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Abstract: We consider nodal-based Lagrangian interpolations for the finite element approximation of the Maxwell
eigenvalue problem. The first approach introduced is a standard Galerkin method on Powell-Sabin meshes, which
has recently been shown to yield convergent approximations in two dimensions, whereas the other two are stabilized
formulations that can be motivated by a variational multiscale approach. For the latter, a mixed formulation equivalent
to the original problem is used, in which the operator has a saddle point structure. The Lagrange multiplier introduced
to enforce the divergence constraint vanishes in an appropriate functional setting. The first stabilized method consists
of an augmented formulation including a mesh dependent term that can be regarded as the Laplacian of the divergence
constraint multiplier. The second formulation is based on orthogonal projections, which can be recast as a residual
based stabilization technique. We rely on the classical spectral theory to analyze the approximating methods for the
eigenproblem. The stability and convergence aspects are inherited from the associated source problems together with
an assumption which is discussed numerically. We investigate the performance of the proposed formulations and
provide some convergence results validating the theoretical ones for several benchmark tests, including ones with
smooth and singular solutions.
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1 Introduction

The main object of this paper is to approximate the Maxwell eigenvalue problem (EVP) which, for instance, can be
considered as the problem of determining resonances in a perfectly conducting cavity and the associated nontrivial
time harmonic electric field (see, e.g., [7, 15, 25]). Defined on a bounded polyhedral domain Ω in R𝑑, 𝑑 = 2, 3, the
EVP we consider consists of finding [𝑢, 𝜆], where 𝜆 ∈ R, such that⎧⎪⎪⎨⎪⎪⎩

𝜇∇ × ∇ × 𝑢 = 𝜆𝑢 in Ω,

∇ · 𝑢 = 0 in Ω,

𝑛 × 𝑢 = 0 on 𝜕Ω,

(1)

where 𝜇 is a positive parameter taken in accordance with the physical assumptions on the problem setting.
This EVP is of fundamental importance in computational electromagnetism. An active intense research is ongoing

in the development of finite element (FE) methods that are capable of correctly approximating the constitutive
and topological relations by this and other Maxwell systems. It is well known that the use of the curl conforming
Nédélec or edge elements (rotated Raviart-Thomas elements in two dimensions) providing continuity of the tangential
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vector components while leaving the normal field components discontinuous across interfaces, results in convergent
(spurious-free) approximations. The Nédélec elements provide a natural basis for the finite element methods that
satisfy the discrete inf-sup condition [8, 24] and, furthermore, Dirichlet conditions on the tangent component of the
vector unknown are easy to impose, which is not as clear using nodal elements; this issue is partially touched in this
paper. However, as the continuity of the tangential field is inherent along the boundaries, a normal continuity may also
be concerned and, moreover, there are situations such as time dependent problems and coupled problems where the
edge elements do not provide optimal implementation and approximation properties. Thus, there are evident reasons
to require the use of Lagrange finite elements with low order interpolations and less constraints on the problem domain
discretization. In search for this, an equivalent problem to (1) can be obtained by reformulating it as a saddle point
problem by the enforcement of the divergence constraint using a Lagrange multiplier 𝑝. In this case, the given system
is governed by the Euler-Lagrange equations given as: find [𝑢, 𝑝, 𝜆], where 𝜆 ∈ R, such that⎧⎪⎪⎨⎪⎪⎩

𝜇∇ × ∇ × 𝑢 + ∇𝑝 = 𝜆𝑢 in Ω,

∇ · 𝑢 = 0 in Ω,

𝑛 × 𝑢 = 0 and 𝑝 = 0 on 𝜕Ω.

(2)

The mixed variational form of this problem is also known as the Kikuchi formulation [8, 23].
On the other hand, it is well known that the use of standard nodal continuous Galerkin FE schemes to approximate

the standard Maxwell systems has the pathology of producing spurious or non physical solutions even on smooth
domains. There are many strategies consisting of penalization or regularizing the operator by adding a term containing
the divergence. We refer for instance to [4, 5, 8, 11, 17], and the inclusive list of references therein on the subject.
Also, mixed methods consisting of inf-sup stable elements using nodal continuous Lagrange elements of any order for
the vector field together with a piecewise constant approximation for the multiplier have been proposed in recent
works [20, 21].

In this paper, our main interest is to approximate the eigenvalues and eigenfunctions of the Maxwell operator
without spurious solutions, using continuous Lagrange finite elements. Firstly we consider the standard Galerkin
approximation on Powell-Sabin triangulations, where the convergence of the eigenvalues is provided in a recent
work [11] (see also the three dimensional generalization in [10]). Next, the mixed FE formulations based on two
stabilized forms are presented; a so called augmented formulation, and a formulation that is based on projections. The
first stabilized method provides pressure stability by inclusion of a least squares form of the divergence constraint
introduced for the corresponding source problem in [4]. The second approach is based on stabilizing the divergence
and gradient components that are orthogonal to the associated FE spaces, which is analyzed in [3]. A reinterpretation
of these two methods in a unified framework with a brief analysis of their key properties has also been given in [5].

The outline of the paper is as follows. In Section 2 we briefly describe the standard Galerkin method on Powell-
Sabin meshes, whereas the two stabilized formulations are described in Section 3. While the EVP is directly analyzed
for the Galerkin method, convergence results for the stabilized formulations rely on a suitable approximation of the
source problem and the classical spectral theory, which is applied in Section 4. The main objective of this work is to
check and compare the performance of nodal based formulations for the problem at hand, and this is done in Section 5.
Finally, some conclusions are drawn in Section 6.

2 The standard Galerkin approximation with Powell-Sabin
meshes

The variational formulation of (1) is given as follows: find 𝑢 ∈ 𝐻0(curl, Ω), 𝑢 ̸= 0, and 𝜆 ∈ R satisfying

𝜇(∇ × 𝑢, ∇ × 𝑣) = 𝜆(𝑢, 𝑣), ∀𝑣 ∈ 𝐻0(curl, Ω), (3)

where 𝐻(curl, Ω) = {𝑣 ∈ 𝐿2(Ω)𝑑 : ∇ × 𝑣 ∈ 𝐿2(Ω)𝑑}, 𝐻0(curl, Ω) = {𝑣 ∈ 𝐻(curl, Ω) : 𝑛 × 𝑣 = 0 on 𝜕Ω}, and
(·, ·) denotes the 𝐿2-inner product defined over Ω. Note that there is no need to enforce the divergence free condition
for 𝑢, as taking the divergence on both sides of the first equation in (1) directly yields that this field is divergence free.
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For the FE approximation to this problem, let 𝒯ℎ be a partition of the problem domain Ω into a set of element
domains {𝐾}. As usual, ℎ denotes the characteristic mesh size of the partition, here taken as ℎ = max𝐾∈𝒯ℎ

ℎ𝐾 ,
where ℎ𝐾 is the diameter of the element 𝐾. Since our main interest is in the nodal approximations, we define the
space of piecewise continuous polynomials on Ω as

𝒩𝑘(Ω) = {𝑣ℎ ∈ 𝒞0(Ω̄) : 𝑣ℎ|𝐾 ∈ 𝒫𝑘(𝐾), ∀𝐾 ∈ 𝒯ℎ},

where 𝒫𝑘(𝐾) denotes the space of polynomials of degree at most 𝑘 defined on 𝐾. For the components of the vector
fields as well as the scalar fields we will make use of these 𝐻1(Ω)-conforming approximating spaces in which every
function can be determined uniquely by its values on the set of nodes of the defining elements. For all the analysis
given in this work we assume for the sake of simplicity that the partitions are quasi-uniform. This assumption is
compatible with the analysis given in [4], and can be relaxed by appropriate modifications in that work. We also make
use of this quasi-uniformity assumption as a sufficient condition for the 𝐻1(Ω)-stability of the 𝐿2(Ω)-projection
which can be procured under weaker assumptions (see, e.g., [6, 16]).

The Galerkin discretization on a finite dimensional space 𝒱ℎ of partition size ℎ, can be written as: find nonzero
𝑢ℎ ∈ 𝒱ℎ, and 𝜆ℎ ∈ R such that

𝜇(∇ × 𝑢ℎ, ∇ × 𝑣ℎ) = 𝜆(𝑢ℎ, 𝑣ℎ), ∀𝑣ℎ ∈ 𝒱ℎ. (4)

As we have already mentioned, it is known that when 𝒱ℎ is taken as the 𝐻1(Ω)-conforming Lagrange FE space
spurious solutions may exist for an arbitrary mesh size (see [8, 11], and the references therein). An example to such
pathology will be given in Section 5. On the other hand, it has been proved in [11] that the standard formulation when
implemented by the use of linear Lagrange finite elements on Powell-Sabin triangulations yields convergence of the
eigenvalues to the true ones; the analysis presented in this reference is not based on the approximation properties of
the method for the source problem, since it is not well posed. We will also include a numerical evidence for this in
Section 5.

3 Stabilized formulations

The two stabilized formulations we shall consider are based on the Kikuchi formulation (2) of the EVP. There
are essentially two alternatives for the variational form of this formulation, depending on whether the term with
𝑝 is integrated by parts or not, as this inherently implies two possible choices for the functional framework of the
problem [4, 5]. Consistently with the Galerkin approximation described earlier, we consider only the so called curl
formulation, in which the pressure gradient is not integrated by parts and the space where the solution is sought is
𝒳 = 𝐻0(curl, Ω) × 𝐻1

0 (Ω). The problem then reads: find [𝑢, 𝑝] ∈ 𝒳 and 𝜆 ∈ R such that

𝐵([𝑢, 𝑝], [𝑣, 𝑞]) = 𝜆(𝑢, 𝑣), ∀[𝑣, 𝑞] ∈ 𝒳 , (5)

where

𝐵([𝑢, 𝑝], [𝑣, 𝑞]) = 𝜇(∇ × 𝑢, ∇ × 𝑣) + (∇𝑝, 𝑣) − (∇𝑞, 𝑢).

Let 𝒱ℎ ⊂ 𝒱 := 𝐻0(curl, Ω) and 𝒬ℎ ⊂ 𝒬 := 𝐻1
0 (Ω) be the FE spaces to approximate 𝑢 and 𝑝, respectively.

The Galerkin approximation of the variational problem in 𝒳ℎ = 𝒱ℎ × 𝒬ℎ ⊂ 𝒳 is given as: find [𝑢ℎ, 𝑝ℎ] ∈ 𝒳ℎ and
𝜆ℎ ∈ R such that

𝐵([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) = 𝜆ℎ(𝑢ℎ, 𝑣ℎ), ∀[𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ. (6)

The corresponding source problem is well posed in spaces 𝒱ℎ and 𝒬ℎ if they satisfy the discrete inf-sup condition

inf
𝑝ℎ∈𝒬ℎ

sup
𝑣ℎ∈𝒱ℎ

(∇𝑝ℎ, 𝑣ℎ)
‖𝑝ℎ‖𝒬‖𝑣ℎ‖𝒱

≥ 𝐾𝑏, (7)
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(‖ · ‖ℬ standing for the norm in a space ℬ) for a certain constant 𝐾𝑏 > 0, and this is a sufficient condition for the
EVP to be well-posed. Examples of pairs of spaces satisfying this condition are those based on Nédélec’s elements to
construct 𝒱ℎ and nodal Lagrangian continuous elements to construct 𝒬ℎ. However, as it has been mentioned, we are
interested in arbitrary nodal-based interpolations, in which case the spaces 𝒱ℎ and 𝒬ℎ may fail to fulfill condition (7).
As explained in the previous section, there is also the possibility to use the Galerkin method with nodal elements
without introducing the Lagrange multiplier 𝑝 if the FE mesh is of Powell-Sabin type.

The alternative is to switch to a stabilized FE approximation to approximate the eigenproblem given in (5). In
order to prove that the solutions of the stabilized formulations converge to the solutions of the continuous problem,
we will apply the classical spectral approximation theory relying on the convergence of the associated source problem
for arbitrary forcing terms, not necessarily solenoidal. This is what we analyze next.

3.1 Source problem with non-solenoidal forcing terms

The continuous source problem associated to the Maxwell EVP reads as follows: given a vector field 𝑓 ∈ 𝐿2(Ω)𝑑,
not necessarily solenoidal, find [𝑢, 𝑝] ∈ 𝒳 such that

𝐵([𝑢, 𝑝], [𝑣, 𝑞]) = (𝑓 , 𝑣), ∀[𝑣, 𝑞] ∈ 𝒳 . (8)

Since now ∇ · 𝑓 ̸= 0 in general, 𝑝 ̸= 0. We may consider the Helmholtz decomposition 𝑓 = 𝑓0 + ∇𝜑, where 𝜑 is the
solution of the problem

−Δ𝜑 = −∇ · 𝑓 in Ω,

𝜑 = 0 on 𝜕Ω,

so that 𝑓0 = 𝑓 − ∇𝜑 is such that ∇ · 𝑓0 = 0 and 𝑛 × 𝑓0 = 𝑛 × 𝑓 on 𝜕Ω. It is immediately checked that the solution
of the problem ⎧⎪⎪⎨⎪⎪⎩

𝜇∇ × ∇ × 𝑢 + ∇𝑝 = 𝑓0 + ∇𝜑 in Ω,

∇ · 𝑢 = 0 in Ω,

𝑛 × 𝑢 = 0 and 𝑝 = 0 on 𝜕Ω.

(9)

is 𝑝 = 𝜑 and 𝑢 the solution of the source problem with solenoidal forcing term 𝑓0. We need to slightly modify the
formulations proposed in [4] and [3] for the source problem with solenoidal forcing terms to take this fact into account.
The formulations we actually propose can be written as follows: find [𝑢ℎ, 𝑝ℎ] ∈ 𝒳ℎ such that

𝐵S([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) = 𝐿S([𝑣ℎ, 𝑞ℎ]), ∀[𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ, (10)

where 𝐵S([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) and 𝐿S([𝑣ℎ, 𝑞ℎ]) are defined as

𝐵S([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) = 𝐵([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ])

+
∑︁
𝐾

𝜏𝑝(𝑃 (∇𝑝ℎ), 𝑃 (∇𝑞ℎ))𝐾

+
∑︁
𝐾

𝜏𝑢(𝑃 (∇ · 𝑢ℎ), 𝑃 (∇ · 𝑣ℎ))𝐾 , (11)

𝐿S([𝑣ℎ, 𝑞ℎ]) = (𝑓 , 𝑣ℎ) +
∑︁
𝐾

𝜏𝑝(𝑃 (∇𝜑), 𝑃 (∇𝑞ℎ))𝐾 . (12)

The difference with respect to the formulations proposed in [4] and [3] is the second term in 𝐿S([𝑣ℎ, 𝑞ℎ]). In the above
equation

∑︀
𝐾 signifies the summation over all elements 𝐾 of the partition, and (·, ·)𝐾 denotes the 𝐿2(𝐾)-inner

product. The stabilization parameters are defined as follows

𝜏𝑝 = 𝑐𝑝
ℓ2

𝜇
, 𝜏𝑢 = 𝑐𝑢𝜇

ℎ2

ℓ2 ,
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where 𝑐𝑝 and 𝑐𝑢 are appropriately chosen algorithmic constants and ℓ is a length scale of the problem. It is observed
that these parameters are constant in the case of quasi-uniform FE partitions (i.e., using the same ℎ for all elements)
and constant 𝜇. Otherwise, they should be computed element-wise; this is why we have introduced the summation
over the elements, which is in fact not needed in our case.

The method depends on the projection 𝑃 which can be either the identity 𝐼 or the orthogonal projection to the FE
space, 𝑃 ⊥

ℎ , leading to the augmented (AG) and the orthogonal subgrid scale (OSGS) formulations, respectively. This
orthogonal projection can be computed as 𝑃 ⊥

ℎ = 𝐼 − 𝑃ℎ, 𝑃ℎ being the 𝐿2(Ω)-projection onto the FE space, either
𝒱ℎ or 𝒬ℎ; we have not distinguished these two possibilities, being clear by the context the projection to consider.
The bilinear form 𝐵S in (10) will be denoted by 𝐵AG when 𝑃 = 𝐼 , and by 𝐵OSGS when 𝑃 = 𝑃 ⊥

ℎ . The OSGS
formulation is a residual-based stabilized discretization where only the components of the divergence and gradient
terms in (11) that are orthogonal to the corresponding FE spaces are stabilized [3, 5]. The orthogonal projections
onto the corresponding space can be computed iteratively or treated implicitly. We will follow the latter option in the
numerical results presented for this study.

The stability and convergence of the AG and OSGS formulations for the source problems are analyzed in [4] and
[3], respectively, when ∇ · 𝑓 = 0. The reason for the modification introduced in this paper is to have consistency even
when ∇ · 𝑓 ̸= 0. It is trivially verified that if [𝑢, 𝑝] is the solution of the continuous problem, for which we know that
𝑝 = 𝜑, there holds

𝐵S([𝑢, 𝑝], [𝑣ℎ, 𝑞ℎ]) = 𝐿S([𝑣ℎ, 𝑞ℎ]) ∀[𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ,

from where we have the consistency property

𝐵S([𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) = 0 ∀[𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ. (13)

Despite both the AG and the OSGS methods yielding good results, the norm in which stability and convergence
can be proved is weaker for the latter than for the former. Let us start with the AG formulation. The norm in which the
numerical analysis of the source problem can be done is

‖[𝑣, 𝑞]‖2
AG := 𝜇‖∇ × 𝑣‖2

𝐿2(Ω) + 𝜇

ℓ2 ‖𝑣‖2
𝐿2(Ω) + ℓ2

𝜇
‖∇𝑞‖2

𝐿2(Ω) + 𝜇
ℎ2

ℓ2 ‖∇ · 𝑣‖2
𝐿2(Ω), (14)

which is a norm in 𝒳 with adequate scaling coefficients and additional (but weak) control on the divergence of 𝑣.
In the sequel, ≲ denotes an inequality up to a positive constant that is independent of the mesh size and the

problem coefficients.
We have the following result:

Theorem 1. Suppose that both 𝒱ℎ and 𝒬ℎ are constructed using continuous nodal based interpolations, each of
arbitrary degree. Then, problem (10) (with 𝐵S = 𝐵AG) is well posed, in the sense that it admits a unique solution
[𝑢ℎ, 𝑝ℎ] ∈ 𝒱ℎ × 𝒬ℎ that satisfies

‖[𝑢ℎ, 𝑝ℎ]‖AG ≲
ℓ

𝜇1/2 ‖𝑓‖𝐿2(Ω). (15)

Furthermore, [𝑢ℎ, 𝑝ℎ] converges optimally as ℎ → 0 to the solution [𝑢, 𝑝] ∈ 𝒱 × 𝒬 of the continuous problem (8), in
the following sense:

‖[𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ]‖AG ≲ inf
[𝑣ℎ,𝑞ℎ]∈𝒱ℎ×𝒬ℎ

‖[𝑢 − 𝑣ℎ, 𝑝 − 𝑞ℎ]‖AG. (16)

Proof. The key property to obtain stability is the inf-sup condition for 𝐵AG proved in [9]: given [𝑢ℎ, 𝑝ℎ] ∈ 𝒱ℎ × 𝒬ℎ,
there exists [𝑣ℎ, 𝑞ℎ] ∈ 𝒱ℎ × 𝒬ℎ such that

‖[𝑢ℎ, 𝑝ℎ]‖AG‖[𝑣ℎ, 𝑞ℎ]‖AG ≲ 𝐵AG([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]).

This implies that problem (10) has a unique solution, which will satisfy

‖[𝑢ℎ, 𝑝ℎ]‖AG‖[𝑣ℎ, 𝑞ℎ]‖AG ≲ 𝐿AG([𝑣ℎ, 𝑞ℎ]) ≲ ‖𝑓‖𝐿2(Ω)‖𝑣ℎ‖𝐿2(Ω) + ℓ2

𝜇
‖∇𝜑‖𝐿2(Ω)‖∇𝑞ℎ‖𝐿2(Ω)

≲
ℓ

𝜇1/2

(︀
‖𝑓‖𝐿2(Ω) + ‖∇𝜑‖𝐿2(Ω)

)︀ (︁𝜇1/2

ℓ
‖𝑣ℎ‖𝐿2(Ω) + ℓ

𝜇1/2 ‖∇𝑞ℎ‖𝐿2(Ω)

)︁
,
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from where the stability result (15) follows noting that ‖𝑓‖2
𝐿2(Ω) = ‖𝑓0‖2

𝐿2(Ω) + ‖∇𝜑‖2
𝐿2(Ω).

It is straightforward to check that

𝐵AG([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) ≲ ‖[𝑢ℎ, 𝑝ℎ]‖AG‖[𝑣ℎ, 𝑞ℎ]‖AG,

i.e., 𝐵AG is continuous in the norm ‖ · ‖AG. This, together with the inf-sup condition cited and the consistency
condition (13) allow one to prove the convergence estimate (16) in the usual manner. Details are omitted.

The error estimate (16) is optimal for smooth solutions, that is, when 𝑢 belongs to 𝐻𝑟(Ω)𝑑 for 𝑟 ≥ 1. In this case we
have

‖[𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ]‖AG ≲ ℎ𝑡−1‖𝑢‖𝐻𝑡(Ω), (17)

where 𝑡 = min{𝑟, 𝑘 + 1}, 𝑘 being the order of the FE interpolation.
We can also consider lower regularity cases. For instance, it is known that 𝑢 ∈ 𝐻𝑟(Ω)𝑑 for 𝑟 ≥ 1/2 when the

domain is a Lipschitz polyhedron [1]. In the cases of solutions with Sobolev regularity 1/2 < 𝑟 < 1, the analysis in
[4] shows that the convergence is also optimal if the FE meshes are able to interpolate optimally scalar functions of
Sobolev regularity 𝑟 + 1, whose gradients are components of 𝑢. This happens for example if the FE meshes are of
Powell-Sabin type (see [4] and references therein for further discussion). More precisely, if 𝒱ℎ contains gradients of
scalar functions that are vector fields in 𝒩𝑘(Ω)𝑑 ∩ 𝐻0(curl, Ω), then (see [4], Corollary 3.12):

‖[𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ]‖AG = 𝑂(ℎ𝑡−𝜖),

for any 𝜖 ∈ ]0, 𝑡 − 1/2[ for 𝑡 = min{𝑟, 𝑘}.
For the EVP analysis we will need to relate the 𝐿2(Ω)-norm of the error 𝑢−𝑢ℎ to the 𝐿2(Ω)-norm of the forcing

term 𝑓 . This follows easily from Theorem 1 when 𝑓 is divergence free assuming enough regularity in the domain Ω
(see, e.g., [13, 18]). However, the situation is more delicate when 𝑓 is not solenoidal, for instance in the case when
𝑓 = ∇𝜑. For 𝑓 divergence free, it is not difficult to prove using standard duality arguments, and the corresponding
regularity assumptions, that

𝜇1/2‖𝑢 − 𝑢ℎ‖𝐿2(Ω) ≲ ℎ‖[𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ]‖AG (with 𝑝 = 0 if ∇ · 𝑓 = 0). (18)

A similar result for a general 𝑓 is not so obvious. In [22] this is obtained for a stabilized first order form of Maxwell’s
problem using two main steps that rely on an assumption on the FE mesh (Assumption 4.1 in [22]), similar to that is
used in [11]. The first step is a Poincaré-Steklov inequality (Lemma 4.3 in [22]), which can be directly used in our
case, and the second is a duality argument (Lemmata 5.4 and 5.5 in [22]). Here we combine the assumptions used in
these two steps into a single one, and state the following:

Assumption 1. The FE mesh and the domain Ω are such that there holds:

𝜇1/2‖𝑢 − 𝑢ℎ‖𝐿2(Ω) ≲ ℎ𝑠ℓ1−𝑠‖[𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ]‖AG, (19)

for some 𝑠 > 0.

Note that, according to (18), 𝑠 = 1 for divergence free 𝑓 . Weakening this assumption into smaller pieces as done
in [22] is an objective that we leave for future work. In any case, and just for illustrative purposes, in Section 5 we
present a numerical test for which we show that (19) holds (with 𝑠 = 1) for a limiting forcing term 𝑓 = ∇𝜑 and 𝜑

strictly in 𝐻1
0 (Ω).

From Assumption 1 and Theorem 1 it immediately follows:

Corollary 1. Under the conditions of Theorem 1 and accepting Assumption 1, there holds

𝜇1/2

ℓ
‖𝑢 − 𝑢ℎ‖𝐿2(Ω) ≲

ℓ

𝜇1/2

(︂
ℎ

ℓ

)︂𝑠

‖𝑓‖𝐿2(Ω). (20)

Proof. From the stability of the continuous solution and from (15) it follows that

‖[𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ]‖AG ≲
ℓ

𝜇1/2 ‖𝑓‖𝐿2(Ω).

The result follows using Assumption 1.
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Considering the decomposition 𝑓 = 𝑓0 + ∇𝜑 with ∇ · 𝑓0 = 0, it can be shown that this result holds without
Assumption 1 when 𝑓 = 𝑓0. The need to use Assumption 1 arises when 𝜑 is not vanishing and it cannot be assumed
smoother than 𝐻1(Ω).

Let us remark that, since ∇ · 𝑓0 = 0 and the test functions 𝑞ℎ ∈ 𝒬ℎ vanish on 𝜕Ω, we have that

𝐿AG([𝑣ℎ, 𝑞ℎ]) = (𝑓 , 𝑣ℎ) +
∑︁
𝐾

𝜏𝑝(∇𝜑, ∇𝑞ℎ)𝐾 = (𝑓 , 𝑣ℎ) +
∑︁
𝐾

𝜏𝑝(𝑓 , ∇𝑞ℎ)𝐾 .

This means that we do not actually need to compute the Helmholtz decomposition of 𝑓 , which would be only feasible
numerically and of course would imply an additional cost.

Let us move now to the OSGS formulation, and introduce in this case the mesh dependent norm:

‖[𝑣, 𝑞]‖2
OSGS := 𝜇‖∇ × 𝑣‖2

𝐿2(Ω) + 𝜇

ℓ2 ‖𝑣‖2
𝐿2(Ω) + ℓ2

𝜇
‖𝑃 ⊥

ℎ (∇𝑞)‖2
𝐿2(Ω) + ℎ2

𝜇
‖𝑃ℎ(∇𝑞)‖2

𝐿2(Ω). (21)

This norm is weaker than (14) because the component of the pressure gradient in 𝒱ℎ is multiplied by ℎ2 instead of ℓ2,
apart from the fact that we have not included the control on ∇ · 𝑣. Nevertheless, the numerical results obtained in
[3] showed that the OSGS formulation is as stable as the AG one; we shall corroborate this fact in this paper in the
context of Maxwell’s EVP. Stability and convergence is proved in [3]; because of the proof-technique employed, the
statements of these results slightly differ from those in Theorem 1, but the essence is the same, namely, stability and
optimal convergence:

Theorem 2. Suppose that both 𝒱ℎ and 𝒬ℎ are constructed using continuous nodal based interpolations of arbitrary
degree each. Then, problem (10) (with 𝐵S = 𝐵OSGS) is well posed, in the sense that

inf
[𝑢ℎ,𝑝ℎ]∈𝒱ℎ×𝒬ℎ

sup
[𝑣ℎ,𝑞ℎ]∈𝒱ℎ×𝒬ℎ

𝐵OSGS([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ])
‖[𝑢ℎ, 𝑝ℎ]‖OSGS‖[𝑣ℎ, 𝑞ℎ]‖OSGS

≥ 𝐾𝐵OSGS > 0. (22)

Furthermore, [𝑢ℎ, 𝑝ℎ] converges optimally as ℎ → 0 to the solution [𝑢, 𝑝] ∈ 𝑉 × 𝑄 of the continuous problem (8), in
the following sense:

‖[𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ]‖OSGS ≲ inf
𝑞ℎ∈𝒬ℎ

‖[𝑢 − 𝑃𝒱ℎ
(𝑢), 𝑝 − 𝑞ℎ]‖OSGS + inf

𝑣ℎ∈𝒱ℎ

𝜇1/2‖∇ × 𝑢 − 𝑣ℎ‖, (23)

where 𝑃𝒱ℎ
is the 𝐿2(Ω)-projection onto 𝒱ℎ.

This result corresponds to Theorems 3.3 and 3.4 in [3]. Note that in this reference the possibility of using discontinuous
interpolations and variable physical properties is taken into account, whereas here we are considering continuous
interpolations and a constant 𝜇. Note also that the convergence result obtained is optimal. The same comments as for
the AG formulation regarding the regularity of the continuous solution apply in this case.

As for the AG formulation, we also have the following corollary.

Corollary 2. Under the assumptions of Corollary 1, estimate (20) also holds for the OSGS formulation.

Proof. This result is proved as Corollary 1, now using the 𝐿2(Ω) and 𝐻1(Ω) stability of the 𝐿2(Ω)-projection
𝑃𝒱ℎ

.

In the case of the OSGS formulation an important simplification is possible, due to the fact that ‖𝑃 ⊥
ℎ (∇𝜑)‖𝐿2(Ω)

tends to zero as ℎ → 0 at the optimal rate allowed by the FE interpolation and the smoothness of the solution. Indeed,
we may consider the solution [𝑢*

ℎ, 𝑝*
ℎ] to the following problem:

𝐵OSGS([𝑢*
ℎ, 𝑝*

ℎ], [𝑣ℎ, 𝑞ℎ]) = (𝑓 , 𝑣ℎ) ∀[𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ, (24)

i.e., the problem obtained without the second term in 𝐿OSGS([𝑣ℎ, 𝑞ℎ]) given in (12) or, in other words, with the same
forcing term as if 𝑓 were divergence free. In this case, we have:

Proposition 1. Let [𝑢ℎ, 𝑝ℎ] ∈ 𝒳ℎ be the solution of problem (10) with S = OSGS and [𝑢*
ℎ, 𝑝*

ℎ] ∈ 𝒳ℎ the solution
of problem (24). Then, there holds

‖[𝑢ℎ − 𝑢*
ℎ, 𝑝ℎ − 𝑝*

ℎ]‖OSGS ≲
ℓ

𝜇1/2 ‖∇𝜑 − 𝑃ℎ(∇𝜑)‖𝐿2(Ω).
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Proof. Subtracting (10) with S = OSGS and (24) it turns out that the difference [𝑢ℎ − 𝑢*
ℎ, 𝑝ℎ − 𝑝*

ℎ] ∈ 𝒳ℎ is solution
of the problem

𝐵OSGS([𝑢ℎ − 𝑢*
ℎ, 𝑝ℎ − 𝑝*

ℎ], [𝑣ℎ, 𝑞ℎ]) =
∑︁
𝐾

𝜏𝑝(𝑃 ⊥
ℎ (∇𝜑), 𝑃 ⊥

ℎ (∇𝑞ℎ))𝐾 ∀[𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ.

The inf-sup condition (22) implies that there exists [𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ such that

‖[𝑢ℎ − 𝑢*
ℎ, 𝑝ℎ − 𝑝*

ℎ]‖OSGS‖[𝑣ℎ, 𝑞ℎ]‖OSGS ≲ 𝐵OSGS([𝑢ℎ − 𝑢*
ℎ, 𝑝ℎ − 𝑝*

ℎ], [𝑣ℎ, 𝑞ℎ])

≲
ℓ

𝜇1/2 ‖∇𝜑 − 𝑃ℎ(∇𝜑)‖𝐿2(Ω)‖[𝑣ℎ, 𝑞ℎ]‖OSGS,

and the result follows.

The importance of this result is that for the OSGS formulation we may solve the same source problem both if 𝑓 is
solenoidal or not, i.e., we may always solve problem (24). The solution will differ from that obtained with the fully
consistent formulation (10) in a term of the same order as the FE error. In the numerical examples we shall solve (24),
omitting the superscript * to characterize this problem.

3.2 Eigenvalue problem

The approximation to Maxwell’s EVP that we consider now is based on the stabilized FE methods introduced in
the previous subsection for the source problem. For the AG formulation, the method reads: find [𝑢ℎ, 𝑝ℎ] ∈ 𝒳ℎ and
𝜆ℎ ∈ R such that

AG : 𝐵([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) + 𝑐𝑝
ℓ2

𝜇
(∇𝑝ℎ, ∇𝑞ℎ) + 𝑐𝑢𝜇

ℎ2

ℓ2 (∇ · 𝑢ℎ, ∇ · 𝑣ℎ)

= 𝜆ℎ(𝑢ℎ, 𝑣ℎ) + 𝜆ℎ𝑐𝑝
ℓ2

𝜇
(𝑢ℎ, ∇𝑞ℎ) ∀[𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ, (25)

and for the OSGS formulation it reads: find [𝑢ℎ, 𝑝ℎ] ∈ 𝒳ℎ and 𝜆ℎ ∈ R such that

OSGS : 𝐵([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) + 𝑐𝑝
ℓ2

𝜇
(𝑃 ⊥

ℎ (∇𝑝ℎ), 𝑃 ⊥
ℎ (∇𝑞ℎ)) + 𝑐𝑢𝜇

ℎ2

ℓ2 (𝑃 ⊥
ℎ (∇ · 𝑢ℎ), 𝑃 ⊥

ℎ (∇ · 𝑣ℎ))

= 𝜆ℎ(𝑢ℎ, 𝑣ℎ) ∀[𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ. (26)

Both methods are consistent when 𝜆ℎ𝑢ℎ is replaced by a non-solenoidal 𝑓 ∈ 𝐿2(Ω)𝑑. For the AG formulation, this
is guaranteed by the last term in the right-hand-side, and for the OSGS formulation by the orthogonal projection
applied to ∇𝑝ℎ (in this case, consistency is only weak). A similar nodal based formulation was proposed in [12]
with neither of the two strategies. In order to have (weak) consistency for the EVP, the authors had to multiply the
term (∇𝑝ℎ, ∇𝑞ℎ) by a certain power of ℎ, not by a fixed ℓ2 (our AG formulation corresponds to that in [12] for the
parameter 𝛼 = 1 of this reference, not allowed there).

Let us consider the matrix version of the problem. Calling 𝑈 and 𝑃 the arrays of nodal values of 𝑢ℎ and 𝑝ℎ,
respectively, it reads [︂

𝐾 𝐺

𝐺𝑇 𝜏𝑝𝐿

]︂ [︂
𝑈

𝑃

]︂
= 𝜆ℎ

[︂
𝑀 0

−𝛽𝐺𝑇 0

]︂ [︂
𝑈

𝑃

]︂
. (27)

with the obvious identification of the matrices in this expression, and with 𝛽 = 𝜏𝑝 for the AG formulation and 𝛽 = 0
for the OSGS one. In the former case, the matrix in the right-hand-side is non-symmetric, although the discrete
eigensolution converges to the continuous one (see next section). If in the AG formulation we change variables as
𝑃 = (1 + 𝜏𝑝𝜆ℎ)𝑃 ′ we obtain: [︂

𝐾 𝐺

𝐺𝑇 𝜏𝑝𝐿

]︂ [︂
𝑈

𝑃 ′

]︂
= 𝜆ℎ

[︂
𝑀 −𝜏𝑝𝐺

−𝜏𝑝𝐺𝑇 −𝜏2
𝑝 𝐿

]︂ [︂
𝑈

𝑃 ′

]︂
.
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This system is symmetric. It can be equivalently written as[︂
𝐾 − 𝜆ℎ𝑀 (1 + 𝜏𝑝𝜆ℎ)𝐺

(1 + 𝜏𝑝𝜆ℎ)𝐺𝑇 𝜏𝑝(1 + 𝜏𝑝𝜆ℎ)𝐿

]︂ [︂
𝑈

𝑃 ′

]︂
=

[︂
0
0

]︂
,

from where it follows that 𝜆ℎ = −1/𝜏𝑝 is an spurious eigenvalue associated to the change of variables. It can be
filtered in several ways. However, in our numerical results we have used the original matrix from (27), despite being
non-symmetric.

4 Numerical analysis of the eigenvalue problem

For the standard Galerkin method presented in Section 2, the analysis of the EVP using 2D Powell-Sabin meshes is
directly presented in [11], without relying on the approximation properties of the formulation for the source problem,
since this would be singular. However, for the stabilized formulations described in Section 3 we can apply the general
strategy of proving convergence of eigenvalues and eigenfunctions using the results obtained for the source problem.
This is what we do next. We assume in what follows that the polynomial order of the FE interpolation is higher or
equal than the regularity of the solution.

As usual in the FE analysis of spectral problems [8] (see also [26]), having the existence and uniqueness of
solutions to (8) and (10), we can define the solution operators 𝑇, 𝑇ℎ : 𝐿2(Ω)𝑑 → 𝐿2(Ω)𝑑 so that, for any 𝑓 ∈ 𝐿2(Ω)𝑑,
𝑇𝑓 = 𝑢 and 𝑇ℎ𝑓 = 𝑢ℎ are the vector field components of the solutions to (8) and (10), respectively. From the
convergence results of the source problems presented in the previous section, we can establish the following operator
convergence

‖𝑇 − 𝑇ℎ‖ℒ(𝐿2(Ω)𝑑) → 0 as ℎ → 0.

This sets forth that the solutions of the discrete problem (25)/(26) converge to those of (2) with no spurious solutions.
In particular, the convergence analysis follows along the lines of the abstract Babuška–Osborn theory [2, 8].

We recall the main results related to the approximation of the eigensolutions in the following theorems. The first
theorem states the convergence of the eigensolutions and the absence of spurious modes.

Theorem 3. Under the regularity assumptions of Corollary 1, let 𝜆 be an eigenvalue of (5) with multiplicity 𝑚.
Then there are exactly 𝑚 eigenvalues of (25)/(26), counted with their multiplicities, that converge to 𝜆. Moreover,
given a generic compact set 𝐾 in the real line that does not contain any eigenvalues of (5), for ℎ small enough there
are no discrete eigenvalues of (6) that are in 𝐾.

Proof. From the results of Corollaries 1 and 2, we obtain that for all 𝑓 ∈ 𝐿2(Ω)𝑑

‖𝑢 − 𝑢ℎ‖𝐿2(Ω) = ‖𝑇𝑓 − 𝑇ℎ𝑓‖𝐿2(Ω) ≲ 𝜌(ℎ)‖𝑓‖𝐿2(Ω),

with 𝜌(ℎ) → 0 as ℎ → 0, that is, we have the convergence in norm ‖𝑇 − 𝑇ℎ‖ℒ(𝐿2(Ω)𝑑) → 0 as ℎ tends to zero. From
the standard Babuška–Osborn theory [2], this implies the theorem.

The second theorem states the rate of convergence of eigenvalues and eigenfunctions.

Theorem 4. Let 𝜆 be an eigenvalue of (5) with multiplicity 𝑚 and with an eigenspace composed of eigenfunctions
𝑢 with the following regularity for some 𝑟 > 0

𝑢 ∈ 𝐻𝑟(Ω),
∇ × 𝑢 ∈ 𝐻𝑟(Ω).

Let us denote by 𝜆𝑖
ℎ, 𝑖 = 1, . . . , 𝑚, the 𝑚 discrete eigenvalues corresponding to 𝜆 according to Theorem 3. Then we

have the following error estimates:

|𝜆 − 𝜆𝑖
ℎ| = 𝑂(ℎ2𝑟), 𝑖 = 1, . . . , 𝑚,

𝛿(𝐸, 𝐸ℎ) = 𝑂(ℎ𝑟),
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where 𝐸 is the eigenspace associated with 𝜆, 𝐸ℎ is the direct sum of the eigenspaces associated with 𝜆𝑖
ℎ, 𝑖 = 1, . . . , 𝑚,

and 𝛿 denotes the gap between Hilbert subspaces in the energy norm.

Proof. Again, this result follows from the standard Babuška–Osborn theory [2] and the error estimates available for
the source problem.

The result about the eigenfunctions convergence can be made more explicit by interpreting the definition of gap as
follows. Let 𝑢 be an eigenfunction associated with 𝜆 and denote by 𝜑1

ℎ, . . . , 𝜑𝑚
ℎ the eigenfunctions associated with

the 𝑚 discrete eigenvalues converging to 𝜆. Then there exists a linear combination 𝑢ℎ ∈ span{𝜑1
ℎ, . . . , 𝜑𝑚

ℎ } such
that

|||𝑢 − 𝑢ℎ||| = 𝑂(ℎ𝑟),

where |||·||| means ‖ · ‖AG or ‖ · ‖OSGS for the AG or OSGS formulation, respectively.

5 Numerical results

As a first numerical example, we present a simple experiment where Assumption 1 holds. The considered test is
quite general and suggests that Assumption 1 is valid in a broad range of situations, if not all. We present then three
numerical tests for the approximation of the Maxwell EVP with 𝜇 = 1 on three different domains, namely, a square
domain, a flipped L-shape domain, and a cracked square domain, all of them in 2D. We consider the square domain
for validation purposes, since the analytical solutions are available. The L-shaped domain consists of non-smooth
solutions and hence it is a standard benchmark to test the methodology for singular problems. The cracked square
domain contains a slit which makes it a distinguished candidate for serving as a challenging task with a solution that
exhibits a strong singularity.

The standard Galerkin method (4), from now on SG, and the stabilized (AG and OSGS) formulations (25)/(26)
are implemented using criss-cross (CC) and Powell-Sabin (PS) meshes. We have also considered a sequence of
uniform right diagonal meshes for a distinct case (see Section 5.2). The CC mesh sequences are used as it is well
known that the gradients are well represented by the given interpolations, although there is no theoretical support
for their performance in the Maxwell problem. In fact, in [4] it was shown through numerical experiments that they
provide good results for the source problem using the AG formulation, and here we will test these meshes for the EVP.
The PS meshes are chosen due to their convergence results as we have already stated. For all the unknowns we have
employed equal order (for both 𝑢ℎ and 𝑝ℎ) of linear (𝑃1) and quadratic (𝑃2) interpolations, even though much of the
focus is placed on the results obtained from the former.

All the results we present below have been obtained by means of computer programs written by us using
Matlab. The eigenvalues are obtained by its built-in function eigs that calculates a subset of eigensolutions of a
(generalized) matrix eigenvalue system. For the SG formulation, the discrete spectrum consists of a number of zeros;
the discrete frequencies approximating zero are eliminated to present the first nonzero values. The correctness of
these approximations is verified using Matlab’s eig function calculating all of the discrete eigenvalues for sizes that fit
well in memory. However, the restriction of eliminating a huge number of (machine) zeros from the approximate
spectrum is alleviated when considering the stabilized formulations which, by construction, result in strictly positive
eigenvalues for all the cases considered.

The values of the algebraic constants in the definition of the stabilization parameters, 𝑐𝑢 and 𝑐𝑝, and the
characteristic length ℓ can be taken in a wide range, influencing the accuracy while preserving similar convergence
behaviors. The specific values taken for the simulations are given for each test domain individually. We denote by 𝑁

the number of divisions in each direction for the square domain, and the number of division in one of the short edges
for the L-shaped domain. The tables we provide in the sequel list the approximated eigenvalues together with their
rates of convergence towards the reference values indicated in parentheses.

Regarding the boundary conditions, we have considered 𝑛 × 𝑢ℎ = 0 on the boundaries. At convex corners
of the computational domain we have prescribed both components of 𝑢ℎ to zero. However, the situation is more
delicate at re-entrant corners; the way to impose boundary conditions there is explained for the two examples in
which this situation is found. It is important to point out here that the theoretical results in view of Theorem 4 are
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in correspondence with the strictly conforming approximations where both components are forced to be zero at all
boundary corners. On the other hand, the exact solutions of the problems we consider in the sequel that are defined on
domains with re-entrant corners have incompatible (with these boundary conditions) behaviors on these nodes, and
only the tangential component is zero while the solution is singular at the re-entrant corner. For this reason, in the
numerical tests for the singular cases already mentioned we investigate numerically different ways of imposing the
boundary conditions aiming at leaving more flexibility to the solution which can be considered solely to improve the
results.

5.1 Testing Assumption 1

In this first example we test the possible validity of Assumption 1. For that, we consider a sequence of uniform FE
meshes of size ℎ that discretize the domain Ω1 = ]0, 𝜋[2 (see Figure 2). The mesh-dependent forcing term is of the
form 𝑓ℎ(𝑥, 𝑦) = ∇𝜑ℎ(𝑥, 𝑦), with 𝜑ℎ(𝑥, 𝑦) = 𝜑0𝜙ℎ(𝑥)𝜙ℎ(𝑦). The function 𝜙ℎ(𝑧) takes the value one at the central
node, with 𝑧 = 𝜋/2, and zero at the nodes with 𝑧 ≤ 𝜋/2 − ℎ or 𝑧 ≥ 𝜋/2 + ℎ, being piecewise linear and continuous.
For PS meshes, ℎ corresponds to the size of the macro-element. The resulting function 𝜑ℎ(𝑥, 𝑦) constructed this
way will be bilinear, and different from zero only in a patch of elements around the central node. Observe that
‖∇(𝜙ℎ(𝑥)𝜙ℎ(𝑦))‖𝐿2(Ω) is bounded independently of ℎ (∇𝜙ℎ(𝑥) is piecewise constant behaving as ℎ−1 and the
support of 𝜙ℎ(𝑥)𝜙ℎ(𝑦) has measure of order ℎ2). We choose the constant 𝜑0 such that ‖∇𝜑ℎ(𝑥, 𝑦)‖𝐿2(Ω) = 1. Hence,
we can conclude that ‖𝜑ℎ(𝑥, 𝑦)‖𝐻1(Ω) is uniformly bounded (thanks to the Poincaré inequality), and consequently
there exists the (weak) limit 𝜑* ∈ 𝐻1

0 (Ω) of 𝜑ℎ as ℎ → 0. The limiting solution to the problem we consider is
thus 𝑢 = 0 and 𝑝 = 𝜑*. The surface plots of 𝑝(ℎ) constructed in this way on a PS mesh where 𝑁 = 32 and its
corresponding approximation using the AG formulation 𝑝ℎ are shown in Figure 1.

Fig. 1: Surface plots of 𝑝(ℎ) and 𝑝ℎ obtained using the AG formulation on PS mesh where 𝑁 = 32.

In order to investigate the anticipated behavior, we compute the 𝐿2(Ω)-norms of the numerical errors ‖𝑢ℎ‖,
‖∇ × 𝑢ℎ‖, ‖𝑝ℎ − 𝑝(ℎ)‖, and ‖∇(𝑝ℎ − 𝑝(ℎ))‖, together with their computed convergence rates as ℎ tends to zero on
uniform diagonal and PS meshes. The results are presented in Tables 1 and 2 using the OSGS and AG formulations,
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Tab. 1: Errors and rates of convergence (in brackets) on different triangulations: OSGS formulation.

Triangulation ℎ ‖𝑢ℎ‖ ‖∇ × 𝑢ℎ‖ ‖𝑝ℎ − 𝑝(ℎ)‖ ‖∇(𝑝ℎ − 𝑝(ℎ))‖
Uniform diagonal 0.5554 1.01e-01 1.05e-01 1.12e+00 1.11e+00

0.2777 5.12e-02 (0.98) 5.47e-02 (0.94) 1.42e+00 (-0.34) 1.34e+00 (-0.27)
0.1388 2.57e-02 (0.99) 2.86e-02 (0.93) 1.40e+00 (0.02) 1.24e+00 (0.12)
0.0694 1.30e-02 (0.99) 1.62e-02 (0.82) 1.25e+00 (0.16) 1.03e+00 (0.26)
0.0347 6.52e-03 (1.00) 9.20e-03 (0.82) 1.20e+00 (0.06) 9.50e-01 (0.12)

Powell-Sabin 0.6011 1.07e-01 1.22e-01 4.51e-01 5.71e-01
0.3006 5.60e-02 (0.93) 6.82e-02 (0.83) 4.86e-01 (-0.11) 5.58e-01 (0.03)
0.1503 2.84e-02 (0.98) 3.71e-02 (0.88) 5.21e-01 (-0.10) 5.59e-01 (-0.00)
0.0751 1.42e-02 (0.99) 2.00e-02 (0.90) 5.53e-01 (-0.09) 5.59e-01 (0.00)
0.0376 7.12e-03 (1.00) 1.06e-02 (0.91) 5.84e-01 (-0.08) 5.58e-01 (0.00)

Tab. 2: Errors and rates of convergence (in brackets) on different triangulations: AG formulation.

Triangulation ℎ ‖𝑢ℎ‖ ‖∇ × 𝑢ℎ‖ ‖𝑝ℎ − 𝑝(ℎ)‖ ‖∇(𝑝ℎ − 𝑝(ℎ))‖
Uniform diagonal 0.5554 1.01e-01 1.05e-01 8.14e-01 7.85e-01

0.2777 5.12e-02 (0.98) 5.47e-02 (0.94) 8.92e-01 (-0.13) 8.00e-01 (-0.03)
0.1388 2.57e-02 (0.99) 2.86e-02 (0.94) 9.82e-01 (-0.14) 8.07e-01 (-0.01)
0.0694 1.30e-02 (0.99) 1.62e-02 (0.82) 1.04e+00 (-0.08) 8.03e-01 (0.01)
0.0347 6.52e-03 (1.00) 9.19e-03 (0.82) 1.07e+00 (-0.04) 7.97e-01 (0.01)

Powell-Sabin 0.6011 1.07e-01 1.22e-01 4.17e-01 5.16e-01
0.3006 5.60e-02 (0.93) 6.82e-02 (0.83) 4.52e-01 (-0.11) 5.21e-01 (-0.02)
0.1503 2.84e-02 (0.98) 3.71e-02 (0.88) 4.89e-01 (-0.11) 5.22e-01 (-0.00)
0.0751 1.42e-02 (0.99) 2.00e-02 (0.90) 5.24e-01 (-0.10) 5.22e-01 (-0.00)
0.0376 7.12e-03 (1.00) 1.06e-02 (0.91) 5.56e-01 (-0.09) 5.23e-01 (-0.00)

respectively. These results allow us to deduce the followings:

‖𝑢ℎ‖ = ‖𝑢 − 𝑢ℎ‖ = ‖𝑢(ℎ) − 𝑢ℎ‖ = 𝑂(ℎ),
‖∇ × 𝑢ℎ‖ = ‖∇ × (𝑢 − 𝑢ℎ)‖ = ‖∇ × (𝑢(ℎ) − 𝑢ℎ)‖ = 𝑂(ℎ),
‖𝑝(ℎ) − 𝑝ℎ‖ = 𝑂(1),
‖∇(𝑝(ℎ) − 𝑝ℎ)‖ = 𝑂(1).

From these, we can establish the inequality ‖𝑢−𝑢ℎ‖ ≲ ℎ‖𝑝(ℎ)−𝑝ℎ‖. Therefore, we can conclude that Assumption 1
indeed holds (with 𝑠 = 1) for this particular example. It is also relevant to remark that this is true both for PS meshes
and for uniform 𝑃1 meshes. Naturally, these results do not imply the validity of Assumption 1 in general, but they
constitute a good indication that it is likely to hold under quite general assumptions.

5.2 The square domain

For the first numerical test, we consider an approximation of Maxwell’s EVP on the square Ω1. In this case, the exact
solutions are known, and the eigenvalues are given as 𝜆𝑚,𝑛 = 𝑚2 + 𝑛2, where 𝑚, 𝑛 = 0, 1, . . ., and 𝑚 + 𝑛 ̸= 0. It is
well known that SG formulations may result in unphysical values even for problems with smooth solutions unless
certain conditions on the mesh topology are satisfied. More specifically, adequate gradients of the solution should
be provided by the discrete space to ensure that the zero frequency is exactly approximated by vanishing discrete
eigenvalues. An example to the existence of spurious eigenvalues has already been presented in [8], in which the SG
scheme for the discretization of the problem on Ω1 has been used with a sequence of CC meshes. Besides realization
of this issue, in order to compare the SG formulation with the stabilized ones on the same meshes, we compute the
corresponding eigenvalues using CC meshes and PS meshes, and list the results in the following. Table 3 lists the
first 17 approximate eigenvalues using the SG formulation and 𝑃1 elements on CC meshes. As it is evident from the
negative rates, some listed limit values are spurious and are not associated with any true eigenvalues, even though a
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number of selected ones show a good convergence. This pathology, which occurs even in the case of smooth solutions,
is already known (see [8]) and it is the main motivation for the need of stabilization strategies implemented for nodal
elements.
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Fig. 2: Uniform meshes and node distributions used for 𝑃1 (left) and 𝑃2 (right) interpolations on Ω1.

Tab. 3: The first 17 eigenvalues on Ω1 using the SG formulation and 𝑃1 elements on CC meshes.

Exact Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.0000 1.0109 1.0027 (2.0) 1.0012 (2.0) 1.0007 (2.0) 1.0004 (2.0)
1.0000 1.0109 1.0027 (2.0) 1.0012 (2.0) 1.0007 (2.0) 1.0004 (2.0)
2.0000 2.0437 2.0110 (2.0) 2.0049 (2.0) 2.0027 (2.0) 2.0018 (2.0)
4.0000 4.1719 4.0437 (2.0) 4.0195 (2.0) 4.0110 (2.0) 4.0070 (2.0)
4.0000 4.1719 4.0437 (2.0) 4.0195 (2.0) 4.0110 (2.0) 4.0070 (2.0)
5.0000 5.2657 5.0683 (2.0) 5.0304 (2.0) 5.0171 (2.0) 5.0110 (2.0)
5.0000 5.2657 5.0683 (2.0) 5.0304 (2.0) 5.0171 (2.0) 5.0110 (2.0)
8.0000 5.7988 5.9507 (0.1) 5.9781 (0.0) 5.9877 (0.0) 5.9921 (0.0)
9.0000 8.6504 8.1746 (-1.2) 8.0779 (-0.3) 8.0438 (-0.1) 8.0281 (-0.1)
9.0000 9.8403 9.2197 (1.9) 9.0982 (2.0) 9.0554 (2.0) 9.0355 (2.0)

10.0000 9.8403 9.2197 (-2.3) 9.0982 (-0.4) 9.0554 (-0.2) 9.0355 (-0.1)
10.0000 10.9783 10.2710 (1.9) 10.1213 (2.0) 10.0684 (2.0) 10.0438 (2.0)
13.0000 10.9783 10.2710 (-0.4) 10.1213 (-0.1) 10.0684 (-0.1) 10.0438 (-0.0)
13.0000 12.5826 13.4573 (-0.1) 13.2052 (2.0) 13.1156 (2.0) 13.0741 (2.0)
16.0000 12.5826 13.4573 (0.4) 13.2052 (-0.2) 13.1156 (-0.1) 13.0741 (-0.1)
16.0000 14.3233 14.3101 (-0.0) 14.6791 (0.6) 14.8163 (0.4) 14.8814 (0.3)
17.0000 14.3233 14.3101 (-0.0) 14.6791 (0.4) 14.8163 (0.2) 14.8814 (0.1)

Tables 4 and 5 respectively list the analogous results obtained from the AG and OSGS formulations. These are
obtained taking ℓ = 0.1 and 𝑐𝑢 = 0.1, when 𝜏𝑝 = 1. The significant role in the relief of the aforementioned pathology
can easily be evidenced from the correct values of the eigenvalues, and with the expected rates of convergence. Both
the AG and OSGS schemes yield very similar convergence behaviors noting that the latter achieves a slightly more
accuracy than the former for the same algorithmic constants.

Regarding the SG formulation, having arrived at the important conclusion that PS meshes should be used due to
the potential risk of obtaining spurious eigenvalues otherwise, we present the results obtained from PS meshes when
considering formulation (4) in what follows. We tabulate the first 17 eigenvalues obtained using this formulation on
PS meshes in Table 6 to numerically validate its convergence characteristics.

Before closing this subsection, let us emphasize that both stabilized formulations produce exceptional results
in the case of smooth solutions independent of the mesh types we have tested in this work. To further corroborate
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Tab. 4: The first 17 eigenvalues on Ω1 using the AG formulation and 𝑃1 elements on CC meshes.

Exact Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.0000 1.0287 1.0055 (2.4) 1.0020 (2.5) 1.0010 (2.5) 1.0006 (2.4)
1.0000 1.0287 1.0055 (2.4) 1.0020 (2.5) 1.0010 (2.5) 1.0006 (2.4)
2.0000 2.0624 2.0138 (2.2) 2.0056 (2.2) 2.0030 (2.2) 2.0019 (2.1)
4.0000 4.4705 4.0879 (2.4) 4.0314 (2.5) 4.0153 (2.5) 4.0089 (2.4)
4.0000 4.4705 4.0879 (2.4) 4.0314 (2.5) 4.0153 (2.5) 4.0089 (2.4)
5.0000 5.5321 5.1049 (2.3) 5.0402 (2.4) 5.0207 (2.3) 5.0125 (2.2)
5.0000 5.5321 5.1049 (2.3) 5.0402 (2.4) 5.0207 (2.3) 5.0125 (2.2)
8.0000 9.0402 8.2229 (2.2) 8.0904 (2.2) 8.0483 (2.2) 8.0300 (2.1)
9.0000 11.3842 9.4479 (2.4) 9.1593 (2.6) 9.0775 (2.5) 9.0452 (2.4)
9.0000 11.3842 9.4479 (2.4) 9.1593 (2.6) 9.0775 (2.5) 9.0452 (2.4)

10.0000 12.5909 10.4803 (2.4) 10.1766 (2.5) 10.0884 (2.4) 10.0526 (2.3)
10.0000 12.5909 10.4803 (2.4) 10.1766 (2.5) 10.0884 (2.4) 10.0526 (2.3)
13.0000 16.2807 13.6459 (2.3) 13.2532 (2.3) 13.1327 (2.2) 13.0815 (2.2)
13.0000 16.2807 13.6459 (2.3) 13.2532 (2.3) 13.1327 (2.2) 13.0815 (2.2)
16.0000 22.4531 17.4246 (2.2) 16.5042 (2.6) 16.2450 (2.5) 16.1428 (2.4)
16.0000 22.4531 17.4246 (2.2) 16.5042 (2.6) 16.2450 (2.5) 16.1428 (2.4)
17.0000 23.3681 18.4812 (2.1) 17.5335 (2.5) 17.2636 (2.5) 17.1555 (2.4)

Tab. 5: The first 17 eigenvalues on Ω1 using the OSGS formulation and 𝑃1 elements on CC meshes.

Exact Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.0000 1.0279 1.0053 (2.4) 1.0019 (2.5) 1.0009 (2.5) 1.0006 (2.4)
1.0000 1.0279 1.0053 (2.4) 1.0019 (2.5) 1.0009 (2.5) 1.0006 (2.4)
2.0000 2.0606 2.0135 (2.2) 2.0056 (2.2) 2.0030 (2.2) 2.0019 (2.1)
4.0000 4.4574 4.0858 (2.4) 4.0309 (2.5) 4.0152 (2.5) 4.0089 (2.4)
4.0000 4.4589 4.0858 (2.4) 4.0309 (2.5) 4.0152 (2.5) 4.0089 (2.4)
5.0000 5.5008 5.1007 (2.3) 5.0393 (2.3) 5.0204 (2.3) 5.0124 (2.2)
5.0000 5.5008 5.1007 (2.3) 5.0393 (2.3) 5.0204 (2.3) 5.0124 (2.2)
8.0000 9.0117 8.2181 (2.2) 8.0894 (2.2) 8.0480 (2.2) 8.0299 (2.1)
9.0000 11.3376 9.4377 (2.4) 9.1569 (2.5) 9.0768 (2.5) 9.0449 (2.4)
9.0000 11.3376 9.4377 (2.4) 9.1569 (2.5) 9.0768 (2.5) 9.0449 (2.4)

10.0000 12.3916 10.4553 (2.4) 10.1713 (2.4) 10.0869 (2.4) 10.0520 (2.3)
10.0000 12.4487 10.4560 (2.4) 10.1714 (2.4) 10.0869 (2.4) 10.0520 (2.3)
13.0000 16.0939 13.6212 (2.3) 13.2482 (2.3) 13.1313 (2.2) 13.0810 (2.2)
13.0000 16.0939 13.6212 (2.3) 13.2482 (2.3) 13.1313 (2.2) 13.0810 (2.2)
16.0000 22.3404 17.3939 (2.2) 16.4968 (2.5) 16.2428 (2.5) 16.1420 (2.4)
16.0000 22.4359 17.3959 (2.2) 16.4970 (2.5) 16.2428 (2.5) 16.1420 (2.4)
17.0000 23.2581 18.4019 (2.2) 17.5162 (2.5) 17.2585 (2.4) 17.1537 (2.3)

this, in Tables 7 and 8 we list the approximations to the first 10 eigenvalues using respectively 𝑃1 and 𝑃2 elements
on standard uniform (right diagonal) meshes, a sample of which is shown in Figure 2. These results are obtained
from the OSGS formulation; however, they are very similar to the ones obtained from the AG formulation, which
are not included for brevity. We can easily infer from these results that the stabilization achieves a double order of
convergence without any spurious value, as it is anticipated from the theory.

5.3 The L-shaped domain

In this subsection we want to examine a widely considered test case, e.g., in [12, 14, 19, 20], that is an L-shaped
domain with a re-entrant corner, defined by Ω2 = ]−1, 1[2 ∖ {[0, 1] × [−1, 0]}. The CC and PS discretizations of
this domain with 𝑁 = 5 are shown in Figure 3. All of the reported values computed by a stabilized formulation
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Tab. 6: The first 17 eigenvalues on Ω1 using the SG formulation and 𝑃1 elements on PS meshes.

Exact Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.0000 1.0029 1.0007 (2.0) 1.0003 (2.0) 1.0002 (2.0) 1.0001 (2.0)
1.0000 1.0072 1.0018 (2.0) 1.0008 (2.0) 1.0005 (2.0) 1.0003 (2.0)
2.0000 2.0197 2.0051 (2.0) 2.0023 (2.0) 2.0013 (2.0) 2.0008 (2.0)
4.0000 4.0792 4.0203 (2.0) 4.0090 (2.0) 4.0051 (2.0) 4.0033 (2.0)
4.0000 4.0796 4.0203 (2.0) 4.0090 (2.0) 4.0051 (2.0) 4.0033 (2.0)
5.0000 5.0772 5.0212 (1.9) 5.0095 (2.0) 5.0054 (2.0) 5.0035 (2.0)
5.0000 5.1596 5.0416 (1.9) 5.0186 (2.0) 5.0105 (2.0) 5.0067 (2.0)
8.0000 8.2651 8.0786 (1.8) 8.0357 (1.9) 8.0202 (2.0) 8.0130 (2.0)
9.0000 9.3628 9.0968 (1.9) 9.0434 (2.0) 9.0245 (2.0) 9.0157 (2.0)
9.0000 9.4040 9.1067 (1.9) 9.0478 (2.0) 9.0269 (2.0) 9.0173 (2.0)

10.0000 10.4348 10.1242 (1.8) 10.0560 (2.0) 10.0317 (2.0) 10.0203 (2.0)
10.0000 10.4494 10.1251 (1.8) 10.0562 (2.0) 10.0317 (2.0) 10.0203 (2.0)
13.0000 13.4436 13.1522 (1.5) 13.0699 (1.9) 13.0397 (2.0) 13.0255 (2.0)
13.0000 13.7494 13.2576 (1.5) 13.1178 (1.9) 13.0668 (2.0) 13.0429 (2.0)
16.0000 17.0734 16.3173 (1.8) 16.1433 (2.0) 16.0810 (2.0) 16.0520 (2.0)
16.0000 17.0912 16.3176 (1.8) 16.1434 (2.0) 16.0810 (2.0) 16.0520 (2.0)
17.0000 17.9694 17.3329 (1.5) 17.1518 (1.9) 17.0860 (2.0) 17.0552 (2.0)

Tab. 7: The first 10 eigenvalues on Ω1 using the OSGS formulation and 𝑃1 elements on the uniform mesh shown in Fig-
ure 2.

Exact Computed
𝑁 = 20 𝑁 = 25 𝑁 = 30 𝑁 = 35 𝑁 = 40

1.0000 1.0021 1.0013 (2.0) 1.0009 (2.0) 1.0007 (2.0) 1.0005 (2.0)
1.0000 1.0021 1.0013 (2.0) 1.0009 (2.0) 1.0007 (2.0) 1.0005 (2.0)
2.0000 2.0073 2.0044 (2.3) 2.0030 (2.2) 2.0021 (2.1) 2.0016 (2.1)
4.0000 4.0329 4.0210 (2.0) 4.0146 (2.0) 4.0107 (2.0) 4.0082 (2.0)
4.0000 4.0329 4.0211 (2.0) 4.0146 (2.0) 4.0107 (2.0) 4.0082 (2.0)
5.0000 5.0385 5.0239 (2.1) 5.0164 (2.1) 5.0119 (2.1) 5.0091 (2.0)
5.0000 5.0572 5.0351 (2.2) 5.0239 (2.1) 5.0173 (2.1) 5.0131 (2.1)
8.0000 8.1167 8.0706 (2.3) 8.0475 (2.2) 8.0342 (2.1) 8.0258 (2.1)
9.0000 9.1666 9.1065 (2.0) 9.0739 (2.0) 9.0543 (2.0) 9.0416 (2.0)
9.0000 9.1667 9.1066 (2.0) 9.0740 (2.0) 9.0543 (2.0) 9.0416 (2.0)

concerning this domain are obtained using ℓ = 0.3, 𝑐𝑢 = 0.3, and 𝜏𝑝 = 1. In the numerical results, we use the
reference values taken from [19] for comparison.

It is known that the first eigenvalue is the most critical when an approximation is considered, as it corresponds to
the eigenfunction that has the lowest regularity, being it in (𝐻2/3−𝜖(Ω))2 for any 𝜖 > 0. When nodal elements are
used, the existence of such a singularity manifests itself in the drastic change of the results depending on the way
the normal vector is treated at the re-entrant corner in the process of boundary condition imposition. To realize and
examine this computationally, we have tried three alternative ways of handling the components of the unknown vector
field at the re-entrant corner of the enclosure; this is an issue in the case of nodal-based formulations. The first two
alternatives are to force both of the components to vanish at the corner, or to leave them free at that node. The third
one consists of assigning a fictitious normal vector due to the geometrical convenience. Specifically, this last strategy
depends on assuming that the normal is the bisector of this corner, and imposing the boundary condition 𝑛 × 𝑢ℎ = 0
in the following way. The tangent component of 𝑢 is 0, and 𝑢 has to follow the normal 𝑛. In this way, if we write
𝑢 = [𝑢1, 𝑢2]T, we impose the condition 𝑢2 = −𝑢1, and solve for 𝑢1.

We present the corresponding results obtained using PS meshes with the SG formulation in Table 9 and the OSGS
formulation in Table 10. These results clearly show that alternative strategies for enforcing the boundary condition
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Tab. 8: The first 10 eigenvalues on Ω1 using the OSGS formulation and 𝑃2 elements on the uniform mesh shown in Fig-
ure 2.

Exact Computed
𝑁 = 20 𝑁 = 25 𝑁 = 30 𝑁 = 35 𝑁 = 40

1.0000 1.0000 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0)
1.0000 1.0000 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0)
2.0000 2.0000 2.0000 (4.1) 2.0000 (4.1) 2.0000 (4.1) 2.0000 (4.1)
4.0000 4.0001 4.0000 (4.0) 4.0000 (4.0) 4.0000 (4.0) 4.0000 (4.0)
4.0000 4.0001 4.0000 (4.0) 4.0000 (4.0) 4.0000 (4.0) 4.0000 (4.0)
5.0000 5.0001 5.0000 (4.0) 5.0000 (4.0) 5.0000 (4.0) 5.0000 (4.0)
5.0000 5.0001 5.0000 (4.1) 5.0000 (4.0) 5.0000 (4.0) 5.0000 (4.0)
8.0000 8.0004 8.0002 (4.1) 8.0001 (4.1) 8.0000 (4.1) 8.0000 (4.0)
9.0000 9.0006 9.0002 (4.0) 9.0001 (4.0) 9.0001 (4.0) 9.0000 (4.0)
9.0000 9.0006 9.0002 (4.0) 9.0001 (4.0) 9.0001 (4.0) 9.0000 (4.0)
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Fig. 3: A sample triangulation of the L-shaped domain with CC (left) and PS (right) mesh, where 𝑁 = 5.

at the re-entrant corner of the enclosure result in significantly different approximations in the first eigenvalue. The
most remarkable deduction emanating from these tables is the influence of the treatment of the re-entrant corner
with or without stabilization. It can be easily seen that leaving the components free at the corner lead to accurate
results in the case of stabilization while it is not convenient at all for the SG formulation. The bisector normal strategy
seems to work well for all of the formulations. Let us note here that despite of this difference, we have observed that
the convergence properties are very similar. It is also of significant importance to note once again that the results
obtained from the SG formulation seem to be more accurate than the ones obtained from the stabilized formulations.
On the other hand, it is always possible to increase the accuracy in the latter schemes by manipulating the stabilization
parameters, even though this has not been the main aim of this research.

In the light of these investigations, the approximations for this domain case using PS meshes and following the
bisector normal strategy are listed in Tables 11, 12, and 13 for the SG, AG, and OSGS formulations, respectively.
From these tables we can see that the convergences rates are the ones expected from the theory. Specifically, there are
no spurious values encountered in any of the formulations considered. The smallest rate of convergence is observed for
the first eigenvalue, whose corresponding eigenfunction has the lowest regularity. Moreover, the OSGS formulation
seems to be slightly more accurate for the fundamental eigenvalue in comparison with the AG formulation; when
implemented using the same set of stabilization parameters.

The plots of the components of the fundamental eigenfunction, that is associated with the minimum eigenvalue,
obtained using the OSGS formulation on the PS mesh where 𝑁 = 25, are presented in Figure 4. The approximations
that are obtained from the bisector normal strategy show well the singularity near the re-entrant corner, corroborating
the pattern of the eigenfunction that can be expected.
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Tab. 9: The first 10 nonzero eigenvalues on Ω2 using PS mesh and the SG formulation, 𝑁 = 9.

bisector normal 𝑢1 = 𝑢2 = 0 𝑢1, 𝑢2 free
1.4876 1.4435 0.1181
3.5348 3.5348 1.4876
9.8829 9.8829 3.5351
9.8873 9.8873 9.8829

11.4032 11.4032 10.3660
12.6424 12.4952 11.4038
19.8006 19.8006 12.6424
21.5789 21.2304 20.3093
23.4182 23.4182 21.5789
28.7328 28.3622 23.4234

Tab. 10: The first 10 nonzero eigenvalues on Ω2 using PS mesh and the OSGS formulation, 𝑁 = 9.

bisector normal 𝑢1 = 𝑢2 = 0 𝑢1, 𝑢2 free
1.6252 2.2203 1.6252
3.5517 3.5517 3.5371
9.8836 9.8836 9.7725
9.8879 9.8879 9.8836

11.4116 11.4116 11.4058
12.6789 12.8182 12.6789
19.8034 19.8034 19.4922
21.5959 21.6729 21.5959
23.4449 23.4449 23.4287
28.5389 28.5389 28.5380

Tab. 11: The first 5 eigenvalues on Ω2 using the SG formulation and 𝑃1 elements on PS meshes (bisector normal).

Ref. Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.4756 1.5024 1.4860 (1.4) 1.4816 (1.4) 1.4797 (1.4) 1.4786 (1.3)
3.5340 3.5351 3.5347 (0.7) 3.5344 (1.5) 3.5342 (1.7) 3.5342 (1.7)
9.8696 9.9124 9.8804 (2.0) 9.8744 (2.0) 9.8723 (2.0) 9.8713 (2.0)
9.8696 9.9267 9.8839 (2.0) 9.8760 (2.0) 9.8732 (2.0) 9.8719 (2.0)

11.3895 11.4314 11.4007 (1.9) 11.3946 (1.9) 11.3924 (2.0) 11.3913 (2.0)

Tab. 12: The first 5 eigenvalues on Ω2 using the AG formulation and 𝑃1 elements on PS meshes (bisector normal).

Ref. Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.4756 1.6945 1.5635 (1.3) 1.5268 (1.3) 1.5105 (1.3) 1.5015 (1.3)
3.5340 3.5712 3.5406 (2.5) 3.5364 (2.5) 3.5352 (2.5) 3.5347 (2.5)
9.8696 9.9175 9.8807 (2.1) 9.8745 (2.0) 9.8723 (2.0) 9.8713 (2.0)
9.8696 9.9315 9.8842 (2.1) 9.8760 (2.0) 9.8732 (2.0) 9.8719 (2.0)

11.3895 11.4583 11.4043 (2.2) 11.3957 (2.1) 11.3929 (2.1) 11.3916 (2.1)

As a last illustration for this problem domain, we approximate the first 5 eigenvalues using the OSGS stabilized
formulation on CC meshes. We list the results in Tables 14 and 15 for 𝑃1 and 𝑃2 elements, respectively. All the
eigenvalues listed are approximated correctly, and the convergence rates are as expected. Note the unchanged rate in the
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Tab. 13: The first 5 eigenvalues on Ω2 using the OSGS formulation and 𝑃1 elements on PS meshes (bisector normal).

Ref. Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.4756 1.6667 1.5556 (1.3) 1.5228 (1.3) 1.5079 (1.3) 1.4996 (1.3)
3.5340 3.5802 3.5424 (2.5) 3.5371 (2.5) 3.5355 (2.5) 3.5349 (2.5)
9.8696 9.9170 9.8807 (2.1) 9.8745 (2.0) 9.8723 (2.0) 9.8713 (2.0)
9.8696 9.9307 9.8842 (2.1) 9.8760 (2.0) 9.8732 (2.0) 9.8719 (2.0)

11.3895 11.4573 11.4043 (2.2) 11.3958 (2.1) 11.3929 (2.1) 11.3916 (2.1)

Tab. 14: The first 5 eigenvalues on Ω2 using the OSGS formulation and 𝑃1 elements on CC meshes.

Ref. Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.4756 1.6350 1.5391 (1.3) 1.5126 (1.3) 1.5008 (1.3) 1.4943 (1.3)
3.5340 3.6248 3.5520 (2.3) 3.5407 (2.4) 3.5374 (2.4) 3.5360 (2.4)
9.8696 10.0023 9.8985 (2.2) 9.8820 (2.1) 9.8765 (2.0) 9.8740 (2.0)
9.8696 10.0032 9.8985 (2.2) 9.8820 (2.1) 9.8765 (2.0) 9.8740 (2.0)

11.3895 11.5771 11.4316 (2.2) 11.4073 (2.1) 11.3993 (2.1) 11.3957 (2.1)

Fig. 4: The components of the fundamental eigenfunction on Ω2, where 𝑁 = 25.

first value with an increase in the order of interpolations due to the low regularity of the corresponding eigenfunction.
Nevertheless, the accuracy is significantly improved for all the approximated values when quadratic interpolations
are used instead of the linear ones. The results mentioned here are in analogy with the ones obtained when the AG
formulation is used in the simulations, and we prefer not to include them for conciseness of the presentation.

5.4 The cracked square domain

As a final test case, we consider a square domain with a crack defined as Ω3 = ]−1, 1[2 ∖ {(𝑥, 𝑦) ∈ R : 0 ≤ 𝑥 <

1, 𝑦 = 0}. Sample discretizations of Ω3 are depicted in Figure 5. In the sequel we report the results of our numerical
simulations obtained by, unless it is otherwise stated, using linear interpolations on PS meshes, and taking ℓ = 0.2,
𝑐𝑢 = 0.2, and 𝜏𝑝 = 0.04, for the stabilized formulations. We report also some results obtained by considering CC
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Tab. 15: The first 5 eigenvalues on Ω2 using the OSGS formulation and 𝑃2 elements on CC meshes.

Ref. Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.4756 1.5446 1.5046 (1.3) 1.4927 (1.3) 1.4873 (1.3) 1.4843 (1.3)
3.5340 3.5602 3.5388 (2.4) 3.5357 (2.6) 3.5348 (2.6) 3.5345 (2.6)
9.8696 9.8701 9.8696 (4.1) 9.8696 (4.0) 9.8696 (4.0) 9.8696 (4.0)
9.8696 9.8701 9.8696 (4.1) 9.8696 (4.0) 9.8696 (4.0) 9.8696 (4.0)

11.3895 11.4010 11.3915 (2.5) 11.3902 (2.6) 11.3898 (2.6) 11.3897 (2.7)

grids or quadratic interpolations on PS meshes in the sequel. As in the previous case, the reference eigenvalues are
taken from [19].
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Fig. 5: Sample triangulations of the domain with a crack, Ω3, with PS mesh where 𝑁 = 4 (left) and internal layer CC mesh
when 𝑁 = 8 (right). The boundaries are shown in red.

Additionally to regular solutions, the EVP in this domain also has solutions that are unbounded near the tip of the
slit, exhibiting a strong singularity. In particular, the smallest eigenvalue becomes the most crucial one to approximate,
as its corresponding eigenfunction belongs to (𝐻1/2−𝜖(Ω))2 for any 𝜖 > 0 (see Figure 6). The same discussion about
the treatment of the re-entrant corner as in the L-shape domain case applies to the tip of the crack for this problem,
although without a clear identification of a fictitious normal in the present case. For the present instance, we examine
the influence of the treatment of enforcing the boundary condition on the approximations by leaving the components
of 𝑢 as free or forcing them to vanish at the tip. We tabulate the corresponding results in Tables 16 and 17 for the
former, and Tables 18 and 19 for the latter strategy. Tables 16 and 18 list the results of the SG formulation, whereas
Tables 17 and 19 list the ones obtained from the OSGS stabilization. We can easily infer from these tables that the
results are more accurate with higher convergence rates when the components of 𝑢ℎ are left to be free in comparison
with the case where they are forced to vanish. The difference is very significant in the OSGS formulation, especially
in the first eigenvalue, which is approximated with lowest accuracy.

We have observed that all the resulting eigenfunctions related to the values we present are in physically meaningful
agreement with the theoretical expectations, with an absence of any spurious mode in a checkerboard pattern. In
Figure 6, we plot the components of the fundamental eigenfunction computed using the OSGS formulation when
𝑁 = 32. The components are left free at the tip of the crack (see Table 17) in order to illustrate the singular behavior
of the solution vector near it.

To compare the results obtained from different stabilizations for this domain, we list the first 10 eigenvalues
obtained from the AG formulation when the components are left free and using the same set of stabilization parameters
in Table 20. As before, the OSGS results remain more accurate for each eigenvalue, although a similar convergence
tendency is observed in each one.
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Tab. 16: The first 10 eigenvalues on Ω3, SG formulation, 𝑢1, 𝑢2 are free at the tip.

Ref. Computed
𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

1.0341 2.5316 2.4804 (0.1) 2.4723 (0.0) 2.2958 (0.5) 2.0894 (0.8)
2.4674 4.3066 3.3216 (1.1) 2.6162 (4.3) 2.4699 (14.2) 2.4689 (2.3)
4.0469 4.9140 4.0973 (4.1) 4.0654 (2.5) 4.0563 (2.4) 4.0525 (2.3)
9.8696 11.2261 10.1299 (2.4) 9.9673 (2.4) 9.9193 (2.3) 9.8995 (2.3)
9.8696 11.2416 10.1301 (2.4) 9.9674 (2.4) 9.9194 (2.3) 9.8995 (2.3)

10.8449 12.1956 11.1009 (2.4) 10.9444 (2.3) 10.8966 (2.3) 10.8763 (2.2)
12.2649 13.6625 12.5979 (2.1) 12.4445 (1.5) 12.3944 (1.1) 12.3726 (0.8)
12.3370 15.0035 13.3779 (1.4) 12.9190 (1.4) 12.7404 (1.3) 12.6421 (1.3)
19.7392 22.6499 20.3592 (2.2) 20.0052 (2.1) 19.8851 (2.1) 19.8312 (2.1)
21.2441 26.0026 22.9060 (1.5) 22.0858 (1.7) 21.8061 (1.4) 21.6679 (1.3)

Tab. 17: The first 10 eigenvalues on Ω3, OSGS stabilization, 𝑢1, 𝑢2 free at the tip.

Ref. Computed
𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

1.0341 2.6723 2.5014 (0.2) 2.3973 (0.1) 1.8362 (0.8) 1.4656 (0.9)
2.4674 3.9573 3.0969 (1.2) 2.4736 (6.7) 2.4687 (2.2) 2.4677 (2.1)
4.0469 5.7250 4.2704 (2.9) 4.0846 (2.6) 4.0536 (2.5) 4.0482 (2.4)
9.8696 14.7183 10.4042 (3.2) 9.9669 (2.5) 9.8906 (2.2) 9.8746 (2.1)
9.8696 16.7168 10.4117 (3.7) 9.9674 (2.5) 9.8906 (2.2) 9.8746 (2.1)

10.8449 16.8288 11.5007 (3.2) 10.9714 (2.4) 10.8716 (2.2) 10.8511 (2.1)
12.2649 17.9053 13.0253 (2.9) 12.4791 (1.8) 12.3690 (1.0) 12.3447 (0.4)
12.3370 19.6119 13.6888 (2.4) 12.7776 (1.6) 12.4926 (1.5) 12.3725 (2.1)
19.7392 24.9201 21.0521 (2.0) 20.0963 (1.9) 19.8214 (2.1) 19.7591 (2.0)
21.2441 28.3900 21.4613 (5.0) 21.4403 (0.1) 21.2982 (1.9) 21.2528 (2.6)

Tab. 18: The first 10 eigenvalues on Ω3, SG formulation, 𝑢1 = 𝑢2 = 0 at the tip.

Ref. Computed
𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

1.0341 0.5429 0.7464 (0.8) 0.8771 (0.9) 0.9519 (0.9) 0.9920 (1.0)
2.4674 2.0383 2.3690 (2.1) 2.4438 (2.1) 2.4616 (2.0) 2.4660 (2.0)
4.0469 4.0133 4.0807 (-0.0) 4.0581 (1.6) 4.0500 (1.9) 4.0477 (1.9)
9.8696 10.3409 10.1588 (0.7) 9.9470 (1.9) 9.8892 (2.0) 9.8745 (2.0)
9.8696 10.5393 10.1701 (1.2) 9.9475 (1.9) 9.8892 (2.0) 9.8745 (2.0)

10.8449 10.7668 11.1508 (-2.0) 10.9348 (1.8) 10.8681 (2.0) 10.8507 (2.0)
12.2649 11.0607 11.2899 (0.3) 11.7001 (0.8) 11.9595 (0.9) 12.1060 (0.9)
12.3370 11.3086 12.4285 (3.5) 12.3954 (0.6) 12.3534 (1.8) 12.3412 (2.0)
19.7392 14.0332 20.1339 (3.9) 20.0343 (0.4) 19.8167 (1.9) 19.7588 (2.0)
21.2441 14.6242 20.5661 (3.3) 20.4182 (-0.3) 20.7411 (0.7) 20.9697 (0.9)

So far in this subsection, we have reported the results from interpolations considered on PS type meshes. However,
to show the capability of using CC type meshes with increased density along the crack and in the vicinity of the tip
with the stabilized formulations, we have tested their approximation features on domains with such strong singularities.
A sample triangulation is shown in Figure 5. We list the results that are obtained from 𝑃1 interpolations on these
internal layer meshes taking ℓ = 0.25, 𝑐𝑢 = 0.4, and 𝜏𝑝 = 0.125, using the AG formulation in Table 21 and the
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Tab. 19: The first 10 eigenvalues on Ω3, OSGS stabilization, 𝑢1 = 𝑢2 = 0 at the tip.

Ref. Computed
𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

1.0341 5.3986 3.7695 (0.7) 2.9776 (0.5) 2.6047 (0.3) 1.9336 (0.8)
2.4674 6.2971 4.2768 (1.1) 3.5556 (0.7) 2.6512 (2.6) 2.5144 (2.0)
4.0469 7.2649 4.7126 (2.3) 4.0958 (3.8) 4.0553 (2.5) 4.0484 (2.5)
9.8696 16.1213 10.4043 (3.5) 9.9669 (2.5) 9.8906 (2.2) 9.8746 (2.1)
9.8696 16.7986 10.4117 (3.7) 9.9674 (2.5) 9.8906 (2.2) 9.8746 (2.1)

10.8449 17.6385 11.5576 (3.3) 10.9788 (2.4) 10.8727 (2.3) 10.8512 (2.1)
12.2649 19.4200 13.4983 (2.5) 12.6622 (1.6) 12.4241 (1.3) 12.3595 (0.8)
12.3370 21.2125 13.9486 (2.5) 12.9150 (1.5) 12.5808 (1.2) 12.4203 (1.5)
19.7392 27.2312 21.3475 (2.2) 20.0964 (2.2) 19.8214 (2.1) 19.7591 (2.0)
21.2441 30.1025 22.1806 (3.2) 21.5102 (1.8) 21.3059 (2.1) 21.2550 (2.5)

Fig. 6: The components of the fundamental eigenfunction on Ω3, where 𝑁 = 32.

Tab. 20: The first 10 eigenvalues on Ω3, AG stabilization, 𝑢1, 𝑢2 free at the tip.

Ref. Computed
𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

1.0341 2.7407 2.5124 (0.2) 2.4748 (0.0) 1.8874 (0.8) 1.4198 (1.1)
2.4674 4.5001 4.0605 (0.4) 3.0014 (1.6) 2.4688 (8.6) 2.4677 (2.2)
4.0469 10.7546 5.2461 (2.5) 4.1090 (4.3) 4.0568 (2.7) 4.0486 (2.5)
9.8696 21.2428 10.5965 (4.0) 9.9883 (2.6) 9.8924 (2.4) 9.8747 (2.2)
9.8696 22.5337 10.5970 (4.1) 9.9884 (2.6) 9.8924 (2.4) 9.8747 (2.2)

10.8449 22.9547 11.7368 (3.8) 11.0081 (2.5) 10.8761 (2.4) 10.8515 (2.2)
12.2649 24.7056 13.3075 (3.6) 12.5181 (2.0) 12.3728 (1.2) 12.3448 (0.4)
12.3370 36.5179 15.3488 (3.0) 13.1554 (1.9) 12.5279 (2.1) 12.3607 (3.0)
19.7392 39.0917 21.8747 (3.2) 20.1941 (2.2) 19.8322 (2.3) 19.7599 (2.2)
21.2441 51.7639 25.8291 (2.7) 22.3851 (2.0) 21.4906 (2.2) 21.3091 (1.9)
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OSGS formulation in Table 22. The results in both of these tables put forward the overall acceptable convergence
properties, noting as before the relatively lower accuracy in the fundamental eigenvalue that is associated to the
singular eigenfunction.

Tab. 21: The first 10 eigenvalues on Ω3, AG stabilization using CC mesh, 𝑢1, 𝑢2 free at the tip.

Ref. Computed
𝑁 = 8 𝑁 = 16 𝑁 = 24 𝑁 = 32 𝑁 = 40

1.0341 2.5275 2.4786 (0.0) 2.2677 (0.4) 1.8993 (1.2) 1.6983 (1.2)
2.4674 4.2937 3.0951 (1.5) 2.4717 (12.3) 2.4696 (2.3) 2.4688 (2.2)
4.0469 5.5933 4.0913 (5.1) 4.0632 (2.5) 4.0552 (2.4) 4.0519 (2.3)
9.8696 11.1451 10.0931 (2.5) 9.9549 (2.4) 9.9140 (2.3) 9.8968 (2.2)
9.8696 11.1472 10.0931 (2.5) 9.9549 (2.4) 9.9141 (2.3) 9.8968 (2.2)

10.8449 12.1662 11.0773 (2.5) 10.9350 (2.3) 10.8924 (2.2) 10.8742 (2.2)
12.2649 13.6988 12.5901 (2.1) 12.4388 (1.5) 12.3918 (1.1) 12.3713 (0.8)
12.3370 15.8700 13.3026 (1.9) 12.7897 (1.9) 12.6044 (1.8) 12.5135 (1.9)
19.7392 22.7109 20.3612 (2.3) 20.0002 (2.1) 19.8825 (2.1) 19.8298 (2.1)
21.2441 26.1764 22.7693 (1.7) 21.9533 (1.9) 21.6802 (1.7) 21.5523 (1.6)

Tab. 22: The first 10 eigenvalues on Ω3, OSGS stabilization using CC mesh, 𝑢1, 𝑢2 free at the tip.

Ref. Computed
𝑁 = 8 𝑁 = 16 𝑁 = 24 𝑁 = 32 𝑁 = 40

1.0341 2.5226 2.4781 (0.0) 2.4108 (0.1) 2.1241 (0.8) 1.9292 (0.9)
2.4674 4.2374 2.9578 (1.9) 2.4716 (11.7) 2.4696 (2.2) 2.4688 (2.2)
4.0469 4.6380 4.0868 (3.9) 4.0623 (2.3) 4.0549 (2.3) 4.0518 (2.2)
9.8696 11.0142 10.0847 (2.4) 9.9536 (2.3) 9.9137 (2.2) 9.8967 (2.2)
9.8696 11.0333 10.0849 (2.4) 9.9537 (2.3) 9.9138 (2.2) 9.8967 (2.2)

10.8449 11.9657 11.0632 (2.4) 10.9327 (2.2) 10.8918 (2.2) 10.8740 (2.1)
12.2649 13.4428 12.5742 (1.9) 12.4362 (1.5) 12.3912 (1.1) 12.3711 (0.8)
12.3370 14.8347 13.2343 (1.5) 12.8494 (1.4) 12.6897 (1.3) 12.5957 (1.4)
19.7392 22.3994 20.3359 (2.2) 19.9956 (2.1) 19.8813 (2.1) 19.8293 (2.0)
21.2441 24.0726 22.6398 (1.0) 22.0059 (1.5) 21.7611 (1.3) 21.6296 (1.3)

6 Conclusions

We have studied and numerically validated the characteristics of approximations to the solutions of the Maxwell
eigenvalue problem that are obtained using nodal finite elements. Apart from the standard Galerkin formulation used
with special (PS type) elements, two stabilized finite element formulations (AG and OSGS) have been implemented
successfully to approximate both smooth and singular solutions. The convergence characteristics and error estimates
rely on the associated analysis of the source problems. We have shown that the formulations are optimally convergent
for a set of algorithmic parameters that are implemented within the stabilized formulations.

The Galerkin formulation, which is singular for the source problem, has been shown numerically to yield
reasonable results using PS meshes, as expected. We have also shown that using CC type meshes may lead to spurious
solutions even for smooth cases. The OSGS formulation has been shown to work proficiently on the meshes considered
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in this study, namely, PS and CC type meshes. The AG formulation has been shown to yield adequate results for
smooth solutions, noting the sensitivity to strong singular solutions.

As the main interest of the present study is in the use of nodal elements, a number of strategies of imposition
of the boundary condition at the re-entrant corners have been explored. It has been set forth that while leaving the
components free may not work well for the standard Galerkin formulation as in the case of the L-shape domain, it
functions successfully for both of the stabilized formulations. In addition, it has been shown that a fictitious normal
may serve as the best alternative for some problem geometries such as the L-shape domain.

Consequently, we have shown numerically that the stabilized methods can successfully approximate the eigenso-
lutions of Maxwell’s system when certain meshes are used, although with some limitations in accuracy in the case of
strong singularities. The proposed methods compare very favorably with other formulations due to their ability to
acquire the discrete spectrum without the obligation of eliminating the frequencies approximating zero, in addition to
their facility of accommodating any order of interpolations and allowing a coupling of different operators.
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