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TOPOLOGY OPTIMIZATION OF INCOMPRESSIBLE STRUCTURES

SUBJECT TO FLUID-STRUCTURE INTERACTION
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Abstract. In this work, an algorithm for topology optimization of incompressible struc-
tures is proposed, in both small and finite strain assumptions and in which the loads come
from the interaction with a surrounding fluid. The algorithm considers a classical block-
iterative scheme, in which the solid and the fluid mechanics problems are solved sequen-
tially to simulate the interaction between them. Several stabilized mixed finite element
formulations based on the Variational Multi-Scale approach are considered to be capable
of tackling the incompressible limit for the numerical approximation of the solid. The
fluid is considered as an incompressible Newtonian fluid flow which is combined with an
Arbitrary-Lagrangian Eulerian formulation to account for the moving part of the domain.
Several numerical examples are presented and discussed to assess the robustness of the
proposed algorithm and its applicability to the topology optimization of incompressible
elastic solids subjected to Newtonian incompressible fluid loads.
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1. Introduction

Fluid-Structure Interaction (FSI) problems involve the interaction between a fluid and
a deformable solid structure. These problems arise in various engineering and scientific
applications, including aerospace [1], civil engineering [2], biomechanics [3, 4], and off-
shore structures [5]. Numerical methods play a significant role in solving FSI problems
by providing efficient and accurate solutions. These methods combine fluid dynamics and
structural mechanics algorithms to simulate the coupled behavior of fluids and structures.
The interaction between the fluid and the structure is typically modeled by exchanging
information at the fluid-structure interface [6]. Understanding and accurately simulating
FSI phenomena is crucial for designing and optimizing systems where fluid and structure
interact [7, 8].

One common approach for simulating FSI problems is the partitioned approach, where
separate solvers are used for the fluid and structural domains. In this approach, the
fluid solver calculates the fluid flow field while treating the structure as a rigid body or
prescribing its motion based on the interaction forces. The structural solver computes the
deformation and stress response of the solid structure based on the fluid-induced loads.
The coupling between the two solvers is achieved by iteratively exchanging information at
the fluid-structure interface until convergence is reached [9, 10].

FSI problems involving incompressible structures are a subset of FSI phenomena where
the solid component undergoes negligible volume changes when subjected to external forces
or deformations. In such problems, the fluid interacts with a solid object that remains es-
sentially incompressible, maintaining its volume throughout the interaction [11]. The study
of FSI involving incompressible solids is crucial in numerous fields, including biomechan-
ics, bioengineering, soft robotics, and material science [12, 13]. Examples of incompressible
structures include soft tissues, elastomers, gels, and certain biological materials [14, 15, 16].
Understanding the complex interactions between the fluid and the incompressible solid is
essential for designing and optimizing systems in these domains.

Mixed formulations are commonly used in the context of incompressible structures
to handle the incompressibility constraint. These formulations introduce additional un-
knowns, such as the pressure field, to enforce volume conservation. The most widely used
mixed formulations are the displacement-pressure mixed formulations [17, 18] or the three-
field formulations which add some extra unknowns to increase its accuracy [19, 20, 21].
These formulations provide stable and accurate solutions for incompressible problems by
coupling the displacement and pressure fields; in this work, they are employed to model
FSI simulations involving incompressible structures.

Topology Optimization (TO) is a powerful computational design approach that aims to
optimize the material distribution within a given design domain to achieve desired perfor-
mance objectives. The goal is to find the optimal arrangement or layout of material that
meets specified criteria while considering design constraints [22]. The primary objective
of TO of incompressible structures is to improve structural stiffness while ensuring vol-
ume conservation. In these problems, the incompressibility constraint needs to be satisfied
throughout the optimization process, meaning that the total volume or the fraction of
occupied material within the design domain remains constant [23, 24].

TO is an efficient method to improve mechanical systems design in engineering. In
the last decades, several methods have been developed to find optimal structures inside
predefined design domains by minimizing objective functions and constraints [22, 25, 26,
27, 28]. In [29] the TO of incompressible structures is studied by considering stabilized
mixed formulations and using the topological derivative (TD) concept. It is observed that
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the optimal topology for structural elements in the incompressible limit can significantly
differ from that of compressible or slightly compressible ones. The TO of hyperelastic
materials is also studied in [30, 31] with the combination of a level-set method and the
well-known SIMP approach.

Although the field of structural optimization has become mature, many applications,
such as aeronautics or biomechanics, require multiphysics design [32, 33, 34, 35, 36]. As
a consequence, methodologies for structural TO in FSI problems have become popular as
they provide a framework to include FSI models in the TO design procedure.

These methodologies are classified in [37] according to the treatment applied on the
interface between the fluid flow and the structure. Therefore, those cases in which only
the internal part of the structure is optimized are named "dry" or design-independent
optimization, whereas the "wet" or design-dependent optimization are those cases in which
the geometry of the FSI boundary can be changed during the TO process.

Regarding the latter, several methodologies have been proposed during the last years. In
[38] the idea of using a monolithic approach to interpolate both structural and fluid equa-
tions based on the density method was proposed for steady-state FSI problems. These ideas
were lately extended to stress-based TO [39]. Another option was proposed in [40] to extend
the XFEM-Level-set method reported in [37] to "wet" optimization. The bi-directional evo-
lutionary structural optimization is also applied in [41] to disjoint the problem into two
subdomains and be able to tackle them in a separate way. A body-fitted mesh evolution
technique integrated into a level-set method can be found in [42]. Finally, reaction-diffusion
equation-based level-set methods are applied to solve the FSI optimization problem pre-
sented in [43]. All these works concern the interaction between a linear elastic compressible
structure and viscous fluid flows governed by the incompressible Navier-Stokes equations.
In [44] the TO of structures subject to stationary FSI is adressed.

In this work, we are interested in "dry" TO for FSI problems which may involve in-
compressible structures. In particular, FSI problems which are two-way coupled. The flow
depends on the structural displacements and the structural behavior depends upon the
fluid forces. As the FSI boundary remains constant over the TO procedure, we can use
a staggered approach to solve individually the fluid and the structure sub-problems and
satisfy the interface conditions in a strongly coupled manner [9].

In this study, we propose a new "dry" TO framework for strongly-coupled FSI systems
with incompressible structures. To the best of our knowledge, this is the first attempt to use
TD-based TO of incompressible structures in FSI problems. Furthermore, the structural
model can be either linear elastic or hyperelastic, allowing for finite strain deformations.
In addition, the study of transient FSI problems is also performed.

This work is organized as follows. In Section 2 some preliminaries are introduced. Next,
in Section 3 we present several stabilized mixed formulations which are able to tackle
the incompressible limit to model solid dynamics in both linear elasticity and finite strain
hyperelasticity. Section 4 provides the governing equations to deal with incompressible fluid
flows with moving domains. Afterwards, Section 5 outlines the setting of the whole TO
problem of incompressible structures subjected to FSI loads. Several numerical examples
are shown in Section 6 to assess and validate the proposed methodology. The work is
closed with some conclusions in Section 7.

2. Preliminaries

This section provides a foundational introduction to the key concepts, theories, method-
ologies and background knowledge necessary for understanding the main content for all
sub-problems presented in this work.

Let us introduce some notation for deriving the weak formulation of the problems we need
to develop. As usual, the space of square integrable functions in a domain ω is denoted by
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L2 (ω), whereas the space of functions whose first derivative is square integrable is denoted
by H1 (ω). The space H1

0 (ω) consists of functions in H1 (ω) vanishing on boundaries. We
shall use the symbol (·, ·)ω to refer to the L2(ω) inner product and 〈·, ·〉ω to refer to the
integral of the product of two functions in a domain ω, not necessarily in L2(ω). The
subscript is omitted when ω = Ω, being Ω the domain of study for each sub-problem.

For the sake of conciseness, in this work only the implicit second order backward differ-
ences scheme (BDF2) is considered. Let us now consider a partition of the time interval
[0, T ] into N time steps of size δt, assumed to be constant. Given a generic time depen-
dent function at a time step tn+1 = tn + δt, for n = 0, 1, 2, . . . , the approximation of both
the first and the second time derivatives of second order are written using information
from already computed time instants and fn+1 which is being computed at this time step
according to the following approximation:

δ2f

δt

∣∣∣∣
tn+1

:=
3fn+1 − 4fn + fn−1

2δt
=
∂f

∂t

∣∣∣∣
tn+1

+O(δt2),

δ2
2f

δt2

∣∣∣∣
tn+1

:=
2fn+1 − 5fn + 4fn−1 − fn−2

δt2
=
∂2f

∂t2

∣∣∣∣
tn+1

+O(δt2).

Appropriate initializations are required for n = 1, 2.
For all formulations, the standard Galerkin approximation is considered as follows. Let

Ph denote a finite element (FE) partition of the domain of study Ω. The diameter of
an element domain K ∈ Ph is denoted by hK and the diameter on the FE partition by
h = max{hK |K ∈ Ph}. We can now construct conforming FE spaces Xh ⊂ X being
X any proper functional space where an unknown solution is well-defined, as well as the
corresponding subspace Xh,0 ⊂ X0, X0 being made with functions that vanish on the
Dirichlet boundary.

Furthermore, all the formulations used in this work must be stabilized so as to avoid
satisfying inf-sup conditions among the unknowns of the problem and to tackle the incom-
pressible limit (see, e.g., [45]). The stabilized FE method we propose to use in the following
is based on the Variational Multi-Scale (VMS) concept [46, 47]. Let X = Xh⊕ X̃, where X̃
is any space to complete Xh in X. The elements of this space are denoted by X̃ and they
are called subgrid scales (SGSs). Likewise, let X0 = Xh,0 ⊕ X̃0. In this work, we consider
Orthogonal SubGrid Scales (OSGS), where the SGS space is considered to be orthogonal
to the FE space, as it is argued in [48]. Furthermore, a key property of the OSGS stabi-
lization is that, thanks to the projection onto the FE space, we keep the consistency of the
formulation in a weak sense in spite of including just the minimum number of terms to
stabilize the solution [49, 50], allowing us to define a term-by-term stabilization technique
called Split OSGS (S-OSGS), which is the one we consider in this work.

3. Solid dynamics problem

This section focuses on the analysis and behavior of solid structures that can reach
the incompressible limit under dynamic loading conditions. It explores the response of
materials and structures. Let us start by summarizing the conservation equations for both
linear elasticity and finite strain hyperelasticity in solid dynamics.

3.1. Mixed formulations in linear elasticity.

3.1.1. The continuum problem. In this section, the equations of motion of an elastic body
under the linear theory of elasticity are considered. Let the solid domain Ωs(t) be an open,
bounded and polyhedral domain of Rd, where d is the number of space dimensions. Any
point of the body is labeled with the vector x. The boundary of the domain is denoted
as Γs(t) := ∂Ωs(t). We denote as ]0, T [ the time interval of analysis for all problems to be
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considered. Let Ds = {(x, t)| x ∈ Ωs(t), 0 < t < T} be the space-time domain where the
solid problem is defined.

The continuum problem for solid dynamics, suitable for reaching the incompressible
limit, is defined by the following system of equations:

ρs
∂2us

∂t2
−∇ · ss +∇ps = ρsb in Ωs(t), t ∈ ]0, T [ ,(1)

ss − Cdev : es = 0 in Ωs(t), t ∈ ]0, T [ ,(2)

∇ · us +
ps

κs
= 0 in Ωs(t), t ∈ ]0, T [ ,(3)

es − D : ∇sus = 0 in Ωs(t), t ∈ ]0, T [ ,(4)
us = us,D on Γs,D, t ∈ ]0, T [ ,(5)

ns · ss − psns = ts,N on Γs,N , t ∈ ]0, T [ ,(6)
ni · ss − psni = tf on Γi(t), t ∈ ]0, T [ ,(7)

us = u0
s in Ωs(0), t = 0,(8)

∂us

∂t
:= vs = v0

s in Ωs(0), t = 0,(9)

where us is the displacement field, ss the deviatoric stress field, ps the pressure field and
es the deviatoric strain field. Eq. (1) is the balance of momentum equation, where ρs is
the density field and ρsb represents the external load per unit of volume. Here, ∇ · (·)
is the divergence operator and ∇(·) is the gradient operator. Eq. (2) is the deviatoric
constitutive equation, where Cdev is the 4th order deviatoric constitutive tensor, which for
isotropic materials is defined as

Cdev = 2µs

{
I− 1

3
I⊗ I

}
:= 2µsD.

Here, I and I are the 4th and 2nd rank identity tensors, respectively, D the 4th order
deviatoric operator and µs = Es

2(1+νs)
the shear modulus, being Es the Young modulus

and νs the Poisson ratio. Eq. (3) is the volumetric constitutive equation which imposes
the incompressibility constraint, where κs = Es

3(1−2νs)
is the bulk modulus. Finally, Eq.

(4) is the deviatoric kinematic equation which relates the deviatoric strain field with the
displacement field, where ∇s(·) denotes the symmetric gradient operator.

A set of boundary conditions is considered which can be split into Dirichlet bound-
ary conditions (5), where prescribed displacements us,D are specified, Neumann boundary
conditions (6) where a prescribed value for the tractions ts,N are applied, and the trans-
mission conditions on the interface boundary (7), where tf are the tractions coming from
the surrounding fluid (the continuity of velocities will be assigned as transmission condi-
tion to the flow problem). Vector ns is the geometric unit outward normal vector on the
boundary Γs(t) and ni the unit normal pointing from the fluid side to the solid one on the
interface boundary. The governing equations must be supplied with initial conditions for
displacements (8) and velocities (9) in Ωs(0), with u0

s and v0
s given.

Two different mixed formulations are considered in this subsection. On the one hand,
the well-known u-p formulation, which is introduced in order to deal with nearly and fully
incompressible scenarios [17]. On the other hand, the u-p-e formulation, which includes
the u-p formulation to tackle the incompressible limit and introduces deviatoric strains to
obtain a higher accuracy in the computation of both stresses and strains [51, 19, 20]. Both
formulations are explained in detail in [29].

3.1.2. The u-p formulation. The first formulation we consider is the well-known mixed u-p
formulation, which is introduced to deal with nearly and fully incompressible materials.
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The problem consists of finding both a displacement us : Ds → Rd and a pressure ps :
Ds → R such that

ρs
∂2us

∂t2
−∇ ·

{
Cdev : ∇sus

}
+∇ps = ρsb in Ωs(t), t ∈ ]0, T [ ,(10)

∇ · us +
ps

κs
= 0 in Ωs(t), t ∈ ]0, T [ .(11)

The problem must be supplied with the already-defined boundary and initial conditions.
Let U =

[
H1(Ωs)

]d and P = L2(Ωs) be, respectively, the proper functional spaces where
displacement and pressure solutions are well-defined. We denote by U0 functions in U which
vanish on the Dirichlet boundary Γs,D. We shall be interested also in the spaces W := U×P
and W0 := U0 × P. The variational statement of the problem is derived by testing the
system presented in Eqs. (10-11) against arbitrary test functions Ŭs := [ŭs, p̆s]

T , ŭs ∈ U0

and p̆s ∈ P. The weak form of the problem reads: find Us := [us, ps]
T : ]0, T [ → W such

that initial and Dirichlet boundary conditions are satisfied and〈
ρs
∂2us

∂t2
, ŭs

〉
+A

(
Us, Ŭs

)
= F

(
Ŭs

)
∀Ŭs ∈W0,

where A
(
Us, Ŭs

)
is a bilinear form defined on W×W0 as

A
(
Us, Ŭs

)
:=
(
Cdev : ∇sus,∇sŭs

)
− (ps,∇ · ŭs) + (∇ · us, p̆s) +

(
1

κs
ps, p̆s

)
,

and F
(
Ŭs

)
is a linear form defined on W0 as

F
(
Ŭs

)
:= 〈ρsb, ŭs〉+ 〈ts,N , ŭs〉Γs,N

− 〈tf , ŭs〉Γi
.

The VMS stabilized u-p formulation of the problem for a discrete Galerkin approxima-
tion and with a BDF2 time discretization reads: find Us,h := [us,h, ps,h]T : ]0, T [ → Wh

such that initial and Dirichlet boundary conditions are satisfied and〈
ρs
δ2

2us,h

δt2
, ŭs,h

〉
+A

(
Us,h, Ŭs,h

)
+
∑
K

τu

〈
Π⊥h (∇ps,h) ,∇p̆s,h

〉
K

+
∑
K

τp

〈
Π⊥h (∇ · us,h) ,∇ · ŭs,h

〉
K

= F
(
Ŭs,h

)
∀Ŭs,h ∈Wh,0,

where Π⊥h is the L2(Ωs) projection onto the orthogonal FE space and τu and τp are coef-
ficients coming from a Fourier analysis of the problem for the SGSs. In this work, we use
the stabilization parameters proposed in [51] for linear elastic cases

τu = c1
h2
K

2µs
and τp = 2c2µs,

where c1 = 4 and c2 = 2 are the algorithmic parameters used in the numerical examples
(using linear elements). Note that it is possible to write the formulation in a symmetric
form by applying Π⊥h also to the operators acting on the test functions.

3.1.3. The u-p-e formulation. In this subsection we present the mixed three-field formula-
tion used to deal with the solid dynamics problem. We introduce the mixed u-p-e problem,
which consists of finding a displacement field us : Ds → Rd, a pressure ps : Ds → R and a
deviatoric strain field es : Ds → Rd ⊗ Rd such that

ρs
∂2us

∂t2
−∇ ·

{
Cdev : es

}
+∇ps = ρsb in Ωs(t), t ∈ ]0, T [ ,(12)

∇ · us +
ps

κs
= 0 in Ωs(t), t ∈ ]0, T [ ,(13)
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2µses − Cdev : ∇sus = 0 in Ωs(t), t ∈ ]0, T [ .(14)

The governing equations must be supplied with the already-defined boundary and initial
conditions.

Let us consider the same spaces and test functions we have defined previously for the
mixed u-p formulation. Let also E =

[
L2(Ωs)

]d×d be the proper functional space where
deviatoric strain components are well-defined. We shall be interested also in the spaces
W := U×P×E and W0 := U0×P×E. The variational statement of the problem is derived
by testing system (12-14) against arbitrary test functions Ŭs := [ŭs, p̆s, ĕs]

T , ĕs ∈ E. The
weak form of the problem reads: find Us := [us, ps, es]

T : ]0, T [→W such that initial and
Dirichlet boundary conditions are satisfied and〈

ρs
∂2us

∂t2
, ŭs

〉
+A

(
Us, Ŭs

)
= F

(
Ŭs

)
∀Ŭs ∈W0,

where A
(
Us, Ŭs

)
is a bilinear form defined on W×W0 as

A
(
Us, Ŭs

)
:=
(
Cdev : es,∇sŭs

)
− (ps,∇ · ŭs) + (∇ · us, p̆s)

+

(
1

κs
ps, p̆s

)
−
(
∇sus,Cdev : ĕs

)
+ (2µses, ĕs) ,

and F
(
Ŭs

)
is the same linear form as the one defined for the u-p formulation. To avoid

overloading the notation, we shall always useA to denote the form that defines the problem,
regardless of the formulation employed.

The VMS stabilized u-p-e formulation of the problem for a discrete Galerkin approxima-
tion and with a BDF2 time discretization reads: find Us,h := [us,h, ps,h, es,h]T : ]0, T [→W
such that initial and Dirichlet boundary conditions are satisfied and〈
ρs
δ2

2us,h

δt2
, ŭs,h

〉
+A

(
Us,h, Ŭs,h

)
+
∑
K

τu

〈
Π⊥h (∇ps,h) ,∇p̆s,h

〉
K

+
∑
K

τp

〈
Π⊥h (∇ · us,h) ,∇ · ŭs,h

〉
K

+
∑
K

τe

〈
Π⊥h (D : ∇sus,h) ,Cdev : ∇sŭs,h

〉
K

= F
(
Ŭs,h

)
∀Ŭs,h ∈Wh,0,

where τe = c3, being c3 = 0.1 the algorithmic parameter used in the numerical examples.

3.2. Mixed formulations in finite strain hyperelasticity. In this subsection the equa-
tions of motion of an elastic body under the finite strain theory of hyperelasticity are pre-
sented in a total Lagrangian formulation framework. We employ the super index zero for
quantities acting at the reference configuration. Let Ω0

s := Ωs (0) be the reference configu-
ration of the solid body, whereas the current configuration of the body at time t is denoted
by Ωs (t). The motion is described by a function ψψψ which links a material particle X ∈ Ω0

s

to the spatial configuration x ∈ Ωs (t) according to

ψψψ : Ω0
s −→ Ωs (t) , x = ψψψ(X, t), ∀X ∈ Ω0

s , t ≥ 0.

The boundary of the reference configuration is denoted as Γ0
s := ∂Ω0

s . The inter-
face boundary with the fluid at the reference configuration is Γ0

i := Γi(0). Let now
Ds =

{
(X, t)| X ∈ Ω0

s , 0 < t < T
}

be the space-time domain where the solid problem is
defined. All the spatial derivatives are understood to be taken with respect to the material
coordinates X.
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We want to deal with compressible materials that can reach the incompressible limit.
The governing equations in finite strain hyperelasticity are:

ρ0
s

∂2us

∂t2
−∇ ·

{
S′sF

T
s

}
+∇ ·

{
psJsF

−1
s

}
= ρ0

sb in Ω0
s , t ∈ ]0, T [ ,(15)

ps

κs
+
dGs

dJs
= 0 in Ω0

s , t ∈ ]0, T [ ,(16)

S′s − 2
∂Ws

∂Cs
= 0 in Ω0

s , t ∈ ]0, T [ ,(17)

us = us,D on Γ0
s,D, t ∈ ]0, T [ ,(18)

Ns ·
{
S′sF

T
s − psJsF

−1
s

}
= Ts,N on Γ0

s,N , t ∈ ]0, T [ ,(19)

Ni ·
{
S′sF

T
s − psJsF

−1
s

}
= JsF

−1
s tf on Γ0

i , t ∈ ]0, T [ ,(20)

us = u0
s in Ω0

s , t = 0,(21)

vs = v0
s in Ω0

s , t = 0,(22)

where S′s is the deviatoric second Piola Kirchhoff (PK2) stress tensor and ps the pressure
field. Eq. (15) is the balance of momentum equation, where Fs = ∂x

∂X is the deformation
gradient and Js = det Fs > 0 is the Jacobian of the deformation. Eq. (16) is the volumetric
constitutive equation, which imposes the incompressibility constraint when κs → ∞, and
where Gs is a function which depends on the volumetric part of the strain energy model.
In this work, we select the Simo-Taylor law [52], which is defined as

Gs(Js) =
1

4

(
J2

s − 1− 2 log Js

)
,

dGs

dJs
=

1

2

(
Js −

1

Js

)
.

Finally, Eq. (17) is the deviatoric constitutive equation, which allows us to relate the
displacement field with the deviatoric PK2 stress tensor through the deviatoric part of the
strain energy function Ws. In this work, we restrict ourselves to a neo-Hookean material
model [53], which is defined as

Ws(Cs) =
µs

2

(
J
− 2

3
s tr Cs − 3

)
,

∂Ws

∂Cs
=
µs

2
J
− 2

3
s

{
I− 1

3
(tr Cs)C

−1
s

}
,

where Cs = FTs Fs is the right Cauchy-Green tensor and tr Cs = Cs : I is the trace of Cs.
With regards to the boundary conditions (18-20), us,D is a prescribed value for the

displacements on the Dirichlet boundary, Ts,N a prescribed value for the tractions on
the Neumann boundary and tf are the tractions coming from the fluid on the interface
boundary. Note that a pull-back transformation must be applied to fluid tractions tf to
apply them on the boundaries at the reference configuration. Vector Ns is the geometric
unit outward normal vector on the boundary Γ0

s and Ni the unit normal pointing from the
fluid side to the solid one on the interface boundary at the reference configuration. The
governing equations must be supplied with initial conditions for displacements (21) and
velocities (22) in Ω0

s , with u0
s and v0

s given.
As for the linear case, two different mixed formulations are considered to manage this

problem. On the one hand, the mixed two-field u-p formulation presented in [18], in which
the addition of the pressure field as an extra primary variable with respect to the classical
displacement-based formulation is considered to be able to enforce the incompressibility
constraint. On the other hand, a novel mixed three-field u-p-S′ formulation which is
presented in [21], in which the deviatoric PK2 stress tensor is added as unknown of the
problem. The final goal is to design a FE technology able to tackle simultaneously problems
which may involve incompressible behavior together with a high degree of accuracy of the
stress field.
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3.2.1. The u-p formulation. The first formulation we consider is the mixed two-field u-p
formulation, which is introduced to deal with nearly and fully incompressible materials.
The problem consists of finding both a displacement us : Ds → Rd and a pressure ps :
Ds → R such that

ρ0
s

∂2us

∂t2
−∇ ·

{
S′sF

T
s

}
+∇ ·

{
psJsF

−1
s

}
= ρ0

sb in Ω0
s , t ∈ ]0, T [ ,(23)

ps

κs
+
dGs

dJs
= 0 in Ω0

s , t ∈ ]0, T [ ,(24)

where S′s, Fs, Js and dGs
dJs

are functions of the displacement field. The problem must be
supplied with the already-defined boundary and initial conditions.

Let U and P be, respectively, the proper functional spaces where displacement and
pressure solutions are well-defined. We denote by U0 functions in U which vanish on
the Dirichlet boundary Γ0

s,D. We shall be interested also in the spaces W := U × P and
W0 := U0 × P. The variational statement of the problem is derived by testing the system
presented in Eqs. (23-24) against arbitrary test functions Ŭs := [ŭs, p̆s]

T , ŭs ∈ U0 and
p̆s ∈ P. The weak form of the problem reads: find Us := [us, ps]

T : ]0, T [ → W such that
initial and Dirichlet boundary conditions are satisfied and〈

ρ0
s

∂2us

∂t2
, ŭs

〉
+A

(
Us, Ŭs

)
= F

(
Ŭs

)
∀Ŭs ∈W0,

where A
(
Us, Ŭs

)
is a semi-linear form defined on W×W0 as

A
(
Us, Ŭs

)
:=
〈
S′sF

T
s ,∇ŭs

〉
−
〈
psJsF

−1
s ,∇ŭs

〉
+

〈
dGs

dJs
, p̆s

〉
+

〈
ps

κs
, p̆s

〉
,

and F
(
Ŭs

)
is a linear form defined on W0 as

F
(
Ŭs

)
:=
〈
ρ0

sb, ŭs

〉
+ 〈Ts,N , ŭs〉Γ0

s,N
−
〈
JsF

−1
s tf , ŭs

〉
Γ0
i
.

In order to solve the problem, the system needs to be linearized, so that a bilinear
operator which allows to compute a correction δUs of a given guess for the solution at
time tn+1 is obtained, that we denote by Us. Iteration counters will be omitted to simplify
the notation. After using a Newton-Raphson scheme, we obtain the following linearized
form of the problem. Given Us as the solution at time tn+1 and the previous iteration,
find a correction δUs := [δus, δps]

T : ]0, T [→W0 such that〈
ρ0

s

∂2us

∂t2
, ŭs

〉
+ B

(
δUs, Ŭs

)
= F

(
Ŭs

)
−A

(
Us, Ŭs

)
∀Ŭs ∈W0,

where B
(
δUs, Ŭs

)
is the bilinear form obtained through a Newton-Raphson linearization

and it is defined on W0 ×W0 as

B
(
δUs, Ŭs

)
=
〈
∇δusS

′
s,∇ŭs

〉
+
〈
C′ : {Fs∇δus} , {Fs∇ŭs}T

〉
−
〈
Jsps

{
∇δus : F−Ts

}
F−1

s ,∇ŭs

〉
+
〈
Jsps

{
F−1

s ∇δus

}
,
{
F−1

s ∇ŭs

}T〉
−
〈
JsδpsF

−1
s ,∇ŭs

〉
+
〈
fs(Js)

{
∇δus : F−Ts

}
, p̆s

〉
+

〈
δps

κs
, p̆s

〉
,

where fs(Js) is a function coming from the linearization of dGs
dJs

and C′ is the deviatoric
constitutive tangent matrix; these terms are:

fs(Js) =
1

2

(
Js +

1

Js

)
,
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C′ = 4
∂2Ws

∂Cs∂Cs
=

2µs

3
J
− 2

3
s

{
1

3
(tr Cs)C

−1
s ⊗C−1

s − (tr Cs)
∂C−1

s

∂Cs
−C−1

s ⊗ I− I⊗C−1
s

}
.

The VMS stabilized u-p formulation of the linearized problem for a discrete Galerkin
approximation and with a BDF2 time discretization is given by〈
ρ0

s

δ2
2us,h

δt2
, ŭs,h

〉
+ B

(
δUs,h, Ŭs,h

)
+
∑
K

τu

〈
BBB(δUs,h),LLL(Ŭs,h)

〉
K

= F
(
Ŭs,h

)
−A

(
Us,h, Ŭs,h

)
−
∑
K

τu

〈
Π⊥h (AAA(Us,h)) ,LLL(Ŭs,h)

〉
K
∀Ŭs,h ∈Wh,0,

where

LLL(Ŭs,h) = −fs(Js,h)∇p̆s,hF
−1
s,h,

AAA (Us,h) = −Js,h∇ps,hF
−1
s,h,

BBB(δUs,h) = −Js,h

{
∇δus,h : F−Ts,h

}
∇ps,hF

−1
s,h + Js,h∇ps,hF

−1
s,h∇δus,hF

−1
s,h − Js,h∇δps,hF

−1
s,h,

Π⊥h is the L2(Ω0
s ) projection onto the orthogonal FE space and τu is defined in [18] as

τu = c1
h2
K

2µs
,

where c1 = 1.0 is the algorithmic parameter applied in the numerical examples (using
linear elements).

3.2.2. The u-p-S′ formulation. In this subsection we present the mixed three-field formula-
tion used to deal with the solid dynamics problem. It consists of finding a displacement field
us : Ds → Rd, a pressure ps : Ds → R and a deviatoric PK2 stress field S′s : Ds → Rd ⊗Rd
such that

ρ0
s

∂2us

∂t2
−∇ ·

{
S′sF

T
s

}
+∇ ·

{
psJsF

−1
s

}
= ρ0

sb in Ω0
s , t ∈ ]0, T [ ,(25)

ps

κs
+
dGs

dJs
= 0 in Ω0

s , t ∈ ]0, T [ ,(26)

S′s − 2
∂Ws

∂Cs
= 0 in Ω0

s , t ∈ ]0, T [ ,(27)

where Fs, Js, dGs
dJs

and ∂Ws
∂Cs

are functions of the displacement field. The problem must be
supplied with the already-defined boundary and initial conditions. Note that tensor S′s is
in fact not deviatoric, but it comes from the volumetric-deviatoric splitting of the Cauchy
stress tensor.

Let us consider the same spaces and test functions we have defined previously for the
mixed u-p formulation. Let S be the proper functional space where the deviatoric PK2
stress components are well-defined. We shall be interested also in the spaces W := U×P×S
and W0 := U0 × P × S. The variational statement of the problem is derived by testing

system (25-27) against arbitrary test functions Ŭs :=
[
ŭs, p̆s, S̆

′
]T

, S̆′ ∈ S. The weak form

of the problem reads: find Us := [us, ps,S
′
s]
T : ]0, T [ → W such that initial and Dirichlet

boundary conditions are satisfied and〈
ρ0

s

∂2us

∂t2
, ŭs

〉
+A

(
Us, Ŭs

)
= F

(
Ŭs

)
∀Ŭs ∈W0,

where A
(
Us, Ŭs

)
is a semi-linear form defined on W×W0 as

A
(
Us, Ŭs

)
:=
〈
S′sF

T
s ,∇ŭs

〉
−
〈
psJsF

−1
s ,∇ŭs

〉
+

〈
dGs

dJs
, p̆s

〉
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+

〈
ps

κs
, p̆s

〉
−
〈

2
∂Ws

∂Cs
, S̆′
〉

+
〈
S′s, S̆

′
〉
,

and F
(
Ŭs

)
is the same linear form as the one defined for the u-p formulation.

After using a Newton-Raphson scheme, we obtain the following linearized form of the
problem. Given Us as the solution at time tn+1 and the previous iteration, find a correction
δUs := [δus, δps, δS

′
s]
T : ]0, T [→W0 such that〈

ρ0
s

∂2us

∂t2
, ŭs

〉
+ B

(
δUs, Ŭs

)
= F

(
Ŭs

)
−A

(
Us, Ŭs

)
∀Ŭs ∈W0,

where B
(
δUs, Ŭs

)
is a bilinear form defined on W0 ×W0 as

B
(
δUs, Ŭs

)
=
〈
∇δusS

′
s,∇ŭs

〉
+
〈
FsδS

′
s,∇ŭs

〉
−
〈
Jsps

{
F−1

s : ∇δus

}
F−1

s ,∇ŭs

〉
+
〈
Jsps

{
F−1

s ∇δus

}
,
{
F−1

s ∇ŭs

}T〉− 〈JsδpsF
−1
s ,∇ŭs

〉
+
〈
fs(Js)

{
F−1

s : ∇δus

}
, p̆s

〉
+

〈
δps

κs
, p̆s

〉
−
〈
C′ : {Fs∇δus} , S̆′

〉
+
〈
δS′s, S̆

′
〉
,

The VMS stabilized u-p-S′ formulation of the linearized problem for a discrete Galerkin
approximation and with a BDF2 time discretization is given by:〈
ρ0

s

δ2
2us,h

δt2
, ŭs,h

〉
+ B

(
δUs,h, Ŭs,h

)
+
∑
K

τu

〈
BBBu(δUs,h),LLLu(Ŭs,h)

〉
K

+
∑
K

τS′
〈
BBBS′(δUs,h),LLLS′(Ŭs,h)

〉
K

= F
(
Ŭs,h

)
−A

(
Us,h, Ŭs,h

)
−
∑
K

τu

〈
Π⊥h (AAAu(Us,h)) ,LLLu(Ŭs,h)

〉
K
−
∑
K

τS′
〈

Π⊥h (AAAS′(Us,h)) ,LLLS′(Ŭs,h)
〉
K

∀Ŭs,h ∈Wh,0, where

LLLu(Ŭs,h) = −fs(Js,h)∇p̆s,hF
−1
s,h, LLLS′(Ŭs,h) = {Fs,h∇ŭs,h}T ,

AAAu (Us,h) = −Js,h∇ps,hF
−1
s,h, AAAS′ (Us,h) = 2

∂Ws,h

∂Cs,h
,

BBBu(δUs,h) = −Js,h

{
∇δus,h : F−Ts,h

}
∇ps,hF

−1
s,h + Js,h∇ps,hF

−1
s,h∇δus,hF

−1
s,h − Js,h∇δps,hF

−1
s,h,

BBBS′(δUs,h) = C′ : {Fs,h∇δus,h} ,
and τS′ = c3 is defined as in [21], being c3 = 0.5 the algorithmic parameter applied in the
numerical examples.

4. Fluid flow problem

The next step is to define the governing equations that model the flow problem for
an incompressible Newtonian fluid, which is modeled with the well-known Navier-Stokes
equations. The approach followed can be understood as the traditional one, where the
fluid problem is solved by means of an ALE formulation to cope with the time dependency
of the fluid domain.

4.1. ALE formulation of the fluid flow equations. Let Ωf(t) be the domain where
the fluid flows, with boundary Γf(t) := ∂Ωf(t), where Dirichlet boundary conditions are
prescribed on Γf,D(t) and Neumann conditions on Γf,N (t). These boundaries may be
moving.

Let χχχt be a family of invertible mappings, which for all t ∈ [0, T ] map a point X ∈ Ωf(0)
to a point x = χχχt(X) ∈ Ωf(t), with χχχ0 = I, the identity. If χχχt is given by the motion of
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the particles, the resulting formulation would be Lagrangian, whereas if χχχt = I for all t,
Ωf(t) = Ωf(0) and the formulation would be Eulerian. Let now t′ ∈ [0, T ], with t′ ≤ t, and
consider the mapping

χχχt,t′ : Ωf(t
′) −→ Ωf(t), x′ 7→ x = χχχt ◦χχχ−1

t′ (x′).

Let Df = {(x, t)|x ∈ Ωf(t), 0 < t < T} be the space-time domain where the fluid problem
is defined. Given a function f : Df −→ R we define

∂f

∂t

∣∣∣∣
x′

(x, t) :=
∂(f ◦χχχt,t′)

∂t
(x′, t), x ∈ Ωf(t), x

′ ∈ Ωf(t
′).

In particular, the domain velocity taking as a reference the coordinates of Ωf(t
′) is given

by

vdom :=
∂x

∂t

∣∣∣∣
x′

(x, t).

When the flow equations are approximated using the FE method, vdom needs to be
computed. It is assumed to be given on the boundary Γf(t). To compute the values for
the interior of the domain, a mesh equation must be solved. The mesh equation we use is
proposed in [54]. The method considers the mesh as a fictitious linear elastic body subjected
to prescribed displacements at the selected moving boundaries. The mechanical properties
of each mesh element are appropriately selected in order to minimize the deformation and
the distortion of the mesh elements. Let us directly show here the system of equations
that is solved for a given velocity field in the interface boundary with the solid domain vΓi

at time tn:

−∇ · {C : ∇svdom} = 0 in Ωf(t
n),

vdom = vΓi on Γi(t
n),

vdom = 0 on Γf(t
n) \ Γi(t

n),

where C (Edom (x) , νdom) is the constitutive 4th order tensor in linear elasticity, Edom (x)
is the Young modulus of the mesh and νdom is the Poisson coefficient of the mesh.

Using the ALE reference, the only modification with respect to the purely Eulerian
formulation is to replace the transport velocity vf of the advective term by vc := vf−vdom.
If vdom = 0 we would recover a purely Eulerian formulation for the fluid.

4.2. The continuum problem statement. The equations of the Newtonian incompress-
ible fluid flow assumption are now presented. The continuum Navier-Stokes problem for
incompressible Newtonian fluid flows is defined by the following system of equations:

ρf
∂vf

∂t
+ ρfvc · ∇vf −∇ · {2µf∇svf}+∇pf = f in Ωf(t), t ∈ ]0, T [ ,(28)

∇ · vf = 0 in Ωf(t), t ∈ ]0, T [ ,(29)
vf = vf,D on Γf,D(t), t ∈ ]0, T [ ,(30)

nf · σσσf = tf,N on Γf,N (t), t ∈ ]0, T [ ,(31)
vf = vΓi on Γi(t), t ∈ ]0, T [ ,(32)

vf = v0
f in Ωf(0), t = 0,(33)

where Eq. (28) is the balance of linear momentum and Eq. (29) the incompressibility
constraint. In these equations, vf is the velocity field, pf the pressure, f the vector of body
forces, ρf the density of the fluid and µf its dynamic viscosity.

With regards to the boundary conditions (30-32), vf,D is a prescribed value for the
velocities on the Dirichlet boundary, tf,N the prescribed value for the tractions on the
Neumann boundary and vΓi is the velocity field coming from the solid on the interface
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boundary. The governing equations must be supplied with an initial condition for the
velocity field (33) in Ωf(0), with v0

f given.
In this work, the stabilized two-field v-p formulation proposed in [55] is considered.

Details can be found in [56]. Here we just write the resulting numerical formulation.

4.3. The v-p formulation. In this subsection, the well-known mixed v-p formulation is
introduced in order to deal with incompressible Newtonian fluid flows. In the presented
formulation the velocity field vf : Df → Rd and the pressure field pf : Df → R are used as
independent variables.

Let V =
[
H1(Ωf)

]d and P = L2(Ωf) be, respectively, the proper functional spaces where
velocity and pressure solutions are well-defined. We denote by V0 functions in V which
vanish on the Dirichlet boundary Γf,D. We shall be interested also in the spaces W := V×P
and W0 := V0 × P. The variational statement of the problem is derived by testing the
system presented in Eqs. (28-29) against arbitrary test functions V̆f := [v̆f , p̆f ]

T , v̆f ∈ V0

and p̆f ∈ P. The weak form of the problem reads: find Vf := [vf , pf ]
T : ]0, T [ → W such

that initial and Dirichlet boundary conditions are satisfied and〈
ρf
∂vf

∂t
, v̆f

〉
+A

(
vf ;Vf , V̆f

)
= F

(
V̆f

)
∀ V̆f ∈W0,

where, for a fixed v̂, A
(
v̂;Vf , V̆f

)
is a bilinear form defined on W×W0 as

A
(
v̂;Vf , V̆f

)
:= 〈ρf v̂ · ∇vf , v̆f〉+ 2µf (∇svf ,∇v̆f)− (pf ,∇ · v̆f) + (∇ · vf , p̆f) .

F
(
V̆f

)
is a linear form defined on W0 as

F
(
V̆f

)
:= 〈f , v̆f〉+ 〈tf,N , v̆f〉Γf,N

.

Note that the Navier-Stokes problem to be solved has one source of nonlinearity, namely,
the convective term. For the sake of conciseness, we will consider only a fixed-point iterative
scheme. In particular, v̂ will be taken as the velocity computed in a previous iteration of
a fixed-point scheme.

In this case, we consider the SGSs to be time-dependent; these are solutions of:

ρf
∂ṽ1

∂t
+ τ−1

v ṽ1 = −Π⊥h [ρfvc,h · ∇vf,h],

ρf
∂ṽ2

∂t
+ τ−1

v ṽ2 = −Π⊥h [∇pf,h],

p̃ = −τpΠ⊥h [∇ · vf,h],

where τv and τp are coefficients coming from a Fourier analysis of the problem for the
SGSs. In this work, we use the stabilization parameters proposed in [56] as

τ−1
v = c1

µf

h2
K

+ c2
ρf |v̂h|
hK

and τp = τ−1
v h2

K ,

where |v̂h| is the Euclidean norm of the velocity guess and c1 = 4.0 and c2 = 2.0 are the
algorithmic parameters used in the numerical examples using linear elements.

The VMS stabilized v-p formulation of the problem for a discrete Galerkin approxima-
tion and with a BDF2 time discretization reads: find Vf,h := [vf,h, pf,h]T : ]0, T [ → Wh

such that initial and Dirichlet boundary conditions are satisfied and〈
ρf
δ2vf,h

δt
, v̆f,h

〉
+A

(
vf,h;Vf,h, V̆f,h

)
+
∑
K

〈ṽ1,−ρfvf,h · ∇v̆f,h〉K +
∑
K

〈ṽ2,−∇p̆f,h〉K

+
∑
K

〈p̃,−∇ · v̆f,h〉K = F
(
V̆f,h

)
∀ V̆f,h ∈Wh,0.
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This stabilized ALE formulation for the linear convection-diffusion equation using also
BDF2 as time integrator is analyzed in [57]. Let us also remark that if discontinuous
pressure interpolations are used (which is not our case), terms involving SGSs on the
element boundaries need to be introduced [58].

5. Topology optimization of incompressible structures subject to FSI

5.1. Fluid-structure interaction. Let Ω(t) be the whole domain of the problem, formed
by a fluid sub-domain Ωf(t) and a solid one Ωs(t), which will be optimized during the
process. These two sub-domains do not overlap, so that Ω̄(t) = Ωf(t) ∪ Ωs(t) and Ω̊f(t) ∩
Ω̊s(t) = ∅. Recall that the sub-domains have their own boundaries Γf(t) and Γs(t), and the
interface between them is Γi(t). Its unit normal with respect to the spatial configuration is
denoted as ni, pointing from the fluid side to the solid one. We also define Γ0

s as the solid
boundary in the reference configuration and its unit normal with respect to the material
configuration is denoted by Ni.

In this work, a classical block-iterative coupling is considered, in which the solid and
the fluid problems are solved sequentially with a strong coupling. A Dirichlet-Neumann
coupling is considered: the solid is solved with the loads computed from the fluid in a given
iteration and then the fluid is computed with the velocities on the interface obtained from
the solid. To enhance the convergence rate of the coupled solvers, an Aitken relaxation
scheme is implemented. By accelerating the convergence, it reduces the number of itera-
tions required to reach a desired level of accuracy, thereby reducing computational time
and resources. This is particularly beneficial for complex FSI problems that involve large-
scale simulations or real-time applications [9, 59]. Obviously, other iteration-by-subdomain
schemes could be used, as those proposed in [60] emanating from the concept of boundary
SGSs.

5.2. Topology optimization of incompressible structures. In the following, the TO
problem is summarized under the assumption of both linear elastic and finite strain hypere-
lastic isotropic materials. As we are considering a total Lagrangian formulation framework
when dealing with finite strain theory, let us use the material coordinates X and work
in the reference configuration for the solid. Obviously, in the linear elastic case we can
consider both configurations due to the fact that they are supposed to be very close to
each other.

One common objective in TO is minimizing the total potential energy of a structure.
The total potential energy is a measure of the internal energy stored within the solid, which
is directly related to its stiffness and deformation behavior. By minimizing the potential
energy, engineers can design structures that are lightweight yet strong, leading to improved
performance and efficiency. In addition to minimizing the potential energy, TO often
incorporates volume constraints. These constraints ensure that the resulting optimized
design does not exceed a certain volume or mass limit, which is often dictated by practical
considerations, such as manufacturing capabilities or weight restrictions. By imposing
volume constraints, engineers can ensure that the optimized design remains feasible and
practical for real-world applications.

The description of the topology is determined by a characteristic function defined as

χ (X) =

{
1 if X ∈ Ωstr

0 if X ∈ Ωwea
,

where the solid domain at the reference configuration Ω0
s is split into two parts. The sub-

domains Ωstr and Ωwea are made of different materials. The characteristic function is in
charge of determining in the whole domain Ω0

s what part corresponds to either material.
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Such kind of problems are typically termed bi-material TO problems. The material corre-
sponding to the domain Ωwea exhibits a very small stiffness, approximating the absence of
material. The material parameters of the strong domain Ωstr are denoted by ρstr, Estr and
νstr, and the parameters of the weak domain Ωwea are taken as ρwea = γρstr, Ewea = γEstr,
and thus γ stands for the jump of density and stiffness. Note that γ > 0 is a parameter,
small enough to model void regions and large enough to entail invertibility properties to the
stiffness matrix. To simplify the problem in the void region, we take the fictitious material
there as compressible, i.e., νwea < 0.5. This is especially important if the optimization
process leads to confined regions of fictitious material, if the material was incompressible
there, significant loading could occur in the fictitious region, which would lead to incorrect
results (see [29]).

The TO problem is then formulated as the minimization of the total potential energy
functional subjected to the material allowed, which is written as follows

min
χ∈XL

J (χ) =

∫
Ω0

s

Ψs (χ,X)−
∫

Ω0
s

ρ0
sb · us (χ,X)−

∫
Γ0
s,N

Ts,N · us (χ,X)

s.t. :
〈
ρ0

s

∂2us

∂t2
, ŭs

〉
+A

(
Us, Ŭs

)
= F

(
Ŭs

)
∀Ŭs ∈W0,

XL =

{
χ ∈ L∞

(
Ω0

s , {0, 1}
)
,

∫
Ω0

s

χ (X) = L|Ω0
s |

}
,

(34)

where Ψs = Ws+κsGs is the strain energy function and XL is the feasible domain restricted
to a volume constraint denoted as a fraction 0 < L < 1 of the domain Ω0

s .
Several approaches exist to solve the TO problem (34) for elastic materials. In this work

we apply the Topological Derivative (TD) concept [24] together with a level-set approach
in order to advance to the optimal topology. The TD is a measurement of the sensitivity
of a given functional with respect to the apparition of an infinitesimal inclusion in a given
point of the domain of interest.

In the linear elastic case, the TD of this functional at a point X suitable to reach the
incompressible limit can be formally computed according to [29] as

DTJ (χ,X) = es (χ,X) : Pdev : ss (χ,X) + Pvolp2
s (χ,X) + (1− γ)ρ0

sb · us (χ,X) ,(35)

where Pdev and Pvol are the deviatoric polarization tensor and the volumetric polarization
coefficient, which are defined in [29].

Unfortunately, there is no way to obtain an analytical expression for the TD for finite
strain hyperelastic materials. However, an approximation can be found in [61, 62]. In this
set of works, the topological sensitivity analysis is applied to finite strain deformation based
on the total Lagrangian formulation framework. The numerical study of the asymptotic
behavior of the function DTJ (χ,X) with relation to the radius of the hole is developed.
It is concluded that the TD of this functional at a point X can be approximated by

(36) DTJ (χ,X) ≈MDJ (χ,X) := Ψs (χ,X) + (1− γ)ρ0
sb · us (χ,X) ,

which is nevertheless expected to be a minimization direction.

Remark 5.1. Let us discuss some important aspects about the TD approximation we are
using when the infinitesimal strain assumption is considered. In such case, the TD approx-
imation is written as

DTJ (χ,X) ≈ 1

2
εεεs (χ,X) : σσσs (χ,X) + (1− γ)ρ0

sb · us (χ,X) ,

where εεεs is the infinitesimal strain tensor and σσσs the Cauchy stress tensor. By comparing
this approximation with the analytical TD obtained for linear elastic materials given in [63]
it is seen that these two equations match, if and only if, the polarization tensor P reduces
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to the 4th-order identity tensor I (up to constant values, which do not affect the direction
of the TD). This only happens when νs = 0.25. Therefore, the TD approximation only
matches the exact one when νs = 0.25, being just an approximation otherwise. Also in
the context of linear elasticity, this approximate TD is justified in [64] using the concept of
relaxed TD. A comparison of this and other approaches can be found in [65].

We can now define a signed TD such that

DTJ (χ,X) =

{
−DTJ (χ,X) if X ∈ Ωstr

DTJ (χ,X) if X ∈ Ωwea
.

Let us now introduce the signed TD interpretation. For a given topology, computing the
TD allows one to know, for each given material point, how the cost functional would change
if the material switches. Once the optimal value for the characteristic function χ (X) is
reached, the following condition holds

(37) DTJ (χ,X) ≥ DTJ (χ,Y) ,∀X ∈ Ωstr,∀Y ∈ Ωwea.

Note that at the interface Ωstr ∩ Ωwea, the TD presents a jump, but the signed TD is
continuous. Eq. (37) allows one to construct a level set function, which will implicitly
characterize Ωstr and Ωwea. This level set function is defined as

ψ (χ,X) = DTJ (χ,X) + λ,

where λ ∈ R is a scalar, responsible for ensuring that the volume restriction in Eq. (34)
is fulfilled. The level-set function also allows us to characterize the description of the
topology:

(38) ψ (χ,X)

{
> 0 if X ∈ Ωstr

< 0 if X ∈ Ωwea
.

Furthermore, the level-set function allows us to keep a sharp interface between materials
when ψ (χ,X) = 0. The scalar λ can be computed by enforcing∫

Ω0
s

H (ψ (χ,X)) = L|Ω0
s |,

where H is the Heaviside step function. From Eq. (38), it can be observed that for the
solution of Eq. (34) there holds

χ = H (ψ) .

We can perform the TO procedure according to the flowchart in Fig 1 (see [66, 29] to see
further details on the TO procedure). Let us comment some details about this flowchart.

Initially, the level set function ψ is defined with unit initial value, which means that we
consider the structure to be composed of strong material everywhere. Obviously, this first
approach does not fulfill the volume constraint. We thus take

ψ0 (X) = 1 in Ω0
s .

Let ψi−1 be a known level set, where the superscript indicates the TO iteration counter.
From this level set value, a characteristic function can be built

χi (X) = H
(
ψi−1 (X)

)
in Ω0

s ,

which allows one to solve the solid dynamics problem and compute the signed TD. This
is independent from the use of any formulation. For convergence aspects, the algorithm
also requires an intermediate function φi

(
χi,X

)
. This function is initially defined as the
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Set initial level-set function value

ψ0 (X) = 1

Compute characteristic function

χi (X) = H
(
ψi−1 (X)

)
Solve FE problem for displacements, pressure, strains and stresses〈

ρ0
s

∂2us

∂t2
, ŭs

〉
+A

(
Us, Ŭs

)
= F

(
Ŭs

)

Check stopping conditions

i > imax or
∣∣∣∣J i(χi)− J i−1(χi−1)

J i−1(χi−1)

∣∣∣∣ ≤ tol

Compute TD according to Eq. (35) for linear elastic materials and to Eq. (36)
for finite strain hyperelastic ones and the signed TD as

DTJ i
(
χi,X

)
=

{
−DTJ i

(
χi,X

)
X ∈ Ωstr

DTJ i
(
χi,X

)
X ∈ Ωwea

Compute relaxed and normalized function

φi
(
χi,X

)
= κi

Πh

(
DTJ

i (
χi,X

))
‖Πh

(
DTJ

i
(χi,X)

)
‖

+
(
1− κi

)
ψi−1

(
χi−1,X

)

Obtain volume control parameter λi from∫
Ω0

s

H
(
φi
(
χi,X

)
+ λi

)
= L|Ω0

s |

Compute level-set function

ψi
(
χi,X

)
= φi

(
χi,X

)
+ λi

in
cr
em

en
t
i stop

no

yes

Figure 1. Topology optimization algorithm flowchart

projection onto the FE space of the normalized TD in order to bound the level-set function
with a relaxation scheme introduced as the iterative process advances, i.e.

φi
(
χi,X

)
= κi

Πh

(
DTJ

i (
χi,X

))
‖Πh

(
DTJ

i
(χi,X)

)
‖

+
(
1− κi

)
ψi−1

(
χi−1,X

)
.

The relaxation parameter κi is computed according to [66], and Πh indicates a projection
onto the FE space. In the numerical examples, Πh is computed by using a lumped mass
matrix approach for computational efficiency. This approach plays the role of standard
filtering in TO. Finally, the level set function at the current iteration is defined as

ψi
(
χi,X

)
= φi

(
χi,X

)
+ λi,

where λi is computed by using the secant method to solve the volume constraint equation
at iteration i: ∫

Ω0
s

H
(
ψi
(
χi,X

))
= L|Ω0

s |.
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As a stopping criterion we consider the evolution of the objective functional. The algorithm
concludes if the functional has not decreased more than a given minimum during a maxi-
mum number of iterations. Also, a maximum number of total iterations to be performed
is set.

To determine κi, a spatial oscillation indicator is computed:

ξi
(
χi,X

)
= sign


Πh

(
DTJ

i
(χi,X)

)
‖Πh

(
DTJ

i
(χi,X)

)
‖
− ψi−1

(
χi−1,X

)
ψi−1 (χi−1,X)− ψi−2 (χi−2,X)

 .

Note that ξi
(
χi,X

)
= 1 if the iterative algorithm for computing the TD is advancing

monotonically in the preceding iterations and ξi
(
χi,X

)
= −1 otherwise. This indicator

allows one to detect if there are oscillations in the iterative process. If there are oscillations,
the value for κi needs to be decreased, otherwise it can be increased up to a maximum of
1. An intermediate function µi

(
χi,X

)
is introduced as

µi
(
χi,X

)
=

{
k1κ

i−1 if ξi
(
χi,X

)
= 1

k2κ
i−1 if ξi

(
χi,X

)
= −1

Since ξi
(
χi,X

)
is a spatial function, the information on the oscillations needs to be aver-

aged, so that a scalar value for κi can be obtained; this is done as follows:

κi = min


(∫

Ω

(
µi
(
χi,X

))k3∫
Ω ψ

i (χi,X)

)−k3
, 1

 ,

where k1 ≥ 1, k2 ≤ 1 and k3 ≤ 1 are algorithmic parameters. In the numerical examples
to be presented, k1 = 1.1, k2 = 0.5 and k3 = 0.1 are used.

5.3. Algorithm for the topology optimization of incompressible structures sub-
ject to FSI. The sequence of the individual steps is shown in Algorithm 1. Let us explain
in detail the proposed strategy.

The main goal of the proposed methodology is to obtain optimized incompressible struc-
tures which are subjected to FSI loads. In this sense, we need to specify both a delay for
the TO to start, ndel, and a time window Nw, which will take into account the number
of steps to do a TO iteration. Obviously, the selection of this time window is not simple,
and it depends upon the FSI problem. For real transient FSI problems, the problem is
supposed to be statistically stationary, i.e., some statistics such as the mean or the stan-
dard deviation, remain constant [67, 68, 69]. In this work, as a first approximation, a fixed
value for the time window is imposed during the whole procedure.

The following ingredient is to compute an additive TD for all the steps along the time
window. In each time step, we iterate until convergence of the block-iterative FSI method.
Once a converged solution is obtained, we can compute the TD associated with the solid
converged state according to Eq. (35) for linear elastic materials or to Eq. (36) for
hyperelastic ones. The idea is to sum the contributions for all the time steps inside the
time window. To do so, a simple additive function is defined as

Dadd
T J nw+1 (χ,X) = Dadd

T J nw (χ,X) +DTJ nw (χ,X) ,

where nw is the time window counter. Once the time window is achieved, nw = Nw, a
single TO step is performed for the solid domain with the additive TD according with the
flowchart presented in Fig. 1. The counter of steps and the additive TD are reset to zero.

An important aspect to mention is that "dry" TO is performed. This means that only
the interior of the structure is optimized, whereas the interface boundary remains constant
along the problem. To do so, we split the solid domain Ω0

s into two sub-domains, Ωvar and
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Algorithm 1 TO of incompressible structures subject to FSI
Fixed delay steps ndel to start the TO procedure and a time window Nw to perform a TO step.

n = 0; loop over the number of time steps. nw = 0; time window counter to 0.
n← n+ 1
if n > ndel then nw ← nw + 1
k = 0; iterate coupling iterations until convergence.

k ← k + 1 (block iteration counter omitted in the following).
• Solve the equations for the solid, taking into account the tractions coming from

the fluid problem tf .
• Compute relaxed velocities on the interface boundary vΓi with an Aitken relax-

ation scheme from the solid velocities vΓi,s = δ2us

δt |Γi
.

• Compute the domain velocity in the fluid by solving the mesh equation.
• Solve the ALE equations for the fluid, taking into account the mesh velocity
vdom and using the interface velocity vΓi .

• Check convergence and update the unknowns. Coupling convergence is
checked based on the norm of the relative error between coupling iterations of dis-
placements at the interface, i.e., ‖uΓi,s − uΓi,f‖L2(Γi) and tractions, i.e., ‖tΓi,s −
tΓi,f‖L2(Γi), properly normalized. Convergence is achieved when this norm is below a
given tolerance.

End block-iterative loop.
• Compute the additive TD associated to the already converged solution at time tn

Dadd
T J nw+1 = Dadd

T J nw +DTJ nw ,

where DTJ nw is the TD associated with time window counter nw..
• Check if n > ndel and nw = Nw, then

• Perform a TO step with the additive TD according to flowchart in Fig. 1.
nw = 0; restart time window counter.
Dadd
T J nw = 0; restart additive topological derivative.

• endif
End loop over the number of time steps.

Ωfix. The former contains the interior of the structure and it is allowed to be optimized
during the TO procedure, the latter contains the external layer of the structure in contact
with the fluid and is fixed as strong material during the whole TO procedure.

6. Numerical examples

In this section, three numerical examples are presented to assess the performance of
the proposed methodology to perform TO of incompressible structures subject to FSI. All
numerical examples have been implemented in our in-house code FEMUSS, a multiphysics
platform implemented in object oriented Fortran 2008. In the first one, a flow through
a channel with a flexible wall is considered to study a stationary solution. The main idea
is to analyze the differences between mixed formulations when considering either linear
elastic structures or hyperelastic ones. Next, so as to examine the effect of transient FSI
solutions, the well-known Turek’s test FSI2 is presented. In this case, the behavior of a
laminar channel flow around an elastic object is studied when several volume fractions
are considered for the optimized structure. To end up, a three-dimensional case with an
incompressible flexible plate in a channel flow is considered.

On the one hand, for the fluid sub-problem we select the S-OSGS method with time-
dependent SGSs. A maximum of 10 iterations is set, and the numerical tolerance in the
L2 (Ωf) norm is 10−5. On the other hand, for the solid sub-problem the stabilization
technique is also selected to be the S-OSGS method. A maximum of 10 iterations is set,
and the numerical tolerance in the L2

(
Ω0

s

)
norm is 10−5.
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In order to solve the monolithic system of linear equations for each sub-problem, we
use the Biconjugate Gradients solver, BiCGstab [70], which is already implemented in the
PETSc parallel solver library [71].

Concerning the iterative scheme, a strong-coupling staggered approach is considered,
as previously mentioned. For the transmission conditions on the interface boundary Γi,
the relative tolerance is set to 10−3. For the mapping between domains, the aforemen-
tioned ALE formulation is applied in the fluid domain, together with the Total Lagrangian
approach for the solid mechanics problem

With regards to the TO parameters, the weak material is considered to be compressible,
with νwea = 0.4. The mixed formulation for the solid is used in this region even if it is
not strictly required to avoid switching formulations and changing the number of total
unknowns during the simulation. The jump of stiffness γ is fixed to 10−2. As a stopping
criterion for the TO algorithm, we impose a relative tolerance for the objective functional
tol = 10−3, unless otherwise specified. The volume fraction is reduced at once except
where otherwise stated. In all presented figures, only the positive part of the level set is
plotted, therefore only the strong material part is shown. The rest is filled of weak material
elements, and thus interpreted as the void region.

6.1. Beam in a channel flow. In this first problem, we seek to determine the optimal
topology of a structure immersed in a channel flow. This example is very similar to the one
presented in [37, 43]. The problem presented here has a fixed interface boundary between
the fluid flow and the structure. Therefore, we optimize the interior of the solid. The
geometry of the problem is shown in Fig. 2

fix

r

var

Figure 2. Beam in a channel flow. Geometry.

Regarding the channel measures, the rigid channel has height H = 1 m. The flexible
wall is located at 2H from the channel entrance. The length of the whole channel is
L = 5 m. The structure bar has length l = 0.1 m and height h = 0.5 m. The solid domain
Ω0

s is divided into two subdomains Ωvar and Ωfix. The former contains the interior of the
structure and it is allowed to be optimized during the TO procedure, the latter contains
the external layer of the structure of width r = 0.01 m which is in contact with the fluid
and is fixed as strong material during the whole TO procedure.

Regarding the properties of the fluid, the density is ρf = 1 kg/m3 and the dynamic
viscosity is µf = 1 Pa · s. For the elastic plate the properties are as follows: an initial
density ρ0

s = 1 kg/m3, a Young’s modulus Es = 40 kPa and a Poisson’s ratio νs = 0.5. A
plane strain assumption is considered. A final volume of 50% of the initial one is stated as
a volume restriction for Ωvar.
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Concerning the boundary conditions, in the inlet boundary of the fluid domain Γin, a
steady Poiseuille flow with average velocity v̄in is assumed, given by

v̄f(0, y) = 1.5 v̄in
y(H − y)(

H
2

)2 .

On the walls Γwall, no-slip boundary conditions are imposed, and in the outlet Γout, the
pressure is set to pout = 0 Pa. A rectangular plate is considered as the solid domain, and
it is clamped at the bottom side.

The domains are discretized using P1 (linear) elements for both fluid and solid domains.
Regarding the distribution of the elements, both meshes are unstructured. In total, the
fluid mesh is formed by 12 446 elements, and the solid mesh by 12 720 elements as it is
shown in Fig 3.

(a) Fluid mesh (b)
Solid
mesh

Figure 3. Beam in a channel flow. Mesh domains.

(a) Velocity field

(b) Pressure field

Figure 4. Beam in a channel flow. Distribution of the velocity field (top)
and pressure (bottom) in the fluid domain with average velocity v̄in = 1 m/s.
Velocities are plotted using their Euclidean norm.
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To start the problem, a smooth increase of the velocity profile in time is prescribed,
given by

vf(0, y, t) =

{
v̄f(0, y)

1−cos π
2
t

2 if t < 1.0 s
vf(0, y) otherwise

.

We select the time step δt = 0.005 s. During the first 2.5 s, we let the FSI problem run
without performing any TO iteration. To do so, we impose a delay in the TO procedure of
ndel = 500. At this moment, the problem has already converged to a stationary solution.
From this point on, we select a time window of Nw = 50, so that Nwδt = 0.25 s, to store
the additive TD and perform a TO iteration. We continue the same procedure until a
converged optimized solution is obtained for the structure.

First of all, let us consider the case v̄in = 1 m/s, which results in a fluid flow with
Reynolds number Re = 1. For this case, the final stationary FSI solution is supposed to
produce very small strains in the structure, which can be approximated with the infini-
tesimal strain theory. Let us start by showing the final stationary solution for the fluid
domain once the optimized structure has been obtained for a linear elastic material. Both
velocity and pressure fields in the channel are depicted in Fig. 4.

(a)
Dis-
place-
ment
field

(b)
Pressure
field

(c)
De-
via-
toric
strain
field

Figure 5. Beam in a channel flow. Distribution of the displacement field
(left), pressure (middle) and deviatoric strain field (right) in the linear
elastic incompressible beam with u-p formulation and with average velocity
v̄in = 1 m/s. Displacements and deviatoric strains are plotted using their
Euclidean norm.

We consider the two different formulations presented in Subsection 3.1 for the structure.
In Fig. 5 the final optimized solution with the u-p formulation is shown, whereas in
Fig. 6 the one obtained for the three-field u-p-e formulation is presented. Both solutions
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(a)
Dis-
place-
ment
field

(b)
Pressure
field

(c)
De-
via-
toric
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field

Figure 6. Beam in a channel flow. Distribution of the displacement field
(left), pressure (middle) and deviatoric strain field (right) in the linear elas-
tic incompressible beam with u-p-e formulation and with average velocity
v̄in = 1 m/s. Displacements and deviatoric strains are plotted using their
Euclidean norm.

display different features, although they are supposed to converge to the same one with
finer meshes. We refer the readers to [21] for an in-depth comparison of the accuracy and
performance of both formulations.

Let us consider now a hyperelastic material. The solution of the channel flow is very
similar as the one obtained for the linear elastic case. Again, the two different formulations
presented in Subsection 3.2 are applied. Fig. 7 presents the final solution obtained with
the two-field u-p formulation and Fig. 8 displays the solution for the u-p-S′ formulation.
Again quite different solutions are obtained due to the nonlinearities of the problem, the
iterative TO algorithm and the coarse mesh of the solid domain that we are considering.

For the sake of completeness, Table 1 shows the forces exerted by the fluid flow on the
whole submerged beam structure and the displacement at point A for the different cases
we have studied. As it was expected, all cases display the same final properties due to the
fact that infinitesimal strain theory can be considered.

Finally, in Fig. 9 the total potential energy is plotted against the TO iterations during
the whole procedure for all the formulations considered. As expected, all formulations are
decreasing the objective functional during the TO iterations until a minimum is achieved.
Due to the high accuracy of strains and stresses that are obtained using the three-field
formulations, we can see different values for the total potential energy. Obviously, this
difference is expected to be reduced while refining the solid mesh.
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(a)
Dis-
place-
ment
field

(b)
Pressure
field

(c)
Devi-
atoric
PK2
stress
field

Figure 7. Beam in a channel flow. Distribution of the displacement field
(left), pressure (middle) and deviatoric PK2 stress field (right) in the hyper-
elastic incompressible beam with u-p formulation and with average velocity
v̄in = 1 m/s. Displacements and deviatoric stresses are plotted using their
Euclidean norm.

ux [10−1 m] uy[10−2 m] drag [N] lift [N]
without TO 0.1978 0.2208 86.3563 -11.9159
u-p, LE 0.2168 0.2791 86.5657 -12.1485
u-p-e, LE 0.2144 0.2791 86.6162 -12.1428
u-p, HE 0.2218 0.2346 86.2957 -12.1737

u-p-S′, HE 0.2230 0.2304 86.2634 -12.1846
Table 1. Beam in a channel flow. Displacement at point A and forces
exerted by the fluid on the whole submerged body with average velocity
v̄in = 1 m/s. LE states for a linear elastic material and HE for a hyperelastic
one.

Let us now consider a case which involves finite strains. To do so, we increment the
average velocity to v̄in = 10 m/s, which results in a fluid flow with Reynolds number
Re = 10. To perform this study we employ only the u-p formulation for both linear elastic
and hyperelastic materials. Fig. 10 shows the solution for the fluid domain which is quite
similar in both cases. Figs. 11-12 show the final optimized structure for a linear elastic
material and for a hyperelastic one, respectively. In this case, we can observe that strains
are not infinitesimal anymore.
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(a) Dis-
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field
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Devi-
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stress
field

Figure 8. Beam in a channel flow. Distribution of the displacement field
(left), pressure (middle) and deviatoric PK2 stress field (right) in the hy-
perelastic incompressible beam with u-p-S′ formulation and with average
velocity v̄in = 1 m/s. Displacements and deviatoric stresses are plotted
using their Euclidean norm.
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Figure 9. Beam in a channel flow. Convergence diagrams for all formu-
lations with average velocity v̄in = 1 m/s. LE states for a linear elastic
material and HE for a hyperelastic one.
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(a) Velocity field

(b) Pressure field

Figure 10. Beam in a channel flow. Distribution of the velocity field
(top) and pressure (bottom) in the fluid domain with average velocity v̄in =
10 m/s. Velocities are plotted using their Euclidean norm.

(a) Dis-
place-
ment
field

(b) Pressure field (c)
Infini-
tesimal
strain
field

Figure 11. Beam in a channel flow. Distribution of the displacement field
(left), pressure (middle) and infinitesimal strain tensor field (right) in the
linear elastic incompressible beam with u-p formulation and with average
velocity v̄in = 10 m/s. Displacements and strains are plotted using their
Euclidean norm.

To show that the linear elastic theory hypothesis is not suitable in this case, Table 2
shows the fluid forces on the beam interface and the displacement at point A. As it can
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(a)
Displace-
ment
field

(b) Pressure field (c) Green
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field

Figure 12. Beam in a channel flow. Distribution of the displacement field
(left), pressure (middle) and Green Lagrange strain tensor field (right) in
the hyperelastic incompressible beam with u-p formulation and with average
velocity v̄in = 10 m/s. Displacements and strains are plotted using their
Euclidean norm.

be clearly seen, quite different solutions are obtained between the linear elastic model and
the finite strain hyperelastic one. This example clearly shows that even in stationary FSI
problems, the linear theory of elasticity must be considered only when very small strains
(smaller than 10−3, typically) are produced in the structure. From the conceptual point
of view, in this case there is no physical interaction, as the solid configuration does not
change and thus the solid does not affect the fluid dynamics.

ux [m] uy[10−1 m] drag [N] lift [N]
without TO, LE 0.1797 0.2351 1071.6400 -192.8160

u-p, LE 0.1969 0.2531 1081.8600 -214.3030
without TO, HE 0.1758 -0.0972 887.3970 -166.3880

u-p, HE 0.1878 -0.1360 867.1500 -171.931
Table 2. Beam in a channel flow. Displacement at point A and forces
exerted by the fluid on the whole submerged body with average velocity
v̄in = 10 m/s. LE states for a linear elastic material and HE for a hypere-
lastic one.

6.2. Turek’s test. In this second case, we study the TO of an incompressible hyperelastic
structure subject to FSI with a laminar flow. This case derives from the well-known bench-
mark in FSI used by many authors [72]. The configuration consists of a laminar channel
flow around an elastic object which results in self-induced oscillations of the structure.

The geometry of the problem is displayed in Fig. 13. The rigid channel has height
H = 0.41 m and length L = 2.5 m. The circle centre is positioned at point C = (0.2, 0.2)
m (measured from the left bottom corner of the channel) and its radius is r = 0.05 m.
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The solid bar has a length l = 0.35 m and a height h = 0.02 m. The right bottom corner
is positioned at (0.6, 0.19) m, and the left end is fully attached to the fixed cylinder. The
solid domain Ω0

s is divided into two subdomains Ωvar and Ωfix. The former contains the
interior of the structure and it is allowed to be optimized during the TO procedure, the
latter contains the external layer of the structure of width d = 0.001 m, which is in contact
with the fluid and is fixed as strong material during the whole TO procedure.

fix

var

Figure 13. Turek’s test. Geometry.

With regards to boundary conditions, a parabolic profile is prescribed at the left channel
inflow, given by

v̄f(0, y) = 1.5 v̄in
y(H − y)(

H
2

)2 ,

such that the mean inflow velocity is v̄in and the maximum of the inflow velocity profile is
1.5v̄in. A smooth increase of the velocity profile in time is prescribed, given by

vf(0, y, t) =

{
v̄f(0, y)

1−cos π
2
t

2 if t < 2.0 s
v̄f(0, y) otherwise

.

The outflow condition is considered stress free. Finally, a no-slip condition is prescribed
for the fluid on the other boundary parts. Concerning the boundary conditions of the
structure, fixed null displacement is considered at the left edge.

The main goal of this example is to perform a TO procedure of a transient FSI solution.
Therefore, the FSI2 parameter settings are taken from the benchmark. The mean flow
velocity is fixed to v̄in = 1 m/s. Regarding the properties of the fluid, the density is
ρf = 1 000 kg/m3 and the dynamic viscosity is µf = 1 Pa · s. This results in a flow
with Reynolds number Re = 100. For the incompressible elastic plate the properties are
as follows: an initial density ρ0

s = 10 000 kg/m3, a Young’s modulus Es = 14 kPa and a
Poisson’s ratio νs = 0.5. The plane strain assumption is considered.

The domains are discretized using P1 (linear) elements for both sub-domains. Regarding
the distribution of the elements in the fluid domain, the mesh is finer around the cylinder
and the bar, while downstream the mesh is coarser. In total, the fluid mesh is formed by
13 537 unstructured elements, and the solid mesh by 15 608 unstructured elements equally
distributed over the bar as it can be observed in Fig. 14

We select the time step δt = 0.005 s. During the first 12 s, we let the FSI problem
run without performing any TO iteration. This is the time needed to arrive to a periodic
solution. To do so, we impose a delay in the TO procedure of ndel = 2 400. From this
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(a) Fluid mesh domain

(b) Solid mesh domain

Figure 14. Turek’s test. Mesh domains.

point on, we select a time window of Nw = 50, so that Nwδt = 0.25 s, to store the additive
TD and perform a TO iteration. This time is very close to the period in the case without
TO. We continue the same procedure until a converged optimized solution is obtained for
the structure. For this example, only the u-p formulation is considered.

To show the effect of the TO procedure in a transient FSI problem, we select several
volume fractions, ranging from 90% to 70%. Let us first impose a final volume of 90% of
the initial one. Fig. 15 shows both the velocity and the pressure fields at different times
of the final transient solution. The final optimized structure is depicted in Fig. 16. As
expected, all the extracted material is taken from the right edge of the beam. Next, we
select a final volume of 80% of the initial one. Figs. 17-18 display both the final solutions
for the fluid domain and the optimized solid structure at different times, respectively. In
this case, oscillations decrease compared to the ones presented in the first case. This
reduction is clearly explained due to the loss of mass in the structure. Finally, we impose
a final volume of 70% of the initial one. In this case, an almost stationary solution is
achieved as it can be seen in Figs. 19-20. From this study, we can draw the conclusion
that TO optimization cannot only be used for reducing material volumes while minimizing
an objective function, but to modify transient solutions in time by changing oscillations in
some coupled problems.

To show clearly the effects that are exposed in the previous paragraph, both forces
exerted by the fluid in the whole submerged body (cylinder plus beam) and displacement
at point A are plotted in Fig. 21 for all volume fractions considered. All volume fractions
arrive with the same oscillations at time t = 12 s. At this point each one decreases to
the final volume fraction required. As it can be seen, drag and lift are decreasing while
decreasing the final volume fraction and therefore, the displacement at point A is also
decreasing. For the case of 70% of the final volume, we can see that all figures end with a
stationary solution.

To end this example, in Fig. 22 the evolution of the total potential energy for the three
cases along TO iterations is shown. As it is expected, the functional decreases for the
three cases until a point in which we consider that a minimum is achieved. It is worth
to mention that in the 70% case, the stationary solution means that almost no forces are
done by the fluid flow to the solid, and this is the reason why the energy is almost 0. Let
us also point out that some oscillations appear in the 90% case due to the fact that the
compliance in this case depends also upon time. If we want to remove this effect, a higher
time window for the TO iterations should be considered.

6.3. Flexible plate in a channel flow. As a final example we study the optimization
of the internal structural layout of a three-dimensional test case which exhibits high non-
linearities and a final stationary FSI solution. The problem geometry is depicted in Fig.



I. CASTAÑAR, R. CODINA & J. BAIGES 30

(a) t = 25.0 s. Velocity field (b) t = 25.0 s. Pressure field

(c) t = 25.25 s. Velocity field (d) t = 25.25 s. Pressure field

(e) t = 25.5 s. Velocity field (f) t = 25.5 s. Pressure field

Figure 15. Turek’s test. Distribution of the velocity field (left) and pres-
sure (right) in the fluid domain with 90% of final volume at several times.
Velocities are plotted using their Euclidean norm.

(a) t = 25.0 s. Displacement field (b) t = 25.0 s. Pressure field

(c) t = 25.25 s. Displacement field (d) t = 25.25 s. Pressure field

(e) t = 25.5 s. Displacement field (f) t = 25.5 s. Pressure field

Figure 16. Turek’s test. Distribution of the displacement field (left) and
pressure (right) in the solid domain with 90% of final volume at several
times. Displacements are plotted using their Euclidean norm.

23. A plate of length l = 0.07 m, width w = 0.6 m and height h = 0.35 m is mounted at
the bottom of a channel. The plate is located at L1 = 0.49 m from the channel entrance.
The channel is a cuboid-shaped domain of length L = 1.5 m, width W = 1.2 m and height
H = 0.6 m. The solid domain Ω0

s is divided into two subdomains Ωvar and Ωfix. The
former contains the interior of the structure and it is allowed to be optimized during the
TO procedure, the latter contains the external layer of the structure of width r = 0.007 m
which is in contact with the fluid and is fixed as strong material the whole TO procedure.

A parabolic profile for the velocity at the channel inlet face is prescribed, given by

v̄f(0, y, z) = v̄max
2500

81
z (z − 0.6) (y + 0.6) (y − 0.6) ,
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(a) t = 25.0 s. Velocity field (b) t = 25.0 s. Pressure field

(c) t = 25.25 s. Velocity field (d) t = 25.25 s. Pressure field

(e) t = 25.5 s. Velocity field (f) t = 25.5 s. Pressure field

Figure 17. Turek’s test. Distribution of the velocity field (left) and pres-
sure (right) in the fluid domain with 80% of final volume at several times.
Velocities are plotted using their Euclidean norm.

(a) t = 25.0 s. Displacement field (b) t = 25.0 s. Pressure field

(c) t = 25.25 s. Displacement field (d) t = 25.25 s. Pressure field

(e) t = 25.5 s. Displacement field (f) t = 25.5 s. Pressure field

Figure 18. Turek’s test. Distribution of the displacement field (left) and
pressure (right) in the solid domain with 80% of final volume at several
times. Displacements are plotted using their Euclidean norm.

where the maximum velocity is v̄max = 1 m/s and it is varied by a temporal factor

vf(0, y, z, t) =

{
v̄f(0, y, z)

1−cos π
2
t

2 if t < 0.1 s
v̄f(0, y, z) otherwise

.

The time t = 0.1 s denotes the final time of the excitation phase. Therefore, the flow
entering the domain excites the structural flap to initially bend and deform. No-slip wall
boundary conditions at the four sides perpendicular to the inlet prevent the flow to escape.
A stress-free condition is applied on the outlet boundary. The bottom face of the flexible
plate is considered clamped.
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(a) Velocity field

(b) Pressure field

Figure 19. Turek’s test. Distribution of the velocity field (top) and pres-
sure (bottom) in the fluid domain with 70% of final volume. Velocities are
plotted using their Euclidean norm.

(a) Displacement field

(b) Pressure field

Figure 20. Turek’s test. Distribution of the displacement field (top) and
pressure (bottom) in the solid domain with 70% of final volume. Displace-
ments are plotted using their Euclidean norm.

The material properties are chosen as follows: the flow is assumed incompressible with
dynamic viscosity µf = 0.01 Pa · s and a density ρf = 1 kg/m3. Based on the maximum
inflow velocity and the width of the flap, the Reynolds number Re ranges from 0–60. The
structure is assigned a Young’s modulus Es = 3 000 Pa, a Poisson’s ratio νs = 0.5 and an
initial density ρ0

s = 250 kg/m3, for which finite and dynamic deformations are expected.
A final volume of 60% of the initial one is fixed as a volume restriction for Ωvar.

The domains are discretized using tetrahedral elements for both fluid and solid domains.
Regarding the distribution of the elements, both meshes are unstructured and with smaller
elements concentrated on the interface boundary. In total, the fluid mesh is formed by
140 600 elements, and the solid mesh by 660 000 elements.

We select the time step δt = 0.001 s. During the first 0.6 s, we let the FSI problem run
without performing any TO iteration. To do so, we impose a delay in the TO procedure
of ndel = 600. At this moment, the problem converges to a stationary solution. From
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Figure 21. Turek’s test. Displacement at point A and forces exerted by
the fluid on the whole submerged body.
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Figure 22. Turek’s test. Convergence diagram for all the volume fractions
studied.

this point on, we select a time window of Nw = 50, so that Nwδt = 0.05 s, to store
the additive TD and perform a TO iteration. We continue the same procedure until a
converged optimized solution is obtained for the structure. For this example, only the u-p
formulation is considered.

First of all, let us show the final stationary FSI solution in Fig. 24. As explained before,
"dry" TO is performed and therefore the boundary of the solid which is in contact with the
fluid flow remains constant. It is important to mention that strains of the order of 10−1

are obtained, which means that the infinitesimal strain theory is not suitable in this case
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Figure 23. Flexible plate in a channel flow. Geometry.

Figure 24. Flexible plate in a channel flow. Final stationary solution.

and finite strain theory fits better with the kind of problem that we are modeling. Both
velocity and pressure fields in the channel flow from different points of view are depicted
in Fig. 25.

Let us move now to the solid domain. Fig. 26 displays the final optimized incompressible
structure once a stationary solution is achieved and the objective function is not decreasing
anymore (according to the tolerance). To show the interior of the solid, which is the one
which is optimized, a cut of the middle of the structure is depicted from different viewpoints
and the fixed part and the empty region are shown in grey. For the sake of completeness,
in Fig. 27 the evolution of both the total potential energy and the volume fraction during
the TO iterations is shown. As expected, the objective function increases while we start
decreasing the volume fraction progressively, just to avoid numerical problems due to the
highly nonlinear behavior of the whole problem. Once the volume fraction of 60 % is fixed,
the objective function starts decreasing until a minimum is obtained and, therefore, the
problem is ended.

7. Conclusions

In this work, a TO algorithm has been presented to deal with incompressible structures
subjected to FSI loads. The main goal of this work was to combine an additive TD with a
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(a) Plane xy. Velocity field (b) Plane xy. Pressure field

(c) Plane xz. Velocity field (d) Plane xz. Pressure field

(e) Plane yz. Velocity field (f) Plane yz. Pressure field

Figure 25. Flexible plate in a channel flow. Distribution of the velocity
field (left) and pressure (right) in the fluid domain. Velocities are plotted
using their Euclidean norm.

level set method to optimize the internal structural layout of FSI problems. The structural
response is modeled assuming either infinitesimal strains or finite ones. The fluid model is
studied with the incompressible Navier-Stokes model and the coupling problem is treated
in a staggered way with strong-coupling between sub-problems.

The key to solving problems involving incompressible structures was the introduction
of the mixed stabilized FE formulations presented in Subsection 3.1 for linear elastic ma-
terials and in Subsection 3.2 for hyperelastic ones. On the one hand, the well-known u-p
formulation, in which the pressure is added as an unknown—the fundamental one, when
dealing with incompressible materials. On the other hand, three-field formulations which
also add stresses as unknowns of the problem to increase their accuracy.

Thanks to the TD formulae that are presented in [29], the TO algorithm of incompress-
ible structures is possible for linear elastic materials by means of the topological derivative
concept. Furthermore, the approximation applied to the TD in the finite strain cases,
replacing it by the minimization direction given in Eq. (36), shows good performance in
the numerical examples presented in this work, in the sense that the objective functional
certainly decreases along the TO steps.
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(a) Plane xz. Dis-
placement field

(b) Plane yz. Displacement field

(c) Plane xz. Pressure field (d) Plane yz. Pressure field

Figure 26. Flexible plate in a channel flow. Distribution of the displace-
ment field (top) and pressure (bottom) in the final optimized structures.
Displacements are plotted using their Euclidean norm.
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Figure 27. Flexible plate in a channel flow. Convergence curves.

In Section 6 several numerical examples have been shown to assess the performance of
the new TO algorithm for incompressible structures subjected to FSI loads. First of all, a
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flow through a channel with a flexible wall is considered. This case is supposed to converge
to a stationary solution. Several cases have been performed, showing different optimized
structures depending upon the kind of solid that is considered and the employed stabilized
mixed formulation. The evolution of the total potential energy is also shown to decrease
along the TO steps. Next, the well-known Turek’s FSI2 test, adapted to the present
setting, is performed. The main idea of this problem is to show how the TO algorithm
works in transient FSI problems. To do so, several volume fractions for the final structure
are considered. Two final transient solutions are obtained for 90% and 80% of the final
volume, but a stationary one is achieved when considering a 70% of material. Fluid forces
and solid displacements are shown to see the effect of reducing the mass in the beam and
how this can modify the physics of the FSI problem. To end up, a 3D case is performed
to show the good performance of the methodology in three-dimensional cases.

Acknowledgements

Inocencio Castañar gratefully acknowledges the support received from the Agència de
Gestió d’Ajut i de Recerca through the predoctoral FI grant 2019-FI-B-00649. R. Cod-
ina gratefully acknowledges the support received through the ICREA Acadèmia Research
Program of the Catalan Government. This work was partially funded through the TOP-
FSI: RTI2018-098276-B-I00 project of the Spanish Government. CIMNE is a recipient of a
“Severo Ochoa Programme for Centers of Excellence in R&D” grant (CEX2018-000797-S)
by the Spanish Ministry of Economy and Competitiveness.

Declarations

Conflict of interest. The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence the work reported
in this paper.

Replication of results. All the information required for replicating the paper results was
duly presented. Data files for the results are available upon request from the authors.

References

[1] R. Kamakoti and W. Shyy. Fluid-structure interaction for aeroelastic applications. Progress in
Aerospace Sciences, 40:535–558, 2004.

[2] P.B. Rhyzhakov and E. Oñate. A finite element model for fluid–structure interaction problems in-
volving closed membranes, internal and external fluids. Computer Methods in Applied Mechanics and
Engineering, 326:422–445, 2017.

[3] T. Bodnár, G. P. Galdi, and S. Nečasová. Fluid-Structure Interactions and Biomedical Applications.
Springer, 2014. ISBN 978-3-0348-0821-7.

[4] P. Rhyzhakov, E. Soudah, and N. Dialami. Computational modeling of the fluid flow and the flexible
intimal flap in type B aortic dissection via a monolithic arbitrary Lagrangian/Eulerian fluid-structure
interaction model. International Journal of Numerical Methods in Biomedical Engineering, 35:e3239,
2019.

[5] J. Yan, A. Korobenko, X. Deng, and Y. Bazilevs. Computational free-surface fluid–structure interac-
tion with application to floating offshore wind turbines. Computer and Fluids, 141:155–174, 2016.

[6] T. Richter and T. Wick. Finite elements for fluid-structure interaction in ALE and fully Eulerian
coordinates. Computer Methods in Applied Mechanics and Engineering, 199:2633–2642, 2010.

[7] P.B. Rhyzhakov, R. Rossi, S.R. Idelsohn, and E. Oñate. A monolithic Lagrangian approach for
fluid–structure interaction problems. Computational Mechanics, 46:883–899, 2010.

[8] T. Richter. Fluid-Structure Interactions. Springer, 2017. ISBN 978-3-31-963970-7.
[9] U. Küttler and W. A. Wall. Fixed-point fluid–structure interaction solvers with dynamic relaxation.

Computational Mechanics, 43(1):61–72, 2008.
[10] L. Moreno, I. Castañar, R. Codina, J. Baiges, and D. Cattoni. Numerical simulation of Fluid–Structure

Interaction problems with viscoelastic fluids using a log-conformation reformulation. Computer Meth-
ods in Applied Mechanics and Engineering, 410:115986, 2023.

[11] L.R.G. Treloar. The Physics of Rubber Elasticity. Oxford, NY: Oxford University Press, 1975.



I. CASTAÑAR, R. CODINA & J. BAIGES 38

[12] E. Comellas, F.J. Bellomo, and S. Oller. A generalized finite-strain damage model for quasi-
incompressible hyperelasticity using hybrid formulation. International Journal for Numerical Methods
in Engineering, 105:781–800, 2016.

[13] J. Martínez-Frutos, R. Ortigosa, and A.J. Gil. In-silico design of electrode meso-architecture for shape
morphing dielectric elastomers. Journal of the Mechanics and Physics of Solids, 157:104594, 2021.

[14] C. Wex, S. Arndt, A. Stoll, C. Bruns, and Y. Kupriyanova. Isotropic incompressible hyperelastic
models for modelling the mechanical behaviour of biological tissues: a review. Biomedical Engineering,
60:577–592, 2015.

[15] E. Comellas, T. Gasser, F.J. Bellomo, and S. Oller. A homeostatic-driven turnover remodelling con-
stitutive model for healing in soft tissues. Journal of the Royal Society Interface, 13:20151081, 2016.

[16] E. Comellas, S. Budday, J.P. Pelteret, G.A. Holzapfel, and P. Steinmann. Modeling the porous and
viscous responses of human brain tissue behavior. Computer Methods in Applied Mechanics and En-
gineering, 369:113128, 2020.

[17] J. Baiges and R. Codina. Variational Multiscale error estimators for solid mechanics adaptive simu-
lations: an Orthogonal Subgrid Scale approach. Computer Methods in Applied Mechanics and Engi-
neering, 325:37–55, 2017.

[18] I. Castañar, J. Baiges, and R. Codina. A stabilized mixed finite element approximation for incompress-
ible finite strain solid dynamics using a total Lagrangian formulation. Computer Methods in Applied
Mechanics and Engineering, 368:113164, 2020.

[19] M. Chiumenti, M. Cervera, and R. Codina. A mixed three-field FE formulation for stress accurate
analysis including the incompressible limit. Computer Methods in Applied Mechanics and Engineering,
283:1095–1116, 2015.

[20] M. Chiumenti, M. Cervera, C.A. Moreira, and G.B. Barbat. Stress, strain and dissipation accu-
rate 3-field formulation for inelastic isochoric deformation. Finite Elements in Analysis and Design,
192:103534, 2021.

[21] I. Castañar, R. Codina, and J. Baiges. A stabilized mixed three-field formulation for stress accurate
analysis including the incompressible limit in finite strain solid dynamics. International Journal for
Numerical Methods in Engineering, 124(10):2341–2366, 2023.

[22] M.P. Bendsøe and O. Sigmund. Topological Optimization: Theory. Springer, 2013.
[23] A.A. Novotny and J. Sokolowski. Topological Derivatives in Shape Optimization. Springer, 2013.
[24] A.A. Novotny, J. Sokolowski, and A. Zochowski. Topological Derivatives of Shape Functionals. Part

I: Theory in Singularly Perturbed Geometrical Domains. Journal of Optimization Theory and Appli-
cations, 180:341–373, 2019.

[25] M.P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design using a homoge-
nization method. Computer Methods in Applied Mechanics and Engineering, 71(2):197–224, 1988.

[26] X. Huang and Y. Xie. A further review of ESO type methods for topology optimization. Structural
and Multidisciplinary Optimization, 41:671–683, 2010.

[27] N.P. van Dijk, K. Maute, M. Langelaar, and F. van Keulen. Level-set methods for structural topology
optimization: a review. Structural and Multidisciplinary Optimization, 48:437–472, 2013.

[28] J.D. Deaton and R.V. Grandhi. A survey of structural and multidisciplinary continuum topology
optimization: post 2000. Structural and Multidisciplinary Optimization, 49:1–38, 2014.

[29] I. Castañar, J. Baiges, R. Codina, and H. Venghauss. Topological derivative-based topology optimiza-
tion of incompressible structures using mixed formulations. Computer Methods in Applied Mechanics
and Engineering, 390:114438, 2022.

[30] R. Ortigosa, J. Martínez-Frutos, A.J. Gil, and D. Herrero-Pérez. A new stabilisation approach for
level-set based topology optimisation of hyperelastic materials. Structural and Multidisciplinary Op-
timization, 60:2343–2371, 2019.

[31] R. Ortigosa, D. Ruíz, A.J. Gil, A. Donoso, and J.C. Bellido. A stabilisation approach for topology op-
timisation of hyperelastic structures with the SIMP method. Computer Methods in Applied Mechanics
and Engineering, 364:112924, 2020.

[32] Y. Deng, Z. Liu, and Y. Wu. Topology optimization of steady and unsteady incompressible Navier-
Stokes flows driven by body forces. Structural and Multidisciplinary Optimization, 47(4):555–570,
2013.

[33] L. Shu, M. Y. Wang, and Z. Ma. Level set based topology optimization of vibrating structures for
coupled acoustic-structural dynamics. Computers and Structures, 132:34–42, 2014.

[34] O.Sigmund and P.M.Clausen. Topology optimization using a mixed formulation: An alternative way
to solve pressure load problems. Computer Methods in Applied Mechanics and Engineering, 196:1874–
1889, 2007.

[35] X. Wang, S. Xu, S. Zhou, W. Xu, M: Leary, P. Choong, M. Qian, M. Brandt, and Y. M. Xie.
Topological design and additive manufacturing of porous metals for bone scaffols and orthopaedic
implants: a review. Biomaterials, 83:127–141, 2016.



I. CASTAÑAR, R. CODINA & J. BAIGES 39

[36] C. S. Andreasen and O. Sigmund. Topology optimization of fluid-structure-interaction problems in
poroelasticity. Computer Methods in Applied Mechanics and Engineering, 258:55–62, 2013.

[37] N. Jenkins and K. Maute. Level set topology optimization of stationary fluid-structure interaction
problems. Structural and Multidisciplinary Optimization, 52:179–195, 2015.

[38] G. H. Yoon. Topology optimization for stationary fluid-structure interaction problems using a new
monolithic formulation. International Journal of Numerical Methods in Engineering, 82:591–616, 2010.

[39] G. H. Yoon. Stress-based topology optimization method for steady-state fluid-structure interaction
problems. Computer Methods in Applied Mechanics and Engineering, 278:499–523, 2014.

[40] N. Jenkins and K. Maute. An immersed boundary approach for shape and topology optimization of sta-
tionary fluid-structure interaction problems. Structural and Multidisciplinary Optimization, 54:1191–
1208, 2016.

[41] R. Picelli, W. M. Vicente, and R. Pavanello. Evolutionary topology optimization for structural compli-
ance minimization considering design-dependent FSI loads. Finite Elements in Analysis and Design,
135:44–55, 2017.

[42] F. Feppon, G. Allaire, C. Dapogny, and P. Jolivet. Topology optimization of thermal fluid-
structure systems using body-fitted meshes and parallel computing. Journal of Computational Physics,
417:109574, 2020.

[43] H. Li, T. Kondoh, P. Jolivet, K. Furuta, T. Yamada, B. Zhu, K. Izui, and S. Nishiwaki. Three-
dimensional topology optimization of a fluid-structure system using body-fitted mesh adaption based
on the level-set method. Applied Mathematical Modelling, 101:276–308, 2022.

[44] Kamilla Emily Santos Silva, Raghavendra Sivapuram, Shahin Ranjbarzadeh, Rafael dos Santos Gioria,
Emílio Carlos Nelli Silva, and R Picelli. Topology optimization of stationary fluid–structure interaction
problems including large displacements via the TOBS-GT method. Structural and Multidisciplinary
Optimization, 65(11):337, 2022.

[45] D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Applications. Springer, 2013.
[46] T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J. Quincy. The variational multiscale method - A

paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering,
166:3–24, 1998.

[47] R.Codina, S.Badia, J.Baiges, and J.Principe. Variational Multiscale Methods in Computational Fluid
Dynamics. John Wiley & Sons Ltd., 2017.

[48] R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite
element methods. Computer Methods in Applied Mechanics and Engineering, 190:1579–1599, 2000.

[49] L. Moreno, R. Codina, J. Baiges, and E. Castillo. Logarithmic conformation reformulation in vis-
coelastic flow problems approximated by a VMS-type stabilized finite element formulation. Computer
Methods in Applied Mechanics and Engineering, 354:706–731, 2019.

[50] L. Moreno, R. Codina, and J. Baiges. Solution of transient viscoelastic flow problems approximated
by a term-by-term VMS stabilized finite element formulation using time-dependent subgrid-scales.
Computer Methods in Applied Mechanics and Engineering, 367:113074, 2020.

[51] R. Codina. Finite element approximation of the three field formulation of the Stokes problem using
arbitrary interpolations. SIAM Journal on Numerical Analysis, 47:699–718, 2009.

[52] J.C. Simo, R.L. Taylor, and K.S. Pister. Variational and projection methods for the volume constraint
in finite deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 51(1–
3):177–208, 1985.

[53] G. Scovazzi, B. Carnes, X. Zeng, and S. Rossi. A simple, stable, and accurate linear tetrahedral finite
element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale
approach. International Journal For Numerical Methods in Engineering, 106:799–839, 2016.

[54] G. Chiandussi, G. Bugeda, and E. Oñate. A simple method for automatic update of finite element
meshes. Communications in Numerical Methods in Engineering, 16:1–19, 1999.

[55] R. Codina. A stabilized finite element method for generalized stationary incompressible flows. Com-
puter Methods in Applied Mechanics and Engineering, 190:2681–2706, 2001.

[56] R. Codina, S. Badia, J. Baiges, and J. Principe. Variational Multiscale Methods in Computational
Fluid Dynamics. Encyclopedia of Computational Mechanics, Second Edition, pages 1–28, 2018.

[57] S. Badia and R. Codina. Analysis of a stabilized finite element approximation of the transient
convection-diffusion equation using an ALE framework. SIAM Journal on Numerical Analysis,
44:2159–2197, 2006.

[58] R. Codina, J. Principe, and J. Baiges. Subscales on the element boundaries in the variational two-scale
finite element method. Computer Methods in Applied Mechanics and Engineering, 198:838–852, 2009.

[59] R. Codina, J. Baiges, I. Castañar, I. Martínez-Suárez, L. Moreno, and S. Parada. An embedded
strategy for large scale incompressible flow simulations in moving domains. Journal of Computational
Physics, 488:112181, 2023.



I. CASTAÑAR, R. CODINA & J. BAIGES 40

[60] R. Codina and J. Baiges. Finite element approximation of transmission conditions in fluids and solids
introducing boundary subgrid scales. International Journal for Numerical Methods in Engineering,
87:386–411, 2011.

[61] C.E.L.Pereira and M.L.Bittencourt. Topological sensitivity analysis in large deformation problems.
Structural and Multidisciplinary Optimization, 37:149–163, 2008.

[62] C.E.L.Pereira and M.L.Bittencourt. Topological sensitivity analysis for a two-parameter Mooney-
Rivlin hyperelastic constitutive model. Latin American Journal of Solids and Structures, 7:391–411,
2010.

[63] C.G. Lopes, R. Batista dos Santos, and A.A. Novotny. Topological Derivative-based Topology Opti-
mization of Structures Subject to Multiple Load-cases. Latin American Journal of Solids and Struc-
tures, 12:834–860, 2015.

[64] J. Oliver, D. Yago, J. Cante, and O. Lloberas-Valls. Variational approach to relaxed topological
optimization: Closed form solutions for structural problems in a sequential pseudo-time framework.
Computer Methods in Applied Mechanics and Engineering, 355:779–819, 2019.

[65] D. Yago, J.C. Cante, O. Lloberas-Valls, and J. Oliver. Topology optimization methods for 3d structural
problems: a comparative study. Archives of Computational Methods in Engineering, 29:1525–1567,
2022.

[66] J. Baiges, J. Martínez-Frutos, D. Herrero-Pérez, F. Otero, and A. Ferrer. Large-scale stochastic topol-
ogy optimization using adaptive mesh refinement and coarsening through a two-level parallelization
scheme. Computer Methods in Applied Mechanics and Engineering, 343:186–206, 2019.

[67] T. J. R. Hughes, A. A. Oberai, and L. Mazzei. Large eddy simulation of turbulent channel flows by
the variational multiscale method. Physics of Fluids, 13:1784–1799, 2001.

[68] R. Codina, J. Principe, and M. Avila. Finite element approximation of turbulent thermally coupled
incompressible flows with numerical sub-grid scale modelling. International Journal of Numerical
Methods for Heat & Fluid Flow, 20:492 – 516, 2010.

[69] O. Colomes, S. Badia, R. Codina, and J. Principe. Assessment of variational multiscale models for
the large eddy simulation of turbulent incompressible flows. Computer Methods in Applied Mechanics
and Engineering, 285:32–63, 2015.

[70] H. A. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems. SIAM, Journal of Scientific and Statistical Computing, 13(2):631 –
644, 1992.

[71] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. Curfman McInnes, R. T. Mills, T. Munson,
K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web page. http:
//www.mcs.anl.gov/petsc, 2015.

[72] S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an
elastic object and laminar incompressible flow. Fluid–structure interaction. Lecture Notes on Compu-
tational Science and Engineering, pages 371–385, 2007.

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

	1. Introduction
	2. Preliminaries
	3. Solid dynamics problem
	3.1. Mixed formulations in linear elasticity
	3.2. Mixed formulations in finite strain hyperelasticity.

	4. Fluid flow problem
	4.1. ALE formulation of the fluid flow equations
	4.2. The continuum problem statement
	4.3. The v-p formulation

	5. Topology optimization of incompressible structures subject to FSI
	5.1. Fluid-structure interaction
	5.2. Topology optimization of incompressible structures
	5.3. Algorithm for the topology optimization of incompressible structures subject to FSI

	6. Numerical examples
	6.1. Beam in a channel flow
	6.2. Turek's test
	6.3. Flexible plate in a channel flow

	7. Conclusions
	Acknowledgements
	Declarations
	Conflict of interest
	Replication of results

	References

