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A B S T R A C T

This paper presents a dynamic formulation for the simulation of nearly incompressible structures
using a mixed finite element method with equal-order interpolation pairs. Specifically, the nodal
unknowns are the displacement and the volumetric strain component, something that makes
possible the reconstruction of the complete stain at the integration point level and thus enables
the use of strain-driven constitutive laws. Furthermore, we also discuss the resulting eigenvalue
problem and how it can be applied for the modal analysis of linear elastic solids. The article puts
special emphasis on the stabilisation technique used, which becomes crucial in the resolution of
the generalised eigenvalue problem. In particular, we prove that using a variational multiscale
method assuming the sub-grid scales to lie in the finite element space orthogonal to that of the
approximation, namely the Orthogonal Sub-Grid Scales (OSGS), results in a convenient linear
and symmetric generalised eigenvalue problem. The correctness, convergence and performance
of the method are proven by solving a series of two- and three-dimensional examples.

1. Introduction

The numerical simulation of deformable bodies involving incompressibility is a problem of interest in many engineering
applications. Some examples are the performance analysis of rubber devices such as the elastomeric bearing pads present in bridge
supports or the ultimate load analysis of metal components undergoing plasticity. It is a known issue that standard displacement-
based (i.e., irreducible) formulations suffer from the so called volumetric locking phenomenon when facing deformations under
incompressibility constraints. This turns into an artificial stiffening that yields a wrong estimation of the mechanical response. Such
limitation has been historically treated by targeting the calculation of a more accurate strain field capable to account for such kind
of deformation. On the one hand, there are methods that achieve this by using the neighbours to compute an enriched displacement
or strain field [1,2]. On the other hand, one can modify the formulation by complementing the displacement unknowns with other
variable(s), from which an enriched strain can be obtained. Such variable(s) addition, which leads to a mixed formulation problem,
is the approach we focus on in this work.

It can be easily guessed that the nature of the resulting mixed formulation mainly depends on the extra variable(s). Specifically,
the finite element interpolation of the mixed problem may result in an unstable formulation if it does not accomplish with the
inf–sup condition. A very popular example of an (almost) inf-sup stable technique is the displacement–pressure formulation (𝐮-𝑝)
with 𝑄1∕𝑃0 discretisation. This method, which in the context of quasi-incompressible solids is commonly referred to as B-bar (or
F-bar in the finite strains regime [3]), is based on splitting the deviatoric and volumetric components of the material response
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by introducing a piecewise discontinuous pressure degree of freedom [4]. Although it makes possible the resolution of problems
involving incompressibility, the B-bar (and F-bar) technique is limited to quadrilateral (and hexahedral) meshes. In this regard,
the Variational Multiscales Stabilisation (VMS) techniques [5] provide a general framework for the development of stable mixed
formulations in presence of arbitrary and, in particular, equal-order interpolation pairs. This is exploited, among many other works,
in [6] to implement a stable 𝐮-𝑝 formulation with mixed 𝑄1∕𝑄1 and 𝑃1∕𝑃1 interpolation pairs. These works introduce a stress splitting
nto deviatoric and volumetric components, which are computed from the displacement and pressure nodal fields, respectively.

hile this bypasses the volumetric locking inconvenience, one cannot use standard strain-driven constitutive laws as these require
he total strain to be computed. This limitation is overcome in [7] by replacing the pressure with the volumetric strain (𝜀𝑣) as
odal unknown, resulting in a 𝐮-𝜀𝑣 formulation capable to deal with (nearly) incompressible materials. As it is detailed in [7],
he 𝐮-𝜀𝑣 formulation makes possible the usage of strain-driven material libraries with, possibly unstructured, low order meshes
ith a minimum computational overhead. Besides, it also overcomes the limitations of equal-order 𝐮-𝑝 formulations when dealing

with multi-material interfaces. Furthermore, we also note the displacement–strain (𝐮-𝜺) and displacement–stress (𝐮-𝝈) formulations
presented in [8], the three field 𝐮-𝝈-𝑝 in [9,10] and the 𝐮-det(𝐉) in [11], which introduces the determinant of the Jacobian as nodal
unknown in order to extend the 𝐮-𝜀𝑣 to the finite strain regime. In case further details are needed, we refer the reader to [12] for an
extremely detailed historical review on the numerical resolution of incompressible and nearly incompressible mechanical problems.

The extension of the previously discussed formulations to the dynamic regime might not be obvious as the kinematic/volumetric
constraint likely has no evolution equation. For instance, in [13,14] the authors address this by using an explicit time integration
scheme in the context of 𝐮-𝜺 formulations. Another example can be found in [12], which introduces a rate equation for the pressure
field evolution in 𝐮-𝑝 problems. In this work, we aim to explore how the 𝐮-𝜀𝑣 formulation presented in [7] can be extended to
consider transient problems. The approximation using finite differences is standard, and we only consider it as a reference in the
numerical examples. We concentrate here in the modal analysis and in the associated (generalised) eigenvalue problem associated
to it. When this problem is solved using classical residual-based VMS techniques, the original linear problem for the eigenvalue may
be transformed into a quadratic problem for it at the discrete level. This issue is discussed in [15,16], and may be overcome by using
Orthogonal Sub-Grid Scales (see below), as we do in this paper.

The article is organised as follows: Section 2 describes the strong and variational forms as well as the finite element discretisation
and stabilisation of the problem to be solved; similarly, we do so for the eigenvalue problem in Section 3; Section 4 presents and
discusses the algebraic forms resulting from Sections 2 and 3; in Section 5 we briefly describe the discrete modal analysis; the
numerical experiments setup and results are detailed in Section 6; finally, the conclusions are summarised in Section 7.

2. Problem description

2.1. Strong form

The initial and boundary value problem we consider is solved for a time 𝑡 ∈ [0, 𝑇 ) on a computational domain 𝛺 ⊂ R𝑑 (𝑑 = 2, 3),
which boundary 𝜕𝛺 = 𝛤 is defined from the 𝛤𝐷 and 𝛤𝑁 subsets as 𝛤 = 𝛤𝐷 ∪ 𝛤𝑁 and 𝛤𝐷 ∩ 𝛤𝑁 = ∅. Hence, the problem consists in
finding the displacement field 𝐮 ∶ 𝛺 × [0, 𝑇 ) → R𝑑 and the volumetric strain field 𝜀𝑣 ∶ 𝛺 × (0, 𝑇 ) → R such that

𝜌𝜕2𝑡𝑡𝐮 − ∇ ⋅ 𝝈(𝜺) = 𝐟 in 𝛺, 𝑡 ∈ (0, 𝑇 ) , (1a)

𝜀𝑣 − ∇ ⋅ 𝐮 = 0 in 𝛺, 𝑡 ∈ (0, 𝑇 ) , (1b)

𝐮 = 𝟎 on 𝛤𝐷, 𝑡 ∈ (0, 𝑇 ) , (1c)

𝐧 ⋅ 𝝈(𝜺) = 𝐭̄ on 𝛤𝑁 , 𝑡 ∈ (0, 𝑇 ) , (1d)

𝐮 = 𝐮0 in 𝛺, 𝑡 = 0 , (1e)

𝜕𝑡𝐮 = 𝐯0 in 𝛺, 𝑡 = 0. (1f)

In previous equations, ∇ is the standard nabla operator while 𝜌 and 𝐟 are the known density and body force (e.g., gravity). 𝐭 is the
value of the surface traction to be imposed. Similarly, 𝐮0 and 𝐯0 are the displacement and velocity initial conditions. 𝐧 is the unit
vector normal to the corresponding boundary. 𝝈 denotes the Cauchy stress tensor, which is obtained from the infinitesimal strain 𝜺.
In this regard, the 𝐮-𝜀𝑣 formulation stems from the splitting of 𝜺 in a deviatoric component and its volumetric counterpart. Hence,
𝜺 is defined as

𝜺 = ∇𝑠𝐮 − 1
𝛼
(∇ ⋅ 𝐮) 𝐈 + 1

𝛼
𝜀𝑣𝐈 , (2)

being 𝐈 the second order identity tensor, ∇𝑠 the symmetric gradient operator, and 𝛼 a dimensional coefficient taken as 𝛼 = 𝑑 (i.e., 3
in the 3D case and 2 in the 2D plane strain and plane stress ones). The previous equation defines the strain splitting that enables
the resolution of nearly incompressible materials. In this respect, we note that the summation of the first two terms depending on
𝐮 represent the deviatoric strain component while the last one depending on 𝜀𝑣 accounts for the volumetric one.
2 
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2.2. Weak form

As it is discussed in [7], a symmetric weak form for the problem in Eq. (1) can be obtained by introducing the strain splitting
n Eq. (2) into the variational form of the 𝐮-𝜺 formulation [8]. To that purpose, let us first define the common notation (⋅, ⋅) for
he 𝐿2-inner product in 𝛺 as well as ⟨⋅, ⋅⟩𝑅 for the product of two functions in a region 𝑅. In conjunction, we also introduce the

functional spaces 𝐕 ∶= 𝐇1
𝐷(𝛺), i.e., the space of vector fields with components in 𝐻1 vanishing on 𝛤𝐷, and 𝑄 ∶= 𝐿2(𝛺), i.e., the

pace of square-integrable functions; these are the appropriate spaces for the displacement and volumetric strain approximations,
espectively. Altogether, these allow us to define the weak form of the problem as find 𝐮 ∶ (0, 𝑇 ) → 𝐕 and 𝜀𝑣 ∶ (0, 𝑇 ) → 𝑄 such that

𝜌
(

𝐯, 𝜕2𝑡𝑡𝐮
)

+ (∇𝑠𝐯,C ∶ ∇𝑠𝐮) + (∇ ⋅ 𝐯, 𝜅𝜀𝑣) − (∇ ⋅ 𝐯, 𝜅∇ ⋅ 𝐮) = ⟨𝐯, 𝐟⟩𝛺 + ⟨𝐯, 𝐭⟩𝛤𝑁 , (3a)

(𝑞, 𝜅𝜀𝑣) − (𝑞, 𝜅∇ ⋅ 𝐮) = 0 , (3b)

or all test functions 𝐯 ∈ 𝐕 and 𝑞 ∈ 𝑄. We make clear that the introduction of the elasticity tensor C and the bulk modulus
∶= (𝐈 ∶ C ∶ 𝐈)∕𝛼2 imply that as of now we are assuming an isotropic linear elastic constitutive behaviour, something strictly

ecessary for the modal analysis we target. Also note that 𝜅 is applied as a physical scaling parameter to Eq. (3b). We refer the reader
o [7] for a detailed derivation of the weak form considering arbitrary stress–strain relations as well as for the special treatment of
nisotropy. Likewise, it is also explained in this reference the interest of this formulation, in spite of the fact the fully incompressible
ase 𝜅 = ∞ cannot be reached. In practice, the only limitation in the value of 𝜅 is the possible ill-conditioning of the final algebraic
ystem.

Finally, let us observe that we can write

(∇𝑠𝐯,C ∶ ∇𝑠𝐮) − (∇ ⋅ 𝐯, 𝜅∇ ⋅ 𝐮) =
(

∇𝑠𝐯,Cdev ∶ ∇𝑠𝐮
)

,

here Cdev is the deviatoric elasticity tensor.

.3. Finite element discretisation and stabilisation

First, we introduce the partition ℎ = {𝛺𝑘}𝑛𝑒𝑘=1 that divides the problem domain 𝛺 into 𝑛𝑒 finite elements of characteristic size
. Such partition allows one to construct the finite element spaces 𝐕ℎ and 𝑄ℎ that approximate 𝐕 and 𝑄, respectively. In this work
e only consider conforming and equal-order interpolations, meaning that the 𝐮 and 𝜀𝑣 finite element approximations 𝐮ℎ and 𝜀𝑣ℎ

an be written as

𝐮(𝐱, 𝑡) ≈ 𝐮ℎ(𝐱, 𝑡) =
𝑛𝑛
∑

𝑎=1
𝑁𝑎(𝐱)𝐮𝑎(𝑡)

nd

𝜀𝑣(𝐱, 𝑡) ≈ 𝜀𝑣ℎ(𝐱, 𝑡) =
𝑛𝑛
∑

𝑎=1
𝑁𝑎(𝐱)𝜀𝑣𝑎(𝑡) ,

espectively. In the previous expressions, 𝑁𝑎(𝐱) denotes the nodal shape function of node 𝑎 of the finite element partition, while 𝐮𝑎(𝑡)
nd 𝜀𝑣𝑎(𝑡) are the displacement and volumetric strain nodal values. The total number of nodes is 𝑛𝑛. Equivalently, the test functions
and 𝑞 are approximated by 𝐯ℎ and 𝑞ℎ.

It is a known issue that using an equal-order interpolation pair in this sort of problem violates the inf-sup condition, and thus
esults in an unstable approximation that requires the introduction of any stabilisation technique. In this context, in this work we
iscuss two different approaches, both based on the VMS family of methods [5,17]. The core of any VMS method is to split the
olution fields as the summation of a finite element resolvable scale, in our case the previously defined 𝐮ℎ and 𝜀𝑣ℎ, plus the so called
ubscales, which are to be modelled. Hence,

𝐮 = 𝐮ℎ + 𝐮𝑠 , (4a)

𝜀𝑣 = 𝜀𝑣ℎ + 𝜀
𝑣
𝑠 , (4b)

eing 𝐮𝑠 and 𝜀𝑣𝑠 the displacement and the volumetric strain subscales, which in the VMS methods we consider are defined from their
orresponding finite element residuals; these are computed element-wise as

𝐮𝑠 = 𝜏𝐮𝑃𝑠
[

𝐟 − 𝜌𝜕2𝑡𝑡𝐮ℎ + ∇ ⋅ C ∶ ∇𝑠𝐮ℎ + 𝜅∇
(

𝜀𝑣ℎ − ∇ ⋅ 𝐮ℎ
)]

, (5a)

𝜀𝑣𝑠 = 𝜏𝜀𝑣𝑃𝑠
[

∇ ⋅ 𝐮ℎ − 𝜀𝑣ℎ
]

, (5b)

𝐮 and 𝜏𝜀𝑣 are two stabilisation parameters defined as

𝜏𝐮 = 𝑐1
ℎ2

𝜇
and 𝜏𝜀𝑣 = 𝑐2

𝜇
𝜇 + 𝜅

. (6)

𝜇 is the second Lamé parameter (i.e., the shear modulus 𝐺) while 𝑐1 and 𝑐2 are two algorithmic constants that we will define later
on. 𝑃 is the projection operator onto the space of the sub-grid scales of either 𝐮 or 𝜀𝑣.
𝑠 𝑠 𝑠

3 
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Introducing the solution splitting (Eq. (4)) into the variational form (Eq. (3)) results in

𝜌
(

𝐯ℎ, 𝜕2𝑡𝑡𝐮ℎ
)

+𝜌
(

𝐯ℎ, 𝜕2𝑡𝑡𝐮𝑠
)

+
(

∇𝑠𝐯ℎ,C ∶ ∇𝑠𝐮ℎ
)

−
∑

𝑘
⟨∇ ⋅ (C ∶ ∇𝑠𝐯ℎ),𝐮𝑠⟩𝛺𝑘 +

(

∇ ⋅ 𝐯ℎ, 𝜅𝜀𝑣ℎ
)

+
∑

𝑘
⟨𝜅∇ ⋅ 𝐯ℎ, 𝜀𝑣𝑠⟩𝛺𝑘 −

(

∇ ⋅ 𝐯ℎ, 𝜅∇ ⋅ 𝐮ℎ
)

+
∑

𝑘
⟨𝜅∇(∇ ⋅ 𝐯ℎ),𝐮𝑠⟩𝛺𝑘 = ⟨𝐯ℎ, 𝐟⟩𝛺 + ⟨𝐯ℎ, 𝐭⟩𝛤𝑁

(7a)

(

𝑞ℎ, 𝜅𝜀𝑣ℎ
)

+
∑

𝑘
⟨𝜅𝑞ℎ, 𝜀

𝑣
𝑠⟩𝛺𝑘 −

(

𝑞ℎ, 𝜅∇ ⋅ 𝐮ℎ
)

+
∑

𝑘
⟨𝜅∇𝑞ℎ,𝐮𝑠⟩𝛺𝑘 = 0 , (7b)

o which we have already applied the required integration by parts as well as introduced the assumption that the sub-grid scales
anish over the element boundaries. By further assuming that the sub-grid scales transient behaviour can be neglected (i.e., 𝜕𝑠𝑡𝑡𝐮𝑠 ≈ 𝟎)
nd dropping all the second-order derivatives, as we will only consider first-order finite element interpolations, we obtain the final
tabilised variational form, which already includes the sub-grid scales definition in Eq. (5). Hence, the problem is find 𝐮ℎ ∈ 𝐕ℎ and
𝑣
ℎ ∈ 𝑄ℎ such that

𝜌
(

𝐯ℎ, 𝜕2𝑡𝑡𝐮ℎ
)

+
(

∇𝑠𝐯ℎ,C ∶ ∇𝑠𝐮ℎ
)

+
(

∇ ⋅ 𝐯ℎ, 𝜅𝜀𝑣ℎ
)

−
(

∇ ⋅ 𝐯ℎ, 𝜅∇ ⋅ 𝐮ℎ
)

+
∑

𝑘
⟨𝜅∇ ⋅ 𝐯ℎ, 𝜏𝜀𝑣𝑃𝑠

[

∇ ⋅ 𝐮ℎ − 𝜀𝑣ℎ
]

⟩𝛺𝑘 = ⟨𝐯ℎ, 𝐟⟩𝛺 + ⟨𝐯ℎ, 𝐭⟩𝛤𝑁
(8a)

(

𝑞ℎ, 𝜅𝜀𝑣ℎ
)

−
(

𝑞ℎ, 𝜅∇ ⋅ 𝐮ℎ
)

+
∑

𝑘
⟨𝜅𝑞ℎ, 𝜏𝜀𝑣𝑃𝑠

[

∇ ⋅ 𝐮ℎ − 𝜀𝑣ℎ
]

⟩𝛺𝑘 +
∑

𝑘
⟨𝜅∇𝑞ℎ, 𝜏𝐮𝑃𝑠

[

𝐟 − 𝜌𝜕2𝑡𝑡𝐮ℎ + 𝜅∇𝜀
𝑣
ℎ
]

⟩𝛺𝑘 = 0 , (8b)

or all 𝐯ℎ ∈ 𝐕ℎ and 𝑞ℎ ∈ 𝑄ℎ.
The method is completed with the selection of the projection operator 𝑃𝑠, which ultimately defines the space for the subscales.

ne option is to assume that the sub-grid scale space is that of their corresponding finite element residuals, meaning that 𝑃𝑠 = 𝐼
the identity). This leads to the so called Algebraic Sub-Grid Scales (ASGS) approach [7]. The other option is to take the sub-grid
cales from the space that is 𝐿2-orthogonal to the finite element one. In this case 𝑃𝑠 is the orthogonal projection to this space
i.e., 𝑃𝑠 = 𝑃⟂

ℎ ) and the method is called Orthogonal Sub-Grid Scales (OSGS) [18]. Though both options have been proved to work
n similar problems, the OSGS has some superior theoretical and practical advantages [8,18,19]. Specifically, and as we will detail
ater on, the use of the OSGS approach becomes crucial for the modal analysis effectiveness.

. Eigenvalue problem arising in modal analysis

.1. Strong form

The modal analysis consists of expanding the unknowns of the problem in Eq. (1) in terms of the modes associated to the
omogeneous problem, that is, considering 𝐟 = 𝟎 and 𝐭̄ = 𝟎. These modes are the amplitudes in the Fourier expansion of the
isplacement solution of the homogeneous problem as

𝐮𝐻 (𝐱, 𝑡) =
∞
∑

𝑛=0
𝑒𝑖𝜔𝑛𝑡𝝓𝑛(𝐱) ,

nd the volumetric strain 𝜀𝑣 as

𝜀𝑣𝐻 (𝐱, 𝑡) =
∞
∑

𝑛=0
𝑒𝑖𝜔𝑛𝑡𝜓𝑛(𝐱) .

he frequencies 𝜔𝑛 (the same for 𝐮𝐻 and 𝜀𝑣𝐻 ) and the amplitudes 𝝓𝑛, 𝜓𝑛, 𝑛 = 0, 1, 2,… , are solution of the eigenvalue problem that
s obtained by imposing that 𝐮𝐻 (𝐱, 𝑡) and 𝜀𝑣𝐻 (𝐱, 𝑡) are solution of

𝜌𝜕2𝑡𝑡𝐮𝐻 − ∇ ⋅
(

C ∶ ∇𝑠𝐮𝐻
)

+ 𝜅∇
(

∇ ⋅ 𝐮𝐻 − 𝜀𝑣𝐻
)

= 𝟎 in 𝛺, 𝑡 ∈ (0, 𝑇 ) ,

𝜀𝑣𝐻 − ∇ ⋅ 𝐮𝐻 = 0 in 𝛺, 𝑡 ∈ (0, 𝑇 ) ,

𝐮𝐻 = 𝟎 on 𝛤𝐷, 𝑡 ∈ (0, 𝑇 ) ,

𝐧 ⋅
(

C ∶ ∇𝑠𝐮𝐻
)

− 𝜅
(

∇ ⋅ 𝐮𝐻 − 𝜀𝑣𝐻
)

𝐧 = 𝟎 on 𝛤𝑁 , 𝑡 ∈ (0, 𝑇 ) ,

𝐮𝐻 = 𝐮0 in 𝛺, 𝑡 = 0 ,

𝜕𝑡𝐮𝐻 = 𝐯0 in 𝛺, 𝑡 = 0.

ssuming the modes to be linearly independent (as it can be checked a posteriori) this leads to the generalised eigenvalue problem
GEVP):

−∇ ⋅
(

C ∶ ∇𝑠𝝓𝑛
)

+ 𝜅∇
(

∇ ⋅ 𝝓𝑛 − 𝜓𝑛
)

= 𝜌𝜔2
𝑛𝝓𝑛 in 𝛺 , (10a)

𝜓𝑛 − ∇ ⋅ 𝝓𝑛 = 0 in 𝛺 , (10b)

𝝓𝑛 = 𝟎 on 𝛤𝐷 , (10c)

𝐧 ⋅
(

C ∶ ∇𝑠𝝓𝑛
)

− 𝜅
(

∇ ⋅ 𝝓𝑛 − 𝜓𝑛
)

𝐧 = 𝟎 on 𝛤𝑁 , (10d)
4 



R. Zorrilla et al.

w
h

f

Computer Methods in Applied Mechanics and Engineering 432 (2024) 117382 
for 𝑛 = 1, 2,… . Hence, solving the GEVP results in a complete set of eigenpairs, which can be arranged as
[

𝝓1(𝐱),𝝓2(𝐱),… ,𝝓𝑛(𝐱),…
]

,
[

𝜓1(𝐱), 𝜓2(𝐱),… , 𝜓𝑛(𝐱),…
]

and 0 < 𝜔2
1 ≤ 𝜔2

2 ≤ ⋯𝜔2
𝑛 ≤ … .

The operator −∇ ⋅ (C ∶ ∇𝑠(⋅)) + 𝜅∇ (∇ ⋅ (⋅)) = −∇ ⋅
(

Cdev ∶ ∇𝑠(⋅)
)

is symmetric and positive-semidefinite. This allows one to prove
that for all 𝑖 = 0, 1, 2,… the eigenvalues 𝜔2

𝑖 are indeed positive and the eigenvectors 𝝓𝑖 can be taken as an 𝐿2 orthogonal set (and
therefore indeed linearly independent) and also orthogonal with respect to the inner product induced by −∇ ⋅

(

Cdev ∶ ∇𝑠(⋅)
)

. Any
normalisation to make them unique can be chosen.

At this point, it is clear that each of the eigenfunctions 𝝓𝑛, 𝜓𝑛 and eigenvalues 𝜔𝑛 correspond to a particular mode 𝑛 of the
decomposition. Hence, and for the sake of a lightweight notation, in what follows we will omit the subindex 𝑛 when referring to
any of these.

3.2. Weak form

The stable discrete form of the eigenvalue problem is derived similar to the mixed 𝐮-𝜀𝑣 one (Eq. (8)). Therefore, we retake the
previously defined notation and functional spaces 𝐕 and 𝑄 to define the weak form of the GEVP (Eq. (10)) as find 𝝓 ∈ 𝐕, 𝜓 ∈ 𝑄
and 𝜔2 ∈ R+ such that

(∇𝑠𝐯,C ∶ ∇𝑠𝝓) + (∇ ⋅ 𝐯, 𝜅𝜓) − (∇ ⋅ 𝐯, 𝜅∇ ⋅ 𝝓) = 𝜌𝜔2 (𝐯,𝝓) , (11a)

(𝑞, 𝜅𝜓) − (𝑞, 𝜅∇ ⋅ 𝝓) = 0 , (11b)

for all test functions 𝐯 ∈ 𝐕 and 𝑞 ∈ 𝑄. Note that, as we did in Eq. (3b), we introduce 𝜅 as a scaling physical parameter to Eq. (11b).

3.3. Finite element discretisation and stabilisation

As previously mentioned, in this work we only consider equal-order finite element interpolation pairs, unstable for the standard
Galerkin approximation. Therefore, we discretise the 𝝓(𝐱) and 𝜓(𝐱) eigenfunctions using a linear conforming finite element
approximation as

𝝓(𝐱) ≈ 𝝓ℎ(𝐱) =
𝑛𝑛
∑

𝑎=1
𝑁𝑎(𝐱)𝝓𝑎

and

𝜓(𝐱) ≈ 𝜓ℎ(𝐱) =
𝑛𝑛
∑

𝑎=1
𝑁𝑎(𝐱)𝜓𝑎 ,

respectively. Furthermore, we also introduce the VMS-based solution splitting for the eigenfunctions, that is

𝝓 = 𝝓ℎ + 𝝓𝑠 , (12a)

𝜓 = 𝜓ℎ + 𝜓𝑠. (12b)

Similar to what is done for the 𝐮𝑠 and 𝜀𝑣𝑠 , the 𝝓𝑠 and 𝜓𝑠 eigenfunctions sub-grid scales are defined from their corresponding finite
element residuals as

𝝓𝑠 = 𝜏𝐮𝑃𝑠
[

𝜌𝜔2
ℎ𝝓ℎ + ∇ ⋅ C ∶ ∇𝑠𝝓ℎ + 𝜅∇

(

𝜓ℎ − ∇ ⋅ 𝝓ℎ
)]

, (13a)

𝜓𝑠 = 𝜏𝜀𝑣𝑃𝑠
[

∇ ⋅ 𝝓ℎ − 𝜓ℎ
]

, (13b)

being 𝜏𝐮, 𝜏𝜀𝑣 and 𝑃𝑠 the previously defined stabilisation parameters (Eq. (6)) and projection operator.
Introducing the sub-grid scales separation in Eq. (12) into the variational form in Eq. (11) results in the GEVP stabilised functional

−𝜌𝜔2
ℎ
(

𝐯ℎ,𝝓ℎ
)

−𝜌𝜔2
ℎ
(

𝐯ℎ,𝝓𝑠
)

+
(

∇𝑠𝐯ℎ,C ∶ ∇𝑠𝝓ℎ
)

−
∑

𝑘
⟨∇ ⋅ (C ∶ ∇𝑠𝐯ℎ),𝝓𝑠⟩𝛺𝑘

+
(

∇ ⋅ 𝐯ℎ, 𝜅𝜓ℎ
)

+
∑

𝑘
⟨𝜅∇ ⋅ 𝐯ℎ, 𝜓𝑠⟩𝛺𝑘 −

(

∇ ⋅ 𝐯ℎ, 𝜅∇ ⋅ 𝝓ℎ
)

+
∑

𝑘
⟨𝜅∇(∇ ⋅ 𝐯ℎ),𝝓𝑠⟩𝛺𝑘 = 𝟎 ,

(14a)

(

𝑞ℎ, 𝜅𝜓ℎ
)

+
∑

𝑘
⟨𝜅𝑞ℎ, 𝜓𝑠⟩𝛺𝑘 −

(

𝑞ℎ, 𝜅∇ ⋅ 𝝓ℎ
)

+
∑

𝑘
⟨𝜅∇𝑞ℎ,𝝓𝑠⟩𝛺𝑘 = 0 , (14b)

hich already includes the required integration by parts. Lastly, we insert the 𝝓𝑠 and 𝜓𝑠 expression from Eq. (13) and drop the
igher order derivatives to obtain the final form to be implemented, which reads as: find 𝝓ℎ ∈ 𝐕ℎ and 𝜓ℎ ∈ 𝑄ℎ such that

−𝜌𝜔2
ℎ
(

𝐯ℎ,𝝓ℎ
)

+
(

∇𝑠𝐯ℎ,C ∶ ∇𝑠𝝓ℎ
)

+
(

∇ ⋅ 𝐯ℎ, 𝜅𝜓ℎ
)

−
(

∇ ⋅ 𝐯ℎ, 𝜅∇ ⋅ 𝝓ℎ
)

− 𝜌𝜔2
ℎ

∑

𝑘
⟨𝐯ℎ, 𝜏𝐮𝑃𝑠

[

𝜌𝜔2
ℎ𝝓ℎ + 𝜅∇𝜓ℎ

]

⟩𝛺𝑘 +
∑

𝑘
⟨𝜅∇ ⋅ 𝐯ℎ, 𝜏𝜀𝑣𝑃𝑠

[

∇ ⋅ 𝝓ℎ − 𝜓ℎ
]

⟩𝛺𝑘 = 𝟎 , (15a)

(

𝑞ℎ, 𝜅𝜓ℎ
)

−
(

𝑞ℎ, 𝜅∇ ⋅ 𝝓ℎ
)

+
∑

𝑘
⟨𝜅𝑞ℎ, 𝜏𝜀𝑣𝑃𝑠

[

∇ ⋅ 𝝓ℎ − 𝜓ℎ
]

⟩𝛺𝑘 +
∑

𝑘
⟨𝜅∇𝑞ℎ, 𝜏𝐮𝑃𝑠

[

𝜌𝜔2
ℎ𝝓ℎ + 𝜅∇𝜓ℎ

]

⟩𝛺𝑘 = 0. (15b)

or all 𝐯 ∈ 𝐕 and 𝑞 ∈ 𝑄 .
ℎ ℎ ℎ ℎ
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At this point, it becomes apparent that the projection 𝑃𝑠 determines the problem in Eq. (15). Specifically, we note that in general
𝑠
[

𝝓ℎ
]

≠ 𝟎. In consequence, the first stabilisation term in Eq. (15a) results in an 𝜔4
ℎ contribution, that is to say, in a quadratic

nonlinear) GEVP. The most immediate solution for such inconvenience is to choose 𝑃𝑠 = 𝑃⟂
ℎ , that is to say, using the OSGS approach,

ince 𝑃⟂
ℎ
[

𝝓ℎ
]

= 𝟎. This fact is elaborated in [15,16].

emark 1. Even though we have not undertaken the convergence analysis of this eigenvalue problem, the expected order of
onvergence in ℎ of the displacement field eigenvectors is 𝑝 in the norm of 𝐻1(𝛺) (i.e., the norm of 𝐕), 𝑝 being here the polynomial
rder of the finite element space. Thus, the expected order of convergence of the eigenvalues is 2𝑝. This is obviously true if the
ontinuous displacement field eigenvectors belong to 𝐻𝑝+1(𝛺). As shall be reported in Section 6, convergence rates smaller that 2𝑝
re found if this does not happen. In this work we are interested in the case 𝑝 = 1.

. Algebraic form

In this section we discuss the algebraic (matrix) forms resulting from the previously defined variational problems. As we
inpointed before, the selection of the stabilisation approach (i.e., ASGS or OSGS) becomes crucial for the resulting algebraic
roblem. Hence, we start by discussing the most simple case, which is the model problem (Eq. (8)) with ASGS stabilisation, that
s taking 𝑃𝑠 = 𝐼 . For the sake of simplifying the discussion at hand, let us also denote the mass and stiffness matrices as 𝐌 and
, respectively. We also define the vectors 𝐔 and 𝒗 to collect the 𝐮ℎ and 𝜀𝑣ℎ unknown nodal values as well as 𝐅 to do so for the
xternal forces (i.e., loads). Using the customary dot notation for the time derivatives, this allows us to write the algebraic ASGS
ersion of the problem in Eq. (8) as

[

𝐌𝐮𝐮 𝟎
𝐌𝜀𝑣𝐮 𝟎

]

[

𝐔̈
̈𝒗

]

+

[

𝐊𝐮𝐮 𝐊𝐮𝜀𝑣

𝐊𝜀𝑣𝐮 𝐊𝜀𝑣𝜀𝑣

][

𝐔
𝒗

]

=

[

𝐅
𝟎

]

. (16)

s discussed in [7], the ASGS variational form yields a symmetric stiffness matrix (i.e., 𝐊𝐮𝜀𝑣 = 𝐊𝑇
𝜀𝑣𝐮). However, it can be clearly

bserved that the dynamic problem is no longer symmetric after the appearance of the 𝐌𝜀𝑣𝐮 component in the mass matrix. This
nconvenience can be readily fixed by introducing the OSGS approach. In this regard, we note that the discrete orthogonal projection
⟂
ℎ can be implemented as 𝑃⟂

ℎ = 𝐼 − 𝑃𝐿2 , being 𝑃𝐿2 the customary discrete 𝐿2-projection. Hence, the algebraic OSGS version of the
roblem in Eq. (8) is

⎡

⎢

⎢

⎢

⎢

⎣

𝐌𝐮𝐮 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝐔̈
̈𝒗

𝜫̈𝐮

𝜫̈𝜀𝑣

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐊𝐮𝐮 𝐊𝐮𝜀𝑣 𝟎 𝐊𝐮𝜫𝐮

𝐊𝜀𝑣𝐮 𝐊𝜀𝑣𝜀𝑣 𝐊𝜀𝑣𝜫𝐮
𝐊𝜀𝑣𝜫𝜀𝑣

𝟎 𝐊𝜫𝐮𝜀𝑣 𝐊𝜫𝐮𝜫𝐮
𝟎

𝐊𝜫𝜀𝑣𝐮 𝐊𝜫𝜀𝑣 𝜀𝑣 𝟎 𝐊𝜫𝜀𝑣𝜫𝜀𝑣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝐔
𝒗

𝜫𝐮

𝜫𝜀𝑣

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐅
𝟎
𝟎
𝟎

⎤

⎥

⎥

⎥

⎥

⎦

. (17)

omparing to the ASGS version of the problem (Eq. (16)), one can notice the introduction of 𝜫𝐮 and 𝜫𝜀𝑣 as nodal unknowns. These
re the vectors collecting the nodal values of the finite element residual 𝐿2-projections (see the sub-grid scales definitions in Eq. (5)).
oncerning the projection, and considering that we are interested in low order elements, we opt for the lumped 𝐿2-projection, as it
an be guessed from the diagonal nature of the 𝐊𝜫 ∙𝜫 ∙

block. In this regard, we shall mention that preliminary experiments reported
o clear advantage on doing the consistent 𝐿2-projection (which could be necessary for higher order interpolations). Taking this
nto consideration, we decide to keep the lumped version for the sake of having a better conditioned system.

By inspecting Eq. (17) one can easily note that 𝐌𝜀𝑣𝐮 = 𝟎, meaning that the OSGS is able to recover the mass matrix symmetry.
his comes after the fact that 𝑃⟂

ℎ [𝜕
2
𝑡𝑡𝐮ℎ] = 𝟎. Besides, the OSGS stiffness matrix can be easily symmetrised by scaling the rows

corresponding to 𝜫𝐮 and 𝜫𝜀𝑣 by 𝜏𝐮 and 𝜅𝜏𝜀𝑣 , respectively. In short, the OSGS approach makes possible to extend the problem to
the dynamic case while keeping the symmetry of its static counterpart. This is important both for theoretical and for practical reasons.
Regarding the former, the spectral theorem applies, thus guaranteeing that the eigenvalues are real (and positive); concerning the
latter, tailored and more efficient numerical linear algebra solvers can be used.

Similarly, we define the vectors 𝜱 and 𝜳 to collect the 𝝓ℎ and 𝜓ℎ unknown nodal values. Hence, the algebraic form of the
ASGS-stabilised eigenvalue problem (Eq. (15)) can be written as

[

𝐊𝝓𝝓 𝐊𝝓𝜓

𝐊𝜓𝝓 𝐊𝜓𝜓

][

𝜱
𝜳

]

= 𝜆ℎ

[

𝐌𝝓𝝓 𝐌𝝓𝜓

𝐌𝜓𝝓 𝟎

][

𝜱
𝜳

]

+ 𝜆2ℎ

[

𝐌∗
𝝓𝝓 𝟎

𝟎 𝟎

][

𝜱
𝜳

]

, (18)

being 𝜆ℎ = 𝜔2
ℎ. Eq. (18) reveals that the ASGS approach results in a nonlinear generalised eigenproblem. As previously mentioned,

such inconvenience can be bypassed by using the OSGS as 𝑃⟂
ℎ [𝝓ℎ] = 𝟎 yields 𝐌∗

𝝓𝝓 = 𝟎. Therefore, introducing 𝜫𝝓 and 𝜫𝜓 to collect
the corresponding 𝐿2-projection nodal values allows to write the OSGS GEVP as

⎡

⎢

⎢

⎢

⎢

⎢

𝐊𝝓𝝓 𝐊𝝓𝜓 𝟎 𝐊𝝓𝜫𝝓

𝐊𝜓𝝓 𝐊𝜓𝜓 𝐊𝜓𝜫𝝓
𝐊𝜓𝜫𝜓

𝟎 𝐊𝜫𝝓𝜓 𝐊𝜫𝝓𝜫𝝓
𝟎

⎤

⎥

⎥

⎥

⎥

⎥

⎡

⎢

⎢

⎢

⎢

⎣

𝜱
𝜳
𝜫𝝓

𝜫

⎤

⎥

⎥

⎥

⎥

⎦

= 𝜆ℎ

⎡

⎢

⎢

⎢

⎢

⎣

𝐌𝝓𝝓 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝜱
𝜳
𝜫𝝓

𝜫

⎤

⎥

⎥

⎥

⎥

⎦

. (19)
⎣

𝐊𝜫𝜓𝝓 𝐊𝜫𝜓𝜓 𝟎 𝐊𝜫𝜓𝜫𝜓 ⎦ 𝜓 𝜓
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Besides being symmetric, something that enables the use of efficient sparse iterative eigenvalue solvers, the stiffness and mass
matrices of the dynamic (Eq. (17)) and the eigenvalue (Eq. (19)) OSGS problems are identical, thus resulting in a much more clean
and convenient code implementation.

Finally, we note that it is convenient to solve the GEVP for the Schur complement of the block corresponding to 𝜳 , 𝜫𝝓 and 𝜫𝜓 ,
which we denote as 𝐒, rather than for the complete form in Eq. (19). Hence, we define the Schur complement 𝐊∕𝐒 as

𝐊𝑆 ∶= 𝐊∕𝐒 = 𝐊𝐮𝐮 −
[

𝐊𝐮𝜀𝑣 𝟎 𝐊𝐮𝜫𝐮

]

⎡

⎢

⎢

⎢

⎣

𝐊𝜀𝑣𝜀𝑣 𝐊𝜀𝑣𝜫𝐮
𝐊𝜀𝑣𝜫𝜀𝑣

𝐊𝜫𝐮𝜀𝑣 𝐊𝜫𝐮𝜫𝐮
𝟎

𝐊𝜫𝜀𝑣 𝜀𝑣 𝟎 𝐊𝜫𝜀𝑣𝜫𝜀𝑣

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎣

𝐊𝜀𝑣𝐮

𝟎
𝐊𝜫𝜀𝑣𝐮

⎤

⎥

⎥

⎥

⎦

, (20)

which results in the statically condensed GEVP

𝐊𝑆𝜱 = 𝜆ℎ𝐌𝝓𝝓𝜱. (21)

Similarly, the linear system in Eq. (17) can be statically condensed as

𝐌𝐮𝐮𝐔̈ +𝐊𝑆𝐔 = 𝐅. (22)

It is important to highlight the symmetry of block 𝐒, which makes possible to implement the statically condensed problem(s) as a
linear operator leveraging fast iterative solvers for sparse Hermitian matrices.

Remark 2. Though Eq. (17) introduces the 𝐿2-projection nodal values as an unknown, these can be treated iteratively by using a
block-Gauss–Seidel scheme for 𝐔-𝑣 on the one side and 𝜫𝐮-𝜫𝜀𝑣 on the other. This would allow the OSGS problem to keep the ASGS
number of degrees of freedom. However, for the eigenvalue problem this iterative treatment of the projection would require acting
on the numerical eigenvalue solver, loosing the convenience of employing this solver as a black-box. Furthermore, even though we
have not explored this, the iterative scheme employed to deal with the projections (e.g., Gauss–Seidel) could be coupled with the
iterative scheme to compute the eigensolution of the problem.

Remark 3. The nonlinear GEVP in Eq. (18) can be rewritten as

𝐊′𝐳 = 𝜆ℎ𝐌′𝐳

by introducing the modified eigenvector 𝐳𝑇 =
[

𝜆ℎ𝜱, 𝜆ℎ𝜳 ,𝜱,𝜳
]

as well as the corresponding modified stiffness and mass matrices
𝐊′ and 𝐌′. Hence, the modified problem is

⎡

⎢

⎢

⎢

⎢

⎣

𝐈 𝟎 𝟎 𝟎
𝟎 𝐈 𝟎 𝟎

−𝐌𝝓𝝓 −𝐌𝝓𝜓 𝐊𝝓𝝓 𝐊𝝓𝜓

−𝐌𝜓𝝓 𝟎 𝐊𝜓𝝓 𝐊𝜓𝜓

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝜆ℎ𝜱
𝜆ℎ𝜳
𝜱
𝜳

⎤

⎥

⎥

⎥

⎥

⎦

= 𝜆ℎ

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝟎 𝐈 𝟎
𝟎 𝟎 𝟎 𝐈
𝟎 𝟎 𝐌∗

𝝓𝝓 𝟎

𝟎 𝟎 𝟎 𝟎

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝜆ℎ𝜱
𝜆ℎ𝜳
𝜱
𝜳

⎤

⎥

⎥

⎥

⎥

⎦

.

As it can be noted, the resulting matrix 𝐊′ is not symmetric, and thus precludes the use of standard sparse iterative eigenvalue
solvers.

5. Modal analysis

The eigenvalues and eigenvectors resulting from the solving the GEVP can be used as a basis to alternatively express the dynamic
problem solution. Hence, the displacement time evolution can be written as

𝐔(𝑡) =
𝑛
∑

𝑖=1
𝑧𝑖(𝑡)𝜱𝑖 , (23)

with 𝑧𝑖(𝑡) being appropriate scalar functions to be determined. In the structural mechanics context, 𝜱𝑖 is commonly referred to as
the 𝑖th-mode of vibration (or simply 𝑖th-mode) while 𝑧𝑖 is the corresponding amplitude of that mode. Taking all the decomposition
modes makes Eq. (23) exact. However, taking 𝑚 modes such that 𝑚 < 𝑛 makes possible to build the approximation to the problem
solution

𝐔(𝑡) ≈ 𝐔̃(𝑡) =
𝑚
∑

𝑖=1
𝑧𝑖(𝑡)𝜱𝑖. (24)

Such approximation can be written in matrix form as

𝐔̃ = 𝜩𝐙 .

𝜩 and 𝐙 are the arrays storing the 𝑚-modes of the approximation and their corresponding amplitudes, respectively. Hence, these
are defined as

𝜩 ∶=
[

𝜱1 … 𝜱𝑚
]

∈ R𝑛×𝑚 and 𝐙 ∶=

⎡

⎢

⎢

⎢

𝑧1(𝑡)
⋮

⎤

⎥

⎥

⎥

∈ R𝑚 .
⎣

𝑧𝑚(𝑡)⎦
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Introducing the approximation in Eq. (24) into Eq. (22) and premultiplying by 𝜩𝑇 yields the modified system of equations

𝜩𝑇𝐌𝐮𝐮𝜩𝐙̈ + 𝜩𝑇𝐊𝑆𝜩𝐙 = 𝜩𝑇𝐅 , (25)

hich we note is of size 𝑚 rather than the original size 𝑛. In practical applications it is possible to choose 𝑚 ≪ 𝑛. This enables the
ossibility to build a Reduced Order Model (ROM) that approximates the finite element solution in a very efficient manner since
he size of the problem to be solved is greatly reduced. In the structural mechanics context, such ROM is commonly referred to as
odal analysis.

An important reason for the success of the modal analysis is that the arrays of nodal values of displacement modes are orthogonal
oth with respect to matrix 𝐌𝐮𝐮 and with respect to matrix 𝐊𝑆 . This makes the ordinary system of differential equations in Eq. (25)
o be diagonal, i.e., consisting of 𝑚 decoupled equations.

emark 4. In this case, we defined the modal analysis based on the statically condensed problem as the 𝜀𝑣 field likely has no
ractical utility in the sense that its effect onto 𝐮 is already taken into account. Nevertheless, if required, the same idea can be
pplied to the 𝜀𝑣 field by introducing

𝑣(𝑡) =
𝑛
∑

𝑖=1
𝑧𝑖(𝑡)𝜳 𝑖 .

y doing so and applying the previously described procedure one can obtain a ROM that also includes 𝜀𝑣 as an unknown.

emark 5. A stability and convergence analysis similar to that performed in [16] can be also carried out for the present formulation.
n essence, now one has to account for a mass-matrix-like term in the equation for the volumetric strain, although this poses no
ifficulty, as this matrix is symmetric and positive definite. The conclusion of this analysis, that will be verified in the numerical
xamples, is that the error in the displacement modes decreases as the inverse of the first discarded eigenvalue 𝜔2

𝑚+1.

. Numerical results

In this section we present several 2D and 3D numerical experiments to assess the correctness and performance of our proposal,
oth in the compressible and incompressible regimes. The results described in this section have been obtained with the Kratos
ultiphysics open-source finite element framework (Kratos) [20,21]. For the GEVP resolution, we leverage both Eigen and SciPy

ibraries [22]. Both pre-processing and mesh generation have been done by means of the GiD simulation software (GiD). All units
re assumed to correspond to the SI.

.1. Unit square problem

In this first example we study the eigenvalue convergence by solving the GEVP on a unit square domain. As depicted in Fig. 1, we
onsider a material with Young modulus 𝐸 = 250, Poisson coefficient 𝜈 = 0.25 (compressible case) and 𝜈 = 0.49995 (incompressible
ase) and unit density. The displacement boundary conditions (BCs) are also described in Fig. 1. As it can be observed, a roller
upport is considered in all the boundaries, meaning that 𝑢𝑦 = 0 in the horizontal boundaries and 𝑢𝑥 = 0 in the vertical ones. In
his regard, we would like to mention that preliminary experiments with completely clamped BCs reported a slight convergence
eterioration associated to the singularities appearing in the corners, which lead to a lack of regularity in the problem. We solve
he problem for a set of structured linear quadrilateral and triangular meshes of 2𝑛 edge divisions, being 𝑛 = 2, 3, 4, 5, 6. In the
ompressible case, we compare the obtained results with those obtained with an irreducible formulation while in the incompressible
ne we do so by using a B-bar (𝑄1∕𝑃0) formulation. The reference values (𝜆̄𝑖) are obtained by solving the same problem with an
verkill mesh made of 1.5M linear quadrilateral (irreducible or B-bar) elements.

Prior to any discussion, we note that we also use this problem to calibrate the algorithmic constants appearing in the stabilisation
arameters 𝜏𝐮 and 𝜏𝜀𝑣 . Hence, from now on we set the algorithmic constants to 𝑐1 = 1 and 𝑐2 = 4, respectively.

Figs. 2 and 3 present the convergence of the first six eigenvalues for the compressible case using quadrilateral and triangular
eshes, respectively. Similarly, Figs. 4 and 5 present the same results for the incompressible case. As it can be observed, in all cases

he OSGS approach convergences with the optimal rate, which is (ℎ2). For the compressible case, the OSGS error is slightly larger
han that of the irreducible reference values, something that can be perfectly expected as a side effect of the stabilisation. Regarding
he incompressible case, the performance of the OSGS quadrilateral is pretty similar to that of the B-bar element. Complementary,
e also study the behaviour of an inconsistent ASGS approach. By inconsistent ASGS we mean solving the GEVP using the mass and

tiffness matrices resulting from the variational mechanical problem (Eq. (16)), something that one might eventually be tempted to
o. The first and most evident thing is that the problem is no longer symmetric, thus requiring the use of a much more inefficient
olver for generic dense matrices. Furthermore, we also note that negative eigenvalues appear in some cases. Specifically, the ASGS
alues in Figs. 2, 3 and 4 are not the first six eigenvalues but the first six positive ones. Surprisingly, the inconsistent ASGS (positive)
igenvalues converge not only with the expected quadratic order but also with a similar error constant to that of the OSGS approach.
evertheless, we highlight that the spectral theorem no longer holds in the inconsistent ASGS case, something that results into a

imitation for the modal analysis application as the mass matrix does not diagonalise anymore. Altogether, these observations evince

he practical advantages of the OSGS, which will be our method of choice for the remaining examples of the paper.
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Fig. 1. Unit square problem. Geometry, material and boundary conditions.

Fig. 2. Unit square problem. Eigenvalue convergence for irreducible, OSGS and inconsistent ASGS quadrilateral elements (𝜈 = 0.25).

6.2. Free vibration of a cantilever beam

In this example, which has been previously presented in [16], we analyse the vibration of a 10 × 1 cantilever beam. The material
properties are 𝜌 = 1, 𝐸 = 3 ⋅ 103 and 𝜈 = 0.49995. The beam is clamped at its left edge while the other three edges are free. The
vibration is induced by the displacement initial condition, which is obtained as the solution of a static problem with an enforced
displacement of 1 ⋅ 10−2 along the right edge (see Fig. 2 in [16]). The initial velocity and acceleration are assumed to be zero. For
the time discretisation we use a second order backward differentiation formula, to which from now on we refer to as the finite
difference (FD) approximation. Hence, the acceleration for a time step 𝑖 is computed with the previous steps solutions and the time
step increment 𝛿𝑡 as

𝐔̈(𝑡 ) ≈
−𝐔(𝑡𝑖−3) + 4𝐔(𝑡𝑖−2) − 5𝐔(𝑡𝑖−1) + 2𝐔(𝑡𝑖) .
𝑖 𝛿𝑡2

9 
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Fig. 3. Unit square problem. Eigenvalue convergence for irreducible, OSGS and inconsistent ASGS triangular elements (𝜈 = 0.25).

Fig. 4. Unit square problem. Eigenvalue convergence for B-bar, OSGS and inconsistent ASGS quadrilateral elements (𝜈 = 0.49995).

The problem is solved for a total time 𝑡 = 20, which comprises two complete periods of oscillation. Regarding the time increment,
we set 𝛿𝑡 = 1.0 ⋅10−3 so as to ensure properly capturing the high frequency contributions. The domain is discretised with a 100 × 10
divisions structured mesh of linear triangular elements. As it is discussed in [16], this mesh provides sufficient resolution to consider
the first ten eigenfrequencies to be converged.

First, we present the first eight displacement eigenmodes in Fig. 6. As it can be observed, these are mainly bending modes, except
modes 4 (Fig. 6(d)) and 7 (Fig. 6(g)) which are pure compression (or tensile) modes.
10 
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Fig. 5. Unit square problem. Eigenvalue convergence for OSGS and inconsistent ASGS triangular elements (𝜈 = 0.49995).

Fig. 6. Free vibration of a cantilever beam (𝜈 = 0.49995). First eight displacement modes.
11 
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Fig. 7. Free vibration of a cantilever beam (𝜈 = 0.49995). Variation of the error with respect to the eigenvalues at 𝑡 = 5.

Besides, we also discuss the error of the ROM which, as it is detailed in [16], can be computed with the norm

‖𝐔 − 𝐔𝑚‖2𝑀 =
𝑛
∑

𝑖,𝑗=𝑚+1
𝑧𝑖𝑧𝑗𝝓𝑇𝑖 𝐌𝝓𝑗 .

In the previous expression 𝑛 denotes the number of modes of the reference solution while 𝑚 is the number of modes used in the ROM.
Therefore, ‖𝐔−𝐔𝑚‖𝑀 effectively turns into a measure of the error associated to the lack of modes from 𝑚+1 up to 𝑛. Additionally,
we also introduce the norm

‖𝐔‖2𝐾 =
𝑛
∑

𝑖,𝑗=1
𝑧𝑖𝑧𝑗𝝓𝑇𝑖 𝐊𝝓𝑗 ,

that we will use to normalise the ‖𝐔 − 𝐔𝑚‖𝑀 values. Hence, Fig. 7 depicts the behaviour of ‖𝐔 − 𝐔𝑚‖𝑀∕‖𝐔‖𝐾 , which is computed
with a reference solution of 𝑛 = 100 modes, with respect to the value of the corresponding eigenvalue 𝜆𝑚+1. These results are
computed at 𝑡 = 5, that is the instant at which the maximum deflection occurs (Fig. 8). Hence, increasing the number of modes
successively improves the reconstructed solution, except for the pure compression modes, which have no impact in the error. This
is not surprising considering the problem at hand, which main contribution comes from the bending.

The previous observations are also evinced by Fig. 8, which compares the vertical displacement at the upper right node of the
beam obtained with the standard dynamic solver (FD) to that of the ROMs featuring 2, 8 and 100 modes. As expected, the differences
between the reference FD solution and the 100 modes ROM one are imperceptible. Furthermore, we highlight the remarkably good
performance of the 8 mode ROM, which is capable to reproduce the high frequency vibrations (Fig. 8(b)). Indeed, we dare say that
the 2 modes ROM offers a reasonably good approximation taking into account the simplicity of the reconstructed model. In this
regard, we would like to point out that a very small time step is required to capture the tiny transient oscillations, which are skipped
otherwise. In other words, setting a larger time step makes all the ROM solutions to match the reference one as the error becomes
governed by the time integration rather than by the number of modes.

Additionally, we use this example to evaluate the over dissipation effect introduced by the stabilisation when solving problems
far from the nearly incompressible limit. Hence, we consider the same time evolution problem but with 𝜈 = 0.3 in order to compare
both ASGS and OSGS stabilisation approaches with a reference irreducible formulation. We make clear that this comparison is based
on the standard problem results as the creation of ASGS-based ROMs is limited by the aforementioned complexities of the ASGS
GEVP. For the sake of simplicity, we use our in-house transient solver with a 2nd order Backward Differentiation Formula (BDF2)
and 𝛿𝑡 = 1.0 ⋅ 10−2. Again, we use the vertical displacement at the upper right node of the beam as reference magnitude. As it can
be observed in Fig. 9, the ASGS and OSGS displacement evolution show a slight delay with respect to the reference irreducible one.
We also note that the over dissipation associated to the stabilisation is more evident in the ASGS case, which phase error becomes
apparent during the first oscillation cycle. On the contrary, the OSGS solution is in almost perfect agreement with the irreducible
one during the entire first oscillation cycle, being the differences appreciable only during the second one.

6.3. Cook’s membrane

In this example we solve the well-known Cook’s membrane problem in a transient regime. As depicted in Fig. 10, the material
properties are 𝐸 = 250, 𝜈 = 0.49995 and 𝜌 = 1. The membrane is clamped along its left edge (i.e., 𝐮 = 𝟎) and a vertical shear load of
6.25 ⋅ 10−3 is applied to the right one. The problem is solved for a total time of 5.5 using the previously described FD scheme with a
time step 𝛿𝑡 = 0.05 and zero initial conditions for the displacement, velocity and acceleration. Concerning the space discretisation,
we use a 36 × 36 division structured mesh made up with linear triangular elements. As it is discussed in [16], this resolution is
sufficient to consider the first eigenvalue to be converged.
12 
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Fig. 8. Free vibration of a cantilever beam (𝜈 = 0.49995). Transient behaviour of the vertical displacement at the tracking point.

Fig. 9. Free vibration of a cantilever beam (𝜈 = 0.3). Transient behaviour of the vertical displacement at the tracking point.

Fig. 10. Cook’s membrane. Geometry, material and boundary conditions.
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Fig. 11. Cook’s membrane. First eight displacement modes.

Fig. 12. Cook’s membrane. Variation of the error with respect to the eigenvalues at 𝑡 = 1.5.

We start the discussion by showing the first eight eigenmodes in Fig. 11. As it can be observed, these represent different bending
configurations, all of them relevant to the problem at hand. This is evinced in Fig. 12, which presents the ROM solution error with
respect to the eigenvalues at time 𝑡 = 1.5. As in the previous example, the reference solution is computed considering 𝑛 = 100
modes. Hence, we note that in this case, in which the shear component is the main contribution inducing the bending, the initial
14 
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Fig. 13. Cook’s membrane. Transient behaviour of the vertical displacement at the tracking point.

error decay es more progressive than in the previous example, meaning that the very first modes (i.e., those associated to the lowest
frequencies) play an important role in reconstructing the solution.

Complementary, in Fig. 13 we compare the vertical displacement at the upper right corner of the membrane obtained with the
standard dynamic solver (FD) to that of the ROMs featuring 8 and 100 modes. The ROM results are in remarkably good agreement
with the reference FD solution. In particular, the 100 mode solution almost perfectly matches the expected values. Regarding the
8 mode solution, we report a tiny underestimation of the oscillation amplitude. Notwithstanding, we think that the ability of the
method in returning a very good approximation to the solution with such very few modes deserves to be highlighted.

6.4. Twisting column

In this last example we simulate a column subjected to a pure torsion load. Besides allowing us to test our three-dimensional
implementation, this test is specifically conceived to assess the behaviour of the model in presence of torsion, something not doable
with the aforementioned bending-dominated examples. The problem geometry consists in a 1 × 1 × 6 column made with the previous
example material, that is 𝐸 = 250, 𝜈 = 0.49995 and 𝜌 = 1. Again, we use the previously mentioned FD scheme for the time integration,
in this case with a total time 𝑡 = 5 and 𝛿𝑡 = 0.01. The geometry is discretised with a 5 × 5 × 30 divisions structured mesh made
with linear hexahedral elements. The motion is induced by setting as initial displacement field the values resulting from solving a
steady problem with the in-plane rotation displacement field

𝑢𝑥 = 𝑥(cos(0.00175) − 1.0) − 𝑦 sin(0.0175) ,

𝑢𝑦 = 𝑥 sin(0.0175) + 𝑦(cos(0.0175) − 1.0) ,

𝑢𝑧 = 0.0

enforced at the top surface. The initial velocity and acceleration are considered to be zero.
As in the previous examples, we start by discussing the modes associated to the first eight frequencies in Fig. 14. It can be clearly

noted that this set of modes includes simple bending (modes 1 and 2), multiple bending (modes 4, 5, 7 and 8), pure torsion (mode 3)
and pure compression (mode 6) deformation modes. This is also evinced in Fig. 15, which presents the error or the ROM according
to the number of modes for 𝑡 = 2.8 (i.e., the instant at which the maximum rotation takes place). Again, a reference solution of
𝑛 = 100 modes is used for the error calculation. Hence, it becomes apparent that the error remains constant until the addition of
the third mode, which corresponds to torsion deformation. The same behaviour is observed for the subsequent bending and pure
compression modes, which add no value to the approximation.

Furthermore, we also study the evolution of the in-plane displacements (𝑢𝑥 and 𝑢𝑦) for a control point located at one of the
corners of the top surface (Fig. 16). In this case, we compare the FD reference solution to that of the ROM considering 8 and 100
modes. As it can be expected, the 100 mode solution has an extremely good correlation with the reference one. However, we see
that, as a difference to previous examples, the 8 modes approximation is not sufficient to properly capture the problem behaviour,
something that is associated to the insufficient number of torsional modes in the approximation.

7. Conclusion

In this paper we have extended the 𝐮-𝜀𝑣 formulation previously presented in [7] to dynamic problems, thus enabling the
resolution of transient and (nearly) incompressible mechanical problems. This formulation is specially conceived to be used in
presence of equal-order finite element approximations, something that facilitates the efficient simulation of complex geometries
15 
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Fig. 14. Twisting column. First eight displacement modes.

possibly requiring unstructured meshes. The downside is the need of stabilisation as the interpolation pair used is not inf-sup stable.
In this regard, we have explored the application of two VMS-based approaches, namely the ASGS and the OSGS methods. Though
both techniques are perfectly valid for the transient problem, the limitations of the ASGS become evident when focusing on the
corresponding GEVP. Specifically, the use of the ASGS approach leads to a quadratic GEVP despite the linearity of the original
problem. Aiming at circumventing such inconvenience, we also study the behaviour of solving the GEVP with the ASGS mass and
stiffness matrices resulting from the standard dynamic problem, leading to an inconsistent ASGS eigenvalue problem formulation.
On top of resulting in a non-symmetric GEVP, which requires the use of inefficient eigenvalue algorithms for generic dense matrices,
the inconsistent ASGS problem yields negative eigenvalues. However, using the OSGS technique results in an optimally convergent
linear GEVP which algebraic form involves symmetric matrices only, thus enabling the use of highly optimised eigenvalue solvers for
sparse Hermitian matrices. Additionally, we also describe how such GEVP algebraic form can be exploited to create highly efficient
ROMs based on the classical modal analysis. The advantages and convergence of the method as well as the performance of the
resulting ROMs are proved by solving a series of two- and three-dimensional problems involving (nearly) incompressible materials.
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Fig. 15. Twisting column. Variation of the error with respect to the eigenvalues at 𝑡 = 2.8.

Fig. 16. Twisting column. Transient behaviour of the in-plane displacements at the tracking point.
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