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Abstract

We propose a finite-element formulation for simulating multi-component flows occupying the
same domain with spatially varying concentrations. Each constituent is assumed to behave as an
incompressibleNewtonian fluid, and solutions are sought for the velocities and volume fractions of
each phase, as well as the common pressure. Stabilization terms are derived within the framework
of the variational multiscale method based on an approximation of the finite-element residual to
achieve control of the pressure and volume fractions. We utilize the concept of term-by-term
stabilization in conjunction with orthogonal subgrid scales, thus incorporating only those terms
of the residual essential to obtain stability and projecting them on a space orthogonal to the finite
element space. The resulting system of equations is solved in a monolithic manner, requiring a
small number of nonlinear iterations. Several benchmark tests have been performed to confirm
the stability and optimal asymptotic convergence rates for linear and higher-order elements using
the proposed formulation.

Keywords: multiphase flow; finite elements; variational multiscale method; orthogonal subgrid
scales; dispersed flow

1. Introduction

Multiphase flow phenomena are ubiquitous in nature and engineering whenever fluids with differ-
ent properties can mix or interact. Common examples include sprays (droplets in air) or liquids
containing bubbles. Although the terminology is often employed to some extent ambiguously, for
the purpose of this discussion, we will refer by multiphase flow to any flow problem that entails
multiple components – irrespective of whether or not they are in the same state of matter (i.e.,
gaseous, liquid, or solid particles). An important distinction allows a categorization into two main
classes of multiphase flows: dispersed flows form amixture of several constituents that can occupy
the same domain but in generally different concentrations that can depend on space and time.
This is in contrast to separated flows, which assume different materials to occupy distinct subdo-
mains (of potentially time-dependent topology), divided by well-defined interfaces. Both general
flow types can be further classified based on the underlying model assumptions or the resulting
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behavior on the macroscale. Notably, in the case of separated flows, phenomenological distinc-
tions are often made, resulting in more specific terminology, such as slurry flows, stratified flows,
plug flows, or wavey flows. For dispersed flows, more specific models are obtained by assuming,
for instance, a vanishing or small relative velocity (mixture models) [1] or a small number of solid
particles that can be individually tracked [2]. A good overview of the different phenomena and
interactions can be found in [3].

In this contribution, we focus on one specific, relatively common model for dispersed multi-
phase flows, describing a mixture of fluids whose components interact through drag terms and
share a common pressure. Details on this model shall be provided later; in a nutshell, the governing
equations for each phase k are of the form

∂tαk +∇·(αkuk) = 0 , (1a)

ρkαk∂tuk +ρkαkuk ·∇uk−2µk∇·(αkεεε(uk))+αk∇p−∑
`

gk`(u`−uk) = αkfk . (1b)

Here and in the following, uk, εεε(uk), and αk denote the velocity, strain rate, and volume fraction
of phase k; p is the pressure, ρk and µk are the mass density and viscosity, and fk includes any
body forces. In addition, there are drag terms, to be specified later, characterizing the momentum
exchange between phase k and all other phases through gk` (which may be functions of u`, uk, α`,
and αk). It is usually assumed that gk` = g`k and gkk = 0.

Equations (1) resemble the Navier-Stokes equations describing an incompressible fluid. Apart
from the mechanisms that cause the phases to interact, the major difference lies in the presence
of the unknown volume fractions αk, leading to several additional nonlinearities and thereby sig-
nificantly complicating the solution. This and similar models have been frequently employed in
numerical simulations, particularly using the finite volumemethod [4–6] and, to amuch lesser ex-
tent, the finite element method [7–9]. When applying the finite element method to this problem,
difficulties can be foreseen due to instabilities that are well-known in the context of the single-
phase problem (Navier-Stokes equations). One source of instability stems from the mixed form of
the problem, requiring inf-sub stable discretizations of velocities, pressure, and volume fractions.1

In addition, strong oscillations can be expected in convection-dominated flows, which even oc-
cur in the simpler problem of the convection-diffusion-reaction equation [12]. Both issues can
be vanquished simultaneously by employing the variational multiscale concept with a view to de-
riving additional stabilization terms to include in the discrete weak form of the problem at hand.
Consequently, we design in this paper a stabilized finite element method for the above problem
statement by extending results previously obtained for the case of a single fluid.

The underlying concept is based on the framework of the variationalmultiscale (VMS)method
[13, 14] which relies on the idea of splitting the unknown field variables into a finite element
component and a so-called subgrid-scale, i.e., those components that cannot be represented by
the chosen finite element space. Different models for the subscales exist, leading to different
categories of stabilizedmethods. Wewill focus on those approaches inwhich the subgrid scales are

1In the case of the single-phase problem, a frequently employed remedy consists in utilizing interpolants of lower poly-
nomial degree for the pressure than for the velocity, yielding an inf-sub stable Galerkin-type method. For the multi-
phase problem, there is, to the authors’ knowledge, no similarly straightforward choice of interpolation functions that
would guarantee the stability of velocities, pressure, and volume fractions. Other attempts to stabilize similar multi-
phase problems involve stabilization by hierarchical decomposition [10], employing the Control Volume Method for
the volume fractions [8], or simply adding artificial diffusion [11].
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expressed in the same basis as the finite element components. Formally, the exact problem for the
subgrid scales involves inverting a differential operator, and the approximation of the same leads to
the stabilization parameters on which the formulation depends. In general, these methods have a
residual-based structure, and consequently, the stabilization terms involve (an approximation of)
the residual of the discretized governing equations. We will utilize in this work a variant of this
technique inwhich the stabilization terms are based on the projection of the residual orthogonal to
the finite element space. This approach, first introduced in [15], is commonly termed as orthogonal
subgrid scales. One of themain advantages of this formulation is that it allows omitting terms in the
residual that are not crucial for achieving stability without sacrificing optimal convergence of the
method [16]. This concept is also known as term-by-term stabilization [17–19]. Wewill see that this
property is extremely beneficial in stabilizing the multiphase problem where the inclusion of the
complete residual would require a large number of nonlinear terms, few of which are necessary to
guarantee stability.

Wemay also note that wewill use the concept of dynamic subgrid scales [20]. In transient prob-
lems, the subgrid scales are naturally time-dependent and are obtained as solutions to evolution
equations. For the subscales of velocities and volume fractions, these equations involve tempo-
ral derivatives of the subscales. Oftentimes, the term involving time derivatives is neglected, in
which case the approach is referred to as quasi-static. Here, we will solve said evolution equation
by a time-stepping scheme, namely the first-order backward difference formula (BDF1). Dynamic
subgrid scales have previously been found to yield a more robust method and frequently decrease
computational costs by reducing the number of iterations in each time step [19]. In addition, it
is known that quasi-static subgrid scales can result in substantial errors if the time step is small
[19, 21, 22].

Lastly, let us remark that we will solve the resulting system of equations in a monolithic way,
which has been suggested in the context of a related stabilized method [7] but is in contrast to the
vastmajority of works in this field both in the context of finite volume and finite elementmethods.
The motivation for employing monolithic schemes stems from the hope for significantly faster
convergence compared to their sequential counterparts. However, we will refrain from detailed
comparisons between both paradigms at this stage.

The objective of this work is rather to set the numerical framework and to establish a new
approach to solvingmultiphase problems. Wewill discuss the relevant features of this formulation
in quite some detail and explain various choices we made in the implementation. On the other
hand, our numerical examples are, for now, restricted to relatively elementary cases involving
two-dimensional geometries and two interacting phases. We will begin with a concise overview
of the particular model in Section 2, highlighting the underlying assumptions and the scope of
application. The variational form is briefly presented in Section 3 after which we derive the finite-
element formulation, including its stabilization in Section 4. In the ensuing, we provide further
inside into some details of the formulation and its implementation in Section 5. Lastly, Section 6
encompasses numerical examples, demonstrating optimal convergence of the proposed method
with respect to spatial and temporal discretization and showing the applicability to typical flow
problems involving moment exchange terms and buoyancy effects.

2. Multiphase model

In this section, we provide a succinct exposition of the utilized model. In particular, Section 2.1
illuminates the principal assumptions that underlie the microscale and the averaging procedure in
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this general class of models. A more detailed discussion of this and other models can be found
in [23]. In Section 2.2, we discuss an approach we propose to enforcing the constraint that the
volume fractions must add up to unity.

2.1. Summary of model assumptions and averaging procedures

We consider dispersed flows consisting of different components, each of which behaving macro-
scopically like a fluid. While the following discussion generalizes to an arbitrary number of fluids,
we have, so far, tested the formulation for systems of two components and will limit the numer-
ical studies to this scenario. Furthermore, we restrict the discussion in this paper to isothermal
flows. Consequently, we assume the standard balance equations to hold on the microscale; i.e., the
velocities uk, densities ρk, and pressures pk of each phase k satisfy

∂tρk +∇·(ρkuk) = 0 , (2a)

∂t (ρkuk)+∇·(ρkukuk) =−∇pk +∇·τk + fk , (2b)

where τi is the deviatoric stress tensor, and fi denotes body loads. In topologically exactmodels, the
above equations are coupled through interface conditions between domains occupied by different
phases. Such interface conditions depend not only on the shape and local velocity of the inter-
faces but also on material parameters such as the interface tension coefficient and may potentially
be affected by numerous phenomena such as mass transfer, phase transitions, chemical reactions,
etc. One of the key aspects of dispersed multiphase models can be seen in the assumption that
the typical size of the individual simply-connected domains occupied by the dispersed phase(s) is
small compared to the total model domain. Hence, it becomes unfeasible – if not impossible – to
track the exact geometry of each individual interface. Instead, averaging procedures are employed
to describe the interaction of different phases on the macroscale. Here, we will refrain from dis-
cussing in length the different possibilities and their physical interpretation but rather stick to one
particularly popular model that has been applied successfully to numerous engineering applica-
tions. According to [23], a common choice is to employ Favré averaging (denoted by •) for the
velocity and partial 〈•〉 or intrinsic •̃ averaging for the density and pressure, see Appendix A. This
leads to the following variant of the balance equations averaged over a control volume

∂t (αkρ̃k)+∇·(αkρ̃kuk) = Γk , (3a)

∂t (αkρ̃kuk)+∇·(αkρ̃kukuk) =−∇(αk p̃k)+∇·〈τk〉+αk̃fk +Mk +∇·〈τδk〉 . (3b)

Here, the volume fractions are introduced as

αk =
Vk

V
,

where Vk denotes the volume occupied by phase k inside the control volume V . The averaging
procedure invokes the so-called pseudo-turbulent stress tensor2

〈τδk〉=−〈ρkδukδuk〉 , (4)

2The pseudo-turbulent stress tensor resembles the turbulent stress in single-phase flows. Inmultiphase flows, however,
this tensor is a consequence of the phase averaging and is generally nonzero even if the flow is laminar.
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which involves the following definition of the velocity fluctuation

uk = uk +δuk . (5)

In addition, the averaged equations include transfer integrals representing the interaction across
phase boundaries

Γk =−
1
V

ˆ
Ak

ρk (uk−uA)·nk dA , (6)

Mk =−
1
V

ˆ
Ak

ρkuk (uk−uA)·nk dA ,

+
1
V

ˆ
Ak

(−pk1+ τk)·nk dA (7)

with the velocity of the interface uA and the normal vector nk. Such transfer integrals are still de-
fined based on the actual phase boundaries, which are generally unknown. The term Γk describes
mass transfer between different phases (which we do not consider in the current work), while Mk
is associated with momentum exchange. Approximating these terms as functions of the veloci-
ties, volume fractions, and pressures is an essential ingredient of the physical model and involves
assumptions on all physical effects capable of influencing the interaction of different phases. In
particular, when mass transfer between phases and interface tension can be neglected, the mo-
mentum transfer terms are often written in the form

Mk = p̃k∇αk +Dk

with

Dk =
1
V

ˆ
A
(δ pk1− τk)·nk dA . (8)

Within the realm of this class of multiphase models, main differences arise in the approximation
of the surface integrals, and different expressions for these terms can be obtained for scenarios
such as liquid-particle suspensions or bubbly flow [23]. Wewill move forward assuming that there
is no mass transfer between phases and that the momentum exchange term between phases k and
` is of the form gk`(u`− uk), where gk` can be a function of αk,α`,uk,u`. For conciseness, let us
summarize the assumptions made in the current model as follows:

• Newtonian fluids
• Incompressible phases: ρk constant
• Common pressure between all phases:3 pk = p
• No mass transfer between phases: Γk = 0
• Neglect pseudo-turbulent stress: 〈τδk〉= 0
• Momentum exchange due to drag only: gk`(u`−uk)

• Neglect surface and interface tension
• Constant viscosities µk throughout the domain.

3While the common pressure is a typical assumption, particularly when interface tension can be neglected [24], it can,
in other scenarios, lead to unphysical effects such as an overly large acceleration of a dispersed phase [10].
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To avoid notational overload, we will omit the • and •̃ symbols in what follows and assume the
averaging procedures outlined before. Thus, we obtain

∂tαk +∇·(αkuk) = 0 , (9a)

ρk∂t (αkuk)+ρk∇·(αkukuk)−2µk∇·(αkεεε(uk))+αk∇p−∑
`

gk`(u`−uk) = αkfk . (9b)

Equation (9b) can be written in a non-conservative form since

ρk∂t (αkuk)+ρk∇·(αkukuk) = ρkαk[∂tuk +uk ·∇uk]+ρkuk[∂tαk +∇·(αkuk)]

= ρkαk[∂tuk +uk ·∇uk] , (10)

where the second equality holds because of Eq. (9a).

2.2. Reformulation of the algebraic constraint

Under the assumptions outlined before, the balance equations (9) for each phase resemble the in-
compressible Navier-Stokes equations of a single-phase flow. However, they involve the unknown
volume fractions αk, thus introducing additional nonlinearities. In order to close the model and
obtain a well-posed problem, we need to make allowance for the algebraic constraint4

∑
k

αk = 1 . (11)

The most common approach lies in using the constraint equation to eliminate one of the volume
fractions. However, this leads to a highly nonsymmetric system and introduces the arbitrariness
of choosing one of the volume fractions to eliminate. Hence, we follow a different path in this
work and enforce the constraint equation in a weak sense. Taking the time-derivative of Eq. (11)
yields

∂t ∑
k

αk = 0 . (12)

We introduce a time scale t0 that shall be specified more explicitly later. We then multiply Eq. (11)
by −t91

0 and add the continuity equations for all phases to obtain

∑
k

∇·(αkuk)− t91
0
(
∑
k

αk−1
)
= 0 . (13)

Wewill solve this equation togetherwith the continuity andmomentumequations. Clearly, Eqs. (9)
and (11) imply (13). On the other hand, adding Eqs. (9a) for all phases and subtracting (13), we
have

∂t ∑
k

αk + t91
0
(
∑
k

αk−1
)
= 0 (14)

whose general solution is
α(t) := ∑

k
αk(t) = 1+Ae9t/t0 (15)

4In some models of porous materials, this condition is not assumed in the presence of voids that are not explicitly
modeled as a phase.

6



with a scalar constant A. Assuming that the initial conditions fulfill α(0) = 1, we obtain A = 0. On
the other hand, this condition may not be satisfied exactly, in particular, due to spatial approxi-
mation. Say, the initial condition is written as α(0) = 1+ ε , then we have A = ε , and the error will
decay within a time scale given by t0:

α(t) = 1+ εe−t/t0 . (16)

Including (13) as a closing equation fixes the strong form of the problem of interest. Let us sum-
marize the resulting model.

2.3. Initial and boundary value problem

Let Ω be an open, bounded and polyhedral domain ofRs (s = 2 or 3), ∂Ω is the domain’s boundary,
and [0,T ] a time interval. The multiphase problem consists in finding the velocities uk and volume
fractions αk for each phase k and a pressure p such that

∂tαk +∇·(αkuk) = 0 in Ω× (0,T ) , (17a)

ρkαk∂tuk +ρkαkuk ·∇uk−2µk∇·(αkεεε(uk))+αk∇p−∑
`

gk`(u`−uk) = αkfk in Ω× (0,T ) , (17b)

∑
k

∇·(αkuk)− t91
0
(
∑
k

αk−1
)
= 0 in Ω× (0,T ) . (17c)

Denoting the number of phases by np, the above constitutes a system of 3np +1 equations in two
dimensions and 4np+1 equations in three dimensions for the unknown velocity components, vol-
ume fractions, and the pressure. The system must be supplied with adequate initial and boundary
conditions. Initial conditionswill bewritten in the form uk(x,0) = u0

k , αk(x,0) =α0
k inΩ. Boundary

conditions are prescribed for each phase as

uk = ud,k on ∂Ωd,uk , (18a)

n ·σσσ k = tk on ∂Ωn,uk , (18b)

αk = αd,k on ∂Ωd,αk , (18c)

where n is the outward unit normal vector, tk are tractions applied to phase k, and

σσσ k =−αk p1+2µkαkεεε(uk) . (19)

In the above, ∂Ωd,uk and ∂Ωn,uk with ∂Ωd,uk ∪ ∂Ωn,uk = ∂Ω, ∂Ωd,uk ∩ ∂Ωn,uk = /0 denote the parts of
the boundary where Dirichlet and Neumann boundary conditions are applied for a given phase,
and ∂Ωd,αk is the Dirichlet boundary for the volume fraction αk, which must coincide with the in-
flow boundary of the corresponding phase. We may also remark that the equations for the differ-
ent phases are coupled through three distinct mechanisms, namely, the drag forces, the constraint
(17c), as well as the assumption of a common pressure.

Finally, for later use and to facilitate the comparison with previous work on related problems,
we point out that the above set of partial differential equations is of the generic form

M(U)∂tU+L(Û,U) = F , (20)

where U := [u1, ..., unp ,α1, ..., αnp , p], and the definitions ofM, L, F follow directly from (17).
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3. Variational form

For conciseness, we denote by u := [u1, ... ,unp ] and ααα := [α1, ... ,αnp ] the velocities and volume frac-
tions of all phases. In addition, U := [u,ααα, p] ∈W denotes all unknown functions, taken from the
spaceW :=V1× ...×Vnp×A1× ...×Anp×Q. Here, in turn, Vk,Ak, andQ are appropriate spaces
of velocities, volume fraction, and pressure with Dirichlet boundary conditions incorporated in
the usual manner. To obtain a weak form of the governing equations, let us define test functions
βk, vk, q associated with the unknown functions αk, uk, p and taken from the space denoted as
W0. Here, W0 contains functions that vanish on the corresponding Dirichlet boundary, which,
for the velocities and volume fractions, can be different for each phase. Multiplying Eqs. (17) by
test functions, integrating over the domain, and integrating by parts the terms involving second-
order spatial derivatives, we state the weak form of themultiphase problem as follows: find U∈W
such that the initial conditions are satisfied and

(βk,∂tαk)+(βk,∇·(αkuk)) = 0 , (21a)

(vk,ρkαk∂tuk)+(vk,ρkαkuk ·∇uk)+(2εεε(vk),αkµkεεε(uk))

− (∇·(αkvk), p)−∑
`

(vk,gk`(u`−uk)) = (vk,αkfk)+(vk,σσσ k ·n)∂Ωn,uk
, (21b)

∑
k
(q,∇·(αkuk))−∑

k
t91
0 (q,αk)+ t91

0 (q,1) = 0 (21c)

for all V := [v,βββ ,q] ∈W0. Here, we use the symbol (•,•) to indicate integration over the compu-
tational domain, irrespective of whether or not this expression represents the L2-inner product
in Ω, as long as the integrals are bounded. For each Û ∈W , the variational statement can now be
written compactly in terms of a bilinear form B(Û;•,•) defined onW×W as

G(α̂αα;U,V)+B(Û;U,V) = L(V) (22)

with

B(Û;U,V) := ∑
k

[
(vk,ρkα̂kûk ·∇uk)+(2εεε(vk), α̂kµkεεε(uk))+ p0(βk,∇·(α̂kuk))− (∇·(α̂kvk), p)

+(q,∇·(α̂kuk))− t91
0 (q,αk)− (vk,αkfk)

]
−∑

k
∑
`

(vk,gk`(u`−uk)) , (23a)

G(α̂αα;U,V) := ∑
k

[
(vk,ρkα̂k∂tuk)+ p0(βk,∂tαk)

]
, (23b)

L(V) :=− t91
0 (q,1)+∑

k
(vk, tk)∂Ωn,uk

. (23c)

Here, we introduced a scaling factor p0 with the units of pressure, solely to render the different
terms dimensionally consistent.

4. Finite-element formulation

4.1. Galerkin discretization

We consider a polygonal/polyhedral (in 2D/3D) finite element partition of the computational do-
main Ω and assume the partition to be quasi-uniform with an element diameter denoted as h. The
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finite element spaces for velocities, volume fractions, and pressure are constructed in the usual
manner and denoted as Vh

k ⊂ Vk, Ah
k ⊂Ak, Qh ⊂Q, respectively. Functions in these spaces are

indicated by the superscript h accordingly. In particular, we will focus our interest on polyno-
mial interpolation of equal order. Employing the same finite element spaces for the trial and test
functions, we obtain the Galerkin discretization as

G(αααh;Uh,Vh)+B(Ûh;Uh,Vh) = L(Vh) . (24)

Equation (24) is prone to instabilities that are well-understood in the case of a single incompress-
ible fluid, see, e.g. [15]. Apart from oscillations arising in convection-dominated problems, insta-
bilities occur if the inf-sup-condition, which poses restrictions on the compatibility of the inter-
polation spaces, is violated. To obtain stable solutions to the multiphase problem, we will require
additional stabilization terms to achieve control not only of the pressure ph but also of the volume
fractions αh

k .

4.2. Stabilized weak form

Following the general concept of the variational multiscale (VMS) method, we split the unknown
functions into the component that belongs to the finite element space and a remainder, referred
to as subscale, which cannot be resolved by the finite element discretization. The contributions to
the unknowns and their respective spaces are denoted by • h and •̃ , i.e.,5

uk = uh
k + ũk, αk =α

h
k + α̃k, p= ph+ p̃, U=Uh+Ũ, W =Wh⊕W̃ , W0 =Wh

0⊕W̃0 . (25)

Accordingly, the variational form (22) can be re-written as

G(ααα;U,Vh + Ṽ)+B(U;Uh + Ũ,Vh + Ṽ) = L(Vh + Ṽ) (26)

or, by separating equations with respect to the test functions

G(ααα;U,Vh)+B(U;Uh,Vh)+B(U; Ũ,Vh)= L(Vh) (27a)

G(ααα;U, Ṽ) +B(U;Uh, Ṽ) +B(U; Ũ, Ṽ) = L(Ṽ) . (27b)

As usual (see, e.g., [25]), the fourth term in Eq. (27a) is integrated by parts while neglecting the
contribution of the subscales on the element boundaries, leading to

G(ααα;U,Vh)+B(U;Uh,Vh)+∑
K

(
Ũ,L∗(U,Vh)

)
K ≈ L(Vh) . (28)

Here, L∗ denotes the adjoint of the differential operator L, and ∑K(•,•)K indicates separate inte-
gration over each element and consecutive summation over the contributions of all elements in
the mesh. The distinct variants of variational multiscale methods differ in how the subscale equa-
tion (27b) is approximated. In residual-based (algebraic or orthogonal) methods, the subscales
are described as

M(U)∂tŨ+ τττ
91Ũ = P̃

[
F−M(U)∂tUh−L(Uh,Uh)

]
, (29)

5For consistency with previous publications, we use the symbol •̃ to denote subscales from here on. This is not to be
confused with the intrinsic average mentioned in Section 2.
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where τ is amatrix of stabilization parameters to be defined later; P̃ denotes the projection onto the
subscale space [19], here applied to the residual of the finite-element approximation. In principle,
this approximation of the subscales can now be inserted into Eq. (28) to obtain a formulation
solvable using standard finite-element routines. However, once again, different versions of this
approach exist. Here, we opt to employ the following key concepts that have previously been
described and analyzed for other problems:

• Orthogonal subgrid scales: We will use P̃ = P⊥, i.e., the projection orthogonal to the finite-
element space [15, 20, 26].

• Term-by-term stabilization: In conjunctionwith orthogonal subgrid scales, we have the option
to neglect terms in Eqs. (29), (28) that are not essential for achieving stability. Specifically,
we will only consider products of terms inL by the corresponding term inL∗, namely those
involving contributions of the form uh

k ·∇vh
k ·P⊥(αh

k uh
k ·∇uh

k), αh∇qh ·P⊥(αh
k ∇ph), and uh

k ·∇β h
k ·

P⊥(uh
k ∇αh

k ). The resulting formulation has been successfully employed for single-phase flows
and other problems and is known to be stable and convergent at an optimal rate [19, 27].

• Dynamic subscales: In many applications of variational multiscale methods, the first term
in Eq. (29) is neglected, leading to an approximation often referred to as quasi-static sub-
grid scales. In contrast, we will include this term, which requires temporal discretization of
Eq. (29), see [21, 28].

• Linear subscales: The stabilization terms (to be derived in the ensuing) are of the form
BS(U;•,•). A common approximation consists in taking BS(U;•,•) ≈ BS(Uh;•,•), which cor-
responds to using the finite element component in the computation of the nonlinear terms
while neglecting the contribution of the subscales, see, e.g., [22].

Applying the term-by-term stabilization to the multiphase problem, we propose the following ap-
proximation of the velocity subscales, obtained by considering only the essential terms in the
momentum equation for phase k:

ρkα
h
k ∂t ũk +ρkα

h
k (τ

u
k )

91ũk =−P⊥
(
ρkα

h
k uh

k ·∇uh
k
)
−P⊥

(
α

h
k ∇ph) (30)

with a stabilization parameter τu
k yet to be defined.

6 Similarly, we propose subscales for the volume
fractions based on the continuity equation for phase k as

∂t α̃k +(τα
k )

91
α̃k =−P⊥

(
uh

k ·∇α
h
k
)
. (31)

A common assumption made, e.g., in the single-phase case [19] states that the velocity subscales
can be split into two independent components, such that

ρkα
h
k ∂t ũ1k +ρkα

h
k (τ

u
k )

91 ũ1k =−P⊥
(
ρkα

h
k uh

k ·∇uh
k
)
, (32a)

ρkα
h
k ∂t ũ2k +ρkα

h
k (τ

u
k )

91 ũ2k =−P⊥
(
α

h
k ∇ph) . (32b)

6The factor of ρkαh
k in the second term is introduced for convenience such that all stabilization parameters have the

unit of time.
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The time-derivatives of the subscales are approximated by a first-order backward difference for-
mula (BDF1), e.g.,

ρkα
h
k

ũ j+1
1k − ũ j

1k
δ t

+ρkα
h
k (τ

u
k )

91 ũ j+1
1k =−P⊥

(
ρkα

h, j+1
k uh, j+1

k ·∇uh, j+1
k

)
(33)

and analogously for ũ2k and α̃k, where δ t is the time step (assumed constant for simplicity), and j
indicates the time-step counter. As explained in [28], due to the fact that the stabilization param-
eters are of the order of δ t, this approximation suffices to obtain optimal convergence in second-
order schemes. Hence, at a given time step, the subscales are given as

ũ j+1
1k = τ

u
k

(
δ t91 ũ j

1k− (αh, j+1
k )91 P⊥

(
α

h, j+1
k uh, j+1

k ·∇uh, j+1
k

))
, (34a)

ũ j+1
2k = τ

u
k

(
δ t91 ũ j

2k− (ρk α
h, j+1
k )91 P⊥

(
α

h, j+1
k ∇ph, j+1)) , (34b)

α̃
j+1

k = τ
α
k

(
δ t91

α̃
j

k −P⊥
(
uh, j+1

k ∇α
h, j+1)) (34c)

with the abbreviations

τ
u
k =

(
1
δ t

+
1
τu

k

)91

, τ
α
k =

(
1
δ t

+
1

τα
k

)91

.

These expressions for the subscales at a given time step j+1 can now be substituted into Eq. (28).
Considering only the terms relevant to achieve stability, as mentioned before, leads to the follow-
ing forms to stabilize the momentum equation

BM
S (Ûh;Uh,Vh)

∣∣∣ j+1
=−∑

K

(
ρkûh, j+1

k ·∇vh
k ,τ

u
k

(
δ t91

α̂
h, j+1
k ũ j

1k−P⊥
(
α̂

h, j+1
k ûh, j+1

k ·∇uh, j+1
k

)))
K

−∑
K

(
∇qh,τu

k

(
δ t91

α̂
h, j+1
k ũ j

2k−ρ
91
k P⊥

(
α̂

h, j+1
k ∇ph, j+1)))

K

and the continuity equation

BC
S (Û

h;Uh,Vh)
∣∣∣ j+1

=−p0 ∑
K

(
ûh, j+1

k ·∇β
h
k ,τ

α
k

(
δ t91

α̃
j

k − P⊥
(
ûh, j+1

k ·∇α
h, j+1
k

)))
K
.

Furthermore, we propose adding

BS
S(U

h,Vh)
∣∣ j+1

= ∑
K

(
∇β

h
k , |uk,c|hP⊥

(
∇α

h
k
))

K

with a characteristic velocity uk,c, whichwe typically choose as themaximumvelocity at the inflow
boundary for each phase. Apart from the projectionP⊥(•), this contribution represents an artificial
diffusion of magnitude |uk,c|h. This term is added with the aim to improve stability in regions
where one of the velocities is very small and, consequently, the stabilization of the corresponding
volume fraction by BC

S nearly vanishes.
Combining all terms outlined above, the proposed stabilized finite element method consists in

finding Uh ∈Wh such that

G(αααh;Uh,Vh)+B(Ûh;Uh,Vh)+BM
S (Ûh;Uh,Vh)+BC

S (Û
h;Uh,Vh)+BS

S(U
h,Vh) = L(Vh) (35)
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for all Vh ∈Wh
0 .

4.3. Stabilization parameters

The parameters τα
k and τu

k need to be chosen such that the residuals of the momentum and conti-
nuity equations vanish as the element size h approaches zero and the optimal convergence rate is
attained in the asymptotic regime. A common approach to derive expressions for these parame-
ters is based on a Fourier analysis of the residuals, see, e.g., [20, 29]. In these previous works, it has
been discussed in detail that the stabilization parameter for a PDE involving ‘diffusive,’ ‘convec-
tive,’ and ‘reactive’ terms, say −µ ∆u+ a ·∇u+ r u, can be chosen as (c1 µ p4

e/h2 + c2 |a| pe/h+ r)91.
Here, pe denotes the polynomial degree of the interpolation, and c1, c2 are algorithmic constants
[30]. Applying these results to the continuity and momentum equations of the multiphase prob-
lem directly yields

τ
α
k =

(
c1γk p4

e

h2 +
c2|uk|pe

h
+ |∇ ·uk|

)−1

, (36a)

τ
u
k =

(
c1 µk p4

e

ρkh2 +
c2µk|∇αk|pe

ρkαkh
+

c2|uk|pe

h
+∑

`

|gk`|
ρkαk

)−1

. (36b)

In the definition of τα
k , we introduced scalar parameters γk such that τα

k is well-defined in regions
where one of the velocities approaches zero. For all numerical studies presented in this paper,
we chose γk = 10−8|uk,c|h, where the factor of |uk,c|h ensures dimensional consistency. The other
algorithmic constants were chosen as c1 = 4, c2 = 2. Note that the first two terms in Eq. (36b)
both result from the term involving ∇ · (α εεε) = ∇α · εεε +α ∇ · εεε . Similarly, the contribution of the
form α∇ ·u in the continuity equation is treated as a reactive term in the stabilization of the vol-
ume fractions. As mentioned in footnote 6, a factor of ρkαk is included in the definition of τu

k for
convenience.

5. Implementation aspects

5.1. Linearization

A straightforward linearization of system (21) (or its discrete counterpart) is obtained bymeans of
a fixed-point iteration (also referred to here as Picard’s method), i.e., approximating the nonlinear
terms by substituting preliminary solutions computed in a previous iteration. As several terms are
nonlinear in both the velocity and volume fraction, this procedure is not unique. Nevertheless, a
rather obvious choice may be the following:

GP(α̂αα;U,V)
∣∣i+1

+ BP(Û;U,V)
∣∣∣i+1

:= ∑
k

[
(vk,ρkα̂

i
k∂tui+1

k )+(βk, p0 ∂tα
i+1
k )+(vk,ρkα̂

i
kûi

k ·∇ui+1
k )

+(2εεε(vk), α̂
i
kµkεεε(ui+1

k ))+(βk, p0 α̂
i
k∇·ui+1

k )+(βk, p0 ûi
k ·∇α

i+1
k )− (∇·(α̂ i

kvk), pi+1)+(q, α̂ i
k∇·ui+1

k )

+(q, ûi+1
k ·∇α

i
k)− t91

0 (q,α i+1
k )− (vk,α

i+1
k fk)

]
−∑

k
∑
`

(vk,gi
k`(u

i+1
` −ui+1

k )) . (37a)

Here, superscripts i+1 and i refer to variables in the current and previous iteration, respectively
(omitting temporal discretization for conciseness), and the superscript P indicates Picard itera-
tion. As the phase-interaction term depends on the model, it may be a function of the volume
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fractions and velocities, here evaluated based on the values at iteration i. Hence, we can think
of this term as gi

k` := gk`(ui,α i). We may also note that we treat the term involving body loads
implicitly, i.e., solving for the unknowns α

i+1
k in (vk,α

i+1
k fk).

We will also make use of the Newton-Raphson approach to obtain an alternative linearization
that is expected to converge faster, provided that sufficiently accurate starting values are given. To
distinguish between the different nonlinearities involved in the weak form, let us rewrite Eq. (23)
as

G(α̂αα;U,V)+B(Û;U,V) := B1(U,V)+B2(α̂αα;U,V)+B3(α̂αα, û;U,V)+Bg(α̂αα, û;U,V) (38)

with

B1(U,V) = ∑
k

[
(βk,∂tαk)− t91

0 (q,αk)− (vk,αkfk)
]

B2(α̂αα;U,V) = ∑
k

[
(vk,ρkα̂k∂tuk)+(2εεε(vk), α̂kµkεεε(uk))+(βk,∇·(α̂kuk))− (∇·(α̂kvk), p)+(q,∇·(α̂kuk))

]
B3(α̂αα, û;U,V) = ∑

k
(vk,ρkα̂kûk ·∇uk)

Bg(α̂αα, û;U,V) =−∑
k

∑
`

(vk, ĝk`(u`−uk)) ,

with ĝk` denoting the momentum exchange, which, depending on the employed model, can be a
function of α̂k, α̂`, ûk, and û`. The Newton-Raphson (‘NR’) linearization of the terms involving
simple polynomial nonlinearities is then obtained as

BNR
1 := B1(Ui+1,V) ,

BNR
2 := B2(α̂αα

i;Ui+1,V)+B2(α̂αα
i+1;Ui,V)−B2(α̂αα

i;Ui,V) ,

BNR
3 := B3(α̂αα

i
, ûi;Ui+1,V)+B3(α̂αα

i+1
, ûi;Ui,V)+B3(α̂αα

i
, ûi+1;Ui,V)−2B3(α̂αα

i
, ûi;Ui,V) .

The linearization of the interaction term Bg depends, once again, on the selectedmodel. Assuming
a drag term of the form

gk` =Cgαk α` |u`−uk| (41)

with some constantCg, we obtain

BNR
g =−∑

k
∑
`

[
2(vk,Cgα

i
k α

i
` wi wi+1)+(vk,Cgα

i+1
k α

i
` wi wi)+(vk,Cgα

i
k α

i+1
` wi wi)−3(vk,Cgα

i
k α

i
` wi wi)

]
(42)

with the abbreviations w = u`−uk, w = |w|. The linearization of the stabilization terms follows the
same procedure. An overview of all terms to be included in the linearized weak form is presented
in Appendix B. However, it should be noted that the nonlinearities present in the stabilization
parameters τττ as well as the projection of the subscales are always linearized by a simple Picard
iteration, even when employing the Newton-Raphson scheme for the Galerkin terms.

5.2. Time stepping

To integrate the discretized weak form in time, wemay use standard approaches well-known from
the solution of the single-phase incompressibleNavier-Stokes equations andmany other problems.
Note, however, that the mass matrix associated with the momentum equation is nonlinear, as it
depends on the volume fractions. The numerical examples presented in this paper make use of
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a fully implicit 2nd-order backward difference scheme (BDF2) for the Galerkin terms, while the
subscales are always integrated by a BDF1 for efficiency.

5.3. Drag coefficient

Many different models exist for the moment exchange between two phases. We studied three
typical scenarios: Initial convergence studies are performed using a constant drag coefficient, i.e.,
gk` = g`k = const. A particularly popular representation of the drag term is based on the Schiller-
Naumann model of a dispersed phase (phase 1) in a carrier fluid (phase 2), see, e.g., [31]. The
dispersed phase is assumed to be in the form of bubbles of solid particles with uniform diameter
d1, leading to the approximate expression

g12 =
α1 α2 ρ1CD Re

24 t1
(43)

with

CD =

{
24
(
1+0.15Re0.687)/Re Re≤ 1000

0.44 Re > 1000
, Re =

ρ2 |u2−u1|d1

µ2
t1 =

ρ1 d2
1

18µ2
. (44)

Furthermore, to reproduce results obtained by Hiltunen [7], we employ the following drag coef-
ficient used there and in many other works as a simpler approximation of a model similar to that
by Schiller and Naumann:

g12 =
3CD

4d1
α1 |u2−u1| . (45)

5.4. Enforcing the algebraic constraint

Physically, the values of the volume fractions must take values 0 ≤ αk ≤ 1. This condition is not
explicitly enforced by the variational form of the problem and can be violated point-wise due to
spatial and temporal approximation. Furthermore, numerical issues can manifest if one of the
volume fractions approaches zero in parts of the domain since the corresponding fluid velocity
is undefined where the volume fraction vanishes. To overcome both problems, we introduce a
threshold αth such that αth ≤ αk ≤ 1−αth, see, e.g., [32] for similar strategies. This condition is
enforced at the Gauss points during each iteration of the nonlinear solver such that the coefficient
matrices are integrated based on the corrected values. In addition, we apply this correction to the
nodal values after each time step.

5.5. Choosing the time scale t0
In Section 2.2, we introduced an algorithmic constant t0 acting as a penalization in enforcing the
algebraic constraint ∑αk = 1. As has been explained there, this constant represents a time scale
during which deviations from this condition decay. Hence, we propose choosing this value based
on a characteristic time tc, which we define as

tc = min(tk) (46)

with

tk =
(

µk

ρkL2
c
+
|uk,c|

Lc

)−1

(47)
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with a characteristic length Lc and the characteristic velocities uc,k introduced before. With these
definitions, our numerical studies suggest that robust results can be obtained by choosing

t0 =
tc

1000
. (48)

5.6. Implicit/explicit treatment of the projections

The stabilization terms require computing projections P⊥(•) of the subscales onto a space orthog-
onal to the finite element space. These are computable as P⊥(•) = I(•)−Ph(•), where Ph(•) denotes
the projection onto the finite element space. Take, as an example, the subscales of the volume
fractions, Eq. (34c), consider quasi-static subscales and omit the phase index to simplify notation.
Hence, we need to compute

α̃ =−τ
αP⊥

(
uh ·∇α

h)=−τ
α

(
uh ·∇α

h−Ph(uh ·∇α
h))=:−τ

α

(
uh ·∇α

h−ξ

)
with ξ being the projection of this term on the finite element space. The nodal values of the
projection are obtained by solving

(ηh,uh ·∇α
h) = (ηh,ξ h)

with adequate test functions ηh. Within a transient nonlinear solution, we have essentially three
options to incorporate this term. Denoting by j and i the indices of the time step and nonlinear
iteration, respectively, the first option consists in computing the projections based on the previous
iteration within the same time step, i.e.,

(ηh,uh,i, j+1 ·∇α
h,i, j+1)≈ (ηh,ξ h,i+1, j+1) semi-implicit

This approach, which we may refer to as semi-implicit, is usually not recommended, as it can re-
quire many iterations for the subscales to converge within each time step. Instead, at least in tran-
sient problems, it is sufficient and more effective to use a fully explicit approach, i.e., computing
the projections based on the results of the previous time step:

(ηh,uh, j ·∇α
h, j)≈ (ηh,ξ h, j+1) explicit

In this approach, the iteration counter i is omitted, as the projections are computed based on the
converged solutions of the previous time step. Note that, if the utilized finite elements allow ‘mass
lumping’, i.e., the Gram matrix can be diagonalized, then solving the above system does not infer
significant computational costs. Hence, the computation of the stabilization terms is negligible
compared to the Galerkin terms. This approach introduces an error of order O(δ t), but, as ex-
plained earlier, this suffices for schemes that are globally of second order.

The third option consists in computing the projections implicitly, i.e., treating them as un-
knowns in each iteration

(ηh,uh,i+1, j+1 ·∇α
h,i+1, j+1)≈ (ηh,ξ h,i+1, j+1) implicit

In this variant, the projections must be obtained by solving a coupled system of equations for the
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unknowns U and ξξξ of the form [
K −Pτ

P −M

][
U
ξξξ

]
=

[
F
0

]
(49)

where K denotes the stiffness matrix (inlcuding the Galerkin terms and stability without the pro-
jection), and the second equation corresponds to the computation of the projections as outlined
above. A detailed discussion of this approach can be found in [17] for the case of the Oseen
problem. In our example of the subscales α̃ , the matrix Pτ represents the term stemming from
(uh ·∇β h,−ταξ h). The additional degrees of freedom can be eliminated by static condensation,
yielding (

K−PτM91P
)

u = F . (50)

Once again, if theGrammatrixM is diagonal, the cost of computing the additional term PτM91Pu is
small compared to the solution of the final system of equations. Compared to the explicit version,
the computational costs for each iteration are significantly larger due to the increased size of the
matrix stencil in Eq. (50). Nevertheless, the implicit variant is our method of choice for stationary
problems where no initial guess from a previous time step exists.

6. Numerical examples

6.1. Convergence studies
6.1.1. Constant volume fractions
We begin by numerically assessing the convergence of the error with respect to the time step
size, mesh size, and element order. For this purpose, we devise an example of a manufactured
solution similar to one that has previously been used for verifying solutions to the single-phase
problem [21, 33]. We consider both a variant with a stationary solution as well as a transient case
in which the time-dependent solution is obtained by means of time stepping (BDF2). Specifically,
we choose the velocities, volume fractions, and pressure of a two-phase flow problem as follows

u1 = 100 ft(t)
(

f (x) f ′(y), 9 f ′(x) f (y)
)
+u0, u2 = 2u1, p = 100x2, α1 = 0.3, α2 = 0.7

with

f (x) = x2 (1− x)2, ft(t) =

{
1
cos(π t)e9t , u0 =

{
(1, 1) stationary case

(0, 0) transient case

and compute the body loads accordingly such that the selected solution satisfies the strong form
of the problem. Note that the velocity fields are divergence-free, and, since the volume fractions
are constant, we also have ∇(αk uk) = 0. The computational domain is the unit square, i.e.,

Ω =
{
(x, y) ∈ R2 ∣∣ 0≤ x≤ 1, 0≤ y≤ 1

}
.

Thematerial constants are µ1 = 0.1, µ2 = 0.2, ρ1 = ρ2 = 1, and the momentum exchange coefficient
is chosen as a constant value of g12 = g21 = 0.5. The exact solution of the velocities is prescribed
on the entire boundary, and the pressure is fixed at the point (1, 1).

We first address the stationary case, i.e., compute the time-independent solution with ft = 1.
The domain is discretized into a regular mesh of quadrilaterals, beginning with 4×4 elements and
consistently refining by dividing each element into four. The volume fractions are prescribed at

16



(a) pe = 1,2 (b) pe = 4,7

Figure 1: Convergence of the error in velocities, volume fractions, and pressure using elements of degree pe = 1, pe = 2
(a) and pe = 4, pe = 7 (b).

the inflow boundaries (left and bottom). Figure 1a shows the L2-norm of the error in velocities,
volume fractions, and pressure using elements with a polynomial degree of pe = 1 and pe = 2.
These errors are denoted as εu, εα , and εp, respectively. The theoretical asymptotic convergence
rates are obtained approximately. Specifically, evaluating the convergence rate based on the first
two points of each graph yields the numerical values of 2.3 (velocities), 2.1 (volume fractions),
1.8 (pressure) for the case pe = 1 and 3.5, 2.9, 3.1 for pe = 2. In addition, we present in Fig. 1b
the errors computed when employing elements of orders 4 and 7. These polynomial degrees have
been selected to demonstrate a peculiarity of the proposed approach: Note that the exact solution
is given by polynomials up to a degree of four. Hence, a consistent method would be expected
to yield exact results when using elements of the same order. As mentioned before, the proposed
method is not consistent but converges at an optimal rate. Consequently, when using fourth-order
elements, the error in all variables is very small, yet nonzero. On the other hand, exact solutions
are expected if the approximation of the subscales vanishes, i.e., if the arguments of the projection
operators in Eqs. (34) are in the finite-element space. In our current example, this happens when
(αkuk ·∇uk) is in the finite-element space. As this term contains polynomials up to degree seven,
elements of order pe = 7 are expected to result in near-zero errors, which is confirmed by the
results in Fig. 1b.

To test the transient case, we utilized a mesh of 4× 4 elements of order seven, such that the
error due to spatial discretization can be neglected. We then define initial conditions according
to the exact solution and compute results using a BDF2-scheme (and BDF1 for the subscales) with
different values of the time step. The L2-norm of the errors in the final time step T = 1.25 are
depicted in Fig. 2. Optimal convergence is obtained with numerical values of the rates computed
between the first two points of 1.97 (velocities), 2.17 (volume fractions), and 2.35 (pressure).

In addition, we studied the effect of treating the projections (semi)-implicitly or explicitly as
explained in Section 5.6. To this end, we compare the total number of iterations required in the so-
lution of the transient problem. Figure 3 exemplarily depicts the residual in velocities for amesh of
8×8 bilinear elements when using the different approaches to computing the projections. Results
for other meshes and element orders are qualitatively similar. It is apparent that a ‘semi-implicit’
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Figure 2: L2-norm of the error in the final time step for varying time-step size δ t.

(a) Picard (b) Newton-Raphson

Figure 3: Residual vs. number of iterations when using an implicit, semi-implicit, or explicit approach to computing the
projections of the subscales. Results are presented for Picard iteration (a) and Newton-Raphson’s method.
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approach (computing the projections based on the previous nonlinear iteration) requires signif-
icantly more iterations to reduce the residual below the chosen threshold (here 10−6) compared
to the other two approaches. The effect is more pronounced when employing Picard’s iteration
(Fig. 1a) compared to Newton-Raphson’s method. On the other hand, the differences between
the fully implicit and explicit computations in terms of the number of iterations are minimal. As
the implicit version is computationally more expensive, the explicit approach is preferred in tran-
sient simulations. Obviously, in stationary problems, we can only choose between the implicit and
semi-explicit version. In that case, it may be preferable to employ the implicit method due to the
significantly better convergence. This will be addressed in the following example.

6.1.2. Linear volume fractions
To ensure convergence in the case of non-constant volume fractions, we consider another aca-
demic, yet slightly more complex, example by assuming both volume fractions to vary linearly
in Ω. In order to derive a valid analytical solution, the volume fractions must add up to unity
point-wise in the domain. Furthermore, the continuity equations for each phase should be satis-
fied, which is somewhat more involved compared to the trivial case of constant volume fractions
discussed in the previous example. We choose the following stationary solution:

u1(x,y) =
(

x+1,−1.2x+0.8
0.6x+0.2

y+4.5
)
, u2(x,y) =

(
x2 +1,

1.8x2−1.6x+0.6
0.8−0.6x

y+1
)
, (51a)

α1(x) = 0.2+0.6x, α2(x) = 0.8−0.6x, p(x,y) = x+ y+1 . (51b)

The velocity fields are plotted in Fig. 4a. The material parameters are

ρ1 = 2, ρ2 = 1/3, µ1 = 1, µ2 = 1 ,

and the phase interaction function is chosen as

g12 = α1|u2−u1| .

The body loads f1(x,y) and f2(x,y) that result in the desired solution are visualized in Fig. 4b (we re-
frain from displaying the lengthy analytical expressions describing the body loads). Initial guesses
are chosen as

u0
1(x,y) = u0

2(x,y) = (1,1), α
0
1 (x,y) = α

0
2 (x,y) = 0.5 p0(x,y) = 1 in Ω.

Boundary conditions for velocities are prescribed at the whole boundary and for the volume frac-
tions at the inflow boundaries (left and bottom). For the numerical tests, we assume the same
square geometry and regular meshes as in the previous example. The L2-norm of the error rela-
tive to the exact solution is depicted for the different meshes in Fig. 5 using elements of order 1
and 2. Finally, in Fig. 6, we compare the convergence of the residual when employing the Newton-
Raphson method or Picard iteration, respectively. The presented results are obtained using the
mesh of 16×16 elements; however, the results of the other considered discretizations are qualita-
tively similar. We may point out again that the stabilization parameters and projection terms are
always linearized by a simple fixed-point iteration – even when we employ the Newton-Raphson
scheme for linearizing the other terms in the weak form. This will eventually lead to subopti-
mal convergence of the Newton-Raphson scheme in the asymptotic regime. For both methods,
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(a) (b)

Figure 4: Analytical velocity fields (a) and body loads (b) in the example analyzed in Section. 6.1.2.

(a) pe = 1 (b) pe = 2

Figure 5: Convergence of the error in the L2-norm under h-refinement, employing linear and quadratic finite elements.
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Figure 6: Convergence of the residual when employing Newton-Raphson or Picard iteration with an either implicit or
explicit treatment of the projection terms.

we include results obtained when treating the projection terms implicitly and semi-implicitly, as
discussed in Section 5.6. The Newton-Raphson method with implicit treatment of the projection
requires only nine iterations to yield a residual below 10−10 and leads to significantly faster conver-
gence in the asymptotic regime compared to the Picard iteration or the Newton-Raphson scheme
with a semi-implicit treatment of the projection. From these results, it seems recommendable to
employ the Newton-Raphon scheme with an implicit treatment of the projection for stationary
problems.

6.2. Venturi tube flow

This example is inspired by the problem described in Section 5.1 of [7], representing a stationary
two-phase flow through the tapered tube depicted in Fig. 7, sometimes referred to as Venturi tube.
The length of the structure is L = 5; the thickness of the tube is taken as 1 and reduces to 0.4 at
x = L/2. The following velocity profile of both phases is prescribed at the inflow boundary (left)

u1(0,y) = u2(0,y) = (4(1− y)y, 0) , (52a)

and the volume fraction of the dispersed phase equals 1% at the inlet, i.e.,

α1(0,y) = 0.01, α2(0,y) = 0.99 . (53)

At the outflow boundary, vanishing vertical velocity components and normal stress rates are pre-
scribed, i.e.,

u1y = u2y = n ·n ·σσσ1 = n ·n ·σσσ2 = 0 , (54)

where n denotes the unit outward normal vector at the outflow. No-slip conditions are assumed
for both velocities at the upper and lower walls. The initial conditions are chosen to be constant
throughout the domain:

u0
1(x,y) = u0

2(x,y) = (0,0), α
0
1 (x,y) = 0.01, α

0
2 (x,y) = 0.99, p0(x,y) = 0 in Ω.
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Figure 7: Mesh and numerical solution of the velocities, volume fractions as well as the pressure for the example of the
Venturi tube flow.
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Figure 8: Convergence of the residual in velocity when employing the Newton-Raphson scheme or Picard iteration.

The phase interaction term is also adopted from [7] as

g =
3
4

Cd

d
α1|u2−u1| , (55)

with the drag coefficient Cd = 0.44 and the particle diameter d = 0.005. Computations have been
performed with different Reynolds numbers and density ratios as in [7] to confirm consistency
with the previously published results. Here, we present exemplary results using the material pa-
rameters

ρ1 = 2, ρ2 = 1, µ1 = µ2 = 0.01 ,

which corresponds to Reynolds numbers of the two phases of Re1 = 200, Re2 = 100. Figure 7 shows
the mesh as well as the results of the velocity components, volume fractions, and pressure. While
the flow velocities of both phases are rather similar, the moment exchange interaction results in
an increased concentration of the dispersed phase near the boundary in the narrowing section of
the tube and in the center near the outlet. The results are in accordance with the contour plots
presented in [7]. Again, the solution to this stationary problem was obtained after a few iterations
of the nonlinear solver. Figure 8 depicts the decay in the scaled residual when employing the
Newton-Raphson scheme in comparison with the Picard iteration. In both cases, the projection of
the stabilization terms has been treated implicitly. In this example, Picard’s iteration led to a sharp
increase in the residual after a few iterations before decreasing continuously. On the other hand,
the difference between both methods in the asymptotic regime is less pronounced compared to
the previous test cases.

6.3. Two-phase flow over a cylinder

In this section, we study a variation of a typical benchmark example, namely, the flow over a
cylinder modified to include a mixture of two fluids. We choose the computational domain (the
same as, e.g., in [19]) to be Ω = [0,16]× [−4,4]\D, where D is a unit circle centered at the point
(0,4). At the inflow, x = 0, we prescribe a uniform mixture of both phases entering the domain at
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Figure 9: Mesh used for the simulation of two-phase flow over a cylinder.

the same velocity. The boundary conditions are summarized as

inflow: u1(x =0,y, t) = u2(x =0,y, t) = (1,0), α1(x =0,y, t) = α2(x =0,y, t) = 0.5 ,

walls: n ·u1(x,y = ±4, t) = n ·u2(x,y = ±4, t) = 0 .

All velocity components are unconstrained at the outflow. Uniform initial conditions are chosen
as

u0
1 = (1,0), u0

2 = (0.9,0), α
0
1 = α

0
2 = 0.5, p0 = 0 in Ω.

The different initial conditions of the two phases were chosen such that the moment exchange
term is nonzero in the initial configuration which, in some cases, was found to facilitate the con-
vergence of the nonlinear terms in the first time step. The material parameters of the two con-
stituents are chosen as

µ1 = 0.01, µ2 = 0.1, ρ1 = 1, ρ2 = 1.3 .

In this example, buoyancy is considered with a gravitational acceleration of g = 9.81, leading to a
partial separation of the two fluids as the mixture propagates through the computational domain.
The drag term is chosen according to Eq. (45) with CD = 0.44 and d = 0.001. The time scale is
obtained as 0.0079, and the characteristic velocities in the shock-capturing term are |uk,c|= 1.

The used mesh, consisting of 3284 bilinear elements, is depicted in Fig. 9. Solutions are com-
puted up to T = 28 with a time step of δ t = 0.05. Exemplary results of velocities, volume fractions,
and pressure at two time instances t1 = 4, t2 = 28 are presented in Fig. 10. The velocity fields
roughly resemble those of a single-phase flow. In this example, the velocities of both phases are
very similar as a consequence of the relatively large drag term that penalizes velocity differences.
The phase separation is well visible in the contour plots of the volume fractions, showing that
the lighter/heavier fluid accumulates at the upper/lower wall near the outflow. Separation and
subsequent remixing also take place around the cylinder.

24



(a) u1, t = 4 (b) u1, t = 28

(c) u2, t = 4 (d) u2, t = 28

(e) α1, t = 4 (f) α1, t = 28

(g) α2, t = 4 (h) α2, t = 28

(i) p, t = 4 (j) p, t = 28

Figure 10: Numerical results of the velocities, volume fractions, and pressure for the example of two-phase flow over a
cylinder.
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7. Conclusion

The proposed formulation has been confirmed to yield stable solutions to the dispersedmultiphase
problem and attains optimal convergence rates with respect to spatial and temporal discretization.
Thanks to the concept of the so-called term-by-term stabilization – made possible by orthogonal
subgrid scales – the stabilization is inexpensive and relatively straightforward to implement com-
pared to alternatives that include the complete residual. Numerical studies have provided evidence
of the broad applicability of this method to problems of practical relevance, underscoring its po-
tential to drive further advances in the field of multiphase flow simulations.

Appendix A. Averaging

Different types of volume averages are commonly employed in the derivation of multiphase equa-
tions; the most important ones include [7]:

〈qi〉=
1
V

ˆ
Vi

qi dV partial average (A.1a)

q̃i =
1
Vi

ˆ
Vi

qi dV =
1
αi
〈qi〉 intrinsic average (A.1b)

q̄i =

´
Vi

ρiqi dV´
Vi

ρi dV
=
〈ρiqi〉
αiρ̃i

Favré/mass-weighted average (A.1c)

Appendix B. Linearization

To ease implementation, we present in Tab. B.1 an overview of all terms to be included in the
linearized weak form when employing the fixed-point (Picard) iteration or the Newton-Raphson
method. Note that, when using the Newton-Raphson method, the terms included in the column
Picard terms remain the same, except for a modification in the momentum-exchange term.
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Table B.1: Overview of linearization terms.
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† Newton linearization: bg = 2, Picard iteration: bg = wi
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