
Finite Elements in Analysis and Design 236 (2024) 104168

A
0
(

S
s
i
A
a

b

A

K
M
S
S
N

1

t
a
b
f

c
t

h
R

Contents lists available at ScienceDirect

Finite Elements in Analysis & Design

journal homepage: www.elsevier.com/locate/finel

tress–displacement stabilized finite element analysis of thin
tructures using solid-shell elements, Part I: On the need of
nterpolating the stresses
. Aguirre a,b, R. Codina a,∗, J. Baiges a

Universitat Politècnica de Catalunya, Jordi Girona 1-3, Edifici C1, Barcelona 08034, Spain
Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins 3363, Estación Central, Santiago, Chile

R T I C L E I N F O

eywords:
ixed formulation

olid-shell
tabilization
umerical locking

A B S T R A C T

This work studies the solid-shell finite element approach to approximate thin structures
using a stabilized mixed displacement–stress formulation based on the Variational Multiscale
framework. The work is divided in two parts. In Part I, the numerical locking effects inherent
to the solid-shell approach are characterized using a variety of benchmark problems in
the infinitesimal strain approximation. In Part II, the results are extended to formulate the
mixed approach in finite strain hyperelastic problems. In the present work, the stabilized
mixed displacement–stress formulation is proven to be adequate to deal with all kinds of
numerical locking. Additionally, a more comprehensive analysis of each individual type of
numerical locking, how it is triggered and how it is overcome is also provided. The numerical
locking usually occurs when parasitic strains overtake the system of equations through specific
components of the stress tensor. To properly analyze them, the direction of each component of
the stress tensor has been defined with respect to the shell directors. Therefore, it becomes
necessary to formulate the solid-shell problem in curvilinear coordinates, allowing to give
mechanical meaning to the stress components (shear, twisting, membrane and thickness stresses)
independently of the global frame of reference. The conditions in which numerical locking is
triggered as well as the stress tensor component responsible of correcting the locking behavior
have been identified individually by characterizing the numerical response of a set of different
benchmark problems.

. Introduction

Structural elements have played an important role in the development of technology. The reason is that thin structures are
he most common in nature and have proven to be essential engineering tools throughout history [1]. They are usually modeled
s a dimensional reduction of a 3D solid where one or two of its dimensions are much thinner than the others. In this manner,
eam and rod formulations have been developed to approximate thin structures with two reduced dimensions, while plate and shell
ormulations have been developed to model structures of a single dimension reduction [2].

In the finite element literature, shell models are usually classified into three different groups: the classical shell elements, the
ontinuum based elements and the solid-shell elements. As the name suggest, the classical shell elements are based on conventional
heories of plates and shells [3–11]; therefore, they inherently use rotational degrees of freedom to describe the kinematics with
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respect on the mid-surface of the shell. The continuum based shell elements, usually called degenerated elements, were first
introduced by Ahmad et al. [12]. These elements are directly constructed from the continuum equations [13–15]. The derivation
of these elements is straightforward, and it requires to enforce kinematic constrains to the upper and lower surfaces with respect
to the shell’s mid-surface using rotational degrees of freedom, and thus, the enforcement of the inextensibility of the shell director.
Both classical and continuum based approaches usually require to either impose the inextensibility of the director or to enforce
the plane stress constraint [13,16]; the reader can also refer to [17,18] for a comparison between these two approaches. The solid-
shell approach consists in the approximation of thin structures using 3D elements; the idea was first introduced by Hauptmann
et al. [19]. In other words, this approach employs a 3D solid approximation that explicitly considers the nodes at the upper and
lower surfaces of the structure and uses displacement degrees of freedom. This approach takes the advantage of not requiring
additional kinematic assumptions and allows the use of three-dimensional constitutive equations, at the cost of an increased size of
the system of equations.

The most important difference between the approaches described comes from the treatment of through-the-thickness integration.
n regard of this, Bischoff et al. [20] made a comprehensive revision concerning the models used for finite element approximations
f thin structures. This reference revises in depth the three approaches, in the linear and non-linear cases. What all approaches share
n common is the tendency to suffer numerical locking. In this context, classical shell elements are subject to shear and membrane
ocking. However, continuum-based shell and solid-shell elements are also subject to trapezoidal and thickness locking, particularly
sing low order elements, which are those prone to suffer from this and other types of locking analyzed in this paper [21].

The present work focuses specifically on the study of thin structures using a stabilized finite element method applied to solid-shell
lements. These type of elements are subject to all kinds of numerical locking when approximated using the standard irreducible
alerkin approach and low order elements. Therefore, all the locking effects have to be properly evaluated; these are:

• Shear locking is usually described in the classical shell context as the inability of a thin structure to represent zero transverse
shear strains [2]. In the context of solid-shell elements, it appears when the shell is not able to reproduce a correct coupling
between the in-plane translation of its upper and lower surfaces with respect to the transverse translation of the mid-surface.
For this reason, shear-locking is present in flat and curved structures subject to bending states, and the effect becomes greater as
the thickness gets smaller. As a consequence of this, parasitic transverse shear strains cause an over-stiffening of the structure,
leading to spurious results.

• Membrane locking appears due to the inability of the shell to reproduce the coupling between the in-plane translation of its
upper and lower surfaces with respect to the in-plane translation of the mid-surface. Obviously, this implies that membrane
locking only appears in curved structures [22]. In this case, this locking manifests itself as parasitic membrane strains when
subject to inextensional bending deformations, leading to increased stiffening of the structure as well, and the locking effect
intensifies as the structure gets thinner.

• Poisson thickness locking occurs when through-the-thickness displacement is approximated linearly in a bending state. The
linear approximation implies that the normal transverse strains get approximated as a constant. At the same time, the in-
plane strains vary linearly in the thickness direction. Normal transverse and in-plane strains are coupled through Poisson’s
ratio. Therefore, locking arises due to the incompatibility of the approximation between the constant normal transverse strain
coupled with in-plane strains which vary linearly in the transverse direction. The locking effect is only proportional to Poisson’s
ratio and is not affected by the thickness of the structure.

• Trapezoidal locking occurs in solid-shell elements when the shell directors defined by the element edges are not parallel [23]. It
creates parasitic normal transverse strains due to the faulty coupling between the in-plane bending and the transverse extension
of the element.

• Volumetric locking occurs when the material is incompressible or approaches incompressibility. The material bulk modulus
increases uncontrollably and, since it scales the volumetric strains, it creates parasitic strains in the normal directions.
Therefore, it affects the membrane in-plane and the normal thickness strains [21].

A vast amount of research has been done with the objective of solving all kinds of numerical locking in the solid-shell context.
he locking effects are mostly due to parasitic strains in a specific direction, and different approaches were focused on treating each
ne of them individually.

One of the most influential approaches was the Assumed Strain (AS) method, first developed by MacNeal in [24] for classical
hell theory problems. It was followed by Assumed Natural Strain (ANS) methods [25]. Another important contribution to the
ubject was introduced by Simo and Hughes in [26] using a variational framework, which led to the Enhanced Assumed Strains
EAS) method [27]. These approaches were eventually adopted for solid-shell elements [28]. Notable developments were done by
linkel et al. [29] using ANS and EAS in linear and finite strain problems, and by Sze et al. using ANS [30,31] to solve linear and
on-linear problems, and using EAS [32] to solve hyperelastic problems. The AS, ANS and EAS approaches have endured through
ime, and can be found in more recent literature. Kim et al. [33] used the ANS method together with a Resultant Force formulation
o solve solid-shell in finite strain problems. Hajlaoui et al. [34] developed a high order solid-shell element based on the EAS to
olve buckling in solid-shell problems, and used ANS in the thickness direction to avoid locking effects. Mostafa et al. [35,36] used
combination of ANS and EAS to deal with all types of numerical locking independently, and solved non-linear problems. Caseiro

t al. [37] extended the ANS approach to NURBS based formulations to alleviate shear and membrane locking effects in linear
nalysis and then extended the approach to non-linear problems [38]. More recently, Huang et al. [39] developed a solid-shell
2

lement using the ANS concept in the unsymmetric finite element method.
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Another common approach is the use of Reduced Integration (RI), first implemented in classical shell theory [40–42]. The method
as found success over the years; however it can lead to spurious zero energy modes, known as hourglassing [43], that need to be
tabilized. This is most commonly approached in the literature through assumed strain methods [22]. In this context, Schwarze
nd Reese used the ANS and EAS approach together with reduced integration and hourglass stabilization to solve linear [44] and
inite strain [45] solid-shell problems. Reese [46] worked in a RI approach based in the EAS concept to implement a hourglass
tabilization to solve large strain shell problems. Pagani et al. [47] used a RI based solid-shell formulation stabilized with ANS and
AS to solve explicit non-linear problems with selective mass scaling to achieve large critical time steps. The reduced integration
pproach is still being developed in the solid-shell framework. Leonetti et al. [48] proposed a model based in a combination of
inear integration in the thickness direction and NURBS interpolation in the mid-plane that has been successfully used in non-linear
roblems. Barfusz et al. [49] used a RI based solid-shell element stabilized with ANS and EAS methods to avoid numerical locking,
nd solved damage plasticity problems with the resulting method.

The Mixed Interpolated Tensorial Components (MITC) method has also proven to be an effective approach to avoid numerical
ocking [50,51]. The earlier contributions of this approach come from Dvokin and Bathe [52] in classical shell elements, and it
as been studied further ever since [53–55]. Important contributions to the subject have been developed in solid-shell elements
y Chapelle et al. [56]. The MITC approach has been one of the major approaches in the solid-shell framework. Sussman and
athe [57] developed a MITC approach in solid-shell problems to avoid numerical locking, using nodal control vectors to describe

arge deformations. Recent publications show prominent results using the MITC approach in three-dimensional shell problems.
inefra [58] solved linear solid-shell problems in curvilinear coordinates using MITC in each local strain component to solve
umerical locking. Rezaiee et al. [59] used the MITC and ANS approaches together with the arc-length method to solve functionally
raded shells in non-linear large deformations problems.

Many other methods have also been employed to solve locking problems, such as the B-bar method. It was first introduced by
ughes in [60] for classic shell theory using linear elements, and it was later developed in solid-shells by Simo et al. [61] using a
ixed formulation for stresses formulated with a volumetric-deviatoric split. There is the family of Koiter asymptotic methods, which
ave been used to solve slender structures for geometrical non-linearities within a mixed displacement–stress approach [62,63].
ybrid-strain and hybrid-stress methods have also been developed for solid-shell elements in the linear [64,65] and non-linear

egimes [66,67]. The family of Smoothed Finite Element Methods (S-FEM) has been proposed as an accurate alternative to the
lassical FEM approach by incorporating some meshfree methods (see [68] for an exhaustive overview). In this context, the node-
moothed (NS-FEM) and edge-smoothed (ES-FEM) formulations have been used to alleviate the shear-locking problem in plates and
hells [69–72].

The present work deals with numerical locking in solid-shell problems introducing additional stresses as new unknowns, thus leading
to a problem whose unknowns are stresses and displacements. The first issue to analyze is how to deal with this mixed problem,
i.e., how to treat the possible compatibility conditions between the interpolation of stresses and displacements. We avoid the need to
satisfy any of such conditions by using a stabilized finite element formulation based on the Variational Multiscale (VMS) framework,
first introduced by Hughes [73,74] and later developed in [75,76]. In particular, this method allows us to use equal interpolation
for stresses and displacements, and has found success in other problems whose mixed formulations involve stresses as variables, for
example in viscoelastic flows [77,78] or mixed formulations in solid mechanics [79,80] (see also [81]).

The second issue to consider is which stresses need to be introduced as unknowns. For that, we need to have the mechanical
meaning of the components of the stress tensor, independently of the global reference system chosen. To this end, we shall write
the equilibrium equations in a curvilinear system associated to the shell, with two tangent orthogonal coordinates and a normal
one. This will allow us to interpret the stress components as shear, twisting, membrane and thickness stresses. Then, a variety of
benchmark cases will determine which of these stresses is required to avoid the different types of numerical locking that can appear.
This systematic study is, to our knowledge, completely new. Let us anticipate that the conclusion of our analysis is that there are
situations in which each of the stress components is necessary to avoid locking.

In this work we will restrict ourselves to linear elasticity, under the infinitesimal strain assumption. However, finite strains and
hyperelastic materials will be considered in Part II. In particular, the approach using displacements and all stress components is
directly extended to the non-linear analysis because, as we shall see, it is the formulation able to deal with all types of locking.
Furthermore, in the nonlinear case it is also necessary to use a stabilized formulation to be able to use equal interpolation for
stresses and displacements.

This paper is organized as follows. First, we describe the geometrical ingredients to write the elasticity equations in curvilinear
coordinates (Section 2) and later we write these equations (to fix notation), both in differential and variational forms (Section 3).
The geometrical approximation of the problem is explained in Section 4, and the finite element approximation in Section 5. The
numerical experimentation is presented in Section 6 and conclusions are drawn in Section 7.

2. Linear elasticity using curvilinear coordinates

This section collects basic results of the theory of elasticity expressed in general curvilinear coordinates (further details can
be found in book by Washizu [82]). Regarding the notation employed, Greek indices will correspond to curvilinear coordinates,
whereas lower case Latin indices to Cartesian coordinates.
3



Finite Elements in Analysis & Design 236 (2024) 104168A. Aguirre et al.

w
a
t

𝑃

T

t

w

T

c

T

c

B

w
c

2

o
D

M

2.1. Geometrical description

Let us consider a system of curvilinear coordinates (𝜃1, 𝜃2, 𝜃3); under the infinitesimal stress assumption, the geometry of the
initial and the deformed configurations will be considered equal. The position vector of any point 𝑃 of curvilinear coordinates
(𝜃1, 𝜃2, 𝜃3) will be given by

𝒙 = 𝒙(𝜃1, 𝜃2, 𝜃3) = 𝑥𝑖𝒆𝑖,

here 𝒆𝑖, 𝑖 = 1, 2, 3, is the 𝑖th vector of the Cartesian basis and 𝑥𝑖 = 𝑥𝑖(𝜃1, 𝜃2, 𝜃3), 𝑖 = 1, 2, 3 are the functions that relate the curvilinear
nd the Cartesian coordinates. Here and below, Einstein’s summation convention is used, with repeated indexes summing from 1
o 3.

Let the notation (⋅) ,𝛼 be the differentiation respect to 𝜃𝛼 , namely (⋅) ,𝛼 = 𝜕 (⋅) ∕𝜕𝜃𝛼 . The covariant base vectors associated to point
are defined as

𝒈𝛼 = 𝜕𝒙
𝜕𝜃𝛼

= 𝒙,𝛼 , 𝛼 = 1, 2, 3. (2.1)

he covariant base vectors allow the definition of the covariant metric tensor 𝑔𝛼𝛽 as

𝑔𝛼𝛽 = 𝒈𝛼 ⋅ 𝒈𝛽 , 𝛼, 𝛽 = 1, 2, 3, (2.2)

he contravariant metric tensor 𝑔𝛼𝛽 being its inverse, i.e.,

𝑔𝛼𝛾𝑔
𝛾𝛽 = 𝛿𝛼𝛽 , (2.3)

here 𝛿𝛼𝛾 is the Kronecker symbol. This allows us to define the contravariant base vectors as

𝒈𝛼 = 𝑔𝛼𝛽𝒈𝛽 . (2.4)

he derivatives of covariant vectors respect to 𝜃𝛼 can be obtained as

𝒈𝛼,𝛽 =
(

𝒙,𝛼
)

,𝛽 =
(

𝒙,𝛽
)

,𝛼 = 𝒈𝛽,𝛼 . (2.5)

Additionally, let 𝛤 𝛾
𝛼𝛽 be the three index Christoffel symbol of second kind, which provide a measure of the curvature of the

oordinate axes through space, defined as

𝛤 𝛾
𝛼𝛽 = 𝒈𝛼,𝛽 ⋅ 𝒈𝛾 = −𝒈𝛾,𝛼 ⋅ 𝒈𝛽 . (2.6)

he Christoffel symbols allow us to write the derivatives of the covariant and contravariant base vectors as:

𝒈𝛼,𝛽 = 𝛤 𝛾
𝛼𝛽𝒈𝛾 , 𝒈𝛼,𝛽 = −𝛤 𝛼

𝛾𝛽𝒈
𝛾 .

Consider next a vector field in space 𝒖
(

𝜃1, 𝜃2, 𝜃3
)

. This can be written both in terms of the covariant components 𝑢𝛼 or
ontravariant components 𝑢𝛼 as

𝒖 = 𝑢𝛼𝒈𝛼 = 𝑢𝛼𝒈𝛼 . (2.7)

y using the definition in Eq. (2.6), the differentiation of 𝒖 respect to 𝜃𝛽 results in

𝒖,𝛽 =
(

𝑢𝛼𝒈𝛼
)

,𝛽 =
(

𝑢𝛼𝒈𝛼
)

,𝛽

= 𝑢𝛼,𝛽𝒈𝛼 + 𝑢𝛼𝒈𝛼,𝛽 = 𝑢𝛼,𝛽𝒈𝛼 + 𝑢𝛼𝒈𝛼,𝛽
= 𝑢𝛼,𝛽𝒈𝛼 + 𝑢𝛼𝛤 𝛾

𝛼𝛽𝒈𝛾 = 𝑢𝛼,𝛽𝒈𝛼 − 𝑢𝛼𝛤
𝛼
𝛾𝛽𝒈

𝛾

= 𝑢𝛼
|𝛽𝒈𝛼 = 𝑢𝛼|𝛽𝒈𝛼 (2.8)

here (⋅)⋅|𝛽 represents the covariant differentiation of the vector component. It can be obtained either for the covariant or
ontravariant components of a vector field, respectively as

𝑢𝛼
|𝛽 = 𝑢𝛼,𝛽 + 𝑢𝛾𝛤 𝛼

𝛾𝛽 , 𝑢𝛼|𝛽 = 𝑢𝛼,𝛽 − 𝑢𝛾𝛤
𝛾
𝛼𝛽 .

.2. Transformation of the stress and the strain tensors

Let us obtain the transformation rule of the stress and the strain tensors between their Cartesian components written in terms
f the Cartesian coordinates

(

𝑥1, 𝑥2, 𝑥3
)

and their curvilinear components written in terms of the curvilinear coordinates (𝜃1, 𝜃2, 𝜃3).
ifferentiation respect to 𝜃𝛼 and 𝑥𝑖, 𝛼, 𝑖 = 1, 2, 3, can be related using the chain rule as

𝜕( )
𝜕𝜃𝛼

=
𝜕( )
𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝜃𝛼
,

𝜕( )
𝜕𝑥𝑖

=
𝜕( )
𝜕𝜃𝛼

𝜕𝜃𝛼

𝜕𝑥𝑖
.

aking use of this and Eq. (2.1) it becomes clear that

𝒈 = 𝜕𝒙 = 𝜕𝒙 𝜕𝑥𝑖 = 𝜕𝑥𝑖 𝒆 , (2.9)
4
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𝒆𝑖 =
𝜕𝒙
𝜕𝑥𝑖

= 𝜕𝒙
𝜕𝜃𝛼

𝜕𝜃𝛼

𝜕𝑥𝑖
= 𝜕𝜃𝛼

𝜕𝑥𝑖
𝒈𝛼 . (2.10)

calar multiplication of Eq. (2.9) by 𝒆𝑖 ≡ 𝒆𝑖 yields

𝜕𝑥𝑖

𝜕𝜃𝛼
= 𝒆𝑖 ⋅ 𝒈𝛼 , (2.11)

nd similarly, scalar multiplication of Eq. (2.10) by 𝒈𝛼 yields
𝜕𝜃𝛼

𝜕𝑥𝑖
= 𝒆𝑖 ⋅ 𝒈𝛼 . (2.12)

For the variables in curvilinear coordinates, consider the displacement vector field 𝒖, the second order stress and strain fields 𝝈
and 𝜺, respectively, and the fourth order elasticity tensor C. Let the variables in the Cartesian basis be represented as ̂(⋅), assumed
to be expressed in terms of the Cartesian coordinates. As detailed in [82], it follows that the transformation laws between Cartesian
and curvilinear coordinates are:

𝜎̂𝑖𝑗 = 𝜕𝑥𝑖

𝜕𝜃𝛼
𝜕𝑥𝑗

𝜕𝜃𝛽
𝜎𝛼𝛽 , (2.13)

𝜀̂𝑖𝑗 =
𝜕𝜃𝛼

𝜕𝑥𝑖
𝜕𝜃𝛽

𝜕𝑥𝑗
𝜀𝛼𝛽 , (2.14)

𝑢̂𝑖 =
𝜕𝜃𝛼

𝜕𝑥𝑖
𝑢𝛼 , (2.15)

Ĉ𝑖𝑗𝑘𝑙 = 𝜕𝑥𝑖

𝜕𝜃𝛼
𝜕𝑥𝑗

𝜕𝜃𝛽
𝜕𝑥𝑘

𝜕𝜃𝛾
𝜕𝑥𝑙

𝜕𝜃𝛿
C𝛼𝛽𝛾𝛿 . (2.16)

he inverse transformation rules are

𝜎𝛼𝛽 = 𝜕𝜃𝛽

𝜕𝑥𝑗
𝜕𝜃𝛼

𝜕𝑥𝑖
𝜎̂𝑖𝑗 , (2.17)

𝜀𝛼𝛽 = 𝜕𝑥𝑗

𝜕𝜃𝛽
𝜕𝑥𝑖

𝜕𝜃𝛼
𝜀̂𝑖𝑗 , (2.18)

𝑢𝛼 = 𝜕𝑥𝑖

𝜕𝜃𝛼
𝑢̂𝑖, (2.19)

C𝛼𝛽𝛾𝛿 = 𝜕𝜃𝛿

𝜕𝑥𝑙
𝜕𝜃𝛾

𝜕𝑥𝑘
𝜕𝜃𝛽

𝜕𝑥𝑗
𝜕𝜃𝛼

𝜕𝑥𝑖
Ĉ𝑖𝑗𝑘𝑙 . (2.20)

e shall come back to some of these transformations later on.
Fig. 1 represents the stress components in both the curvilinear and the Cartesian bases, in this case both seen from the Cartesian

eference system. As usual, this representation is done on an element of solid, now considering that it is thin in one direction,
amely, that of 𝜃3 in curvilinear coordinates (see below). The key idea is that if we consider that the solid is a shell whose mid
urface is parametrized by 𝜃1 and 𝜃2, we can provide of mechanical meaning the stress components in curvilinear coordinates,
ut not in Cartesian coordinates. Indeed, in the situation represented in Fig. 1, 𝜎11 and 𝜎22 are the membrane stresses (the stresses
angent to the shell), 𝜎12 = 𝜎21 are the twisting stresses (the stresses that cause rotation on the planes tangent to the shell), 𝜎13 = 𝜎31,
23 = 𝜎32 are the shear stresses (stresses on the faces of the solid element perpendicular to the shell and pointing in the perpendicular
irection) and 𝜎33 is the transverse stress (the stress on the shell surface and normal to it). This mechanical interpretation is not
ossible in Cartesian coordinates.

. Governing equations

.1. Differential form

Let us write the governing equations for the linear elasticity problem in a frame invariant (intrinsic) form. This will serve us to
ntroduce the notation employed in the finite element approximation of the problem. Consider 𝛺 to be the domain occupied by the
olid in R3 and 𝜕𝛺 its boundary. The static equations of motion, the constitutive equations for stress, and the kinematic equations
or the strain–displacement relationship are written, respectively, as

−∇ ⋅ 𝝈 = 𝜌𝒃 in 𝛺, (3.1)

𝝈 − C ∶ 𝜺 = 𝟎 in 𝛺, (3.2)

𝜺 − ∇𝑠𝒖 = 𝟎 in 𝛺, (3.3)

here 𝜌 is the density, 𝒃 are the body forces per unit of mass, and ∇𝑠𝒖 is the symmetric gradient of the displacement.
Additional notation is necessary to build the formulations below. Let us define, in a general manner, a linear differential operator

, the associated trace operator  that makes the following problem well defined, and a external force vector 𝑭 . Consider 𝑼 to
e the unknown of 𝑛 components of the problem, to be defined for each specific formulation. The solid mechanics problem can be
ritten in an abstract form as the problem of finding 𝑼 ∶ 𝛺 ←←→ R𝑛 such that

𝑼 = 𝑭 in 𝛺, (3.4)
5
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Fig. 1. Notation for the stress components. In curvilinear coordinates, the stresses can be grouped as follows: 𝜎11, 𝜎22 are the membrane stresses; 𝜎12 = 𝜎21 are
the twisting stresses; 𝜎13 = 𝜎31, 𝜎23 = 𝜎32 are the shear stresses; 𝜎33 is the transverse stress. In Cartesian coordinates, this physical interpretation is not possible.

𝑼 = 𝑼̄ on 𝜕𝛺. (3.5)

We will consider 𝑼̄ = 𝟎 for simplicity.
Let us consider first the irreducible form of the solid problem in terms of the displacements, by replacing the strain in Eq. (3.3)

into Eq. (3.2), and replacing the stress into Eq. (3.1). The strong form of the problem reduces to finding the unknown 𝑼 = 𝒖, and
now the linear operator and the external forces vector take the form  = 𝑢 and 𝑭 = 𝑭 𝑢, respectively, where

𝑢𝒖 = −∇ ⋅ C ∶ ∇𝑠𝒖, 𝑭 𝑢 = 𝜌𝒃.

In this case, 𝑛 = 3 and 𝑼 = 𝒖.
As for the mixed form of the problem, the two field displacement–stress approach is formulated by considering Eqs. (3.1)–(3.3)

and replacing the strains from Eqs. (3.3) into Eq. (3.2). The mixed problem reduces to finding the unknown 𝑼 = [𝒖,𝝈], and now
the linear operator and the external forces vector take the form  = 𝜎𝑢 and 𝑭 = 𝑭 𝜎𝑢, respectively, where

𝜎𝑢𝑼 =
[

−∇ ⋅ 𝝈
𝝈 − C ∶ ∇𝑠𝒖

]

, 𝑭 𝜎𝑢 =
[

𝜌𝒃
𝟎

]

,

and [𝒖,𝝈] = 𝒖. The problem can be symmetrized by writing the second equation as C−1 ∶ 𝝈 −∇𝑠𝒖 = 𝟎. In this case, 𝑛 = 3+ 6 = 9 if
the symmetry of the stress tensor is taken into account in the trial and test spaces and imposed strongly, and 𝑛 = 3 + 9 = 12 if it is
not and this symmetry is a consequence of the constitutive law (which will be imposed weakly in the finite element approximation).
In our implementation, we impose the symmetry of 𝝈 strongly.

3.2. Variational form

Consider 𝐻1(𝛺) to be the space of functions in 𝐿2(𝛺) whose derivatives belong to 𝐿2(𝛺). We denote as  = 𝐻1(𝛺)3 the space of
displacements and as  = 𝐿2(𝛺)3×3sym the space of stresses. As said above, the symmetry of the latter can be enforced strongly in the
trial space or weakly through the weak form of the constitutive equation (see below). Let  be the space where the weak problem
is defined, being  =  in the case of the irreducible formulation and  =  ×  in the case of the mixed formulation; the tests
functions are 𝑽 = 𝒗 ∈  and 𝑽 = [𝒗, 𝝉] ∈  , respectively. Let us introduce the bilinear form 𝐵 and the linear form 𝐿 as

𝐵 (𝑽 ,𝑼 ) =

{

(∇𝑠𝒗,C ∶ ∇𝑠𝒖) in the irreducible case,
(∇𝑠𝒗,𝝈) + (𝝉 ,C−1 ∶ 𝝈) − (𝝉 ,∇𝑠𝒖) for the stress–displacement formulation,

𝐿 (𝑽 ) = ⟨𝑽 ,𝑭 ⟩ ,

where (⋅, ⋅) represents the inner product in 𝐿2 (𝛺) and ⟨⋅, ⋅⟩ the integral of the multiplication of two functions in 𝛺. When there are
6

traction boundary conditions, these should appear in the expression of the linear form 𝐿.
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With all the above, the general form of the problem in Eqs. (3.4) and (3.5) can be written in its weak form, which consists of
inding 𝑼 ∈  such that

𝐵 (𝑽 ,𝑼 ) = 𝐿 (𝑽 ) , (3.6)

or all 𝑽 ∈  .

. Geometrical approximation using finite elements

.1. Construction of the local basis

Let us consider the shell represented by a surface 𝛺2D in R3, geometrically expressed by any means. Suppose that we have a
inite element partition ℎ = {𝐾} of 𝛺2D of diameter ℎ, so that 𝛺̄2D =

⋃

𝐾∈ℎ 𝐾. We will not consider the error stemming from
the geometrical approximation of the shell, and thus we will consider this finite element representation as exact. Let 𝐾 ∈ ℎ be an
element domain of the partition, either simplicial or a quadrilateral, and consider the isoparametric mapping

𝝋𝐾 ∶ 𝐾0 ⟶ 𝐾

(𝜉, 𝜂) ↦ (𝑥1, 𝑥2, 𝑥3),

that maps the reference domain 𝐾0 ⊂ R2 to 𝐾 ⊂ R3, (𝜉, 𝜂) being the isoparametric coordinates. Considering a Lagrangian
interpolation, if 𝑛nod is the number of nodes of 𝐾 and 𝑁𝐴(𝜉, 𝜂) are the shape functions on 𝐾0, 𝐴 = 1,… , 𝑛nod, we have that

𝝋𝐾 (𝜉, 𝜂) =
𝑛nod
∑

𝐴=1
𝑁𝐴(𝜉, 𝜂)𝒙𝐴,

where 𝒙𝐴 is the position vector of node 𝐴 in 𝐾, 𝐴 = 1,… , 𝑛nod. The collection of all mappings {𝝋𝐾 , 𝐾 ∈ ℎ} provides a local
parametrization of 𝛺2D.

The vectors tangent to each 𝐾 ∈ ℎ are given by

𝒈∗1,𝐾 =
|

|

|

|

𝜕𝝋𝐾
𝜕𝜉

|

|

|

|

−1 𝜕𝝋𝐾
𝜕𝜉

,
𝜕𝝋𝐾
𝜕𝜉

=
𝑛nod
∑

𝐴=1

𝜕𝑁𝐴

𝜕𝜉
𝒙𝐴,

𝒈∗2,𝐾 =
|

|

|

|

𝜕𝝋𝐾
𝜕𝜂

|

|

|

|

−1 𝜕𝝋𝐾
𝜕𝜂

,
𝜕𝝋𝐾
𝜕𝜂

=
𝑛nod
∑

𝐴=1

𝜕𝑁𝐴

𝜕𝜂
𝒙𝐴.

rom them, we can compute a vector normal to 𝐾 ⊂ 𝛺2D as

𝒈∗3,𝐾 = 𝒈∗1,𝐾 × 𝒈∗2,𝐾 .

ote that |𝒈∗3,𝐾 | = 1 if 𝜉 and 𝜂 are orthogonal coordinates, as it is usually the case; otherwise, we normalize 𝒈∗3,𝐾 . It is important to
emark that this normalization is not necessary, although we will construct the basis vectors to be orthonormal. The implication of
his is that the metric tensor will be the identity; however, we shall consider its expression in the case of arbitrary local basis, for
enerality.

The basis vectors constructed this way, {𝒈∗1,𝐾 , 𝒈
∗
2,𝐾 , 𝒈

∗
3,𝐾}, are discontinuous across elements. To construct a continuous basis we

roceed as follows. First, the vector field 𝒈∗3,𝐾 , 𝐾 ∈ ℎ, is projected onto the space of continuous vector fields using a standard
2(𝛺2D) projection, thus obtaining the nodal vectors 𝒈𝑎3, 𝑎 = 1,… , 𝑛pts, 𝑛pts being the nodal points of ℎ, and, from them

𝒈3(𝑥1, 𝑥2, 𝑥3) = 𝐺−1
3

𝑛pts
∑

𝑎=1
𝑁𝑎(𝑥1, 𝑥2, 𝑥3)𝒈𝑎3, 𝐺3 =

|

|

|

|

|

|

𝑛pts
∑

𝑎=1
𝑁𝑎(𝑥1, 𝑥2, 𝑥3)𝒈𝑎3

|

|

|

|

|

|

,

𝑎 being the global shape function of node 𝑎. Within each element 𝐾 ∈ ℎ, if 𝐴 is the local numbering of the global node 𝑎, we
ave :

𝒈3|𝐾 (𝜉, 𝜂) = 𝐺−1
3,𝐾

𝑛nod
∑

𝐴=1
𝑁𝐴(𝜉, 𝜂)𝒈𝐴3,𝐾 , 𝐺3,𝐾 =

|

|

|

|

|

𝑛nod
∑

𝐴=1
𝑁𝐴(𝜉, 𝜂)𝒈𝐴3,𝐾

|

|

|

|

|

. (4.1)

ig. 2 shows a cut of a surface and the conceptual difference between 𝒈∗3,𝐾 and 𝒈3 when linear elements are used, case in which
∗
3,𝐾 will be constant on each 𝐾 ∈ ℎ.

Once the continuous global vector field 𝒈3 is constructed, we can build a continuous local basis at each point {𝒈1, 𝒈2, 𝒈3} by
efining

𝒈1 = |𝒈3 × 𝒆3|−1𝒈3 × 𝒆3, 𝒈2 = 𝒈3 × 𝒈1, (4.2)

he only exception being when 𝒈3 aligns with 𝒆3, case in which we set 𝒈1 = 𝒆1 and 𝒈2 = 𝒆2 (or changing the sign if 𝒈3 is opposite
to 𝒆3). The covariant basis {𝒈1, 𝒈2, 𝒈3} constructed this way will be such that {𝒈1, 𝒈2} will be approximately tangent to 𝛺2D and
𝒈3 approximately normal. In fact, we can consider the shell defined by {𝒈1, 𝒈2, 𝒈3}. The curvilinear coordinates (𝜃1, 𝜃2, 𝜃3) are then
7

defined as those tangent to {𝒈1, 𝒈2, 𝒈3} at each point.
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Fig. 2. Normal vectors to the shell 𝒈∗3,𝐾 and their smoothing 𝒈3.

Fig. 3. Geometry of the shell: 2D surface (left) and 3D extruded volume (right).

4.2. Extrusion of the shell mid-surface

The domain 𝛺2D (or, in fact, its approximation associated to {𝒈1, 𝒈2, 𝒈3}) will be considered as the mid-surface of the shell. The
solid-shell domain where the calculations will be performed is denoted as 𝛺3D, and it is computed from the extrusion of 𝛺2D in the
normal direction. As we shall see, the construction of 𝛺3D can be done element-wise because of the continuity of 𝒈3.

Suppose that the thickness of the shell is defined by its values at the nodes of ℎ, denoted as 𝑡𝑎, 𝑎 = 1,… 𝑛pts. For each 𝐾 ∈ ℎ,
the thicknesses at the nodes will be 𝑡𝐴𝐾 , 𝐴 being the local number of node 𝑎, and we can construct the thickness function

𝑡𝐾 (𝜉, 𝜂) =
𝑛nod
∑

𝐴=1
𝑁𝐴(𝜉, 𝜂)𝑡𝐴𝐾 .

From the reference element 𝐾0 we can construct the 3D reference element 𝐾3D
0 = 𝐾0 × [−1, 1] and the mapping

𝝍𝐾 ∶ 𝐾3D
0 ⟶ R3

(𝜉, 𝜂, 𝜁 ) ↦ (𝑥1, 𝑥2, 𝑥3) = 𝝋𝐾 (𝜉, 𝜂) + 𝜁 1
2
𝑡𝐾 (𝜉, 𝜂)𝒈3|𝐾 (𝜉, 𝜂). (4.3)

and then set 𝐾3D = 𝝍𝐾 (𝐾3D
0 ), i.e., the image of 𝐾3D

0 through 𝝍𝐾 . The solid domain where the problem is posed is then

𝛺3D =
⋃

𝐾∈ℎ

𝐾3D.

From the continuity of 𝒈3 and the intrinsic continuity of the thickness function, 𝛺3D will be a smooth extrusion of 𝛺2D. This domain,
together with the systems of coordinates and basis introduced so far, are depicted in Fig. 3. In the following, we will consider only
one element across the thickness, but the extension to an arbitrary number of elements is straightforward, simply by fixing a partition
of the thickness 𝑡𝐾 in Eqs. (4.3).

We could now extend the construction of the local basis {𝒈∗1,𝐾 , 𝒈
∗
2,𝐾 , 𝒈

∗
3,𝐾} from 𝐾 to 𝐾3D. In general, the resulting vectors will

depend on the coordinate 𝜁 because of the dependence of 𝑡𝐾 and 𝒈3|𝐾 on (𝜉, 𝜂), which will need to be taken into account when
computing 𝒈∗1,𝐾 and 𝒈∗2,𝐾 (see Eq. (4.3)). However, since we are interested in solids of small thickness, we shall take the basis
{𝒈 , 𝒈 , 𝒈 } as constant across the thickness of the shell.
8
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Table 1
Element discretizations across the surface and through the thickness.

4.3. Interpolation across the thickness

Once the element domains {𝐾3D} have been constructed, we need to define their degrees of freedom and a basis for the finite
element space we wish to construct. As for the original partition {𝐾}, we shall consider continuous Lagrangian interpolations, and
it suffices to define them for the reference element 𝐾0 × [−1, 1]. Precisely, one of the main reasons to use 3D solid elements in the
approximation of shell structures in to take advantage of the through-the-thickness interpolation of the unknowns. For this reason,
it is convenient that the discretization of the mesh is performed considering an independent discretization in the thickness direction.
In other words, the number of elements, the order of interpolation, and the integration rule are set independently from the original
surface mesh.

Let 𝑛𝑠 be the interpolation order of 𝐾 ∈ ℎ and 𝑛𝑙 the interpolation order of the elements in the 𝜁 direction of the reference
element. Let 𝑁𝐴,𝐴′

𝑖 (𝜉, 𝜂, 𝜁 ) be the shape function of a node in 𝐾0 × [−1, 1] that corresponds to node 𝐴 of 𝐾0 and node 𝐴′ of the
discretization of [−1, 1]. The shape functions corresponding to the shell body 𝑁𝐴,𝐴′

𝑖 (𝜉, 𝜂, 𝜁 ) can now be constructed by multiplying
the mid-surface shape functions 𝑁𝐴(𝜉, 𝜂) and the standard one dimensional Lagrangian shape functions 𝑁𝐴′ (𝜁 ) in the isoparametric
space:

𝑁𝐴,𝐴′
(𝜉, 𝜂, 𝜁 ) = 𝑁𝐴 (𝜉, 𝜂)𝑁𝐴′

(𝜁 ) . (4.4)

Possible interpolations of hexahedral elements are shown in Table 1 for 𝑛𝑠 = 1, 2 and 𝑛𝑙 = 1, 2. In the following, the structure of
the shape functions will be assumed and we shall simply write as 𝑁𝐴(𝜉, 𝜂, 𝜁 ) the local shape function of node 𝐴, not necessarily in
𝐾 ∈ ℎ but in 𝐾3D; the number of nodes of 𝐾3D will be again denoted as 𝑛nod. Likewise, at the global level the shape functions
will be written as 𝑁𝑎(𝑥1, 𝑥2, 𝑥3), with 𝑎 running again from 1 to 𝑛pts. The finite element partition resulting from the extrusion of the
finite element partition of the shell surface ℎ = {𝐾} will be denoted as  3D

ℎ = {𝐾3D}.

4.4. Calculation of the metric tensor and the Christoffel symbols

From the previous construction, we have the covariant basis vectors {𝒈1, 𝒈2, 𝒈3}. From Eqs. (4.1) and (4.2) we have these vectors
at each point of each element, i.e., we have 𝒈𝛼|𝐾 (𝜉, 𝜂) using isoparametric coordinates, 𝛼 = 1, 2, 3. In what follows, we will omit the
element label and the dependence on (𝜉, 𝜂) to lighten the notation.

In general, from the covariant basis vectors we may compute at each point the covariant metric tensor 𝑔𝛼𝛽 given by Eq. (2.2),
as well as its contravariant representation 𝑔𝛼𝛽 and, from this, the contravariant basis {𝒈1, 𝒈2, 𝒈3}. However, the basis we have
constructed are orthonormal, and therefore 𝑔𝛼𝛽 = 𝑔𝛼𝛽 = 𝛿𝛼𝛽 and 𝒈𝛼 = 𝒈𝛼 , 𝛼, 𝛽 = 1, 2, 3.

It only remains to compute the derivatives with respect to the curvilinear coordinates given by Eq. (2.5) and, from these, the
Christoffel symbols given by Eq. (2.6). What we may compute from Eqs. (4.1) and (4.2) are the derivatives of {𝒈1, 𝒈2, 𝒈3} with respect
to the isoparametric coordinates (𝜉, 𝜂) and, if the basis is considered variable with respect to 𝜁 , also with respect to this coordinate.
Let us call

∇0𝒈𝛼 =
(

𝜕𝒈𝛼
𝜕𝜉

,
𝜕𝒈𝛼
𝜕𝜂

,
𝜕𝒈𝛼
𝜕𝜁

)

, 𝛼 = 1, 2, 3.

Since the curvilinear coordinates (𝜃1, 𝜃2, 𝜃3) are by construction tangent to {𝒈1, 𝒈2, 𝒈3}, we may now compute 𝒈𝛼,𝛽 as the directional
derivative

𝒈𝛼,𝛽 ≡
𝜕𝒈𝛼
𝜕𝜃𝛽

= 𝒈𝛽 ⋅ ∇0𝒈𝛼 , 𝛼, 𝛽 = 1, 2, 3.

From this expression we can compute the Christoffel symbols using Eq. (2.6). These are needed in the general case. However, we
shall see in the next section that we do not need to compute them if the unknowns of the problem are the Cartesian components of
the displacement (and the stress in either reference system), despite the equilibrium equations are written in curvilinear coordinates.

This completes the geometrical approximation of the solid-shell.
9
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5. Finite element approximation

5.1. Interpolation of displacements and stresses

The approach we will follow is to use the same interpolation for the displacements as for the geometry, which is also used, for
xample, in [58]. Therefore, these displacements will be interpolated as

𝒖ℎ(𝒙) =
𝑛pts
∑

𝑎=1
𝑁𝑎(𝒙)𝑢̂𝑎𝑖 𝒆𝑖 ⟺ 𝑢̂ℎ𝑖(𝒙) =

𝑛pts
∑

𝑎=1
𝑁𝑎(𝒙)𝑢̂𝑎𝑖 , (5.1)

here 𝑢̂𝑎𝑖 is the 𝑖th Cartesian component of the displacement at node 𝑎. Since in the Cartesian basis the covariant and contravariant
components coincide, we do not need to distinguish them. Superscripts for the Cartesian components will refer to nodal values from
now on.

In the finite element implementation, we shall take the Cartesian nodal values 𝑢̂𝑎𝑖 as the unknowns of the problem. Therefore, we
need to relate the curvilinear components of the displacement and their derivatives to these nodal values.

According to the transformation rule for displacements in Eqs. (2.11) and (2.19), the covariant components of displacements in
curvilinear coordinates can be expressed as

𝑢𝛼 = 𝑔𝛼𝑖𝑢̂𝑖 =
𝜕𝑥𝑖
𝜕𝜃𝛼

𝑢̂𝑖, (5.2)

t each point, 𝑔𝛼𝑖 being the 𝑖th component of 𝒈𝛼 (not to be confused with the components of the metric tensor). This also follows
rom 𝒖 = 𝑢𝛽𝒈𝛽 = 𝑢̂𝑖𝒆𝑖 and taking the scalar product with 𝒈𝛼 .

The partial derivative of 𝑢𝛼 with respect to 𝜃𝛽 will be

𝑢𝛼,𝛽 = 𝑔𝛼𝑖𝑢̂𝑖,𝛽 + 𝑔𝛼𝑖,𝛽 𝑢̂𝑖

= 𝑔𝛼𝑖𝑔𝛽𝑗 𝑢̂𝑖,𝑗 + 𝑔𝛾𝑖𝛤
𝛾
𝛼𝛽 𝑢̂𝑖. (5.3)

he chain rule in the form 𝑢̂𝑖,𝛽 = 𝑢̂𝑖,𝑗𝑥
𝑗
,𝛽 = 𝑢̂𝑖,𝑗𝑔𝛽𝑗 has been used in the first term and the definition of the Christoffel symbol in the

econd.
Finally, the covariant derivative of 𝑢𝛼 with respect to 𝜃𝛽 will be

𝑢𝛼|𝛽 = 𝑢𝛼,𝛽 − 𝛤 𝛾
𝛼𝛽𝑢𝛾

= 𝑔𝛼𝑖𝑔𝛽𝑗 𝑢̂𝑖,𝑗 + 𝑔𝛾𝑖𝛤
𝛾
𝛼𝛽 𝑢̂𝑖 − 𝛤 𝛾

𝛼𝛽𝑔𝛾𝑖𝑢̂𝑖

= 𝑔𝛼𝑖𝑔𝛽𝑗 𝑢̂𝑖,𝑗 . (5.4)

Eqs. (5.2)–(5.3)–(5.4) are the relationships we need to relate the curvilinear components of the displacement with the Cartesian
nes. The latter will be interpolated as indicated in Eq. (5.1), thus providing the finite element interpolation for the curvilinear
omponents of the displacement and their derivatives, which will be:

𝑢ℎ𝛼 = 𝑔𝛼𝑖𝑢̂ℎ𝑖,

𝑢ℎ𝛼,𝛽 = 𝑔𝛼𝑖𝑔𝛽𝑗 𝑢̂ℎ𝑖,𝑗 + 𝑔𝛾𝑖𝛤
𝛾
𝛼𝛽 𝑢̂ℎ𝑖,

𝑢ℎ𝛼|𝛽 = 𝑔𝛼𝑖𝑔𝛽𝑗 𝑢̂ℎ𝑖,𝑗 .

t is understood that the basis {𝒈1, 𝒈2, 𝒈3} are also constructed from the finite element approximation, as explained in the previous
ection, although we have not introduced any symbol to distinguish this finite element approximation of the basis functions. It
s observed that the Christoffel symbols are not needed to compute the covariant derivates of the covariant components of the
isplacement. The important expression we shall use is the last one, together with its inverse, which are the discrete counterparts
f (2.14) and (2.18):

𝑢ℎ𝛼|𝛽 = 𝑔𝛼𝑖𝑔𝛽𝑗 𝑢̂ℎ𝑖,𝑗 =
𝜕𝑥𝑖
𝜕𝜃𝛼

𝜕𝑥𝑗
𝜕𝜃𝛽

𝑢̂ℎ𝑖,𝑗 ⟺ 𝑢ℎ𝑖,𝑗 = 𝑔𝛼𝑖 𝑔
𝛽
𝑗 𝑢̂ℎ𝛼|𝛽 = 𝜕𝜃𝛼

𝜕𝑥𝑖
𝜕𝜃𝛽

𝜕𝑥𝑗
𝑢̂ℎ𝛼|𝛽 . (5.5)

In the case of stresses, they are interpolated in Cartesian coordinates as

𝝈ℎ =
𝑛pts
∑

𝑎=1
𝑁𝑎(𝒙)𝜎̂𝑎𝑖𝑗𝒆𝑖 ⊗ 𝒆𝑗 ⟺ 𝜎̂ℎ𝑖𝑗 =

𝑛pts
∑

𝑎=1
𝑁𝑎(𝒙)𝜎̂𝑎𝑖𝑗 , (5.6)

here 𝜎̂𝑎𝑖𝑗 is the 𝑖𝑗th component of the stress at node 𝑎. Now we do not need derivatives of the stresses, but only the expression of
heir curvilinear components in terms of the Cartesian ones. This can be obtained from Eq. (2.17), yielding the discrete counterpart
f Eqs. (2.13) and (2.17):

𝜎ℎ
𝛼𝛽 = 𝑔𝛼𝑖 𝑔

𝛽
𝑗 𝜎̂ℎ𝑖𝑗 =

𝜕𝜃𝛼

𝜕𝑥𝑖
𝜕𝜃𝛽

𝜕𝑥𝑗
𝜎̂ℎ𝑖𝑗 ⟺ 𝜎̂ℎ𝑖𝑗 = 𝑔𝛼𝑖𝑔𝛽𝑗𝜎ℎ

𝛼𝛽 =
𝜕𝑥𝑖
𝜕𝜃𝛼

𝜕𝑥𝑗
𝜕𝜃𝛽

𝜎ℎ
𝛼𝛽 . (5.7)

gain, let us point out that since the curvilinear coordinate system is orthonormal, the covariant basis coincides with the
ontravariant one.
10
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5.2. Galerkin finite element approximation

From the partition  3D
ℎ = {𝐾3D} of the domain 𝛺3D we can approximate problem (3.6) using finite elements in the standard

ay. Let ℎ ⊂  be a conforming finite element space, corresponding either to the irreducible or to the mixed form of the problem.
he Galerkin approximation consists in finding 𝑼ℎ ∈ ℎ such that

𝐵
(

𝑽 ℎ,𝑼ℎ
)

= 𝐿
(

𝑽 ℎ
)

∀ 𝑽 ℎ ∈ ℎ. (5.8)

In the case of the irreducible formulation, this reads:

(∇𝑠𝒗ℎ,C ∶ ∇𝑠𝒖ℎ) = ⟨𝒗ℎ, 𝜌𝒃⟩. (5.9)

his equation and the following are intrinsic, i.e., they do not depend on the coordinate system. In the following subsection we will
onsider the particular cases of Cartesian and curvilinear coordinates.

The standard stability estimate for the irreducible formulation can be obtained simply by taking 𝒗ℎ = 𝒖ℎ in Eq. (5.9), yielding

(∇𝑠𝒖ℎ,C ∶ ∇𝑠𝒖ℎ) = ‖𝒖ℎ‖2𝐸 ≲ ‖𝒖ℎ‖𝐸‖𝜌𝒃‖𝐸′ (5.10)

where ‖ ⋅ ‖𝐸 is the energy norm, ‖ ⋅ ‖𝐸′ its dual and ≲ stands for ≤ up to positive constants. In this case, ‖𝒖ℎ‖𝐸 corresponds
to the discrete internal elastic energy (up to constants). The result ‖𝒖ℎ‖𝐸 ≲ ‖𝜌𝒃‖𝐸′ implies that the irreducible formulation is
numerically stable if the tensor C is positive definite. However, being numerically stable does not guarantee the approximation to
be free of numerical locking. In fact, membrane and shear locking are anticipated when using standard low order 3D elements for
the approximation of thin structures.

On the other hand, the Galerkin form in Eq. (5.8) for the mixed formulation reads:

(∇𝑠𝒗ℎ,𝝈ℎ) = ⟨𝒗ℎ, 𝜌𝒃⟩, (5.11)

−(𝝉ℎ,C−1 ∶ 𝝈ℎ) + (𝝉ℎ,∇𝑠𝒖ℎ) = 𝟎. (5.12)

The standard Galerkin approach to this formulation using continuous interpolations for both displacements and stress fields is not
stable. The stability depends on the compatibility restrictions on the finite element spaces for the displacements ℎ ⊂  and for the
stresses ℎ ⊂  chosen, which have to fulfill the inf-sup condition. The instability due to not satisfying this condition pollutes the
solution in the form of uncontrollable oscillations in the displacement field. The reader can refer to [83] for a detailed explanation
regarding these conditions.

5.3. Stabilized finite element approximation

The idea of stabilized finite element methods is to overcome the instability of the Galerkin approach by modifying the variational
form of the problem through the introduction of consistent terms that allow one to obtain stable solutions independently of the choice
of the interpolation spaces. The stabilization employed in the present work is based on the VMS approach [73–75]. This approach has
been previously discussed in [84] for the linear elastic solid problem and in [85] for solid-shell elements using Cartesian coordinates,
and it is explored further in the present work by taking advantage of the local curvilinear basis which define the tangent and normal
components of the stresses.

The idea of the VMS stabilization employed in this paper consists of adding additional terms to the Galerkin formulation, that
enhance stability without upsetting accuracy. It starts by splitting the space of unknowns as  = ℎ⊕ ′, where ℎ is the component
that can be resolved in the finite element space and  ′ is the remainder, called sub-grid scale (SGS) space. In this manner, the
unknowns are split as 𝑼 = 𝑼ℎ +𝑼 ′, and also the test functions as 𝑽 = 𝑽 ℎ +𝑽 ′. The splitting modifies the original formulation (5.8)
and the problem consists of finding 𝑼ℎ ∈ ℎ and 𝑼 ′ ∈  ′ such that

𝐵
(

𝑽 ℎ,𝑼ℎ
)

+ 𝐵
(

𝑽 ℎ,𝑼 ′) = 𝐿
(

𝑽 ℎ
)

∀ 𝑽 ℎ ∈ ℎ, (5.13)

𝐵
(

𝑽 ′,𝑼ℎ
)

+ 𝐵
(

𝑽 ′,𝑼 ′) = 𝐿
(

𝑽 ′) ∀ 𝑽 ′ ∈  ′, (5.14)

where (5.13) is the finite element equation and (5.14) is the SGS equation. Note that choosing  ′ = {0} yields the Galerkin method,
making the stabilization to be consistent by construction. Incorporating the SGSs in Eqs. (5.13) modifies the original problem in
Eqs. (5.11)–(5.12) as follows:

(∇𝑠𝒗ℎ,𝝈ℎ) + (∇𝑠𝒗ℎ,𝝈′) = ⟨𝒗ℎ, 𝜌𝒃⟩, (5.15)

−(𝝉ℎ,C−1 ∶ 𝝈ℎ) + (𝝉ℎ,∇𝑠𝒖ℎ) − (𝝉ℎ,C−1 ∶ 𝝈′) + (𝝉ℎ,∇𝑠𝒖′) = 𝟎. (5.16)

nder this framework, it only remains to find an approximation of the SGSs. The objective is to express these SGSs in terms of the
inite element variables, thus preserving the initial number of unknowns of the problem. The approximation needed can be achieved
y working on Eq. (5.14), noting that

𝐵
(

𝑽 ′,𝑼 ′) = 𝐿
(

𝑽 ′) − 𝐵
(

𝑽 ′,𝑼ℎ
)

,

= 𝐿
(

𝑽 ′) −
∑

⟨

𝑽 ′,𝑼ℎ
⟩

𝐾 ,
11
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=
∑

𝐾

⟨

𝑽 ′,𝑼ℎ
⟩

𝐾 , (5.17)

here ⟨⋅, ⋅⟩𝐾 is the integral of the product of two functions over an element domain 𝐾 and 𝑼ℎ = 𝑭 − 𝑼ℎ is the finite element
esidual, defined as

𝑼ℎ =
[

𝑢𝑼ℎ
𝜎𝑼ℎ

]

=
[

𝜌𝒃 + ∇ ⋅ 𝝈ℎ
C−1 ∶ 𝝈ℎ − ∇𝑠𝒖ℎ

]

.

n the second step to obtain Eq. (5.17) it has been considered that the SGSs vanish on the element boundaries. This approximation
ill also be used in the following, although it can be relaxed as explained in [86].

The specific details of how to obtain the SGSs can be reviewed in [87]. After some mathematical approximations, the SGSs
′ =

[

𝒖′,𝝈′
]𝑇 can then be taken as

𝑼 ′ ∣𝐾≈ 𝝉𝐾𝑃 ′ (𝑼ℎ
)

∣𝐾 , (5.18)

here 𝑃 ′ is the 𝐿2 projection onto the SGS space  ′ and the matrix of stabilization parameters 𝝉𝐾 , which approximates −1 on
ach element 𝐾, is computed as

𝝉𝐾 =
[

𝜏𝑢𝑰3 𝟎
𝟎 𝜏𝜎𝑰6

]

, 𝜏𝑢 = 𝑐𝑢
ℎ
𝐿0

, 𝜏𝜎 = 𝑐𝜎
𝐿0ℎ
𝐶min

,

where 𝑰3 and 𝑰6 are the identity on vectors and on symmetric second order tensors, respectively, 𝑐𝑢 and 𝑐𝜎 are algorithmic constants,
𝐿0 is a characteristic length of the domain, ℎ is the element size, and 𝐶min is the smallest eigenvalue of C. As it is explained in [84],
the calculation of the stabilization parameters proposed is the one that provides optimal accuracy when equal interpolation is used
for the stresses and the displacements.

The SGS can then be incorporated into (5.13) by taking advantage of the additivity of the integral and the fact that, assuming
𝑼 ′ = 𝟎 on the interelement boundaries:

𝐵
(

𝑽 ,𝑼 ′) =
∑

𝐾

⟨

𝑽 ,𝑼 ′⟩
𝐾=

∑

𝐾

⟨

∗𝑽 ,𝑼 ′⟩
𝐾 , (5.19)

here the superscript ∗ denotes the adjoint of an operator, which comes from the integration by parts of the original operator. In
his manner, using the expression for the SGSs in Eq. (5.18) and the property (5.19) into Eq. (5.13) yields the stabilized formulation

𝐵
(

𝑽 ℎ,𝑼ℎ
)

+
∑

𝐾

⟨

∗𝑽 ℎ, 𝝉𝐾𝑃 ′ (𝑼ℎ
)⟩

𝐾 = 𝐿(𝑽 ℎ). (5.20)

t only remains to choose the space of the SGS, and thus how the projection 𝑃 ′ is approximated.
A typical choice of the SGS space is taking it as the space of finite element residuals, leading to the Algebraic Subgrid Scale

ASGS) formulation. In this case, 𝑃 ′ = 𝐼 , resulting in

𝒖′ = 𝜏𝑢(𝜌𝒃 + ∇ ⋅ 𝝈ℎ), 𝝈′ = 𝜏𝜎
(

C ∶ ∇𝑠𝒖ℎ − 𝝈ℎ
)

.

owever, in this work, the SGS space is considered to be the 𝐿2 orthogonal to the finite element space, so that  = ℎ ⊕ ⟂
ℎ .

ollowing this approach yields the Orthogonal Subgrid Scale (OSGS) formulation, in which 𝑃 ′ = 𝑃⟂
ℎ = 𝐼 − 𝑃ℎ, 𝑃ℎ being the 𝐿2

rojection onto ℎ. Therefore, the SGSs 𝑼 ′ defined in (5.18) are computed as

𝒖′ = 𝜏𝑢𝑃
⟂
ℎ (𝜌𝒃 + ∇ ⋅ 𝝈ℎ) = 𝜏𝑢

[

𝜌𝒃 + ∇ ⋅ 𝝈ℎ − 𝑃ℎ(𝜌𝒃 + ∇ ⋅ 𝝈ℎ)
]

, (5.21)

𝝈′ = 𝜏𝜎𝑃
⟂
ℎ
(

C ∶ ∇𝑠𝒖ℎ
)

= 𝜏𝜎
[

C ∶ ∇𝑠𝒖ℎ − 𝑃ℎ
(

C ∶ ∇𝑠𝒖ℎ
)]

, (5.22)

here the term corresponding to 𝑃⟂
ℎ (𝝈ℎ) vanishes because 𝝈ℎ is in the finite element space and it is being projected onto its

rthogonal counterpart.
Using the SGSs given in (5.21)–(5.22) in Eqs. (5.15)–(5.16) yields

(∇𝑠𝒗ℎ,𝝈ℎ) + 𝜏𝜎 (∇𝑠𝒗ℎ,C ∶ ∇𝑠𝒖ℎ − 𝑃ℎ(C ∶ ∇𝑠𝒖ℎ)) = (𝒗ℎ, 𝜌𝒃), (5.23)

−(𝝉ℎ,C−1 ∶ 𝝈ℎ) + (𝝉ℎ,∇𝑠𝒖ℎ) − 𝜏𝑢(∇ ⋅ 𝝉ℎ,∇ ⋅ 𝝈ℎ − 𝑃ℎ(∇ ⋅ 𝝈ℎ)) = 𝜏𝑢(∇ ⋅ 𝝉ℎ, 𝜌𝒃 − 𝑃ℎ(𝜌𝒃)), (5.24)

where the term 𝜏𝜎 (𝝉ℎ,C−1 ∶ 𝝈′) vanishes due to the orthogonality condition (assuming constant physical properties).

5.4. Finite element formulations in Cartesian and curvilinear coordinates

The equations that need to be solved are Eq. (5.9) in the irreducible formulation and Eqs. (5.23)–(5.24) in the case of the
mixed stabilized formulation. The former is expected to yield locking in the case of thin structures, and it is irrelevant whether it
is solved in Cartesian or curvilinear coordinates, as the degrees of freedom are the three displacement components in either system
of coordinates. We shall solve them in Cartesian coordinates, i.e., we will solve the problem of finding 𝒖̂ℎ ∈ ℎ such that

(𝑣̂ℎ𝑖,𝑗 , Ĉ𝑖𝑗𝑘𝑙 𝑢̂ℎ𝑘,𝑙) = ⟨𝑣̂ℎ𝑖, 𝜌𝑏̂𝑖⟩ ∀𝒗̂ℎ ∈ ℎ. (5.25)

To simplify the writing, we have used the whole displacement gradient instead of its symmetric part; the contraction with the
12
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homogeneous boundary conditions for displacements on the whole boundary; non-homogeneous displacements on part of the
boundary and normal stresses on the complement could be easily accommodated.

Even if we will not used it, Eq. (5.25) can be transformed to curvilinear coordinates using expression (5.5) as
(

𝜕𝜃𝛼

𝜕𝑥𝑖
𝜕𝜃𝛽

𝜕𝑥𝑗
𝑣ℎ𝛼|𝛽 , Ĉ𝑖𝑗𝑘𝑙

𝜕𝜃𝛾

𝜕𝑥𝑘
𝜕𝜃𝛿

𝜕𝑥𝑙
𝑢ℎ𝛾|𝛿

)

= ⟨𝑣ℎ𝛼 , 𝜌𝑏
𝛼
⟩. (5.26)

Let us move now to the mixed stabilized formulation. In our numerical experience, we have found that the parameter 𝜏𝑢 can
often be set to 𝜏𝑢 = 0 and still have a stable and accurate approximation. To simplify the writing, let us consider that this is the
case. Problem (5.23)–(5.24) in Cartesian coordinates consists of finding [𝒖̂ℎ, 𝝈̂ℎ] ∈ ℎ such that

(𝑣̂ℎ𝑖,𝑗 , 𝜎̂ℎ𝑖𝑗 ) + 𝜏𝜎 (𝑣̂ℎ𝑖,𝑗 , Ĉ𝑖𝑗𝑘𝑙 𝑢̂ℎ𝑘,𝑙 − 𝑃ℎ(Ĉ𝑖𝑗𝑘𝑙 𝑢̂ℎ𝑘,𝑙)) = ⟨𝑣̂ℎ𝑖, 𝜌𝑏̂𝑖⟩ ∀𝒗̂ℎ ∈ ℎ, (5.27)

−(𝜏ℎ𝑖𝑗 , Ĉ−1
𝑖𝑗𝑘𝑙𝜎̂ℎ𝑘𝑙) + (𝜏ℎ𝑖𝑗 , 𝑢̂ℎ𝑖,𝑗 ) = 0 ∀𝝉̂ℎ ∈ ℎ. (5.28)

Recall that we are imposing strongly the symmetry of the stresses and the stress test functions.
We can now write problem (5.27)–(5.28) in curvilinear coordinates using the transformation rules (5.5)–(5.7), yielding:

(

𝑣ℎ𝛼|𝛽 , 𝜎
𝛼𝛽
ℎ

)

+ 𝜏𝜎

(

𝜕𝜃𝛼

𝜕𝑥𝑖
𝜕𝜃𝛽

𝜕𝑥𝑗
𝑣ℎ𝛼|𝛽 , Ĉ𝑖𝑗𝑘𝑙

𝜕𝜃𝛾

𝜕𝑥𝑘
𝜕𝜃𝛿

𝜕𝑥𝑙
𝑢ℎ𝛾|𝛿 − 𝑃ℎ

[

Ĉ𝑖𝑗𝑘𝑙
𝜕𝜃𝛾

𝜕𝑥𝑘
𝜕𝜃𝛿

𝜕𝑥𝑙
𝑢ℎ𝛾|𝛿

]

)

= ⟨𝑣ℎ𝛼 , 𝜌𝑏
𝛼
⟩,

−
(

𝜕𝑥𝑖
𝜕𝜃𝛼

𝜕𝑥𝑗
𝜕𝜃𝛽

𝜏𝛼𝛽ℎ , Ĉ−1
𝑖𝑗𝑘𝑙

𝜕𝑥𝑘
𝜕𝜃𝛾

𝜕𝑥𝑙
𝜕𝜃𝛿

𝜎𝛾𝛿ℎ

)

+
(

𝜏𝛼𝛽ℎ , 𝑢ℎ𝛼|𝛽
)

= 0.

Finally, we can consider a hybrid approach, using displacements in Cartesian coordinates and stresses in curvilinear coordinates.
he convenience of this approach will be clear in the following subsection. Using again the transformation rules (5.5)–(5.7), we
btain:

(

𝑣̂ℎ𝑖,𝑗 ,
𝜕𝑥𝑖
𝜕𝜃𝛼

𝜕𝑥𝑗
𝜕𝜃𝛽

𝜎𝛼𝛽ℎ

)

+ 𝜏𝜎
(

𝑣̂ℎ𝑖,𝑗 , Ĉ𝑖𝑗𝑘𝑙 𝑢̂ℎ𝑘,𝑙 − 𝑃ℎ(Ĉ𝑖𝑗𝑘𝑙 𝑢̂ℎ𝑘,𝑙)
)

= ⟨𝑣̂ℎ𝑖 , 𝜌𝑏̂𝑖⟩, (5.29)

−
(

𝜕𝑥𝑖
𝜕𝜃𝛼

𝜕𝑥𝑗
𝜕𝜃𝛽

𝜏𝛼𝛽ℎ , Ĉ−1
𝑖𝑗𝑘𝑙

𝜕𝑥𝑘
𝜕𝜃𝛾

𝜕𝑥𝑙
𝜕𝜃𝛿

𝜎𝛾𝛿ℎ

)

+
(

𝜕𝑥𝑖
𝜕𝜃𝛼

𝜕𝑥𝑗
𝜕𝜃𝛽

𝜏𝛼𝛽ℎ , 𝑢ℎ𝑖,𝑗

)

= 0. (5.30)

et us point out that at the continuous level 𝜕𝑥𝑖
𝜕𝜃𝛼 = 𝑔𝛼𝑖, but in fact vectors 𝒈𝛼 , 𝛼 = 1, 2, 3, are computed as described in Section 4.1.

.5. Deactivation of stress degrees of freedom

The convenience of Eqs. (5.29)–(5.30) relies on the fact that, on the one hand, displacements are approximated in Cartesian
oordinates, easier to handle than the curvilinear ones, and on the other hand stresses are expressed in curvilinear coordinates,
hus having a mechanical meaning. In these equations, all the stress components are considered independent variables. However, to
tudy which stresses need to be interpolated independently to avoid locking, we may consider a switch between their independent
nterpolation and their expression in terms of the (Cartesian) displacements. This switch can be constructed by redefining the stresses
s

𝜎𝛼𝛽ℎ ← 𝜒𝛼𝛽𝜎𝛼𝛽ℎ + (1 − 𝜒𝛼𝛽 ) 𝜕𝜃
𝛼

𝜕𝑥𝑖
𝜕𝜃𝛽

𝜕𝑥𝑗
Ĉ𝑖𝑗𝑘𝑙 𝑢̂ℎ𝑘,𝑙 (no sum on 𝛼, 𝛽), (5.31)

here 𝜒𝛼𝛽 = 1 indicates that the stress 𝜎𝛼𝛽ℎ is an independent unknown, whereas if 𝜒𝛼𝛽 = 0 this stress is computed in terms of the
isplacement, and likewise for the stress test function. In this last case, the corresponding equation 𝛼𝛽 in (5.30) is simply deleted.
ote that if 𝜒𝛼𝛽 = 0 for all 𝛼 and 𝛽, Eq. (5.29) with 𝜏𝜎 = 0 reduces to Eq. (5.25) and Eq. (5.30) becomes 0 = 0.

Eq. (5.31) provides a mechanism for activating or deactivating the stress components as independent variables that will be
xplored in the numerical examples presented next.

. Numerical results

It is known that all types of numerical locking appear in solid-shell elements when specific conditions are met. This issue has
een proven to be solved by using the stabilized mixed formulation of the VMS type [85]. In this context, numerical locking is
olved by using a mixed formulation where the stresses are interpolated as unknowns and are stabilized to circumvent the inf-sup
ondition. The shear locking problems are solved because the zero shear strain condition can be properly represented by the shear
tresses. On the other hand, membrane locking is solved by obtaining control over the parasitic strains by formulating properly scaled
embrane strains. Similarly, trapezoidal locking is solved by eliminating the parasitic transverse normal strains by formulating a
roperly scaled strain in that direction. However, identifying when is it convenient to interpolate each component of the stress tensor
emains to be examined in depth. Reducing the number of unknowns to be solved can be fruitful to optimize the computational
esources. To properly examine this possibility, the logical step is to set a list of benchmark problems and solve them interpolating
s unknowns only part of the stress tensor. In this manner, the influence of each of the stresses can be described independently,
nd the combinations that can maintain the accuracy of the solution can be found. In the context of plate and shell structures,
he stresses can be classified into four groups depending on the direction they act: membrane stresses, transverse stress, twisting
13
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Fig. 4. Clamped circular plate: geometry and boundary conditions (left) and deformed configuration (right).

stresses, and shear stresses (see Fig. 1). Therefore the stresses are chosen considering this grouping instead of independently. Let us
stress again that curvilinear coordinates are needed in the case of shells to classify the stresses.

In the following, some benchmark cases are solved to describe the numerical response of thin structures with respect to the
irreducible and mixed formulations. For comparison purposes, the mixed formulation is tested using the OSGS stabilization approach.
The initial cases are flat plate benchmark problems, serving as a starting point due to their simplicity. Afterward, shell benchmark
problems are solved considering the inherent complexity of curved structures. The importance of shell cases lies in the variety of
mechanical responses they present when subject to different types of loads and boundary conditions. Additionally, the study takes
into account the order of interpolation across the shell surface 𝑛𝑠 and through the thickness 𝑛𝑙, as well as the number of elements
used in the thickness direction 𝑛elem, which has proven to be an important factor in the solid-shell context when dealing with Poisson
thickness locking [88].

The physical parameters used are taken from the references. Often, some unphysical values are used and also unphysical results
are obtained. Nevertheless, we prefer to keep these values to compare our results with those published in the literature. No unit
system is specified, understanding that all units used are consistent.

6.1. Analysis of plates

In this section, the performance of the stabilized mixed and the irreducible formulations presented in Section 5.2–5.3 are
compared in two plate benchmark cases. The first case is the clamped circular plate under a uniformly distributed transverse load.
Due to the symmetry of the geometry and the applied load, this case reduces to a one-dimensional problem, making it one of the
simplest possible cases to be solved. The problem is designed in the classical manner found in the literature [32,89,90], by only
modeling a quarter of the plate and dividing the domain into three patches with a structured mesh of bilinear elements in each, as
described in Fig. 4. The radius of the plate is 𝑅 = 5 and the thickness is 𝑡 = 0.1, resulting in a slenderness ratio of 2𝑅∕𝑡 = 100. The
load is set to 𝑞 = −1 per unit of surface across the entire surface. The material properties are 𝐸 = 10.92 for Young’s modulus and
𝜈 = 0.3 for the Poisson number. The results are tracked at the center of the plate where the maximum deflection is 9778.1.

The second case is the clamped square plate under uniform distributed transverse load, a classical benchmark problem found
in the literature [89]. This case is similar to the previous one; however, it does not reduce to a one-dimensional problem. Due to
symmetry, only a quarter of the plate is modeled. Geometry and boundary conditions are shown in Fig. 5. The square has sides of
length 𝐿 = 2 and the thickness is 𝑡 = 0.01, which yields a slenderness ratio of 𝐿∕𝑡 = 200. The load is set to 𝑞 = −1 per unit of surface,
across the entire surface. The material properties are 𝐸 = 17.472 ⋅ 106 for Young’s modulus and 𝜈 = 0.3 for the Poisson number.
Results are tracked at the center of the plate where the maximum deflection is 1.26.

Computations are first performed using the irreducible formulation to evaluate its capability to represent the bending state
concerning numerical locking. Results for the circular and square plates are plotted in Fig. 6, solved using different combinations
of 𝑛𝑠, 𝑛𝑙, and 𝑛elem. As usual, relative displacement refers to the quotient between the reference solution and the solution we have
computed. The membrane and shear locking behavior is present in the cases of linear interpolation across the surface and they seem
to disappear when the order is increased to quadratic. On the other hand, thickness locking is present when computed using linear
through-the-thickness interpolation; therefore, a better description of the thickness strain is required. Using more linear elements
in the transverse direction seems to slowly mitigate the locking behavior, but it can be solved immediately by using quadratic
interpolation even with a single thickness element.
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Fig. 5. Clamped square plate: geometry and boundary conditions (left) and deformed configuration (right).

Fig. 6. Irreducible formulation convergence for 1 and 2 elements through the thickness using linear and quadratic interpolations: circular plate (left) and square
plate (right).

This misbehavior is examined further, considering that increasing the order of interpolation in the thickness direction allows for
proper convergence. Fig. 7 shows convergence curves of cases using quadratic interpolation across the surface and up to 6 linear
elements in the thickness direction. Results show that by adding more elements in the transverse direction yields little improvement
in convergence. It becomes more clear that using a quadratic interpolation in the transverse direction yields better convergence
and uses fewer resources compared to the option of adding more elements. These tests are useful to prove that capturing the
through-the-thickness behavior is essential to have a proper approximation of the physical problem.

The same cases are solved using the stabilized mixed formulation. The interpolation order across the surface is set to 𝑛𝑠 = 1,
because the stabilized formulation deals with parasitic strains even when using linear elements. Therefore it should be free of
membrane, shear and trapezoidal locking effects. The discretization through the thickness consists of 𝑛elem = {1, 2} elements,
and interpolation orders of 𝑛𝑙 = {1, 2}. Results are plotted in Fig. 8. The stabilized formulation is effective in dealing with
numerical locking, except for the thickness locking. Unlike the second order irreducible approximation that needs quadratic
transverse interpolation, thickness locking can be solved by using the stabilized formulation and either two elements or set quadratic
interpolation through the thickness.

The mechanical response of the plate problems are now checked using the mixed formulation and deactivating some of the
stress degrees of freedom. However, it is tested considering that using a single linear through-the-thickness element yields thickness
locking solutions. Therefore, computations are focused on either two elements or quadratic interpolations. Results are shown in
15
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Fig. 7. Irreducible formulation convergence curves for increasing number of linear elements through the thickness: circular plate (left) and square plate (right).

Fig. 8. Stabilized formulation convergence: circular plate (left) and square plate (right).

Fig. 9. Circular plate: Stress deactivation convergence curves using 𝑛nelem = 2 (left) and 𝑛𝑙 = 2 (right).

Figs. 9–10, where they are compared to the full mixed formulation, and to the irreducible formulation with quadratic interpolation
across the surface to avoid shear and membrane locking.

Results confirm that the shear stress group fulfills the role of solving the shear locking in the case of plates. This result is expected
and agrees with the Reissner–Mindlin plate theory, which is handled by controlling the shear strain terms [90]. Apart of the shear
stress group, all other stress groups should not be necessary. However, when deactivating the thickness stress 𝜎𝑧 in the 𝑛nelem = 2
approximation, it becomes clear that it is affected by thickness locking, not as in the case of 𝑛 = 2. Therefore, the stabilization in
16

𝑙



Finite Elements in Analysis & Design 236 (2024) 104168A. Aguirre et al.
Fig. 10. Square plate: Stress deactivation convergence curves using 𝑛nelem = 2 (left) and 𝑛𝑙 = 2 (right).

the thickness direction must be activated to be effective in dealing with thickness locking. It has been confirmed that in the case
of plates, the shear and thickness stresses are the only groups that matter to obtain locking-free solutions. Consequently, the total
number of degrees of freedom can be reduced from 9 to 6 per node if using 𝑛nelem = 2 (three displacements, two shear stresses and
the transverse stress) or from 9 to 5 if using 𝑛𝑙 = 2 (three displacements and two shear stresses). This is valid for plate structures,
which do not suffer membrane or trapezoidal locking. To have a better understanding of the general behavior of thin structures, it
is necessary to move from flat plates to curved shells.

6.2. Analysis of shells

To evaluate the mechanical response of shells it is necessary to consider curved structures, as well as specific loads that make
the problem to be membrane or bending dominated. This section presents the mechanical analysis of shell structures using the
irreducible and the stabilized mixed formulation. It has been proved in Section 6.1 that thickness locking can be avoided either by
increasing the order of interpolation or by increasing the number of elements in the thickness direction.

In the case of plates, it has also been shown in Section 6.1 that the irreducible formulation suffers numerical locking when
using linear interpolations across the surface and thickness directions. Because of that, computations are mainly performed using
full quadratic interpolations. Nevertheless, some approximations are computed using a single linear element through the thickness
to illustrate the effects of thickness locking effects.

Shell elements are usually tested using a set of tests specifically designed to evaluate the capabilities of elements to have a
good performance. The tests considered in this work are taken from the literature [91,92], and consist in subjecting shells to either
inextensional bending, membrane stresses or rigid body motions. The most commonly used tests are the following:

• The Scordelis-Lo roof and the twisted beam problems are designed to evaluate the capabilities to solve membrane strain states,
whereas inextensional bending is not relevant.

• The hemispherical shell problem is used to evaluate inextensional bending modes with little membrane strain and also check
if the element can reproduce rigid body rotations with respect to the shell surface normals.

• The pinched cylinder problem is a test that subjects the element to a high degree of inextensional bending modes as well as
membrane strains.

In the examples below, the performance of the stabilized mixed formulation is compared with respect to the irreducible
formulation. The tests are performed using different values of 𝑛𝑠, 𝑛𝑙 and 𝑛elem for the interpolations. Subsequently, the same tests
are performed for the mixed formulation while deactivating the membrane, shear, twisting, and thickness stresses. In that manner,
the role of each one of the stresses in the stabilized formulation is put to test, and the implications of loading types and boundary
conditions of each case are evaluated.

6.2.1. Scordelis-Lo roof
The problem consists of a single curvature cylindrical panel supported by rigid diaphragms at both ends and loaded vertically.

Due to the symmetry of the problem, only a quarter of the shell is modeled using proper symmetry boundary conditions. The length
of the roof is 𝐿 = 50, the radius is 𝑅 = 25, and the thickness is 𝑡 = 0.25, which correspond to a slenderness ratio of 𝐿∕𝑡 = 200.
The loading is set to 𝑞 = −90 per unit of surface across the upper surface. The geometry and boundary conditions are illustrated in

8
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Fig. 11. The material properties are 𝐸 = 4.32 ⋅ 10 for Young’s modulus and 𝜈 = 0 for Poisson’s ratio. The solution is tracked at the



Finite Elements in Analysis & Design 236 (2024) 104168A. Aguirre et al.
Fig. 11. Scordelis-Lo roof: geometry and boundary conditions (left) and deformed configuration (right).

Fig. 12. Scordelis-Lo roof: convergence curves using irreducible and mixed formulations.

mid side of the free edge, whose vertical displacement is between 0.3024 and 0.3086 according to the different authors [85,93,94];
however, in the present work the reference displacement is taken to be 0.3037.

Results for the irreducible and the mixed formulation are shown in Fig. 12, where convergence ratios of the relative displacements
with respect to the number of elements are plotted. Compared to flat plate examples, which are affected only by shear and thickness
locking, the present example is a curved structure and is affected by membrane and trapezoidal locking. As expected, using quadratic
interpolation across the surface yields locking-free results. However, unlike the results found in the plate examples of Section 6.1,
this case does not present thickness locking due to the fact that it depends only on Poisson’s ratio. This proves to be a good example
to check that thickness locking does not depend on the formulation or the through-the-thickness interpolation choice, and since
𝜈 = 0, it is natural that thickness locking disappears. Still, results prove that curvature adds an important difficulty for the problem
to be solved properly.

Let us now deactivate strain groups in the mixed formulation and plot convergence curves as shown in Fig. 13. The notation
used in this and subsequent figures is as follows: 𝑆𝑧 stands for the thickness stress, 𝑆𝑥𝑦 for the twisting stress, 𝑆𝑥 and 𝑆𝑦 for the
membrane stresses and 𝑆𝑥𝑧 and 𝑆𝑦𝑧 for the membrane stresses, even if these stress components correspond to the local basis and not
to the Cartesian one. In this case, shear stresses are needed to overcome shear locking, while normal thickness stress is necessary
to overcome trapezoidal locking. Curiously, even though the Scordelis-Lo roof is a case to test membrane strain states, deactivating
membrane stresses has no important effects in the convergence of the solution.
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Fig. 13. Scordelis-Lo roof: Stress deactivation convergence curves using 𝑛nelem = 2 (left) and 𝑛𝑙 = 2 (right).

Fig. 14. Twisted beam: geometry and boundary conditions (left) and deformed configuration (right).

6.2.2. Twisted beam
This problem was initially proposed in [91] to test the wrapping effect of elements. It consists in a cantilever twisted beam

with a point load at the free end, which can be directed either in or out of the plane. The geometry and boundary conditions are
illustrated in Fig. 14. The length of the beam is 𝐿 = 12, the width is 𝑊 = 1.1 and the twist is 90◦. This test is usually performed
using a moderate thickness of 𝑡 = 0.32; however, in the present work it is set to 𝑡 = 0.0032, which gives a slenderness ratio of
𝐿∕𝑡 = 3750, to have even greater locking effects. The load 𝑃 = 1 is set outwards of the plane. As for the materials, Young’s modulus
is 𝐸 = 29 ⋅ 106 and Poisson’s ratio is 𝜈 = 0.22. The mesh is set using 8 elements along the width and increasing numbers of elements
along the length. The solution is tracked at the center of the free end for the out-of-plane case, which has a horizontal displacement
of 0.001294.

Fig. 15 shows the convergence curves of the relative displacement with respect to the number of elements using the irreducible
and mixed formulations. Results show that the irreducible formulation can deal with numerical locking when computing using
quadratic interpolation across the surface and through the thickness, but is affected by thickness locking when using linear
interpolation in the transverse direction. Due to the small thickness of the shell, the locking effects are greatly amplified, as it
occurs when using linear interpolations across the surface. On the other hand, the mixed formulation is free of shear, membrane
and trapezoidal locking. Results clearly show that thickness locking can be overcome either by increasing the order of interpolation
or the number of elements in the thickness direction.

Even though both the twisted beam and Scordelis-Lo roof problems are membrane-dominated cases, they present different
mechanical responses concerning stresses. When deactivating different stress groups, almost all stresses have to be interpolated
to obtain proper convergence and avoid numerical locking, as shown in the convergence curves in Fig. 16. In this case, deactivating
shear or twisting stresses yields locking of the solution. This is expected, considering that the problem undergoes strong shear
locking effects due to the high slenderness ratio, even though it is a membrane-dominated case. This problem also undergoes a high
degree of element twisting, so it expected to need twisting stresses. Being a membrane-dominated case, it is natural that deactivating
membrane stresses results in membrane locking. However, convergence curves show that membrane locking effects are much less
severe compared with shear locking effects. In the case of trapezoidal locking, deactivating the thickness stress seems to have little
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Fig. 15. Twisted beam: convergence curves using irreducible and mixed formulations.

Fig. 16. Twisted beam: Stress deactivation convergence curves using 𝑛nelem = 2 (left) and 𝑛𝑙 = 2 (right).

impact on the solution, and convergence is similar to the irreducible formulation. On the other hand, thickness locking effects are
mild; this becomes clear when comparing the solutions with 𝑛nelem = 2 with 𝑛𝑙 = 2, which are almost identical.

6.2.3. Hemispherical shell
This test is one step forward more challenging than the previous one because it tests both membrane and bending responses. It

consists of a double curvature shell with a 18◦ hole, subject to point loads directed inwards and outwards of the surface. Due to the
symmetry of the problem, only a quarter of the domain is modeled by using proper symmetry boundary conditions, as detailed in
Fig. 17. The radius of the shell is 𝑅 = 10, and the thickness is 𝑡 = 0.04, which yields a slenderness ratio of 0.5𝑅𝜋∕𝑡 = 392. The loads
are set to 𝑃 = 2 each. The material properties are 𝐸 = 6.825 ⋅ 107 for Young’s modulus and 𝜈 = 0.3 for Poisson’s ratio. Results are
tracked at the points where forces are applied, where the normal displacements are 0.0940 according to the literature [91].

Convergence curves for the irreducible and mixed formulations are shown in Fig. 18. Results show that thickness locking effects
are almost negligible in all cases even though the Poisson ratio is relatively high. The stabilized mixed and the irreducible quadratic
formulations are free of numerical locking independently of the interpolation chosen in the thickness direction. It appears that even
though the problem is mostly bending-dominated, locking conditions are not strong enough to need a richer interpolation through
20
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Fig. 17. Hemispherical shell: geometry and boundary conditions (left) and deformed configuration (right).

Fig. 18. Hemispherical shell: convergence curves using irreducible and mixed formulations.

The convergence curves obtained when deactivating stress tensor components are plotted in Fig. 19. The curves behave in the
same manner using either two elements or quadratic interpolation through the thickness. Results suggest that in this case trapezoidal
locking is less relevant compared to shear and membrane locking, since the locking effect is milder when deactivating the thickness
stress and stronger when deactivating the rest of the stresses. Even though the hemispherical shell problem is not designed to test
element twisting, twisting stress appears to be necessary to capture the mechanical behavior of the shell.

6.2.4. Pinched cylinder
This problem is the most demanding of the shell tests considered because it is subject to a high degree of inextensional bending.

The test consists of a cylinder supported with one rigid diaphragm at each end, loaded by two radial forces at the opposite sides
of the middle of the length. Because of the symmetry of the problem, only the eighth part of the cylinder is modeled using proper
symmetry boundary conditions. The geometry and boundary conditions are detailed in Fig. 20. The geometry of the cylinder is set
using a length of 𝐿 = 600, a radius of 𝑅 = 300, and a thickness of 𝑡 = 3. Therefore, the ratios of length and radius with respect to
the thickness are 𝐿∕𝑡 = 200 and 𝑅∕𝑡 = 100, respectively. The material properties are 𝐸 = 3 ⋅ 106 for Young’s modulus and 𝜈 = 0.3 for
Poisson’s ratio. The loads are 𝑃 = 1 each. The solution is tracked at the same point where the forces are applied, where the vertical
displacement is 1.8384 ⋅ 105.
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Fig. 19. Hemispherical shell: Stress deactivation convergence curves using 𝑛nelem = 2 (left) and 𝑛𝑙 = 2 (right).

Fig. 20. Pinched cylinder: geometry and boundary conditions (left) and deformed configuration (right).

The problem is solved for the irreducible and mixed formulations, whose convergence curves are plotted in Fig. 21. The thickness
locking effects are stronger in this case compared with the rest of the tests. When using the irreducible formulation it becomes
mandatory to use quadratic interpolation in the thickness direction, but with the mixed formulation this can also be overcome by
using two elements in the thickness direction. With respect to the other types of locking, the mixed formulation is able to deal with
them using only linear elements.

The convergence curves obtained by deactivating stress components are shown in Fig. 22. In this case, only the twisting stress can
be turned off with no apparent locking effects. Results show that membrane, shear and trapezoidal locking are of similar intensity
since the curves obtained by neglecting the membrane, shear and thickness components of the stress, respectively, converge at a
similar rate.

6.3. Result summary

The interpolation requirements and the mechanical response for plates and shells have been analyzed in Sections 6.1 and 6.2.
Results show a variety of interpolation requirements to deal with numerical locking. In the irreducible formulation case, all tests
have in common the need of using quadratic interpolation across the surface to deal with membrane, shear and trapezoidal locking,
and quadratic interpolation in the thickness direction to deal with thickness locking. On the contrary, the mixed formulation allows
to use linear elements in all directions, but it requires at least two elements in the thickness direction to deal with thickness locking.
From the results it becomes clear that the bending-dominated problems are the most demanding cases in terms of interpolation, and
some membrane-dominated problems can be solved using a single linear element in the thickness direction.
22



Finite Elements in Analysis & Design 236 (2024) 104168A. Aguirre et al.
Fig. 21. Pinched cylinder: convergence curves using irreducible and mixed formulations.

Fig. 22. Pinched cylinder: Stress deactivation convergence curves using 𝑛nelem = 2 (left) and 𝑛𝑙 = 2 (right).

The stress requirements found for the mixed formulation in all numerical examples are summarized in Table 2. The type of
locking and its intensity depend strongly on whether or not the structure is curved as well as on the bending state. Results are clear
on the fact that shear locking is always present in thin structures, even in membrane-dominated states. From the results obtained,
it becomes clear that curvature dramatically increases the complexity of thin structure problems. Moreover, this confirms that all
stress components are required for a robust shell mixed formulation, since all of them are important in certain scenarios.

6.4. Performance assessment

Now that it has been verified that the mixed formulation performs optimally when using the entire stress tensor, it only remains to
check the performance of the stabilized approach we propose in comparison to other commonly used approaches. For this purpose,
we have selected some well known references in the subject as well as some other methods that can be found in the literature,
detailed in Table 3. The comparisons are performed in the four shell cases presented previously, using the OSGS stabilization
approach. We also compare the convergence curves of relative displacements as presented previously in each case; these are
illustrated in Fig. 23. Results show convergence curves in agreement with those presented in the references. It is observed that
our formulation is the best in one of the four cases. Nevertheless, its strength and importance relies on its generality, as it can be
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Table 2
Stress tensor requirements for each benchmark test, required (×) and not-required (−).
Case Curvature Mechanical

response
Slenderness
ratio

Membrane
𝜎𝑥 , 𝜎𝑦

Twisting
𝜎𝑥𝑦

Thickness
𝜎𝑧

Shear
𝜎𝑥𝑧 , 𝜎𝑦𝑧

Circular
plate

No Bending 100 – − – ×

Square
plate

No Bending 200 – − – ×

Scordelis-Lo
roof

Single Membrane 200 – − × ×

Twisted
beam

Double Membrane 3750 × × – ×

Hemispherical
shell

Double Membrane
>Bending

392 × × × ×

Pinched
cylinder

Single Bending
>Membrane

200 × – × ×

Table 3
Reference solutions.
Reference Year Abbreviation Description

[8] 1997 MITC8 8-node serendipity continuum-based shell with ANS
[52] 1984 MITC4 4-node serendipity continuum-based shell with ANS
[95] 2008 MIST2 4-node MITC4 extended with a smoothing cell for membrane

and bending stiffness
[37] 2014 H2ANS ANS extended to NURBS Solid-shell element
[72] 2015 RH8s-1

RH8s-2
RH8s-4

Smoothed Finite Element Method (SFEM) Solid-shell element
with ANS for transverse and trapezoidal locking. RH8s-X
stands
for: Resultant Hexahedra Eight nodes Smoothed with X cells

[36] 2016 ANS-EAS-CR ANS and EAS incorporated for different components of a
Solid-shell element using a Corrotational kinematic
description

[44] 2009 EAS-ANS-RI EAS to deal with volumetric and Poisson locking, ANS for
thickness and shear locking, and RI for hourglass
stabilization
for Solid-shell element

[30] 2000 ANS𝛾𝜖-HS Hybrid-Stress formulation of Solid-shell element with ANS
for
shear and trapezoidal locking

[96] 2020 SBFEM Scaled Boundary Finite Element for cubic and quadratic shell

interpolations and through-the-thickness analytical integration
[97] 2018 IGA-RM Isogremetric analysis Reissner–Mindlin continuum-based shell

interpolated with cubic Lagrange polynomials (PL3) and
quadratic or quintic NURBS order (PN2-PN5)

used with any element shape (triangle or quad on the mid-surface) and any interpolation order. In this sense, the finite element
interpolation is independent of the formulation in our approach, contrary to the formulations listed in Table 3.

7. Conclusions

The main purpose of this work is to study numerical locking in thin structures modeled by solid-shell elements using a mixed
tabilized displacement–stress formulation. The study focuses on comprehending the locking mechanism by isolating the components
f the stress field with respect to the local directors. To this end, the formulation is posed using curvilinear coordinates, and the
omponents of the stress field can be grouped with respect to the direction they act: membrane, shear, twisting and thickness
tresses. Additionally, an algorithm to independently activate or deactivate the components of the stress field has been implemented,
llowing to solve numerical examples by interpolating only part of the stress tensor. A set of benchmark problems have been solved
y interpolating the entire stress tensor and deactivating a single stress group at a time. Convergence curves have been plotted
n order to characterize the mechanical response of the structure with respect to numerical locking. Results show which specific
tress groups have to be interpolated in curved structures in order to circumvent numerical locking; these groups depend on the
eometry, type of curvature, boundary conditions and type of load. Flat structures are easier to analyze: they suffer shear locking
hen subject to transverse loads, and they are also affected by thickness locking if the through-the-thickness interpolation is not rich
nough to capture the behavior of the solution. As a result of the present investigation, it has been proven that a robust stabilized
24

ixed formulation that can properly handle all types of mechanical behaviors of curved shells requires interpolating all the stresses



Finite Elements in Analysis & Design 236 (2024) 104168A. Aguirre et al.
Fig. 23. Performance solutions of mixed 𝜎 − 𝑢 stabilized OSGS formulation respect to reference solutions.

and having either a minimum of two elements or quadratic interpolation through the thickness. Obviously, if all components of the
stress tensor are interpolated, there is no need to use curvilinear coordinates.
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