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Abstract: We consider nodal-based Lagrangian interpolations for the finite element approximation of the Maxwell
eigenvalue problem. The first approach introduced is a standard Galerkin method on Powell-Sabin meshes, which
has recently been shown to yield convergent approximations in two dimensions, whereas the other two are stabilized
formulations that can be motivated by a variational multiscale approach. For the latter, a mixed formulation equivalent
to the original problem is used, in which the operator has a saddle point structure. The Lagrange multiplier introduced
to enforce the divergence constraint vanishes in an appropriate functional setting. The first stabilized method we
consider consists of an augmented formulation with the introduction of a mesh dependent term that can be regarded
as the Laplacian of the multiplier of the divergence constraint. The second formulation is based on orthogonal
projections, which can be recast as a residual based stabilization technique. We rely on the classical spectral theory to
analyze the approximating methods for the eigenproblem. The stability and convergence aspects are inherited from
the associated source problems. We investigate the numerical performance of the proposed formulations and provide
some convergence results validating the theoretical ones for several benchmark tests, including ones with smooth and
singular solutions.
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1 Introduction

The main object of this paper is to approximate the Maxwell eigenvalue problem (EVP) which, for instance, can be
considered as the problem of determining resonances in a perfectly conducting cavity and the associated nontrivial
time harmonic electric field (see, e.g., [5, 12, 20]). Defined on a bounded polyhedral domain Ω in R𝑑, 𝑑 = 2, 3, the
EVP we consider consists of finding [𝑢, 𝜆], where 𝜆 ∈ R, such that⎧⎪⎪⎨⎪⎪⎩

𝜇∇ × ∇ × 𝑢 = 𝜆𝑢 in Ω,

∇ · 𝑢 = 0 in Ω,

𝑛 × 𝑢 = 0 on 𝜕Ω,

(1)

where 𝜇 is a positive parameter taken in accordance with the physical assumptions on the problem setting.
This EVP is of fundamental importance in computational electromagnetism. An active intense research is ongoing

in the development of finite element (FE) methods that are capable of correctly approximating the constitutive
and topological relations by this and other Maxwell systems. It is well known that the use of the curl conforming
Nédélec or edge elements (rotated Raviart-Thomas elements in two dimensions) providing continuity of the tangential
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vector components while leaving the normal field components discontinuous across interfaces, results in convergent
(spurious-free) approximations. The Nédélec elements provide a natural basis for the finite element methods that
satisfy the discrete inf-sup condition [6, 19] and, furthermore, Dirichlet conditions on the tangent component of the
vector unknown are easy to impose, which is not as clear using nodal elements; this issue is partially touched in this
paper. However, as the continuity of the tangential field is inherent along the boundaries, a normal continuity may
also be concerned and, moreover, there are situations where the edge elements do not provide optimal implementation
and approximation properties. Thus, there are evident reasons to require the use of Lagrange finite elements with
low order interpolations and less constraints on the problem domain discretization. In search for this, an equivalent
problem to (1) can be obtained by reformulating it as a saddle point problem by the enforcement of the divergence
constraint using a Lagrange multiplier 𝑝. In this case, the given system is governed by the Euler-Lagrange equations
given as: find [𝑢, 𝑝, 𝜆], where 𝜆 ∈ R, such that⎧⎪⎪⎨⎪⎪⎩

𝜇∇ × ∇ × 𝑢 + ∇𝑝 = 𝜆𝑢 in Ω,

∇ · 𝑢 = 0 in Ω,

𝑛 × 𝑢 = 0 and 𝑝 = 0 on 𝜕Ω.

(2)

The mixed variational form of this problem is also known as the Kikuchi formulation [6, 18].
On the other hand, it is well known that the use of standard nodal continuous Galerkin finite element schemes to

approximate the standard Maxwell systems has the pathology of producing spurious or non physical solutions even
on smooth domains. There are many strategies consisting of penalization or regularizing the operator by adding a
term containing the divergence. We refer for instance to [3, 4, 6, 8, 13], and the inclusive list of references therein on
the subject. Also, mixed methods consisting of inf-sup stable elements using nodal continuous Lagrange elements of
any order for the vector field together with a piecewise constant approximation for the multiplier have been proposed
in recent works [16, 17].

In this paper, our main interest is to approximate the eigenvalues and eigenfunctions of the Maxwell operator
without spurious solutions, using continuous Lagrange finite elements. Firstly we consider the standard Galerkin
approximation on Powell-Sabin triangulations, where the convergence of the eigenvalues is provided in a recent work
[8] (see also the three dimensional generalization in [7]). Next, the mixed finite element formulations based on two
stabilized forms are presented; a so called augmented formulation, and a formulation that is based on projections. The
first stabilized method provides pressure stability by inclusion of a least squares form of the divergence constraint
introduced for the corresponding source problem in [3]. The second approach is based on stabilizing the divergence
and gradient components that are orthogonal to the associated finite element spaces, which is analyzed in [2]. A
reinterpretation of these two methods in a unified framework with a brief analysis of their key properties has also been
given in [4].

The outline of the paper is as follows. In Section 2 we briefly describe the standard Galerkin method on Powell-
Sabin meshes, whereas the two stabilized formulations are described in Section 3. While the EVP is directly analyzed
for the Galerkin method, convergence results for the stabilized formulations rely on the approximation of the source
problem and the classical spectral theory, which is applied in Section 4. The main objective of this work is to check
and compare the performance of nodal based formulations for the problem at hand, and this is done in Section 5.
Finally, some conclusions are drawn in Section 6.

2 The standard Galerkin approximation with Powell-Sabin
meshes

The variational formulation of (1) is given as follows: find 𝑢 ∈ 𝐻0(curl, Ω), 𝑢 ̸= 0, and 𝜆 ∈ R satisfying

𝜇(∇ × 𝑢, ∇ × 𝑣) = 𝜆(𝑢, 𝑣), ∀𝑣 ∈ 𝐻0(curl, Ω), (3)

where 𝐻(curl, Ω) = {𝑣 ∈ 𝐿2(Ω)𝑑 : ∇ × 𝑣 ∈ 𝐿2(Ω)𝑑}, 𝐻0(curl, Ω) = {𝑣 ∈ 𝐻(curl, Ω) : 𝑛 × 𝑢 = 0 on 𝜕Ω}, and
(·, ·) denotes the 𝐿2-inner product defined over Ω. Note that there is no need to enforce the divergence free condition
for 𝑢, as taking the divergence on both sides of the first equation in (1) directly yields that this field is divergence free.
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For the FE approximation to this problem, let 𝒯ℎ be a partition of the problem domain Ω into a set of element
domains {𝐾}. As usual, ℎ denotes the characteristic mesh size of the partition, here taken as ℎ = max𝐾∈𝒯ℎ

ℎ𝐾 ,
where ℎ𝐾 is the diameter of the element 𝐾. Since our main interest is in the nodal approximations, we define the
space of piecewise continuous polynomials on Ω as

𝒩𝑘(Ω) = {𝑣ℎ ∈ 𝒞0(Ω̄) : 𝑣ℎ|𝐾 ∈ 𝒫𝑘(𝐾), ∀𝐾 ∈ 𝒯ℎ},

where 𝒫𝑘(𝐾) denotes the space of polynomials of degree at most 𝑘 defined on 𝐾. For the components of the vector
fields as well as the scalar fields we will make use of these 𝐻1(Ω)-conforming approximating spaces in which every
function can be determined uniquely by its values on the set of nodes of the defining elements. For all the analysis
given in this work we assume for the sake of simplicity that the partitions are quasi-uniform.

The Galerkin discretization on a finite dimensional space 𝒱ℎ of partition size ℎ, can be written as: find nonzero
𝑢ℎ ∈ 𝒱ℎ, and 𝜆ℎ ∈ R such that

𝜇(∇ × 𝑢ℎ, ∇ × 𝑣ℎ) = 𝜆(𝑢ℎ, 𝑣ℎ), ∀𝑣ℎ ∈ 𝒱ℎ. (4)

As we have already mentioned, it is known that when 𝒱ℎ is taken as the 𝐻1(Ω)-conforming Lagrange finite element
space spurious solutions may exist for an arbitrary mesh size (see [6, 8], and the references therein). An example to
such pathology will be given in Section 5. On the other hand, it has been proved in [8] that the standard formulation
when implemented by the use of linear Lagrange finite elements on Powell-Sabin triangulations yields convergence of
the eigenvalues to the true ones; the analysis presented in this reference is not based on the approximation properties
of the method for the source problem, since it is not well posed. We will also include a numerical evidence for this in
Section 5.

3 Stabilized formulations

The two stabilized formulations we shall consider are based on the Kikuchi formulation (2) of the EVP. There
are essentially two alternatives for the variational form of this formulation, depending on whether the term with
𝑝 is integrated by parts or not, as this inherently implies two possible choices for the functional framework of the
problem [3, 4]. Consistently with the Galerkin approximation described earlier, we consider only the so called curl
formulation, in which the pressure gradient is not integrated by parts and the space where the solution is sought is
𝒳 = 𝐻0(curl, Ω) × 𝐻1

0 (Ω). The problem then reads: find [𝑢, 𝑝] ∈ 𝒳 and 𝜆 ∈ R such that

𝐵([𝑢, 𝑝], [𝑣, 𝑞]) = 𝜆(𝑢, 𝑣), ∀[𝑣, 𝑞] ∈ 𝒳 , (5)

where

𝐵([𝑢, 𝑝], [𝑣, 𝑞]) = 𝜇(∇ × 𝑢, ∇ × 𝑣) + (∇𝑝, 𝑣) − (∇𝑞, 𝑢).

Let 𝒱ℎ ⊂ 𝒱 := 𝐻0(curl, Ω) and 𝒬ℎ ⊂ 𝒬 := 𝐻1
0 (Ω) be the FE spaces to approximate 𝑢 and 𝑝, respectively.

The Galerkin approximation of the variational problem in 𝒳ℎ = 𝒱ℎ × 𝒬ℎ ⊂ 𝒳 is given as: find [𝑢ℎ, 𝑝ℎ] ∈ 𝒳ℎ and
𝜆ℎ ∈ R such that

𝐵([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) = 𝜆ℎ(𝑢ℎ, 𝑣ℎ), ∀[𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ. (6)

The corresponding source problem is well posed in spaces 𝒱ℎ and 𝒬ℎ if they satisfy the discrete inf-sup condition

inf
𝑝ℎ∈𝒬ℎ

sup
𝑣ℎ∈𝒱ℎ

(∇𝑝ℎ, 𝑣ℎ)
‖𝑝ℎ‖𝒬‖𝑣ℎ‖𝒱

≥ 𝐾𝑏, (7)

(‖ · ‖ℬ standing for the norm in a space ℬ) for a certain constant 𝐾𝑏 > 0, and this is a sufficient condition for the
EVP to be well-posed. Examples of pairs of spaces satisfying this condition are those based on Nédélec’s elements
to construct 𝒱ℎ and nodal Lagrangian continuous elements to construct 𝒬ℎ. However, as it has been said, we are
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interested in nodal-based interpolations, case in which 𝒱ℎ and 𝒬ℎ fail to fulfill condition (7). As explained in the
previous section, there is also the possibility to use the Galerkin method with nodal elements without introducing the
Lagrange multiplier 𝑝 if the FE mesh is of Powell-Sabin type.

The alternative is to switch to a stabilized FE approximation to approximate the eigenproblem given in (5). We
consider in this paper two options, and both can be written in a unified manner as follows: find [𝑢ℎ, 𝑝ℎ] ∈ 𝒳ℎ and
𝜆ℎ ∈ R such that

𝐵S([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) = 𝜆ℎ(𝑢ℎ, 𝑣ℎ), ∀[𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ, (8)

where 𝐵S([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) is defined as

𝐵S([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) = 𝐵([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ])

+
∑︁
𝐾

𝜏𝑝(𝑃 (∇𝑝ℎ), 𝑃 (∇𝑞ℎ))𝐾

+
∑︁
𝐾

𝜏𝑢(𝑃 (∇ · 𝑢ℎ), 𝑃 (∇ · 𝑣ℎ))𝐾 .

In the above equation
∑︀

𝐾 signifies the summation over all elements 𝐾 of the partition, and (·, ·)𝐾 denotes the
𝐿2(𝐾)-inner product. The stabilization parameters are defined as follows

𝜏𝑝 = 𝑐𝑝
ℓ2

𝜇
, 𝜏𝑢 = 𝑐𝑢𝜇

ℎ2

ℓ2 ,

where 𝑐𝑝 and 𝑐𝑢 are appropriately chosen algorithmic constants and ℓ is a length scale of the problem. It is observed
that these parameters are constant in the case of quasi-uniform FE partitions (i.e., using the same ℎ for all elements)
and constant 𝜇. Otherwise, they should be computed element-wise; this is why we have introduced the summation
over the elements, which is in fact not needed in our case.

The method depends on the projection 𝑃 which can be either the identity 𝐼 or the orthogonal projection to the
finite element space, 𝑃 ⊥

ℎ , leading to the augmented (AG) and the orthogonal subgrid scale (OSGS) formulations,
respectively. This orthogonal projection can be computed as 𝑃 ⊥

ℎ = 𝐼 − 𝑃ℎ, 𝑃ℎ being the 𝐿2(Ω)-projection onto the
FE space, either 𝒱ℎ or 𝒬ℎ; we have not distinguished these two possibilities, being clear by the context the projection
to consider. The bilinear form 𝐵S in (8) will be denoted by 𝐵AG when 𝑃 = 𝐼 , and by 𝐵OSGS when 𝑃 = 𝑃 ⊥

ℎ .
In the case of the AG formulation, the first term introduced (that involving ∇𝑝ℎ) consists of adding a penalization

term of the form − ℓ
𝜇 Δ𝑝 in the divergence-free condition for 𝑢 [3]. Obviously, this penalty is exact for the continuous

problem, since the homogeneous boundary condition for 𝑝 implies that 𝑝 = 0 almost everywhere in Ω. Indeed, in the
problem

𝜇∇ × ∇ × 𝑢 + ∇𝑝 = 𝜆𝑢 in Ω,

− ℓ

𝜇
Δ𝑝 + ∇ · 𝑢 = 0 in Ω,

𝑛 × 𝑢 = 0 on 𝜕Ω,

if we take the divergence of the first equation and use the second we get that Δ𝑝 = 𝜆∇ · 𝑢 = 𝜆 ℓ
𝜇 Δ𝑝, so that Δ𝑝 = 0

as soon as we choose ℓ such that 𝜆 ℓ
𝜇 ̸= 1, i.e., 𝜇

ℓ is not an eigenvalue of Maxwell’s EVP.
On the other hand, the OSGS formulation is a residual-based stabilized discretization where only the components

of the divergence and gradient terms in (8) that are orthogonal to the corresponding finite element spaces are stabilized
[2, 4]. The orthogonal projections onto the corresponding space can be computed iteratively or treated implicitly. We
will follow the latter option in the numerical results presented for this study.

In order to prove that the solutions of the stabilized formulations converge to the solutions of the continuous
problem, we apply the classical spectral approximation theory relying on the convergence of the associated source
problem for each formulation. For this reason, let us consider the continuous source problem associated to the Maxwell
EVP we deal with in this work, which reads as follows: given a solenoidal vector 𝑓 ∈ 𝐿2(Ω)𝑑, find [𝑢, 𝑝] ∈ 𝒳 such
that

𝐵([𝑢, 𝑝], [𝑣, 𝑞]) = (𝑓 , 𝑣), ∀[𝑣, 𝑞] ∈ 𝒳 . (9)
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As for the EVP, the stabilized formulations for the source problem can be jointly written as: find [𝑢ℎ, 𝑝ℎ] ∈ 𝒳ℎ

such that

𝐵S([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ]) = (𝑓 , 𝑣ℎ), ∀[𝑣ℎ, 𝑞ℎ] ∈ 𝒳ℎ, (10)

where 𝐵S denotes either 𝐵AG, the AG form, or 𝐵OSGS, the OSGS form, as defined previously.
The stability and convergence of the AG and OSGS formulations for the source problems are analyzed in [3]

and [2], respectively. We briefly list the results we need for the EVP in the sequel and refer to the associated papers
for detailed discussions. Despite both the AG and the OSGS yield good results, the norm in which stability and
convergence can be proved is weaker for the latter than for the former.

Let us start with the AG formulation. The norm in which the numerical analysis of the source problem can be
done is

‖[𝑣, 𝑞]‖2
AG := 𝜇‖∇ × 𝑣‖2

𝐿2(Ω) + 𝜇

ℓ2 ‖𝑣‖2
𝐿2(Ω) + ℓ2

𝜇
‖∇𝑝‖2

𝐿2(Ω), (11)

which is a norm in 𝒳 with adequate scaling coefficients.
In the sequel, ≲ denotes an inequality up to a positive constant that is independent of the mesh size and the

problem coefficients.
The following results are proved in [3]:

Theorem 1. Suppose that both 𝒱ℎ and 𝒬ℎ are constructed using continuous nodal based interpolations, each of
arbitrary degree. Then, problem (10) (with 𝐵S = 𝐵AG) is well posed, in the sense that it admits a unique solution
[𝑢ℎ, 𝑝ℎ] ∈ 𝒱ℎ × 𝒬ℎ that satisfies

‖[𝑢ℎ, 𝑝ℎ]‖AG ≲ ‖𝑓‖𝑉 ′ .

Furthermore, [𝑢ℎ, 𝑝ℎ] converges optimally as ℎ → 0 to the solution [𝑢, 𝑝] ∈ 𝑉 × 𝑄 of the continuous problem (9), in
the following sense:

‖[𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ]‖AG

≲ inf
[𝑣ℎ,𝑞ℎ]∈𝒱ℎ×𝒬ℎ

‖[𝑢 − 𝑣ℎ, 𝑝 − 𝑞ℎ]‖AG + 𝜈1/2

ℓ

(︃∑︁
𝐾

ℎ𝐾‖𝑢 − 𝑣ℎ‖2
𝐿2(𝜕𝐾)

)︃1/2

. (12)

The error estimate (12) is optimal for smooth solutions, that is when 𝑢 belongs to 𝐻𝑟(Ω)𝑑 for 𝑟 ≥ 1. In this case we
have

‖[𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ]‖AG ≲ ℎ𝑡−1‖𝑢‖𝐻𝑡(Ω), (13)

where 𝑡 = min{𝑟, 𝑘 + 1}, 𝑘 being the order of the FE interpolation.
In the case of solutions with Sobolev regularity 0 < 𝑟 < 1, it is shown in [3] that the convergence is also optimal

if the FE meshes are able to interpolate optimally scalar functions of Sobolev regularity 𝑟 + 1, whose gradients are
components of 𝑢. This happens for example if the FE meshes are of Powell-Sabin type (see [3] and references therein
for further discussion). More precisely, if 𝒱ℎ consists of functions whose gradients are in 𝒩𝑘(Ω)𝑑 ∩ 𝐻0(curl, Ω),
then (see [3], Corollary 3.12):

‖[𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ]‖AG = 𝑂(ℎ𝑡−𝜖),

for any 𝜖 ∈ ]0, 𝑡 − 1/2[ for 𝑡 = min{𝑟, 𝑘}. This condition is not used in [9] (in the context of the EVP), i.e., there is
no need to use Powell-Sabin meshes in the formulation proposed there; however, this is at the expense of loosing
optimality in the FE order of convergence. In fact, the formulation proposed in this reference with 𝛼 = 1 (a possibility
not allowed in [9]) corresponds to the AG formulation we are considering.

For the EVP analysis we will need to relate the 𝐿2(Ω)-norm of the error 𝑢 − 𝑢ℎ to the 𝐿2(Ω)-norm of the
forcing term 𝑓 . This follows from Theorem 1 assuming enough regularity in the domain Ω (see, e.g., [10, 14]).

Corollary 1. Assume that the domain Ω is such that the following elliptic regularity property holds:

𝜇1/2‖∇ × 𝑢‖𝐻𝑠(Ω) + 𝜇1/2

ℓ
‖𝑢‖𝐻𝑠(Ω) ≲

ℓ

𝜇1/2
1
ℓ𝑠

‖𝑓‖𝐿2(Ω), (14)
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for some 𝑠 > 0. Then, there holds

𝜇1/2

ℓ
‖𝑢 − 𝑢ℎ‖𝐿2(Ω) ≲

ℓ

𝜇1/2

(︂
ℎ

ℓ

)︂𝑠

‖𝑓‖𝐿2(Ω). (15)

Proof. The proof follows directly form standard interpolation estimates and the elliptic regularity property (14):

𝜇1/2

ℓ
‖𝑢 − 𝑢ℎ‖𝐿2(Ω) ≲ ‖[𝑢 − 𝑢ℎ, 0]‖AG

≲ inf
𝑣ℎ∈𝒱ℎ

‖[𝑢 − 𝑣ℎ, 0]‖AG + inf
𝑣ℎ∈𝒱ℎ

𝜇1/2

ℓ

∑︁
𝐾

ℎ1/2‖𝑢 − 𝑣ℎ‖𝐿2(𝜕𝐾)

≲ 𝜇1/2ℎ𝑠‖∇ × 𝑢‖𝐻𝑠(Ω) + 𝜇1/2

ℓ
ℎ𝑠‖𝑢‖𝐻𝑠(Ω),

from where (15) follows using (14).

Next, for the OSGS formulation we define the mesh dependent norm:

‖[𝑣, 𝑞]‖2
OSGS := 𝜇‖∇ × 𝑣‖2

𝐿2(Ω) + 𝜇

ℓ2 ‖𝑣‖2
𝐿2(Ω) + ℓ2

𝜇
‖𝑃 ⊥

ℎ (∇𝑝)‖2
𝐿2(Ω) + ℎ2

𝜇
‖𝑃ℎ(∇𝑝)‖2

𝐿2(Ω). (16)

This norm is weaker than (11) because the component of the pressure gradient in 𝒱ℎ is multiplied by ℎ2 instead of ℓ2.
Nevertheless, the numerical results obtained in [2] showed that the OSGS formulation is as stable as the AG one; we
shall corroborate this fact in this paper in the context of Maxwell’s EVP. Stability and convergence is proved in [2];
because of the proof-technique employed, the statements of these results slightly differ from those in Theorem 1, but
the essence is the same, namely, stability and optimal convergence:

Theorem 2. Suppose that both 𝒱ℎ and 𝒬ℎ are constructed using continuous nodal based interpolations of arbitrary
degree each. Then, problem (10) (with 𝐵S = 𝐵OSGS) is well posed, in the sense that

inf
[𝑢ℎ,𝑝ℎ]∈𝒱ℎ×𝒬ℎ

sup
[𝑣ℎ,𝑞ℎ]∈𝒱ℎ×𝒬ℎ

𝐵OSGS([𝑢ℎ, 𝑝ℎ], [𝑣ℎ, 𝑞ℎ])
‖[𝑢ℎ, 𝑝ℎ]‖OSGS‖[𝑣ℎ, 𝑞ℎ]‖OSGS

≥ 𝐾𝐵OSGS > 0.

Furthermore, [𝑢ℎ, 𝑝ℎ] converges optimally as ℎ → 0 to the solution [𝑢, 𝑝] ∈ 𝑉 × 𝑄 of the continuous problem (9), in
the following sense:

‖[𝑢 − 𝑢ℎ, 𝑝 − 𝑝ℎ]‖OSGS ≲ inf
𝑞ℎ∈𝒬ℎ

‖[𝑢 − 𝑃𝒱ℎ
(𝑢), 𝑝 − 𝑞ℎ]‖OSGS + inf

𝑣ℎ∈𝒱ℎ

𝜇1/2‖∇ × 𝑢 − 𝑣ℎ‖, (17)

where 𝑃𝒱ℎ
is the 𝐿2(Ω)-projection onto 𝒱ℎ.

This result corresponds to Theorems 3.3 and 3.4 in [2]. Note that in this reference the possibility of using discontinuous
interpolations and variable physical properties is taken into account, whereas here we are considering continuous
interpolations and a constant 𝜇. Note also that the convergence result obtained is optimal. The same comments as for
the AG formulation regarding the regularity of the continuous solution apply in this case.

As for the AG formulation, we also have the following corollary.

Corollary 2. Under the assumptions of Corollary 1, estimate (15) also holds for the OSGS formulation.

Proof. Again this result is an immediate consequence of standard interpolation estimates and the elliptic regularity
property (14), now using the 𝐿2(Ω) and 𝐻1(Ω) stability of the 𝐿2(Ω)-projection 𝑃𝒱ℎ

.

4 Numerical analysis of the eigenvalue problem

For the standard Galerkin method presented in Section 2, the analysis of the EVP using 2D Powell-Sabin meshes is
directly presented in [8], without relying on the approximation properties of the formulation for the source problem,
since this would be singular. However, for the stabilized formulations described in Section 3 we can apply the general
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strategy of proving convergence of eigenvalues and eigenfunctions using the results obtained for the source problem.
This is what we do next. We assume in what follows that the polynomial order of the FE interpolation is higher or
equal than the regularity of the solution.

As usual in the FE analysis of spectral problems [6] (see also [21]), having the existence and uniqueness of
solutions to (9) and (10), we can define the solution operators 𝑇, 𝑇ℎ : 𝐿2(Ω)𝑑 → 𝐿2(Ω)𝑑 so that, for any 𝑓 ∈ 𝐿2(Ω)𝑑,
𝑇𝑓 = 𝑢 and 𝑇ℎ𝑓 = 𝑢ℎ are the vector field components of the solutions to (9) and (10), respectively. From the
convergence results of the source problems presented in the previous section, we can establish the following operator
convergence

‖𝑇 − 𝑇ℎ‖ℒ(𝐿2(Ω)𝑑) → 0 as ℎ → 0.

This sets forth that the solutions of the discrete problem (8) converge to those of (2) with no spurious solutions. In
particular, the convergence analysis follows along the lines of the abstract Babuška–Osborn theory [1, 6].

We recall the main results related to the approximation of the eigensolutions in the following theorems. The first
theorem states the convergence of the eigensolutions and the absence of spurious modes.

Theorem 3. Under the regularity assumptions of Corollary 1, let 𝜆 be an eigenvalue of (5) with multiplicity 𝑚.
Then there are exactly 𝑚 eigenvalues of (6), counted with their multiplicities, that converge to 𝜆. Moreover, given a
generic compact set 𝐾 in the real line that does not contain any eigenvalues of (5), for ℎ small enough there are no
discrete eigenvalues of (6) that are in 𝐾.

Proof. From the results of Corollaries 1 and 2, we obtain that for all 𝑓 ∈ 𝐿2(Ω)𝑑

‖𝑢 − 𝑢ℎ‖𝐿2(Ω) = ‖𝑇𝑓 − 𝑇ℎ𝑓‖𝐿2(Ω) ≲ 𝜙(ℎ)‖𝑓‖𝐿2(Ω),

with 𝜙(ℎ) → 0 as ℎ → 0, that is, we have the convergence in norm ‖𝑇 − 𝑇ℎ‖ℒ(𝐿2(Ω)𝑑) → 0 as ℎ tends to zero. From
the standard Babuška–Osborn theory [1], this implies the theorem.

The second theorem states the rate of convergence of eigenvalues and eigenfunctions.

Theorem 4. Let 𝜆 be an eigenvalue of (5) with multiplicity 𝑚 and with an eigenspace composed of eigenfunctions
𝑢 with the following regularity for some 𝑟 > 0

𝑢 ∈ 𝐻𝑟(Ω),
∇ × 𝑢 ∈ 𝐻𝑟(Ω).

Let us denote by 𝜆𝑖
ℎ, 𝑖 = 1, . . . , 𝑚, the 𝑚 discrete eigenvalues corresponding to 𝜆 according to Theorem 3. Then we

have the following error estimates:

|𝜆 − 𝜆𝑖
ℎ| = 𝑂(ℎ2𝑟), 𝑖 = 1, . . . , 𝑚,

𝛿(𝐸, 𝐸ℎ) = 𝑂(ℎ𝑟),

where 𝐸 is the eigenspace associated with 𝜆, 𝐸ℎ is the direct sum of the eigenspaces associated with 𝜆𝑖
ℎ, 𝑖 = 1, . . . , 𝑚,

and 𝛿 denotes the gap between Hilbert subspaces in the energy norm.

Proof. Again, this result follows from the standard Babuška–Osborn theory [1] and the error estimates available for
the source problem.

The result about the eigenfunctions convergence can be made more explicit by interpreting the definition of gap as
follows. Let 𝑢 be an eigenfunction associated with 𝜆 and denote by 𝜑1

ℎ, . . . , 𝜑𝑚
ℎ the eigenfunctions associated with

the 𝑚 discrete eigenvalues converging to 𝜆. Then there exists a linear combination 𝑢ℎ ∈ span{𝜑1
ℎ, . . . , 𝜑𝑚

ℎ } such
that

|||𝑢 − 𝑢ℎ||| = 𝑂(ℎ𝑟),

where |||·||| means ‖ · ‖AG or ‖ · ‖OSGS for the AG or OSGS formulation, respectively.
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5 Numerical results

We present three numerical tests for the approximation of the Maxwell EVP with 𝜇 = 1 on three different domains,
namely, a square domain, a flipped L-shape domain, and a cracked square domain, all of them in 2D. We consider the
square domain for validation purposes, since the analytical solutions are available. The L-shaped domain consists
of non-smooth solutions and hence it is a standard benchmark to test the methodology for singular problems. The
cracked square domain contains a slit which makes it a distinguished candidate for serving as a challenging task with
a solution that exhibits a strong singularity.

The standard Galerkin method (4), from now on SG, and the stabilized (AG and OSGS) formulations (8) are
implemented using criss-cross (CC) and Powell-Sabin (PS) meshes. We have also considered a sequence of uniform
right diagonal meshes for a distinct case (see Section 5.1). The CC mesh sequences are used as it is well known
that the gradients are well represented by the given interpolations, although there is no theoretical support for their
performance in the Maxwell problem. In fact, in [3] it was shown through numerical experiments that they provide
good results for the source problem using the AG formulation, and here we will test these meshes for the EVP. The PS
meshes are chosen due to their convergence results as we have already stated. For all the unknowns we have employed
equal order (for both 𝑢ℎ and 𝑝ℎ) of linear (𝑃1) and quadratic (𝑃2) interpolations, even though much of the focus is
placed on the results obtained from the former.

All the results we present below have been obtained by means of computer programs written by us using
Matlab. The eigenvalues are obtained by its built-in function eigs that calculates a subset of eigensolutions of a
(generalized) matrix eigenvalue system. For the SG formulation, the discrete spectrum consists of a number of zeros;
the discrete frequencies approximating zero are eliminated to present the first nonzero values. The correctness of
these approximations is verified using Matlab’s eig function calculating all of the discrete eigenvalues for sizes that fit
well in memory. However, the restriction of eliminating a huge number of (machine) zeros from the approximate
spectrum is alleviated when considering the stabilized formulations which, by construction, result in strictly positive
eigenvalues for all the cases considered.

The values of the algebraic constants in the definition of the stabilization parameters, 𝑐𝑢 and 𝑐𝑝, and the
characteristic length ℓ can be taken in a wide range, influencing the accuracy while preserving similar convergence
behaviors. The specific values taken for the simulations are given for each test domain individually. We denote by 𝑁

the number of divisions in each direction for the square domain, and the number of division in one of the short edges
for the L-shaped domain. The tables we provide in the sequel list the approximated eigenvalues together with their
rates of convergence towards the reference values indicated in parentheses.

Regarding the boundary conditions, we have considered 𝑛 × 𝑢ℎ = 0 on the boundaries. At convex corners of the
computational domain we have prescribed both components of 𝑢ℎ to zero. However, the situation is more delicate
at re-entrant corners; the way to impose boundary conditions there is explained for the two examples in which this
situation is found.

5.1 The square domain

For the first numerical test, we consider an approximation of Maxwell’s EVP on the square Ω1 = ]0, 𝜋[2 (see Figure 1).
In this case, the exact solutions are known, and the eigenvalues are given as 𝜆𝑚,𝑛 = 𝑚2 + 𝑛2, where 𝑚, 𝑛 = 0, 1, . . .,
and 𝑚 + 𝑛 ̸= 0. It is well known that SG formulations may result in unphysical values even for problems with
smooth solutions unless certain conditions on the mesh topology are satisfied. More specifically, adequate gradients
of the solution should be provided by the discrete space to ensure that the zero frequency is exactly approximated by
vanishing discrete eigenvalues. An example to the existence of spurious eigenvalues has already been presented in [6],
in which the SG scheme for the discretization of the problem on Ω1 has been used with a sequence of CC meshes.
Besides realization of this issue, in order to compare the SG formulation with the stabilized ones on the same meshes,
we compute the corresponding eigenvalues using CC meshes and PS meshes, and list the results in the following.
Table 1 lists the first 17 approximate eigenvalues using the SG formulation and 𝑃1 elements on CC meshes. As it is
evident from the negative rates, some listed limit values are spurious and are not associated with any true eigenvalues,
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even though a number of selected ones show a good convergence. This pathology, which occurs even in the case
of smooth solutions, is already known (see [6]) and it is the main motivation for the need of stabilization strategies
implemented for nodal elements.
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Fig. 1: Uniform meshes and node distributions used for 𝑃1 (left) and 𝑃2 (right) interpolations on Ω1.

Tab. 1: The first 17 eigenvalues on Ω1 using the SG formulation and 𝑃1 elements on CC meshes.

Exact Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.0000 1.0109 1.0027 (2.0) 1.0012 (2.0) 1.0007 (2.0) 1.0004 (2.0)
1.0000 1.0109 1.0027 (2.0) 1.0012 (2.0) 1.0007 (2.0) 1.0004 (2.0)
2.0000 2.0437 2.0110 (2.0) 2.0049 (2.0) 2.0027 (2.0) 2.0018 (2.0)
4.0000 4.1719 4.0437 (2.0) 4.0195 (2.0) 4.0110 (2.0) 4.0070 (2.0)
4.0000 4.1719 4.0437 (2.0) 4.0195 (2.0) 4.0110 (2.0) 4.0070 (2.0)
5.0000 5.2657 5.0683 (2.0) 5.0304 (2.0) 5.0171 (2.0) 5.0110 (2.0)
5.0000 5.2657 5.0683 (2.0) 5.0304 (2.0) 5.0171 (2.0) 5.0110 (2.0)
8.0000 5.7988 5.9507 (0.1) 5.9781 (0.0) 5.9877 (0.0) 5.9921 (0.0)
9.0000 8.6504 8.1746 (-1.2) 8.0779 (-0.3) 8.0438 (-0.1) 8.0281 (-0.1)
9.0000 9.8403 9.2197 (1.9) 9.0982 (2.0) 9.0554 (2.0) 9.0355 (2.0)

10.0000 9.8403 9.2197 (-2.3) 9.0982 (-0.4) 9.0554 (-0.2) 9.0355 (-0.1)
10.0000 10.9783 10.2710 (1.9) 10.1213 (2.0) 10.0684 (2.0) 10.0438 (2.0)
13.0000 10.9783 10.2710 (-0.4) 10.1213 (-0.1) 10.0684 (-0.1) 10.0438 (-0.0)
13.0000 12.5826 13.4573 (-0.1) 13.2052 (2.0) 13.1156 (2.0) 13.0741 (2.0)
16.0000 12.5826 13.4573 (0.4) 13.2052 (-0.2) 13.1156 (-0.1) 13.0741 (-0.1)
16.0000 14.3233 14.3101 (-0.0) 14.6791 (0.6) 14.8163 (0.4) 14.8814 (0.3)
17.0000 14.3233 14.3101 (-0.0) 14.6791 (0.4) 14.8163 (0.2) 14.8814 (0.1)

Tables 2 and 3 respectively list the analogous results obtained from the AG and OSGS formulations. These are
obtained taking ℓ = 0.1, 𝑐𝑢 = 0.01, and 𝑐𝑝 = 0.6. The significant role in the relief of the aforementioned pathology
can easily be evidenced from the correct values of the eigenvalues, and with the expected rates of convergence.

Regarding the SG formulation, having arrived at the important conclusion that PS meshes should be used due to
the potential risk of obtaining spurious eigenvalues otherwise, we present the results obtained from PS meshes when
considering formulation (4) in what follows. We tabulate the first 17 eigenvalues obtained using this formulation on
PS meshes in Table 4 to numerically validate its convergence characteristics.

Before closing this section, let us emphasize that both stabilized formulations produce exceptional results in the
case of smooth solutions independent of the mesh types we have tested in this work. To further corroborate this, in
Tables 5 and 6 we list the approximations to the first 10 eigenvalues using respectively 𝑃1 and 𝑃2 elements on standard
uniform (right diagonal) meshes, a sample of which is shown in Figure 1. These results are obtained from the OSGS
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Tab. 2: The first 17 eigenvalues on Ω1 using the AG formulation and 𝑃1 elements on CC meshes.

Exact Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.0000 1.0172 1.0032 (2.4) 1.0013 (2.2) 1.0007 (2.1) 1.0005 (2.1)
1.0000 1.0172 1.0032 (2.4) 1.0013 (2.2) 1.0007 (2.1) 1.0005 (2.1)
2.0000 2.0507 2.0115 (2.1) 2.0050 (2.1) 2.0028 (2.0) 2.0018 (2.0)
4.0000 4.2762 4.0516 (2.4) 4.0211 (2.2) 4.0115 (2.1) 4.0072 (2.1)
4.0000 4.2762 4.0516 (2.4) 4.0211 (2.2) 4.0115 (2.1) 4.0072 (2.1)
5.0000 5.3897 5.0756 (2.4) 5.0318 (2.1) 5.0176 (2.1) 5.0111 (2.0)
5.0000 5.3897 5.0756 (2.4) 5.0318 (2.1) 5.0176 (2.1) 5.0111 (2.0)
8.0000 8.8329 8.1838 (2.2) 8.0796 (2.1) 8.0444 (2.0) 8.0283 (2.0)
9.0000 10.3876 9.2606 (2.4) 9.1066 (2.2) 9.0581 (2.1) 9.0366 (2.1)
9.0000 10.3876 9.2606 (2.4) 9.1066 (2.2) 9.0581 (2.1) 9.0366 (2.1)

10.0000 11.7852 10.3145 (2.5) 10.1295 (2.2) 10.0709 (2.1) 10.0448 (2.1)
10.0000 11.7852 10.3145 (2.5) 10.1295 (2.2) 10.0709 (2.1) 10.0448 (2.1)
13.0000 15.6090 13.5000 (2.4) 13.2125 (2.1) 13.1178 (2.0) 13.0749 (2.0)
13.0000 15.6090 13.5000 (2.4) 13.2125 (2.1) 13.1178 (2.0) 13.0749 (2.0)
16.0000 20.1558 16.8191 (2.3) 16.3360 (2.2) 16.1832 (2.1) 16.1155 (2.1)
16.0000 20.1558 16.8191 (2.3) 16.3360 (2.2) 16.1832 (2.1) 16.1155 (2.1)
17.0000 22.0376 17.9227 (2.4) 17.3766 (2.2) 17.2057 (2.1) 17.1298 (2.1)

Tab. 3: The first 17 eigenvalues on Ω1 using the OSGS formulation and 𝑃1 elements on CC meshes.

Exact Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.0000 1.0165 1.0032 (2.4) 1.0013 (2.2) 1.0007 (2.1) 1.0005 (2.1)
1.0000 1.0165 1.0032 (2.4) 1.0013 (2.2) 1.0007 (2.1) 1.0005 (2.1)
2.0000 2.0492 2.0114 (2.1) 2.0050 (2.0) 2.0028 (2.0) 2.0018 (2.0)
4.0000 4.2653 4.0511 (2.4) 4.0210 (2.2) 4.0115 (2.1) 4.0072 (2.1)
4.0000 4.2675 4.0512 (2.4) 4.0210 (2.2) 4.0115 (2.1) 4.0072 (2.1)
5.0000 5.3726 5.0746 (2.3) 5.0317 (2.1) 5.0175 (2.1) 5.0111 (2.0)
5.0000 5.3726 5.0746 (2.3) 5.0317 (2.1) 5.0175 (2.1) 5.0111 (2.0)
8.0000 8.7944 8.1826 (2.1) 8.0795 (2.1) 8.0443 (2.0) 8.0283 (2.0)
9.0000 10.3443 9.2583 (2.4) 9.1063 (2.2) 9.0580 (2.1) 9.0366 (2.1)
9.0000 10.3443 9.2583 (2.4) 9.1063 (2.2) 9.0580 (2.1) 9.0366 (2.1)

10.0000 11.7202 10.3087 (2.5) 10.1287 (2.2) 10.0707 (2.1) 10.0448 (2.0)
10.0000 11.7499 10.3090 (2.5) 10.1287 (2.2) 10.0707 (2.1) 10.0448 (2.0)
13.0000 15.5263 13.4941 (2.4) 13.2117 (2.1) 13.1177 (2.0) 13.0749 (2.0)
13.0000 15.5263 13.4941 (2.4) 13.2117 (2.1) 13.1177 (2.0) 13.0749 (2.0)
16.0000 19.9725 16.8118 (2.3) 16.3350 (2.2) 16.1829 (2.1) 16.1154 (2.1)
16.0000 19.9917 16.8129 (2.3) 16.3350 (2.2) 16.1829 (2.1) 16.1154 (2.1)
17.0000 21.1252 17.9058 (2.2) 17.3740 (2.2) 17.2050 (2.1) 17.1296 (2.1)

formulation; however, they are very similar to the ones obtained from the AG formulation, which are not included for
brevity. We can easily infer from these results that the stabilization achieves a double order of convergence without
any spurious value, as it is anticipated from the theory.

5.2 The L-shaped domain

In this subsection we want to examine a widely considered test case, e.g., in [9, 11, 15, 16], that is an L-shaped domain
with a re-entrant corner, defined by Ω2 = ]−1, 1[2 ∖ {[0, 1] × [−1, 0]}. The CC and PS discretizations of this domain
with 𝑁 = 5 are shown in Figure 2. All of the reported values computed by a stabilized formulation concerning this
domain are obtained using ℓ = 0.3, 𝑐𝑢 = 0.85, and 𝑐𝑝 = 0.5. In the numerical results, we use the reference values
taken from [15] for comparison.
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Tab. 4: The first 17 eigenvalues on Ω1 using the SG formulation and 𝑃1 elements on PS meshes.

Exact Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.0000 1.0029 1.0007 (2.0) 1.0003 (2.0) 1.0002 (2.0) 1.0001 (2.0)
1.0000 1.0072 1.0018 (2.0) 1.0008 (2.0) 1.0005 (2.0) 1.0003 (2.0)
2.0000 2.0197 2.0051 (2.0) 2.0023 (2.0) 2.0013 (2.0) 2.0008 (2.0)
4.0000 4.0792 4.0203 (2.0) 4.0090 (2.0) 4.0051 (2.0) 4.0033 (2.0)
4.0000 4.0796 4.0203 (2.0) 4.0090 (2.0) 4.0051 (2.0) 4.0033 (2.0)
5.0000 5.0772 5.0212 (1.9) 5.0095 (2.0) 5.0054 (2.0) 5.0035 (2.0)
5.0000 5.1596 5.0416 (1.9) 5.0186 (2.0) 5.0105 (2.0) 5.0067 (2.0)
8.0000 8.2651 8.0786 (1.8) 8.0357 (1.9) 8.0202 (2.0) 8.0130 (2.0)
9.0000 9.3628 9.0968 (1.9) 9.0434 (2.0) 9.0245 (2.0) 9.0157 (2.0)
9.0000 9.4040 9.1067 (1.9) 9.0478 (2.0) 9.0269 (2.0) 9.0173 (2.0)

10.0000 10.4348 10.1242 (1.8) 10.0560 (2.0) 10.0317 (2.0) 10.0203 (2.0)
10.0000 10.4494 10.1251 (1.8) 10.0562 (2.0) 10.0317 (2.0) 10.0203 (2.0)
13.0000 13.4436 13.1522 (1.5) 13.0699 (1.9) 13.0397 (2.0) 13.0255 (2.0)
13.0000 13.7494 13.2576 (1.5) 13.1178 (1.9) 13.0668 (2.0) 13.0429 (2.0)
16.0000 17.0734 16.3173 (1.8) 16.1433 (2.0) 16.0810 (2.0) 16.0520 (2.0)
16.0000 17.0912 16.3176 (1.8) 16.1434 (2.0) 16.0810 (2.0) 16.0520 (2.0)
17.0000 17.9694 17.3329 (1.5) 17.1518 (1.9) 17.0860 (2.0) 17.0552 (2.0)

Tab. 5: The first 10 eigenvalues on Ω1 using the OSGS formulation and 𝑃1 elements on the uniform mesh shown in Fig-
ure 1.

Exact Computed
𝑁 = 20 𝑁 = 25 𝑁 = 30 𝑁 = 35 𝑁 = 40

1.0000 1.0021 1.0013 (2.0) 1.0009 (2.0) 1.0007 (2.0) 1.0005 (2.0)
1.0000 1.0021 1.0013 (2.0) 1.0009 (2.0) 1.0007 (2.0) 1.0005 (2.0)
2.0000 2.0073 2.0044 (2.3) 2.0030 (2.2) 2.0021 (2.1) 2.0016 (2.1)
4.0000 4.0329 4.0210 (2.0) 4.0146 (2.0) 4.0107 (2.0) 4.0082 (2.0)
4.0000 4.0329 4.0211 (2.0) 4.0146 (2.0) 4.0107 (2.0) 4.0082 (2.0)
5.0000 5.0385 5.0239 (2.1) 5.0164 (2.1) 5.0119 (2.1) 5.0091 (2.0)
5.0000 5.0572 5.0351 (2.2) 5.0239 (2.1) 5.0173 (2.1) 5.0131 (2.1)
8.0000 8.1167 8.0706 (2.3) 8.0475 (2.2) 8.0342 (2.1) 8.0258 (2.1)
9.0000 9.1666 9.1065 (2.0) 9.0739 (2.0) 9.0543 (2.0) 9.0416 (2.0)
9.0000 9.1667 9.1066 (2.0) 9.0740 (2.0) 9.0543 (2.0) 9.0416 (2.0)
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Fig. 2: A sample triangulation of the L-shaped domain with CC (left) and PS (right) mesh, where 𝑁 = 5.
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Tab. 6: The first 10 eigenvalues on Ω1 using the OSGS formulation and 𝑃2 elements on the uniform mesh shown in Fig-
ure 1.

Exact Computed
𝑁 = 20 𝑁 = 25 𝑁 = 30 𝑁 = 35 𝑁 = 40

1.0000 1.0000 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0)
1.0000 1.0000 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0)
2.0000 2.0000 2.0000 (4.1) 2.0000 (4.1) 2.0000 (4.1) 2.0000 (4.1)
4.0000 4.0001 4.0000 (4.0) 4.0000 (4.0) 4.0000 (4.0) 4.0000 (4.0)
4.0000 4.0001 4.0000 (4.0) 4.0000 (4.0) 4.0000 (4.0) 4.0000 (4.0)
5.0000 5.0001 5.0000 (4.0) 5.0000 (4.0) 5.0000 (4.0) 5.0000 (4.0)
5.0000 5.0001 5.0000 (4.1) 5.0000 (4.0) 5.0000 (4.0) 5.0000 (4.0)
8.0000 8.0004 8.0002 (4.1) 8.0001 (4.1) 8.0000 (4.1) 8.0000 (4.0)
9.0000 9.0006 9.0002 (4.0) 9.0001 (4.0) 9.0001 (4.0) 9.0000 (4.0)
9.0000 9.0006 9.0002 (4.0) 9.0001 (4.0) 9.0001 (4.0) 9.0000 (4.0)

It is known that the first eigenvalue is the most critical when an approximation is considered, as it corresponds to
the eigenfunction that has the lowest regularity, being it in (𝐻2/3−𝜖(Ω))2 for any 𝜖 > 0. When nodal elements are
used, the existence of such a singularity manifests itself in the drastic change of the results depending on the way
the normal vector is treated at the re-entrant corner in the process of boundary condition imposition. To realize and
examine this computationally, we have tried three alternative ways of handling the components of the unknown vector
field at the re-entrant corner of the enclosure; this is an issue in the case of nodal-based formulations. The first two
alternatives are to force both of the components to vanish at the corner, or to leave them free at that node. The third
one consists of assigning a fictitious normal vector due to the geometrical convenience. Specifically, this last strategy
depends on assuming that the normal is the bisector of this corner, and imposing the boundary condition 𝑛 × 𝑢ℎ = 0
in the following way. The tangent component of 𝑢 is 0, and 𝑢 has to follow the normal 𝑛. In this way, if we write
𝑢 = [𝑢1, 𝑢2]T, we impose the condition 𝑢2 = −𝑢1, and solve for 𝑢1.

We present the corresponding results obtained using PS meshes with the SG formulation in Table 7 and the OSGS
formulation in Table 8. These results clearly show that alternative strategies for enforcing the boundary condition
at the re-entrant corner of the enclosure result in significantly different approximations in the first eigenvalue. The
most remarkable deduction emanating from these tables is the influence of the treatment of the re-entrant corner
with or without stabilization. It can be easily seen that leaving the components free at the corner lead to accurate
results in the case of stabilization while it is not convenient at all for the SG formulation. The bisector normal strategy
seems to work well for all of the formulations. Let us note here that despite of this difference, we have observed that
the convergence properties are very similar. It is also of significant importance to note once again that the results
obtained from the SG formulation seem to be more accurate than the ones obtained from the stabilized formulations.
On the other hand, it is always possible to increase the accuracy in the latter schemes by manipulating the stabilization
parameters, even though this has not been the main aim of this research.

In the light of these investigations, the approximations for this domain case using PS meshes and following the
bisector normal strategy are listed in Tables 9, 10, and 11 for the SG, AG, and OSGS formulations, respectively. From
these tables we can see that the convergences rates are the ones expected from the theory. Specifically, there are no
spurious values encountered in any of the formulations considered. The smallest rate of convergence is observed for the
first eigenvalue, whose corresponding eigenfunction has the lowest regularity. Moreover, the OSGS formulation seems
to be more accurate in comparison with the AG formulation when implemented using the same set of stabilization
parameters.

The plots of the components of the fundamental eigenfunction, that is associated with the minimum eigenvalue,
obtained using the OSGS formulation on the PS mesh, are presented in Figure 3. The approximations that are obtained
from the bisector normal strategy show well the singularity near the re-entrant corner, corroborating the pattern of the
eigenfunction that can be expected.
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Tab. 7: The first 10 nonzero eigenvalues on Ω2 using PS mesh and the SG formulation, 𝑁 = 9.

bisector normal 𝑢1 = 𝑢2 = 0 𝑢1, 𝑢2 free
1.4876 1.4435 0.1181
3.5348 3.5348 1.4876
9.8829 9.8829 3.5351
9.8873 9.8873 9.8829

11.4032 11.4032 10.3660
12.6424 12.4952 11.4038
19.8006 19.8006 12.6424
21.5789 21.2304 20.3093
23.4182 23.4182 21.5789
28.7328 28.3622 23.4234

Tab. 8: The first 10 nonzero eigenvalues on Ω2 using PS mesh and the OSGS formulation, 𝑁 = 9.

bisector normal 𝑢1 = 𝑢2 = 0 𝑢1, 𝑢2 free
1.6252 2.2203 1.6252
3.5517 3.5517 3.5371
9.8836 9.8836 9.7725
9.8879 9.8879 9.8836

11.4116 11.4116 11.4058
12.6789 12.8182 12.6789
19.8034 19.8034 19.4922
21.5959 21.6729 21.5959
23.4449 23.4449 23.4287
28.5389 28.5389 28.5380

Tab. 9: The first 5 eigenvalues on Ω2 using the SG formulation and 𝑃1 elements on PS meshes.

Ref. Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.4756 1.5024 1.4860 (1.4) 1.4816 (1.4) 1.4797 (1.4) 1.4786 (1.3)
3.5340 3.5351 3.5347 (0.7) 3.5344 (1.5) 3.5342 (1.7) 3.5342 (1.7)
9.8696 9.9124 9.8804 (2.0) 9.8744 (2.0) 9.8723 (2.0) 9.8713 (2.0)
9.8696 9.9267 9.8839 (2.0) 9.8760 (2.0) 9.8732 (2.0) 9.8719 (2.0)

11.3895 11.4314 11.4007 (1.9) 11.3946 (1.9) 11.3924 (2.0) 11.3913 (2.0)

Tab. 10: The first 5 eigenvalues on Ω2 using the AG formulation and 𝑃1 elements on PS meshes.

Ref. Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.4756 1.9220 1.6790 (1.1) 1.5981 (1.2) 1.5603 (1.3) 1.5389 (1.3)
3.5340 3.6020 3.5467 (2.4) 3.5386 (2.5) 3.5362 (2.5) 3.5353 (2.5)
9.8696 9.9197 9.8808 (2.2) 9.8745 (2.1) 9.8723 (2.0) 9.8713 (2.0)
9.8696 9.9335 9.8844 (2.1) 9.8761 (2.0) 9.8732 (2.0) 9.8719 (2.0)

11.3895 11.4729 11.4066 (2.3) 11.3965 (2.2) 11.3933 (2.2) 11.3918 (2.1)

As a last illustration for this problem domain, we approximate the first 5 eigenvalues using the OSGS stabilized
formulation on CC meshes. We list the results in Tables 12 and 13 for 𝑃1 and 𝑃2 elements, respectively. All the
eigenvalues listed are approximated correctly, and the convergence rates are as expected. Note the unchanged rate in the
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Tab. 11: The first 5 eigenvalues on Ω2 using the OSGS formulation and 𝑃1 elements on PS meshes.

Ref. Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.4756 1.7762 1.6068 (1.2) 1.5538 (1.3) 1.5294 (1.3) 1.5157 (1.3)
3.5340 3.6057 3.5476 (2.4) 3.5389 (2.5) 3.5364 (2.5) 3.5354 (2.5)
9.8696 9.9191 9.8808 (2.1) 9.8745 (2.1) 9.8723 (2.0) 9.8713 (2.0)
9.8696 9.9326 9.8843 (2.1) 9.8761 (2.0) 9.8732 (2.0) 9.8719 (2.0)

11.3895 11.4732 11.4070 (2.3) 11.3967 (2.2) 11.3933 (2.2) 11.3919 (2.1)

Tab. 12: The first 5 eigenvalues on Ω2 using the OSGS formulation and 𝑃1 elements on CC meshes.

Ref. Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.4756 1.6350 1.5391 (1.3) 1.5126 (1.3) 1.5008 (1.3) 1.4943 (1.3)
3.5340 3.6248 3.5520 (2.3) 3.5407 (2.4) 3.5374 (2.4) 3.5360 (2.4)
9.8696 10.0023 9.8985 (2.2) 9.8820 (2.1) 9.8765 (2.0) 9.8740 (2.0)
9.8696 10.0032 9.8985 (2.2) 9.8820 (2.1) 9.8765 (2.0) 9.8740 (2.0)

11.3895 11.5771 11.4316 (2.2) 11.4073 (2.1) 11.3993 (2.1) 11.3957 (2.1)

Fig. 3: The components of the fundamental eigenfunction on Ω2.

first value with an increase in the order of interpolations due to the low regularity of the corresponding eigenfunction.
Nevertheless, the accuracy is significantly improved for all the approximated values when quadratic interpolations
are used instead of the linear ones. The results mentioned here are in analogy with the ones obtained when the AG
formulation is used in the simulations, and we prefer not to include them for conciseness of the presentation.

5.3 The cracked square domain

As a final test case, we consider a square domain with a crack defined as Ω3 = ]−1, 1[2 ∖ {(𝑥, 𝑦) ∈ R : 0 ≤ 𝑥 <

1, 𝑦 = 0}. Sample discretizations of Ω3 are depicted in Figure 4. In the sequel we report the results of our numerical
simulations obtained by, unless it is otherwise stated, using linear interpolations on PS meshes, and taking ℓ = 0.2,
𝑐𝑢 = 0.1, and 𝑐𝑝 = 1.0 for the stabilized formulations. We report also some results obtained by considering CC grids
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Tab. 13: The first 5 eigenvalues on Ω2 using the OSGS formulation and 𝑃2 elements on CC meshes.

Ref. Computed
𝑁 = 5 𝑁 = 10 𝑁 = 15 𝑁 = 20 𝑁 = 25

1.4756 1.5446 1.5046 (1.3) 1.4927 (1.3) 1.4873 (1.3) 1.4843 (1.3)
3.5340 3.5602 3.5388 (2.4) 3.5357 (2.6) 3.5348 (2.6) 3.5345 (2.6)
9.8696 9.8701 9.8696 (4.1) 9.8696 (4.0) 9.8696 (4.0) 9.8696 (4.0)
9.8696 9.8701 9.8696 (4.1) 9.8696 (4.0) 9.8696 (4.0) 9.8696 (4.0)

11.3895 11.4010 11.3915 (2.5) 11.3902 (2.6) 11.3898 (2.6) 11.3897 (2.7)

or quadratic interpolations on PS meshes in the sequel. As in the previous case, the reference eigenvalues are taken
from [15].
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Fig. 4: Sample triangulations of the domain with a crack, Ω3, with PS mesh where 𝑁 = 4 (left) and internal layer CC mesh
when 𝑁 = 8 (right). The boundaries are shown in red.

Additionally to regular solutions, the EVP in this domain also has solutions that are unbounded near the tip of the
slit, exhibiting a strong singularity. In particular, the smallest eigenvalue becomes the most crucial one to approximate,
as its corresponding eigenfunction belongs to (𝐻1/2−𝜖(Ω))2 for any 𝜖 > 0 (see Figure 5). The same discussion about
the treatment of the re-entrant corner as in the L-shape domain case applies to the tip of the crack for this problem,
although without a clear identification of a fictitious normal in the present case. For the present instance, we examine
the influence of the treatment of enforcing the boundary condition on the approximations by leaving the components
of 𝑢 as free or forcing them to vanish at the tip. We tabulate the corresponding results in Tables 14 and 15 for the
former, and Tables 16 and 17 for the latter strategy. Tables 14 and 16 list the results of the SG formulation, whereas
Tables 15 and 17 list the ones obtained from the OSGS stabilization. We can easily infer from these tables that the
results are more accurate with higher convergence rates when the components of 𝑢ℎ are left to be free in comparison
with the case where they are forced to vanish. The difference is very significant in the OSGS formulation, especially
in the first eigenvalue, which is approximated with lowest accuracy.

We have observed that all the resulting eigenfunctions related to the values we present are in physically meaningful
agreement with the theoretical expectations, with an absence of any spurious mode in a checkerboard pattern. In
Figure 5, we plot the components of the fundamental eigenfunction computed using the OSGS formulation when
𝑁 = 32. The components are left free at the tip of the crack (see Table 15) in order to illustrate the singular behavior
of the solution vector near it.

To compare the results obtained from different stabilizations for this domain, we list the first 10 eigenvalues
obtained from the AG formulation when the components are left free and using the same set of stabilization parameters
in Table 18. As before, the OSGS results remain more accurate for each eigenvalue, although a similar convergence
tendency is observed in each one.
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Tab. 14: The first 10 eigenvalues on Ω3, SG formulation, 𝑢1, 𝑢2 are free at the tip.

Ref. Computed
𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

1.0341 2.5316 2.4804 (0.1) 2.4723 (0.0) 2.2958 (0.5) 2.0894 (0.8)
2.4674 4.3066 3.3216 (1.1) 2.6162 (4.3) 2.4699 (14.2) 2.4689 (2.3)
4.0469 4.9140 4.0973 (4.1) 4.0654 (2.5) 4.0563 (2.4) 4.0525 (2.3)
9.8696 11.2261 10.1299 (2.4) 9.9673 (2.4) 9.9193 (2.3) 9.8995 (2.3)
9.8696 11.2416 10.1301 (2.4) 9.9674 (2.4) 9.9194 (2.3) 9.8995 (2.3)

10.8449 12.1956 11.1009 (2.4) 10.9444 (2.3) 10.8966 (2.3) 10.8763 (2.2)
12.2649 13.6625 12.5979 (2.1) 12.4445 (1.5) 12.3944 (1.1) 12.3726 (0.8)
12.3370 15.0035 13.3779 (1.4) 12.9190 (1.4) 12.7404 (1.3) 12.6421 (1.3)
19.7392 22.6499 20.3592 (2.2) 20.0052 (2.1) 19.8851 (2.1) 19.8312 (2.1)
21.2441 26.0026 22.9060 (1.5) 22.0858 (1.7) 21.8061 (1.4) 21.6679 (1.3)

Tab. 15: The first 10 eigenvalues on Ω3, OSGS stabilization, 𝑢1, 𝑢2 free at the tip.

Ref. Computed
𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

1.0341 2.6628 2.4998 (0.2) 2.4729 (0.0) 1.8854 (0.8) 1.4921 (0.9)
2.4674 3.9804 3.1997 (1.0) 2.4807 (5.8) 2.4687 (3.4) 2.4677 (2.1)
4.0469 6.0123 4.2908 (3.0) 4.0858 (2.7) 4.0536 (2.5) 4.0482 (2.4)
9.8696 15.2294 10.3782 (3.4) 9.9642 (2.4) 9.8904 (2.2) 9.8746 (2.1)
9.8696 16.1181 10.3849 (3.6) 9.9647 (2.4) 9.8904 (2.2) 9.8746 (2.1)

10.8449 16.3441 11.4912 (3.1) 10.9694 (2.4) 10.8714 (2.2) 10.8511 (2.1)
12.2649 17.9249 13.0336 (2.9) 12.4783 (1.8) 12.3689 (1.0) 12.3447 (0.4)
12.3370 19.2569 13.8721 (2.2) 12.8570 (1.6) 12.5328 (1.4) 12.3928 (1.8)
19.7392 24.5106 21.3360 (1.6) 20.0952 (2.2) 19.8212 (2.1) 19.7591 (2.0)
21.2441 29.7499 22.0312 (3.4) 21.7211 (0.7) 21.4149 (1.5) 21.3097 (1.4)

Tab. 16: The first 10 eigenvalues on Ω3, SG formulation, 𝑢1 = 𝑢2 = 0 at the tip.

Ref. Computed
𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

1.0341 0.5429 0.7464 (0.8) 0.8771 (0.9) 0.9519 (0.9) 0.9920 (1.0)
2.4674 2.0383 2.3690 (2.1) 2.4438 (2.1) 2.4616 (2.0) 2.4660 (2.0)
4.0469 4.0133 4.0807 (-0.0) 4.0581 (1.6) 4.0500 (1.9) 4.0477 (1.9)
9.8696 10.3409 10.1588 (0.7) 9.9470 (1.9) 9.8892 (2.0) 9.8745 (2.0)
9.8696 10.5393 10.1701 (1.2) 9.9475 (1.9) 9.8892 (2.0) 9.8745 (2.0)

10.8449 10.7668 11.1508 (-2.0) 10.9348 (1.8) 10.8681 (2.0) 10.8507 (2.0)
12.2649 11.0607 11.2899 (0.3) 11.7001 (0.8) 11.9595 (0.9) 12.1060 (0.9)
12.3370 11.3086 12.4285 (3.5) 12.3954 (0.6) 12.3534 (1.8) 12.3412 (2.0)
19.7392 14.0332 20.1339 (3.9) 20.0343 (0.4) 19.8167 (1.9) 19.7588 (2.0)
21.2441 14.6242 20.5661 (3.3) 20.4182 (-0.3) 20.7411 (0.7) 20.9697 (0.9)

So far, we have reported the results from interpolations considered on PS type meshes. However, to show the
capability of using CC type meshes with increased density along the crack and in the vicinity of the tip with the
stabilized formulations, we have tested their approximation features on domains with such strong singularities. A
sample triangulation is shown in Figure 4. We list the results that are obtained from 𝑃1 interpolations on these
internal layer meshes taking ℓ = 0.5, 𝑐𝑢 = 2.0, and 𝑐𝑝 = 1.0, using the AG formulation in Table 19 and the OSGS
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Tab. 17: The first 10 eigenvalues on Ω3, OSGS stabilization, 𝑢1 = 𝑢2 = 0 at the tip.

Ref. Computed
𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

1.0341 5.7091 4.1253 (0.6) 3.1774 (0.5) 2.7209 (0.3) 2.4921 (0.2)
2.4674 7.3860 4.3581 (1.4) 4.1048 (0.2) 3.4704 (0.7) 2.5474 (3.6)
4.0469 10.2714 5.9888 (1.7) 4.6276 (1.7) 4.0582 (5.7) 4.0488 (2.6)
9.8696 17.5589 10.4587 (3.7) 9.9724 (2.5) 9.8910 (2.3) 9.8746 (2.1)
9.8696 18.2007 10.4646 (3.8) 9.9729 (2.5) 9.8910 (2.3) 9.8746 (2.1)

10.8449 19.3851 11.6565 (3.4) 10.9942 (2.4) 10.8748 (2.3) 10.8515 (2.2)
12.2649 23.7984 13.9401 (2.8) 12.7777 (1.7) 12.4642 (1.4) 12.3714 (0.9)
12.3370 23.9740 15.4407 (1.9) 13.7123 (1.2) 13.0390 (1.0) 12.6666 (1.1)
19.7392 34.1972 21.5708 (3.0) 20.1193 (2.3) 19.8234 (2.2) 19.7592 (2.1)
21.2441 37.2805 24.2568 (2.4) 22.5214 (1.2) 21.8447 (1.1) 21.5357 (1.0)

Fig. 5: The components of the fundamental eigenfunction on Ω3.

Tab. 18: The first 10 eigenvalues on Ω3, AG stabilization, 𝑢1, 𝑢2 free at the tip.

Ref. Computed
𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

1.0341 2.7081 2.5061 (0.2) 2.4740 (0.0) 2.4688 (0.0) 1.9780 (0.6)
2.4674 4.3613 4.0226 (0.3) 3.6555 (0.4) 2.7096 (2.3) 2.4677 (9.6)
4.0469 9.1407 5.1631 (2.2) 4.1507 (3.4) 4.0576 (3.3) 4.0486 (2.7)
9.8696 18.6120 10.4897 (3.8) 9.9755 (2.5) 9.8912 (2.3) 9.8746 (2.1)
9.8696 19.6901 10.4906 (4.0) 9.9757 (2.5) 9.8913 (2.3) 9.8746 (2.1)

10.8449 20.0936 11.6341 (3.6) 10.9921 (2.4) 10.8741 (2.3) 10.8513 (2.2)
12.2649 20.8839 13.2236 (3.2) 12.5039 (2.0) 12.3713 (1.2) 12.3449 (0.4)
12.3370 29.5487 15.0561 (2.7) 13.4124 (1.3) 12.8012 (1.2) 12.5249 (1.3)
19.7392 35.7446 21.7758 (3.0) 20.1626 (2.3) 19.8276 (2.3) 19.7595 (2.1)
21.2441 41.9310 25.0012 (2.5) 22.1829 (2.0) 21.5450 (1.6) 21.3602 (1.4)
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formulation in Table 20. The results in both of these tables put forward the overall acceptable convergence properties,
noting as before the low regularity in the first eigenfunction.

Tab. 19: The first 10 eigenvalues on Ω3, AG stabilization using CC mesh, 𝑢1, 𝑢2 free at the tip.

Ref. Computed
𝑁 = 8 𝑁 = 16 𝑁 = 24 𝑁 = 32 𝑁 = 40

1.0341 2.5302 2.4791 (0.1) 2.4718 (0.0) 2.4697 (0.0) 2.2558 (0.7)
2.4674 4.3128 3.9203 (0.3) 3.0270 (2.4) 2.5497 (6.7) 2.4688 (18.3)
4.0469 6.2468 4.1019 (5.3) 4.0645 (2.8) 4.0557 (2.4) 4.0522 (2.3)
9.8696 11.2056 10.1046 (2.5) 9.9581 (2.4) 9.9153 (2.3) 9.8974 (2.2)
9.8696 11.2080 10.1046 (2.5) 9.9581 (2.4) 9.9153 (2.3) 9.8974 (2.2)

10.8449 12.2382 11.0886 (2.5) 10.9381 (2.4) 10.8936 (2.3) 10.8748 (2.2)
12.2649 13.7696 12.5992 (2.2) 12.4411 (1.6) 12.3926 (1.1) 12.3717 (0.8)
12.3370 16.4212 13.7661 (1.5) 13.1375 (1.4) 12.8756 (1.4) 12.7339 (1.4)
19.7392 22.7601 20.3722 (2.3) 20.0031 (2.2) 19.8836 (2.1) 19.8303 (2.1)
21.2441 26.3217 23.1452 (1.4) 22.3451 (1.3) 21.9772 (1.4) 21.7905 (1.3)

Tab. 20: The first 10 eigenvalues on Ω3, OSGS stabilization using CC mesh, 𝑢1, 𝑢2 free at the tip.

Ref. Computed
𝑁 = 8 𝑁 = 16 𝑁 = 24 𝑁 = 32 𝑁 = 40

1.0341 2.5316 2.4804 (0.1) 2.4723 (0.0) 2.2958 (0.5) 2.0894 (0.8)
2.4674 4.3066 3.3216 (1.1) 2.6162 (4.3) 2.4699 (14.2) 2.4689 (2.3)
4.0469 4.9140 4.0973 (4.1) 4.0654 (2.5) 4.0563 (2.4) 4.0525 (2.3)
9.8696 11.2261 10.1299 (2.4) 9.9673 (2.4) 9.9193 (2.3) 9.8995 (2.3)
9.8696 11.2416 10.1301 (2.4) 9.9674 (2.4) 9.9194 (2.3) 9.8995 (2.3)

10.8449 12.1956 11.1009 (2.4) 10.9444 (2.3) 10.8966 (2.3) 10.8763 (2.2)
12.2649 13.6625 12.5979 (2.1) 12.4445 (1.5) 12.3944 (1.1) 12.3726 (0.8)
12.3370 15.0035 13.3779 (1.4) 12.9190 (1.4) 12.7404 (1.3) 12.6421 (1.3)
19.7392 22.6499 20.3592 (2.2) 20.0052 (2.1) 19.8851 (2.1) 19.8312 (2.1)
21.2441 26.0026 22.9060 (1.5) 22.0858 (1.7) 21.8061 (1.4) 21.6679 (1.3)

6 Conclusions

We have studied and numerically validated the characteristics of approximations to the solutions of the Maxwell
eigenvalue problem that are obtained using nodal finite elements. Apart from the standard Galerkin formulation used
with special (PS type) elements, two stabilized finite element formulations (AG and OSGS) have been implemented
successfully to approximate both smooth and singular solutions. The convergence characteristics and error estimates
rely on the associated analysis of the source problems. We have shown using the spectral theory that the formulations
are optimally convergent for a set of algorithmic parameters that are implemented within the stabilized formulations.

The Galerkin formulation, which is singular for the source problem, has been shown numerically to yield
reasonable results using PS meshes, as expected. We have also shown that using CC type meshes may lead to spurious
solutions even for smooth cases. The OSGS formulation has been shown to work proficiently on the meshes considered
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in this study, namely, PS and CC type meshes. The AG formulation has been shown to yield adequate results for
smooth solutions, noting the sensitivity to strong singular solutions.

As the main interest of the present study is in the use of nodal elements, a number of strategies of imposition
of the boundary condition at the re-entrant corners have been explored. It has been set forth that while leaving the
components free does not work well for the standard Galerkin formulation, it functions successfully for both of the
stabilized formulations. In addition, it has been shown that a fictitious normal may serve as the best alternative for
some problem geometries such as the L-shape domain.

Consequently, we have shown numerically that the stabilized methods can successfully approximate the eigenso-
lutions of Maxwell’s system when certain meshes are used, although with some limitations in accuracy in the case of
strong singularities. The proposed methods compare very favorably with other formulations due to their ability to
acquire the discrete spectrum without the obligation of eliminating the frequencies approximating zero, in addition to
their facility of accommodating any order of interpolations and allowing a coupling of different operators.
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