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Abstract

In this paper we propose a reduced order model (ROM) for incompressible flows based on proper
orthogonal decomposition (POD) and having a finite element approximation as full order model
(FOM). The main idea is to start from a purely POD-based ROM, projecting the equations onto the
ROM space, and then add a nonlinear correction that depends on the ROM unknowns to enhance
the final ROM model. This correction is based on the fact that we do have some available high
fidelity data, namely, the snapshots. Thus, the correcting term is built as an artificial neural network
(ANN) constructed with the snapshots as the training set. This correction is then introduced in the
fully discrete ROM system to achieve more accurate solutions. A further feature of our approach
is that we construct both the ROM and the FOM using the variational multi-scale (VMS) concept,
and this allows us to understand the correction term as an approximation to the scales that are lost
when passing from the FOM to the ROM. The resulting corrected ROM has a significant higher
accuracy than the original one.

Keywords: Reduced Order Models, Proper Orthogonal Decomposition, Variational Multi-Scale, Ar-
tificial Neural Networks, Correction Models

1 Introduction

Many important dynamical processes occurring in nature can be modeled by Partial Differential
Equations (PDEs). But the simulation of such processes can incur a high computational cost. This is
particularly true for control and optimization problems as they require a large number of simulations
to be performed. A feasible option to overcome the high computational cost related to high fidelity
simulations is the use of Reduced Order Models (ROMs). ROMs can reduce this computational cost
by approximating the large-scale systems by much smaller ones. A summary of popular techniques
and approaches used for reduced order modeling can be found in [53]. One of the most commonly used
ROMs are projection based ROMs based on Proper Orthogonal Decomposition (POD). POD-ROMs
rely on projecting a high-dimensional Full Order Model (FOM) onto a low order space of solutions.
POD-ROMs have been widely used in solid mechanics [66] and fluid mechanics [5, 6, 11, 27, 28, 36,
40, 61, 65], as well as in shape optimization [2, 9, 39, 52] and flow control [3, 25, 30, 45] problems,
among other applications.

The approach proposed in this paper is applied to flow problems governed by the incompressible
Navier-Stokes equations, and the FOM is obtained from their finite element (FE) approximation.
Nevertheless, the methodology we propose here can be extended to any flow problem discretized by
standard numerical techniques.

The idea of POD-ROMs applied to the incompressible Navier-Stokes equations is simple. From a
collection of snapshots in time, including velocities and pressures, one may construct a basis of a
low-dimensional space by keeping R modes of the singular value decomposition (SVD) of the matrix
of snapshots. The unknown (velocity and pressure) is then expressed in this basis, plugged into the
variational form of the problem and projected onto the space spanned by the basis. In order to make
the method effective, only a few high energy modes are kept, and the remaining low energy modes
are discarded. However, this can lead to instability and inaccuracy in the ROM solution. This can be
attributed to the inherent nonlinearity of the system, resulting in an interaction of the discarded modes
with the resolved modes, and also to intrinsic instabilities of the approximation of the incompressible
Navier-Stokes equations (velocity-pressure compatibility, convection-dominated flows). So, correction
models taking into account the effect of unresolved modes on resolved modes are required for the
accurate prediction of the dynamics. We will refer to discarded modes as the sub-grid scales (SGSs)
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in this work. We propose here a two-step approach for the closure modeling of the SGSs, namely, an
a priori approach focused on providing the required stabilization followed by an a posteriori approach
to achieve the desired accuracy in highly truncated ROMs.

The a priori closure modeling approach used is based on the Variational Multi-Scale (VMS) method,
similar to the one used by Reyes and Codina [50] (see also [49]), inspired by the application of VMS
for FE methods. The issue of closure modeling is not unique to projection based ROMs, rather it is
commonly found in other projection-based methods like Galerkin FE methods, where stabilized formu-
lations have been devised to deal with the instabilities of the Galerkin projection method. Elaborate
models have been developed to improve the stability and accuracy of FEs using VMS. These include
time dependent dynamic SGSs [21], orthogonal SGSs [18] and element boundary SGSs [4, 20, 22].
VMS methods have been applied successfully to a variety of FE problems beyond the incompressible
Navier-Stokes equations [13, 14, 41, 42, 46, 47]. Extending this to ROMs, Reyes and Codina [50]
developed the VMS-ROM using orthogonal SGSs. The method has been applied to thermally coupled
low Mach flows [51] and to fluid-structure interaction [59, 60]. Owing to the successful application of
the VMS-ROM in a variety of cases, we use it as the a prior approach in this work. Note that the
VMS-ROM presented in these references improves the accuracy of the solution alongside providing
stability. However, the provided accuracy can be insufficient for highly truncated ROMs.

Thus, as the second step we introduce an a posteriori SGS approach based on Machine Learning
(ML) using Artificial Neural Networks (ANNs). The use of ANNs for ROMs can be grouped into two
categories: intrusive and non-intrusive approaches. Non-intrusive approaches [10, 31, 37, 63] do not
rely on the governing equations, rather they make predictions based purely on data. As a consequence,
non-intrusive approaches require a significant amount of data to work. The typical sparsity of data
generally available motivates an intrusive or hybrid approach. In the hybrid approach, instead of by-
passing the Galerkin projection step, ANNs are used to build closure models augmenting the physics-
based ROMs. Such an approach was used in [54] to model modal eddy viscosity as a function of the
mode number, the right-hand side (RHS) of the Galerkin ROM (GROM), and the modal amplitudes
using extreme learning machine (ELM) of single layer. ANNs can be used to directly predict the
numerical value of the closure term, without assuming the functional form associated to the closure
model. Wan et al. [62] used Recurrent Neural Networks to learn the error in the RHS of GROM as a
function of the time-history of values of the resolved state to model extreme events. The Mori-Zwanzig
formalism [16, 17] states that the closure term can be modeled as a memory term based on the time
history of the resolved scales. Gupta and Lermusiaux [32] proposed ‘neural closure models’ using
neural delay differential equations to model the memory integral terms; they concluded that discrete
delays perform better than the distributed delays for closure modeling. Wang et el. [64] utilized a
conditioned long short-term memory with an implicit-explicit Runge-Kutta time integration scheme
to approximate the memory term. San and Maulik [55, 56] utilized a single layer feed forward neural
network using ELM [34] to learn the value of the closure term as a function of the GROM RHS and
applied to thermal fluid problems. Mou et el. [43] developed a data-driven closure model based on
the VMS approach using least squares.

The works mentioned above suggest a closure model for the semi-discretized system, i.e., discretized in
the space only. However, in this article we present a correction model for the fully discretized system
of the ROM. In this way, we account for the errors in the time discretization as well. A correction
term was also added to the fully discrete system in [7]; however, it used a linear least square approach
to model the correction, whereas in this work non-linear ANNs are used without assuming any ansatz.
The suitable nonlinear function that maps the chosen inputs to SGSs is established by the ANN itself
during the training phase. The key point is how the correction term can be constructed. To this
end, we reuse the snapshots used to build the ROM basis, as they are high-fidelity solutions. The
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ANN is then trained by imposing that the results of the corrected ROM be as close as possible to
the projection of the snapshots onto the ROM space at the time instants in which they are available.
Note that our approach is motivated by the splitting of scales and we correct the ROM system, and
not the solution itself as might be suggested by the loss function of the ANN. Our correction being
equal to the difference in the projected FOM solution and the uncorrected ROM solution, Eq. (26),
is the consequence of our choice of using Eq. (21).

ANNs are generally regarded as black boxes, which receive inputs and provide outputs. In this work, a
dedicated effort has been made to use the simplest ANNs that could produce the desired results to keep
the ambiguity associated with ANNs to a minimum. Furthermore, being the method proposed hybrid,
the suggested approach requires a very small amount of data and simple architectures to capture the
SGSs, thus leading to a very fast training phase. Overall, the use of ANNs leads to improved results
at an insignificant computational cost and using the same degrees of freedom as the original ROM.

The two steps of the closure model account for the SGSs belonging to different subspaces. Let us
denote the space of the continuous problem as Y, the FOM space as Yh and the ROM space as Yφ.
Furthermore, we denote the different SGS spaces as Y ′, Y ′′, Ỹ, defined such that Y = Yh⊕Y ′ = Yφ⊕Y ′′
and Yh = Yφ ⊕ Ỹ. Now, the a priori SGSs are modeled in the Y ′′ subspace. Since the a posteriori
approach is data-driven, it can only model the reduced order SGSs present in the FOM solution space,
Yh in this case. So, the second step models the SGSs present in Ỹ. Fig. 1 explains the two steps of
this approach with SGSs spaces highlighted in grey.

Figure 1: Two-step approach for the SGS modeling explained using the associated functional spaces. SGSs spaces are highlighted
in grey. Left: a priori step. Right: a posteriori step

The paper is organized as follows. In Section 2, we describe the variational problem along with the a
priori approach, i.e., the VMS-ROM, employed in this work. In Section 3, we describe the a posteriori
approach of how we correct the fully discrete system. In Section 4, we introduce the ANNs and how
we design and train them. In Section 5, we present numerical examples for the flow over a cylinder, a
backward facing step and three cylinders in a triangular arrangement. The examples are carried out
within and outside the training regime. In Section 6, we provide the concluding remarks.

2 Problem statement and a priori sub-grid scale modeling

2.1 Variational problem

Let us consider the incompressible Navier Stokes equations as the target problem. Let Ω ⊂ Rd, d
denoting the dimensions of the problem, be the domain in which the fluid flows. The boundary Γ of
the domain is divided into Dirichlet and Neumann boundaries denoted by ΓD and ΓN , respectively,
such that Γ = ΓD ∪ ΓN and ∅ = ΓD ∩ ΓN . Let ]0, tf [ be the time interval for which the flow needs to
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be analyzed. Calling u0 the initial velocity, the incompressible Navier-Stokes problem reads: find a
velocity-pressure field [u, p] : Ω×]0, tf [→ Rd × R such that

∂tu+ u · ∇u− ν∆u+∇p = f in Ω, t ∈ ]0, tf [,
∇ · u = 0 in Ω, t ∈ ]0, tf [,

u = 0 on ΓD, t ∈ ]0, tf [,
n · (ν∇u− pI(d)) = 0 on ΓN , t ∈ ]0, tf [,

u = u0 in Ω, t = 0,

where ν is the kinematic viscosity of the fluid, n is the outwards unit normal to ∂Ω, f : Ω×]0, tf [→ Rd
is the forcing vector, and I(d) is the d × d identity matrix. To simplify the exposition, homogeneous
Dirichlet and Neumann boundary conditions have been considered.

We present now the equivalent weak form. Let 〈·, ·〉ω be the integral over a domain ω ⊆ Ω of the
product of two functions, with the subscript omitted when ω = Ω. We take u for each time t and the
corresponding test function v in the functional space V, consisting of functions in H1(Ω)d vanishing on
ΓD, and p for each time t and the corresponding test function q in the functional space Q = L2(Ω) (or
Q = L2(Ω)/R if ΓD = ∅). The weak form of the Navier Stokes problem reads: find [u, p] :]0, tf [→ V×Q
such that

〈∂tu,v〉+ ν〈∇u,∇v〉+ 〈u · ∇u,v〉 − 〈p,∇ · v〉 = 〈f ,v〉, ∀v ∈ V, t ∈ ]0, tf [,
〈q,∇ · u〉 = 0, ∀q ∈ Q, t ∈ ]0, tf [,
〈u,v〉 = 〈u0,v〉, ∀ v ∈ L2(Ω)d, at t = 0.

(1)

For conciseness, let us define the functional space Y = V × Q, the unknown y = [u, p] ∈ Y and the
test function z = [v, q] ∈ Y. We can write problem (1) as: find y :]0, tf [→ Y such that

〈∂tu,v〉+B(u;y, z) = L(z), ∀ z ∈ Y, t ∈ ]0, tf [, (2)

where

B(w;y, z) = B(w; [u, p], [v, q]) := ν〈∇u,∇v〉+ 〈w · ∇u,v〉 − 〈p,∇ · v〉+ 〈q,∇ · u〉,
L(z) = L([v, q]) := 〈f ,v〉.

We have not stated the initial conditions for problem (2) explicitly. From here onwards it is understood
that the problem needs to be provided with the appropriate initial conditions.

2.2 VMS-FOM approximation

Let us consider the FE space Yh ⊂ Y for the FOM. This space is assumed to be built from a FE
partition {K} of diameter h = maxK{hK} of Ω, with hK = diam(K). The collection of interior edges
(faces, if d = 3) is denoted as {E}. As usual, subscript h will be introduced to refer to FE functions
and spaces, the latter considered conforming.

The core of the VMS approach, originally proposed in [35], lies in splitting Y = Yh ⊕Y ′ , where Y ′ is
any space that completes Yh in Y. Thus, any function g can be written as g = gh +g′, with subscript
h denoting a FE function ∈ Yh and superscript ′ denoting a SGS function ∈ Y ′. Using this splitting,
we can replace problem (2) by

〈∂tuh + ∂tu
′,vh〉+B(u;yh + y′, zh) = L(zh), ∀ zh ∈ Yh, t ∈ ]0, tf [, (3)
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〈∂tuh + ∂tu
′,v′h〉+B(u;yh + y′, z′) = L(z′), ∀ z′ ∈ Y ′, t ∈ ]0, tf [. (4)

Note that Eqs. (3)-(4) are exact and we have not introduced any assumptions yet. We want to
determine the SGSs from Eq. (4) and insert them in Eq. (3) to achieve a stable and more accurate
solution in the FOM space. We use the VMS approach developed in [19, 22] (see [23] for a review)
for this purpose. After some approximations, Eq. (3) can then be transformed to: find yh = [uh, ph] :
]0, tf [→ Yh such that

〈∂tuh,vh〉+B(u∗;yh, zh) +
∑
K

〈u′K ,−ν∆vh − u∗ · ∇vh −∇qh〉K

−
∑
K

〈p′K ,∇ · vh〉K +
∑
E

〈u′E , Jn · (ν∇vh + qhI(d)K〉E = L(zh), ∀zh ∈ Yh, t ∈ ]0, tf [, (5)

where u′K , p′K and u′E are the solutions of

∂tu
′
K + τ−1

1,Ku
′
K = Π⊥(f + ν∆uh − u∗ · ∇uh −∇ph)|K ,

τ−1
2,Kp

′
K = −Π⊥(∇ · uh)|K ,

τ−1
E u′E = −Jn · (ν∇uh − phI(d))KE ,

where τ−1
1,K , τ

−1
2,K and τ−1

E are the stabilization parameters and J·K is the jump operator. The choices
for the stabilization parameters and the definition of the jump operator can be found in [19, 22]. Π⊥ is
the L2 orthogonal projection to the corresponding FE space, i.e., orthogonal SGSs will be considered
throughout in this work. Concerning the advection velocity u∗, one can take it as u∗ = uh + u′,
yielding what we call nonlinear SGSs, but for simplicity we will approximate u∗ = uh (see [24] for a
discussion).

The important feature of the formulation presented is that it allows one to use arbitrary interpolations
of velocity and pressure and to deal with convection-dominated flows. In particular, we will consider
equal continuous interpolation for velocity and pressure.

Let us discretize the time interval using a partition of size δt, uniform for simplicity. The temporal
derivative ∂t is replaced by δt, denoting a backward difference increment of the required order, involving
the unknowns at the current and previous time steps. Suitable initializations are required for schemes
of order higher than one. The projection of the initial condition onto the FE space is denoted by
u0
h. Using a superscript as a counter for the time step and n+ 1 denoting the current time level, the

discrete problem reads: for n = 0, . . . , nt− 1 (nt is total number of time steps), find yn+1
h ∈ Yh such

that

〈δtun+1
h ,vh〉+B(un+1

h ;yn+1
h , zh) +

∑
K

〈u′n+1
K ,−ν∆vh − un+1

h · ∇vh −∇qh〉K

−
∑
K

〈p′n+1
K ,∇ · vh〉K +

∑
E

〈u′n+1
E , Jn · (ν∇vh + qhI(d)K〉E = L(zh), ∀zh ∈ Yh, (6)

with

δtu
′n+1
K + τ−1

1,Ku
′n+1
K = Π⊥(f + ν∆un+1

h − un+1
h · ∇un+1

h −∇pn+1
h )|K ,

τ−1
2,Kp

′n+1
K = −Π⊥(∇ · un+1

h )|K ,
τ−1
E u′n+1

E = −Jn · (ν∇un+1
h − pn+1

h I(d))KE .

The superscript of the time level is omitted in the following, understanding that the unknown to be
computed is that of time level n+ 1.
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2.3 A priori sub-grid scales using VMS-ROM

We want to construct a ROM space Yφ such that Yφ ⊂ Yh ⊂ Y. There are several ways to develop the
ROM space, but we use POD, as indicated earlier. We can build a reduced order basis such that the
basis functions are L2 orthogonal to each other. In section 2.2 we have also introduced Orthogonal
SGSs, which are also orthogonal in the L2 functional sense. It will be shown later in this section that
using L2 orthogonal basis functions allows us to relate ROM SGSs with FOM SGSs explicitly.

Let us describe the difference between what we will call algebraic orthogonality (with respect to the
identity matrix) and L2 functional orthogonality, and how we achieve the L2 functional orthogonality
for the ROM basis functions.

We start off by collecting FOM results at different time instants, i.e., the snapshots. Let the collection
of s discrete snapshots be

Sh = {Sn1
h , . . . ,Snsh }, Snih ∈ Rnp, i = 1, . . . , s,

with the vector Snih = Y ni
h − Y h, with Y ni

h ∈ Rnp being the solution of the FOM at the snapshot
instant ni and Y h ∈ Rnp being the mean value over all snapshot instances. Here, np denotes the total
number of degrees of freedom. To simplify the writing, we will take np = M ×m, with M being the
number of nodes of the FE mesh and m being the degrees of freedom associated with each node of the
mesh assuming equal order interpolation for all the unknowns (in our case, m = d+ 1); nevertheless,
the degrees of freedom associated to prescribed velocities need to be excluded. Note that the snapshots
need not to be captured for every time step and, hence, we will denote the total number of time steps
with nt and the total number of snapshots with s. The same symbol Sh will be used for the matrix
in Rnp×s containing the snapshots in columns.

Any array of G ∈ Rnp can be uniquely identified with a vector function of position x ∈ Ω, g(x) ∈ Yh,
simply by considering that the components of the array are the nodal values of the FE function. From
now on, a lowercase latin subscript in an array (resp. function) will denote a member of a family of
arrays (resp. functions), an uppercase subscript a nodal value and a greek subscript a component of
a nodal array. Thus, G ∈ Rnp is made of M arrays GI , I = 1, . . . ,M , each with components GI,α,
α = 1, . . . ,m. We shall identify the global index i = (I − 1) ×m + α with I, α, i.e., GI,α ≡ Gi, and
likewise for matrix components. If NI(x) is the shape function of node I of the FE mesh, recalling
that we consider equal interpolation for all variables, we may write

gα(x) =
M∑
I=1

NI(x)GI,α, α = 1, . . .m, ⇐⇒ g(x) =
M∑
I=1

NI(x)GI .

Let the truncated SVD of Sh be

Sh ≈ UΛV , U ∈ Rnp×R,Λ ∈ RR×R,V ∈ RR×ns, (7)

where R is the dimension of the truncated reduced order space and U is the matrix containing basis
vectors, U = [U1, . . . ,UR], Ui ∈ Rnp, with the following property:

UTU = I(R), (8)

where I(R) is the R×R identity matrix„ i.e., the basis vectors are orthogonal in algebraic sense with
respect to the R×R identity matrix.
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We want to construct a basis {φ1(x), . . . ,φR(x)} for Yφ such that the basis functions are L2 orthog-
onal, that is to say, ∫

Ω
φi(x) · φj(x) = δij i, j = 1, . . . , R. (9)

Note that φi(x) is a function ofm components, i = 1, . . . , R. Let its array of nodal values be Φi ∈ Rnp,
and consider the matrix Φ = [Φ1, . . . ,ΦR], that we wish to construct instead of U . The orthogonality
condition (9) translates into

ΦTMΦ = I(R), (10)

where M is the np× np mass matrix, constructed as

MI,α,J,β =
(∫

Ω
NINJ

)
δαβ, I, J = 1, . . . ,M, α, β = 1, . . . ,m.

Thus, the orthogonality of the basis vectors Φi, i = 1, ..., R, should hold with respect to the mass
matrix as inner product. We need to modify the minimization problem associated with the SVD in a
way that we get the basis fulfilling (10) instead of (8).

Decomposition (7) is the result of minimizing

J(U1, . . . ,UR) =
s∑
i=1

∥∥∥∥∥∥Snih −
R∑
j=1

(Snih
TUj)Uj

∥∥∥∥∥∥
2

Rnp

subject to UT
i Uj = δij . (11)

If instead of the basis satisfying UTU = I(R) we want a basis satisfying ΦTMΦ = I(R), we need to
replace problem (11) by its functional counterpart of minimizing

j(φ1(x), . . . ,φR(x)) =
s∑
i=1

∥∥∥∥∥∥sni(x)−
R∑
j=1

(∫
Ω
sni(x) · φj(x)

)
φj(x)

∥∥∥∥∥∥
2

L2(Ω)

subject to
∫

Ω
φi(x) · φj(x) = δij ,

(12)

where sni(x) is the function associated to array Snih , i = 1, . . . , s. It can be shown that (12) is
equivalent to minimizing its algebraic counterpart

JM (Φ1, . . . ,ΦR) =
s∑
i=1

∥∥∥∥∥∥M1/2Snih −
R∑
j=1

(
(M1/2Snih )TM1/2Φj

)
M1/2Φj

∥∥∥∥∥∥
2

Rnp

subject to ΦTMΦ = I(R).

Therefore, if the standard SVD decomposition of Ŝ = M1/2Sh is

Ŝ = Φ̂Λ̂V̂ ,

the basis we need to take for the ROM space is

Φ = M−1/2Φ̂ satisfying ΦTMΦ = I(R).

Using the above described POD, we can now construct the ROM space:

Yφ = span{φ1, . . . ,φR},
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with R = dim(Yφ)� dim(Yh).

The VMS approach for ROMs is exactly the same as the one described for the FOM with only one
key difference: in the case of a VMS-ROM, instead of approximating the unknowns in Yh, they are
approximated in Yφ. Thus, we use a FOM-ROM consistent formulation. Consistent formulations have
been shown to perform better in [57] and [58].

In the case of ROMs, using VMS we have the following splitting:

Y = Yh ⊕ Y ′ = Yφ ⊕ Y ′′, (13)

where Y ′′ represents the SGS space of the ROM space. Assume there exists a POD basis of Yh, with
H = dim(Yh). As indicated earlier, H = np minus the number of velocity degrees of freedom that have
prescribed Dirichlet boundary conditions. Obviously, this is possible if there are at least H linearly
independent snapshots. In this case, we may write

Yh = span{φ1, . . . ,φH}.

Since the POD employed provides L2 functional orthogonal basis, this in combination with the use of
orthogonal SGSs allows us to write

Y ′′ = span{φR+1, . . . ,φH} ⊕ Y ′ = Ỹ ⊕ Y ′.

With the above description, the final problem to be solved reads: for n = 0, . . . , nt − 1, find yn+1
φ =

[un+1
φ , pn+1

φ ] ∈ Yφ such that

〈δtuφ,vφ〉+B(uφ;yφ, zφ) +
∑
K

〈u′′K ,−ν∆vφ − uφ · ∇vφ −∇qφ〉K

−
∑
K

〈p′′K ,∇ · vφ〉K +
∑
E

〈u′′E , Jn · (ν∇vφ + qφI(d))K〉E = L(zφ) ∀zφ ∈ Yφ, (14)

where u′′K , p′′K and u′′E are the solutions of

δtu
′′
K + τ−1

1,Ku
′′
K = Π⊥(f + ν∆uφ − uφ · ∇uφ −∇pφ)|K ,

τ−1
2,Kp

′′
K = −Π⊥(∇ · uφ)|K ,

τ−1
E u′′E = −Jn · (ν∇uφ − pφI(d)))KE .

The time level superscript has been omitted to lighten the notation.

It is important to note that we are relying on the fact that the ROM problem is also based on a FE
mesh and the ROM basis can be written as piece-wise polynomial functions based on FE interpolation
functions. This also justifies using the same stabilization parameters of the FOM for the ROM as
well [50].

3 A posteriori sub-grid scale modeling

3.1 Fully discrete system

The spatial and temporal discretization of the FOM problem given by Eq. (6) results, for each time
step, in a matrix system of the form:

Ah(Yh)Yh = Rh, (15)
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where Ah ∈ Rnp×np is the system matrix, Yh ∈ Rnp is the array of unknowns and Rh ∈ Rnp is the
RHS, which takes into account the contributions of the previous values of Yh. For simplicity, the
dependence of Ah on Yh will be omitted from the notation from here on, except when it is needed
for clarity. We assume that Dirichlet conditions are also incorporated in matrix Ah; otherwise the
dimension np of the system should be reduced to H.

Before moving into the fully discrete ROM system, let us first provide a few definitions and notations
related to POD-ROM used in this work. As described in section 2.3, we decompose the unknown into
mean Y h and fluctuating part and then represent the fluctuating part only using the reduced order
basis. Thus, we can approximate vectors Yh as:

Yh ≈ ΦYφ + Y h, (16)

where Yφ ∈ RR, called ROM coefficients, are the components of the approximation of Yh −Y h in Vφ.
Now, let us define some operators for convenience. Firstly, we define the mapping Phφ : Rnp → RR as

Phφ(Yh) := ΦTM(Yh − Y h),

which is the algebraic version of the L2 projection from Vh (subtracting the mean) onto Vφ. Secondly,
we define the operator Pφh : RR → Rnp as:

Pφh(Yφ) := ΦYφ + Y h.

Finally, we define the third operator Phh : Rnp → Rnp as

Phh(Yh) := Pφh(Phφ(Yh)).

Note that, in general, Yh 6= Phh(Yh), because we lose information when moving form the high-
dimensional FOM space to the low-dimensional ROM space using Phφ and this information is not
recovered when we come back to the FOM space using Pφh. By construction, Phh is a projection
(P2

hh = Phh), and we shall also refer to Phφ as a projection, whereas we will call Pφh an extension
(embedding) operator.

Now, let us introduce decomposition (16) in Eq. (15) and take the FOM test function in the ROM
subspace; we get

ΦTAhΦYφ = ΦTRh −ΦTAhY h. (17)

Using the notations

Aφ := ΦTAhΦ ∈ RR×R,
Rφ := ΦT (Rh −AhY h) ∈ RR,

Eq. (17) can be written as:

AφYφ = Rφ. (18)

As we have used the same variational formulation for both, the FOM and the ROM, Eq. (18) is the
matrix system corresponding to problem (14). Since, R� np, system (18) can be solved at a fraction
of computational cost as compared to the FOM system (15). The computational cost of building the
system matrix (18) for ROM is still of the order of that of the FOM, because of the dependence of
this matrix on the unknown. Hyper-reduction techniques can be used to reduce this cost [8, 33, 44].
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However, no hyper-reduction techniques were pursued in this work, as the ideas we wish to present
can be applied independently of the hyper-reduction technique employed.

Eq. (18) represents the Galerkin projection of the FOM system onto the ROM space. In the case
of non-linear problems, Petrov-Galerkin (PG) projection has proved to be more robust in terms of
obtaining convergence of non-linear iterations [12]. In the case of PG, the final system is

Aφ,PGYφ = Rφ,PG, (19)

where now

Aφ,PG := ΦTAT
hAhΦ ∈ RR×R,

Rφ,PG := ΦTAT
h (Rh −AhY h) ∈ RR.

The techniques developed in this work are valid for both, Galerkin (18) and PG (19) systems. However,
for simplicity, we will explain the methodology for the Galerkin system (18).

3.2 ROM sub-grid scales in the FOM space

The main contribution of this paper consists in modifying system (18) so as to get a higher accuracy
for the ROM solution. This will be done by introducing the concept of ROM-SGSs in the FOM space.
These SGSs will be the difference between the ROM solution and an optimal representation of a FOM
solution in the ROM space. Therefore, we have to start by defining what do we consider this optimal
representation:

Assumption: The projection Phφ(Yh) is the best possible representation of the FOM solution Yh in
the ROM space, and Phh(Yh) its best extension back to the FOM space.

Using this assumption, we can write the unknown Yh as

Yh = Phh(Yh) + Ỹh, (20)

where Phh(Yh) is the part of Yh that the ROM space can capture and Ỹh ∈ Ỹ are the SGSs, which the
ROM space cannot capture. Since we have L2 orthogonal bases, the SGS space Ỹ is the L2 orthogonal
complement Y⊥φ of Yφ in Yh, i.e.

Yh = Yφ ⊕ Ỹ = Yφ ⊕ Y⊥φ .

Note that now in order to model the SGSs using the a posteriori approach, we are looking to complete
Yφ in Yh, and not in Y.

Of course we do not have available the FOM solution Yh for all time steps, but we do have it for the
time steps corresponding to the snapshots. The key idea of our approach is to construct a model to
approximate the ROM-SGSs in the FOM space at these time steps and then use this model for all time
steps.

Inserting the exact expression for the unknown (20) in Eq. (15) and projecting it onto the ROM space,
we get

AφPhφ(Yh) + ΦTAhỸh = Rφ.

11



The term ΦTAhỸh represents the (non-linear) interaction of the resolved scales with the unresolved
scales. We represent it as

AφZφ = ΦTAhỸh, (21)

and refer to Zφ as the a posteriori SGSs. Note that this is just a matter of representation, as we could
have opted for representing directly Dφ := ΦTAỸh, which was the approach followed in [26] in the
context of mesh or time discretization coarsening. It is stressed again that we use SGSs to correct the
ROM system and not the solution.

From here onwards, the abbreviation SGSs is used exclusively for the a posteriori SGSs Zφ. Fig. 2
shows the FOM solution, its projection onto the ROM space Phφ(Yh), the ROM solution without
taking into account the SGSs, called uncorrected ROM, and the ROM solution taking into account the
SGSs, called corrected ROM. The time evolution of these variables is represented as a continuous curve,
but we can evaluate them all only at the time instants in which the snapshots have been computed.

Figure 2: A representation of the evolution of the FOM, the projection of the FOM on the ROM subspace, the corrected ROM
and the uncorrected ROM solutions. The SGSs (error) to be modeled in the a posteriori approach are also shown.

The final reduced-order system for time step n+ 1, making now explicit this time step, is

Aφ(Y n+1
φ +Zn+1

φ ) = Rφ. (22)

At the time steps n + 1 in which the snapshots are known, Zn+1
φ could be computed exactly from

Eq. (20) and Eq. (21) and the solution to system (22) would be Y n+1
φ = Phφ(Y n+1

h ), assumed to be
optimal. However, this is not possible for all time steps. What we propose is to construct a model for
Zn+1
φ from an ANN, of the form

Zn+1
φ ≈ Zn+1

ann = Fn+1
ann (Yφ), (23)

where the ANN Fann will be trained by imposing that, at the time steps n + 1 corresponding to the
snapshots, Zn+1

ann be as close as possible to the exact SGSs Zn+1
φ . Note that the ANN depends only

on the ROM solution. This dependence will be further elaborated later on.

An important remark concerning the possibility to construct the exact SGSs Zn+1
φ is in order. First,

as we have said, n + 1 ∈ {n1, . . . , ns}. But, since system (22) involves also an approximation to the
time derivative, this needs to be computed also from previous projected snapshots. For example,
using first order backward differences (BDF1), if n + 1 = nk+1 we need to approximate the time
derivative in the FOM space using also the snapshot at nk, or to store directly not only the snapshots,
but also their approximate time derivatives. The latter is precisely the strategy we have adopted in
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our implementation when the time derivative of the unknown is required. For the former, the time
step size to be used is δtk = (nk+1 − nk)δt. Note that we may consider n0 = 0 and take the initial
condition as a known snapshot. The extension of this procedure to higher order muti-step schemes is
straightforward, although for the sake of conciseness we shall restrict the exposition to BDF1.

4 Modeling a posteriori sub-grid scales with Artificial Neural Net-
works

The objective of this work is to present a correction for ROMs and to demonstrate that ANNs can
be used to model the correction. The choices made regarding the numerical methodology and ANNs
do not affect the main idea of this work. We were able to achieve desired results using particular
implementations but we do not claim them to be optimal. Wherever possible, we discuss our choices
regarding ANNs, however, we do not want to emphasize them too much so that it obscures the main
message of this work.

In this work, we use Feedforward Neural Networks (FNNs). These are among the simplest ANNs and
thus used here to keep the element of ambiguity associated to ANNs to a minimum. Furthermore,
an effort is made to keep the architecture and inputs of FNNs to be as simple as possible as well,
increasing the complexity only when required. We use these ANN mostly as black boxes.

In this work, all of the implementation related to ANNs is done using Keras API [15], with TensorFlow
[1] as the backend.

4.1 Data gathering for ANN training

The data to construct the ANN we propose are the exact snapshots. As it has been said, they can be
computed from Eq. (20) and Eq. (21). Let us explain now in detail this calculation, making explicit
the dependence of the system matrix and RHS on the snapshots.

Let n be such that n+ 1 = nk+1 ∈ {n1, . . . , ns}, i.e., we have at our disposal the snapshot Sn+1
h . As

stated in the main assumption, the target of the corrected ROM is Y n+1
φ ≈ Phφ(Sn+1

h ) =: Sn+1
φ , i.e,

Zn+1
φ has to be such that the solution to

Aφ,S(Y n+1
φ +Zn+1

φ ) = Rφ,S (24)

is Y n+1
φ = Sn+1

φ , where

Aφ,S := ΦTA(Phh(Sn+1
h ))Φ,

Rφ,S := ΦT [R(Phh(Snkh ))−A(Phh(Sn+1
h ))Y h].

These are the matrix and RHS computed with the best possible representation of the snapshots in the
ROM space transferred to the FOM space (we have built A using Phh(Y n+1

h ) instead of Y n+1
h ), and

taking as initial condition Phh(Snkh ). The time step for the calculation of the time derivative is δtk.

Let us see a particular implementation of how to compute Zn+1
φ so that the solution to Eq. (24) is

Y n+1
φ = Sn+1

φ . For that, let us consider the system

Aφ,SS
n+1
φ,pred = Rφ,S . (25)
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From Eq. (24), imposing that Y n+1
φ = Sn+1

φ , we have:

Zn+1
φ = A−1

φ,S(Rφ,S −Aφ,SS
n+1
φ )

= Sn+1
φ,pred − S

n+1
φ

= Sn+1
φ,pred − Phφ(Sn+1

h ). (26)

Thus, we need to gather Phφ(Sn+1
h ) by projecting onto the ROM space the snapshots solution of (15)

for different time steps, and we need to compute Sn+1
φ,pred by solving (25).

Let us denote the projected snapshot matrix as Sφ = [Phφ(Sn1
h ), . . . ,Phφ(Snsh )] ∈ RR×ns , the uncor-

rected ROM solution matrix as Sφ,pred = [Sn1
φ,pred, . . . ,S

ns
φ,pred] ∈ RR×ns and the target SGS matrix as

Zφ = [Zn1
φ , . . . ,Zns

φ ] ∈ RR×ns . Then, Eq. (26) can be written as

Zφ = Sφ,pred − Sφ. (27)

We have therefore built a mapping:

Sn+1
h 7→ Sn+1

φ 7→ Zn+1
φ , ∀n+ 1 = nk+1 ∈ {n1, . . . , ns},

i.e., for each snapshot we obtain the target (exact) SGS. Equivalently, we have the mapping

Sh 7→ Sφ 7→ Zφ, with Sh ∈ Rnp×ns , Sφ,Zφ ∈ RR×ns .

This will serve to construct the approximation indicated in (23) using an ANN, that is to say, {Sφ,Zφ}
will be taken as the training set of the ANN.

Remark 1. In this work we correct the system/model and not the solution. Since our correction comes
out to be equal to the difference between two solutions, it might seem valid to find the uncorrected
solution by solving the uncorrected system (18) and then subtracting the subscales from it to get the
correct solution as per Eq. (26) during the execution phase, i.e.,

1. Solve (18) to get Y n+1
φ,pred

2. Find Y n+1
φ = Y n+1

φ,pred −Z
n+1
φ as per Eq (26).

However, the solution to the uncorrected system (18) is not Y n+1
φ,pred = Sn+1

φ,pred. During training, we
obtain Sn+1

φ,pred from Eq. (25) which uses the correct nonlinear operator Aφ,S(Phh(Sn+1
h )) instead of

Aφ(Y n+1
φ,pred). Hence, Sn+1

φ,pred is not the solution to the uncorrected ROM system (18). Consequently, in
the execution phase, the correction must be included in every iteration, thus updating the nonlinear
operators using the corrected solution so that we arrive at system (24) near convergence. Then the
solution is Y n+1

φ ≈ Sn+1
φ , as desired.

4.2 Functional dependence of the ANN

According to (23), Zn+1
ann = Fn+1

ann (Yφ) depends generically of Yφ; on purpose, we have not specified the
time level of the argument. In fact, we have observed that when designing Zn+1

ann it is very important
that Fann can accept the values of Yφ at different times steps and the values of time derivatives of Yφ
of different order as input. In particular, we have found this necessary when considering parametric
cases (see Section 5). In our case, in which we have a first order derivative in time and using the

14



BDF1 scheme, we will construct the ANN at time step n+ 1 as a function of Y n+1
φ and, if needed, of

the approximation of the derivative of this variable at n+ 1, which we shall denote as Ẏ n+1
φ . Thus,

Zn+1
ann = Fn+1

ann (Yφ) = Fann(Y n+1
φ , Ẏ n+1

φ ). (28)

An additional decision that needs to be made here is whether to predict the SGSs components Zann,i,
i = 1, . . . , R, associated to each Yφ,i, i = 1, . . . , R, collectively using a single ANN Fann, or having
a separate ANN Fann,i for each SGS component. The actual choices made in this regard will be
discussed in section 5, as this depends on the problem at hand. The goal is to use the simplest ANN
that can learn the mapping: inputs 7→ outputs.

The implicit dependence given by Eq. (28) introduces the need for some sort of linearization when
the SGSs are introduced in the ROM equations. This can be treated using a fixed point strategy, as
adopted in this work, or a Newton-like linearization, as it is suggested in [26].

Regarding the dependence of the SGS on the time derivative of the ROM solution, it can be considered
a more general dependence than just taking the ROM solution. However, even if we do not have an
evolution equation for the ROM scales and the SGSs, should we have started from such equations,
we would have obtained such a dependence, using for example Mori-Zwanzig formalism (see, e.g.,
[29, 48] for applications of this formalism in the FE and ROM contexts, respectively). In fact, the
exact dependence would be on the whole history of ROM scales, but the most relevant terms are
known to be those of the previous time steps, contained in their temporal derivate. This provides a
heuristic justification for the functional dependence indicated in Eq. (28). The relevant number of
previous timesteps, or the derivative order, is problem-dependent. For the cases considered in this
work, including just the first derivative proved to be sufficient.

4.3 Normalization of the data

The inputs and outputs of the training phase will be normalized to improve the training performance.
Two commonly used normalization techniques are z-score based and min-max based. LetXφ ∈ Rni×s,
be the collection of training inputs, with ni being the number of input components to the ANN. In
the case given by Eq. (28) we would have that Xnj

φ = [Snjφ , Ṡ
nj
φ ], j = 1, . . . , s, and ni = 2R.

A min-max normalization is used to get the values in the range of 0-1. The use of min-max normaliza-
tion in our case can be justified by the fact that we will be using the ReLU activation function, which
offers quicker training for regression problems. Since it zeros all the negative values, the normalization
used should represent the inputs in terms of positive numbers to prevent any loss of information, thus
leading to our use of min-max normalization in the range of 0-1 . To do this, first the minimum and
maximum values for each input and output are found as

Xmin,i = min
j=1,...,s

X
nj
φ,i, Xmax,i = max

j=1,...,s
X
nj
φ,i, i = 1, . . . , ni,

Zmin,i = min
j=1,...,s

Z
nj
φ,i, Zmax,i = max

j=1,...,s
Z
nj
φ,i, i = 1, . . . , R,

and then the values are normalized by applying the transformations

X
nj
φ,i 7→

X
nj
φ,i −Xmin,i

Xmax,i −Xmin,i
, (29)

Z
nj
φ,i 7→

Z
nj
φ,i − Zmin,i

Zmax,i − Zmin,i
. (30)
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Transformations (29) are applied also to the validation and testing inputs but using the min-max
value found for the training set. To denormalize the ANN outputs, we use the inverse transformation
of (30). We assume henceforth that data and outputs are normalized.

4.4 Loss function

The ANN given by Eq. (28) has to be constructed with the goal that it approximates as closely as
possible the exact SGSs given by Eq. (26) (or its matrix version given by Eq. (27)) when the inputs
are the snapshots. Therefore, the ANN is trained by minimizing the loss function which is a sum of
mean squared error (MSE) in the prediction of SGSs and the L2 regularization term, i.e., the following
problem is solved:

min
θ
J (θ) = min

θ

1
s

s∑
i=1
‖Zni

ann −Z
ni
φ ‖

2 + λ
nw∑
j=1

W 2
j

 (31)

where θ consists of the weightsW and biases of the ANN, λ is the regularization parameter of the L2

regularization and nw is the total number of weights. The regularization helps in preventing the ANN
from over-fitting the training data. Adam stochastic optimizer [38] is used to solve (31) to obtain
the optimal weights and biases. We use mini-batches of size 1 < nb < s equal to 2n, where n is an
integer, to speedup the training process. The training is stopped when the convergence with respect
to specified tolerance is achieved, i.e., J < tol-train, or when the training has lasted the prescribed
number of steps max-epochs. The training speed is controlled by a constant learning rate η. In the
numerical examples, the hyper-parameters are tuned using a trial and error method. The training on
a given data is performed multiple times to minimize the effect of random weight initialization. The
trained model which gives the best performance for the validation set is used.

4.5 Testing (execution) phase

The sequence of operations for a time step of corrected ROM in the testing phase is as follows:

Y n
φ

extend to−−−−−−−→
FOM space

Pφh(Y n
φ ) build matrix−−−−−−−→

system
Aφ(Y n+1

φ +Zn+1
ann ) = Rφ

solve−−−→ Y n+1
φ

where

Aφ = ΦTA(Pφh(Y n+1
φ ))Φ,

Rφ = ΦT [R(Pφh(Y n
φ ))−A(Pφh(Y n+1

φ ))Y h],
Zn+1

ann = Fann(Y n+1
φ , Ẏ n+1

φ ).

Note that the problem is nonlinear, both because of the dependence of matrix A on the unknown and
because of the nonlinearity of the ANN.

The training and testing processes are outlined in Algorithm 1.

5 Numerical examples

The numerical results are performed for non-parametric and parametric cases. The non-parametric
cases involve the flow over a cylinder, over a backward facing step and over three cylinders in a
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Algorithm 1 Training and testing algorithm
Training

1: Run the FOM for nt time steps and gather s solutions (snapshots), storing them in Sh
2: Use the POD approach explained in section 2.3 to find the basis matrix Φ
3: Project the FOM snapshot matrix Sh using Phφ(Sh) and store it in the projected snapshot matrix
Sφ

4: Solve the uncorrected system (25) and store the results in matrix Sφ,pred
5: Find the SGSs matrix Zφ using Eq. (27)
6: Normalize the training data {Sφ, Ṡφ,Zφ} using transformations (29)-(30)
7: j = 0
8: while J ≥ tol-train and j ≤ max-epochs do
9: Solve the optimisation problem (31) to find the weight and bias matrix θ

10: j = j + 1
11: end while
12: Save the trained ANNs and the normalization data
Testing

1: Load the saved ANNs and the normalization data
2: for n = 0;n < nt;n+ 1 do . time loop
3: for k = 0; k < kmax; k + 1 do . nonlinear iteration loop
4: Compute the normalized Zann based on the inputs, normalized using transformations (29)
5: Denormalize Zann using the inverse of transformation (30)
6: Solve a non-linear iteration of ROM system (22) using Zann
7: end for
8: end for

triangular arrangement. The parametric analysis is carried out for the flow over a cylinder only, with
the Reynolds number Re serving as the parameter. It will be assumed that the snapshots are known
for consecutive time steps 1, 2, . . . , s.

The performance of ANNs is evaluated in the following scenarios:

• Reconstruction evaluation: The ANN is trained on the data obtained on the time interval
[0, T1] and the parameter value Re, and then used for prediction in the same time interval [0, T1]
and for the same parameter value Re. Note that even for the reconstruction phase, the input
values to the ANN for the training and testing phases do vary. During the training phase, the
FOM projection of the snapshots Phφ(Sh) (and time derivatives if needed) is used as the input,
whereas during the testing phase the ROM solution Yφ (and time derivatives if needed), close
enough but not equal to Phφ(Sh), is provided as the input. Hence, the reconstruction phase is
not equivalent to evaluating the performance of a trained ANN on the training data itself.

• Temporal evaluation: The ANN is trained on the data obtained on the time interval [0, T1]
and the parameter value Re, and then used for prediction in the extended time interval [0, T2],
where T2 > T1. The parameter value is still the same Re. Both periodic and non-periodic
cases are considered. For periodic cases, periodicity is the inherent characteristic of the desired
solution i.e. we can only have a solution if the state of periodicity is reached. Though the
original flow is periodic, it will be seen later that the uncorrected ROM is unable to maintain or
achieve the periodicity, whereas, the corrected ROM maintains it in most of the cases. Hence,
in general, the uncorrected ROM would be unable to achieve a state that could be regarded as
the solution. This motivates using temporal evaluation criteria for periodic solutions as well.
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• Parametric evaluation: The ANN is trained on the data obtained on the time interval [0, T1]
and the parameter values Re = {Re1, . . . ,Renv}, with Re1 being the minimum and Renv being
the maximum value, and then used for prediction in the same time interval [0, T1] but for a
different parameter value Re. Both, interpolation and extrapolation cases are analyzed. For the
interpolation case, Re ∈ [Re1,Renv], whereas for the extrapolation case Re /∈ [Re1,Renv].

• Temporal and Parametric evaluation: The ANN is trained on the data obtained on the time
interval [0, T1] and the parameter values Re = {Re1, . . . ,Renv}, and then used for prediction in
the extended time interval [0, T2], where T2 > T1, and for a different parameter value Re. Again,
this is done for both the parametric interpolation and the extrapolation phases.

Note that in the interpolation and extrapolation of parametric cases, only ANN based SGSs are
interpolated and extrapolated, respectively. The basis functions are based on the value of the testing
Re, as this work focuses on evaluating the performance of the ANN and not in the way bases are
interpolated. Doing so, other sources of errors are eliminated. For all the examples, we use the BDF
scheme of first order for the time integration and Picard’s scheme for linearization. We use Petrov-
Galerkin projection to have an improved convergence of non-linearities. The data used for constructing
the ROM basis and training the ANNs vary from case to case. The variation is introduced to show
that the ANNs can work effectively under a variety of scenarios.

Performance evaluation criteria

Accuracy: For each case, we use all or some of the following accuracy evaluation criteria. The
qualitative comparison is done by comparing the plots of the time evolution of the problem unknowns,
e.g., pressure p and velocity magnitude u. Additionally, we perform a quantitative analysis using
a root-mean-square deviation (RMSD) of the FOM and ROM solutions at a point to get an error
measure. If Y n+1

FOM is a scalar quantity obtained by solving the FOM at time n+ 1, n = 0, . . . , nt− 1,
and Y n+1

ROM is the one obtained with the ROM, we have

YRMSD =

√√√√ 1
nt

nt−1∑
n=0

(Y n+1
FOM − Y

n+1
ROM)2.

In addition to the error measurement, we analyze the frequency spectrum of scalar outputs using a
Discrete Fourier Transform (DFT).

Computational cost: In addition to accuracy comparison, wall clock times are provided and com-
pared for non-parametric and parametric cases. Computational cost associated with all the represen-
tative numerical examples is provided and discussed in section 5.3.

5.1 Non parametric analysis

ANN: For the non-parametric study, it was found sufficient to approximate the SGSs using Zann =
Fann(Yφ), i.e., the mapping could be learned without the time derivatives. For the testing phase, we
write system (22) for the k + 1-th non-linear iteration of a time step as

Aφ(Y (k)
φ )Y (k+1)

φ = Rφ −Aφ(Y (k)
φ )Fann(Y (k)

φ ),

where (k) now is the iteration counter for our nonlinear problem and the time step counter has
been omitted. In the following, if only the time step superscript is used (without parenthesis) it is
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understood that it corresponds to converged values, whereas if only the iteration superscript is used
(with parenthesis) it is understood that it corresponds to the current time step.

It is observed that we use a fixed point linearization scheme and that the correcting term is evaluated
in the previous nonlinear iteration. Other options could be explored, but in the numerical examples
we have found this one effective.

In the case of transient problems, like the ones considered in this work, for the first iteration of a time
step n+ 1 we take Y n+1,(0)

φ = Y n
φ , i.e., the converged value of the unknown at the previous time step.

A single ANN is used, which takes all the ROM coefficients as inputs and gives all the SGSs as output:

Yφ → Fann → Zann.

For the non-parametric study, this approach worked. However, this is not the case in general, as we
will see for the parametric case. As a matter of fact, there is not any theoretically correct approach
when it comes to ANNs. Different combinations need to be experimented, and the one that works
best is selected. The parameters and hyper-parameters chosen for the ANN in this section are shown
in Table 1. The small value of λ in this case corresponds to almost no need of regularization, as the
ANN was not over-fitting the training data.

Table 1: List of hyper-parameters used in training the ANNs for non-parametric examples.

Variables Flow over a cylinder Backward facing step
Number of hidden layers 1 3
Number of neurons in each hidden layer 20 20
Batch size 8 8
tol-train 10−4 10−4

max-epochs 200 200
Validation data set % 20 20
Regularization parameter λ 10−10 10−10

Learning rate 10−3 10−3

5.1.1 Flow over a cylinder

Computational Setting

Consider the two dimensional channel flow over a cylinder. The computational domain is Ω =
]− 4, 12[ × ]− 4, 4[ minus the cylinder, with the center of the cylinder located at (0, 0). We take
its diameter as D = 1. At the inlet x = −4, we take ux = 1 and uy = 0, whereas the top edge y = −4
and the bottom edge y = 4 have uy = 0 and ux is left free. Both velocity components, ux and uy, are
left free at the outlet x = 12. The viscosity ν is selected to achieve the required Re. For the FOM, a
symmetric mesh of 39360 bilinear quadrilateral elements and 39760 nodal points is used to discretize
the domain. The mesh is refined near the cylinder to better capture the vortex generation. δt = 0.05
is used as the time step for both the FOM and the ROM. A preliminary run of 2000 time steps is
performed to obtain a fully developed flow. We refer to this developed flow as the initial condition
for the examples, i.e., t = 0 corresponds to the developed flow. Fig. 3 shows velocity and pressure
contours of the fully developed flow for visualization. The control point of coordinates (1, 0.5) located
immediately behind the cylinder in the vortex generation region is used to compare the values of p
and u.
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Figure 3: Contours of the FOM for the flow over a cylinder at Re = 250

Reconstruction Phase

Data gathering for ROM basis and ANN: The FOM solutions for t ∈ [0, 15], i.e., 300 time
steps, are used to calculate the ROM basis. The ROM is also run for 300 time steps to gather data,
which, in addition to the data from the FOM, are used to train the ANN. The number of basis to
be used is chosen to be R = 3 to replicate a highly truncated ROM, such that the ROM space can
represent the FOM space with reasonable accuracy but it has enough error so that the improvement
introduced by the ANN could be seen.

Results: The performance of the ANN for the reconstruction phase is evaluated for Re = {100,
150, 200, 250, 300, 500, 750, 1000} using the same Re for the training and testing phases. Fig. 4
shows a comparison of p and u at the control point (1,0.5) at Re = 250 for the FOM, the uncorrected
ROM and the corrected ROM. It can be seen that the results of the corrected ROM are almost
indistinguishable from the FOM, whereas the uncorrected ROM diverges from the FOM results. Fig.
5 shows a comparison of the DFT of p and u for the FOM and the ROMs. Here again, the corrected
ROM perfectly captures all the frequencies. As a result, the corrected ROM correctly captures the
shape of the time evolution of u in Fig. 4, whereas the uncorrected ROM fails to do so. Table 2 shows
that the corrected ROM has an order of magnitude less RMSD than the uncorrected ROM.

Figure 4: Comparison between the FOM and the ROMs for the reconstruction phase at Re = 250. Flow over a cylinder

The RMSD for p and u at different Re are plotted in Fig. 6. An interesting observation is that while the
error increases monotonically with Re (more complex flows) for the uncorrected ROM, the same is not
true for the corrected ROM. Although the same hyper-parameters and multiple weight initializations
have been used to train the ANN for each Re, the trained ANN has different prediction accuracy in
the testing phase for the various tested Re. This explains the non-monotonic error behavior.
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Figure 5: Comparison of DFT between the FOM and the ROMs for the reconstruction phase at Re = 250. Left: p. Right: u.
Flow over a cylinder

Table 2: RMSD values for the reconstruction phase for p and u at Re = 250

Re pressure velocity magnitude
corrected uncorrected corrected uncorrected

250 2.015 × 10−3 2.449 × 10−2 8.646 × 10−3 6.495 × 10−2

We also analyze the behavior of the ROM coefficients and SGSs. Fig. 7 shows the time evolution
of the projected FOM coefficients Phφ(Yh), the corrected ROM coefficients Yφ and the uncorrected
ROM coefficients at Re = 250. It also shows the associated exact SGSs Zφ and the ones modeled
using the ANN, Zann. We note that the highest mode Yφ,3 has the highest SGS amplitudes, thus
leading to a significant difference in its behavior for the corrected and the uncorrected ROM. In terms
of frequencies, Zφ,3 appears to consist of one or two dominant frequencies, whereas Zφ,1 and Zφ,2 are
a more complex functions of frequencies. The ANN can take into account all the complexities and
predict Zann very close to Zφ.

Temporal extrapolation phase

Data gathering for ROM basis and ANN: We use a different number of snapshots and basis
functions to show that the correction works for a variety of scenarios. For this example, the FOM
solutions for t ∈ [0, 5], i.e., 100 time steps, are used to calculate the ROM basis. The ROM is also run
for 100 time steps to gather data, which, in addition to the data from the FOM, are used to train the
ANN. The number of basis to be used is chosen to be R = 6 in this case.

Figure 6: Variation of RMSD with Re for the corrected and the uncorrected ROM. Flow over a cylinder
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Figure 7: Comparison of projected FOM and ROM coefficients (top) and SGSs (bottom). From left to right: Coefficients and
SGSs associated to modes 1, 2 and 3. Flow over a cylinder

Results: The performance of the ANN for the temporal extrapolation is evaluated for Re = {250, 750}.
The training is done for t ∈ [0, 5], whereas the testing is done for t ∈ [0, 50], i.e., 10 times the training
period. A comparison of p and u for the FOM, the uncorrected ROM and the corrected ROM at
Re = 250 is shown in Fig. 8. The corrected ROM performs excellently for this temporal extrap-
olation, producing a solution nearly identical to that of the FOM. However, the uncorrected ROM
quickly losses the amplitude with time, having a large discrepancy in amplitude at t = 50 with the
FOM solution. Moreover, the uncorrected ROM has not yet converged to an amplitude value. Based
on the current trend, the uncorrected ROM would either converge to a much lower amplitude or might
even result in a steady flow without oscillations. Both solutions would be significantly different from
the actual flow. In terms of quantitative error, table 3 shows that the corrected ROM has up to an
order of magnitude less error than the uncorrected ROM.

Figure 8: Comparison between the FOM and the ROMs for the temporal extrapolation phase at Re = 250. Flow over a cylinder

Table 3: RMSD values for the temporal extrapolation phase for p and u at Re = 250, 750

Re pressure velocity magnitude
corrected uncorrected corrected uncorrected

250 4.905 × 10−3 5.829 × 10−2 7.019 × 10−3 8.900 × 10−2

750 9.420 × 10−2 6.323 × 10−1 1.678 × 10−1 9.263 × 10−1
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5.1.2 Flow over a backward facing step

Computational Setting

The computational domain consists of a rectangle ]0, 44[ × ]0, 9[ minus a step of unit height placed at
(4, 0). At the inlet x = 0, we take ux = 1 and uy = 0, whereas the top and bottom boundaries are
prescribed a classical wall law. We take the wall distance defining the wall model to be δ = 0.001.
The outlet x = 44 has both, ux and uy, left free. The viscosity is prescribed to be ν = 2.5 × 10−5,
resulting in Re = 40000 calculated using the inlet velocity and the step size. A mesh of 31000 bilinear
quadrilateral elements and 31371 nodes is used to discretize the domain for the FOM. The mesh is
refined near the step to better capture the vortex generation. The BDF scheme of first order with
δt = 0.05 is used for time integration for both the FOM and the ROM. A preliminary run of 2000
time steps is performed to obtain a fully developed flow. We consider this developed flow as the initial
condition for the examples, i.e., t = 0 correspond to the developed flow. Also, to stabilize the solution
at Re = 40000, dynamic SGSs are used [21]. Fig. 9 shows velocity and pressure contours of the FOM
for the flow visualization. The control point (5, 1), located immediately behind the step in the vortex
generation region, is used to compare the values of p and u.

Figure 9: Contours of the FOM for the flow over a backward facing step at Re = 40000

Reconstruction Phase

Data gathering for ROM basis and ANN: The FOM solutions for t ∈ [0, 50] with snapshots at
every third time step, i.e., a total of 333 snapshots, are used to calculate the ROM basis. The ROM
is also run for 1000 time steps, with data gathered for every third time step, which, in addition to
the data from the FOM, are used to train the ANN. We use three different numbers of POD modes,
R = {7, 26, 77}, corresponding to the retained energy η = {0.6, 0.9, 0.95}, to analyze the behavior of
the corrected ROM.

Results: Fig. 10 shows the temporal evolution of p and u for R = {7, 26}. Also, the DFTs of the
variables p and u for R = {7, 26} are shown in Fig. 11. Finally, the RMSD for R = {7, 26, 77} for p
and u is shown in Table 4. From the time evolution behavior, the DFT and the RMSD it can be seen
that the corrected ROM outperforms the uncorrected ROM irrespective of the variable being analyzed
or the number of basis vectors being used. There might be some slight discrepancies, e.g., the DFT of
velocity magnitude for R = 26, in which the uncorrected ROM appears to capture slightly better the
high frequencies as compared to the corrected ROM. However, we can see from the RMSD values that
the corrected ROM still performs better, even for this case. Fig. 12 shows the RMSD for p and u as
a function of R. In terms of convergence, both ROMs, corrected and uncorrected, approach the FOM
solution as the number of basis is increased from 7 to 77. We also note that the difference between
the corrected and the uncorrected ROM solutions is maximum for fewer modes, i.e., R = 7, with
the corrected ROM being more than twice more accurate than the uncorrected ROM. For R = 77,
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both ROM solutions approach the FOM solution, with the corrected ROM being consistently more
accurate.

Figure 10: Comparison between the FOM and the ROMs for the reconstruction phase. Top: η = 0.6 and R = 7, bottom: η = 0.9
and R = 26. Flow over a backward facing step

Table 4: RMSD values for the reconstruction phase for p and u. Flow over a backward facing step

No of basis pressure velocity magnitude
corrected uncorrected corrected uncorrected

7 6.177 × 10−2 1.808 × 10−1 9.113 × 10−2 1.819 × 10−1

26 1.036 × 10−2 1.566 × 10−2 1.871 × 10−2 3.127 × 10−2

77 5.871 × 10−4 9.374 × 10−4 9.240 × 10−4 1.096 × 10−3

Remark 2. The capability of the uncorrected ROM, equipped with the a priori closure model only, to
capture the FOM solution correctly is in contrast to what we observed in [7]. This can be attributed
to two differences in the approach used. First, in [7] the a priori SGSs were assumed to belong to Ỹ,
whereas in this work they are assumed to belong to Y ′′ = Ỹ ⊕ Y ′. Second, the ROM basis used in [7]
was orthogonal in the algebraic sense, i.e., ΦTΦ = I(R), whereas in this work the ROM basis is chosen
to be orthogonal in the L2 functional sense, i.e., ΦTMΦ = I(R).

Temporal extrapolation Phase

Data gathering for ROM basis and ANN: The data used for the basis construction and ANN
training are the same as those used in the reconstruction phase, i.e., the FOM and ROM solutions for
t ∈ [0, 50].

Results: The corrected and uncorrected ROMs are run for t ∈ [0, 150], i.e., 3000 time steps. Again,
results are analyzed for three different number of POD modes, R = {7, 26, 77}. Fig 13 shows the
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Figure 11: Comparison of DFT between the FOM and the ROMs for the reconstruction phase. Top: R = 7, bottom: R = 26,
left: p, right: u. Flow over a backward facing step

Figure 12: RMSD as a function of R for the corrected and the uncorrected ROM for the reconstruction phase. Flow over a
backward facing step

temporal evolution of p and u for R = 7. The RMSD values for different R for p and u are shown in
Table 5. The time evolution behavior and RMSD values show that the trend of the corrected ROM
performing consistently better is also replicated in the temporal extrapolation phase. Fig. 13 shows
that for the highly truncated scenario, R = 7, the uncorrected ROM starts to differ drastically in
amplitude at t = 100, whereas the corrected ROM still maintains the amplitude with slight error
in frequency. Thus the more the ROM basis is truncated, the higher is the need of the ANN based
correction model to get accurate results. It can also be noticed that the pressure amplitude of the
uncorrected ROM is constantly increasing and could result in quite a large value if the simulation is
continued for a longer time. For the velocity magnitude, even the mean value seems to be increasing
with time. For the corrected ROM, a slight mismatch in frequency can be observed. However, the
amplitude remains approximately constant throughout. Hence, reasonable conclusions can still be
drawn regarding the dynamical behavior of the system using the corrected ROM. Fig. 14 shows the
RMSD for p and u as a function of R. A convergence behavior similar to the reconstruction phase
can be observed here as well.
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Figure 13: Comparison between the FOM and the ROMs with η = 0.6 and R = 7 for the temporal extrapolation phase. Flow
over a backward facing step

Table 5: RMSD values for the temporal extrapolation phase for p and u. Flow over a backward facing step

No of basis pressure velocity magnitude
corrected uncorrected corrected uncorrected

7 1.956 × 10−1 3.702 × 10−1 2.071 × 10−1 2.489 × 10−1

26 3.405 × 10−2 1.043 × 10−1 3.806 × 10−2 1.043 × 10−1

77 5.156 × 10−3 9.065 × 10−2 5.974 × 10−3 1.062 × 10−2

5.1.3 Flow over three cylinders in a triangular arrangement

5.1.4 Computational Setting

The purpose of this example is to show the capability of the corrected ROM to capture the complexity
of transient non-periodic flows. Consider the two dimensional channel flow over three circular cylinders
in a triangular arrangement. The computational domain is Ω =] − 4, 16[ × ] − 5, 5[ minus the three
cylinders, with the centers of these located at (0, 0), (2, 1) and (2,−1). The diameter of the all the
cylinders is set to D = 1. Boundary conditions similar to the flow over a cylinder are used. The
viscosity ν is selected to achieve Re = 1000. An unsymmetrical mesh of 12289 bilinear triangular
elements and 6349 nodal points is used to discretize the domain for the FOM. δt = 0.05 is used as
the time step for both the FOM and the ROM. A preliminary run of 3000 time steps is performed to
allow the flow to develop. We refer to this flow as the initial condition for the examples, i.e., t = 0
corresponds to this flow. Fig. 15 shows velocity and pressure contours for flow visualization. It can be
seen that the flow has more complex features than the previous examples. The control point located
at (4, 0.5) is used to compare the values of p and u.

Figure 14: RMSD as a function of R for the corrected and the uncorrected ROM in the temporal extrapolation phase. Flow over
a backward facing step

26



Figure 15: Contours of the FOM for the flow over three cylinders at Re = 1000

Reconstruction Phase

Data gathering for ROM basis and ANN: The FOM solutions for t ∈ [0, 15], i.e., 300 time
steps, are used to calculate the ROM basis. The ROM is also run for 300 time steps to gather data,
which, in addition to the data from the FOM, are used to train the ANN. The corrected ROM is run
using R = 20, whereas the uncorrected ROM is run using R = 80.

Results: Due to the lack of periodicity, the uncorrected ROM is expected to produce poor results
irrespective of the number of basis modes used. Fig. 16 shows that even with R = 80 and η = 0.999,
the uncorrected ROM gives poor results for p and u, whereas the corrected ROM with only R = 20
can produce results very similar to the FOM. Fig. 17 shows that the corrected ROM captures the
frequency spectrum better as well. Table 6 shows that the corrected ROM has up to four times less
error than the uncorrected ROM. Thus, the corrected ROM cannot only produce more accurate results
than the uncorrected ROM for highly truncated cases, but it can also capture a complex non-periodic
flow evolution that the uncorrected ROM cannot capture even with η ≈ 1.

Figure 16: Comparison between the FOM and the ROMs for the reconstruction phase at Re = 1000. Flow over three cylinders

Table 6: RMSD values for the reconstruction phase for p and u at Re = 1000

Re pressure velocity magnitude
corrected uncorrected corrected uncorrected

1000 1.813 × 10−2 7.259 × 10−2 2.801 × 10−2 1.206 × 10−1
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Figure 17: Comparison of DFT between the FOM and the ROMs for the reconstruction phase at Re = 1000. Left: p, right: u.
Flow over three cylinders

Temporal extrapolation phase

Data gathering for ROM basis and ANN: Due to the chaotic nature of the flow, more snapshots
are gathered for basis construction, as well as, for the ANN training. Also, the mesh used was found to
be not fine enough to resolve the flow properly even for the FOM. Thus, the Smagorinsky turbulence
model is used with a Smagorinsky constant value of 0.1. The FOM solutions for t ∈ [0, 100], i.e., 2000
time steps, are used to calculate the ROM basis. The ROM is also run for the same number of steps to
gather data, which, in addition to the data from the FOM, are used to train the ANN. The number of
basis to be used is chosen to be R = 16 in this case, so that the basis is able to capture the prominent
features of the system.

Results: The performance of the ANN for the temporal extrapolation is evaluated for t ∈ [100, 200].
Owing to the chaotic nature of the flow, the spectra of flow variables, p and u, provide more relevant
information than their time evolution, as this time evolution may differ completely at a given point
and a given time for slight differences in the numerical approximation. So, we compare the DFTs of
flow variables to draw conclusions regarding the performance of ANN correction for the flow over three
cylinders. A comparison of DFTs of p and u for the FOM, the uncorrected ROM, and the corrected
ROM is shown in Fig. 18. The maximum frequency along the x-axis is chosen to be 3 Hz, so that with
∆t = 0.05, we have enough samples, around 7 in this case, to determine the system response at the
highest frequency. From the figure, it can be seen that the spectra of corrected ROM follow the FOM
spectra much more closely than the uncorrected ROM. In general, the corrected ROM spectra capture
the trend and peaks more accurately for low frequencies. However, the difference in the behavior
is more pronounced for the higher frequencies. Particularly, for the velocity magnitude, it can be
observed that the uncorrected ROM incurs about an order of magnitude of error at high frequencies.

5.2 Parametric Analysis

The parametric examples are performed for the flow over a cylinder by interpolating and extrapolating
the Reynolds number Re. This is analyzed with and without extrapolation in time.

The computational setting is the same as for the flow over a cylinder used in the non-parametric
analysis.
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Figure 18: Comparison of DFT between the FOM and the ROMs for the temporal extrapolation phase at Re = 1000. Left: p,
right: u. Flow over three cylinders

ANN: For the parametric study, the parameter Re needs to be provided as an additional input
for training the ANN. Furthermore, the approximation Zn

φ ≈ Zn
ann = Fann(Y n

φ ,Re) for each time
step n was found to be insufficient in this case. The ANN was unable to predict the solution for a
Re for which it was not trained, irrespectively of the tuning of the hyper-parameters, the number of
neurons and layers, and the amount of training data. To overcome this bottleneck, for the parametric
study it is assumed that Zn

ann = Fann(Y n
φ , Ẏ

n
φ ,Re), i.e., SGSs are assumed to depend on the first time

derivatives of the ROM coefficients as well.

Once we have the trained model, the linearized system at a given time step while testing is given by

AφY
(k+1)
φ = Rφ −AφFann(Y (l)

φ , Ẏ
(l)
φ ,Re), (32)

with Aφ evaluated with Y (k)
φ . In the case of the parametric study, setting l = k with Y n+1,(0)

φ = Y n
φ ,

i.e., the converged value of Yφ at the previous time step, did not work as it worked for the non-
parametric case. This can be attributed to the large difference in the values of the derivative for the
first and subsequent iterations. In order to find the iteration scheme that works best, several schemes
given in Table 7 were tested. In this table, k denotes the values of the previous iteration of the current
time step and n denotes the converged values of the previous time step. BDF1 is used approximate
time derivatives. Thus:

Ẏ n
φ =

Y n
φ − Y

n−1
φ

δt
, Ẏ

n+1,(k)
φ =

Y
n+1,(k)
φ − Y n

φ

δt
, Ÿ n

φ =
Ẏ n
φ − Ẏ

n−1
φ

δt
.

Note that schemes 1-4 converge to Fann(Y n+1
φ , Ẏ n+1

φ ,Re) (they only differ in the initial guess of the
iterative scheme), scheme 5 converges to Fann(Y n

φ , Ẏ
n
φ ,Re) and scheme 6 to Fann(Y n+1

φ , Ẏ n
φ ,Re). For

simplicity, Re is not shown as a training input in Table 7.

Table 7: Training and testing iterative schemes for the parametric analysis

Scheme No. Training inputs
Testing inputs

1st iteration 2nd, ... iterations
Y

(l)
φ Ẏ

(l)
φ Y

(l)
φ Ẏ

(l)
φ

1 Sn+1
φ , Ṡn+1

φ Y n
φ Ẏ n

φ Y
(k)
φ Ẏ

(k)
φ

2 Sn+1
φ , Ṡn+1

φ Y n
φ + Ẏ

(k)
φ δt Ẏ n

φ + Ÿ n
φ δt Y

(k)
φ Ẏ

(k)
φ

3 Sn+1
φ , Ṡn+1

φ Y n
φ + Ẏ n

φ δt
1
δt

(Y (k)
φ − Y n

φ ) Y
(k)
φ Ẏ

(k)
φ

4 Sn+1
φ , Ṡn+1

φ Y n
φ + Ẏ n

φ δt Ẏ n
φ + Ÿ n

φ δt Y
(k)
φ Ẏ

(k)
φ

5 Snφ , Ṡ
n
φ Y n

φ Ẏ n
φ Y n

φ Ẏ n
φ

6 Sn+1
φ , Ṡnφ Y n

φ Ẏ n
φ Y

(k)
φ Ẏ n

φ
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The parameters and the hyper-parameters chosen for the ANN for the parametric study are shown
in Table 8. In this case, some regularization is required to avoid over-fitting, as shown by the much
higher value of λ as compared to the non-parametric case. We also use a larger batch size to improve
the training speeds, as more training data are used for the parametric analysis.

Table 8: List of the hyper-parameters utilized to train the ANNs for the parametric examples.

Variables Values
Number of hidden layers 1
Number of neurons in each hidden layer 20
Batch size 32
tol-train 10−4

max-epocs 200
Validation data set % 20
Regularization parameter λ 10−3

Learning rate 10−3

Moreover, we use R different ANNs, with each ANN modeling the correction term for a single mode
only. Each ANN takes the ROM coefficient and its time derivative as the inputs and provides the
corresponding SGS as the output:

Yφ,i, Ẏφ,i,Re→ Fann,i → Zann,i, i = 1, ..., R.

The final setting used for parametric cases was tested for a few non-parametric cases and was found to
work correctly. This is understandable as the non-parametric cases are less challenging. However, since
we already had a simpler setting working for the non-parametric cases, it was deemed unnecessary to
use a relatively more complex setting for them.

5.2.1 Interpolation

Data gathering for ROM basis and ANN: The data are gathered for Re = {100, 150, 250, 300}
to be used for the interpolation to Re = 200. The FOM solutions for t ∈ [0, 15] are used to calculate
the ROM basis. The ROM is also run for the same time interval to gather data, which, in addition to
the data from the FOM, are used to train the ANN. The number of basis to be used is chosen to be
R = 3. For the ANN training, data for all the Re was normalized together and then used for training.
Schemes 1-4 use the same trained ANNs, whereas schemes 5 and 6 use separately trained ANNs for
each of them. All ANNs were trained such that the validation error is approximately the same to
ensure that the difference in the results is primarily due to different iterative schemes.

Results for different iterative schemes: First, the results of using different iterative schemes
provided in Table 7 are analyzed to decide the most appropriate scheme. The time evolution and
RMSD of the ROM coefficients Yφ were used to decide the best scheme. It turned out that the
variable that was most difficult to capture is the third component Yφ,3. For schemes 1-4, the RMSD
after three iterations was approximately the same, and significantly high. This indicates that trying to
make the SGSs converge to the value of the present iteration is difficult, regardless of the initial guess
of the iterative procedure. This is particularly so because of the difficulty to converge of the derivative.
The situation improved significantly with scheme 5, which is nothing but a explicit treatment of the
SGSs. Scheme 6 did not introduce any relevant improvement, and therefore the results to be presented
next correspond to scheme 5.
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Results for Interpolation: Now the results for the interpolation case are analyzed. A comparison
of p and u for the FOM, the uncorrected ROM and the corrected ROM is shown in Fig. 19. It can
be seen that the results of the corrected ROM are almost indistinguishable from the FOM results.
However, results of the uncorrected ROM incur error both in amplitude and in frequency. Fig. 20
also shows a comparison of the DFT of p and u for the FOM and the ROMs. Here again the corrected
ROM performs significantly better than the uncorrected ROM by capturing the FOM behavior closely.

Figure 19: Comparison between the FOM and the ROMs at Re = 200 for parametric interpolation. Flow over a cylinder

Figure 20: Comparison of DFT between the FOM and the ROMs at Re = 200 for parametric interpolation. Left: p, right: u.
Flow over a cylinder

The RMSD values in Table 9 show almost an order of magnitude less error achieved by the corrected
ROM.

Table 9: RMSD values for Re = 200 trained using Re = {100, 150, 250, 300}

Re pressure velocity magnitude
corrected uncorrected corrected uncorrected

200 4.170 × 10−3 2.401 × 10−2 5.788 × 10−3 5.814 × 10−2

5.2.2 Extrapolation

Data gathering for ROM basis and ANN: The data are gathered for Re = {100, 150, 200, 250}
to be used for the extrapolation to Re = {300, 400, 500, 600}. The FOM solutions are collected for
t ∈ [0, 15], i.e., 300 time steps are used to calculate the ROM basis. The ROM is also run for 300 time
steps to gather data, which, in addition to the data from the FOM, are used to train the ANN. The
number of basis to be used is chosen to be the same as before, R = 3. For the ANN training, data for
all Re are normalized together and then used for training.
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Results: Extrapolation cases are perhaps the most tricky cases for ANNs. A comparison of p and u
for the FOM, the uncorrected ROM and the corrected ROM for Re = 300 is shown in Fig. 21. It can
be seen that, even for the extrapolation case, the results of the corrected ROM are very similar to the
FOM results. However, the results of the uncorrected ROM diverge from those of the FOM as time
advances. Fig. 22 also shows a comparison of the spectra of u and p for the FOM and the ROMs.
Here again the corrected ROM performs significantly better than the uncorrected ROM by capturing
the FOM behavior closely.

Figure 21: Comparison between the FOM and the ROMs at Re = 300 for parametric extrapolation. Flow over a cylinder

Figure 22: Comparison of DFT between the FOM and the ROMs at Re = 300 for parametric extrapolation. Left: p, right: u.
Flow over a cylinder

The RMSD values in Table 10 show almost three times less error achieved by the corrected ROM at
Re = 300. The improvement in the performance of corrected ROM decreases as we move away from
the training interval by increasing the Re. The corrected ROM gives excellent results for Re = 400
and still better results for Re = 500. For Re = 600 the error in corrected and uncorrected ROMs
are almost the same. Thus, the correction has good extrapolation capabilities as it can provide good
results up to Re = 500 which is 1.7 times outside the training interval.

Table 10: RMSD values for Re = {300, 400, 500, 600} trained using Re = {100, 150, 200, 250}

Re pressure velocity magnitude
corrected uncorrected corrected uncorrected

300 7.575 × 10−3 2.838 × 10−2 2.315 × 10−2 7.874 × 10−2

400 1.010 × 10−2 3.434 × 10−2 2.542 × 10−2 8.898 × 10−2

500 1.324 × 10−2 3.576 × 10−2 3.837 × 10−2 9.055 × 10−2

600 3.645 × 10−2 3.718 × 10−2 8.691 × 10−2 9.213 × 10−2
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5.2.3 Parametric interpolation/extrapolation combined with temporal extrapolation
phase

Data gathering for ROM basis and ANN: Data from the FOM and the ROM are gathered the
same way as it was done for the parametric interpolation and extrapolation cases, i.e., for t ∈ [0, 15]
(300 time steps) and for different Re. The number of basis functions to be used is again R = 3.

Results: The performance of the ANN for the temporal extrapolation is evaluated for Re = 200
and Re = 300 trained using Re = {100, 150, 250, 300} and Re = {100, 150, 200, 250} as interpolation
and extrapolation cases, respectively. Furthermore, training is done for t ∈ [0, 15], whereas testing
is done for t ∈ [0, 50], i.e., more than three times the training period. A comparison of p and u for
Re = {200, 300} for the FOM, the uncorrected ROM and the corrected ROM is shown in Figs. 23-24. It
is interesting to note that after the initial deviation from the FOM periodic solution, the uncorrected
ROM solution seems to be approaching a new periodic state as the variation in its amplitude is
diminishing over time. But the amplitude of the new uncorrected ROM solution differs reasonably
from the FOM solution, with minor differences in frequency as well. Whereas, the corrected ROM
very closely retains the amplitude and frequency of the FOM solution even when extrapolated in time
for an unseen Re.

Figure 23: Comparison between the FOM and the ROMs at Re = 200 for parametric interpolation combined with the temporal
extrapolation phase. Flow over a cylinder

Figure 24: Comparison between the FOM and the ROMs at Re = 300 for parametric extrapolation combined with the temporal
extrapolation phase. Flow over a cylinder

The RMSD values are shown in Table 11, with the corrected ROM offering about three to four times
less error than the uncorrected ROM for the interpolation and extrapolation cases .
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Table 11: RMSD values for parametric interpolation/extrapolation combined with the temporal extrapolation phase

Re pressure velocity magnitude
corrected uncorrected corrected uncorrected

200 1.823 × 10−2 6.735 × 10−2 3.039 × 10−2 1.034 × 10−1

300 1.970 × 10−2 8.881 × 10−2 3.717 × 10−2 1.504 × 10−1

5.3 Computational Cost

For comparison of computational costs, some representative examples are selected for each type of
evaluation case i.e. reconstruction phase, temporal extrapolation phase, and parametric phase. All
the numerical tests are carried out on Dell Precision 3551 laptop having Intel(R) Core(TM) i7-10750H
CPU @ 2.60GHz, 12 cores, and 16.4 GB of memory. All FOM and ROM numerical simulations are
carried out using a parallel FORTRAN-based numerical code.

The wall clock time for the online and the offline phases are shown in table 12. Let us first discuss the
more important computational cost i.e. the cost of the online phase. The ROMs provide a speed-up
factor of 6 to 14 times when compared with the FOM. It is to be noted that no hyper-reduction is used
and the speed-up experienced by ROMs is due to the reduction in system solving times only. Also, the
additional cost associated with corrected ROMs in comparison to the uncorrected ROM is less than
4.7%. For triple cylinders, a speed-up can be seen in the case of corrected ROM as it uses fewer POD
modes than the uncorrected one. During the execution of the corrected ROM, all ANN-related tasks
are performed using Python using a single processor due to implementation requirements. The use of
Python and serial processing incurs a computational cost to corrected ROM in addition to the one
that corresponds to the evaluation of the correction term. However, even with this additional cost,
the corrected ROM has an insignificant increase in the computational expense which can further be
reduced by a more efficient implementation.

Table 12: Computational costs associated with different steps for representative numerical examples.

Now, let us briefly discuss the offline costs. All the steps of the offline phase are performed in the same
order as they are listed in table 12. Each step is parallelized to use the laptop resources optimally.
During the hyper-tuning of ANNs, the use of simple ANNs allowed the launching of many ANN training
sessions for different hyper-parameter values simultaneously. The same is true for multi-restart based
training. The offline cost is dominated by snapshot generation, followed by collecting uncorrected
ROM data for subscale calculation. Whereas, the cost associated with tuning and training the ANNs
is pretty insignificant.
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To better visualize some of the conclusions drawn using table 12, a Pareto plot for the flow over a
cylinder at Re = 250 for the reconstruction phase is also shown in Fig. 25. The bars are arranged
in decreasing order of the associated computational cost. It provides two insights. First, it shows
how strongly the snapshot generation dominates the offline cost. Second, it also visually represents
the online speed-up achieved. The cost of snapshots is roughly the same as the FOM cost and the
uncorrected ROM cost is approximately the same as the online costs of both the ROMs. Thus the
difference between the first and second bar represents the online speed-up achieved.

Figure 25: Pareto plot showing the individual wall-clock times of different offline steps and their contribution towards the
cumulative cost.

6 Conclusions

ROMs have the capability to drastically reduce the computational cost of numerical simulations,
especially in the case of optimization and control problems, which require performing a large number
of simulations. The real potential of ROMs is unlocked if only a few high energy modes are kept and
the remaining low energy modes are discarded. However, this can lead to instability and inaccuracy
in the solution.

In this paper, we have presented a two step closure model for ROMs to account for the interaction
of the discarded scales with the resolved scales for ROMs. The aim of the first step is to provide the
required stabilization. We use the already established VMS approach for this purpose. This approach
uses physical arguments to develop an a priori linear SGS model. The VMS method also improves
the accuracy, alongside providing the necessary stabilization. However, the accuracy provided is not
sufficient in the case of highly truncated ROMs or for complex non-periodic flows. Thus, as a second
step we introduce an a posteriori approach for SGS modeling using machine learning. We use ANNs
to develop a non-linear correction for the SGSs and apply this correction to a fully discrete system,
i.e., discretized in both space and time. To minimize the ANN training cost, we use the FOM data
used in formulating reduced order basis, i.e., the snapshots, for ANN training as well; the ANNs is
in fact designed so that the ROM solution is as close as possible to the projection of the snapshots
onto the ROM space at the time levels in which the snapshots are available. Furthermore, to keep the
uncertainty associated to ANNs to a minimum, we use as simple as possible ANNs, increasing their
complexity only when deemed necessary.

We have compared the corrected ROM based on the two step closure model with the uncorrected ROM
based on only the a priori SGSs. The comparison has been carried out for a variety of cases including a
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reconstruction phase, a time extrapolation phase, parametric interpolation and extrapolation phases,
and a combined parametric and time extrapolation phase. The parameter selected in this case has
been the Reynolds number. The non-parametric analysis has been carried out for the flow over a
cylinder, over a backward facing step and over three cylinders in a triangular arrangement, while the
parametric analysis has been carried out for the flow over a cylinder only. In all cases, the corrected
ROM has consistently outperformed the uncorrected ROM, providing solutions much closer to those
of the FOM. The ANN based correction has been able to account for errors in amplitude as well as in
frequency. Thus, ANNs can successfully account for the interaction of discarded scales with resolved
scales for highly truncated ROMs.
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