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bInternational Center for Numerical Methods in Engineering (CIMNE), Barcelona, 08034, Spain

Abstract

This paper presents a dynamic formulation for the simulation of nearly incompressible structures using a mixed
formulation and equal-order finite element interpolation pairs. Specifically, the nodal unknowns are the displacement
and the volumetric strain component, something that makes possible the reconstruction of the complete stain at the
integration point level and thus enables the use of strain-driven constitutive laws. Furthermore, we also discuss the
resulting eigenvalue problem and how it can be applied for the modal analysis of linear elastic solids. The article
puts special emphasis on the stabilisation technique used, which becomes crucial in the resolution of the generalised
eigenvalue problem. In particular, we prove that using a variational multiscale method assuming the sub-grid scales
to lie in the finite element space orthogonal to that of the approximation, namely the Orthogonal Sub-Grid Scales
(OSGS), results in a convenient linear and symmetric generalised eigenvalue problem. The correctness, convergence
and performance of the method is proven by solving a series of two- and three-dimensional examples.

Keywords: Modal analysis, Incompressible elasticity, Eigenvalue problems, Stabilised finite element methods,
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1. Introduction

The numerical simulation of deformable bodies involving incompressibility is a problem of interest in many
engineering applications. Some examples are the performance analysis of rubber devices such as the elastomeric
bearing pads present in bridge supports or the ultimate load analysis of metal component undergoing plasticity. It is
a known issue that standard displacement-based (i.e., irreducible) formulations suffer from the so called volumetric
locking phenomenon when undergoing deformations under incompressibility constraints, something that turns into an
artificial stiffening that yields a wrong estimation of the mechanical response. Such limitation has been historically
treated by targeting the calculation of a more accurate strain field capable to account for such kind of deformation.
On the one hand, there are methods that achieve this by using the neighbours to compute an enriched displacement or
strain field [1, 2]. On the other hand, one can modify the formulation by complementing the displacement unknowns
with other variable(s), from which the enriched strain can be obtained. Such variable(s) addition, which leads to a
mixed formulation problem, is the approach we focus on in this work.

It can be easily guessed that the nature of the resulting mixed formulation mainly depends on the extra variable(s).
Specifically, the finite element interpolation of the mixed problem may result in an unstable formulation if it does
not accomplish with the inf–sup condition. A very popular example of an (almost) inf-sup stable technique is the
displacement–pressure formulation (u-p) with Q1/P0 discretisation. This method, commonly referred to as B-bar in
the context of quasi-incompressible solids (or F-bar in the finite strains regime [3]), is based on the splitting of the
deviatoric and volumetric components of the material response by introducing a piecewise discontinuous pressure
degree of freedom [4]. Although it makes possible the resolution of problems involving incompressibility, the B-bar
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(and F-bar) technique is limited to quadrilateral (and hexahedral) meshes. In this regard, the Variational Multiscales
Stabilisation (VMS) techniques [5] provide a general framework for the development of stable mixed formulations in
presence of arbitrary and, in particular, equal-order interpolation pairs. This is exploited, among many other works, in
[6] to implement a stable u-p formulation with mixed Q1/Q1 and P1/P1 interpolation pairs. These works introduce a
stress splitting into deviatoric and volumetric components, which are computed from the displacement and pressure
nodal fields, respectively. While this bypasses the volumetric locking inconvenience, one cannot use standard strain-
driven constitutive laws as these require the total strain to be computed. This limitation is overcome in [7] by replacing
the pressure with the volumetric strain (εv) as nodal unknown, resulting in a u-εv formulation capable to deal with
(nearly) incompressible materials. As it is detailed in [7], the u-εv formulation makes possible the usage of strain-
driven material libraries with, possibly unstructured, low order meshes with a minimum computational overhead.
Besides, it also overcomes the limitations of equal-order u-p formulations when dealing with multi-material interfaces.
Furthermore, we also note the displacement–strain (u-ε) and displacement–stress (u-σ) formulations presented in [8],
the three field u-σ-p in [9, 10] and the u-det(J) in [11], which introduces the determinant of the Jacobian as nodal
unknown in order to extend the u-εv to the finite strain regime. In case further details are needed, we refer the
reader to [12] for an extremely detailed historical review on the numerical resolution of incompressible and nearly
incompressible mechanical problems.

The extension of the previously discussed formulations to the dynamic regime might not be obvious as the kine-
matic/volumetric constraint likely has no evolution equation. For instance, in [13, 14] the authors address this by
using an explicit time integration scheme in the context of u-ε formulations. Another example can be found in [12],
which introduces a rate equation for the pressure field evolution in u-p problems. In this work, we aim to explore how
the u-εv formulation presented in [7] can be extended to consider transient problems. The approximation using finite
differences is standard, and we only consider it as a reference in the numerical examples. We concentrate here in the
modal analysis and in the associated (generalised) eigenvalue problem associated to it. When this problem is solved
using classical residual-based VMS techniques, the original linear problem for the eigenvalue may be transformed
into a quadratic problem for it at the discrete level. This issue is discussed in [15, 16], and may be overcome by using
orthogonal sub-grid scales (see below), as we do in this paper.

The article is organized as follows: Section 2 describes the strong form, variational as well as the finite element
discretisation and stabilisation of the problem to be solved; similarly, we do so for the eigenvalue problem in Sec-
tion 3; Section 4 presents and discusses the algebraic forms resulting from Sections 2 and 3; in Section 5 we briefly
describe the discrete modal analysis; the numerical experiments setup and results are detailed in Section 6; finally, the
conclusions are summarised in Section 7.

2. Problem description

2.1. Strong form

The initial and boundary value problem we consider is solved for a time t ∈ [0,T ) on a computational domain
Ω ⊂ Rd (d = 2, 3), which boundary ∂Ω = Γ is defined from the ΓD and ΓN subsets as Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.
Hence, the problem consists in finding the displacement field u : Ω × [0,T ) → Rd and the volumetric strain field
εv : Ω × (0,T )→ R such that

ρ∂2
ttu − ∇ · σ(ε) = f in Ω, t ∈ (0,T ) , (1a)

εv − ∇ · u = 0 in Ω, t ∈ (0,T ) , (1b)
u = 0 on ΓD, t ∈ (0,T ) , (1c)

n · σ(ε) = t̄ on ΓN , t ∈ (0,T ) , (1d)
u = u0 in Ω, t = 0 , (1e)

∂tu = v0 in Ω, t = 0 . (1f)

In previous equations, ∇ is the standard nabla operator while ρ and f are the known density and body force (e.g.,
gravity). t is the value of the surface traction to be imposed. Similarly, u0 and v0 are the displacement and velocity
initial conditions. n is the unit vector normal to the corresponding boundary. σ denotes the Cauchy stress tensor,
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which is obtained from the infinitesimal strain ε. In this regard, this formulation stems from the splitting of ε in a
deviatoric component and its volumetric counterpart. Hence, ε is defined as

ε = ∇su −
1
α

(∇ · u) I +
1
α
εvI , (2)

being I the second order identity tensor, ∇s the symmetric gradient operator, and α a dimensional coefficient taken
as α = d (i.e., 3 in the 3D case and 2 in the 2D plane strain and plane stress ones). The previous equation defines
the strain splitting that enables the resolution of nearly incompressible materials. In this respect, we note that the
the summation of the first two terms depending on u represent the deviatoric strain component while the last one
depending on εv accounts for the volumetric one.

2.2. Weak form
As it is discussed in [7], a symmetric weak form for the problem in Eq. (1) can be obtained by introducing the

strain splitting in Eq. (2) into the variational form of the u-ε formulation [8]. To that purpose, let us first define the
common notation (·, ·) for the L2-inner product in Ω as well as ⟨·, ·⟩R for the product of two functions in a region R. In
conjunction, we also introduce the functional spaces V := H1

D(Ω), i.e., the space of vector fields with components in
H1 vanishing on ΓD, and Q := L2(Ω), i.e., the space of square-integrable functions; these are the appropriate spaces
for the displacement and volumetric strain approximations, respectively. Altogether, these allow us to define the weak
form of the problem as find u : (0,T )→ V and εv : (0,T )→ Q such that

ρ
(
v, ∂2

ttu
)
+ (∇sv,C : ∇su) + (∇ · v, κεv) − (∇ · v, κ∇ · u) = ⟨v, f⟩Ω + ⟨v, t⟩ΓN , (3a)

(q, κεv) − (q, κ∇ · u) = 0 , (3b)

for all test functions v ∈ V and q ∈ Q. We make clear that the introduction of the elasticity tensor C and the
bulk modulus κ := (I : C : I)/α2 imply that as of now we are assuming an isotropic linear elastic constitutive
behaviour, something strictly necessary for the modal analysis we target. Also note that κ is applied as a physical
scaling parameter to Eq. (3b) We refer the reader to [7] for a detailed derivation of the weak form considering arbitrary
stress-strain relations as well as for the special treatment of anisotropy. Likewise, it is also explained in this reference
the interest of this formulation, in spite of the fact the the fully incompressible case κ = ∞ cannot be reached. In
practice, the only limitation in the value of κ is the possible ill-conditioning of the final algebraic system.

Finally, let us observe that we can write

(∇sv,C : ∇su) − (∇ · v, κ∇ · u) = (∇sv,Cdev : ∇su) ,

where Cdev is the deviatoric elasticity tensor.

2.3. Finite element discretisation and stabilisation
First, we introduce the partition Th = {Ω

k}
ne
k=1 that divides the problem domain Ω into ne finite elements of

characteristic size h. Such partition allows one to construct the finite element spaces Vh and Qh that approximate V
and Q, respectively. In this work we only consider conforming and equal-order interpolations, meaning that the u and
εv finite element approximations uh and εv

h can be written as

u(x, t) ≈ uh(x, t) =
nn∑

a=1

Na(x)ua(t)

and

εv(x, t) ≈ εv
h(x, t) =

nn∑
a=1

Na(x)εv
a(t) ,

respectively. In the previous expressions, Na(x) denotes the nodal shape function of node a of the finite element
partition, while ua(t) and εv

a(t) are the displacement and volumetric strain nodal values. The total number of nodes is
nn. Equivalently, the test functions v and q are approximated by vh and qh.
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It is a known issue that using an equal-order interpolation pair in this sort of problem violates the inf-sup condition,
and thus results in an unstable approximation that requires the introduction of any stabilisation technique. In this
context, in this work we discuss two different approaches, both based on the VMS family of methods [5, 17]. The
core of any VMS method is to split the solution fields as the summation of a finite element resolvable scale, in our
case the previously defined uh and εv

h, plus the so called subscales, which are to be modelled. Hence,

u = uh + us , (4a)
εv = εv

h + ε
v
s , (4b)

being us and εv
s the displacement and the volumetric strain subscales, which in the VMS methods we consider are

defined from their corresponding finite element residuals; these are computed element-wise as

us = τuPs

[
f − ρ∂2

ttuh + ∇ · C : ∇suh + κ∇
(
εv

h − ∇ · uh

)]
, (5a)

εv
s = τεv Ps

[
∇ · uh − ε

v
h

]
, (5b)

τu and τεv are two stabilisation parameters defined as

τu = c1
h2

µ
and τεv = c2

µ

µ + κ
. (6)

µ is the second Lamé parameter (i.e., the shear modulus G) while c1 and c2 are two algorithmic constants that we will
define later on. Ps is the projection operator onto the space of the sub-grid scales of either us or εv

s.
Introducing the solution splitting (Eq. (4) together with the sub-grid scales definition (Eq. (5)) into the variational

form (Eq. (3)) results in

ρ
(
vh, ∂

2
ttuh

)
+ ρ
(
vh, ∂

2
ttus

)
+ (∇svh,C : ∇suh) −

∑
k

⟨∇ · (C : ∇svh),us⟩Ωk +
(
∇ · vh, κε

v
h

)
+
∑

k

⟨κ∇ · vh, ε
v
s⟩Ωk − (∇ · vh, κ∇ · uh) +

∑
k

⟨κ∇(∇ · vh),us⟩Ωk = ⟨vh, f⟩Ω + ⟨vh, t⟩ΓN

(7a)

(
qh, κε

v
h

)
+
∑

k

⟨κqh, ε
v
s⟩Ωk − (qh, κ∇ · uh) +

∑
k

⟨κ∇qh,us⟩Ωk = 0 , (7b)

to which we have already applied the required integration by parts as well as introduced the assumption that the
sub-grid scales vanish over the element boundaries. By further assuming that the sub-grid scales transient behaviour
can be neglected (i.e., ∂s

ttus ≈ 0) and dropping all the second-order derivatives, as we will only consider first-order
finite element interpolations, we obtain the final stabilised variational form, which already includes the sub-grid scales
definition in Eq. (5). Hence, the problem is find uh ∈ Vh and εv

h ∈ Qh such that

ρ
(
vh, ∂

2
ttuh

)
+ (∇svh,C : ∇suh) +

(
∇ · vh, κε

v
h

)
− (∇ · vh, κ∇ · uh)

+
∑

k

⟨κ∇ · vh, τεv Ps

[
∇ · uh − ε

v
h

]
⟩Ωk = ⟨vh, f⟩Ω + ⟨vh, t⟩ΓN

(8a)

(
qh, κε

v
h

)
− (qh, κ∇ · uh) +

∑
k

⟨κqh, τεv Ps

[
∇ · uh − ε

v
h

]
⟩Ωk +

∑
k

⟨κ∇qh, τuPs

[
f − ρ∂2

ttuh + κ∇ε
v
h

]
⟩Ωk = 0 , (8b)

for all vh ∈ Vh and qh ∈ Qh.
The method is completed with the selection of the projection operator Ps, which ultimately defines the space for

the subscales. One option is to assume that the sub-grid scale space is that of their corresponding finite element
residuals, meaning that Ps = I (the identity) and leading to the so called Algebraic Sub-Grid Scales (ASGS) approach
[7]. The other option is to take the sub-grid scales from the space that is L2-orthogonal to the finite element one.
In this case Ps is the orthogonal projection to this space (i.e., Ps = P⊥h ) and the method is called Orthogonal Sub-
Grid Scales (OSGS) [18]. Though both options have been proved to work in similar problems, the OSGS has some
superior theoretical and practical advantages [8, 18, 19]. Specifically, and as we will detail later on, the use of the
OSGS approach becomes crucial for the modal analysis effectiveness.

4



3. Eigenvalue problem arising in modal analysis

3.1. Strong form
The modal analysis consists of expanding the unknowns of the problem in Eq. (1) in terms of the modes associated

to the homogeneous problem, that is, considering f = 0 and t̄ = 0. These modes are the amplitudes in the Fourier
expansion of the displacement solution of the homogeneous problem as

uH(x, t) =
∞∑

n=0

eiωntϕn(x) ,

and the volumetric strain εv as

εv
H(x, t) =

∞∑
n=0

eiωntψn(x) .

The frequencies ωn (the same for uH and εv
H) and the amplitudes ϕn, ψn, n = 0, 1, 2, . . . , are solution of the eigenvalue

problem that is obtained by imposing that uH(x, t) and εv
H(x, t) are solution of

ρ∂2
ttuH − ∇ · (C : ∇suH) + κ∇

(
∇ · uH − ε

v
H
)
= 0 in Ω, t ∈ (0,T ) ,

εv
H − ∇ · uH = 0 in Ω, t ∈ (0,T ) ,

uH = 0 on ΓD, t ∈ (0,T ) ,
n · (C : ∇suH) − κ

(
∇ · uH − ε

v
H
)

n = 0 on ΓN , t ∈ (0,T ) ,
uH = u0 in Ω, t = 0 ,

∂tuH = v0 in Ω, t = 0 .

Assuming the modes to be linearly independent (as it can be checked a posteriori) this leads to the generalised eigen-
value problem (GEVP):

−∇ ·
(
C : ∇sϕn

)
+ κ∇

(
∇ · ϕn − ψn

)
= ρω2

nϕn in Ω , (10a)
ψn − ∇ · ϕn = 0 in Ω , (10b)

ϕn = 0 on ΓD , (10c)
n ·
(
C : ∇sϕn

)
− κ
(
∇ · ϕn − ψn

)
n = 0 on ΓN , (10d)

for n = 1, 2, . . . . Hence, solving the GEVP results in a complete set of eigenpairs, which can be arranged as[
ϕ1(x),ϕ2(x), . . . ,ϕn(x), . . .

]
,
[
ψ1(x), ψ2(x), . . . , ψn(x), . . .

]
and 0 < ω2

1 ≤ ω
2
2 ≤ . . . ω

2
n ≤ . . . .

The operator −∇ · (C : ∇s(·)) + κ∇ (∇ · (·)) = −∇ · (Cdev : ∇s(·)) is symmetric and positive-semidefinite. This allows
one to prove that for all i = 0, 1, 2, . . . the eigenvalues ω2

i are indeed positive and the eigenvectors ϕi can be taken as
an L2 orthogonal set (and therefore indeed linearly independent) and also orthogonal with respect to the inner product
induced by −∇ · (Cdev : ∇s(·)). Any normalisation to make them unique can be chosen.

At this point, it is clear that each of the eigenfunctions ϕn, ψn and eigenvalues ωn correspond to a particular mode
n of the decomposition. Hence, and for the sake of a lightweight notation, in what follows we will omit the subindex
n when referring to any of these.

3.2. Weak form
The stable discrete form of the eigenvalue problem is derived similar to the mixed u-εv one (Eq. (8)). Therefore, we

retake the previously defined notation and functional spaces V and Q to define the weak form of the GEVP (Eq. (10))
as find ϕ ∈ V, ψ ∈ Q and ω2 ∈ R+ such that

(∇sv,C : ∇sϕ) + (∇ · v, κψ) − (∇ · v, κ∇ · ϕ) = ρω2 (v,ϕ) , (11a)
(q, κψ) − (q, κ∇ · ϕ) = 0 , (11b)

for all test functions v ∈ V and q ∈ Q. Note that, as we did in Eq. (3b), we introduce κ as a scaling physical parameter
to Eq. (11b).
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3.3. Finite element discretisation and stabilisation
As previously mentioned, in this work we only consider equal-order finite element interpolation pairs, unstable

for the standard Galerkin approximation. Therefore, we discretise the ϕ(x) and ψ(x) eigenfunctions using a linear
conforming finite element approximation as

ϕ(x) ≈ ϕh(x) =
nn∑

a=1

Na(x)ϕa

and

ψ(x) ≈ ψh(x) =
nn∑

a=1

Na(x)ψa ,

respectively. Furthermore, we also introduce the VMS-based solution splitting for the eigenfunctions, that is

ϕ = ϕh + ϕs , (12a)
ψ = ψh + ψs . (12b)

Similar to what is done for the us and εv
s, the ϕs and ψs eigenfunctions sub-grid scales are defined from their corre-

sponding finite element residuals as

ϕs = τuPs

[
ρω2

hϕh + ∇ · C : ∇sϕh + κ∇
(
ψh − ∇ · ϕh

)]
, (13a)

ψs = τεv Ps
[
∇ · ϕh − ψh

]
, (13b)

being τu, τεv and Ps the previously defined stabilisation parameters (Eq. (6)) and projection operator.
Introducing the sub-grid scales separation in Eq. (12) into the variational form in Eq. (11) results in the GEVP

stabilised functional

−ρω2
h
(
vh,ϕh

)
− ρω2

h
(
vh,ϕs

)
+
(
∇svh,C : ∇sϕh

)
−
∑

k

⟨∇ · (C : ∇svh),ϕs⟩Ωk

+ (∇ · vh, κψh) +
∑

k

⟨κ∇ · vh, ψs⟩Ωk −
(
∇ · vh, κ∇ · ϕh

)
+
∑

k

⟨κ∇(∇ · vh),ϕs⟩Ωk = 0 ,
(14a)

(qh, κψh) +
∑

k

⟨κqh, ψs⟩Ωk −
(
qh, κ∇ · ϕh

)
+
∑

k

⟨κ∇qh,ϕs⟩Ωk = 0 , (14b)

which already includes the required integration by parts. Lastly, we insert the ϕs and ψs expression from Eq. (13) and
drop the higher order derivatives to obtain the final form to be implemented, which reads as: find ϕh ∈ Vh and ψh ∈ Qh

such that

−ρω2
h
(
vh,ϕh

)
+
(
∇svh,C : ∇sϕh

)
+ (∇ · vh, κψh) −

(
∇ · vh, κ∇ · ϕh

)
− ρω2

h

∑
k

⟨vh, τuPs

[
ρω2

hϕh + κ∇ψh

]
⟩Ωk +

∑
k

⟨κ∇ · vh, τεv Ps
[
∇ · ϕh − ψh

]
⟩Ωk = 0 , (15a)

(qh, κψh) −
(
qh, κ∇ · ϕh

)
+
∑

k

⟨κqh, τεv Ps
[
∇ · ϕh − ψh

]
⟩Ωk +

∑
k

⟨κ∇qh, τuPs

[
ρω2

hϕh + κ∇ψh

]
⟩Ωk = 0 . (15b)

for all vh ∈ Vh and qh ∈ Qh.
At this point, it becomes apparent that the projection Ps determines the problem in Eq. (15). Specifically, we note

that in general Ps
[
ϕh
]
, 0. In consequence, the first stabilisation term in Eq. (15a) results in an ω4

h contribution, that
is to say, in a quadratic (nonlinear) GEVP. The most immediate solution for such inconvenience is to choose Ps = P⊥h ,
that is to say, using the OSGS approach, since P⊥h

[
ϕh
]
= 0. This fact is elaborated in [15, 16].

Remark 1. Even though we have not undertaken the convergence analysis of this eigenvalue problem, the expected
order of convergence in h of the displacement field eigenvectors is p in the norm of H1(Ω) (i.e., the norm of V), p being
here the polynomial order of the finite element space. Thus, the expected order of convergence of the eigenvalues is
2p. This is obviously true if the continuous displacement field eigenvectors belong to Hp+1(Ω). As shall be reported
in Section 6, convergence rates smaller that 2p are found if this does not happen. In this work we are interested in the
case p = 1.
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4. Algebraic form

In this section we discuss the algebraic (matrix) forms resulting from the previously defined variational problems.
As we pinpointed before, the selection of the stabilisation approach (i.e., ASGS or OSGS) becomes crucial for the
resulting algebraic problem. Hence, we start by discussing the most simple case, which is the model problem (Eq. (8))
with ASGS stabilisation, that is taking Ps = I. For the sake of simplifying the discussion at hand, let us also denote
the mass and stiffness matrices as M and K, respectively. We also define the vectors U and Ev to collect the uh and εv

h
unknown nodal values as well as F to do so for the external forces (i.e., loads). Using the customary dot notation for
the time derivatives, this allows us to write the algebraic ASGS version of the problem in Eq. (8) as[

Muu 0
Mεvu 0

] [
Ü
Ëv

]
+

[
Kuu Kuεv

Kεvu Kεvεv

] [
U
Ev

]
=

[
F
0

]
. (16)

As discussed in [7], the ASGS variational form yields a symmetric stiffness matrix (i.e., Kuεv = KT
εvu). However, it

can be clearly observed that the dynamic problem is no longer symmetric after the appearance of the Mεvu component
in the mass matrix. This inconvenience can be readily fixed by introducing the OSGS approach. In this regard, we
note that the discrete orthogonal projection P⊥h can be implemented as P⊥h = I − PL2 , being PL2 the customary discrete
L2-projection. Hence, the algebraic OSGS version of the problem in Eq. (8) is

Muu 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




Ü
Ë

v

Π̈u
Π̈εv

 +


Kuu Kuεv 0 KuΠu

Kεvu Kεvεv KεvΠu KεvΠεv

0 KΠuεv KΠuΠu 0
KΠεv u KΠεvεv 0 KΠεvΠεv




U
Ev

Πu
Πεv

 =

F
0
0
0

 . (17)

Comparing to the ASGS version of the problem (Eq. (16)), one can notice the introduction of Πu and Πεv as nodal
unknowns. These are the vectors collecting the nodal values of the finite element residual L2-projections (see the
sub-grid scales definitions in Eq. (5)). Concerning the projection, and considering that we are interested in low order
elements, we opt for the lumped L2-projection, as it can be guessed from the diagonal nature of the KΠ•Π• block.
In this regard, we shall mention that preliminary experiments reported no clear advantage on doing the consistent
L2-projection (which could be necessary for higher order interpolations). Taking this into consideration, we decide to
keep the lumped version for the sake of having a better conditioned system.

By inspecting Eq. (17) one can easily note that Mεvu = 0, meaning that the OSGS is able to recover the mass matrix
symmetry. This comes after the fact that P⊥h [∂2

ttuh] = 0. Besides, the OSGS stiffness matrix can be easily symmetrized
by scaling the rows corresponding to Πu and Πεv by τu and κτεv , respectively. In short, the OSGS approach makes
possible to extend the problem to the dynamic case while keeping the symmetry of its static counterpart. This is
important both for theoretical and for practical reasons. Regarding the former, the spectral theorem applies, thus
guaranteeing that the eigenvalues are real (and positive); concerning the latter, tailored and more efficient numerical
linear algebra solvers can be used.

Similarly, we define the vectors Φ and Ψ to collect the ϕh and ψh unknown nodal values. Hence, the algebraic
form of the ASGS-stabilised eigenvalue problem (Eq. (15)) can be written as[

Kϕϕ Kϕψ
Kψϕ Kψψ

] [
Φ

Ψ

]
= λh

[
Mϕϕ Mϕψ

Mψϕ 0

] [
Φ

Ψ

]
+ λ2

h

[
M∗
ϕϕ 0

0 0

] [
Φ

Ψ

]
, (18)

being λh = ω
2
h. Eq. (18) reveals that the ASGS approach results in a nonlinear generalised eigenproblem As previously

mentioned, such inconvenience can be bypassed by using the OSGS as P⊥h [ϕh] = 0 yields M∗
ϕϕ = 0. Therefore,

introducing Πϕ and Πψ to collect the corresponding L2-projection nodal values allows to write the OSGS GEVP as
Kϕϕ Kϕψ 0 KϕΠϕ
Kψϕ Kψψ KψΠϕ KψΠψ

0 KΠϕψ KΠϕΠϕ 0
KΠψϕ KΠψψ 0 KΠψΠψ



Φ

Ψ

Πϕ
Πψ

 = λh


Mϕϕ 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0



Φ

Ψ

Πϕ
Πψ

 . (19)
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Besides being symmetric, something that enables the use of efficient sparse iterative eigenvalue solvers, the stiffness
and mass matrices of the dynamic (Eq. (17)) and the eigenvalue (Eq. (19)) OSGS problems are identical, thus resulting
in a much more clean and convenient code implementation.

Finally, we note that it is convenient to solve the GEVP for the Schur complement of the block corresponding
to Ψ, Πϕ and Πψ, which we denote as S, rather than for the complete form in Eq. (19). Hence, we define the Schur
complement K/S as

KS := K/S = Kuu −
[
Kuεv 0 KuΠu

]  Kεvεv KεvΠu KεvΠεv

KΠuεv KΠuΠu 0
KΠεvεv 0 KΠεvΠεv


−1  Kεvu

0
KΠεv u

 , (20)

which results in the statically condensed GEVP

KSΦ = λhMϕϕΦ . (21)

Similarly, the linear system in Eq. (17) can be statically condensed as

MuuÜ +KS U = F . (22)

It is important to highlight the symmetry of block S, which makes possible to implement the statically condensed
problem(s) as a linear operator leveraging fast iterative solvers for sparse Hermitian matrices.

Remark 2. Though Eq. (17) introduces the L2-projection nodal values as an unknown, these can be treated iteratively
by using a block-Gauss-Seidel scheme for U-Ev on the one side andΠu-Πεv on the other. This would allow the OSGS
problem to keep the ASGS number of degrees of freedom. However, for the eigenvalue problem this iterative treatment
of the projection would require acting on the numerical eigenvalue solver, loosing the convenience of employing this
solver as a black-box. Furthermore, even though we have not explored this, the iterative scheme employed to deal
with the projections (e.g., Gauss-Seidel) could be coupled with the iterative scheme to compute the eigensolution of
the problem.

Remark 3. The nonlinear GEVP in Eq. (18) can be rewritten as

K′z = λhM′z

by introducing the modified eigenvector zT = [λhΦ, λhΨ,Φ,Ψ] as well as the corresponding modified stiffness and
mass matrices K′ and M′. Hence, the modified problem is

I 0 0 0
0 I 0 0
−Mϕϕ −Mϕψ Kϕϕ Kϕψ
−Mψϕ 0 Kψϕ Kψψ



λhΦ

λhΨ

Φ

Ψ

 = λh


0 0 I 0
0 0 0 I
0 0 M∗

ϕϕ 0
0 0 0 0



λhΦ

λhΨ

Φ

Ψ

 .
As it can be noted, the resulting matrix K′ is not symmetric, and thus precludes the use of standard sparse iterative
eigenvalue solvers.

5. Modal analysis

The eigenvalues and eigenvectors resulting from the solving the GEVP can be used as a basis to alternatively
express the dynamic problem solution. Hence, the displacement time evolution can be written as

U(t) =
n∑

i=1

zi(t)Φi , (23)

with zi(t) being appropriate scalar functions to be determined. In the structural mechanics context, Φi is commonly
referred to as the ith-mode of vibration (or simply ith-mode) while zi is the corresponding amplitude of that mode.
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Taking all the decomposition modes makes Eq. (23) exact. However, taking m modes such that m < n makes possible
to build the approximation to the problem solution

U(t) ≈ Ũ(t) =
m∑

i=1

zi(t)Φi . (24)

Such approximation can be written in matrix form as

Ũ = ΞZ .

Ξ and Z are the arrays storing the m-modes of the approximation and their corresponding amplitudes, respectively.
Hence, these are defined as

Ξ :=
[
Φ1 . . . Φm

]
∈ Rn×m and Z :=


z1(t)
...

zm(t)

 ∈ Rm .

Introducing the approximation in Eq. (24) into Eq. (22) and premultiplying by ΞT yields the modified system of
equations

ΞT MuuΞZ̈ + ΞT KSΞZ = ΞT F , (25)

which we note is of size m rather than the original size n. In practical applications it is possible to choose m ≪ n. This
enables the possibility to build a Reduced Order Model (ROM) that approximates the finite element solution in a very
efficient manner since the size of the problem to be solved is greatly reduced. In the structural mechanics context,
such ROM is commonly referred to as modal analysis.

An important reason for the success of the modal analysis is that the arrays of nodal values of displacement modes
are orthogonal both with respect to matrix Muu and with respect to matrix KS . This makes the ordinary system of
differential equations in Eq. (25) to be diagonal, i.e., consisting of m decoupled equations.

Remark 4. In this case, we defined the modal analysis based on the statically condensed problem as the εv field likely
has no practical utility in the sense that its effect onto u is already taken into account. Nevertheless, if required, the
same idea can be applied to the εv field by introducing

E
v(t) =

n∑
i=1

zi(t)Ψi .

By doing so and applying the previously described procedure one can obtain a ROM that also includes εv as an
unknown.

Remark 5. A stability and convergence analysis similar to that performed in [16] can be also carried out for the
present formulation. In essence, now one has to account for a mass-matrix-like term in the equation for the volumetric
strain, although this poses no difficulty, as this matrix is symmetric and positive definite. The conclusion of this
analysis, that will be verified in the numerical examples, is that the error in the displacement modes decreases as the
inverse of the first discarded eigenvalue ω2

m+1.

6. Numerical results

In this section we present several 2D and 3D numerical experiments to assess the correctness and performance
of our proposal, both in the compressible and incompressible regimes. The results described in this section have
been obtained with the Kratos Multiphysics open-source finite element framework (Kratos) [20, 21]. For the GEVP
resolution, we leverage both Eigen and SciPy libraries [22]. Both pre–processing and and mesh generation have been
done by means of the GiD simulation software (GiD). All units are assumed to correspond to the SI.
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Figure 1: Unit square problem. Geometry, material and boundary conditions.

6.1. Unit square problem

In this first example we study the eigenvalue convergence by solving the GEVP on a unit square domain. As
depicted in Fig. 1, we consider a material with Young modulus E = 250 and Poisson coefficient ν = 0.25 (compressible
case) and ν = 0.49995 (incompressible case) and unit density. The displacement boundary conditions (BCs) are also
described in Fig. 1. As it can be observed, a roller support is considered in all the boundaries, meaning that uy = 0 in
the horizontal boundaries and ux = 0 in the vertical ones. In this regard, we would like to mention that preliminary
experiments with completely clamped BCs reported a slight convergence deterioration associated to the singularities
appearing in the corners, which lead to a lack of regularity in the problem. We solve the problem for a set of structured
linear quadrilateral and triangular meshes of 2n edge divisions, being n = 2, 3, 4, 5, 6. In the compressible case, we
compare the obtained results with those obtained with an irreducible case while in the incompressible one we do so
by using a Bbar (Q1/P0) formulation. The reference values (λ̄i) are obtained by solving the same problem with an
overkill mesh made of 1.5M linear quadrilateral (irreducible or Bbar) elements.

Prior to any discussion, we note that we also use this problem to calibrate the algorithmic constants appearing in
the stabilisation parameters τu and τεv . Hence, from now on we set the algorithmic constants to c1 = 1 and c2 = 4,
respectively.

Figs. 2 and 3 present the convergence of the first six eigenvalues for the compressible case using quadrilateral
and triangular meshes, respectively. Similarly, Figs. 4 and 5 present the same results for the incompressible case.
As it can be observed, in all cases the OSGS approach convergences with the optimal rate, which is O(h2). For the
compressible case, the OSGS error is slightly larger than that of the irreducible reference values, something that can
be perfectly expected as a side effect of the stabilisation. Regarding the incompressible case, the performance of the
OSGS quadrilateral is pretty similar to that of the Bbar element. Complementary, we also study the behaviour of an
inconsistent ASGS approach. By inconsistent ASGS we mean solving the GEVP using the mass and stiffness matrices
resulting from the variational mechanical problem (Eq. (16)), something that one might eventually be tempted to do.
The first and most evident thing is that the problem is no longer symmetric, thus requiring the use of a much more
inefficient solver for generic dense matrices. Furthermore, we also note that negative eigenvalues appear in some
cases. Specifically, the ASGS values in Figs. 2, 3 and 4 are not the first six eigenvalues but the first six positive ones.
Surprisingly, the inconsistent ASGS (positive) eigenvalues converge not only with the expected quadratic order but
also with a similar error constant to that of the OSGS approach. Nevertheless, we highlight that the spectral theorem no
longer holds in the inconsistent ASGS case, something that results into a limitation for the modal analysis application
as the mass matrix does not diagonalise anymore. Altogether, these observations evince the practical advantages of
the OSGS, which will be our method of choice for the remaining examples of the paper.
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(a) 1st eigenvalue. (b) 2nd eigenvalue. (c) 3rd eigenvalue.

(d) 4th eigenvalue. (e) 5th eigenvalue. (f) 6th eigenvalue.

Figure 2: Unit square problem. Eigenvalue convergence for irreducible, OSGS and inconsistent ASGS quadrilateral elements (ν = 0.25).

(a) 1st eigenvalue. (b) 2nd eigenvalue. (c) 3rd eigenvalue.

(d) 4th eigenvalue. (e) 5th eigenvalue. (f) 6th eigenvalue.

Figure 3: Unit square problem. Eigenvalue convergence for irreducible, OSGS and inconsistent ASGS triangular elements (ν = 0.25).
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(a) 1st eigenvalue. (b) 2nd eigenvalue. (c) 3rd eigenvalue.

(d) 4th eigenvalue. (e) 5th eigenvalue. (f) 6th eigenvalue.

Figure 4: Unit square problem. Eigenvalue convergence for Bbar, OSGS and inconsistent ASGS quadrilateral elements (ν = 0.49995).

(a) 1st eigenvalue. (b) 2nd eigenvalue. (c) 3rd eigenvalue.

(d) 4th eigenvalue. (e) 5th eigenvalue. (f) 6th eigenvalue.

Figure 5: Unit square problem. Eigenvalue convergence for OSGS and inconsistent ASGS triangular elements (ν = 0.49995).
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6.2. Free vibration of a cantilever beam

In this example, which has been previously presented in [16], we analyse the vibration of a 10×1 cantilever beam.
The material properties are ρ = 1, E = 3 · 103 and ν = 0.49995. The beam is clamped at its left edge while the
other three edges are free. The vibration is induced by the displacement initial condition, which is obtained as the
solution of a static problem with an enforced displacement of 1 · 10−2 along the right edge (see Fig. 2 in [16]). The
initial velocity and acceleration are assumed to be zero. For the time discretisation we use a second order backward
differentiation formula, to which from now on we refer to as the finite difference (FD) approximation. Hence, the
acceleration for a time step i is computed with the previous steps solutions and the time step increment δt as

Ü(ti) ≈
−U(ti−3) + 4U(ti−2) − 5U(ti−1) + 2U(ti)

δt2 .

The problem is solved for a total time t = 20, which comprises two complete periods of oscillation. Regarding the
time increment, we set δt = 1.0 ·10−3 so as to ensure properly capturing the high frequency contributions. The domain
is discretized with a 100 × 10 divisions structured mesh of linear triangular elements. As it is discussed in [16], this
mesh provides sufficient resolution to consider the first ten eigenfrequencies to be converged.

First, we present the first eight displacement eigenmodes in Fig. 6. As it can be observed, these are mainly bending
modes, except modes 4 (Fig. 6d) and 7 (Fig. 6g) which are pure compression (or tensile) modes.

Besides, we also discuss the error of the ROM which, as it is detailed in [16], can be computed with the norm

∥U − Um∥
2
M =

n∑
i, j=m+1

ziz jϕ
T
i Mϕ j .

In the previous expression n denotes the number of modes of the reference solution while m is the number of modes
used in the ROM. Therefore, ∥U − Um∥M effectively turns into a measure of the error associated to the lack of modes
from m + 1 up to n. Additionally, we also introduce the norm

∥U∥2K =
n∑

i, j=1

ziz jϕ
T
i Kϕ j ,

that we will use to normalize the ∥U − Um∥M values. Hence, Fig. 7 depicts the behaviour of ∥U − Um∥M/∥U∥K , which
is computed with a reference solution of n = 100 modes, with respect to the value of the corresponding eigenvalue
λm+1. These results are computed at t = 5, that is the instant at which the maximum deflection occurs (Fig. 8). Hence,
increasing the number of modes successively improves the reconstructed solution, except for the pure compression
modes, which have no impact in the error. This is not surprising considering the problem at hand, which main
contribution comes from the bending.

The previous observations are also evinced by Fig. 8, which compares the vertical displacement at the upper right
node of the beam obtained with the standard dynamic solver (FD) to that of the ROMs featuring 2, 8 and 100 modes.
As expected, the differences between the reference FD solution and the 100 modes ROM one are imperceptible. Fur-
thermore, we highlight the remarkably good performance of the 8 mode ROM, which is capable to reproduce the high
frequency vibrations (Fig. 8b). Indeed, we dare say that the 2 modes ROM offers a reasonably good approximation
taking into account the simplicity of the reconstructed model. In this regard, we would like to point out that a very
small time step is required to capture the tiny transient oscillations, which are skipped otherwise. In other words,
setting a larger time step makes all the ROM solutions to match the reference one as the error becomes governed by
the time integration rather than by the number of modes.

Additionally, we use this example to evaluate the over dissipation effect introduced by the stabilisation when
solving problems far from the nearly incompressible limit. Hence, we consider the same time evolution problem
but with ν = 0.3 in order to compare both ASGS and OSGS stabilization approaches with a reference irreducible
formulation. We make clear that this comparison is based on the standard problem results as the creation of ASGS-
based ROMs is limited by the aforementioned complexities of the ASGS GEVP. For the sake of simplicity, we use
our in-house transient solver with a 2nd order Backward Differentiation Formula (BDF2) and δt = 1.0 · 10−2. Again,
we use the vertical displacement at the upper right node of the beam as reference magnitude. As it can be observed in
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(a) 1st mode. (b) 2nd mode.

(c) 3rd mode. (d) 4th mode.

(e) 5th mode. (f) 6th mode.

(g) 7th mode. (h) 8th mode.

Figure 6: Free vibration of a cantilever beam (ν = 0.49995). First eight displacement modes.

Fig. 9, the ASGS and OSGS displacement evolution show a slight delay with respect to the reference irreducible one.
We also note that the over dissipation associated to the stabilisation is more evident in the ASGS case, which phase
error becomes apparent during the first oscillation cycle. On the contrary, the OSGS solution is in almost perfect
agreement with the irreducible one during the entire first oscillation cycle, being the differences appreciable only
during the second one.

6.3. Cook’s membrane

In this example we solve the well-known Cook’s membrane problem in a transient regime. As depicted in Fig. 10,
the material properties are E = 250, ν = 0.49995 and ρ = 1. The membrane is clamped along its left edge (i.e.,
u = 0) and a vertical shear load of 6.25 · 10−3 is applied to the right one. The problem is solved for a total time of 5.5
using the previously described FD scheme with a time step δt = 0.05 and zero initial conditions for the displacement,
velocity and acceleration. Concerning the space discretisation, we use a 36 × 36 division structured mesh made up
with linear triangular elements. As it is discussed in [16], this resolution is sufficient to consider the first eigenvalue
to be converged.

We start the discussion by showing the first eight eigenmodes in Fig. 11. As it can be observed, these represent
different bending configurations, all of them relevant to the problem at hand. This is evinced in Fig. 12, which
presents the ROM solution error with respect to the eigenvalues at time t = 1.5. As in the previous example, the
reference solution is computed considering n = 100 modes. Hence, we note that in this case, in which the shear
component is the main contribution inducing the bending, the initial error decay es more progressive than in the
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Figure 7: Free vibration of a cantilever beam (ν = 0.49995). Variation of the error with respect to the eigenvalues at t = 5.

(a) Complete analysis. (b) Zoom at the time interval [2.5, 7.5].

Figure 8: Free vibration of a cantilever beam (ν = 0.49995). Transient behaviour of the vertical displacement at the tracking point.

(a) Complete analysis. (b) Zoom at the time interval [2.5, 7.5].

Figure 9: Free vibration of a cantilever beam (ν = 0.3). Transient behaviour of the vertical displacement at the tracking point.
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Figure 10: Cook’s membrane. Geometry, material and boundary conditions.

previous example, meaning that the very first modes (i.e., those associated to the lowest frequencies) play an important
role in reconstructing the solution.

Complementary, in Fig.13a we compare the vertical displacement at the upper right corner of the membrane
obtained with the standard dynamic solver (FD) to that of the ROMs featuring 8 and 100 modes. The ROM results are
in remarkably good agreement with the reference FD solution. In particular, the 100 mode solution almost perfectly
matches the expected values. Regarding the 8 mode solution, we report a tiny underestimation of the oscillation
amplitude. Notwithstanding, we think that the ability of the method in returning a very good approximation to the
solution with such very few modes deserves to be highlighted.

6.4. Twisting column
In this last example we simulate a column subjected to a pure torsion load. Besides allowing us to test our three-

dimensional implementation, this test is specifically conceived to assess the behaviour of the model in presence of
torsion, something not doable with the aforementioned bending-dominated examples. The problem geometry consists
in a 1 × 1 × 6 column made with the previous example material, that is E = 250, ν = 0.49995 and ρ = 1. Again, we
use the previously mentioned FD scheme for the time integration, in this case with a total time t = 5 and δt = 0.01.
The geometry is discretised with a 5 × 5 × 30 divisions structured mesh made with linear hexahedral elements. The
motion is induced by setting as initial displacement field the values resulting from solving a steady problem with the
in-plane rotation displacement field

ux = x(cos(0.00175) − 1.0) − y sin(0.0175) ,
uy = x sin(0.0175) + y(cos(0.0175) − 1.0) ,
uz = 0.0

enforced at the top surface. The initial velocity and acceleration are considered to be zero.
As in the previous examples, we start by discussing the modes associated to the first eight frequencies in Fig. 14.

It can be clearly noted that this set of modes includes simple bending (modes 1 and 2), multiple bending (modes 4, 5,
7 and 8), pure torsion (mode 3) and pure compression (mode 6) deformation modes. This is also evinced in Fig. 15,
which presents the error or the ROM according to the number of modes for t = 2.8 (i.e., the instant at which the
maximum rotation takes place). Again, a reference solution of n = 100 modes is used for the error calculation. Hence,
it becomes apparent that the error remains constant until the addition of the third mode, which corresponds to torsion
deformation. The same behaviour is observed for the subsequent bending and pure compression modes, which add
no value to the approximation.
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(a) 1st mode. (b) 2nd mode. (c) 3rd mode.

(d) 4th mode. (e) 5th mode. (f) 6th mode.

(g) 7th mode. (h) 8th mode.

Figure 11: Cook’s membrane. First eight displacement modes.

Figure 12: Cook’s membrane. Variation of the error with respect to the eigenvalues at t = 1.5.
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(a) Complete analysis. (b) Zoom at the time interval [1.2, 1.7].

Figure 13: Cook’s membrane. Transient behaviour of the vertical displacement at the tracking point.

Furthermore, we also study the evolution of the in-plane displacements (ux and uy) for a control point located at one
of the corners of the top surface. In this case, we compare the FD reference solution to that of the ROM considering
8 and 100 modes. As it can be expected, the 100 mode solution has an extremely good correlation with the reference
one. However, we see that, as a difference to previous examples, the 8 modes approximation is not sufficient to
properly capture the problem behaviour, something that is associated to the insufficient number of torsional modes in
the approximation.

7. Conclusion

In this paper we have extended the u-εv formulation previously presented in [7] to dynamic problems, thus en-
abling the resolution of (nearly) incompressible mechanical problems. This formulation is specially conceived to be
used in presence of equal-order finite element approximations, thus enabling the efficient simulation of complex ge-
ometries possibly requiring unstructured meshes. The downside is the need of stabilisation as the interpolation pair
used is not inf-sup stable. In this regard, we have explored the application of two VMS-based approaches, namely the
ASGS and the OSGS methods. Though both techniques are perfectly valid for the transient problem, the limitations
of the ASGS become evident when focusing on the corresponding GEVP. Specifically, the use of the ASGS approach
leads to a quadratic GEVP despite the linearity of the original problem. Aiming at circumventing such inconvenience,
we also study the behaviour of solving the GEVP with the ASGS mass and stiffness matrices resulting from the
standard dynamic problem, leading to an inconsistent ASGS eigenvalue problem formulation. On top of resulting in
a non-symmetric GEVP, which requires the use of inefficient eigenvalue algorithms for generic dense matrices, the
inconsistent ASGS problem yields negative eigenvalues. However, using the OSGS technique results in an optimally
convergent linear GEVP which algebraic form involves symmetric matrices only, thus enabling the use of highly op-
timised eigenvalue solvers for sparse Hermitian matrices. Additionally, we also describe how such GEVP algebraic
form can be exploited to create highly efficient ROMs based on the classical modal analysis. The advantages and
convergence of the method as well as the performance of the resulting ROMs are proved by solving a series of two-
and three-dimensional problems involving (nearly) incompressible materials.
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(a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode.

(e) 5th mode. (f) 6th mode. (g) 7th mode. (h) 8th mode.

Figure 14: Twisting column. First eight displacement modes.

Figure 15: Twisting column. Variation of the error with respect to the eigenvalues at t = 2.8.
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(a) ux. (b) uy.

Figure 16: Twisting column. Transient behaviour of the in-plane displacements at the tracking point.
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