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Abstract. In this paper we consider the finite element approximation of Maxwell’s problem and
analyse the prescription of essential boundary conditions in a weak sense using Nitsche’s method.
To avoid indefiniteness of the problem, the original equations are augmented with the gradient of a
scalar field that allows one to impose the zero divergence of the magnetic induction, even if the exact
solution for this scalar field is zero. Two finite element approximations are considered, namely, one in
which the approximation spaces are assumed to satisfy the appropriate inf-sup condition that render
the standard Galerkin method stable, and another augmented and stabilised one that permits the
use of finite element interpolations of arbitrary order. Stability and convergence results are provided
for the two finite element formulations considered.

Key words. Essential boundary conditions; Maxwell’s problem; inf-sup stable elements; sta-
bilised formulations; Nitsche’s method

AMS subject classifications. 65N12, 65N30, 35Q30, 35Q60

1. Introduction. The Maxwell equations govern the electromagnetic wave prop-
agation, and hence are involved in many scientific and industrial fields. A continuous
research has been and is being conducted to correctly approximate the solution to
the Maxwell problem by means of a number of numerical techniques, among which
the finite element (FE) method is the most widely used. Some studies dealing with
FE methods for approximating the solutions to time-harmonic Maxwell problems are
[4, 5, 9, 15, 21], and the references therein.

This paper deals with the FE approximation of the following problem: find a
magnetic induction field u : Ω −→ Rd and a scalar field p : Ω −→ R solution of the
boundary value problem

ν∇×∇× u +∇p = f in Ω, (1.1)

−∇ · u = 0 in Ω, (1.2)

n× u = n× ū on Γ, (1.3)

p = p̄ := 0 on Γ, (1.4)

where Ω is a bounded polyhedral domain of Rd (d = 2, 3), Γ = ∂Ω, ν > 0 is a physical
parameter (the inverse of the magnetic permeability times the electric conductivity),
ū is given and f is assumed to be solenoidal. As usual, the scalar field p is introduced
to impose that the FE approximation to u be solenoidal, since at the continuous level
the solution is p = 0. We call p the magnetic pseudo-pressure.

To the best of our knowledge, this approach was introduced in [20, Formulation
F4], for the study of the Maxwell eigenvalue problem.

A possible strategy for weakly imposing Dirichlet boundary conditions is Nitsche’s
method (see for example [19, 24]) which consists in penalising the difference between
the unknown and its prescribed value on the boundary, with a proper scaling. The
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†Universitat Politècnica de Catalunya and Centre Internacional de Mètodes Numèrics en Enginy-
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weak form is obtained without assuming that the test functions vanish on Γ; this leads
to a boundary term whose symmetric counterpart is also introduced to preserve the
symmetry of the variational formulation of the problem. In the context of discontin-
uous Galerkin methods, this leads to the well known interior penalty method, usually
attributed to the works [1, 13, 26].

Even though Nitsche’s method is widely applied for interface problems in electro-
magnetics (see, e.g., [23, 25] and references)therein , the number of studies applying
Nitsche’s method to prescribe the Dirichlet boundary conditions in FE approaches
for the Maxwell problem is very few in the literature. A form of Nitsche’s method is
used in [27] where a scattered field formulation of the FE method for Maxwell’s equa-
tions is considered on a so called Huygens’ surface which encloses the scatterer being
located in the free space embedding this scatterer. In this reference, the computa-
tional domain is partitioned into total- and scattered-field regions, and the equivalent
electric and magnetic surface currents are incorporated in the weak form by means of
Nitsche’s method. As for a Nitsche type formulation to directly handle the boundary
conditions in the Maxwell problem, a discrete formulation is proposed in [3], where
the ellipticity of the associated bilinear form in curl-div form (with the inclusion of
Nitsche’s terms) is shown.

In this paper, our main interest is to analyse Nitsche’s method to prescribe the
Dirichlet boundary conditions (1.3) and (1.4) in the FE context, and this is why we
have not considered Neumann-type boundary conditions. This prescription of the
Dirichlet boundary conditions is done for two FE formulations. In the first one, the
Galerkin method is employed and the interpolating spaces for u and p are assumed
to satisfy adequate inf-sup conditions that render the discrete problem stable. These
interpolations can be for example Nédélec’s elements for u and standard nodal con-
tinuous interpolations for p. For the second formulation, we consider that continuous
nodal interpolations are used for both u and p. The Galerkin method in this case is
unstable and one has to switch to stabilised FE formulations. The one we consider
here was introduced and analysed in [5].

The second approach, i.e., the use of continuous interpolations for the magnetic
induction, is of particular interest. It has been well understood since the work of
[12] that on domains with re-entrant corners, the standard Galerkin method that
is applied with a subspace of continuous piecewise FE spaces is prone to producing
non-physical solutions if the solenoidal condition is imposed by a penalty method. In
other words, there are solutions of the Maxwell equations which cannot be properly
approximated with the use of standard conforming FEs. A number of alternatives
with different nature has already been introduced to potentially restore the use of
standard continuous elements [2, 5, 12].

There is also a modelling difficulty in terms of boundary conditions when approx-
imating Maxwell’s problem using continuous nodal elements, and it is related to the
fact of preserving conformity. If a node belongs to two edges (respectively faces in
3D) that are not co-aligned (respectively co-planar in 3D), the only way to guarantee
that the component of the magnetic field tangent to Γ is zero is to prescribe all the
components to zero. On a curved boundary, that would imply to prescribe all the field
components to zero at all nodes, unless a C1 description of the boundary is used. If
one defines a ‘numerical’ tangent (typically from a numerical normal) and prescribes
the resulting tangent components, conformity will not hold exactly. This sort of vari-
ational crime does not appear using a weak prescription of boundary conditions using
the type of techniques presented in the following sections.
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The paper is organised as follows. In Section 2 the FE approximation to the
problem with exact imposition of boundary conditions is presented. Nothing is new
there, one of the methods is the standard Galerkin method and the other one is the
formulation proposed in [5]. Section 3 presents the application of Nitsche’s method
in combination with the formulations introduced in Section 2. The analysis here
is achieved by a novel strategy of approximate imposition of boundary conditions
which consists of splitting the continuous functions into one function that vanishes
on the boundary and its complement, an idea originally introduced in [10]. Apart
from the presented analysis, the novelty is the combination of Nitsche’s method with
the stabilised formulation introduced in Section 2, which regarding the stabilisation
mechanism is similar but not identical to the discontinuous G alerkin formulation
presented in [22]. Numerical results are presented in Section 4, and finally conclusions
are drawn in Section 5.

2. Two finite element approximations for Maxwell’s problem.

2.1. Continuous problem. Let us introduce some notation. If X is a Hilbert
space of functions defined on Ω where the unknown is sought, its norm is denoted as
‖ · ‖X , its dual as X ′, and the duality by 〈·, ·〉Ω. If Λ is the space of traces on Γ of
functions in X and Λ′ is its dual, the duality in this case is written as 〈·, ·〉Γ. The L2-
inner product in a domain ω is denoted by (·, ·)ω. The L2(Ω)-projection onto a space
X is written as PX . Moreover, inequalities up to dimensionless constants, independent
also of the discretisation, are written as . and & for ≤ and ≥, respectively.

The differential operator of Maxwell’s differential equations (1.1)-(1.2) can be
written as L([u, p]) = [ν∇ × ∇ × u + ∇p,−∇ · u], and then those equations are
L([u, p]) = [f , 0]. Let v and q be arbitrary functions with the same regularity as
u and p, respectively. For future use, after appropriate integration by parts and
assuming enough regularity of the functions involved, we get the identity

〈L([u, p]), [v, q]〉Ω = B([u, p], [v, q])− 〈Fn([u, p]),D([v, q])〉Γ, (2.1)

where

B([u, p], [v, q]) = ν(∇× u,∇× v)Ω + (∇p,v)Ω + (∇q,u)Ω (2.2)

Fn([u, p]) = [νPt(∇× u),n · u], F([u, p]) = [ν∇× u,u], (2.3)

D([v, q]) = [n× v, q], (2.4)

and we have introduced the tangent projection Pt on the boundary Γ, defined for
any vector field a as Pt(a) = a − (a · n)n. We could also have defined Fn([u, p]) =
[ν n×∇×u,n ·u], D([v, q]) = [Pt(v), q]; the expression chosen is due to the boundary
conditions (1.3)-(1.4) that we wish to impose. The need for introducing Pt is merely
technical. In the functional spaces where the problem is well posed (see below), only
the tangent component of ∇×u is well defined, in the sense that it belongs to the dual
space of the trace of n×v on Γ. However, since Pt(∇×u) ·(n×v) = (∇×u) ·(n×v),
we omit the projection Pt in what follows.

The variational form of problem (1.1)-(1.4) is well posed in the spaceX = V×Q :=
H(curl; Ω)×H1(Ω), where H(curl; Ω) is the space of vector fields in L2(Ω)d with curl
in L2(Ω)d. The subspace made of vectors v ∈ H(curl; Ω) such that n× v = 0 on Γ is
denoted by V0 = H0(curl; Ω), and the subspace of scalar functions in H1(Ω) vanishing
on Γ as Q0 = H1

0 (Ω). The space of traces is Λ = H−1/2(divΓ; Γ) × H1/2(Γ), the
trace operator being [u, p] 7→ [n × u, p]; for a characterisation of H−1/2(divΓ; Γ) for
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polyhedral domains and different results about traces of V , see e.g. [8] and references
therein.

To ease the writing of the continuous problem, let us consider for the moment
ū = 0. The general case could be treated using the standard lifting of ū to a function
defined on the whole Ω. The weak form of problem (1.1)-(1.4), imposing the boundary
conditions in an essential manner, reads as follows: find [u, p] ∈ X0 := V0 ×Q0 such
that

B([u, p], [v, q]) = 〈f ,v〉Ω, (2.5)

for all [v, q] ∈ X0, i.e., [v, q] ∈ X and D([v, q]) = [0, 0]. This problem is known to be
well posed, in particular, it holds:

inf
[u,p]∈X0

sup
[v,q]∈X0

B([u, p], [v, q])

‖[u, p]‖X‖[v, q]‖X
≥ KB > 0, (2.6)

where KB is a positive constant and

‖[u, p]‖2X := ‖u‖2V + ‖p‖2Q,

‖u‖2V := ν‖∇ × u‖2L2(Ω) +
ν

L2
0

‖u‖2L2(Ω),

‖p‖2Q :=
L2

0

ν
‖∇p‖2L2(Ω),

where L0 is a characteristic length of Ω. Note that ‖ · ‖V is the norm in H(curl; Ω)
with adequate scaling coefficients and ‖ · ‖Q is a scaled norm in H1

0 (Ω) because of the
Poincaré-Friedrichs inequality. In all what follows, scaling coefficients are introduced
to make all terms dimensionally consistent.

The continuous problem (2.5) is equivalent to the two variational equations:

a(u,v) + b(p,v) = 〈f ,v〉Ω ∀v ∈ V0, (2.7)

b(q,u) = 0 ∀q ∈ Q0, (2.8)

with

a(u,v) := ν(∇× u,∇× v)Ω, b(p,v) := (∇p,v)Ω.

The inf-sup condition (2.6) is then a consequence of the ‘little’ inf-sup condition

inf
p∈Q0

sup
v∈V0

b(p,v)

‖p‖Q‖v‖V
≥ Kb > 0, (2.9)

and the coercivity of a(u,v) in KV = {v ∈ V0 | b(q,v) = 0 ∀q ∈ Q0}.

2.2. Galerkin finite element approximation. Let us consider now the Ga-
lerkin FE approximation of problem (2.5). For that, let us construct a FE partition
of Ω, Th = {K}, with h = maxK{hK = diam(K),K ∈ Th}, which we consider shape
regular. We assume that the domain Ω is polyhedral, and that Ω = int(

⋃
K∈Th K)

for all h > 0, where int(ω) is interior of ω. From Th we may construct now FE spaces
Vh,0 ⊂ V0 and Qh,0 ⊂ Q0, i.e., we consider conforming FE approximations. For any
FE function vh, piecewise polynomial of degree k, the following inverse and trace
inequalities hold:

‖∇vh‖L2(K) ≤ Cinv
k2

hK
‖vh‖L2(K), (2.10)
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‖vh‖L2(∂K) ≤ Ctrace
k

h
1/2
K

‖vh‖L2(K), (2.11)

with the corresponding obvious global counterparts:

‖∇vh‖L2(Ω) ≤ Cinv

∑
K

k2

hK
‖vh‖L2(K), ‖vh‖L2(Γ) ≤ Ctrace

∑
K

k

h
1/2
K

‖vh‖L2(K).

To avoid overloading the notation, we shall use the shortcut∑
K

f(hK)‖vh‖L2(K) ≡ f(h)‖vh‖L2(Ω),

for any function f , understanding that when f(h) is multiplying a global norm, it
should be replaced by f(hK) multiplying the same norm on each K and summing for
K ∈ Th. The same comment holds when the factor of h multiplies an inner product
or a norm of functions defined on Γ. Note, however, that our results do not assume
that the FE partition is quasi-uniform.

Since we take k fixed in the following analysis, we may consider it absorbed in
the constants Cinv and Ctrace. We will also make use of the inverse inequality:

‖vh‖L∞(∂K) ≤ Cinvh
−(d−1)/2
K ‖vh‖L2(∂K). (2.12)

We assume in this subsection that spaces Vh,0 and Qh,0 satisfy the discrete version
of condition (2.9), i.e.,

inf
ph∈Qh,0

sup
vh∈Vh,0

b(ph,vh)

‖ph‖Q‖vh‖V
≥ Kb > 0,

or, equivalently,

∀ph ∈ Qh,0 ∃vh ∈ Vh,0 such that b(ph,vh) ≥ Kb‖ph‖Q‖vh‖V . (2.13)

As already mentioned, examples of pairs of spaces satisfying this condition are
those based on Nédélec’s elements to construct Vh,0 and nodal Lagrangian continuous
elements to construct Qh,0. In general, condition (2.13) is guaranteed if the diagram

H1
0 (Ω)

∇−−−−→ H0(curl; Ω)yPQh

yPVh

Qh,0
∇−−−−→ Vh,0

is commutative (see [14, 7, 16]).
As for the continuous problem, condition (2.13) and the coercivity of a(u,v) in

the discrete version of the kernel KV also imply the discrete counterpart of (2.6),
which we may write as

∀[uh, ph] ∈ Vh,0 ×Qh,0 ∃ [vh,0, qh,0] ∈ Vh,0 ×Qh,0 such that

B([uh, ph], [vh,0, qh,0]) ≥ KB‖[uh, ph]‖V×Q‖[vh,0, qh,0]‖V×Q. (2.14)

If this inf-sup condition holds, the following problem is well posed: find [uh, ph] ∈
Vh,0 ×Qh,0 such that

a(uh,vh) + b(ph,vh) = 〈f ,vh〉Ω ∀vh ∈ Vh,0, (2.15)



6 D. Boffi, R. Codina and Ö. Türk

b(qh,uh) = 0 ∀qh ∈ Qh,0. (2.16)

This problem admits a unique solution that depends continuously on the data f .
The exact solution for ph is ph = 0, but introducing it allows one to eliminate the
indefiniteness associated to the curl-curl operator.

We have the following stability and convergence result [6, 21]:
Theorem 2.1. Suppose that both Vh,0 and Qh,0 are an inf-sup stable pair satis-

fying condition (2.14). Then, problem (2.15)-(2.16) is well posed, in the sense that it
admits a unique solution [uh, ph] ∈ Vh,0 ×Qh,0 that satisfies

‖[uh, ph]‖V×Q . ‖f‖V ′ .

Furthermore, [uh, ph] converges optimally as h → 0 to the solution [u, p] ∈ V0 × Q0

of the continuous problem (2.7)-(2.8), in the following sense:

‖[u− uh, p− ph]‖V×Q . inf
[vh,qh]∈Vh,0×Qh,0

‖[u− vh, p− qh]‖V×Q. (2.17)

2.3. Stabilised FE approximation. An alternative to using inf-sup stable
spaces Vh,0-Qh,0 is to use a stabilised FE formulation. In this case the situation is
somehow particular, as since the solution for the magnetic pseudo-pressure is p = 0,
there is a ‘stabilisation’ term that can in fact be introduced at the continuous level.
Indeed, the solution to problem (1.1)-(1.4) is the same as the solution to

ν∇×∇× u +∇p = f in Ω, (2.18)

L2
0

ν
∆p−∇ · u = 0 in Ω, (2.19)

n× u = n× ū on Γ, (2.20)

p = p̄ := 0 on Γ, (2.21)

where the term −L
2
0

ν ∆p helps to stabilise the pressure gradient; this problem can be
considered an augmented version of (1.1)-(1.4). However, when the FE approximation
is considered it is also necessary to stabilise the divergence of the discrete velocity.
The final stabilised FE formulation we consider in this paper was introduced and
analysed in [5] and it consists of finding [uh, ph] ∈ Vh,0 ×Qh,0 such that

a(uh,vh) + b(ph,vh) + su(uh,vh) = 〈f ,vh〉Ω ∀vh ∈ Vh,0, (2.22)

b(qh,uh) + sp(ph, qh) = 0 ∀qh ∈ Qh,0, (2.23)

where

su(uh,vh) := cu
νh2

L2
0

(∇ · uh,∇ · vh)Ω, sp(ph, qh) := −L
2
0

ν
(∇ph,∇qh)Ω, (2.24)

cu being an algorithmic constant. Recall that h2(∇·uh,∇·vh)Ω has to be understood
as
∑
K h

2
K(∇ · uh,∇ · vh)K .

Let us write the bilinear form that defines the problem as

BS([uh, ph], [vh, qh]) := B([uh, ph], [vh, qh]) + su(uh,vh) + sp(ph, qh). (2.25)
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In [5] it was proved directly that problem (2.22)-(2.23) is stable, without the need
of proving an inf-sup condition for BS. However, this inf-sup condition will be very
convenient in the forthcoming analysis, and therefore we prove it here:

Theorem 2.2. The bilinear form BS is inf-sup stable in Vh,0×Qh,0 in the norm
‖ · ‖V×Q,S defined as

‖[vh, qh]‖2V×Q,S = ‖[vh, qh]‖2V×Q + ν
h2

L2
0

‖∇ · uh‖2L2(Ω),

that is, for each [uh, ph] ∈ Vh,0 ×Qh,0 there exists [vh, qh] ∈ Vh,0 ×Qh,0 such that

BS([uh, ph], [vh, qh]) & ‖[uh, ph]‖V×Q,S‖[vh, qh]‖V×Q,S.

Proof. Let us start noting that

BS([uh, ph], [uh,−ph]) = ν‖∇ × uh‖2L2(Ω) + cuν
h2

L2
0

‖∇ · uh‖2L2(Ω) +
L2

0

ν
‖∇ph‖2L2(Ω).

(2.26)

It only remains to obtain control on the L2(Ω)-norm of uh. For that, let us consider
its Helmholtz decomposition at continuous level

uh = ud +
L2

0

ν
∇r, with ∇ · ud = 0,

n× ud = n× uh = 0, r = 0 on Γ.

Note that, in general, ud 6∈ Vh,0 and r 6∈ Qh,0.
Since n×ud = 0 on Γ and∇·ud = 0, from the Poincaré-Friedrichs-type inequality

‖∇ × ud‖L2(Ω) & L−1
0 ‖ud‖L2(Ω) and the fact that ∇ × ud = ∇ × uh, (2.26) in fact

implies that

BS([uh, ph], [uh,−ph]) & ν‖∇ × uh‖2L2(Ω) +
ν

L2
0

‖ud‖2L2(Ω)

+ ν
h2

L2
0

‖∇ · uh‖2L2(Ω) +
L2

0

ν
‖∇ph‖2L2(Ω). (2.27)

Thus, only the L2(Ω) control on ∇r is needed.
Let πh(r) ∈ Qh,0 be an interpolant of order at least one of r ∈ Q0. Since we

require πh(r) = 0 on Γ, the Scott-Zhang interpolant can be used. We now have that:

BS([uh, ph], [0, πh(r)]) = −L
2
0

ν
(∇ph,∇πh(r))Ω + (uh,∇πh(r))Ω. (2.28)

Using the H1(Ω)-stability of the interpolant and Young’s inequality:

(∇ph,∇πh(r))Ω . ‖∇ph‖L2(Ω)‖∇r‖L2(Ω) ≤
1

2α1
‖∇ph‖2L2(Ω) +

α1

2
‖∇r‖2L2(Ω).

The second term in (2.28) can be treated as follows:

(uh,∇πh(r))Ω =
(
ud +

L2
0

ν
∇r,∇r

)
Ω

+ (uh,∇πh(r)−∇r)Ω
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=
L2

0

ν
‖∇r‖2L2(Ω) − (∇ · uh, πh(r)− r)Ω

&
L2

0

ν
‖∇r‖2L2(Ω) − ‖∇ · uh‖L2(Ω)h‖∇r‖L2(Ω)

≥ L2
0

ν
‖∇r‖2L2(Ω) −

1

2α2

νh2

L2
0

‖∇ · uh‖2L2(Ω) −
α2

2

L2
0

ν
‖∇r‖2L2(Ω).

In the first step we have used the Helmholtz decomposition of uh, in the second step
that ud is divergence free and we have integrated by parts the second term, in the
third step the approximation property assumed for the interpolant and in the last
step Young’s inequality.

Using the last bounds in (2.28) and taking α1 and α2 sufficiently small, it turns
out that there exists a constant γ ≥ 0 such that

BS([uh, ph], [0, πh(r)]) &
L2

0

ν
‖∇r‖2L2(Ω) − γ

(L2
0

ν
‖∇ph‖2L2(Ω) +

νh2

L2
0

‖∇ · uh‖2L2(Ω)

)
.

If we now take [vh, qh] = [uh,−ph + δπh(r)], with δ > 0 sufficiently small, it follows
from this last inequality and from (2.27) that:

BS([uh, ph], [vh, qh]) & ν‖∇ × uh‖2L2(Ω) +
ν

L2
0

‖ud‖2L2(Ω) +
L2

0

ν
‖∇r‖2L2(Ω)

+ ν
h2

L2
0

‖∇ · uh‖2L2(Ω) +
L2

0

ν
‖∇ph‖2L2(Ω).

The L2(Ω)-orthogonality of the Helmholtz decomposition yields

ν

L2
0

‖ud‖2L2(Ω) +
L2

0

ν
‖∇r‖2L2(Ω) =

ν

L2
0

‖uh‖2L2(Ω),

and therefore BS([uh, ph], [vh, qh]) & ‖[uh, ph]‖2V×Q,S. The proof concludes checking

that ‖[uh, ph]‖V×Q,S & ‖[vh, qh]‖V×Q,S, which again is a consequence of the H1(Ω)-
stability of the interpolant.

The following results are directly proved in [5], without using Theorem 2.2:
Theorem 2.3. Suppose that both Vh,0 and Qh,0 are constructed using continuous

nodal based interpolations of arbitrary degree each. Then, problem (2.22)-(2.23) is
well posed, in the sense that it admits a unique solution [uh, ph] ∈ Vh,0 × Qh,0 that
satisfies

‖[uh, ph]‖V×Q . ‖f‖V ′ .

Furthermore, [uh, ph] converges optimally as h → 0 to the solution [u, p] ∈ V0 × Q0

of the continuous problem (2.7)-(2.8), in the following sense:

‖[u− uh, p− ph]‖V×Q,S . inf
[vh,qh]∈Vh,0×Qh,0

‖[u− vh, p− qh]‖V×Q,S. (2.29)

The error estimates (2.17) and (2.29) are clearly optimal for smooth solutions. In
the case of solutions with Sobolev regularity 0 < r < 1, they are also optimal if the FE
meshes are able to interpolate optimally scalar functions of Sobolev regularity r + 1,
whose gradients are components of u. This happens for example if the FE meshes
are of Powell-Sabin type (see [5] and references therein for further discussion).



Nitsche’s prescription of Dirichlet conditions in the FE approximation of Maxwell’s problem 9

3. Nitsche’s method for Maxwell’s problem. In this section we consider
that both boundary conditions (1.3) and (1.4) are prescribed weakly, without incor-
porating them in the FE spaces. Obviously, we may take ū 6= 0, in general, since now
assuming homogeneous boundary conditions does not introduce any simplification in
the notation.

Here we concentrate on Nitsche’s method, which is well understood. It is applied
first with the inf-sup stable formulation and later with the stabilised one described
earlier. We view Nitsche’s method as a way to prescribe boundary conditions, but it
can also be understood as a way to impose continuity along interior interfaces, as in the
discontinuous Galerkin (dG) method. This is done in particular in [22], where a dG
method is introduced and analysed for the time harmonic Maxwell problem. In fact,
in this reference a similar div-div stabilising term as the one in (2.24) is employed, the
pressure stabilisation being different (see also [17]). We also introduce a symmetric
form of Nitsche’s method, which leads to the so called symmetric interior penalty in
the context of dG methods. Finally, since in our case the solution we wish to find
is p = 0, perhaps it is easier in all cases to prescribe the magnetic pseudo-pressure
strongly, but we e mploy also Nitsche’s strategy in this case, to unify its treatment
with that of the magnetic induction u.

From now on, subscript zero is used for spaces that incorporate homogeneous
boundary conditions, whereas this subscript is dropped if no boundary values are
prescribed.

3.1. Nitsche’s method using the Galerkin FE approximation. Let Vh ⊂
V and Qh ⊂ Q be conforming FE spaces, such that the subspaces Vh,0 ⊂ Vh and
Qh,0 ⊂ Qh satisfy the inf-sup condition (2.14). For [uh, ph] ∈ Vh×Qh taking arbitrary
values on Γ, we have the following result:

Theorem 3.1. Suppose that the FE space Vh,0 × Qh,0 satisfies the inf-sup con-
dition (2.14). Then, if L0 > h for each [uh, ph] ∈ Vh × Qh there exists [vh,0, qh,0] ∈
Vh,0 ×Qh,0 such that

B([uh, ph], [vh,0, qh,0]) & ‖[uh, ph]‖2V×Q − γ
ν

h
‖n× uh‖2L2(Γ) − γ

L2
0

νh
‖ph‖2L2(Γ), (3.1)

for a constant γ ≥ 0.

Proof. Let TΓ = {K ∈ Th | ∂K ∩ Γ 6= ∅} and ΩΓ = int(
⋃
K∈TΓ

K), i.e., ΩΓ is the

first layer of element subdomains inside Ω, and let T 0
Γ ⊂ TΓ the subset of elements K

such that ∂K∩Γ is an edge if d = 2 or a face if d = 3. Let us also write ∂ΩΓ = Γ∪Γ0.

Let us consider the splitting Qh = Qh,0 ⊕ Qh,Γ, where Qh,0 is the subspace of
functions in Qh vanishing on Γ and Qh,Γ its complement, i.e., the space made of
functions in Qh which are zero at all the interior nodes of Ω. We may split all
functions qh ∈ Qh as qh = qh,0 +qh,Γ, with qh,0 ∈ Qh,0 and qh,Γ ∈ Qh,Γ. We construct
qh,Γ ∈ Qh,Γ from the degrees of freedom of qh ∈ Qh on Γ and setting to zero all
internal degrees of freedom. In particular, qh,Γ = 0 on Γ0.

If ph = ph,0 + ph,Γ, for ph,Γ we have that:

‖∇ph,Γ‖2L2(Ω) =
∑
K∈TΓ

‖∇ph,Γ‖2L2(K) .
∑
K∈TΓ

1

h2
‖ph,Γ‖2L∞(K)h

d

=
∑
K∈TΓ

1

h2
‖ph,Γ‖2L∞(∂K∩Γ)h

d
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.
∑
K∈T 0

Γ

1

h2
‖ph,Γ‖2L∞(∂K∩Γ)h

d

.
∑
K∈T 0

Γ

1

h2
‖ph‖2L2(∂K∩Γ)h

−(d−1)hd

.
1

h
‖ph‖2L2(Γ). (3.2)

In the fourth step we have used that for elements K such that ∂K ∩ Γ is a point
(or an edge if d = 3), the norm ‖ph,Γ‖2L∞(∂K∩Γ) is bounded by that of the neighbors

that have a whole edge (face, if d = 3) on Γ, so that this norm can be absorbed by
that of the neighbors (and there are a finite number of these elements with the same
neighbors if the mesh is non-degenerate). In the fifth step we have used (2.12).

For Vh we may proceed similarly. Let Vh = Vh,0⊕Vh,Γ, so that each vh ∈ Vh may
be written as vh = vh,0 + vh,Γ and vh,Γ ∈ Vh,Γ is constructed such that n × vh,Γ =
n× vh on Γ, i.e., the degrees of freedom associated to Γ of n× vh,Γ are set equal to
those of n × vh, and all internal degrees of freedom of vh,Γ are zero. If needed, we
also set vh,Γ · n = 0 and, if d = 3, n× vh,Γ × n = 0 on Γ.

If uh = uh,0 + uh,Γ, for uh,Γ we have that:

‖∇ × uh,Γ‖2L2(Ω) =
∑
K∈TΓ

‖∇ × uh,Γ‖2L2(K) .
∑
K∈TΓ

1

h2
‖uh,Γ‖2L∞(K)h

d

=
∑
K∈TΓ

1

h2
‖uh,Γ‖2L∞(∂K∩Γ)h

d .
∑
K∈T 0

Γ

1

h2
‖n× uh,Γ‖2L∞(∂K∩Γ)h

d

.
∑
K∈T 0

Γ

1

h2
‖n× uh‖2L2(∂K∩Γ)h

−(d−1)hd

.
1

h
‖n× uh‖2L2(Γ). (3.3)

Using similar arguments we easily get that

‖uh,Γ‖2L2(Ω) . h‖n× uh‖2L2(Γ). (3.4)

Given [uh,0, ph,0] = [uh, ph]− [uh,Γ, ph,Γ] ∈ Vh,0 ×Qh,0 constructed as explained
above, let [vh,0, qh,0] ∈ Vh,0 × Qh,0 be the element for which (2.14) holds. We then
have:

B([uh, ph], [vh,0, qh,0]) ≥ KB‖[uh,0, ph,0]‖V×Q‖[vh,0, qh,0]‖V×Q
+ ν(∇× uh,Γ,∇× vh,0)Ω + (vh,0,∇ph,Γ)Ω + (uh,Γ,∇qh,0)Ω.

(3.5)

In the following, αi > 0, i = 1, 2, 3, denote constants arising from Young’s inequality.
Choosing ‖[vh,0, qh,0]‖V×Q = ‖[uh,0, ph,0]‖V×Q, we obtain:

B([uh, ph], [vh,0, qh,0]) ≥ KB‖[uh,0, ph,0]‖2V×Q

− ν

2α1
‖∇ × uh,Γ‖2L2(Ω) −

L2
0

2α2ν
‖∇ph,Γ‖2L2(Ω) −

ν

2α3L2
0

‖uh,Γ‖2L2(Ω)

− 1

2
(α1 + α2 + α3)‖[uh,0, ph,0]‖2V×Q
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Taking αi sufficiently small, i = 1, 2, 3, and making use of (3.2)-(3.4) we get, assuming
L0 > h = maxK{hK}:

B([uh, ph], [vh,0, qh,0]) & ‖[uh,0, ph,0]‖2V×Q − γ0
ν

h
‖n× uh‖2L2(Γ) − γ0

L2
0

νh
‖ph‖2L2(Γ),

(3.6)

for a constant γ0 ≥ 0. Furthermore, using again (3.2)-(3.4) we get:

‖[uh,0, ph,0]‖2V×Q & ‖[uh, ph]‖2V×Q − ‖[uh,Γ, ph,Γ]‖2V×Q

& ‖[uh, ph]‖2V×Q − γ1
ν

h
‖n× uh‖2L2(Γ) − γ1

L2
0

νh
‖ph‖2L2(Γ),

for a constant γ1 ≥ 0, which combined with (3.6) yields the theorem.
Estimate (3.1) explicitly displays which terms spoil stability of the problem with-

out boundary conditions. The terms introduced by Nitsche’s method need precisely
to compensate them.

If no boundary conditions are prescribed, from identity (2.1) it is found that the
discrete weak form of the differential equation (1.1) would be

B([uh, ph], [vh, qh])− 〈Fn([uh, ph]),D([vh, qh])〉Γ = 〈vh,f〉Ω, (3.7)

the different terms being defined in (2.2)-(2.4). For the continuous solution [u, p] ∈
V ×Q, there holds

−〈Fn([vh, qh]),D([u, p])〉Γ = −〈Fn([vh, qh]),D([ū, 0])〉Γ,
〈D([vh, qh]),ND([u, p])〉Γ = 〈D([vh, qh]),ND([ū, 0])〉Γ,

where N is a matrix that scales the vector of Dirichlet boundary conditions. The
symmetric version of Nitsche’s method we use is obtained by adding to Eq. (3.7)
these two expressions evaluated with the FE solution [uh, ph] ∈ Vh ×Qh. Taking the
scaling matrix as

N = diag

(
Nu

ν

h
I, Np

L2
0

h

)
,

where Nu and Np are dimensionless algorithmic constants that need to be determined,
the final problem is: find [uh, ph] ∈ Vh ×Qh such that

BN([uh, ph], [vh, qh]) = LN([vh, qh]) ∀[vh, qh] ∈ Vh ×Qh, (3.8)

where

BN([uh, ph], [vh, qh]) = ν(∇× vh,∇× uh)Ω + (vh,∇ph)Ω + (uh,∇qh)Ω

− ν〈n× vh,∇× uh〉Γ − 〈n · uh, qh〉Γ
− ν〈n× uh,∇× vh〉Γ − 〈n · vh, ph〉Γ

+Nu
ν

h
〈n× vh,n× uh〉Γ −Np

L2
0

νh
(ph, qh)Γ (3.9)

LN([vh, qh]) = 〈vh,f〉Ω − ν〈n× ū,∇× vh〉Γ +Nu
ν

h
〈n× vh,n× ū〉Γ.

(3.10)
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Apart from the boundary term arising from integration by parts, the rest of
boundary terms introduced (symmetrisation and penalisation) can be interpreted as
stabilisation terms provided by the sub-grid scales on the boundary in the context of
the variational multi-scale method. This interpretation is introduced in [11].

Theorem 3.2. Assume that the FE space Vh,0 × Qh,0 satisfies the inf-sup con-
dition (2.14). Then, for Nu and Np sufficiently large, BN is inf-sup stable in the
norm

‖[vh, qh]‖2V×Q,N = ‖[vh, qh]‖2V×Q +
ν

h
‖n× vh‖2L2(Γ) +

L2
0

νh
‖qh‖2L2(Γ).

Proof. It is trivially checked that ‖·‖V×Q,N is indeed a norm in Vh ×Qh.
Let us start noting that

BN([uh, ph], [uh,−ph]) ≥ ν‖∇ × uh‖2L2(Ω) − 2ν‖n× uh‖L2(Γ)‖∇ × uh‖L2(Γ)

+Nu
ν

h
‖n× uh‖2L2(Γ) +Np

L2
0

νh
‖ph‖2L2(Γ).

Using the trace inequality (2.11) and Young’s inequality we get, for all α > 0:

BN([uh, ph], [uh,−ph]) ≥ ν‖∇ × uh‖2L2(Ω) +Nu
ν

h
‖n× uh‖2L2(Γ) +Np

L2
0

νh
‖ph‖2L2(Γ)

− 2ν

(
1

2α
‖n× uh‖2L2(Γ) +

αC2
trace

2h
‖∇ × uh‖2L2(Ω)

)
.

Taking for example α = h(2C2
trace)−1 and assuming Nu ≥ 2C2

trace +N ′u, with N ′u > 0:

BN([uh, ph], [uh,−ph]) ≥ ν

2
‖∇ × uh‖2L2(Ω) +N ′u

ν

h
‖n× uh‖2L2(Γ) +Np

L2
0

νh
‖ph‖2L2(Γ).

(3.11)

Let now [vh,0, qh,0] ∈ Vh,0 × Qh,0 be the pair whose existence is established in
Theorem 3.1 that satisfies (3.1). Recall that ‖[vh,0, qh,0]‖V×Q = ‖[uh,0, qh,0]‖V×Q ≤
‖[uh, ph]‖V×Q. Since n× vh,0 = 0 and qh,0 = 0 on Γ, we have that

BN([uh, ph], [vh,0, qh,0]) = B([uh, ph], [vh,0, qh,0])

− ν〈n× uh,∇× vh,0〉Γ − 〈n · vh,0, ph〉Γ

& ‖[uh, ph]‖2V×Q − γ
ν

h
‖n× uh‖2L2(Γ) − γ

L2
0

νh
‖ph‖2L2(Γ)

− ν〈n× uh,∇× vh,0〉Γ − 〈n · vh,0, ph〉Γ. (3.12)

We may now bound the last two terms as follows:

ν〈n× uh,∇× vh,0〉Γ ≤ ν‖∇ × vh,0‖L2(Γ)‖n× uh‖L2(Γ)

≤ ν Ctrace

h1/2
‖∇ × vh,0‖L2(Ω)‖n× uh‖L2(Γ)

≤ α1

2
‖[uh, ph]‖2V×Q +

1

2α1
C2

trace

ν

h
‖n× uh‖2L2(Γ),

and

〈n · vh,0, ph〉Γ ≤ ‖n · vh,0‖L2(Γ)‖ph‖L2(Γ)
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≤ Ctrace

h1/2
‖vh,0‖L2(Ω)‖ph‖L2(Γ)

≤ α2

2
‖[uh, ph]‖2V×Q +

1

2α2
C2

trace

L2
0

νh
‖ph‖2L2(Γ).

For α1 and α2 small enough, (3.12) yields

BN([uh, ph], [vh,0, qh,0]) & ‖[uh, ph]‖2V×Q − γ∗
ν

h
‖n× uh‖2L2(Γ) − γ

∗L
2
0

νh
‖ph‖2L2(Γ),

(3.13)

for a constant γ∗ > 0.
Set now [vh, qh] = [uh,−ph] + δ[vh,0, qh,0], with δ small enough (or N ′u and Np

large enough). Combining (3.11) and (3.13) it follows that

BN([uh, ph], [vh, qh]) & ‖[uh, ph]‖2V×Q,N. (3.14)

The proof concludes after checking that ‖[vh, qh]‖V×Q,N ≤ (1 + δ)‖[uh, ph]‖V×Q,N.
Let us prove two preliminary results to obtain the analogous of Theorem 2.1 when

Dirichlet conditions are prescribed using Nitsche’s method:
Lemma 3.3. The linear form LN given in (3.10) is continuous in the norm

‖·‖V×Q,N, the continuity constant being bounded as

‖LN‖L(Vh×Qh,N;R) . ‖f‖V ′ +
(ν
h

)1/2

‖n× ū‖L2(Γ). (3.15)

Proof. For any [vh, qh] ∈ Vh ×Qh we have that:

LN([vh, qh]) . ‖f‖V ′‖vh‖V + ν‖n× ū‖L2(Γ)‖∇ × vh‖L2(Γ)

+
ν

h
‖n× ū‖L2(Γ)‖n× vh‖L2(Γ)

. ‖f‖V ′‖vh‖V +
ν1/2

h1/2
‖n× ū‖L2(Γ)Ctraceν

1/2‖∇ × vh‖L2(Ω)

+
ν1/2

h1/2
‖n× ū‖L2(Γ)

ν1/2

h1/2
‖n× vh‖L2(Γ)

.
(
‖f‖V ′ +

ν1/2

h1/2
‖n× ū‖L2(Γ)

)
‖[vh, qh]‖V×Q,N,

thus proving the Lemma.
Lemma 3.4. For any [u, p] ∈ V ×Q, let the interpolation error function be

E(u, p;h) = inf
[ũh,p̃h]∈Vh×Qh

D([u− ũh, p− p̃h]), (3.16)

where

D([v, q]) = ‖[v, q]‖V×Q,N + (νh)1/2‖n×∇× v‖L2(Γ) +
(νh)1/2

L0
‖n · v‖L2(Γ).

Then, for all [vh, qh] ∈ Vh ×Qh there holds

inf
[ũh,p̃h]∈Vh×Qh

BN([u− ũh, p− p̃h], [vh, qh]) . E(u, p;h)‖[vh, qh]‖V×Q,N. (3.17)
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Proof. The terms involving volume integrals and the penalisation terms inBN([u−
ũh, p− p̃h], [vh, qh]) are bounded by ‖[u− ũh, p− p̃h]‖V×Q,N‖[vh, qh]‖V×Q,N, as it is
immediately checked. For the rest of boundary terms we can proceed as follows:

− ν〈n× vh,∇× (u− ũh)〉Γ

.
(ν
h

)1/2

‖n× vh‖L2(Γ)(νh)1/2‖n×∇× (u− ũh)‖L2(Γ),

− 〈n · (u− ũh), qh〉Γ .
L0

(νh)1/2
‖qh‖L2(Γ)

(νh)1/2

L0
‖n · (u− ũh)‖L2(Γ),

− ν〈n× (u− ũh),∇× vh〉Γ

. Ctraceν
1/2‖∇ × vh‖L2(Ω)

(ν
h

)1/2

‖n× (u− ũh)‖L2(Γ),

− 〈n · vh, p− p̃h〉Γ . Ctrace
ν1/2

L0
‖vh‖L2(Ω)

L0

(νh)1/2
‖p− p̃h‖L2(Γ).

Clearly, all these terms are bounded by D([u−ũh, p−p̃h])‖[vh, qh]‖V×Q,N, from where

BN([u− ũh, p− p̃h], [vh, qh]) ≤ D([u− ũh, p− p̃h])‖[vh, qh]‖V×Q,N, (3.18)

and the result follows taking the infimum for [ũh, p̃h] over Vh ×Qh.
Let ku be the highest order of the complete piecewise polynomial contained in Vh

and kp the one of the complete piecewise polynomial contained in Qh. Using standard
interpolation estimates, it is seen that

E(u, p;h) . ν1/2hsu−1‖u‖Hsu (Ω) +
L0

ν1/2
hsp−1‖p‖Hsp (Ω), (3.19)

where su = min{ku + 1, ru}, sp = min{kp + 1, rp} and ru and rp are the Sobolev
regularity of u ∈ V and p ∈ Q, respectively. If we prove that this is the error function
of the formulation, it will be clearly optimal. This is indeed proved in the following
result, which is the analogous of Theorem 2.1 when Dirichlet conditions are prescribed
using Nitsche’s method:

Theorem 3.5. Under the assumptions of Theorem 3.2, problem (3.8) is well
posed, in the sense that it admits a unique solution [uh, ph] ∈ Vh ×Qh that satisfies

‖[uh, ph]‖‖V×Q,N . ‖f‖V ′ +
(ν
h

)1/2

‖n× ū‖L2(Γ). (3.20)

Furthermore, [uh, ph] converges optimally as h→ 0 to the solution [u, p] ∈ V ×Q of
the continuous problem (2.7)-(2.8), in the following sense:

‖[u− uh, p− ph]‖V×Q,N . E(u, p;h),

where E(u, p;h) is given in (3.16).
Proof. Existence and uniqueness of the discrete solutions follows from the inf-

sup condition stated in Theorem 3.2, and the stability estimate (3.20) is a direct
consequence of the continuity of LN proved in Lemma 3.3 and the inf-sup condition.

As discussed above, problem (3.8) is consistent, that is to say, BN([u, p], [vh, qh]) =
LN([vh, qh]) for all [vh, qh] ∈ Vh×Qh, and therefore BN([u−uh, p− ph], [vh, qh]) = 0
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for all [vh, qh] ∈ Vh ×Qh. Let us pick [ũh, p̃h] ∈ Vh ×Qh, arbitrary. Now the proof is
standard:

‖[uh − ũh, ph − p̃h]‖V×Q,N‖[vh, qh]‖V×Q,N
. B([uh − ũh, ph − p̃h], [vh, qh]) from the inf-sup condition,

= B([u− ũh, p− p̃h], [vh, qh]) from consistency,

. D([u− ũh, p− p̃h])‖[vh, qh]‖V×Q,N from (3.18).

Since ‖[u− ũh, p− p̃h]‖V×Q,N ≤ D([u − ũh, p − p̃h]), the theorem follows from the
triangle inequality and taking the infimum for [ũh, p̃h] over Vh ×Qh.

Clearly, the constant involved in inequality (3.13) is independent of Nu and Np
when they are large; more precisely, this constant behaves as min{1, Nu, Np}. Thus,
the inf-sup constant in the inf-sup condition stated in Theorem 3.2 is bounded as
Nu, Np →∞. On the contrary, the constants involved in inequalities (3.15) and (3.17)
grow as max{1, Nu, Np} when Nu, Np → ∞. As a consequence, the error estimate
provided by Theorem 3.5 grows as max{Nu, Np}. In practice it is convenient to take
these algorithmic constants as small as possible, although large enough to fulfil the
requirements found in the proof of Theorem 3.2.

3.2. Nitsche’s method using the stabilised FE approximation. We con-
sider now Nitsche’s method in combination with the stabilised formulation presented
in section 2.3. The analysis is similar to that of the Galerkin method, and therefore
we will only concentrate on the minor differences introduced by the stabilising terms.

Let us start with the counterpart of Theorem 3.1:
Theorem 3.6. Consider the stabilised bilinear form (2.25). Then, for each

[uh, ph] ∈ Vh ×Qh there exists [vh,0, qh,0] ∈ Vh,0 ×Qh,0 such that

BS([uh, ph], [vh,0, qh,0]) & ‖[uh, ph]‖2V×Q,S − γ
ν

h
‖n× uh‖2L2(Γ) − γ

L2
0

νh
‖ph‖2L2(Γ),

(3.21)

for a constant γ ≥ 0.
Proof. The proof is very similar to that of Theorem 3.1. In particular, given

uh, uh,Γ is constructed in the same way as in Theorem 3.1, as we wish that uh,0 =
uh − uh,Γ satisfies that n× uh,0 = 0 on Γ.

By virtue of Theorem 2.2, now we will obtain, instead of (3.4):

BS([uh, ph], [vh,0, qh,0]) & ‖[uh,0, ph,0]‖V×Q,S‖[vh,0, qh,0]‖V×Q,S
+ ν(∇× uh,Γ,∇× vh,0)Ω + (vh,0,∇ph,Γ)Ω + (uh,Γ,∇qh,0)Ω

+ cu
h2ν

L2
0

(∇ · uh,Γ,∇ · vh,0)Ω −
L2

0

ν
(∇ph,Γ,∇ph,0)Ω,

for a certain [vh,0, qh,0] ∈ Vh,0×Qh,0. The meaning of different variables and unknowns
is the same as in Theorem 2.2. Now we have to deal with the last two terms of this
expression, which offer no difficulty, as:

cu
h2ν

L2
0

(∇ · uh,Γ,∇ · vh,0)Ω .
1

2
α4‖[uh,0, ph,0]‖V×Q,S +

νh2

2α4L2
0

‖∇ · uh,Γ‖L2(Ω),

L2
0

ν
(∇ph,Γ,∇ph,0)Ω .

1

2
α5‖[uh,0, ph,0]‖V×Q,S +

L2
0

2α5ν
‖∇ph,Γ‖L2(Ω).
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Using the same steps as in (3.3) it is easily checked that

‖∇ · uh,Γ‖2L2(Ω) .
1

h
‖n× uh‖2L2(Γ),

and we already proved (3.2). The proof concludes as that of Theorem 3.1.
According to this result, the terms that need to be compensated to get stability

using Nitsche’s method are the same as for the inf-sup stable case. Using the general
idea described in section 3.1, this method reads as follows: find [uh, ph] ∈ Vh × Qh
such that

BSN([uh, ph], [vh, qh]) = LN([vh, qh]) ∀[vh, qh] ∈ Vh ×Qh, (3.22)

where

BSN([uh, ph], [vh, qh]) = BS([uh, ph], [vh, qh])

− ν〈n× vh,∇× uh〉Γ − 〈n · uh, qh〉Γ − ν〈n× uh,∇× vh〉Γ − 〈n · vh, ph〉Γ

+
L2

0

ν
〈n · ∇ph, qh〉Γ +

L2
0

ν
〈ph,n · ∇qh〉Γ +Nu

ν

h
〈n× vh,n× uh〉Γ

−Np
L2

0

νh
(ph, qh)Γ

= BN([uh, ph], [vh, qh]) + cu
νh2

L2
0

(∇ · uh,∇ · vh)Ω −
L2

0

ν
(∇ph,∇qh)Ω

+
L2

0

ν
〈n · ∇ph, qh〉Γ +

L2
0

ν
〈ph,n · ∇qh〉Γ. (3.23)

The first expression corresponds to adding to the stabilised bilinear form Nitsche’s
terms and the second to adding to the Nitsche’s form of the Galerkin method the
stabilisation terms and the boundary term arising from the integration by parts of
the Laplacian of p and its symmetric counterpart. In fact, since the exact solution is
p = 0, these last two terms could be removed from the formulation.

The analysis proceeds as for the Galerkin case. Let us start with the analogous
to Theorem 3.2:

Theorem 3.7. Consider the stabilised bilinear form using Nitsche’s method given
by (3.23). Then, for Nu and Np sufficiently large, BSN is inf-sup stable in the norm

‖[vh, qh]‖2V×Q,SN = ‖[vh, qh]‖2V×Q,S +
ν

h
‖n× vh‖2L2(Γ) +

L2
0

νh
‖qh‖2L2(Γ),

Proof. One can follow the same steps as in the proof of Theorem 3.2. Again, it is
trivially checked that ‖·‖V×Q,SN is a norm in Vh ×Qh.

Now we have that

BSN([uh, ph], [uh,−ph]) ≥ ν‖∇ × uh‖2L2(Ω) +
L2

0

ν
‖∇ph‖2L2(Ω) +

νh2

L2
0

‖∇ · uh‖2L2(Ω)

− 2ν‖n× uh‖L2(Γ)‖∇ × uh‖L2(Γ) − 2
L2

0

ν
‖ph‖L2(Γ)‖n · ∇ph‖L2(Γ)

+Nu
ν

h
‖n× uh‖2L2(Γ) +Np

L2
0

νh
‖ph‖2L2(Γ).
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The term ‖ph‖L2(Γ)‖n ·∇ph‖L2(Γ) can be controlled by ‖∇ph‖2L2(Ω) and h−1‖ph‖2L2(Γ)

exactly in the same way as ‖n×uh‖L2(Γ)‖∇×uh‖L2(Γ) is controlled by ‖∇×uh‖2L2(Ω)

and h−1‖n×uh‖2L2(Γ) in Theorem 3.2, now using the fact that Np is sufficiently large.
This yields:

BSN([uh, ph], [uh,−ph]) & ν‖∇ × uh‖2L2(Ω) +
L2

0

ν
‖∇ph‖2L2(Ω) +

νh2

L2
0

‖∇ · uh‖2L2(Ω)

+N ′u
ν

h
‖n× uh‖2L2(Γ) +N ′p

L2
0

νh
‖ph‖2L2(Γ),

for certain N ′u ≤ Nu and N ′p ≤ Np.
Let now [vh,0, qh,0] ∈ Vh,0 × Qh,0 be the pair whose existence is established

in Theorem 3.6 that satisfies (3.21), which we take such that ‖[vh,0, qh,0]‖V×Q,S =
‖[uh,0, qh,0]‖V×Q,S ≤ ‖[uh, ph]‖V×Q,S. Using the fact that n× vh,0 = 0 and qh,0 = 0
on Γ, now we get

BSN([uh, ph],[vh,0, qh,0]) = BS([uh, ph], [vh,0, qh,0])− ν〈n× uh,∇× vh,0〉Γ

− 〈n · vh,0, ph〉Γ −
L2

0

ν
〈n · ∇qh,0, ph〉Γ

& ‖[uh, ph]‖2V×Q,S − γ
ν

h
‖n× uh‖2L2(Γ) − γ

L2
0

νh
‖ph‖2L2(Γ)

− ν〈n× uh,∇× vh,0〉Γ − 〈n · vh,0, ph〉Γ −
L2

0

ν
〈n · ∇qh,0, ph〉Γ.

The terms 〈n×uh,∇× vh,0〉Γ and 〈n · vh,0, ph〉Γ can be bounded as in Theorem 3.2,
just replacing the norm ‖[uh, ph]‖2V×Q by ‖[uh, ph]‖2V×Q,S, and the last term is also
immediately bounded as

L2
0

ν
〈n · ∇qh,0, ph〉Γ ≤

α

2
‖[uh, ph]‖2V×Q,S +

1

2α
C2

trace

L2
0

νh
‖ph‖2L2(Γ),

for any α > 0. The proof now proceeds in that of Theorem 3.2.
Once the inf-sup condition has been established, we may proceed to obtain sta-

bility and convergence. Let us start noting that the stabilisation terms do not modify
the right-hand-side linear form, which is the same as for Nitsche’s method using the
Galerkin approach, i.e., the form LN given by (3.10). For this, we now have:

Lemma 3.8. The linear form LN given in (3.10) is continuous in the norm
‖·‖V×Q,SN, the continuity constant being bounded as

‖LN‖L(Vh×Qh,SN;R) . ‖f‖V ′ +
(ν
h

)1/2

‖n× ū‖L2(Γ).

Proof. It follows immediately from ‖[vh, qh]‖V×Q,N ≤ ‖[vh, qh]‖V×Q,SN

Lemma 3.9. For any [u, p] ∈ V ×Q, let the interpolation error function be

ES(u, p;h) = inf
[ũh,p̃h]∈Vh×Qh

DS([u− ũh, p− p̃h]), (3.24)

where

DS([v, q]) = ‖[v, q]‖V×Q,SN + (νh)1/2‖n×∇× v‖L2(Γ)
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+
(νh)1/2

L0
‖n · v‖L2(Γ) + L0

(h
ν

)1/2

‖n · ∇q‖L2(Γ).

Then, for all [vh, qh] ∈ Vh ×Qh there holds

inf
[ũh,p̃h]∈Vh×Qh

BSN([u− ũh, p− p̃h], [vh, qh]) . ES(u, p;h)‖[vh, qh]‖V×Q,SN.

Proof. Following the proof of Lemma 3.3, the only terms that deserve to be
analysed in the expression of BSN([u− ũh, p− p̃h], [vh, qh]) are:

L2
0

ν
〈n · ∇qh, p− p̃h〉Γ .

L0

ν1/2
Ctrace‖∇qh‖L2(Ω)

L0

(νh)1/2
‖p− p̃h‖L2(Γ),

L2
0

ν
〈n · ∇(p− p̃h), qh〉Γ .

L0h
1/2

ν1/2
‖n · ∇(p− p̃h)‖L2(Γ)

L0

(νh)1/2
‖qh‖L2(Γ).

These terms are both bounded by DS([u− ũh, p− p̃h])‖[vh, qh]‖V×Q,SN.
It is now immediate to show that ES(u, p;h) is the error function of the formula-

tion:
Theorem 3.10. Under the assumptions of Theorem 3.7, problem (3.22) is well

posed, in the sense that it admits a unique solution [uh, ph] ∈ Vh ×Qh that satisfies

‖[uh, ph]‖‖V×Q,SN . ‖f‖V ′ +
(ν
h

)1/2

‖n× ū‖L2(Γ). (3.25)

Furthermore, [uh, ph] converges optimally as h→ 0 to the solution [u, p] ∈ V ×Q of
the continuous problem (2.7)-(2.8), in the following sense:

‖[u− uh, p− ph]‖V×Q,SN . ES(u, p;h),

where ES(u, p;h) is given in (3.24).
Proof. The same as that of Theorem 3.5.
Using standard interpolation estimates, it is observed that the error functions of

both the stabilised formulation, ES(u, p;h), and the Galerkin formulation using inf-
sup stable elements, E(u, p;h), have the same optimal asymptotic behaviour in terms
of h, given by (3.19).

4. Numerical examples. In this section we provide some numerical results
to confirm the theoretical findings on the convergence of Nitsche’s method using the
stabilised FE approximation given in Section 3.2. We have chosen to test the stabilised
formulation for two reasons. First, because the effect of Nitsche’s method is the same
as for the Galerkin method with inf-sup stable elements and, second, because Nitsche’s
method is particularly important when using continuous nodal based interpolations
due to the conformity issue described in the Introduction.

We consider approximating the solution to Problem (1.1)-(1.4) by means of the
formulation given in (3.23) on three different domains–all in two dimensions. The
method is applied with equal order of linear interpolations for all the unknowns on
various types of triangular elements to be described below. In the simulations, the
scaling coefficients that appear in (3.23) are taken as Nu = Np = 102, for all the
cases considered. The other characteristic values are given individually for each test
in what follows.
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4.1. The square domain. The first test problem is considered on the square
domain Ω = (−1, 1)2, with a smooth manufactured solution given by u(x, y) =
(ϕ(x)ϕ′(y),−ϕ′(x)ϕ(y)), with ϕ(t) = t2 sin(πt/2). This solution is used to deter-
mine f , and then to check the convergence behaviour of the proposed scheme. We
have performed the computations for this case on several mesh sequences, namely,
standard uniform right-angled, criss-cross, and Powell-Sabin type meshes. Sample
triangulations for these three mesh families are shown in Figure 4.1. The characteris-

Fig. 4.1. The standard uniform right-angled (L), criss-cross (M), and Powell-Sabin (R) mesh-
ing of the square domain.

tic length and the algorithmic stabilisation constant are taken respectively as L0 = 0.1
and cu = 0.1, for the standard uniform right-angled mesh. The corresponding values
are taken as L0 = 2 and cu = 1, for the other two mesh sequences. We list the norms
of the resulting numerical errors eu = u−uh and ∇× eu together with their rate of
convergence towards zero as h approaches zero in Table 4.1.

Table 4.1
Errors and rates of convergence (in brackets) for the square domain test on different triangu-

lations.

Triangulation h ‖eu‖ ‖∇ × eu‖
Uniform right-angled 0.3536 1.07e-01 9.64e-01

0.1768 2.04e-02 (2.39) 4.31e-01 (1.16)
0.0884 4.75e-03 (2.10) 2.15e-01 (1.00)
0.0442 1.18e-03 (2.00) 1.08e-01 (1.00)

Criss-cross 0.2500 6.34e-02 3.91e-02
0.1250 1.60e-02 (1.98) 1.00e-02 (1.96)
0.0625 4.02e-03 (2.00) 2.52e-03 (1.99)
0.0312 1.01e-03 (2.00) 6.31e-04 (2.00)

Powell-Sabin 0.1913 2.91e-02 2.63e-02
0.0957 7.38e-03 (1.98) 6.67e-03 (1.98)
0.0478 1.85e-03 (2.00) 1.68e-03 (1.99)
0.0239 4.62e-04 (2.00) 4.23e-04 (1.99)

It is evident from this table that the method is optimally convergent with dou-
ble order of convergence in uh for all the triangulations. The curl of the field also
converges to its expected value optimally for all the cases, while it exhibits a super-
convergence in the case of special (criss-cross and Powell-Sabin) meshes.

To allow for a qualitative comparison of the computed solution components ux
and uy with the exact ones, we present the surface plots of the exact (obtained on
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Fig. 4.2. Exact, right-angled mesh, and Powell-Sabin mesh solution components on the square
domain.

the right-angled mesh), right-angled mesh, and Powell-Sabin mesh solutions in Figure
4.2. The figure clearly shows a very good agreement between the computed and the
analytical results.

It is of significant importance in our study to check the comparison between the
results obtained by weak prescription of the boundary conditions with those obtained
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by the strong imposition methodology. In order to do so, we have considered the
solution obtained on the Powell-Sabin mesh by strongly imposing the boundary con-
ditions obtained making use of the exact solution. The results are listed in Table
4.2, and show clearly the close accuracy when compared with the corresponding ones
obtained by Nitsche’s method (given in Table 4.1).

Table 4.2
Strong imposition of the boundary conditions using Powell-Sabin mesh on the square domain.

h ‖eu‖ ‖∇ × eu‖
0.1913 2.90e-02 2.65e-02
0.0957 7.38e-03 (1.98) 6.73e-03 (1.98)
0.0478 1.85e-03 (2.00) 1.69e-03 (1.99)
0.0239 4.62e-04 (2.00) 4.25e-04 (1.99)

4.2. The L-shaped domain. In the second test, we consider a very widely
used (e.g., in [5, 18]) configuration due to the presence of both smooth and nons-
mooth solutions, the nonconvex domain defined by Ω = [−1, 1]2 \ {[0, 1] × [−1, 0]},
with a re-entrant corner at the origin. The source function and the boundary condi-
tions are taken so that the solution in polar coordinates is given as u = ∇ψ where
ψ(r, θ) = r2n/3 sin(2nθ/3), for different levels of smoothness depending on n. In our
experiments, we consider the cases n = 1, 2, and 4. For this example, we employ
Nitsche’s method using the stabilised formulation with L0 = 0.5 and cu = 1. Due to
the singularities involved, special types of meshes are necessary as we have already
mentioned. Thus, we use sequences of criss-cross and Powell-Sabin meshes to generate
the results that are listed in Tables 4.3 and 4.4, respectively.

Table 4.3
Errors and rates of convergence (in brackets) for the L-shaped domain test on criss-cross tri-

angulations.

n = 1 n = 2 n = 4

h ‖eu‖ ‖∇ × eu‖ ‖eu‖ ‖∇ × eu‖ ‖eu‖ ‖∇ × eu‖
0.1250 2.61e-01 4.53e-01 2.12e-02 9.02e-02 3.09e-03 2.83e-02
0.0625 1.58e-01 (0.72) 2.29e-01 (0.99) 9.80e-03 (1.12) 2.46e-02 (1.88) 8.33e-04 (1.89) 3.68e-03 (2.94)
0.0312 9.38e-02 (0.76) 1.02e-01 (1.17) 4.15e-03 (1.24) 6.30e-03 (1.96) 2.12e-04 (1.98) 4.63e-04 (2.99)
0.0156 5.66e-02 (0.73) 4.24e-02 (1.26) 1.69e-03 (1.30) 1.58e-03 (1.99) 5.31e-05 (1.99) 5.80e-05 (3.00)

Table 4.4
Errors and rates of convergence (in brackets) for the L-shaped domain test on Powell-Sabin

triangulations.

n = 1 n = 2 n = 4

h ‖eu‖ ‖∇ × eu‖ ‖eu‖ ‖∇ × eu‖ ‖eu‖ ‖∇ × eu‖
0.0957 2.11e-01 3.48e-01 1.63e-02 5.03e-02 1.63e-03 1.34e-02
0.0478 1.25e-01 (0.76) 1.65e-01 (1.08) 6.94e-03 (1.23) 1.09e-02 (2.20) 4.27e-04 (1.93) 1.71e-03 (2.97)
0.0239 7.40e-02 (0.76) 7.09e-02 (1.22) 2.81e-03 (1.30) 2.23e-03 (2.30) 1.08e-04 (1.99) 2.12e-04 (3.01)
0.0120 4.49e-02 (0.72) 2.91e-02 (1.29) 1.12e-03 (1.33) 4.45e-04 (2.32) 2.69e-05 (2.00) 2.63e-05 (3.02)

It is clear from these tables that when n = 1, the rate of convergence is determined
by the regularity of the solution, as expected, since u ∈ H2n/3−ε(Ω)2, for any ε > 0 for
this problem [5, 18]. The same applies to the case n = 2, in which it is still true that
u /∈ H2(Ω)2. On the other hand, when n = 4, the solution u belongs to H8/3−ε(Ω)2,
and with this smooth solution the error estimate applies optimally. All the results of
these numerical investigations confirm the theoretical ones obtained in Section 3.2,
and are in very good agreement with the associated ones reported in [5].
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Similar to what we have done in the previous example to compare the proposed
weak prescription strategy with the strong imposition of boundary conditions, we
intend to perform a final experiment for this case. However, the situation is more
delicate for the present configuration due to the existence of a re-entrant corner and
the utilisation of a nodal basis as we discussed earlier. Since we employ nodal interpo-
lations, a number of alternatives can be considered to strongly impose the boundary
condition (2.20). A first option is to force both of the field components to be zero
at the corner, and another option is to leave them free at this node. A third option
can be achieved by defining a fictitious normal to the boundary, and adjusting the
components so that the magnetic field follows the tangent to the boundary associated
with this normal vector. For the critical case of n = 1, we have implemented the
described procedures and compare the resulting L2(Ω) norms of the erro rs in Table
4.5.

Table 4.5
A comparison of different ways to impose the boundary conditions on the L-shaped domain

when n = 1 and h = 0.0156: Strong imposition (different strategies at the re-entrant corner) and
Nitsche’s method.

Strategy ‖eu‖ ‖∇ × eu‖
u1 = u2 = 0 5.66e-02 4.20e-02
u1, u2 free 2.82e-02 5.56e-03

Bisector normal 2.82e-02 5.56e-03
Nitsche’s method 5.66e-02 4.24e-02

The influence of different ways to prescribe the boundary condition on the numer-
ical errors for this singular case can easily be observed from this table. As expected,
the Nitsche method results are very close to the ones obtained by forcing both com-
ponents to vanish at the origin. The other two strategies produce very similar results
in terms of the computed errors.

4.3. The curved L-shape domain. As a last test, we consider the same so-
lution as the previous L-shaped domain case on a curved L-shape domain now, and
repeat the simulations whose results are presented in this subsection. The singularity
occurring as a result of the re-entrant corner remains true as in the previous case.
The significant difference in this one is the curved boundary that is obtained by join-
ing the two diagonal corner points by a sector of a circle of radius 2, and centred at
the point (1,−1). The need for a weak prescription of boundary conditions is vital
for this particular instance of a curved boundary. To discretise the computational
domain, we have used a regular unstructured mesh and a sequence of Powell-Sabin
type triangulations. Samples of both of these triangulations of the present domain
are shown in Figure 4.3.

We have carried out all the computations concerning this domain with the values
L0 = 0.5 and cu = 0.1. As already mentioned in Section 2.3, the proposed scheme
approximates the solutions with low Sobolev regularity optimally, provided that the
used mesh has the ability to interpolate the corresponding scalar functions whose gra-
dients are the solution components. Consequently, if this is not the case, the produced
solutions may not capture accurately the correct solution behaviour. To explore this
situation computationally, we have firstly used a standard regular unstructured mesh
and then a Powell-Sabin type mesh to approximate the solution for the singular case
when n = 1. The results are presented in Figure 4.4 in terms of surface plots associ-
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Fig. 4.3. The regular unstructured (L) and Powell-Sabin type (R) meshing of the curved L-
shape domain.

ated with the solution components of the magnetic field. The figure also depicts the
corresponding exact solution generated on the regular unstructured mesh.

The plots of the computed field components clearly demonstrate the failure of the
employment of unstructured meshes in capturing the correct behaviour of the true
solution. As we observed earlier, with the interpolation used on Powell-Sabin meshes,
the expected solution is accurately recovered.

In order to further analyse the convergence rates for this case, we have finally
performed the computations on a sequence of these Powell-Sabin meshes, and list the
errors with their rates in Table 4.6.

Table 4.6
Errors and rates of convergence (in brackets) for the curved L-shape domain test on Powell-

Sabin triangulations.

n = 1 n = 2 n = 4

h ‖eu‖ ‖∇ × eu‖ ‖eu‖ ‖∇ × eu‖ ‖eu‖ ‖∇ × eu‖
0.4163 3.15e-01 3.31e-01 4.49e-02 6.86e-02 2.52e-02 2.00e-02
0.2110 2.22e-01 (0.50) 1.12e-01 (1.56) 2.66e-02 (0.76) 2.02e-02 (1.77) 7.79e-03 (1.69) 3.08e-03 (2.70)
0.1192 1.42e-01 (0.65) 4.31e-02 (1.38) 1.19e-02 (1.15) 5.14e-03 (1.97) 1.77e-03 (2.14) 5.16e-04 (2.58)
0.0586 9.02e-02 (0.65) 1.37e-02 (1.66) 5.33e-03 (1.16) 1.09e-03 (2.24) 4.90e-04 (1.85) 9.96e-05 (2.37)
0.0287 5.59e-02 (0.69) 4.20e-03 (1.70) 2.13e-03 (1.32) 2.18e-04 (2.32) 1.17e-04 (2.06) 2.22e-05 (2.17)
0.0146 3.47e-02 (0.69) 1.36e-03 (1.63) 8.07e-04 (1.40) 4.51e-05 (2.27) 2.82e-05 (2.06) 5.44e-06 (2.03)

These results once again show that the method attains the optimal convergence
rates for all the different regularity levels considered, as anticipated from the theory.
They also put forward that the convergence features are very similar to the ones
obtained on the (straight) L-shaped domain.

5. Conclusions. We have considered FE approximations of Maxwell’s bound-
ary value problem, and analysed the prescription of essential boundary conditions
in a weak sense using Nitsche’s method. We have primarily focused on the analysis
of two formulations with the inclusion of Nitsche terms; the Galerkin method when
implemented with inf-sup stable elements, and an augmented-stabilised method that
permits the use of nodal interpolations of arbitrary order. The analysis has been car-
ried out by following a novel approach that relies on a splitting of the discrete spaces.
We have provided the stability and convergence aspects for both of the formulations.

In order to corroborate our theoretical findings in the case of the augmented-
stabilised method, we have performed some numerical simulations. These results have
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Fig. 4.4. Exact, unstructured mesh, and Powell-Sabin mesh solution components.

confirmed the theoretical ones on optimal convergence of the method, and demon-
strated the effectiveness of the proposed scheme in successfully approximating the
expected solutions. In addition, the simulations have revealed the influence of the
used meshes with different structures on correctly approximating the singular solu-
tions. Finally, we have shown numerically that the results obtained by the weak
prescription of the Dirichlet boundary conditions using Nitsche’s approach comply
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well with the ones obtained by strong imposition.
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