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A B S T R A C T

Wave propagation in elastodynamic problems in solids often requires fine computational
meshes. In this work we propose to combine stabilized finite element methods (FEM) with
an artificial neural network (ANN) correction term to solve such problems on coarse meshes.
Irreducible and mixed velocity–stress formulations for the linear elasticity problem in the
frequency domain are first presented and discretized using a variational multiscale FEM. A non-
linear ANN correction term is then designed to be added to the FEM algebraic matrix system
and produce accurate solutions when solving elastodynamics on coarse meshes. As a case study
we consider acoustic black holes (ABHs) on structural elements with high aspect ratios such as
beams and plates. ABHs are traps for flexural waves based on reducing the structural thickness
according to a power-law profile at the end of a beam, or within a two-dimensional circular
indentation in a plate. For the ABH to function properly, the thickness at the termination/center
must be very small, which demands very fine computational meshes. The proposed strategy
combining the stabilized FEM with the ANN correction allows us to accurately simulate the
response of ABHs on coarse meshes for values of the ABH order and residual thickness outside
the training test, as well as for different excitation frequencies.

. Introduction

Under the infinitesimal strain assumption, linear elasticity can be studied using different sets of variables and formulations. It
s most common to use the displacement as the unknown variable when working with the irreducible problem, or to work with
isplacement–stress or displacement–strain approaches for mixed formulations (see, e.g. [1–3]). Alternatively, velocity can also be
onsidered instead of displacement for irreducible or mixed elasticity problems [4–7]. The latter are usually solved in the time
omain, but by means of the time Fourier transform of the equations involved, the elasticity problem can be posed in the frequency
omain. This is equivalent to assuming a harmonic time dependence of the problem variables. In the frequency domain, the number
f variables is doubled, since their real and imaginary parts have to be considered [8,9].

In this work, we will use the mixed velocity–stress formulation and its irreducible counterpart for the velocity [10], in
ombination with an artificial neural network (ANN) strategy [11], to be able to work on coarse meshes with problems that normally
eed very fine meshes. The accurate numerical simulation of elastodynamics problems can in general be very expensive, requiring in
ome cases the use of GPU or supercomputing resources (see for instance [12,13]). Developing a methodology capable of reducing
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the cost of these numerical simulations to a fraction of its original cost while maintaining the accuracy is an important contribution
to the field. In this work we achieve so by resorting to correction terms generated by artificial neural networks, which we apply
to cheap coarse computational models. By coarse computational models we mean those in which the discretization size is close to
that needed for reproducibility of the solution. In the wave type phenomena we are interested in, it is commonly accepted that at
least 8 or 10 nodes per wavelength are needed to capture the behavior of the solution in space. Some problems, though, require a
much larger number of points per wavelength to provide meaningful numerical results. As an example of such problems requiring
fine meshes we will deal with wave propagation in acoustic black holes (ABHs) in beams and plates [14]. Let us discuss the three
main aspects of the current work in more detail.

The selected velocity–stress formulation for linear elasticity in [10] has some advantages over the displacement-stress one for
wave phenomena, because it directly gives us a mixed vector-tensor analogue of the well-known scalar-vector mixed wave equation
in acoustics [15–17]. In contrast, a displacement–stress approach results in a second-order form for the displacements and a zero-
order one for stresses, from which a first-order mixed wave equation cannot be recovered. The weak form of the velocity–stress
problem admits two main possibilities, namely the primal and dual formulations, depending on whether the term containing the
divergence of the stresses or the divergence of the velocities is integrated by parts. In the first case, more regularity is obtained
for the velocity than for the stresses, while the opposite is true for the dual problem. Mixed formulations have a larger number
of degrees of freedom per node than irreducible ones, but also show increased accuracy, which can be appreciated in the stresses
convergence rate when using the dual formulation. However, sometimes the improvement is not only a matter of accuracy, but of
being able or not to solve the problem. This happens in solid mechanics when there is locking, a numerical phenomenon often found
when dealing with thin structures and caused by different mechanisms. In this paper we will show that, apart from its excellent
numerical accuracy, the mixed formulation is crucial to circumvent a locking phenomenon that we have encountered when dealing
with thin solids and high frequencies when the elasticity equations are written in the frequency domain.

The discretization of the variational elasticity problems in this work will be carried out using the finite element method (FEM).
In general, the well-posedness of the problems at the continuum level is not inherited by their discretized counterparts. As far as
the weak irreducible form of the problem is concerned, the Galerkin FEM usually provides stable and optimally convergent results,
except for high frequencies, where the so-called pollution error may appear, as is the case with the Helmholtz equation [18–22].
However, this topic is outside the scope of this paper. On the other hand, for the discretization of the weak mixed form to be well
posed, the finite elements must satisfy a discrete inf-sup condition that can be circumvented by resorting to stabilized formulations.
The variational multiscale (VMS) stabilizing methods [23,24] will be adopted in this paper. VMS are based on dividing the unknowns
of the problem into two different scales, a large one that can be solved by the finite element mesh and a smaller subgrid scale (SGS)
that cannot be captured by the mesh. The idea is to approximate the SGS components in terms of the finite element unknown
components inside the elements and at their boundaries to improve stability [22,25].

The second ingredient of this paper concerns the use of correction terms based on an ANN. As it will be explained later, the
computation of wave motion in ABHs requires very fine meshes, so it would be interesting to make them coarser to reduce the
computational cost. In [26] it was proposed to compare the solution of some benchmark problems on fine and coarse meshes and
use them as training of an ANN to construct a correction term that could be applied to new simulations. With this term, valid
solutions can be obtained with coarser meshes and therefore with a lower computational cost. To show the potential of the method,
the case of static deflection of a beam with large deformations, the case of vortex shedding for an incompressible flow past a
cylinder, and a simple fluid–structure interaction problem were considered. Subsequently, the ANN strategy for FEM computations
was applied to the wave equation in mixed and irreducible forms, and in the time and frequency domains [11]. ANN correction
terms will be designed here for the mixed and irreducible linear elasticity problems in the frequency domain. We would like to
emphasize that we model correction terms, our model is not a surrogate model designed by solving the problem on fine meshes and
then creating a reduced-order data driven model. This means in particular that the ANNs that we need to use are very shallow
compared to those used by purely data driven models (see the discussion in [27]), and therefore with a reduced computational cost
compared to these models. The correction we introduce can be applied to different models that can be considered coarse but for
which a fine solution is available. It was applied to FEMs in [11] and to classical reduced order models based on proper orthogonal
decomposition in [28]. The contribution of this paper in this respect is to extend it to the FEM approximation of linear elasticity
in the frequency domain and to apply it to ABHs. Note that this implies training up to 18 variables in 3D (real and imaginary parts
of the six stress components and the three velocity components), instead of the 2 variables that are trained in [11]. Furthermore,
in this paper we also show that the formulation works when there are geometry changes involved, thus opening the door to use it
in shape optimization problems.

The third part of this paper deals with the application of the stabilized FEM strategy for linear elasticity and the ANN correction
terms to simulate bending wave propagation in ABHs. ABHs typically consist of wedge tips in beams or circular indentations in
plates whose thickness decreases towards their termination (ABH beam) or center (ABH plate) following a power law profile (see
e.g., [29–31]). When a bending wave enters an ABH, its velocity slows down, while its wavelength diminishes and the amplitude
increases. In the ideal case of zero thickness at the ABH termination/center, it can be shown that the wave would take infinite time
to reach there. Therefore, no reflection would occur and the structure would act as a black hole for bending waves. In practice, small
imperfections in the thinner part of the ABH can totally ruin the effect, but placing a small viscoelastic damping layer there can lead
to a very significant suppression of wave reflections and consequently of vibrations in the uniform regions of the beam/plate [32].

Solving wave propagation in ABHs with the FEM can be quite demanding, since the thickness of the termination/center must be
very small and the wavelength is shortened in that region. This requires very fine FEM meshes, as the standard request of at least
2

8 to 10 nodes per wavelength must be met. Consequently, other numerical approaches have been applied to ABHs, mostly based
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on the Rayleigh–Ritz method with different types of basis functions. Mexican hat wavelets [33] and Morlet wavelets [34] have
been proposed for ABH beams, while 2D Daubechies wavelets [35] have been suggested for ABH plates. Very accurate results have
also been obtained using Gaussian basis functions for ABH beams [36] and plates [37]. These approaches have proven to be very
efficient for ABHs of simple geometries such as ring-shaped ABHs [38], double-leaf ABHs [39] or annular ABHs in cylinders [40],
and even for periodic arrays of ABHs [41,42] intended for wave manipulation purposes like bandgap formation, focusing, negative
refraction and bi-refraction, and collimation.

It is worth mentioning that commercial FEM software has already been applied to many ABH problems, but dealing with
implifying assumptions such as the Euler–Bernoulli theory for beams or the Kirchhoff–Love theory for plates (see e.g., [43–45]).
owever, if ABHs are to be embedded in complex structural components commonly found in industry (see e.g., [46]) there is a clear
eed to develop FEMs that can deal with them at a reasonable computational cost. This article presents a first step towards this
oal by studying conventional ABHs but treating the full linear elasticity equations and using an ANN correction to obtain accurate
esults with fairly coarse meshes.

The paper is organized as follows. In Section 2, several formulations for the linear elasticity problem are described along with
heir variational counterparts and finite element approximations. In Section 3, the ANN correction term for the irreducible velocity
nd mixed velocity–stress FEM approximations is explained and implemented. Next, in Section 4, the stabilized FEM plus ANN
trategy is applied to six numerical examples dealing with ABHs in structural elements with high geometrical aspect ratios such as
eams and plates. Finally, the conclusions close the paper in Section 5.

. Mixed and irreducible formulations of the linear elasticity problem

In this section we briefly present the irreducible and mixed approaches to the linear elasticity problem in strong and variational
orms. We also present the stabilized FEM for solving the latter. We build on earlier work by some of the authors in [10], with some
pecific comments related to the problem at hand, and refer the reader to it for more details.

.1. Boundary value differential problems in the frequency domain

Let us consider a spatial domain 𝛺 ⊂ R𝑑 , where 𝑑 = 2, 3, with boundary 𝜕𝛺. We split 𝜕𝛺 into two disjoint sets 𝛤𝑣 and 𝛤𝜎 , where
the boundary conditions corresponding to the velocity 𝒗 and the normal component of the Cauchy stress tensor 𝝈 will be enforced,
respectively.

The elastic fourth order constitutive tensor of the material will be denoted by 𝑪. In this work, we will consider linear elastic
and isotropic materials, so 𝑪 and its inverse are written as

𝑪 = 𝐸
1 + 𝜈

𝑰4 +
𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)
𝑰2 ⊗ 𝑰2, and 𝑪−1 ∶= 1 + 𝜈

𝐸
𝑰4 −

𝜈
𝐸
𝑰2 ⊗ 𝑰2, (1)

here 𝑰4 is the fourth-rank identity tensor, 𝑰2 is the second-rank identity tensor, 𝐸 is the Young modulus and 𝜈 the Poisson ratio. In
he case of ABHs, we shall need to introduce material damping; this will be accomplished by means of a complex Young’s modulus,
′ = 𝐸(1 + i𝜂) ∈ C, where 𝜂 is the loss factor.

.1.1. Irreducible form
The irreducible form of the problem in the frequency domain consists in finding 𝒗 ∶ 𝛺 → C𝑑 such that

−𝜌𝜔2𝒗 − ∇ ⋅ 𝑪 ∶ ∇𝑆𝒗 = 𝒇 , (2)

here 𝜌 is the density, 𝜔 is the angular frequency, ∇𝑆 is the symmetric gradient of a vector field and 𝒇 is the force term. The
oundary conditions on 𝛤𝑣 and 𝛤𝜎 are given by

𝒗 = 𝟎 on 𝛤𝑣, 𝒏 ⋅ 𝑪 ∶ ∇𝑆𝒗 = 𝟎 on 𝛤𝜎 , (3)

here 𝒏 corresponds to the unit normal pointing outward from the domain.

.1.2. Mixed form
The mixed form of the problem in the frequency domain is to find 𝒗 ∶ 𝛺 → C𝑑 and 𝝈 ∶ 𝛺 → C𝑑 ⊗ C𝑑 such that

−i 𝜌𝜔 𝒗 − ∇ ⋅ 𝝈 = 𝒇 , (4)

−i𝜔𝑪−1 ∶ 𝝈 − ∇𝑆𝒗 = 𝟎, (5)

ith boundary conditions

𝒗 = 𝟎 on 𝛤 , 𝒏 ⋅ 𝝈 = 𝟎 on 𝛤 . (6)
3
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2.2. Variational formulations in the frequency domain

Before presenting the variational formulation of the irreducible and mixed elasticity problems, let us introduce some notation. O
will denote a subdomain of 𝛺, 𝐿2(O) the space of square integrable functions in O (scalars, vectors or tensors), 𝐻1(O) the space of
functions in 𝐿2(O) with derivatives in 𝐿2(O) and 𝐻(div,O) the space of vector or tensor functions with components and divergence
in 𝐿2(O). The inner product of two functions in 𝐿2(O) will be represented by (⋅, ⋅)O, with the notation simplification (⋅, ⋅)𝛺 ≡ (⋅, ⋅),

hereas the integral of the product of any two ordinary or generalized functions will be designated as ⟨⋅, ⋅⟩O, again with ⟨⋅, ⋅⟩𝛺 ≡ ⟨⋅, ⋅⟩.
et 𝑉𝑣 and 𝑉𝜎 be the appropriate spaces for the velocity and the stresses, respectively, formed by complex-valued functions. 𝒘 will
enote a test function in 𝑉𝑣 and 𝜼 a test function in 𝑉𝜎 .

.2.1. Irreducible form
The variational form of the irreducible equation in Eq. (2) with boundary conditions in Eq. (3) is unique and obtained, as usual,

ultiplying Eq. (2) by a test function 𝒘, integrating over the domain 𝛺, and then integrating by parts the second term of the
quation considering the boundary terms in Eq. (3). Taking 𝑉𝑣 = {𝒘 ∈ 𝐻1(𝛺)𝑑 ∣ 𝒘 = 𝟎 on 𝛤𝑣}, the problem is that of finding a
omplex valued 𝒗 ∈ 𝑉𝑣 such that

−𝜌𝜔2(𝒗,𝒘) + (𝑪 ∶ ∇𝑆𝒗,∇𝑆𝒘) = ⟨𝒇 ,𝒘⟩, (7)

for all 𝒘 ∈ 𝑉𝑣, with the boundary conditions

𝒗 = 𝟎, strongly imposed on 𝛤𝑣,

𝒏 ⋅ 𝑪 ∶ ∇𝑆𝒗 = 𝟎, weakly imposed on 𝛤𝜎 .

Note that the 𝐿2(𝛺) inner product is not symmetric, but Hermitian, being defined as

(𝑎, 𝑏) = ∫𝛺
𝑎𝑏̄ d𝛺,

for any two functions 𝑎, 𝑏, where 𝑏̄ represents the complex conjugate of 𝑏.

2.2.2. Mixed form: variational forms I and II
Let us start defining the bilinear form 𝐵([𝒗,𝝈], [𝒘, 𝜼]) = −⟨∇⋅𝝈,𝒘⟩−⟨∇𝑆𝒗, 𝜼⟩ and the linear form 𝐿([𝒘, 𝜼]) = ⟨𝒇 ,𝒘⟩. The weak form

of the mixed problem in Eqs. (4)–(5) with boundary conditions in Eq. (6) is not unique and depends on which term of 𝐵([𝒗,𝝈], [𝒘, 𝜼])
is integrated by parts. This determines a different regularity for the velocity and stress unknowns.

The primal formulation will be called variational form I (VFI) and corresponds to integrating by parts the first term of
𝐵([𝒗,𝝈], [𝒘, 𝜼]). Note that the functional setting for the velocity in the VFI will be the same as for the irreducible variational form
in Eq. (7). Defining the spaces 𝑉𝑣 = {𝒘 ∈ 𝐻1(𝛺)𝑑 ∣ 𝒘 = 𝟎 on 𝛤𝑣} and 𝑉𝜎 = 𝐿2(𝛺)𝑑×𝑑 and considering 𝒗,𝒘 ∈ 𝑉𝑣 and 𝝈, 𝜼 ∈ 𝑉𝜎 , we
can rewrite 𝐵([𝒗,𝝈], [𝒘, 𝜼]) as

𝐵([𝒗,𝝈], [𝒘, 𝜼]) = (𝝈,∇𝑆𝒘) − (∇𝑆𝒗, 𝜼) − ⟨𝒏 ⋅ 𝝈,𝒘⟩𝛤𝜎

=∶ 𝐵𝐼 ([𝒗,𝝈], [𝒘, 𝜼]) − ⟨𝒏 ⋅ 𝝈,𝒘⟩𝛤𝜎 .

The weak imposition of the boundary condition 𝒏 ⋅ 𝝈 = 𝟎 on 𝛤𝜎 allows us to obtain the VFI for the linear elasticity equations in
Eqs. (4)–(5), supplemented by Eq. (6). This consists in finding 𝒗 ∈ 𝑉𝑣 and 𝝈 ∈ 𝑉𝜎 such that

−i𝜔𝜌 (𝒗,𝒘) − i𝜔(𝑪−1 ∶ 𝝈, 𝜼) + 𝐵𝐼 ([𝒗,𝝈], [𝒘, 𝜼]) = 𝐿([𝒘, 𝜼]), ∀ 𝒘 ∈ 𝑉𝑣, 𝜼 ∈ 𝑉𝜎 , (8)

and with 𝒗 = 𝟎 prescribed strongly on 𝛤𝑣.
The dual formulation referred to as variational form II (VFII) corresponds to integrating by parts the second term of

𝐵([𝒗,𝝈], [𝒘, 𝜼]). Introducing the spaces 𝑉𝑣 = 𝐿2(𝛺)𝑑 and 𝑉𝜎 = {𝜼 ∈ 𝐻(div, 𝛺) | 𝒏 ⋅ 𝜼 = 𝟎 on 𝛤𝜎} we rewrite 𝐵([𝒗,𝝈], [𝒘, 𝜼]) as

𝐵([𝒗,𝝈], [𝒘, 𝜼]) = −(∇ ⋅ 𝝈,𝒘) + (𝒗,∇ ⋅ 𝜼) − ⟨𝒗,𝒏 ⋅ 𝜼⟩𝛤𝑣
=∶ 𝐵𝐼𝐼 ([𝑝, 𝒖], [𝑞, 𝒗]) − ⟨𝒗,𝒏 ⋅ 𝜼⟩𝛤𝑣 .

If we now impose 𝒗 = 𝟎 weakly on 𝛤𝑣, the VFII of the linear elasticity equations in Eqs. (4)–(5) with conditions in Eq. (6) reads:
find 𝒗 ∈ 𝑉𝑣 and 𝝈 ∈ 𝑉𝜎 such that

−i𝜔𝜌 (𝒗,𝒘) − i𝜔(𝑪−1 ∶ 𝝈, 𝜼) + 𝐵𝐼𝐼 ([𝒗,𝝈], [𝒘, 𝜼]) = 𝐿([𝒘, 𝜼]), ∀ 𝒘 ∈ 𝑉𝑣, 𝜼 ∈ 𝑉𝜎 . (9)

with 𝒏 ⋅ 𝝈 = 𝟎 imposed strongly on 𝛤𝜎 .
Note that VFI provides more regularity for the velocity than for the stresses, while the opposite is true for VFII.
4
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2.3. Finite element approximation

We assume that 𝛺 is a polyhedral domain and that ℎ = {𝐾} is a partition of 𝛺 into finite elements 𝐾 of characteristic size
. We consider the family of finite element partitions {ℎ}ℎ>0 to be quasi-uniform. The 𝐿2 inner product inside an element 𝐾 will
e represented by (⋅, ⋅)𝐾 and by (⋅, ⋅)𝜕𝐾 on its boundary 𝜕𝐾. The conformal FEM spaces that approximate 𝒗 and 𝝈 are denoted as

𝑉𝑣,ℎ ⊂ 𝑉𝑣 and 𝑉𝜎,ℎ ⊂ 𝑉𝜎 , respectively.
For the variational irreducible problem in Eq. (7), the standard Galerkin FEM will suffice for the problem at hand. However,

for the variational mixed formulations VFI in Eq. (8) and VFII in Eq. (9), we will employ a stabilized FEM based on the VMS
method [23,24,47] to circumvent the discrete inf-sup condition and use equal interpolation for the velocities and the stresses. In
the VMS, we introduce SGS spaces for 𝒗 and 𝝈, namely, 𝑉 ′

𝑣 and 𝑉 ′
𝜎 , which complement the finite element ones so that 𝑉𝑣 = 𝑉𝑣,ℎ⊕𝑉 ′

𝑣
and 𝑉𝜎 = 𝑉𝜎,ℎ ⊕𝑉 ′

𝜎 . The unknowns of the problem and their respective test functions are then split into a FEM part and a SGS part,
such that 𝒗 = 𝒗ℎ + 𝒗′, 𝒘 = 𝒘ℎ +𝒘′, 𝝈 = 𝝈ℎ + 𝝈′ and 𝜼 = 𝜼ℎ + 𝜼′. Hereafter, the prime will be used to denote SGS functions and SGS
spaces. The key to the VMS is to find suitable approximations for the SGSs that stabilize and improve the Galerkin FEM solution.

2.3.1. Irreducible form
As already mentioned, for the variational irreducible problem we will work with frequencies low enough not to be affected by

the pollution error. Therefore, the Galerkin FEM will produce the expected results with acceptable accuracy. The latter consists in
finding 𝒗ℎ ∈ 𝑉𝑣,ℎ such that

−𝜌𝜔2(𝒗ℎ,𝒘ℎ) + (𝑪 ∶ ∇𝑆𝒗ℎ,∇𝑆𝒘ℎ) = ⟨𝒇 ,𝒘ℎ⟩, ∀𝒘ℎ ∈ 𝑉𝑣,ℎ. (10)

It is well known that this formulation displays pollution error when 𝜔 is large. However, we will show that for moderate values of
𝜔 this approach locks when approximated numerically if 𝛺 has one the dimensions much smaller that the others. We shall come
back to this point in Section 4.

2.3.2. Mixed form
In this case, VMS stabilization must be used. Before that, let us introduce the differential operator  = [𝑣,𝜎 ] and its transpose

t = [t
𝑣,

t
𝜎 ],

𝑣([𝒗ℎ,𝝈ℎ]) = −i 𝜌𝜔 𝒗ℎ − ∇⋅𝝈ℎ, 𝜎([𝒗ℎ,𝝈ℎ]) = −i𝜔𝑪−1 ∶ 𝝈ℎ − ∇𝑆𝒗ℎ,

t
𝑣([𝒘ℎ, 𝜼ℎ]) = −i 𝜌𝜔𝒘ℎ + ∇⋅𝜼ℎ, t

𝜎 ([𝒘ℎ, 𝜼ℎ]) = −i𝜔𝑪−1 ∶ 𝜼ℎ + ∇𝑆𝒘ℎ.

These expressions allow us to write the differential equations of the mixed problem Eqs. (4)–(5) as ([𝒗ℎ,𝝈ℎ]) = [𝒇 , 𝟎]. Note that
the adjoint of  is the complex conjugate of t , although we will write the stabilized FEM formulation in terms of t .

The procedure for obtaining the VMS-FEM approximations to the variational forms VFI and VFII will not be given here and the
reader is referred to [10] for details (see also [47], among others). However, we will present the final stabilized VMS-FEM forms to
highlight the differences between VFI and VFII.

Splitting the unknowns 𝒗 and 𝝈 into their FEM and SGS components and integrating by parts the terms containing derivatives
of the SGSs, the stabilized FEM formulation for the VFI involves finding 𝒗ℎ ∈ 𝑉𝑣,ℎ and 𝝈ℎ ∈ 𝑉𝜎,ℎ such that

− i 𝜌𝜔 (𝒗ℎ,𝒘ℎ) − i𝜔(𝑪−1 ∶ 𝝈ℎ, 𝜼ℎ) + 𝐵𝐼 ([𝒗ℎ,𝝈ℎ], [𝒘ℎ, 𝜼ℎ])

+
∑

𝐾
(𝒗′,t

𝑣([𝒘ℎ, 𝜼ℎ]))𝐾 +
∑

𝐾
(𝝈′,t

𝜎 ([𝒘ℎ, 𝜼ℎ]))𝐾 = 𝐿([𝒘ℎ, 𝜼ℎ]), (11)

for all [𝒘ℎ, 𝜼ℎ] ∈ 𝑉𝑣,ℎ × 𝑉𝜎,ℎ.
Likewise, the stabilized FEM formulation for VFII entails finding 𝒗ℎ ∈ 𝑉𝑣,ℎ and 𝝈ℎ ∈ 𝑉𝜎,ℎ such that

− i 𝜌𝜔 (𝒗ℎ,𝒘ℎ) − i𝜔(𝑪−1 ∶ 𝝈ℎ, 𝜼ℎ) + 𝐵𝐼𝐼 ([𝒗ℎ,𝝈ℎ], [𝒘ℎ, 𝜼ℎ])

+
∑

𝐾
(𝒗′,t

𝑣([𝒘ℎ, 𝜼ℎ]))𝐾 +
∑

𝐾
(𝝈′,t

𝜎 ([𝒘ℎ, 𝜼ℎ]))𝐾 = 𝐿([𝒘ℎ, 𝜼ℎ]), (12)

for all [𝒘ℎ, 𝜼ℎ] ∈ 𝑉𝑣,ℎ × 𝑉𝜎,ℎ.
The velocity and stress SGSs 𝒗′ and 𝝈′ in the interiors of the elements in Eqs. (11)–(12) are approximated respectively by,

𝒗′|𝐾 = 𝜏𝑣𝑃ℎ[𝒇 − 𝑣([𝒗ℎ,𝝈ℎ])]𝐾 , (13)

𝝈′
|𝐾 = 𝜏𝜎𝑃ℎ[−𝜎 ([𝒗ℎ,𝝈ℎ])]𝐾 , (14)

where 𝜏𝑣 and 𝜏𝜎 are stabilization parameters (see [10] for their expressions) and two different options can be considered for the
projection 𝑃ℎ. If the space of SGSs is chosen as the space of finite element residuals, then 𝑃ℎ = 𝐼 , with 𝐼 being the identity, and
the stabilization approach is known as the algebraic subgrid scale (ASGS) method (see e.g., [48]). On the other hand, if the space
of SGSs is considered to be orthogonal to the finite element space, the projection in Eqs. (13)–(14) becomes 𝑃ℎ = 𝐼 − 𝑃ℎ, with 𝑃ℎ
standing for the projection onto the finite element space. The resulting method is known as the orthogonal subgrid scale (OSGS)
5

method (see e.g., [49]).
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3. A correction technique using artificial neural networks

As mentioned in the introduction, many problems, such as the bending motion of ABH beams and plates that we are concerned
ith in this paper, require fine computational meshes. Therefore, if a parametric analysis involving a large number of simulations

s to be performed, the computational cost can become prohibitive. In this section, we adapt the ANN strategy in [11,26] to the
urrent linear elasticity problem in irreducible and mixed forms. The key idea is to compute a set of solutions to variations of the
riginal problem on fine meshes (e.g., by making changes to the geometry and physical parameters), and then use them to derive a
orrection term that improves the result of simulations on coarse meshes, which include variations not previously considered. The
irst phase is the training of the ANN and the second is the testing (or execution).

Let us first present the algebraic matrix systems for the discrete irreducible and mixed forms of the problem, and then explain
ow to compute the ANN correction term.

.1. Algebraic structure of the irreducible and mixed elasticity problems

Suppose that we have either discretized the FEM problem in Eq. (10) or in Eqs. (11) and (12) using a coarse mesh. In all cases,
he resulting linear algebraic matrix system will be of the type,

𝖠𝖴c = 𝖥, (15)

here 𝖴c ∈ C𝑚 is the unknown vector of nodal values and 𝖥 ∈ C𝑚 is the force one. 𝑚 is the product of the total number of nodes
by the number of degrees of freedom of each node, i.e., the total number of degrees of freedom of the problem. The matrix of
the system has dimensions 𝑚 × 𝑚 and it is complex, i.e., 𝖠 ∈ C𝑚×𝑚. Given 𝖥 and 𝖠, the unknown vector 𝖴c can be computed from
Eq. (15) provided 𝖠 is invertible. As mentioned above, our goal is to improve the accuracy of 𝖴c by adding an ANN correction term
to Eq. (15).

3.1.1. Matrix system for the irreducible form
The matrices and vectors of Eq. (15) for the FEM discretization of the irreducible formulation in Eq. (10) are

𝖠 = −𝜔2𝖬𝑣 − 𝖪𝑣, 𝖥 = 𝖥𝑣, 𝖴c = 𝗏,

where 𝖬𝑣 is the mass matrix that includes the density and 𝖪𝑣 is the stiffness matrix, which contains the material properties,
see Eq. (1). 𝖥𝑣 is the force vector and 𝗏 is the unknown vector containing all the degrees of freedom of the mesh nodes corresponding
to 𝒗ℎ.

3.1.2. Matrix system for the mixed forms VFI and VFII
To facilitate the identification of the entries in the algebraic matrix systems for VFI and VFII in Eqs. (11) and (12), let us explicitly

write the stabilization terms of these equations instead of making use of the differential operators 𝑣,𝜎 . The stabilization terms
read,

∑

𝐾
𝜏𝑣(𝑃ℎ[𝒇 + i𝜔𝜌 𝒗ℎ + ∇ ⋅ 𝝈ℎ], i𝜔𝜌𝒘ℎ + ∇ ⋅ 𝜼ℎ)𝐾

+
∑

𝐾
𝜏𝜎 (𝑃ℎ[i𝜔𝑪−1 ∶ 𝝈ℎ + ∇𝑆𝒗ℎ], i𝜔𝑪−1 ∶ 𝜼ℎ + ∇𝑆𝒘ℎ)𝐾 .

On the other hand, let us introduce some notation before setting 𝖠, 𝖴c and 𝖥 in Eq. (15) for VFI and VFII. Again, 𝗏 refers to the
vector of unknown degrees of freedom for the velocity, while 𝗌 denotes that for the stress 𝝈ℎ. 𝖠 is built from block matrices and a
double subscript is used to indicate their position. That is, 𝑣𝑣 is a block matrix in the momentum equation that multiplies 𝗏, while
𝑣𝜎 represents a block matrix in the momentum equation multiplying 𝗌. Analogously, 𝜎𝑣 is a block matrix in the constitutive equation
that multiplies 𝗏 and 𝜎𝜎 is a block matrix in the constitutive equation that multiplies 𝗌. As for the stabilization block matrices they
are identified by a subscript 𝜏 and either a superscript label ‘asgs’ designating a term that only appears in the ASGS method, or an
equivalent superscript ‘osgs’ for the OSGS. Moreover, 𝖦𝑆 is the matrix that arises from the symmetric gradient and 𝖣 that from the
divergence of a tensor tested with a vector function.

The matrices and vectors in Eq. (15) for the mixed formulation VFI in Eq. (11) are given by,

𝖠 =
[

−i𝜔𝖬𝑣𝑣 + 𝜔2𝖬asgs
𝜏,𝑣𝑣 + 𝖲𝜏,𝑣𝑣 −i𝜔𝖬asgs

𝜏,𝑣𝜎 + i𝜔 𝖲asgs𝜏,𝑣𝜎 + 𝖦t
𝑆

−i𝜔𝖬asgs
𝜏,𝜎𝑣 + i𝜔 𝖲asgs𝜏,𝜎𝑣 − 𝖦𝑆 −i𝜔𝖬𝜎𝜎 + 𝜔2𝖬asgs

𝜏,𝜎𝜎 + 𝖲𝜏,𝜎𝜎

]

, (16)

𝖥 =
[

𝖿 + 𝖿osgs𝜏,𝑣 (𝗏)
i𝜔 𝖿 asgs𝜏 + 𝖿osgs𝜏,𝜎 (𝗌)

]

, 𝖴c =
[

𝗏
𝗌

]

,

while 𝖠 for VFII in Eq. (12) becomes

𝖠 =
[

−i𝜔𝖬𝑣𝑣 + 𝜔2𝖬asgs
𝜏,𝑣𝑣 + 𝖲𝜏,𝑣𝑣 −i𝜔𝖬asgs

𝜏,𝑣𝜎 + i𝜔 𝖲asgs𝜏,𝑣𝜎 − 𝖣
−i𝜔𝖬asgs

𝜏,𝜎𝑣 + i𝜔 𝖲asgs𝜏,𝜎𝑣 + 𝖣t −i𝜔𝖬𝜎𝜎 + 𝜔2𝖬asgs
𝜏,𝜎𝜎 + 𝖲𝜏,𝜎𝜎

]

,

with 𝖥 and 𝖴 being the same as for VFI.
6
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3.2. Artificial neural network correction

Let us next solve our linear elasticity problem using a finer mesh than that of Eq. (15), which provides the solution 𝖴f ∈ C𝑀

with 𝑀 ≫ 𝑚. We can construct a projection from the space to which the fine solution belongs to the space of the coarse solution,

𝖯fc ∶ C𝑀 ⟶ C𝑚.

his projection is essential for our ANN correction term since we assume that the best possible solution in the coarse mesh is given
y 𝖴c = 𝖯fc(𝖴f ).

For a linear problem, it is easy to introduce a correction 𝖣ex ∈ C𝑚 to Eq. (15) to obtain the solution 𝖯fc(𝖴f ). We simply have to
consider

𝖠𝖴c + 𝖣ex = 𝖥 with 𝖣ex = 𝖥 − 𝖠𝖯fc(𝖴f ), (17)

which has solution 𝖴c = 𝖯fc(𝖴f ), provided 𝖠 is invertible.
Obviously, if we need to solve a single problem, the procedure of Eq. (17) does not make sense since we already have 𝖴f .

However, as explained at the beginning of the section our interest is to solve variations of the original problem on coarse grids to
save computational costs. The idea is to first solve some of them on fine meshes (ANN training) and then construct the correction
terms to resolve new variations of the problem on coarse meshes (ANN testing). In the case of ABHs, these variations will include
changes in the geometry of the computational domain, a possibility not considered in [11].

Let us next focus on the ANN training. Suppose that we have 𝑁 variations of the original problem for which we have computed
the fine solutions, 𝖴f ,𝛼 , 𝛼 = 1,… , 𝑁 , with each value of 𝛼 denoting a particular variation. The uncorrected coarse problem for each
one is

𝖠𝛼𝖴c,𝛼 = 𝖥𝛼 , 𝛼 = 1,… , 𝑁.

Introducing the exact correction

𝖣ex,𝛼 = 𝖥𝛼 − 𝖠𝛼𝖯fc(𝖴f ,𝛼), 𝛼 = 1,… , 𝑁, (18)

we obtain the corrected solution to the coarse problems

𝖠𝛼𝖴c,𝛼 + 𝖣ex,𝛼 = 𝖥𝛼 , (19)

given by 𝖴c,𝛼 = 𝖯fc(𝖴f ,𝛼), ∀ 𝛼 = 1,… , 𝑁 .
The set of solutions 𝖴c,𝛼 = 𝖯fc(𝖴f ,𝛼) constitutes the training set and the associated variations, {𝛼}, are called the training

configurations. The goal now is to design a correction term 𝖣 ∈ C𝑚 that can improve the coarse solution for any variation not
contemplated in the training configurations. That is, we are looking for a correction 𝖣 such that the solution of

𝖠𝖴c + 𝖣 = 𝖥,

improves that of Eq. (15). Our proposal for the correction term is that it only depends on the unknown solution, i.e., 𝖣 = 𝖣(𝖴c), and
that it has to be as ‘‘close’’ as possible to 𝖣ex,𝛼 from the training configurations. Therefore, the problem to be solved has the form

𝖠𝖴c + 𝖣(𝖴c) = 𝖥. (20)

Different options could be considered for 𝖣(𝖴c) (see e.g., [11]), and ours has been to use an ANN. The latter offers several
advantages regarding, for example, the flexibility and stability to complete the training set to improve the correction term, with
little computational effort (among others). The ANN aims to fit the inputs {𝖯fc(𝖴f ,𝛼)}𝑁𝛼=1 and the outputs {𝖣ex,𝛼}𝑁𝛼=1 given by Eq. (18).
The ANN construction of 𝖣(𝖴c) consists of a highly nonlinear mapping

𝖣 ∶ C𝑚 ⟶ C𝑚,

trained with the pairs {𝖯fc(𝖴f ,𝛼),𝖣ex,𝛼}𝑁𝛼=1. For the elasticity problem at hand, it has been sufficient to use simple network
architectures, with only a few hidden layers and a few neurons per layer. We have considered feedforward architectures with
backpropagation algorithms to compute weights and biases, with the sigmoid function being the choice for the activation function.
Let us stress that our base model is a finite element one, only the correction being based on an ANN; this is what allows us to use
shallow and simple architectures of the ANNs, much simpler than in cases in which the whole model is based on an ANN.

To apply ANNs to our problem we have to define three important factors: the input to the network, its output and the loss
function. The input is the set {𝖯fc(𝖴f ,𝛼)}𝑁𝛼=1 but, since 𝖯fc(𝖴f ,𝛼) is the vector of nodal values of a certain function 𝑢c,𝛼(𝒙) defined
on the coarse mesh, we can introduce some simplifications in our FEM framework. For example, when trying to obtain the 𝑗th
component of 𝖣, namely 𝖣𝑗 , 𝑗 = 1,… , 𝑚, it makes sense to use only some components of 𝖯fc(𝖴f ,𝛼). In the present work we select
those associated to the nodes connected to the one involving the 𝑗th degree of freedom. The influence of these neighboring nodes
can be taken into account by including the derivatives of 𝑢c,𝛼(𝒙) as an input to the ANN. Note that the output of the network are
precisely the 𝖣𝑗 entries of 𝖣. As for the loss function of the ANN, which determines its weights and biases, it is constructed as

 =
𝑁
∑

‖𝖣ex,𝛼 − 𝖣(𝖯fc(𝖴f ,𝛼))‖2. (21)
7
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Fig. 1. 2D geometry of the ABH beam and coarse FEM mesh.

This makes explicit that the ANN is trained with the configurations for which the exact correction is known.
Once the correction term 𝖣 has been built, we need to solve Eq. (20), which is strongly non-linear because of its dependence on

𝖴c, for new variations in 𝖠 and/or 𝖥 (ANN testing). This can be done through the iterative strategy,

𝖠𝖴c
(𝑘) = 𝖥 − 𝖣(𝖴c

(𝑘−1)), (22)

where the superscript 𝑘 is the iteration counter. This simple approach has worked for our problem, but alternatives, such as the
Newton–Raphson scheme, could have been used instead. Let us point out that the problem we are dealing with is linear, and therefore
iterations are only required for the correction term. However, in the case of nonlinear problems, such as those that arise when the
rheological behavior of the material is nonlinear, the iterative scheme in (22) can be coupled with that due to the linearization of
the base FEM model.

4. Application: Acoustic black holes in beams and plates

4.1. General considerations

In the following we will apply the stabilized FEM formulation for the linear elasticity problem and the ANN correction term to
calculate the bending motion in ABH beams and plates. The thickness profile of the classical ABH wedge of a beam, or that of a
circular ABH indentation, is a power law,

ℎ(𝑟) =
ℎuni − ℎ0

𝑟𝑚abh
|𝑟|𝑚 + ℎ0, (23)

where ℎ0 is the residual thickness at the end of the ABH beam (or at the center of the indentation for ABH plates), ℎuni is the
thickness of the uniform part of the beam (plate), 𝑟abh is the length (radius) of the ABH and 𝑚 its order. Note that ℎ(𝑟abh) = ℎuni and
that ℎ(0) = ℎ0 (see Fig. 1 for a schematic of an ABH beam). When the ABH geometry is discretized using the FEM, the aspect ratio
of the elements will be high, particularly when the height is ℎ0, since we mesh the ABH across the thickness with the same number
of elements everywhere. However, our experience is that these aspect ratios are not high enough to yield ill conditioned matrices.
In any case, we employ in our calculations direct solution methods.

We will train the ANN on fine meshes to obtain a good FEM solution when we vary a parameter of the ABH and simulate on
coarser meshes. In particular, we will consider changing the ABH oder, 𝑚, its residual thickness, ℎ0, and the frequency of the incident
wave. In all the examples we will work with the mixed formulation VFI, although an ANN training with the irreducible form will
be also carried out for the ABH beam, for comparison purposes.

As far as the ANN is concerned, and as explained in Section 3.2, a simple architecture with a few hidden layers and few neurons
per layer has been sufficient for our purposes. To avoid under and over-fitting, the parameters of the ANN network have been
chosen so that architectures as simple as possible but which are capable of reproducing the complexities of the problem at hand are
obtained. The number of layers and neurons will be specified below for each example. It is worth mentioning that one of the main
difficulties we encountered with this type of training has been the sharp increase in the values of the variables when approaching
an eigenvalue. Although the damping layer smooths them significantly, these large changes in solution values make ANN training
challenging. However, as will be demonstrated in the results of the next subsections, good results have been obtained despite this
problem.

The improvement of the coarse mesh solution with the ANN correction term has been evaluated by characterizing it with the
percentage index,

𝐼 =
𝐸𝑐 − 𝐸𝑡

𝐸𝑐
× 100, (24)

where 𝐸𝑐 refers to the error of the solution computed on the coarse mesh compared to the solution on the fine mesh, and 𝐸𝑡 refers
to the error of the solution computed on the coarse mesh but using the correction term from the trained ANN. The errors have been
computed for invariants under coordinate transformations. That is, the modulus has been used for the real and imaginary parts of
the velocity independently, while the Frobenius norm and the trace have been calculated for the real and imaginary parts of the
stress tensor. Note that from the error of the real and the imaginary parts one can compute the total error. However, giving the
split results will allow one to note that both the real and imaginary components of the different quantities analyzed have a similar
error level.
8
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Table 1
Percentage improvement index 𝐼 of Eq. (24) for the 2D ABH beam cases using the modulus of the real and imaginary parts of
the velocity vector and the Frobenius norm and trace of the real and imaginary parts of the stress tensors.

𝑚 training
improvement
mixed

𝑚 training
improvement
irreducible

ℎ0 training
improvement
mixed

𝜔 training
improvement
mixed

‖ℜ{𝒗}‖ 48.21% 70.83% 57.38% 45.36%
‖ℑ{𝒗}‖ 61.91% 96.54% 71.33% 57.56%
‖ℜ{𝝈}‖F 80.61% – 38.93% 82.43%
‖ℑ{𝝈}‖F 75.27% – 51.58% 86.45%
tr{ℜ{𝝈}} 78.88% – 54.00% 79.12%
tr{ℑ{𝝈}} 74.74% – 50.70% 85.17%

4.2. Acoustic black hole at a beam termination

Typically, the Euler–Bernoulli theory is used when simulating bending wave motion in ABH beams (see e.g., [36,50,51], among
any others), which results in a one dimensional (1D) problem. In this paper we deal with the full linear elasticity equations and

he ABH beam could be simulated in 3D. However, to reduce the computational cost and to get a faster sensing when training the
NN, the ABH beam will be simulated as a 2D system. In Section 4.3, a full 3D model for the ABH plate will be presented.

The geometry of the 2D ABH beam along with its coarsest mesh (2160 linear elements) is shown in Fig. 1. The beam has a
ength of 0.6 m and its thickness in the uniform portion is ℎuni = 0.005 m. The size of the ABH wedge is 𝑟abh = 0.3 m and its residual

thickness will be specified for each example below, as well as its order 𝑚. The beam has a density 𝜌𝑏 = 1000 kg∕m3, a Young modulus
of 𝐸𝑏 = 10 × 109 N/m2, loss factor 𝜂𝑏 = 0.3 and Poisson’s coefficient 𝜈𝑏 = 0.28. As for the damping layer to dissipate vibrational
energy, it is placed at the end of the ABH and has a length 𝑟𝑑 = 0.15 m and thickness ℎ𝑑 = 0.00025 m. Its physical parameters are
𝜌𝑑 = 1000 kg∕m3, 𝐸𝑑 = 10 × 109 N/m2, 𝜂𝑑 = 0.3 and 𝜈𝑑 = 0.28.

Regarding the boundary conditions, the left end of the ABH beam (red line in Fig. 1) is considered to be clamped, so all
components of the velocity are set to zero. The right end is left free. A load is applied to the beam at 𝑥 = 0.1 m (blue line in
Fig. 1), which is imposed as a Dirichlet condition with value 𝒗 = (0,−1) m∕s. The frequency of the excitation, 𝑓 (resp. 𝜔) will be
indicated in each example. The cut-on frequency of the ABH in this case is 𝑓cut−on = 136.2 Hz (𝜔cut−on = 855.5 rad∕s) so the ABH is
expected to be effective for 𝑓 ≳ 3𝑓cut−on (𝜔 ≳ 3𝜔cut−on) see e.g., [37].

In what concerns the ANN correction, we have chosen the gradients of the velocity components as inputs to the ANN in all the
2D examples in this section for simplicity, leaving aside the stresses. However, we will see that as a result of the ANN correction,
not only does the velocity field improve substantially, but also the stress tensor. Regarding the output of the ANN, the correcting
term has been applied to all the equations.

In the next two subsections we will consider the training of the ANN for different values of the geometrical parameters 𝑚
(Section 4.2.1) and ℎ0 (Section 4.2.1) using fine meshes, and then the resulting correction term will be used for values of these
parameters outside the training set. The possibility of having different geometrical configurations was not considered in [11]. The
success of the correction procedure in this new situation indicates that it may be helpful when considering shape optimization
problems.

4.2.1. ABH beam: training for the order 𝑚
As a first example we consider computing the vibration of an ABH beam with a given order 𝑚 (see Eq. (23)), on a coarse

mesh and for an angular frequency of excitation 𝜔 = 4200 rad∕s and a residual thickness ℎ0 = 0.00025. For this, we need to train
the ANN to construct the correction term computing the solution of the problem on fine meshes and using a training set for the
𝑚-parameter, which consists of 𝑚 values ranging from 𝑚 = 2.4 to 𝑚 = 3 with steps 𝛥𝑚 = 0.02. The fine mesh for the training
phase has 34560 elements, while the coarse mesh for testing is 16 times smaller and has 2160 elements (see Fig. 1). A simple ANN
with 3 layers and 3 neurons per layer has been used to build the correction term, with a learning momentum of 0.2. The number of
maximum epochs has been set to 5000 and the maximum tolerated error is 1. The testing is performed for an ABH order of 𝑚 = 2.61,
which does not belong to the training set, and using the coarse mesh.

For completeness, the same example has been run for the irreducible formulation instead of VFI. The former is less accurate than
the latter (see Fig. 2 and explanations below) and requires finer meshes to obtain similar results. Specifically, the fine mesh in this
case has 138240 elements, while 8640 elements are used in the coarse mesh. As for the ANN, it has 3 layers with 4 neurons per
layer, a learning momentum of 0.4, a maximum number of epochs of 2000 and a tolerance error of 1.

The percentage improvement index 𝐼 in Eq. (24) for each problem variable when using the ANN correction for both the
irreducible and mixed VFI forms is shown in Table 1. As observed in the first two columns of the table, the results of the
problem improve significantly without exceptions. The values of 𝐼 are satisfactory for the mixed formulation and remarkable for
the irreducible one.

In Fig. 2, we show plots for the real and imaginary parts of the 𝑦-component of the velocity along the length of the beam for the
trained, coarse and fine cases and using both the VFI formulation (Figs. 2a and b, top row) and the irreducible one (Figs. 2c and
d, bottom row). It can be seen from the two top row plots for VFI that the effect of the ANN correction is noticeable; the trained
9

solution provides a much closer solution to the fine one than the coarse solution with no ANN term. The trained solution matches
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Fig. 2. Real (left) and imaginary (right) parts for the 𝑦-component of the velocity along the ABH length (𝑥 axis) at 𝑦 = 0. Results of the ABH order 𝑚 training
computed with the mixed VFI formulation (top row, (a)–(b)) and the irreducible one (bottom row (c)–(d)).

Table 2
Computation times in percent with respect to the fine mesh solution for the ABH beam example when trained for the order 𝑚.

Fine mesh Coarse mesh Training phase Execution phase

Mixed formulation 100% 1.17% 105.24% 1.27%
Irreducible formulation 100% 4.56% 110.14% 5.20%

the fine one in amplitude and also in phase, capturing the rise in amplitude and the decrease in wavelength as the wave approaches
the ABH termination. Regarding the irreducible formulation of the bottom row, it is observed that the coarse solution provides a
really bad approximation to the fine solution for both the real and imaginary parts of the vertical component of the velocity. The
trained solution clearly improves the real part of the coarse one (see Fig. 2c) and is almost identical to the fine solution for the
imaginary part (see Fig. 2d).

Concerning the computational times of this example (see Table 2), and to make them independent of the available computational
resources, let us consider that a simulation with a single set of parameter values on the fine mesh for VFI corresponds to 100% of the
computational time. The same computation on the coarse mesh costs just 1.17%. On the other hand, the training phase with the ANN
correction costs only 105.24%, while for the execution phase we have 1.27%. In the case of the irreducible form, and again taking
as reference the simulation on the fine mesh (100% of the cost), we have a running time of 4.56% for the coarse mesh, 110.14% for
the ANN training and 5.20% for the execution phase. This means that by investing more or less the time of a computation on the
fine mesh (those in the training phase are only slightly longer) one can then perform a large number of computations on a coarse
mesh in the execution phase with high accuracy and very reasonable computational costs (basically those of solving directly on a
coarse mesh). Although different meshes are used for the following examples in Sections 4.2.2 and 4.2.3, the relative percentages
of the computational times of the fine and coarse meshes and training and execution phases are very similar to these, so the above
explanation applies to them as well.

4.2.2. ABH beam: training for the residual thickness ℎ0
In this second case, the unknown parameter is the residual thickness ℎ0. Therefore, we need to train our model using ABHs with

various values of ℎ0 for fixed ABH order (we take the quadratic case 𝑚 = 2) and an excitation angular frequency 𝜔 = 4200 rad∕s.
The training set for ℎ0 ranges from ℎ0 = 0.00025 m to ℎ0 = 0.001 m at 𝛥ℎ0 = 0.000025 m intervals. The fine mesh for training is
smaller than in the previous case and has 8640 elements, while the coarse mesh is the same (2160 elements). As for the ANN, it
contains 3 layers with 4 neurons each, has a learning momentum of 0.2 and we have considered a maximum number of epochs of
5000 with a tolerance error of 1.
10
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Fig. 3. Real (a) and imaginary (b) parts for the 𝑦-component of the velocity along the ABH length (𝑥 axis) at 𝑦 = 0. Results of the residual thickness ℎ0 training
computed with the mixed VFI formulation.

Fig. 4. Real (a) and imaginary (b) parts for the 𝑦-component of the velocity along the ABH length (𝑥 axis) at 𝑦 = 0. Results of the frequency 𝜔 training computed
with the mixed VFI formulation.

The execution phase to test the performance of the ANN correction has been run with ℎ0 = 0.00046 m, which again does not
belong to the training set. Hereafter we have only worked with the VFI formulation. The improvement index 𝐼 for this example is
shown in the third column of Table 1. Again, 𝐼 is remarkable for the two norms and the traces.

In Fig. 3, we plot again the real and imaginary parts of the 𝑦-component of the velocity along the length of the ABH beam for
the trained, coarse and fine cases. The trained solution markedly improves the coarse solution, which is out of phase with the fine
solution and produces much larger amplitudes. For the imaginary part in Fig. 3b, it can be seen how the coarse solution presents
an additional peak which is 180◦ out of phase with the correct solution at the ABH tip, while the trained solution follows the trend
of fine one.

4.2.3. ABH beam: training for the excitation frequency
In this third example we set the order of the ABH to 𝑚 = 2 and its residual thickness to ℎ0 = 0.00025 m. The training set is the

range of angular frequencies [3700, 4200] rad/s at intervals of 𝛥𝜔 = 4 rad/s. We have used the same fine and coarse meshes as in
the previous example. The ANN has 3 layers with 4 neurons each, a learning momentum of 0.1, a maximum number of epochs of
10000 and an error tolerance of 1. For the execution phase we have used the frequency 𝜔 = 4002 rad/s, which is not in the training
set.

The index 𝐼 for this example is shown in the fourth column of Table 1. Again, the index for the two norms and for the traces
exhibit a remarkable improvement without exception. In addition, and as for the two previous examples, in Fig. 4 we have plotted
the real and imaginary parts of the vertical component of the velocity along the ABH beam for the trained, coarse and fine cases.
Of all the examples, this is the one where the coarse case without the ANN correction gives a better solution, which is quite close
to the fine solution for the real part of the velocity (see Fig. 4a). This is not so obvious for the imaginary part of the velocity (see
Fig. 4b). However, in any case the coarse solution can compete with the trained one, whose results are much closer to the fine
solution in terms of amplitude and wavelength.

4.3. Acoustic black hole indentation on a plate

As with ABH beams, most works in literature use simplified theories to deal with ABHs embedded in plates. The Kirchhoff–Love
thin plate theory is widely employed (see e.g., [35,37,52]) since it allows dealing with a 2D rather than a 3D problem. However,
and as mentioned before, full 3D simulations will be carried out in this section to characterize ABH plates.
11
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Fig. 5. 3D geometry of the ABH plate and coarse FEM mesh.

The geometry of the ABH plate for the simulations in this section, as well as its coarser mesh are shown in Fig. 5. The ABH plate
has dimensions 𝐿𝑥×𝐿𝑦 = 0.9×1 m2 with a thickness ℎuni = 0.005 m in the uniform part. The ABH indentation has radius 𝑟abh = 0.3 m
and it is placed at the center of the plate, where it has residual thickness ℎ0 (to be specified in each example). The damping layer is
squared with size 𝐿𝑑 = 0.15 m and thickness ℎ𝑑 = 0.00025 m. The physical parameters of the ABH plate are as follows. It has density
𝜌𝑝 = 1190 kg∕m3, Young modulus 𝐸𝑝 = 3.2 × 109 N/m2, loss factor 𝜂𝑝 = 0.005 and Poisson’s coefficient 𝜈𝑝 = 0.3. For the damping
layer we take 𝜌𝑑 = 950 kg∕m3, 𝐸𝑑 = 5 × 109 N/m2, 𝜂𝑑 = 0.3 and 𝜈𝑑 = 0.3.

As for the boundary conditions, all sides of the plate are clamped (the velocity is imposed to be zero in all the directions). An
excitation load is applied on the small pink area of Fig. 5(a) as a Dirichlet condition with value 𝒗 = (0, 0,−1) m∕s. Its frequency will
be determined for each case study. The cut-on frequency of the ABH plate is 𝑓cut−on = 143.3 Hz (𝜔cut−on = 272 rad∕s), so again the
ABH is expected to be effective for 𝑓 ≳ 3𝑓cut−on (𝜔 ≳ 3𝜔cut−on).

Concerning the ANN correction term, we have chosen the velocity components as ANN inputs in all 3D examples, again discarding
the stresses. However, only ANN outputs that include stresses will be taken. Yet, the 𝑧 components of the latter will be excluded due
12



Finite Elements in Analysis & Design 241 (2024) 104236A. Fabra et al.

t
t
𝑧

Table 3
Percentage improvement index 𝐼 of Eq. (24) for the 3D ABH beam cases using the modulus of the real and imaginary parts of
the velocity vector and the Frobenius norm and trace of the real and imaginary parts of the stress tensors.

𝑚 training
improvement
mixed

ℎ0 training
improvement
mixed

𝜔 training
improvement
mixed

‖ℜ{𝒗}‖ 46.50% 56.79% 73.64%
‖ℑ{𝒗}‖ 36.57% 61.87% 70.58%
‖ℜ{𝝈}‖F 59.36% 14.04% 14.23%
‖ℑ{𝝈}‖F 15.17% 8.84% 20.12%
tr{ℜ{𝝈}} 70.60% 31.79% 31.07%
tr{ℑ{𝝈}} 60.03% 16.07% 50.58%

to the poor resolution of the mesh in the 𝑧 direction. As will be demonstrated, this particular configuration for the ANN correction
term will improve all problem variables (velocities and stresses) in the execution phase, when solving the problem on coarse meshes.

Finally, it should be mentioned that it has not been possible to use the irreducible formulation to calculate the ABH plate vibration
due to the occurrence of transverse shear locking effects (see e.g., [53–55], as well as the survey [56]). Therefore, only the mixed
VFI formulation will be considered in the following examples. We have observed that this locking effect disappears using the mixed
velocity–stress formulation employed in this paper, similarly to what happens using the mixed displacement–stress formulation
studied in [57]. We believe that this is a very important point that justifies the use of this novel formulation, first introduced
in [10]. Recall that we used direct methods to solve the final linear systems, and thus this locking cannot be attributed to the high
aspect ratio of the elements but to the intrinsic slenderness of the ABH. Likewise, this locking is unrelated to the pollution error
that is found at much higher frequencies (see [21,22] for VMS-type techniques applied to deal with this pollution error). In this
sense, the term high frequencies refers in the following to frequencies for which the mixed formulation is needed. In our experience,
we have found that this occurs at values as low as 𝜔 = 50 rad/s for this particular example. The reasons why we can term this
phenomenon as locking and not any other type of numerical instability are the following:

• It is present using the irreducible formulation, not the mixed velocity–stress one. This indicates that it is not pollution error.
• When using the irreducible formulation, it does not disappear under mesh refinement.
• It disappears when the thickness of the plate increases. In bending problems as the one we are considering, this indicates that

it is related to shear effects.
• It disappears when the frequency decreases. When several elements are used across the thickness, as in our case, it is known

that no locking appears in plate problems using the full elasticity formulation, even if the thickness is very small.

4.3.1. ABH plate: training for the order 𝑚
In this case, we proceed analogously to the first example for the ABH beam by training the ANN with different values of the ABH

order, 𝑚, which varies from 𝑚 = 2 to 𝑚 = 3 at intervals of 𝛥𝑚 = 0.02. For the training phase we used a mesh with 9152 elements,
which is eight times finer than the coarse one for the execution phase that only has 1144 elements (see Fig. 5). An ANN model of 3
layers with 3 neurons each has been implemented, with a learning momentum of 0.7, a maximum number of epochs of 10000 and a
tolerance error of 1. The angular frequency of excitation has been set to 𝜔 = 900 rad∕s and the residual thickness to ℎ0 = 0.00025 m.

The testing phase has been carried out for a value of 𝑚 = 2.81, not belonging to the training set. The improvement index 𝐼 of
this example is shown in the first column of Table 3. All values are more than acceptable except for the Frobenius norm of the
imaginary part of the stress tensor, which has a relatively lower value.

To better appreciate the effects of the ANN correction, in Figs. 6 a,b and c, the results for the 𝑧-component of the real part of
he ABH plate velocity are plotted for the coarse, fine and trained cases. The trained solution is qualitatively closer to the fine one
han the coarse solution without correction term. For completion, in Fig. 7, we have plotted the real and imaginary parts of the
-component of the velocity along the straight line joining the points (0,−0.5, 0) and (0, 0.5, 0) for the trained, coarse and fine cases.

This line is of special interest because it passes through the point where the external load is applied and through the center of the
ABH, so it is a good indicator of how the vibrations are concentrated inside the ABH. As can be seen in the figure and for the real
part of the velocity, the trained solution is able to correct the significant phase error of the coarse one when compared to the fine
solution. As for the imaginary part of the velocity, the trained solution greatly improves the amplitude error exhibited by the coarse
solution.

With regard to the computational times of this example (see Table 4), we get very similar percentage results to those of the
ABH beam examples. Taking as reference the computation on the fine mesh (100% of the computational time), we obtain 1.36% for
the coarse mesh, 102.12% for the training phase and 1.42% for the execution phase. Therefore, with essentially the cost of a fine
computation (the training phase is not much longer) at the beginning, we can ultimately perform several tests on a coarse mesh with
high accuracy and very low computational cost (execution phase). The computational times in percent of the following examples
in Sections 4.3.2 and 4.3.3 are very similar to these ones and will be not specified, this explanation also being valid for them.
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Fig. 6. Magnitude of the real part the velocity vector in the top 𝑥𝑦 surface of the ABH plate. Results of the order 𝑚 training for the ABH plate.

Fig. 7. Real (a) and imaginary (b) parts of the 𝑧-component of the velocity for the coarse, fine and trained cases over a line joining the points (0,−0.5, 0) and
(0, 0.5, 0). Results of the order 𝑚 training for the ABH plate.

Table 4
Computation times in percent with respect to the fine mesh solution for the ABH plate example when trained for the order 𝑚.

Fine mesh Coarse mesh Training phase Execution phase

Mixed formulation 100% 1.36% 102.12% 1.42%

4.3.2. ABH plate: training for the residual thickness ℎ0
As was done previously for the beam, we now focus on the residual thickness ℎ0. To this purpose we have proceeded analogously

to the previous example for the ABH plate, using the same fine and coarse meshes. The ANN architecture is also the same, with a
slight change in the learning momentum from 0.7 to 0.6. The excitation angular frequency has been set to 𝜔 = 850 rad∕s and the
ABH order to 𝑚 = 2. The training set for ℎ0 goes from ℎ0 = 0.00025 m to ℎ0 = 0.001 m at intervals of 𝛥ℎ0 = 0.000025 m.

In the execution phase we have worked with the value of ℎ0 = 0.00061 m, which was not previously considered in the training
set. Index 𝐼 in this example is shown in the second column of Table 3. As observed, the improvement is noticeable for the norms
of the real and imaginary parts of the velocity, but much weaker for the Frobenius norm and trace of the stress tensor.

In Figs. 8 a,b and c, the results for the norm of the real part of the velocity in the coarse, fine and trained cases are plotted
in the 𝑥𝑦 plane, respectively. It can be qualitatively observed how the trained solution is closer to the fine one than the coarse
solution, correcting for the amplitude of the oscillations at the center of the ABH. In Fig. 9, we plot the real and imaginary parts of
the 𝑧-component of the velocity along the same line than in the previous example. In this figure it can be better observed how the
trained solution clearly improves the amplitude of the oscillations within the ABH provided by the coarse solution.
14
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Fig. 8. Magnitude of the real part the velocity vector in the top 𝑥𝑦 surface of the domain for the numerical example. Results of the residual thickness ℎ0 training
for the ABH plate.

Fig. 9. Real (a) and imaginary (b) parts of the 𝑧-component of the velocity for the coarse, fine and trained cases over a line joining the points (0,−0.5, 0) and
(0, 0.5, 0). Results of the residual thickness ℎ0 training for the ABH plate.

4.3.3. ABH plate: training for the excitation frequency

As a final example for the ABH plate we consider changing the excitation frequency as we did for the ABH beam. Once again,
we use the same fine and coarse 3D meshes as in the previous cases. As for the ANN architecture, we have employed that of the
first ABH plate example but with a maximum number of epochs of 1000. The residual thickness of the ABH plate has been set to
ℎ0 = 0.00025 m and the ABH order to 𝑚 = 2. The training phase sweeps the excitation frequency from 𝜔 = 700 rad∕s to 𝜔 = 1200
rad∕s at intervals of 10 rad∕s.

The execution phase was launched with a frequency of 𝜔 = 835 rad∕s, which does not appear in the training set. The improvement
index 𝐼 for this case is found in the third column of Table 3. Its values are similar to those found when training for the residual
thickness ℎ0, with remarkable improvement in the real and imaginary parts of the velocity norms and the stress tensor traces. The
indices based on the Frobenius norm are not as high as the others, but they are also positive.

In Figs. 10 a,b and c, we plot again the norm of the real part of the velocity in the coarse, fine and trained cases, respectively. As
can be seen, the trained solution is much closer to the fine one than to the coarse one, strongly correcting the excessive amplitude
of the latter. This is very clearly observed in Fig. 11, which represents the real and imaginary parts of the 𝑧-velocity component on
the same straight line as the previous examples. The effectiveness of the ANN correction term is very apparent from the results in
the figure.
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Fig. 10. Magnitude of the real part the velocity vector in the top 𝑥𝑦 surface of the domain for the numerical example. Results of the excitation frequency
training for the ABH plate.

Fig. 11. Real (a) and imaginary (b) parts of the 𝑧-component of the velocity for the coarse, fine and trained cases over a line joining the points (0,−0.5, 0) and
(0, 0.5, 0). Results of the frequency 𝜔 training for the ABH plate.

5. Conclusions

This paper is based on two numerical pillars, namely, the mixed stabilized FEM approximation of the elasticity equations written
in the frequency domain [10] and the introduction of ANN correction terms to enhance the FEM solution of elastodynamics when
solved on coarse meshes [11].

We have started by presenting irreducible and mixed velocity–stress strong formulations for linear elastodynamic problems and
their variational counterparts. The latter have been discretized using the FEM and a stabilized VMS-based formulation has been
proposed for their primal and dual versions in order to use equal interpolation for the velocity and stress fields. An ANN correction
term has been designed that results in a nonlinear algebraic matrix system for the discrete unknowns of the problem, so that once a
training phase with fine meshes and several sets of parameter values has been completed, it is able to properly solve an elastodynamic
problem on a coarse mesh.

As examples of application, we have considered the vibrations of ABH beams and plates. Since ABHs have a very small residual
thickness and the wavelength of impinging waves decreases as they approach it, very fine meshes are needed to compute their
vibration under external harmonic loading. A first example consisting of an ABH termination in a 2D beam has been addressed. The
ANN has been trained on fine meshes for three sets of parameters involving variations of the order of the ABH, its residual thickness
16
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and the frequency of the external loading. When solving the vibration of the ABH beam on a coarse mesh in the execution phase, for
a previously untested parameter, significant magnitude and phase errors are encountered unless the ANN correction term is applied.
The ANN solutions show a close resemblance to those calculated on fine meshes for both the irreducible and mixed primal (VFI)
formulations (the dual one has not been used in the examples for the sake of brevity). As a second example, we have considered
wave propagation in a 3D plate with an embedded circular ABH. Tests have been performed by again varying the order of the ABH,
the residual thickness and the excitation frequency. Again, the ANN correction has shown significant enhancement of the solution in
the execution phase, when computing the ABH plate response under external excitation for untested parameters on coarse meshes.
However, the improvements for the ABH plate are, in general, not as good as for the ABH beam. The improvement index, which has
been defined to determine the effect of the ANN correction for both the ABH beam and ABH plate, is in fact higher for the velocity
field than for the stress field. This is logical since the VFI presents more regularity for the former than for the latter.

In the application of the formulations proposed in [10,11] to ABHs, new developments have been carried and new conclusions
ave been drawn. Regarding the mixed stabilized velocity–stress formulation, we have shown that it indeed performs well to
pproximate vibrational problems of practical interest in the frequency domain. However, the most important point is that it has
llowed us to avoid the problem that we have identified as frequency locking. We believe that the identification of this type of
ocking and the observation that it is solved by the mixed velocity–stress formulation are important findings of this work.

Regarding the correction strategy based on ANNs, we have extended it from the scalar wave equation to the mixed form of elastic
aves, which implies passing from 2 variables to train to 18 in 3D. We have also shown that it works when the configurations

nvolve changes in the geometry of the computational domain (in our case, the parameters of the ABH), while in [11] we applied it
o correcting coarse models with different loading conditions. This suggests that this correction technique could be applied to shape
ptimization problems.

To date, ABHs have been designed mainly for beams, thin flat plates and cylindrical shells showing great potential for vibration
nd noise reduction. If they are to be embedded in more complex structures, it will be necessary to find finite element methods that
an represent their behavior with relatively coarse meshes to lighten the computational cost. This work should be considered a first
tep towards that goal.
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