ΓD,

tttNpxxxq if xxx P ΓN,
181

where tttN is the given traction condition. Thus, note that here we have considered182

only homogeneous Dirichlet boundary conditions for simplicity, even though all the183

developments apply equally to the non-homogeneous case, which can be dealt with184

by applying the standard lifting of the non-homogeneous boundary function to the185

whole domain.186

2.2. Weak form of the problem.187

Let us reformulate (2.6) into a form more amenable to the finite element method.188

We begin by introducing some standard notation. The space of square-integrable189

functions in a domain ω is denoted as L2pωq; the space of functions whose weak190

derivatives of (integer) order m ě 0 and lower belong to L2pωq is denoted by Hmpωq;191
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and, for m “ 1, the subspace of functions in the latter space that additionally fulfill192

the homogeneous Dirichlet boundary conditions on Bω is denoted H1
0 pωq. The L2-193

inner product in a subdomain ω Ď Ω is denoted p‚,‚qω and the integral over ω of194

the product of two generic functions is written as x‚,‚yω, where in both cases the set195

ω is omitted when ω “ Ω. In particular, the latter notation is used for the pairing196

between H1
0 pωq and its topological dual H´1pωq. The norm in a space Z is denoted197

}‚}Z , except when Z “ L2pΩq, in which case the subscript is omitted.198

Let us now identify the spaces where we will seek the solution to the weak form199

of the problem. The velocity components will be assumed to belong to V0 :“ H1
0 pωqd.200

The pressure will be assumed to belong to Q0 :“ L2pΩq in general, while Q0 :“ tq P201

L2pΩq|
ş

Ω
q dΩ “ 0u when the boundary conditions in the problem are all-Dirichlet202

(as with the regular Navier-Stokes system, constraining the solution to this subspace203

fixes the free constant when ε “ 0; for ε ą 0 this condition is met automatically).204

Using the above notation, the weak form of the problem defined by (2.6) consists205

in finding U P X0 :“ V0 ˆ Q0 such that for all V P X0,206

(2.13) xV , LU y ` xV ,DU yΓN
“ xV , F y ` xV , GyΓN

,207

where G :“ rggg; 0s. We will assume fff P V 1
0 and ggg P H

´1{2
1 pΓNqd, the latter being the208

dual of the space of traces on ΓN of functions in H1pΩq. Here and in the sequel we209

omit the explicit dependence of Luuu on uuu unless we need to emphasize it.210

Note that we have not yet specified the space where α, the porosity field, belongs.211

We will simply assume α P W 1,8pΩq, which ensures that all the terms on the LHS of212

(2.13) are bounded.213

In order to conveniently reexpress this problem in terms of linear functionals, let214

us introduce the form B : V ˆ X ˆ X Ñ R, bilinear with respect to the second and215

third arguments:216

Bpwww,U, V q :“ xBiV ,KijBjU y ` xV ,Ac,ipwwwqBiU y217

´ xBipA
J
f,iV q , U y ` xV , SpwwwqU y,(2.14)218

and the linear form L : X Ñ R, defined as219

(2.15) LpV q :“ xV , F y ` xV , GyΓN .220

Using (2.9), (2.11), (2.14), and (2.15), the weak form of the problem can be221

reexpressed in terms of the linear forms as follows: Find U “ ruuu; ps P X0, such that222

(2.16) Bpuuu, U, V q “ LpV q @V P X0.223

3. Variational multiscale approach.224

We are now ready to apply the VMS framework to derive a stabilized finite element225

formulation. Thanks to the abstract formulation introduced in the previous section,226

we can do this systematically, directly following the most general description of the227

method [15]. In fact, we have chosen to repeat some nonessential parts of the method-228

ology here for the sake of notational conformity and ease of comprehension.229

3.1. Scale Splitting.230

Let us consider generic finite-dimensional subspaces Xh0 :“ Vh0 ˆ Qh0 Ă X0 and the231

space rX0 such that232

(3.1) X0 “ Xh0 ‘ rX0,233
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so that U “ Uh ` rU (with Uh P Xh0 and rU P rX0). Equation (2.13) can now be234

equivalently written as the following system:235

xVh , LpUh ` rUqy ` xVh ,DpUh ` rUqyΓN
“ xVh , F y ` xVh , GyΓN

@Vh P Xh0,(3.2)236

x rV , LpUh ` rUqy ` x rV ,DpUh ` rUqyΓN
“ x rV , F y ` x rV , GyΓN

@rV P rX0.(3.3)237

Or, in terms of bilinear forms,238

Bpuuu, Uh, Vhq `Bpuuu, rU, Vhq “ LpVhq @Vh P Xh0,(3.4)239

Bpuuu, Uh, rV q `Bpuuu, rU, rV q “ LprV q @rV P rX0.(3.5)240

Equations (3.4) and (3.5) are the starting point of the VMS methodology. Equa-241

tion (3.5) will be used to derive an approximation to the SGSs, while (3.4) will become242

the modified weak form of the problem once the approximate SGSs are introduced in243

the second term of its left-hand side.244

To clarify the motivation behind the scale-splitting strategy, let us note that it is245

possible to formally eliminate rU from the equations above to obtain246

(3.6) Bpuuu, Uh, Vhq ´ xL rL´1RUh , Vh y “ LpVhq @Vh P Xh0,247

where R is the residual operator, i.e., Rwww :“ F ´ LwwwU , whose explicit dependence248

on www we will also omit when www “ uuu (except where emphasis is required), and rL´1249

is the fine-scale Green’s operator, which gives rU from the coarse-scale residual, i.e.,250
rU “ rL´1

U pRUhq. Its expression can, in fact, be calculated explicitly [20]:251

(3.7) rL´1 “ L´1 ´ L´1ΠJ
h

`

ΠhL´1ΠJ
h

˘´1
ΠhL´1,252

where Πh is a linear projection onto Xh0 and ΠJ
h its transpose. Equation (3.6) is253

exact and (assuming the continuous problem is well posed) the second term must be254

providing the desired stability that the first term alone (i.e., the Galerkin method)255

lacks. Moreover, note that the equation that we obtain by substituting (3.7) in (3.6)256

is entirely in terms of L´1 and Πh. Accordingly, all VMS-stabilized methods are257

characterized by the way in which these two operators are approximated. The idea258

is always to obtain a computable numerical method, while still preserving the desired259

stability properties of the original equation. In the following subsection, we describe260

the particular choices made here in order to achieve this.261

3.2. Finite element discretization & modelling of SGSs.262

The standard Galerkin finite element method consists in replacing the infinite-dimen-263

sional space X by a finite-dimensional analogue, leading to a problem that is finite di-264

mensional and therefore computable. Thus, let us consider a finite element discretiza-265

tion
Ť

KPTh K “ Ω̄ (the closure of Ω), constructed with a mesh of diameter h. Let266

us denote the velocity and pressure finite element spaces as Vh0 Ă V0, and Qh0 Ă Q0267

with Xh0 :“ Vh0 ˆQh0 and the finite element functions Uh “ ruh,1, . . . , uh,d, phs P Xh0268

(identifying rr‚1 ¨ ¨ ¨ ‚ds, ‚s with r‚1 ¨ ¨ ¨ ‚d`1s). To simplify the exposition, we will con-269

sider that Vh0 and Qh0 are constructed using continuous polynomial interpolations.270

As mentioned in the introduction, the discretized problem obtained with the271

Galerkin method will suffer from numerical instabilities due to the violation of the272

LBB condition (e.g., for equal-order spaces) and from the degeneration of its inherent273

stability for extreme values of the physical parameters. Let us therefore use the VMS274

framework to produce a stabilized formulation of the discrete problem. Considering275
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the finite element spaces defined by the discretization above in (3.4) and applying276

Stokes’ theorem to each element domain (which, in particular, is possible for piecewise277

polynomials), we obtain278

(3.8) Bpuuu, Uh, Vhq `
ÿ

K

”

xL˚Vh , rU yK ` xD˚
NVh ,DK rU yBK

ı

“ LpVhq @Vh P Xh0279

with280

D˚
NV “ niK

J
jiBjV ` niA

J
c,ipwwwqV,(3.9)281

L˚V “ ´BipK
J
jiBjV q ´ BipA

J
c,ipwwwqV q ´ BipA

J
f,iV q ` SJpwwwqV,(3.10)282

and where the asterisks denote duality with respect to the pairing; rU represents283

an approximation to the SGS that must be provided in terms of the finite element284

solution; and DK is the trace operator that sends sufficiently smooth functions in the285

interior of K to their evaluation on the boundary BK (DKU :“ U |BK). Note that we286

omit the subscript of L˚
uuu for brevity, just as we have done with Luuu and Ruuu.287

In order to produce an algorithm for the computation of rU , one must make certain288

approximations. There are many options, each defining a particular VMS method [15].289

Here we will proceed conventionally, adopting the following assumptions:290

A.1 DK rU “ 0; as a consequence, rX “ rX0 and thus we assume that the finite291

element functions are able to resolve the boundary conditions exactly.292

A.2 The SGSs are functions of rapid decay, in such a way that their contribution293

at the element at the inter-element boundaries can be neglected.294

A.3 L´1
uuu

ˇ

ˇ

K
« τττKpuuuq; that is, that the inverse of the differential operator of the295

strong problem restricted to the finite element K can be approximated by296

τττK , the matrix of stabilization parameters, which inherits from L´1
uuu its de-297

pendence on uuu and whose definition will be discussed later.298

Note that it is only after these approximations are made, that problem ceases to299

be equivalent to the original one. In spite of this, we will be keeping the same symbols300

for the finite element component of the solution, Uh, for the SGS component, rU , and301

for the total solution U “ Uh ` rU from this point on, so it is important to bear in302

mind the abuse of notation involved.303

Using (2.14) and (2.15) and Assumptions A.1 and A.2, (3.3) can be rewritten as304

(3.11) x rV , LrU y “ x rV , F ´ LUh y @rV P rX305

or, in terms of the residual operator,306

(3.12) rΠrLrU s “ rΠrRUhs,307

where rΠ a projection operator onto the space of SGSs rX .308

Using Assumption A.3, this equation can be approximated, within any element309

domain K, by [15]310

rΠrRUUhs |K “ rΠrLuuu rU s|K « rΠrτττ´1
K puuuqrU s|K “ τττ´1

K puuuqrU |K311

ùñ rU |K “ τττKpuuuqrΠrRUhs |K .(3.13)312

Note that (3.13) is nonlinear, due to the dependence of both τττK and RUh |K on the313

SGS. Thus, it will be necessary to linearize it at each integration point to obtain a314

solution in the final formulation; see subsection 3.3.315
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Summarizing, under A.1 to A.3, (3.8) can be written as the following stabilized316

system:317

(3.14) Bpuuu, Uh, Vhq `
ÿ

K

xL˚Vh , τττKpuuuqrΠrRUhsyK “ LpVhq.318

Different VMS methods are obtained by different choices of the SGSs space. Here319

we will consider the following methods:320

‚ The ASGS method, where rX is taken as the space of finite element residuals,321

and thus rΠ “ I.322

‚ The OSGS method, where rX is taken as XK
h0.323

The projection operator for the OSGS method is324

(3.15) rΠ “ I ´ Πτττh,325

where Πτττh is the projection onto Xh0 associated to associated to the inner product326

defined as327

(3.16) p‚,‚qτττ :“
ÿ

K

xτττK‚,‚yK .328

In practice, it is often convenient to make the further simplification:329

(3.17) p‚,‚qτττ «
ÿ

K

x‚,‚yK ,330

with the corresponding effect on the computation of Πτττh. This simplified projection331

corresponds to the standard L2-projection, which can be computed very efficiently332

and has similar stabilizing properties [11].333

Taking this approach, and using (3.15) in (3.14), we obtain the following stabilized334

formulation of the discrete problem: Find Uh P Xh0 such that for all Vh P Xh0 and all335

Wh P Xh0,336

BSpuuu, Uh, Vhq “ LSpuuu, Vh,πππhq,(3.18a)337

rU |K “ τττKpuuuq pRUh ´ πππhq|K @K P Th,(3.18b)338

xWh , πππh y “ xWh ,RUh y,(3.18c)339

U “ Uh ` rU,(3.18d)340

where341

BSpwww,U, V q :“ Bpuuu, U, V q ´
ÿ

K

xL˚
wwwV , τττKpwwwqLwwwU y,(3.19)342

LSpwww, V,πππq :“ LpV q ´
ÿ

K

xL˚
wwwV , τττKpwwwq pF ´ πππqyK .(3.20)343

Equation (3.18) is the complete discretized system of equations to be solved cor-344

responding to the OSGS method. The ASGS method is then recovered by simply345

taking πππh “ 000. This system is nonlinear and of a larger size (in the OSGS case)346

than the original Galerkin system due to the introduction of the residual projections347

πππh. In subsection 3.3 we describe the particular way in which we have decoupled and348

linearized the system.349
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3.3. Linearization of the coupled system of discrete equations.350

The process of approximating (3.18) to make it numerically tractable involves both351

its linearization with respect to U , and the decoupling of (3.18a)–(3.18d). To the352

latter end, note that, while equations (3.18a) and (3.18c) involve the resolution of353

two global systems, and must therefore be solved separately, (3.18b) and (3.18d) are354

local, in the sense that they express elemental equations, only involving a reduced355

number of unknowns. Therefore, it is possible to consider the latter two equations356

both separately or as a single (monolithic) system to be solved independently on each357

element without running into unacceptable numerical costs.358

Here we have opted for the following iteration scheme for (3.18):359

BSpuuum´1, Umh , Vhq “ LSpuuum´1, Vh,πππ
m
h q,(3.21a)360

rUm|K “ τττKpuuum´1q pRuuum´1Umh ´ πππmh q|K ,(3.21b)361

xWh , πππ
m
h y “ xWh ,Ruuum´1Um´1

h y,(3.21c)362

Um “ Umh ` rUm,(3.21d)363

where m is the iteration counter. Such iteration can be used to solve the system of364

equations as shown in Algorithm 3.1.365

In all rigor, we should point out that in the implementation of Algorithm 3.1366

we do not include the reaction terms in the calculation of the orthogonal projection.367

The reason is that these terms belong to the finite element space where the solution368

lives, and so their projection is exactly zero (for constant σσσ). However, note that369

πππmh is calculated with an outdated value of the unknown when one is performing the370

projections, within the nonlinear iterations loop, using (3.21c). So, were we to include371

these terms in (3.21c), the projection of the reaction terms would not exactly cancel.372

Following standard practice, we have modified the algorithm slightly by removing373

these terms altogether, which is equivalent to considering that their projection is374

evaluated at the next (still to be reached) iteration step in (3.21a), as the resulting375

algorithm has been observed to facilitate the convergence of the nonlinear iterations.376

We have chosen not to include this in Algorithm 3.1 for the sake of generality.377

Algorithm 3.1 Solving the nonlinear problem

m Ð 0
Umh ,

rUm Ð SetInitialGuessespq

Um Ð Umh ` rUm

while NotConvergedpq do
m Ð m` 1
πππmh Ð ProjectResidualpUm´1, Um´1

h q Ź Solve (3.21c)
Umh Ð SolveGlobalSystempUm´1,πππmh q Ź Solve (3.21a)
for K P Th do

rUm|K Ð CalculateSubscalespUm´1, Umh ,πππ
m
h q Ź Solve (3.21b)

end

Um Ð Umh ` rUm Ź (3.21d)

end
U8
h Ð Umh Ź Set converged solution

4. Design of the stabilization parameters: Fourier analysis.378

In section 3, we have used (3.12) to propose a computable approximation to (3.7)379
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that can be introduced in (3.4) to define the (stabilized) discrete problem. The basic380

assumption is that, if this approximation is reasonable, the finite element solution381

of this problem should be closer to the component of the solution of the continuous382

problem contained in the finite element space than the Galerkin approximation is.383

The hope is that this improvement results in a stable method.384

Since the matrix of stabilized parameters τττK is the only part of the formulation385

that remains undetermined, our task now reduces to finding suitable approximations386

for each of its entries (i.e., the stabilization parameters). We will show in this section387

how the expressions for the stabilization parameters that work for the incompress-388

ible Navier-Stokes system can be generalized to the equations we are interested in,389

preserving the stability of the discrete system.390

To achieve this, it is clear that we must somehow relate τττK to the original differ-391

ential operators that define the problem at hand which it purports to approximate. In392

order to do so, we rely on a heuristic argument based on comparing the norms of τττK393

to that of the Fourier-transformed versions of the original operators. This approach394

was first published in [11] for the incompressible Navier-Stokes equations and later395

applied and further developed to several other systems [12, 2, 26].396

We begin by defining suitable inner products in the space of forcing terms, X 1:397

(4.1) pF , GqΛ “ F :ΛG,398

where the : symbol indicates the conjugate transpose and where Λ is a positive definite399

matrix that is introduced to make the inner product dimensionally well-defined. It is400

enough to take (for d “ 3)401

(4.2) Λ “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 λ

fi

ffi

ffi

fl

,402

where λ is a scaling factor with units of velocity squared, to achieve this. Its particular403

definition will be given later. This inner product defines the norm |‚|Λ :“ p‚ , ‚q
1{2
Λ . It404

is straightforward to check that the inner product p‚ , ‚qΛ´1 in X (with its associated405

norm |‚|Λ´1) is also dimensionally consistent. Finally, we may define the functional406

norm407

(4.3) }‚}L2
ΛpKq

:“

ˆ
ż

K

|‚|
2
Λ dΩ

˙1{2

,408

with }‚}L2
Λ´1 pKq defined analogously.409

The argument to motivate the design of the stabilization parameters, adapted410

from [12] (see also [26]), goes as follows. There holds411

}rΠrLrU s}2L2
ΛpKq

« }rΠrLrU s}2L2
ΛpRdq

“ }
{

rΠrLrU s}2L2
ΛpRdq

“

ż

Rd
| pLp

rU |2Λ dkkk412

ď

ż

Rd
| pL|2Λ|

p

rU |2Λ´1 dkkk “ | pLpkkk0q|2Λ}rU}2L2
Λ´1 pRdq

« | pLpkkk0q|2Λ}rU}2L2
Λ´1 pKq

,(4.4)413

where kkk is the dimensionless h-normalized wave number. The first (strict) equality414

stems from Plancherel’s theorem, while the approximations in the first and second415

line are the result of neglecting the value of the SGSs (and of their derivatives) on the416
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element boundary (cf. Assumption A.2). The first equality in the second line is due417

to the mean value theorem, which predicts the existence of a kkk0 which, assuming the418

SGSs are dominated by large wave numbers, must be |kkk0| Á 1.419

So, if we are to approximate L´1 on each element K by a matrix τττK , a possible420

design restriction could be that the approximate version of the inequality in (4.4)421

holds. This is automatically achieved if one imposes that422

(4.5) |τττ´1
K |2Λ ď | pLpkkk0q|2Λ.423

In particular, we take τττK so that the equality holds. A convenient way to impose such424

condition is to consider the set of eigenvalues of the generalized eigenvalue problem425

given, for any matrix A, by specΛ´1pAq “
␣

λ : Axxx “ λΛ´1xxx
(

. It can be shown that426

(4.5) can be achieved by imposing that the spectral radius of τττ´1
K Λτττ´1

K be equal to427

that of pL:pkkk0qΛ pLpkkk0q, where the definition of spectral radius in this context is given428

by ρΛ´1pAq :“ max pspecΛ´1pAqq.429

Now comes a step that is not completely systematic: we are looking for a decom-430

position of the differential operator in (2.5) that leads to a simplified version of (4.5).431

This decomposition is not unique and may require a few iterations, even though it432

can be motivated by previous similar decompositions and the physics of the problem433

(decompose the matrices into similar physical effects). Here we propose the following:434

(4.6) LW “ pLν ` Lc ` Lb ` Lσ ` L∇αqW,435

with436

LνW :“ ´BipKijBjW q,(4.7)437

LcW :“ Av,iBiW,(4.8)438

LbW :“ Ab,iBiW,(4.9)439

LσW :“ SσW,(4.10)440

L∇αW :“ S∇αW,(4.11)441

where442

Av,ipwwwq “ α

»

—

—

–

wi 0 0 0
0 wi 0 0
0 0 wi 0
0 0 0 0

fi

ffi

ffi

fl

, Ab,i “ α

»

—

—

–

0 0 0 δi1
0 0 0 δi2
0 0 0 δi3
δi1 δi2 δi3 0

fi

ffi

ffi

fl

(4.12)443

S∇α “

»

—

—

–

0 0 0 0
0 0 0 0
0 0 0 0

B1α B2α B3α 0

fi

ffi

ffi

fl

,(4.13)444

and where Sσ “ S´S∇α. Note that different physical parameters appear in different445

operators and that different-order derivatives do as well.446

Now, due to the complexity of the operator L, instead of (4.5), we will consider447

(4.14) τττ´1
K “ τττ´1

ν ` τττ´1
c ` τττ´1

b ` τττ´1
σ ` τττ´1

∇α.448

For simplicity, we take τττK “ diag pτ1, τ1, τ1, τ2q (for d “ 3) and every matrix on the449

right-hand side of (4.14) is taken of the same form. Every approximate operator is450

thus defined by a pair of (positive) eigenvalues, whose value is fixed by the following451
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design criterion: their value should be taken as the minimum still ensuring that the452

spectral radius of the approximate operator is as large as that of its corresponding453

Fourier-transformed differential operator, and such that the kernel of the former is454

contained in that of the latter. Note that this condition guarantees that455

|τττ´1
K |2Λ ď |τττ´1

ν |2Λ ` |τττ´1
c |2Λ ` |τττ´1

b |2Λ ` |τττ´1
σ |2Λ ` |τττ´1

∇α|2Λ(4.15)456

“ | pLνpkkk0q|2Λ ` | pLcpkkk0q|2Λ ` | pLbpkkk0q|2Λ ` | pLσpkkk0q|2Λ ` | pL∇αpkkk0q|2Λ(4.16)457

which, while not strictly implying (4.5), reduces to it in the limit when any of the458

operators becomes dominant. The same design criterion has been successfully ap-459

plied to other problems [26]. The expression of the Fourier-transformed operators is460

(summation over repeated indices is implied)461

pLνpkkk0q «
k0,ik0,j
h2

Kij ,(4.17)462

pLcpkkk0q « i
k0,i
h

Av,i,(4.18)463

pLbpkkk0q « i
k0,i
h

Ab,i,(4.19)464

pLσpkkk0q « Sσ,(4.20)465

pLσpkkk0q « S∇α,(4.21)466

where i denotes the imaginary unit and where we have used the fact that the fluid467

volume fraction field α (and likewise ∇α) is slowly varying compared to the SGSs, so468

it may be taken as a constant in the Fourier transform.469

Using these definitions and applying the design criteria above yields the following470

stabilization parameters:471

(4.22)

τ´1
ν,1 “

4

3
αν

|kkk0|

h2
, τ´1

ν,2 “ 0,

τ´1
c,1 “ α

www ¨ kkk0
h

, τ´1
c,2 “ 0,

τ´1
b,1 “ α

|kkk0|

h

?
λ, τ´1

b,2 “ α
|kkk0|

h

1
?
λ
,

τ´1
σ,1 “ ρΛ´1pσσσq, τ´1

σ,2 “ ε,

τ´1
∇α,1 “

?
λ|∇α|, τ´1

∇α,2 “ 0.

472

Now, we must specify an expression for the scaling parameter λ which, as we have473

seen, has the units of a velocity squared. A convenient choice is to take474

(4.23) λ “
h2

|kkk0|2τ21,NS

,475

where τ1,NS corresponds to the usual expression for τ1 for the Navier-Stokes equa-476

tions [10], so as to recover the expected expression for τ1 at α ” 1 (see (4.27) below).477

Note that, in the latter case, the contribution τ´1
b,1 becomes equal to the LHS of (4.14)478

which, if taken literally, leads to a nonsensical equation where τ1 cancels out. This479

should be interpreted as meaning that this contribution has the same asymptotic be-480

havior as the full τ1. Therefore, it is superfluous to include it as its effect will be481

13

This manuscript is for review purposes only.



absorbed in the algorithmic constants. In fact, neglecting the contribution to τ1 of482

the mass conservation equation is also done in [11] using a different reasoning. For483

similar reasons, we will ignore the coefficient 4{3 in the expression of τ´1
ν,1 .484

Furthermore, since α is assumed to be slowly varying over the element, it will be485

taken as a constant over each element and, in particular, we will take it to be equal to486

the maximum value it attains in it. Similarly, we will take the modulus of its gradient487

to be constant over the element and equal to its maximum value.488

With these simplifications, the expression for the both stabilization parameters489

are given by490

τ1 “

´

Cατ
´1
1,NS ` ρΛ´1pσσσq

¯´1

,(4.24)491

τ2 “
h2

c1ατ1,NS ` εh2
,(4.25)492

where493

Cα :“ α `
h

|kkk0|
|∇α|,(4.26)494

τ1,NS :“

ˆ

c1
ν

h2
` c2

|www|

h

˙´1

,(4.27)495

and where c1 :“ |kkk0|2, c2 :“ |kkk0 cosϕ|, ϕ being the angle between kkk0 and www, can be496

treated as numerical parameters (see, e.g., [10, 12]). Note that the expressions in497

(4.27) reduce to that corresponding to the stationary Navier-Stokes equations when498

α ” 1 [10], which supports the choice made in defining the length scale λ. The second499

term in (4.25) is only strictly necessary for large of ε (see (5.10) below).500

Moreover, note that the second term in the definition of Cα is in fact unnecessary501

if502

(4.28)
h

|kkk0|
|∇α| À

h

|kkk0|

α

h
„ α.503

That is, if the porosity changes are well resolved by the mesh. We will assume this504

to hold in the following, leaving issues related to steep porosity gradients to future505

work. We will therefore neglect the above-mentioned contribution in what follows.506

It is not clear from the analysis above how one must evaluate the varying param-507

eters α,www since, given that we are solely interested in their asymptotic properties as508

the physical parameters take extreme values, it is only important that their values509

remain of the order of that of the varying fields they represent within each elemental510

domain. A common criterion is to evaluate the velocity modulus to its elemental511

maximum (a straightforward way to avoid setting it to zero when the velocity does512

not exactly vanish within the element). For simplicity, we will take this route in the513

theoretical considerations that follow, as well as evaluating α to its elemental mini-514

mum. However, while the optimization problem is trivial for some types of elements515

(e.g., linear elements), it can be cumbersome for others. Thus, in practice, the sta-516

bilization parameters can be taken as variable within the elements without altering517

their performance. This is what we have done in all the simulations presented.518

5. Stability and convergence for the linearized problem and the ASGS519

method.520

In this section we analyze the stabilization brought about by the method in a simplified521
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setting. The idea is to highlight why the generalization of the stabilization parameters522

given by (4.24) and (4.25) with respect to the case α ” 1 (standard Navier-Stokes)523

still provides the necessary stability in the generic case. This stability is proved in a524

slightly weaker norm when α ‰ 1, although the numerical tests presented in section 7525

indicate that, in practice, the accuracy of the method does not significantly deteriorate526

in this case.527

We consider the ASGS algorithm with a uniform viscosity ν. For simplicity, we528

also consider σσσ “ σ1113 to be uniform. Under these conditions, and taking into account529

that we consider the porosity field well-resolved by the mesh in the sense of (4.28),530

we have531

τ1 “
1

αKτ
´1
1,NS ` σ

,(5.1)532

τ2 “
h2

c1αKτ1,NS
,(5.2)533

where αK is some representative value of the porosity field within element K, such534

that α0,K ď αK ď α8,K , where we define α0,K ą 0 and α8,K to be the infimum and535

the supremum of α|K . As with the convective velocity norm in the definition of τ1,NS,536

we will take αK “ α8,K , which is also the natural choice according to the analysis537

presented below, as it yields to simplified estimates.538

First, let us look at the stability of the Galerkin method for the linearized problem.539

Let us begin by expressing its associated bilinear form in terms of the velocity and540

pressure unknowns uuuh and ph as well as a given convective field aaa:541

Bpaaa, Uh, Vhq “ pvvvh , αaaa ¨ ∇uuuh q ` 2p∇vvvh , αν
DS

Π∇uuuh q542

` pvvvh , α∇ph q ` pvvvh , σuuuh q ` pqh , εph q ` pqh ,∇ ¨ pαuuuhqq.(5.3)543

Using the finite element unknown as the test function and assuming ∇ ¨ pαaaaq “ 0 and544

uuuh “ 000 on BΩ, we obtain545

(5.4) Bpaaa, Uh, Uhq “ 2ν
›

›

›
α1{2

DS

Π∇uuuh
›

›

›

2

`
›

›σ1{2uuuh
›

›

2
` ε

›

›ph
›

›

2
,546

which generalizes the stability estimate obtained for the Galerkin method for the547

standard Navier-Stokes equations. Note that, for very small viscosities or fluid volume548

fractions, the first term above will provide almost no control over the gradient of the549

velocity, leading to oscillations on the solution. This is what happens in the standard550

case, but here the problem is aggravated for small porosities.551

Let us now study the stability of the stabilized bilinear form. We follow the552

analogous procedure to that in [10]:553

BSpaaa, Uh, Uhq “ Bpaaa, Uh, Uhq ´
ÿ

K

xL˚Vh , τττLUh y554

“ 2ν
›

›

›
α1{2

DS

Π∇uuuh
›

›

›

2

`
›

›σ1{2uuuh
›

›

2
` ε

›

›ph
›

›

2
555

`

›

›

›
τ
1{2
1 αXpUhq

›

›

›

2

h
´

›

›

›
τ
1{2
1

`

2∇ ¨ pαν
DS

Π∇uuuhq ´ σuuuh
˘

›

›

›

2

h
556

`

›

›

›
τ
1{2
2 ∇ ¨ pαuuuhq

›

›

›

2

h
´ ε2

›

›

›
τ
1{2
2 ph

›

›

›

2

h
,(5.5)557
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where }‚}h :“
ř

K } ‚ }L2pKq andXpUhq :“ aaa¨∇uuuh`∇ph. Note that, strictly speaking,558

one has the term 1
α∇ ¨ pαaaaqvvvh in the expansion of L˚Vh. The inclusion of such term559

generates a number of crossed terms in (5.5) that actually harm stability. This could560

be solved by adding an analogous term on the original equation to reestablish that561

symmetry. By doing this, the strong form of the problem would not be changed, and562

one would have none of the undesirable crossed terms. This was the case analyzed563

in [10], where it is mentioned that such a formulation helps to make the problem564

well posed, especially for large values of ε. Here, we have opted for simplifying the565

formulation by removing the aforementioned term from L˚Vh, leading to a simpler566

formulation with similar stability properties. Given that our focus is on small values567

of the compressibility, we do not miss out much in terms of the numerical advantages568

of the alternative formulation.569

Let us bound the negative term in the second line of (5.5):570

´

›

›

›
τ
1{2
1

`

2∇ ¨ pαν
DS

Π∇uuuhq ´ σuuuh
˘

›

›

›

2

h
571

“ ´

›

›

›
τ
1{2
1 2∇ ¨ pαν

DS

Π∇uuuhq

›

›

›

2

h
´

›

›

›
τ
1{2
1 σuuuh

›

›

›

2

h
572

` 2p2τ1∇ ¨
`

να
DS

Π∇uuuh
˘

, σuuuh qh573

ě
ÿ

K

"

´ 4
C2

inv

h2
ν2τ1αK

›

›

›
α1{2

DS

Π∇uuuh
›

›

›

2

K
´ τ1σ

2
›

›uuuh
›

›

2

K
574

´
4

ξ
νστ1

›

›

›
α1{2

DS

Π∇uuuh
›

›

›

2

K
´
ξC2

inv

h2
νστ1αK

›

›uuuh
›

›

2

K

*

,(5.6)575

where the last two terms have been bounded by the term on the third line, as shown576

next:577

2p2τ1∇ ¨
`

να
DS

Π∇uuuh
˘

, σuuuh qh578

“ 2p2ν1{2σ1{2 τ
1{2
1

α
1{2
K

∇ ¨
`

α
DS

Π∇uuuh
˘

, ν1{2α
1{2
K τ

1{2
1 σ1{2uuuh qh579

ě ´2
›

›

›
2ν1{2σ1{2 τ

1{2
1

α
1{2
K

∇ ¨
`

α
DS

Π∇uuuh
˘

›

›

›

h

›

›

›
ν1{2α

1{2
K σ1{2τ

1{2
1 uuuh

›

›

›

h
580

ě ´
h2

ξC2
inv

›

›

›
2ν1{2σ1{2 τ

1{2
1

α
1{2
K

∇ ¨
`

α
DS

Π∇uuuh
˘

›

›

›

2

h
´
ξC2

inv

h2

›

›

›
ν1{2α

1{2
K σ1{2τ

1{2
1 uuuh

›

›

›

2

h
581

ě
ÿ

K

"

´
4

ξ
νστ1

›

›

›
α1{2

DS

Π∇uuuh
›

›

›

2

K
´
ξC2

inv

h2
νστ1αK

›

›uuuh
›

›

2

K

*

,(5.7)582

where we have used the inequality ´2xy ě ´ 1
ξx

2 ´ ξy2, valid for any real numbers583

x, y, ξ, with ξ ą 0, as well as the following inverse estimate, which guarantees the584

existence of a constant Cinv independent of the mesh size such that585

(5.8) }ψh}W l
ppKq ď Cinvh

l´m`d{p´d{q}ψh}Wm
q pKq,586
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which is valid for 0 ď m ď l and 1 ď p, q ď 8 and any function ψh belonging to587

a finite-dimensional subspace of H lpKq, under the assumption that the sequence of588

mesh refinements is non-degenerate (see, e.g., [4]).589

Now, using (5.6) in (5.5) we obtain590

BSpaaa, Uh, Uhq ě
ÿ

K

"

εp1 ´ ετ2q
›

›ph
›

›

2

K
591

` ντ1

ˆ

2

τ1
´ 4C2

invαK
ν

h2
´

4

ξ
σ

˙

›

›

›
α1{2

DS

Π∇uuuh
›

›

›

2

K
592

` στ1

ˆ

1

τ1
´ σ ´ ξC2

invαK
ν

h2

˙

›

›uuuh
›

›

2

K
593

`

›

›

›
τ
1{2
1 αXpUhq

›

›

›

2

K
`

›

›

›
τ
1{2
2 ∇ ¨ pαuuuhq

›

›

›

2

K

*

.(5.9)594

We have mentioned that ε must be small. In particular, we will require that595

(5.10) ε ă c1 inf
K

"

α2
Kτ1,K
h2

*

.596

From (5.10), we have that the coefficient of the norm of the pressure term is597

(5.11) εp1 ´ ετ2q ą Cε,598

with C ą 0, so as to make sure that the compressibility term does not switch, from599

adding, to removing stability. Using (4.24), the coefficient of
›

›α1{2
DS

Π∇uuuh
›

›

2

K
in (5.9)600

can be expanded into601

(5.12) ντ1

ˆ

αK

´

2 ´ 4
C2

inv

c1

¯c1ν

h2
` 2αK

c2|www|8,K

h
` 2

´

1 ´
2

ξ

¯

σ

˙

ě Cν,602

if we take603

(5.13) C “ min

"

2 ´ 4
C2

inv

c1
, 2

´

1 ´
2

ξ

¯

*

.604

On the other hand, the coefficient of
›

›uuuh
›

›

2

K
becomes605

(5.14) αKτ1σ

ˆ

´

1 ´
ξC2

inv

c1

¯c1ν

h2
`
c2|www|8,K

h

˙

ě Crσα,606

where607

(5.15) rσα :“
τ´1
NSσ

τ´1
NS ` σ{αK

,608

if we take609

(5.16) C “ 1 ´
ξC2

inv

c1
.610

In both cases it can be guaranteed that C ą 0 by taking ξ ą 2 if the condition611

(5.17) c1 ą 2ξC2
inv.612

is met.613
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Remark 5.1. Condition (5.17) implies that the optimal value of c1 depends on614

the element types involved through the inverse estimate constant. In particular, for615

elements of the same polynomial order k for the velocity and the pressure, taking616

c1 “ 4k4, c2 “ 2k2 turns out to be effective [14, 31], and was the choice made in617

all the numerical experiments presented below. This scaling is consistent with the618

quadratic dependence of Cinv on the polynomial order, which is known to grow as k2619

(see [14] for details). It is also consistent with the interpretation given above of c1620

as the square of the characteristic wave number of the oscillations produced by the621

unresolved part of the solution in terms of their contribution to |LU |2Λ; see (4.4).622

We have just shown that the following stability bound holds for the stabilized623

method:624

Lemma 5.2. Assume that τ1 is defined as in (4.24) and that c1 ą 2ξC2
inv, with625

ξ ą 2. Then there exists a positive constant C such that for any Uh “ ruuuh; phs P Xh626

it holds that627

(5.18) BSpaaa, Uh, Uhq ě C|||Uh|||
2
,628

where629

(5.19)

|||Uh||| :“

ˆ

ν
›

›

›
α1{2

DS

Π∇uuuh
›

›

›

2

`

›

›

›
rσ1{2
α uuuh

›

›

›

2

`ε
›

›ph
›

›

2
`

›

›

›
τ
1{2
1 αXpUhq

›

›

›

2

h
`

›

›

›
τ
1{2
2 ∇¨pαuuuhq

›

›

›

2

h

˙1{2

,630

with rσα given in (5.15).631

Remark 5.3. Note that the quantity rσα differs from the quantity rσ defined in [10]632

simply by the division of σ by αK in the denominator. This seems to indicate a633

weaker control on uuuh for large reaction terms when αK is simultaneously very small.634

It turns out this not to be the case, as the asymptotic analysis presented below shows635

(see subsection 6.3) and the numerical tests corroborate.636

It is also straightforward to follow an analogous process to that used in the proof637

of Lemma 2 in [10] to prove a certain continuity of the bilinear form BS. In particular,638

it is possible to show that639

Lemma 5.4. Assume that τ1, τ2 are defined as in (4.24) and (4.25) and that all the640

algorithmic constants involved are positive. Assume also that the field αaaa is (weakly)641

divergence-free and ∇α is uniformly bounded in Ω. Then, there exist a positive con-642

stant C, such that643

(5.20) BSpaaa, Uh, Uhq ď C

ˆ

›

›

›

τ
1{2
2

h
uuuh

›

›

›

h
`

›

›

›

τ
1{2
1

h
ph

›

›

›

h

˙

|||Vh|||,644

for all Uh, Vh P Xh.645

Using Lemma 5.2 and the modified version of Lemma 5.4, and assuming that the646

solution of the linearized problem is sufficiently smooth, convergence follows as in [10]:647

Theorem 5.5. Let U be the exact solution of the linearized problem corresponding648

to (3.21a), where uuum´1 is replaced by a given aaa such that ∇ ¨ pαaaaq “ 0 and where649

πππmh “ 000 (ASGS method). Then, under the assumptions of Lemmas 5.2 and 5.4, there650

exists a positive constant C, such that651

(5.21) |||Eh||| ď C
ÿ

K

1

hK

´

τ
1{2
2,KEint,Kpuuuq ` τ

1{2
1,KEint,Kppq

¯

,652
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where Eh :“ U ´ Uh and where the interpolation error is defined as653

(5.22) Eint,Kpψq :“ h
kψ`1
K }ψ}

Hkψ`1
pKq

,654

where ψ is the field being interpolated and kψ the corresponding polynomial order of655

the interpolation.656

6. Robustness of the formulation with respect to changes in the phys-657

ical parameters. Let us investigate how our convergence results are affected when658

the physical parameters take extreme values. We begin by writing down a dimension-659

less version of the momentum conservation equation:660

(6.1) Re α˚uuu˚ ¨ ∇˚uuu˚ ´ 2∇˚ ¨ pα˚
DS

Π∇˚uuu˚q ` p1 ` Re `Daqα˚∇˚p˚ ` Da uuu˚ “ fff˚,661

with662

(6.2) Re “
UL

ν
, Da “

σL2

α8ν
,663

where L, U , are the characteristic length and velocity scales, and α8 ą 0 is the664

supremum of the porosity field in the domain of interest. These scales are used in665

(6.1) to define the dimensionless counterparts of the various variables and differential666

operators: uuu “ Uuuu˚, α “ α8α
˚, ∇ “ L´1∇˚ and fff “ L2{pα8νUqfff˚. For the667

pressure, we have used a scaling that reflects our implicit assumption of the pressure668

gradient term being always of relevance. It is based on taking p “ Pp˚, with669

(6.3) P “ p1 ` Re `Daq
Uν

L
.670

Clearly, such a scaling is not universally valid for all the solutions of (2.1) and (2.2)671

(e.g., at sufficiently low Reynolds numbers, one can pick the force term to achieve a672

null pressure field), but is valid in most flows of interest.673

Equation (6.1) is particularly convenient for analyzing the relative weight of the674

various terms involved, given by their respective coefficients. In particular, we will675

study next the robustness of the convergence result (5.21) by considering different676

combinations of limiting values for Re and Da. For that, note the following asymptotic677

dependencies (as h Ñ 0):678

τ1 „
1

αKp1 ` Reh `Dahq

h2

ν
,

τ2 „
1 ` Reh
αK

ν,

rσα „
p1 ` RehqDah
1 ` Reh `Dah

ν

h2
,

(6.4)679

where the h subindices refer to the fact that the element is considered the domain of680

interest (i.e., L “ h).681

6.1. Dominant viscous diffusion (Reh,Dah Ñ 0).682

In this case we have that683

τ1 „
h2

αKν
,684
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τ2 „
ν

αK
,685

rσαK „ Dah
ν

h2
.686

With these estimates, (5.21) yields687

(6.5) ∥
DS

Π∇eeeu∥ `
1

ν
h∥∇ep∥h `

1

α0
∥∇ ¨ pαeeeuq∥h À

1

α0

ˆ

Eintpuuuq

h
`

1

ν
Eintppq

˙

.688

Note that this result leads to the same drop in convergence order for the pressure689

as compared to the velocity that occurs in the conventional Navier-Stokes equations.690

The error is inversely proportional to α0, so the estimate deteriorates as α0 decreases,691

even though the third term on the LHS partially balances this deterioration. We will692

see that this linear drop in accuracy with decreasing minimal porosity is ubiquitous693

over the space of physical parameters. This is because the terms involving derivatives694

of the velocity are multiplied by the porosity in the continuous problem, which means695

that any inaccuracies in the velocity are weighted by the porosity, leading to (inversely696

proportional) larger errors in regions with smaller porosities. This is also manifested697

in the presence of α in the working norm of the problem.698

It is interesting to examine what this result implies in terms of the control attained699

in practice for specific terms on the left-hand-side of (6.5). In particular, let us focus700

on the equal-order interpolation for the velocity and for the pressure, which is the case701

considered in the numerical experiments. Let U and P be the velocity and pressure702

characteristic values, such that Eintpuuuq “ UE˚
intpuuuq and Eintppq “ PE˚

intppq, where703

the asterisks denote dimensionless interpolation errors. Let us also define E˚
int :“704

max tE˚
intpuuuq,E˚

intppqu.705

In these conditions, and assuming that the scaling for the pressure given by (6.3)706

holds, (6.5) implies that707

(6.6) ∥
DS

Π∇eeeu∥ À
1

α0

ˆ

1 `
Ph

Uν

˙

Eintpuuuq

h
„

1

α0

ˆ

1 `
h

L

˙

Eintpuuuq

h
„

1

α0

Eintpuuuq

h
,708

where in the second estimate is obtained from P „ Uν{L as Re,Da Ñ 0. This result709

is clearly optimal. Similarly, we have that710

(6.7) ∥∇ep∥h À
1

α0

ˆ

Uν

h
` 1

˙

Eintppq

h
„

1

α0

ˆ

L

h
` 1

˙

Eintppq

h
,711

which shows why the pressure convergence rate will in general be one order below712

that of the velocity when viscosity is important.713

6.2. Dominant convection (Reh Ñ 8).714

In this case, we have the following estimates:715

τ1 „
h

α∥aaa∥8,K
,716

τ2 „
h∥aaa∥8,K

α
,717

rσα „ Dah
ν

h2
,718

from which (5.21) yields719

(6.8)
1

∥aaa∥8

∥aaa ¨ ∇eeeu ` ∇ep∥h ` ∥∇ ¨ pαeeeuq∥h À
1

α0

ˆ

Eintpuuuq

h
`

1

∥aaa∥8

Eintppq

h

˙

,720
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where ∥aaa∥8 is the supremum of ∥aaa∥ over Ω. Here again the error control is very721

similar to that one obtains for the regular Navier-Stokes equations as shown in [10].722

For equal-order interpolations, we can use P „ U2 as Re Ñ 8 to derive the following723

estimate:724

(6.9)
1

∥aaa∥8

∥aaa ¨ ∇eeeu ` ∇ep∥h À
1

α0

ˆ

U `
P

∥aaa∥8

˙

E˚
int

h
,725

which is optimal whenever the term aaa ¨ ∇eeeu ` ∇ep is of the same order as any of its726

two terms separately:727

Dominant aaa ¨ ∇eeeu.
(6.10) ∥ 1

∥aaa∥8

aaa ¨ ∇eeeu∥h À
1

α0

ˆ

1 `
U

∥aaa∥8

˙

Eintpuuuq

h
„

1

α0

Eintpuuuq

h
.728

Dominant ∇ep.

(6.11) ∥∇ep∥h À
1

α0

ˆ

∥aaa∥8
?
P

` 1

˙

Eintppq

h
„

1

α0

Eintppq

h
.729

6.3. Dominant reaction (Dah Ñ 8).730

The estimates for the numerical parameters are now as follows:731

τ1 „
α

σ
,732

τ2 „
1 ` Reh

α
ν,733

rσα „ αp1 ` Rehq
ν

h2
.734

They yield the following error bound:735

∥
DS

Π∇eeeu∥ ` p1 ` Rehq1{2 ∥eeeu∥
h

`
α0

σ1{2ν1{2
∥∇ep∥h `

p1 ` Rehq1{2

α
1{2
0

∥∇ ¨ pαeeeuq∥h,736

À
1

α0

ˆ

p1 ` Rehq1{2Eintpuuuq

h
`

α0

σ1{2ν1{2

Eintppq

h

˙

.737

Here the bound can again be considered optimal, even though the first term on the738

LHS will provide a more or less weak control, depending on the particular form of the739
DS

Π operator. Furthermore, note that the control on the pressure term deteriorates for740

very large Reynolds numbers, although this deterioration is slow, growing only with741

its square root. For equal-order discretizations, we can derive the following estimates:742

∥
DS

Π∇eeeu∥ À
1

α0

ˆ

p1 ` Rehq1{2 `
α0

σ1{2ν1{2

P

U

˙

Eintpuuuq

h
743

„

˜

1

α0
p1 ` Rehq1{2 `

Da1{2

α
1{2
8

¸

Eintpuuuq

h
.(6.12)744

where we have used that P „ Da Uν{h as Dah Ñ 8. It implies that the growth745

of either Reh or Da could potentially undermine the optimality of the approxima-746

tion of the gradient. Note however that the latter is the Damköhler number based747

on the macroscopic length L; that is, Da “ Dah L
2{h2 and is thus is not expected748
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to be relevant except perhaps in extremely reaction-dominanted flows. The depen-749

dence of accuracy on the Reynolds number is similar to that of convection-dominated750

flows. These dependencies remain unaltered for α ” 1. A similar reasoning leads to751

analogous estimates for }eeeu}.752

Let us thus derive estimates for the norm of the gradient of the pressure. In this753

case, we have:754

(6.13) ∥∇ep∥h À
1

α0

ˆ

p1 ` Rehq1{2

α0
Da

´1{2
h

L

h
` 1

˙

Eintppq

h
.755

Here the situation is reversed with respect to the dependence on Dah. The loss of756

one order in the pressure accuracy is greatly mitigated by the presence of Da
´1{2
h in757

reaction-dominated flows, except for the very finest meshes.758

7. Numerical examples. We will resort to the method of manufactured so-759

lutions, deriving the exact expression for the forcing term that corresponds to the760

chosen velocity and pressure fields. We consider the unit square p0, 1q ˆ p0, 1q as the761

fluid domain with null Dirichlet boundary conditions on all sides. Our pick for the762

fluid and pressure fields are763

uuupx1, x2q “ U
α0

α
psinpπx1qsinpπx2qeee1 ` cospπx1qcospπx2qeee2q ,

ppx1, x2q “ P cospπx1qsinpπx2q,
(7.1)764

where eeei is the i-th coordinate basis vector and where U,P are the characteristic765

velocity and pressure scales that we take, as before, to be related by (6.3). The766

porosity field is defined in terms of the radial coordinate r, centered in the domain,767

as follows:768

(7.2) αprq “

$

’

’

’

’

&

’

’

’

’

%

α0 r ď r1,

1 ´ 1´α0

1`eγprq r1 ă r ă r2,

1 r ě r2,

769

where γ : pr1, r2q Ñ p´8,8q is a monotonically increasing function defined by770

(7.3) γ “
2η ´ 1

ηp1 ´ ηq
,771

and772

(7.4) η :“
r2 ´ r21
r22 ´ r21

,773

where 0 ă r1 ă r2 ă 1. The formulas above define a smooth bump function with774

a central circular plateau where α “ α0 surrounded by the annular region defined775

by r P pr1, r2q, on which the porosity monotonically increases with r up to α “ 1 at776

r “ r2. Figure 1 shows 1 ´ α, i.e., the matrix’s volume fraction.777

The objective of this example is to check the robustness of the empirical con-778

vergence rates obtained for the ASGS and OSGS formulations and to compare them779

to the analytical estimates derived in the previous sections. In particular, we will780

focus on the L2-norm and the H1-seminorm of the error, normalizing the velocity and781

pressure errors using their respective characteristic values U and P .782
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Fig. 1: Porous matrix’s volume fraction field 1 ´ α used for manufactured tests.

In order to cover a wide range of regimes, we will consider all the combinations783

resulting from taking Re,Da P t10´6, 1, 10´6u and α0 P t0.05, 0.5u. The large separa-784

tion between the different values taken by Re and Da guarantees that the various flow785

regimes considered are approximately independent of the mesh refininement level. As786

the characteristic velocity and length scales are fixed, we vary the value of Re by787

changing the viscosity. The value of Da is varied through σ. Doing so will allow us788

to analyse the performance of our formulation in the three limiting cases of interest,789

i.e., convection, diffusion and reaction-dominated flows.790

For both 2D and 3D tests, we have considered the problem defined by (7.1). In791

the following subsections we present the particularities of the various simulations and792

the results obtained.793

7.1. 2D cases.794

We consider two types of elements: linear triangles (P1 elements) and biquadratic795

quadrilaterals (Q2 elements). The sequence of structured meshes is in both cases796

obtained by successively dividing the nodal distance by two, the coarsest one being797

given by a 10 ˆ 10 grid, and the finest being 640 ˆ 640. The triangle elements are798

obtained by dividing every resulting square into two triangles. In all the examples we799

take ε “ 0.800

Tables 1 and 2 contain the measured convergence rates for the L2-norm and H1-801

seminorm for the P1elements, along with the absolute errors in these norms measured802

on the finest mesh, i.e., the finest mesh error (FME). Tables 3 and 4 are the analogues803

for Q2 elements. Overall, let us note that there are no significant differences in accu-804

racy between the ASGS and the OSGS methods over all the test cases. Furthermore,805

the results are compatible with the error estimates provided in section 6.806

Indeed, one can immediately check that the effect of variations in the minimum807

porosity is consistent with the asymptotic analysis above. When when passing from808

α0 “ 0.5 to α0 “ 0.05 (even vs. odd-numbered lines in Tables 1 to 4), we observe a loss809
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in accuracy corresponding of around half an order of magnitude in terms of the FME.810

This tendency is quite robust although not without a few exceptions, particularly for811

the pressure when using linear elements.812

For viscosity-dominated flows (rows 1-4, 7-8), the results are consistent with the813

predicted asymptotic bounds given by (6.6) and (6.7). Note that the FME values814

indicate that both the ASGS and OSGS methods show a very similar accuracy inde-815

pendently of the values taken by the physical parameters in this regime, except for816

the above-mentioned decrease in accuracy as α decreases. The predicted drop of one817

order in the pressure accuracy is observed in most cases for linear elements and is818

even more prevalent for biquadratic elements. The velocity error is optimal in call819

cases.820

With respect to convection-dominated flows (cf. rows 5-6, 11-12, 17-18), we were821

unable to get the nonlinear iterations to converge with quadratic elements on the822

finest mesh when α “ 0.5, probably due to the stationary problem becoming ill-823

defined in this case. Such cases are identified in Tables 3 and 4 by the notation n.c.824

(not converged). For the remaining cases, the picture is very similar to that seen825

in the viscosity-dominanted regime: The predicted optimal asymptotic behavior is826

observed for the velocity and the pressure (which this time converges quadratically in827

all cases), as the estimates (6.10) and (6.11) suggest.828

For reaction-dominated flows (rows 13-16), the analysis indicates a slightly more829

complex convergence profile. As a preamble, let us note the relation Da “ Dah L
2{h2.830

The latter implies that the values of Dah actually exhibit considerable variation831

accross the different meshes, becoming about 64 times smaller when passing from832

the coarses discretization to the finest one. In particular, we can estimate Dah «833

106{802 « 150 for the finest mesh, which could be considered marginally reaction-834

dominated. Nonetheless, note that the 3-order increase in Da
1{2
h over the range that835

goes from 1 to 106 (compare rows 7-10 with rows 13-16) still leads to a quite robust836

decrease of the pressure error by a similar amount in the L2-norm. For the H1-norm,837

the decrease in error is smaller, although a consistent optimal-order (i.e., one order838

above the general case) convergence rate is only observed in the high-Da cases. These839

results are all consistent with (6.13). For the velocity error, the deterioration of its840

bound with Da suggested by (6.12) is not realised for linear elements (the FME barely841

grows when increasing Da “ 1 to Da “ 106 while leaving the other parameters un-842

changed). For biquadratic elements, a noticeble error growth is observed (compare,843

e.g., rows 9 and 15 in Tables 3 and 4), although still very far from the estimated844

„ Da1{2 effect.845

7.2. 3D cases.846

For the 3D examples, we use the z-wise extruded version of the same manufactured847

field. However, in order to break the symmetry, in this case we focus on unstructured848

meshes to make sure that the velocity vectors have a nonzero z-component due to the849

discretization errors. The domain is defined by a p0, 1qˆp0, 1qˆp0, 0.4q parallelepiped.850

Once again, the sequence of meshes is obtained by successively splitting the initial851

unstructured mesh sizes in two. In this case we consider only linear tetrahedra. The852

physical parameters are fixed to pα,Re,Daq “ p0.5, 1, 1q for all the cases run.853

The unstructured nature of the mesh makes it difficult to ensure that the boundary854

conditions imposed by the manufactured field are compatible with mass conservation855

in the discrete case, leading to an ill-posed problem. Thus, in this case we have856

resorted to the compressibility, taking ε ą 0, which makes the problem well-posed.857

This also eliminates the indeterminancy in the pressure, removing the need to fix it858
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Table 1: Observed convergence rates and normalized finest mesh error (FME) for the 2D
problem (P1 elements), calculated from the L2-norm of the error obtained with the two finest
meshes (theoretical convergence rates in parentheses)

velocity

slope (2) FME

Re Da α0 ASGS OSGS ASGS OSGS

10´6 10´6 0.5 2.00 2.00 8.48 ˆ 10´6 6.38 ˆ 10´6

10´6 10´6 0.05 2.00 2.00 2.95 ˆ 10´5 4.78 ˆ 10´5

1 10´6 0.5 2.00 2.00 8.48 ˆ 10´6 6.38 ˆ 10´6

1 10´6 0.05 2.00 2.00 2.95 ˆ 10´5 4.78 ˆ 10´5

106 10´6 0.5 2.20 2.81 2.20 ˆ 10´6 2.22 ˆ 10´6

106 10´6 0.05 2.07 2.08 1.10 ˆ 10´5 1.10 ˆ 10´5

10´6 1 0.5 2.00 2.00 8.46 ˆ 10´6 6.31 ˆ 10´6

10´6 1 0.05 2.00 2.00 2.90 ˆ 10´5 4.39 ˆ 10´5

1 1 0.5 2.00 2.00 8.46 ˆ 10´6 6.31 ˆ 10´6

1 1 0.05 2.00 2.00 2.90 ˆ 10´5 4.39 ˆ 10´5

106 1 0.5 2.20 2.81 2.20 ˆ 10´6 2.22 ˆ 10´6

106 1 0.05 2.07 2.08 1.10 ˆ 10´5 1.10 ˆ 10´5

10´6 106 0.5 2.57 2.85 7.42 ˆ 10´6 1.94 ˆ 10´5

10´6 106 0.05 2.11 2.83 2.20 ˆ 10´5 2.02 ˆ 10´5

1 106 0.5 2.57 2.85 7.42 ˆ 10´6 1.94 ˆ 10´5

1 106 0.05 2.11 2.83 2.19 ˆ 10´5 2.02 ˆ 10´5

106 106 0.5 2.60 2.56 2.60 ˆ 10´6 3.85 ˆ 10´6

106 106 0.05 2.08 2.11 7.44 ˆ 10´6 7.58 ˆ 10´6

pressure

slope (1) FME

Re Da α0 ASGS OSGS ASGS OSGS

10´6 10´6 0.5 1.00 1.83 1.30 ˆ 10´2 2.85 ˆ 10´4

10´6 10´6 0.05 1.55 2.00 1.61 ˆ 10´3 1.18 ˆ 10´3

1 10´6 0.5 1.00 1.83 6.51 ˆ 10´3 1.43 ˆ 10´4

1 10´6 0.05 1.55 2.00 8.04 ˆ 10´4 5.89 ˆ 10´4

106 10´6 0.5 1.95 1.66 8.92 ˆ 10´7 1.07 ˆ 10´6

106 10´6 0.05 2.02 2.03 1.51 ˆ 10´6 1.52 ˆ 10´6

10´6 1 0.5 1.00 1.83 6.51 ˆ 10´3 1.42 ˆ 10´4

10´6 1 0.05 1.55 2.00 8.05 ˆ 10´4 5.92 ˆ 10´4

1 1 0.5 1.00 1.83 4.34 ˆ 10´3 9.47 ˆ 10´5

1 1 0.05 1.55 2.00 5.37 ˆ 10´4 3.94 ˆ 10´4

106 1 0.5 1.95 1.66 8.92 ˆ 10´7 1.07 ˆ 10´6

106 1 0.05 2.02 2.03 1.51 ˆ 10´6 1.52 ˆ 10´6

10´6 106 0.5 3.16 3.21 1.20 ˆ 10´6 1.22 ˆ 10´6

10´6 106 0.05 2.95 2.97 1.98 ˆ 10´6 2.02 ˆ 10´6

1 106 0.5 3.16 3.21 1.20 ˆ 10´6 1.22 ˆ 10´6

1 106 0.05 2.95 2.97 1.98 ˆ 10´6 2.02 ˆ 10´6

106 106 0.5 1.89 1.66 6.26 ˆ 10´7 1.03 ˆ 10´6

106 106 0.05 2.03 2.05 1.33 ˆ 10´6 1.35 ˆ 10´6

25

This manuscript is for review purposes only.



Table 2: Observed convergence rates and normalized finest mesh error (FME) for the 2D
problem (P1 elements), calculated from the H1-seminorm of the error obtained with the two
finest meshes (theoretical convergence rates in parentheses)

velocity

slope (1) FME

Re Da α0 ASGS OSGS ASGS OSGS

10´6 10´6 0.5 1.00 1.00 9.86 ˆ 10´3 9.86 ˆ 10´3

10´6 10´6 0.05 1.00 1.00 3.10 ˆ 10´2 3.10 ˆ 10´2

1 10´6 0.5 1.00 1.00 9.86 ˆ 10´3 9.86 ˆ 10´3

1 10´6 0.05 1.00 1.00 3.10 ˆ 10´2 3.10 ˆ 10´2

106 10´6 0.5 1.02 1.09 9.88 ˆ 10´3 9.90 ˆ 10´3

106 10´6 0.05 1.00 1.01 3.10 ˆ 10´2 3.11 ˆ 10´2

10´6 1 0.5 1.00 1.00 9.86 ˆ 10´3 9.86 ˆ 10´3

10´6 1 0.05 1.00 1.00 3.10 ˆ 10´2 3.10 ˆ 10´2

1 1 0.5 1.00 1.00 9.86 ˆ 10´3 9.86 ˆ 10´3

1 1 0.05 1.00 1.00 3.10 ˆ 10´2 3.10 ˆ 10´2

106 1 0.5 1.02 1.09 9.88 ˆ 10´3 9.90 ˆ 10´3

106 1 0.05 1.00 1.01 3.10 ˆ 10´2 3.11 ˆ 10´2

10´6 106 0.5 1.00 1.82 9.86 ˆ 10´3 2.77 ˆ 10´2

10´6 106 0.05 1.00 1.49 3.10 ˆ 10´2 4.06 ˆ 10´2

1 106 0.5 1.00 1.82 9.86 ˆ 10´3 2.77 ˆ 10´2

1 106 0.05 1.00 1.49 3.10 ˆ 10´2 4.06 ˆ 10´2

106 106 0.5 1.05 1.12 1.00 ˆ 10´2 1.07 ˆ 10´2

106 106 0.05 1.00 1.01 3.10 ˆ 10´2 3.11 ˆ 10´2

pressure

slope (-) FME

Re Da α0 ASGS OSGS ASGS OSGS

10´6 10´6 0.5 0.53 0.56 1.52 ˆ 10´1 2.88 ˆ 10´1

10´6 10´6 0.05 1.94 1.90 6.54 ˆ 10´2 7.02 ˆ 10´2

1 10´6 0.5 0.53 0.57 7.61 ˆ 10´2 1.44 ˆ 10´1

1 10´6 0.05 1.92 1.90 3.30 ˆ 10´2 3.53 ˆ 10´2

106 10´6 0.5 1.00 1.00 5.45 ˆ 10´3 5.45 ˆ 10´3

106 10´6 0.05 1.00 1.00 5.45 ˆ 10´3 5.45 ˆ 10´3

10´6 1 0.5 0.53 0.57 7.61 ˆ 10´2 1.44 ˆ 10´1

10´6 1 0.05 1.92 1.90 3.30 ˆ 10´2 3.55 ˆ 10´2

1 1 0.5 0.53 0.57 5.09 ˆ 10´2 9.56 ˆ 10´2

1 1 0.05 1.91 1.89 2.24 ˆ 10´2 2.40 ˆ 10´2

106 1 0.5 1.00 1.00 5.45 ˆ 10´3 5.45 ˆ 10´3

106 1 0.05 1.00 1.00 5.45 ˆ 10´3 5.45 ˆ 10´3

10´6 106 0.5 1.00 1.00 5.45 ˆ 10´3 5.46 ˆ 10´3

10´6 106 0.05 1.00 1.00 5.45 ˆ 10´3 5.46 ˆ 10´3

1 106 0.5 1.00 1.00 5.45 ˆ 10´3 5.46 ˆ 10´3

1 106 0.05 1.00 1.00 5.45 ˆ 10´3 5.46 ˆ 10´3

106 106 0.5 1.00 1.00 5.45 ˆ 10´3 5.45 ˆ 10´3

106 106 0.05 1.00 1.00 5.45 ˆ 10´3 5.45 ˆ 10´3
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Table 3: Observed convergence rates and normalized finest mesh error (FME) for the 2D
problem (Q2 elements), calculated from the L2-norm of the error obtained with the two finest
meshes (theoretical convergence rates in parentheses)

velocity

slope (3) FME

Re Da α0 ASGS OSGS ASGS OSGS

10´6 10´6 0.5 3.14 3.15 5.60 ˆ 10´9 5.60 ˆ 10´9

10´6 10´6 0.05 3.15 3.15 4.03 ˆ 10´8 4.03 ˆ 10´8

1 10´6 0.5 3.14 3.15 5.60 ˆ 10´9 5.60 ˆ 10´9

1 10´6 0.05 3.15 3.15 4.03 ˆ 10´8 4.03 ˆ 10´8

106 10´6 0.5 n.c. n.c. n.c. n.c.
106 10´6 0.05 4.00 4.01 7.28 ˆ 10´8 7.27 ˆ 10´8

10´6 1 0.5 3.14 3.15 5.60 ˆ 10´9 5.60 ˆ 10´9

10´6 1 0.05 3.15 3.15 4.03 ˆ 10´8 4.03 ˆ 10´8

1 1 0.5 3.14 3.15 5.60 ˆ 10´9 5.60 ˆ 10´9

1 1 0.05 3.15 3.15 4.03 ˆ 10´8 4.03 ˆ 10´8

106 1 0.5 n.c. n.c. n.c. n.c.
106 1 0.05 4.00 4.01 7.28 ˆ 10´8 7.27 ˆ 10´8

10´6 106 0.5 3.86 4.10 4.89 ˆ 10´8 3.39 ˆ 10´8

10´6 106 0.05 3.58 3.59 5.89 ˆ 10´8 5.13 ˆ 10´8

1 106 0.5 3.86 4.10 4.89 ˆ 10´8 3.39 ˆ 10´8

1 106 0.05 3.58 3.59 5.89 ˆ 10´8 5.13 ˆ 10´8

106 106 0.5 n.c. n.c. n.c. n.c.
106 106 0.05 3.65 3.66 6.43 ˆ 10´8 6.44 ˆ 10´8

pressure

slope (2) FME

Re Da α0 ASGS OSGS ASGS OSGS

10´6 10´6 0.5 2.10 2.05 5.23 ˆ 10´6 5.18 ˆ 10´5

10´6 10´6 0.05 2.09 2.00 3.73 ˆ 10´5 3.66 ˆ 10´3

1 10´6 0.5 2.10 2.05 2.61 ˆ 10´6 2.59 ˆ 10´5

1 10´6 0.05 2.09 2.00 1.86 ˆ 10´5 1.83 ˆ 10´4

106 10´6 0.5 n.c. n.c. n.c. n.c.
106 10´6 0.05 4.07 4.11 9.20 ˆ 10´9 9.24 ˆ 10´9

10´6 1 0.5 2.10 2.05 2.61 ˆ 10´6 2.59 ˆ 10´5

10´6 1 0.05 2.09 2.00 1.86 ˆ 10´5 1.83 ˆ 10´4

1 1 0.5 2.10 2.05 1.74 ˆ 10´6 1.73 ˆ 10´5

1 1 0.05 2.09 2.00 1.24 ˆ 10´5 1.22 ˆ 10´4

106 1 0.5 n.c. n.c. n.c. n.c.
106 1 0.05 4.07 4.11 9.20 ˆ 10´9 9.24 ˆ 10´9

10´6 106 0.5 3.10 2.92 5.63 ˆ 10´10 1.18 ˆ 10´8

10´6 106 0.05 3.10 3.14 5.64 ˆ 10´10 1.02 ˆ 10´9

1 106 0.5 3.10 2.92 5.63 ˆ 10´10 1.18 ˆ 10´8

1 106 0.05 3.10 3.14 5.64 ˆ 10´10 1.02 ˆ 10´9

106 106 0.5 n.c. n.c. n.c. n.c.
106 106 0.05 3.97 4.00 4.64 ˆ 10´9 4.65 ˆ 10´9
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Table 4: Observed convergence rates and normalized finest mesh error (FME) for the 2D
problem (Q2 elements), calculated from the H1-seminorm of the error obtained with the two
finest meshes (theoretical convergence rates in parentheses)

velocity

slope (2) FME

Re Da α0 ASGS OSGS ASGS OSGS

10´6 10´6 0.5 2.10 2.10 2.78 ˆ 10´5 2.78 ˆ 10´5

10´6 10´6 0.05 2.10 2.10 2.00 ˆ 10´4 2.00 ˆ 10´4

1 10´6 0.5 2.10 2.10 2.78 ˆ 10´5 2.78 ˆ 10´5

1 10´6 0.05 2.10 2.10 2.00 ˆ 10´4 2.00 ˆ 10´4

106 10´6 0.5 n.c. n.c. n.c. n.c.
106 10´6 0.05 2.95 2.96 3.61 ˆ 10´4 3.61 ˆ 10´4

10´6 1 0.5 2.10 2.10 2.78 ˆ 10´5 2.78 ˆ 10´5

10´6 1 0.05 2.10 2.10 2.00 ˆ 10´4 2.00 ˆ 10´4

1 1 0.5 2.10 2.10 2.78 ˆ 10´5 2.78 ˆ 10´5

1 1 0.05 2.10 2.10 2.00 ˆ 10´4 2.00 ˆ 10´4

106 1 0.5 n.c. n.c. n.c. n.c.
106 1 0.05 2.95 2.96 3.61 ˆ 10´4 3.61 ˆ 10´4

10´6 106 0.5 2.81 3.05 2.13 ˆ 10´4 1.68 ˆ 10´4

10´6 106 0.05 2.49 2.55 2.73 ˆ 10´4 2.54 ˆ 10´4

1 106 0.5 2.81 3.05 2.13 ˆ 10´4 1.68 ˆ 10´4

1 106 0.05 2.49 2.55 2.73 ˆ 10´4 2.54 ˆ 10´4

106 106 0.5 n.c. n.c. n.c. n.c.
106 106 0.05 2.60 2.61 3.19 ˆ 10´4 3.19 ˆ 10´4

pressure

slope (1) FME

Re Da α0 ASGS OSGS ASGS OSGS

10´6 10´6 0.5 1.04 1.00 2.59 ˆ 10´2 2.56 ˆ 10´2

10´6 10´6 0.05 1.03 0.94 1.85 ˆ 10´1 1.81 ˆ 10´1

1 10´6 0.5 1.04 1.00 1.29 ˆ 10´2 1.28 ˆ 10´2

1 10´6 0.05 1.03 0.94 9.23 ˆ 10´2 9.05 ˆ 10´2

106 10´6 0.5 n.c. n.c. n.c. n.c.
106 10´6 0.05 3.02 3.05 4.55 ˆ 10´5 4.57 ˆ 10´5

10´6 1 0.5 1.04 1.00 1.29 ˆ 10´2 1.28 ˆ 10´2

10´6 1 0.05 1.03 0.94 9.23 ˆ 10´2 9.06 ˆ 10´2

1 1 0.5 1.04 1.00 8.62 ˆ 10´3 8.53 ˆ 10´3

1 1 0.05 1.03 0.94 6.15 ˆ 10´2 6.04 ˆ 10´2

106 1 0.5 n.c. n.c. n.c. n.c.
106 1 0.05 3.02 3.05 4.55 ˆ 10´5 4.57 ˆ 10´5

10´6 106 0.5 2.10 2.10 2.00 ˆ 10´6 2.00 ˆ 10´6

10´6 106 0.05 2.09 2.09 2.00 ˆ 10´6 2.00 ˆ 10´6

1 106 0.5 2.10 2.10 2.00 ˆ 10´6 2.00 ˆ 10´6

1 106 0.05 2.09 2.09 2.00 ˆ 10´6 2.00 ˆ 10´6

106 106 0.5 n.c. n.c. n.c. n.c.
106 106 0.05 2.92 2.94 2.29 ˆ 10´5 2.29 ˆ 10´5
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at one point (it imposes that the average pressure is zero, see [9]).859

We make sure that condition (5.10) is met, by using the conservative value ε “860

0.0001εref, where861

(7.5) εref :“
α0

νp1 ` Re `Daq
ď

αK

νp1 ` c2
c1

Reh ` 100
c1

Dahq
ď 100

c1α
2
Kτ1,K
h2

,862

where the first inequality holds for the parameter ranges chosen for the numerical863

experiments.864

Additionally, we also add the previous value of the compressibility term to the865

right-hand side (i.e., we add εpn´1 to the right-hand side of ??) at every nonlinear866

iteration. This iterative penalty method, anlyzed in [9], ensures that the manufactured867

solution is not altered.868

Tables 5 and 6 list the results for the L2-norm and H1-seminorm. As in the 2D869

case, the results can be considered optimal, with very similar results for ASGS and870

OSGS.871

Table 5: Observed convergence rates and normalized finest mesh error (FME) for the 3D
problem, calculated from the L2-norm of the error obtained with the two finest meshes
(theoretical convergence rates in parentheses)

velocity

slope FME

element type ASGS OSGS ASGS OSGS

P1 (2) 2.01 2.07 3.27 ˆ 10´4 1.79 ˆ 10´4

Q2 (3) 3.18 3.22 8.20 ˆ 10´5 7.20 ˆ 10´5

pressure

slope FME

element type ASGS OSGS ASGS OSGS

P1 (1) 1.09 1.01 3.55 ˆ 10´2 4.13 ˆ 10´2

Q2 (2) 2.32 2.44 1.13 ˆ 10´3 2.37 ˆ 10´3

8. Conclusions. We have applied the VMS framework to generalize the formu-872

lation and analysis presented in [10] to the porous Navier-Stokes system, in such a873

way that the original method is recovered when α ” 1. By using the abstract no-874

tation introduced in later works on VMS [15], we have strived to make it clearer to875

the less versed reader how the whole process is largely systematic once the particular876

equations are fit to the general framework.877

Our analysis and numerical experiments show that the convergence properties878

of the original Navier-Stokes formulation are essentially preserved in the generalized879

setting. The analytical results have been corroborated in the numerical experiments,880

which show that the method remains just as robust in front of extreme variations881

in the physical parameters in the general case, as it is well-established to be for the882

original problem.883

The specialization of the robustness analysis to equal-order polynomial elements884

presented in section 6 shows a few details previously not discussed, such as the mech-885
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Table 6: Observed convergence rates and normalized finest mesh error (FME) for the 3D
problem, calculated from the H1-seminorm of the error obtained with the two finest meshes
(theoretical convergence rates in parentheses)

velocity

slope FME

element type ASGS OSGS ASGS OSGS

P1 (1) 1.04 1.03 6.15 ˆ 10´2 6.14 ˆ 10´2

Q2 (2) 2.02 2.10 1.31 ˆ 10´2 1.20 ˆ 10´2

pressure

slope FME

element type ASGS OSGS ASGS OSGS

P1 (-) 0.18 0.20 9.09 ˆ 10´1 5.14 ˆ 10´1

Q2 (1) 0.95 1.23 2.01 ˆ 10´1 3.67 ˆ 10´1

anism of pressure error improvement with growing Dah or the (very weak in prac-886

tice) deterioration of the velocity error with Da. By normalizing all the variables887

adequately, we have shown that the absolute errors are very stable with respect to888

changes in the physical parameters when the convergence rate is similar.889

The abstract framework favored here makes it natural to include different partic-890

ularizations of VMS in a very concise way. This has allowed us to implement both the891

ASGS and the OSGS versions of the method, showing through the many numerical892

experiments that both variants have very similar properties, at least for the problem893

considered.894

There are several directions in which we think it is interesting to take the for-895

mulation developed here. First, we would like to study the possibility of simplifying896

the stabilized linear forms, given that not all the terms included are strictly neces-897

sary to obtain optimal convergence rates. In this sense, the so-called term-by-term898

stabilization approach [12] is a promising alternative.899

Moreover, we are interested in studying the possibility of rewriting the formulation900

to make it suitable for large porosity gradients, including the possibility of consid-901

ering discontinuous step-like changes, which have many engineering applications. As902

pointed out in [8], such formulations would likely require the integration by parts of903

the terms involving ∇α in order to weaken the smoothness requirements of this field.904

Another question not considered above is the effect of using the finite elements905

to interpolate the porosity field, as it would be natural to do in some applications.906

The error introduced by the interpolation can be treated similarly to quadrature907

error, but the simple convergence proof presented here would require cumbersome908

alterations due to the presence of α in the working norm of the problem, so we909

decided to leave this task for future work. Notwithstanding this, let us tentatively910

mention that our numerical experiments indicate that the model error introduced by911

the interpolation of α does not spoil the convergence properties of the method. For a912

work fully addressing this question, see [8].913

Finally, we are also interested in the unsteady version of the equations, where α914

becomes a function of time too. This is the subject of current work.915
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