
AN EMBEDDED STRATEGY FOR LARGE SCALE INCOMPRESSIBLE
FLOW SIMULATIONS IN MOVING DOMAINS

RAMON CODINA1,2, JOAN BAIGES1,2, INOCENCIO CASTAÑAR1,
IGNACIO MARTÍNEZ-SUÁREZ2, LAURA MORENO2 AND SAMUEL PARADA1

Abstract. In this work we describe a methodology to approximate the incompressible
Navier-Stokes equations in time dependent domains. To deal with the motion of the
domain, we employ a fixed mesh method that we call fixed-mesh ALE. It consists of
writing the equations in a moving ALE reference system but then projecting them onto
a fixed background mesh. This implies that the boundaries of the elements do not neces-
sarily coincide with the physical boundaries, and thus there is the possibility of badly cut
elements. We use a Nitsche’s type formulation to prescribe the boundary conditions and
stabilise the bad cuts by introducing a term that penalises the gradient of the unknown
orthogonal to the finite element space in a patch that contains the badly cut element.
The flow formulation is a stabilised finite element method that allows one to treat con-
vection dominated flows and to use equal velocity–pressure interpolation. Furthermore,
this formulation can be shown to behave as an implicit large eddy simulation approach.
A key issue is that the sub-grid scales on which the formulation depends are allowed to
be time dependent; this fact has proved to be crucial for the robustness of the approach.
The calculation of the velocity and the pressure is segregated by using a fractional step
scheme designed at the pure algebraic level, and the conditioning of the pressure equa-
tion is improved by using an artificial compressibility technique. Finally, an adaptive
mesh refinement strategy is described. All the algorithms are implemented in a parallel
environment. The strategy described can be applied to complex flow problems, and in
particular here we show the simulation of the air flow generated by a train moving inside
a tunnel.

Keywords: Embedded methods; Fixed-mesh ALE; Small cut instability; Stabilised finite
element methods; Fractional step schemes

1. Introduction

The finite element (FE) simulation of incompressible flows in moving domains involves
several difficulties. The objective of this paper is to explain which is the methodology we
employ to tackle them. Most of the techniques to be described are well known or proposed
earlier by our group, and thus our contribution in this sense is merely their combination
and adaption to the problem at hand. However, some other ingredients, such as the
stabilisation of cut elements or the tailoring of fractional step schemes to the problem we
consider, are original contributions. All these ingredients, known or new, constitute our
proposal to deal with flows in time dependent domains.

We are interested in problems in which the computational domain changes very signifi-
cantly with time. In particular, we are motivated by the problem of simulating the air flow
caused by a train moving in a tunnel, without the possibility of considering this tunnel
cylindrical; that would permit to consider the train fixed and the air flowing against it, but

Date: April 21, 2023.
1 Universitat Politècnica de Catalunya, Barcelona Tech, Jordi Girona 1-3, Edifici C1, 08034 Barcelona,

Spain.
2 Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Edifici C1, Campus Nord UPC,

Gran Capitán S/N, 08034 Barcelona, Spain.
E-mails: ramon.codina@upc.edu (RC), joan.baiges@upc.edu (JB), icastanar@cimne.upc.edu (IC),

imartinezs@cimne.upc.edu (IM), lmoreno@cimne.upc.edu (LM), sparada@cimne.upc.edu (SP) .
1

R. CODINA ET AL. 2

this is not the case we wish to consider. Thus, the type of problems we wish to study is
that in which an object moves in a fluid domain. We shall see that our approach extends
easily to several moving objects.

The first decision to take is which strategy to use to model moving domains. We do
not consider the possibility of purely Lagrangian approaches, and this leads us to some
sort of arbitrary Lagrangian-Eulerian (ALE) method [1, 2]. The way classical ALE meth-
ods proceed consists of deforming the domain boundary according to some predetermined
velocity and then deform the interior points with a domain velocity field as smooth as
possible. In our context, this would mean to move the boundaries of the moving object
with its velocity and then obtain an extension of this velocity to the whole domain. In
the FE context in which we are interested, this amounts to obtain the mesh velocity, i.e.,
the velocity of the nodes of the FE mesh. Inevitably, this causes mesh distortion, and
brings the need for re-meshing every certain number of time steps. Since in the problem
in which we are interested mesh distortion shows up very soon, we will not use a classical
ALE formulation.

We will deal with the treatment of moving domains using a fixed mesh method. This
means that the FE mesh employed to solve the problem will not be modified in time.
Obviously, this implies that when the object moves, its boundary will not coincide with a
union of element boundaries, but it will cut the elements. Therefore, what we propose is an
embedded mesh method, and this opens several questions, such as how to take into account
the motion of the object, how to prescribe boundary conditions and how to stabilise the
ill-conditioning that is found when very small portions of an element belong to the fluid
domain.

The way we propose to deal with the domain motion in a fixed mesh strategy is what we
call fixed-mesh ALE formulation [3, 4]. We proposed it a few years ago, but we summarise
it here for completeness. Suppose we have the flow configuration at a certain time step of
a discretisation in time and we wish to move to the next time step. The idea is to write
the flow equations in an ALE frame of reference, using the velocity of the moving object in
its contact with the fluid and extending it somehow to the rest of the flow domain. Then,
instead of solving the flow equations in the moving ALE mesh, we project them back to the
fixed mesh, and solve the problem there. The implementation of this technique is briefly
explained in Section 2, already considering the equations discretised in time.

Once the flow equations are written using the fixed-mesh ALE approach, we may proceed
to their FE discretisation. Here we employ a strategy that we have developed over the
years, consisting of a stabilised FE model based on the Variational Multi-Scale (VMS)
concept [5]. The unknowns, velocity and pressure, are split into their FE component and a
sub-grid scale (SGS). The latter is approximated in terms of the former, ending up with a
problem in terms of the FE component only. Two particular ingredients of our approach are
crucial for the methodology to be described, namely, the SGSs are considered orthogonal
to the FE space and time dependent [6, 7]. The first feature is critical for the design of the
fractional step scheme described below, whereas the second provides the scheme with much
more robustness. In our applications, we have found many times absolutely necessary to
consider time dependent SGSs to obtain converged solutions within each time step. The
formulation we use is summarised in Section 3.

Since we employ an embedded strategy and the boundary of the flow domain in con-
tact with the moving object is not made of element boundaries, a technique to prescribe
boundary conditions needs to be chosen. Neumann-type boundary conditions offer no
difficulty, as we integrate only in the flow domain and they appear as natural boundary
conditions when the viscous term and the pressure gradient term tested with the velocity
test function are integrated by parts. However, Dirichlet-type boundary conditions require
a special treatment. Several approaches exist in the literature, such as the use of penalty

R. CODINA ET AL. 3

terms as in the original immersed boundary method [8, 9], the use of Lagrange multi-
pliers [10, 11, 12, 13, 14, 15, 16, 17], which may require the use of additional unknowns
accounting for the fluxes on the Dirichlet boundary, or the well-known Nitsche’s method
[18, 19, 20], which yields symmetric, stable variational formulations through the use of
a limited penalty term whose value needs to be estimated. This last option, sometimes
termed as a method to enforce essential conditions in a weak manner, is the one that we
will use in this work. Its implementation in conjunction with the stabilised FE method em-
ployed is described in Section 4. A critical issue regarding the weak imposition of Dirichlet
boundary conditions is the ill-conditioning that results when the elements that are cut by
the boundary (in our case the boundary of the moving body) have a very small portion in
the fluid domain; these are what are called badly cut elements. In this case, little errors in
the prescription of the boundary values produce significant errors in the solution. There
exist several methods designed to suppress or alleviate this instability [20, 21, 22]. Here
we propose a novel technique based on penalising the difference between the gradient of
the velocity and this gradient projected onto the FE space. This method is also explained
in Section 4.

The next ingredient of the proposed methodology is the fractional step scheme described
in Section 5 designed at the pure algebraic level [23], together with the artificial compress-
ibility method used to improve the conditioning of the pressure equation [24, 25]. It is a
classical second order pressure correction scheme that allows one to uncouple the calcu-
lation of the velocity and the pressure degrees of freedom, being this much more efficient
than a monolithic coupling. This scheme is tailored here to account for its application to
the fixed-mesh ALE method with a weak imposition of Dirichlet boundary conditions and
with a stabilisation term to account for badly cut elements.

The last ingredient of the overall formulation is an adaptive mesh refinement. Mesh
refinement has been extensively used in the literature to diminish computational cost and
concentrate effort in the regions of the domain where it is necessary. Multiple strategies
exist such as the moving interface meshes presented in [26, 27, 28], and remeshing strategies
such as the one presented in [29]. The strategy we use in the present in this paper is based
on hierarchical element subdivision [30]. It is based on an octree strategy, splitting the
elements in which accuracy needs to be improved in a nested way. This introduces the
need for handling hanging nodes but at the same time allows to easily treat interpolation
between meshes and parallel implementation. We explain this scheme and how elements
cut by the boundary need to be treated. These issues are detailed in Section 6.

The adaptive mesh refinement concludes the design of our methodology. In Section 7 we
present the numerical simulation of a train circulating through a tunnel. Several remarks
concerning the mesh refinement employed and the parallel implementation of the scheme
and its application to the problem being solved are also included.

Conclusions close the paper in Section 8.

2. The Fixed-mesh ALE method

2.1. ALE formulation of the flow equations. Let us consider a region Ω0 ⊂ Rd (d =
2, 3) where a flow will take place during a time interval [0, T]. However, we consider the
case in which the fluid at time t occupies only a subdomain Ω(t) ⊂ Ω0 (note in particular
that Ω(0) ⊂ Ω0). Suppose also that the boundary of Ω(t) is defined by part of ∂Ω0 and a
moving boundary that we call Γmov(t) = ∂Ω(t) \ ∂Ω0 ∩ ∂Ω(t). This moving part of ∂Ω(t)
may correspond to the boundary of a moving solid immersed in the fluid. This boundary
does not need to be connected, as it is the case if several solids move in the fluid. We call
Γfix the fixed part of ∂Ω(t), i.e., Γfix = ∂Ω(t) \ Γmov(t) (see Fig. 1).

In order to cope with the time-dependency of Ω(t), we may use the ALE approach. Let
χt be a family of invertible mappings, which for all t ∈ [0, T] map a point X ∈ Ω(0) to

R. CODINA ET AL. 4

	
	

Γmov	(t)	

Γfix	

Ω	(t)	

Ω	0	

Figure 1. Domain setting

a point x = χt(X) ∈ Ω(t), with χ0 = I, the identity. If χt is given by the motion of
the particles, the resulting formulation would be Lagrangian, whereas if χt = I for all t,
Ω(t) = Ω(0) and the formulation would be Eulerian.

Let now t′ ∈ [0, T], with t′ ≤ t, and consider the mapping

χt,t′ : Ω(t
′) −→ Ω(t)

x′ 7→ x = χt ◦ χ−1
t′ (x′).

Let D = {(x, t) | x ∈ Ω(t), 0 < t < T} be the space-time domain where the problem is
defined. Given a function f : D −→ R we define

∂f

∂t

∣∣∣∣
x′
(x, t) :=

∂(f ◦ χt,t′)

∂t
(x′, t), x ∈ Ω(t), x′ ∈ Ω(t′).

In particular, the domain velocity taking as a reference the coordinates of Ω(t′) is given by

udom :=
∂x

∂t

∣∣∣∣
x′
(x, t). (1)

The incompressible Navier-Stokes formulated in Ω(t), accounting also for the motion
of this domain, can be written as follows: find a velocity u : D −→ Rd and a pressure
p : D −→ R such that

ρ

[
∂u

∂t

∣∣∣∣
x′
(x, t) + (u− udom) · ∇u

]
−∇ · (2µ∇Su) +∇p = ρf , (2)

∇ · u = 0, (3)

where ∇Su is the symmetrical part of the velocity gradient, ρ is the fluid density, µ is the
viscosity and ρf is the vector of body forces.

Initial and boundary conditions have to be appended to problem (2)-(3). The boundary
conditions on Γmov(t) can be of two different types: a) p (or the normal stress) given, u
unknown on Γmov; b) u given, p (or the normal stress) unknown on Γmov. The first option
would correspond to an object whose motion is determined by the flow dynamics, whereas
the second would apply in the case of an object moving with a given velocity. This is
the situation we consider in what follows, i.e., Γmov will be part of the boundary where
velocities are prescribed. On the rest of the boundary Γfix the usual boundary conditions
can be considered. In general, we consider these boundary conditions of the form

u = ū on ΓD,

n · σ = t̄ on ΓN ,

R. CODINA ET AL. 5

where n is the external normal to the boundary, σ = −pI + 2µ∇Su is the Cauchy stress
tensor and ū and t̄ are the given boundary data. The components of the boundary ΓD

and ΓN are obviously disjoint and such that ΓD ∪ ΓN = Γfix. The Dirichlet part of the
boundary will be ΓD ∪ Γmov.

2.2. Time discretisation. We will consider now the discretisation in time of the flow
equations using a simple finite difference scheme, namely, the trapezoidal rule. Obviously,
any other finite difference time discretisation could be adopted, and in fact the results in
Section 7 have been obtained using the backward difference (BDF) scheme of second order
(BDF2). Furthermore, both the Galerkin FE approximation and the stabilisation we will
describe commute with the time discretisation, and thus we could start either discretising
in time or in space.

Consider a uniform partition of [0, T] into N time intervals of length δt. Let us denote
by fn the approximation of a time dependent function f at time level tn = nδt. We will
also denote

δfn+1 = fn+1 − fn,

δtf
n+1 =

fn+1 − fn

δt
,

fn+θ = θfn+1 + (1− θ)fn, θ ∈ [1/2, 1].

The last notation will be used for the convex combination of any object between its value
at tn and at tn+1, including spaces of functions or FE meshes.

Suppose we are given a computational domain at time tn, with spatial coordinates
labeled xn, and un and pn are known in this domain. The velocity un+1 and the pressure
pn+1 can then be found as the solution to the problem

ρ
[
δtu

n+1
∣∣
xn + (un+θ − un+θ

dom) · ∇un+θ
]
−∇ · (2µ∇Sun+θ) +∇pn+θ = ρfn+θ, (4)

∇ · un+θ = 0, (5)

where now δtu
n+1
∣∣
xn = (un+1(x) − un(xn))/δt, being x = χtn+θ,tn(x

n) the spatial co-
ordinates in Ω(tn+θ). The domain velocity given by (1), with x′ = xn, is approximated
as

un+θ
dom =

1

θδt

(
χtn+θ,tn(x

n)− xn
)
. (6)

2.3. Galerkin finite element approximation. The next step is to consider the spatial
discretisation of problem (4)-(5). Even though we use a stabilised FE formulation, let
us start stating the standard Galerkin approximation of the problem. This will allow us
to describe the fixed-mesh ALE method we employ. The terms arising from the VMS
formulation that provide enhanced stability will be described later on.

Given the flow domain Ω(tn), n = 0, 1, . . . , N , let V n and Qn be the spaces where the
velocity and the pressure must belong at time tn, i.e., un ∈ V n and pn ∈ Qn. Space
V n is the subspace of H1(Ω(tn))d of vector functions satisfying the Dirichlet conditions,
whereas the space of test functions (which vanish where the velocity is prescribed) will be
denoted as V n

0 . The pressure space is Qn = L2(Ω(tn)), and this space modulo constants if
all boundary conditions are of Dirichlet type for the velocity.

Let T n
h = {Kn} be a FE partition of the domain Ω(tn), n = 0, 1, . . . , N . The number

of subdomains may in principle change from one time instant to the other, although the
fixed-mesh ALE approach to be described will make use only of the partition Th of Ω0.
Note that this partition in general does not coincide with T 0

h , the FE partition of Ω(0).
Note also that the diameter of the FE partition h may depend on n, although we have not
introduced any additional superscript to avoid overloading the notation. All FE functions

R. CODINA ET AL. 6

will be identified by the subscript h. To avoid dealing with the error arising from the
geometrical representation of Ω(t), we will assume it is always polyhedral.

From T n
h we may construct FE spaces for the velocity and the pressure, V n

h and Qn
h,

respectively. Only conforming approximations will be considered, so that V n
h ⊂ V n and

Qn
h ⊂ Qh. For the test functions, whose spaces for velocity and pressure will respectively

be V n
0,h and Qn

h, we will not use any superscript indicating the time level, being understood
that it is the same as for the velocity and pressure unknowns.

The Galerkin FE approximation of the problem is nothing but the weak form of the
problem restricting both unknowns and test functions to their corresponding FE spaces.
It can now be written as follows: given un

h ∈ V n
h and pnh ∈ Qn

h, find un+1
h ∈ V n+1

h and
pn+1
h ∈ Qn+1

h such that

mn+θ(vh, δtu
n+1
h

∣∣
xn) + an+θ(vh,u

n+θ
h)

+ cn+θ(vh,u
n+θ
h − un+θ

dom,u
n+θ
h)− bn+θ(pn+θ

h ,vh) = ln+θ(vh), (7)

bn+θ(qh,u
n+θ
h) = 0, (8)

for all test functions vh ∈ V n+1
0,h and qh ∈ Qn+1

h , where

mn+θ(v,u) =

∫
Ω(tn+θ)

v · ρu,

an+θ(v,u) =

∫
Ω(tn+θ)

2∇Sv : µ∇Su,

cn+θ(v,w,u) =

∫
Ω(tn+θ)

v · [ρw · ∇u],

bn+θ(p,v) =

∫
Ω(tn+θ)

p∇ · v,

ln+θ(v) =

∫
Ω(tn+θ)

v · ρfn+θ +

∫
ΓN

v · t̄n+θ.

Recall that Γmov has been considered part of the Dirichlet boundary.
It is observed that all terms in Eqs. (7)-(8) are evaluated at Ω(tn+θ). If θ = 1/2

this guarantees satisfaction of the so called geometric conservation law (GCL) (see, e.g.
[31, 32]). This ensures that the time integration scheme is stable if the underlying finite
difference approximation is also stable. In our case, we have considered the trapezoidal
rule, and therefore that the different terms of the equation are also evaluated at tn+θ,
yielding an unconditionally stable scheme for θ ∈ [1/2, 1]. In principle, if the variational
equations are evaluated at any other time instant between tn and tn+1, the GCL is not
satisfied and the resulting discrete problem is only conditionally stable. Nevertheless, we
often consider the variational equations evaluated at tn+1 without finding in the numerical
experiments any time step limitation. This is particularly useful if a BDF scheme in time is
adopted, with all the terms in the differential equation evaluated at tn+1. In particular, in
the numerical simulation to be presented we have adopted a second order BDF scheme and
evaluated the variational equations at tn+1, without observing any time step limitation.
This scheme is analysed for the linear convection-diffusion equation in [2].

2.4. Fixed-mesh ALE implementation. The key point of the fixed-mesh ALE method
is that, even if we are using a fixed-mesh method, domain movement cannot be obviated,
and it is necessary to take it into account with an ALE method. However, since we are
interested in using a fixed mesh, we develop a strategy which allows us to always work with
the background fixed mesh and, at the same time, includes the ALE terms which appear
due to the domain movement. We have developed this strategy in [3, 4, 33, 34].

R. CODINA ET AL. 7

Suppose Ω0 is meshed with a FE mesh Th and that at time level tn the domain Ω(tn)
is meshed with a FE mesh T n

h (as we will see, close to Th). Let un
h be the velocity already

computed on Ω(tn). The purpose is to obtain the fluid region Ω(tn+θ) and the velocity
field un+θ

h . The former may move according to prescribed kinematics, for example due to
the motion of a solid as we have considered, or can be an unknown of the problem. If the
classical ALE method is used, T n

h would deform to another mesh defined at tn+θ. The
key idea is not to use this mesh to compute un+θ

h and pn+θ
h , but to re-mesh in such a way

that the new mesh is, essentially, Th once again. Since un+1
h and pn+1

h may be directly
computed from un+θ

h and pn+θ
h , respectively, we will take θ = 1 in the following description

of the method.
The steps of the algorithm to achieve the goal described are schematically represented

in Fig. 2 and are the following:

(1) Update the position of the moving boundary to Γmov(t
n+1). In our problem, the

motion of Γmov(t) is directly given by the velocity of a moving object, assumed to
be prescribed.

(2) Deform virtually the mesh T n
h to T n+1

h,virt using the classical ALE concepts and com-
pute the mesh velocity un+1

dom. Here we have introduced the term virtually because
in fact mesh T n+1

h,virt will never be used, as it follows from the next steps.
(3) Write down the ALE Navier-Stokes equations on T n+1

h,virt. This exactly corresponds
to Eqs. (7)-(8) (for θ = 1) considering that the FE partition of Ω(tn+1) is T n+1

h,virt.
(4) Split the elements of Th cut by Γmov(t

n+1) to define a mesh on Ω(tn+1), T n+1
h .

(5) Project the ALE Navier-Stokes equations from T n+1
h,virt to T n+1

h . This means that
we again consider Eqs. (7)-(8), but now with Ω(tn+1) meshed with T n+1

h instead
of being meshed with T n+1

h,virt. The unknowns un+1
h and pn+1

h can be computed with
the nodal values of T n+1

h , and thus they do not require any additional operation.
However, Eq. (7) involves un

h and un+1
dom, and both fields are known in T n+1

h,virt, i.e.,
computed with the nodal values in this virtual mesh. Therefore, the only new
operation required by this algorithm consists in computing the nodal values of un

h

and un+1
dom in T n+1

h . This amounts to a search operation: one has to determine
the position in the elements of T n+1

h of the nodes of T n+1
h,virt. However, since the

change from T n
h to T n+1

h can be considered small, in practice one only needs to
move the nodes of the elements in contact with Γmov (or perhaps one additional
layer of elements) in step (2). Thus, the search operation is inexpensive from
the computational standpoint. Note that this step corresponds to a classical re-
meshing of an ALE implementation when the elements get too distorted, now with
the peculiarity that this re-meshing needs to be performed at each time step but
it is restricted to the elements in contact with Γmov.

(6) Solve the equations on T n+1
h to compute un+1

h and pn+1
h .

Note that at each time step two sets of nodes have to be appropriately dealt with,
namely, the so called newly created nodes (nodes that are ‘dry’ in one time step and ‘wet’
in the following) and the boundary nodes. Contrary to other fixed grid methods, newly
created nodes are treated in a completely natural way using the fixed-mesh ALE approach:
the value of the velocity there is directly given by the projection step from T n+1

h,virt to T n+1
h .

Boundary nodes require either additional unknowns with respect to those of mesh Th or
an appropriate imposition of boundary conditions, as it will be explained in Section 4.

Let us also note that the splitting of the elements is mainly needed for integration
purposes. Once the cut elements are split into subelements, one can use the same numerical
integration rule there than for the rest of uncut elements (see, e.g., [4]).

R. CODINA ET AL. 8

Figure 2. Two dimensional FM-ALE schematic. Top-left: original finite
element mesh Th of Ω0. Top-right: finite element mesh T n

h of Ω(tn), with
the elements represented by a thick line and the elements of Th represented
by thin line. The blue line represents Γmov(t

n) and the red edges indicate
the splitting of Th to obtain T n

h . Bottom-left: updating of T n
h to T n+1

h,virt

using the classical ALE strategy. The position of Γmov(t
n+1) is again shown

using a solid blue line and the previous position Γmov(t
n) using a dotted

blue line. Bottom-right: Mesh T n+1
h of Ω(tn+1), represented by a thick line.

The edges that split elements of Th are again indicated in red. Boundary
nodes, where approximate boundary conditions need to be imposed, are
drawn in green, whereas newly created nodes are drawn in grey.

3. Stabilised finite element approximation

The Galerkin FE approximation given by Eqs. (7)-(8) may be unstable because of two
reasons. First, because the FE spaces for the velocity and the pressure do not satisfy the
appropriate inf-sup condition and, second, because viscosity is small and convection effects
dominate viscous ones. Both instabilities can be overcome by resorting to the stabilised FE
formulation described next, which was proposed in [35] and is based on the VMS approach
introduced in [5]. Details can be found in [36]. Here we will just write the resulting
numerical formulation.

The starting point of the formulation is the introduction of a SGS component of the
velocity and the pressure. The two main features of our approach are that we allow
these SGSs to be time dependent, and that we seek them in the space orthogonal to the
corresponding FE space in the L2-sense. If ũ is the SGS component of the velocity and
p̃ that of the pressure, the problem to be solved at each time step instead of (7)-(8) is
the following: given un

h ∈ V n
h , ũn ∈ V n,⊥

h (space orthogonal to V n
h in the L2-sense) and

pnh ∈ Qn
h, find un+1

h ∈ V n+1
h and pn+1

h ∈ Qn+1
h such that

mn+θ(vh, δtu
n+1
h

∣∣
xn) + an+θ(vh,u

n+θ
h)

+ cn+θ(vh,u
n+θ
h − un+θ

dom,u
n+θ
h)− bn+θ(pn+θ

h ,vh)

R. CODINA ET AL. 9

−
∑
Kn+θ

∫
Kn+θ

ũn+θ ·
[
ρ(un+θ

h − un+θ
dom) · ∇vh +∇ · (2µ∇Svh)

]
−
∑
Kn+θ

∫
Kn+θ

p̃n+θ∇ · vh = ln+θ(vh), (9)

bn+θ(qh,u
n+θ
h)−

∑
Kn+θ

∫
Kn+θ

ũn+θ · ∇qh = 0, (10)

for all test functions vh ∈ V n+1
0,h and qh ∈ Qn+1

h , where ũn+θ and p̃n+θ are obtained from

ρδtũ
n+1
∣∣
xn + (τn+θ

u)−1ũn+θ = P⊥
u [rn+θ

h], (11)

rn+θ
h := ρfn+θ − ρ δtu

n+1
h

∣∣
xn − ρ(un+θ

h − un+θ
dom) · ∇un+θ

h +∇ · (2µ∇Sun+θ
h)−∇pn+θ

h ,

p̃n+θ = −τn+θ
p P⊥

p [∇ · un+θ
h], (12)

where τu and τp are the stabilisation parameters on which the formulation depends, com-
puted element-wise at time level n+ θ as:

τn+θ
u |K =

(
c1
k4

µ

h2K
+
c2
k

ρ∥un+θ
h ∥L∞(K)

hK

)−1

,

τn+θ
p |K = (τn+θ

u |K)−1h2K .

Here and below, ∥ · ∥L∞(R) stands for the maximum norm in a region R.
Even though we have included ρδtu

n+1
h in the expression of the FE residual, this term

belongs to the velocity FE space, and therefore its orthogonal projection is zero. It will
not contribute to the mass matrix of the final algebraic system written below. This is
particularly important, as the fractional step scheme described in Section 5 makes use of
the standard mass matrix of the problem to approximate the equation for the pressure.
Similarly, the body force has been included in the FE residual, but its orthogonal projection
can be neglected, as it does not contribute neither to stability nor to the order of accuracy.

In the expressions above, Pu is the L2(Ω) projection onto V n+θ
h , P⊥

u = I − Pu is the
orthogonal projection onto V n+θ,⊥

h , Pp is the L2(Ω) projection onto Qn+θ
h , and P⊥

p = I−Pp

is the orthogonal projection onto Qn+θ,⊥
h . We have not used a superscript to indicate the

time level of all these projections, as this is determined by their arguments. In any case,
to avoid enlarging the stencil of the matrices of the final algebraic system, we usually
compute the projection onto the finite element space explicitly. Thus, if f is an arbitrary
unknown and P any of these projections, we approximate P⊥(fn,k) ≈ fn,k −P (fn,k−1) or
P⊥(fn,k) ≈ fn,k − P (fn−1), where n is the time step counter and k the iteration counter
of the iterative procedure employed to linearise the problem.

The stabilised formulation proposed is stable for all velocity-pressure pairs of FE spaces
V n+1
h and Qn+1

h , as soon as the pressure interpolation is continuous. In the case of discon-
tinuous pressure interpolations, additional terms involving the jumps of pressures between
elements need to be introduced (see [37]). In the numerical example of Section 7, linear
interpolations have been used for both velocity and pressure (i.e., the P1-P1 pair).

Since it is understood that in the fixed-mesh ALE method what is kept constant when
taking the time derivative is the position xn, we shall omit this subscript in what follows.

In the expression of the stabilisation parameters, hK is the size of element K (at n+ θ)
and k is the order of the FE interpolation. The algorithmic constants c1 and c2 are
independent of the mesh size and the interpolation order.

The right-hand-side (RHS) in Eq. (11) is the projection of the FE residual rn+θ
h onto

the space orthogonal to the velocity FE space. From this equation we can write

ũn+θ = τn+θ
eff ρ(θδt)−1ũn + τn+θ

eff P⊥
u [rn+θ

h], (13)

R. CODINA ET AL. 10

τn+θ
eff :=

[
ρ(θδt)−1 + (τn+θ

u)−1
]−1

.

It is observed that the orthogonal projection of the residual is multiplied by the ‘effective’
stabilisation parameter τeff . However, one cannot simply replace τu by τeff , as the term
τn+θ
eff (θδt)−1ũn needs to be taken into account. If a steady state is reached, it is observed

from Eq. (11) that

ũ = τuP
⊥
u [rh].

Thus, the steady state does not depend on the time step size δt used to reach it.
The component τn+θ

eff ρ(θδt)−1ũn of ũn+θ needs to be stored at the numerical integration
points to evaluate its contribution to Eq. (9). This is the only relevant computational cost
of considering the velocity SGSs time dependent.

From the comments above, it follows that the stabilising terms in the momentum equa-
tion (9) and the continuity equation (10) are:∑

Kn+θ

∫
Kn+θ

τn+θ
eff P⊥

u

[
ρ(un+θ

h − un+θ
dom) · ∇un+θ

h −∇ · (2µ∇Sun+θ
h) +∇pn+θ

h

]
· P⊥

u

[
ρ(un+θ

h − un+θ
dom) · ∇vh +∇ · (2µ∇Svh)

]
+
∑
Kn+θ

∫
Kn+θ

τn+θ
p P⊥

p [∇ · un+θ
h]P⊥

p [∇ · vh], (14)

∑
Kn+θ

∫
Kn+θ

τn+θ
eff P⊥

u

[
ρ(un+θ

h − un+θ
dom) · ∇un+θ

h −∇ · (2µ∇Sun+θ
h) +∇pn+θ

h

]
· P⊥

u [∇qh],

(15)

respectively. Note that we have introduced the orthogonal projection in the operators
that multiply the test functions. This highlights the symmetry of the formulation when
there is no advection (Stokes problem). If the stabilisation parameters were constants, the
introduction of these projections has no effect, and in general our experience is that for
variable stabilisation parameters (as it is the case), these projections should correspond to
the L2(Ω(tn+θ))-inner product weighted by these parameters (see [38]). In any case, our
experience is that there are no significant differences in the numerical results putting or
not the orthogonal projections applied to the operators evaluated with the test functions.
Let us also note that all terms are evaluated element-wise; thus, for constant viscosities
and linear elements (as those employed in Section 7), the contribution of the viscous term
to the stabilisation is zero.

At this point, it is convenient to write the algebraic version of problem (9)-(10). It reads:[
MG 0
0 0

] [
δtU
δtP

]
+

[
A11 A12

A21 A22

] [
U
P

]
=

[
FG(Un) + FS(Ũ

n
)

0

]
,

where [
A11 A12

A21 A22

]
:=

[
KG(U) + KS(U) −BG + B1,S(U) + B2,S

BT
G + BT

1,S(U)− BT
2,S LS

]
. (16)

The identification of the different matrices and arrays with those of problem (9)-(10) is
straightforward. Subscript G has been used to indicate terms arising from the Galerkin FE
approximation, whereas subscript S has been used for those arising from the stabilisation
terms. This equation is understood to correspond to the time interval [tn, tn+1], and thus
being evaluated at n + θ. Nonlinearities, apart from the dependence of the stabilisation
parameters on the velocity, have been explicitly displayed. The RHS depends on the
unknowns at tn, both the array of FE nodal velocities U and that of velocity SGSs Ũ
(recall that these are in fact known at the numerical integration points). The contribution

R. CODINA ET AL. 11

from the stabilisation terms to the A12 block of the stiffness matrix has been split as
B1,S(U) + B2,S; the first term comes from the convective operator applied to the test
function that multiplies the pressure gradient, whereas the second comes from the viscous
operator applied to the test function. Note that in the A21 block the first matrix keeps the
sign and the second one changes it, both being transposed.

It is worth to remark that the presented formulation can be simplified. As the orthog-
onal projection converges to zero when the mesh is refined, not all terms coming from
the stabilisation need to be accounted for. In particular, one can design a term-by-term
stabilisation that has less terms to compute with the same accuracy [39]. In this case,
we would have B1,S = B2,S = 0, and matrix KS would only have contributions from the
convective term.

The use of dynamic SGSs has been found to be crucial in the performance of the stabilised
formulation proposed. Both linearisation schemes and iterative algebraic solvers perform
much better in this case. This is partly due to the presence of δt in τeff . In fact, in
residual based stabilisation schemes it is often seen that the stabilisation parameter is
taken directly as τeff , without considering dynamic SGSs. But if τeff is used without
coming from a temporal tracking of the SGSs, i.e., quasi-static SGSs are employed, the
amount of stabilisation introduced in the formulation depends on δt and, in fact, if the
steady state solution exists it depends on this time step size (see [7] for further discussion).

Let us close this section mentioning that the formulation presented acts as an implicit
large eddy simulation problem, as it is shown in [40] and tested for example in [41]. Most
real life simulations are turbulent, but we do not need to add any additional turbulence
model to the formulation presented. In the numerical simulation presented we shall demon-
strate that the features of turbulent flows are indeed captured.

4. Approximate imposition of boundary conditions

In the previous section we have considered that the Dirichlet velocity boundary con-
ditions on Γmov(t) are imposed exactly. This is possible if nodes on this boundary are
effectively created, as in this case mesh T n+1

h can be considered a local re-meshing of the
background mesh (see Fig. 2, bottom-right). However, activating and deactivating nodes is
a cumbersome process from the numerical standpoint, as the profile of the stiffness matrix
keeps changing from one time step to the other, thus implying continuous allocation and
deallocation of computer memory. In this sense, it is much simpler to prescribe boundary
conditions approximately, using a Nitsche’s approach as described below. In this case, the
degrees of freedom that need to be activated always belong to the background mesh. Note,
however, that the splitting of the elements cut by Γmov(t) is still needed for integration
purposes. The fixed-mesh ALE formulation, together with the approximate imposition of
Dirichlet boundary conditions, are the two key features of the embedded approach we pro-
pose. The stabilised FE formulation presented in the previous section and the fractional
step scheme described in the following one are simply adapted to this embedded approach.

4.1. Imposition of Dirichlet boundary conditions. There are different methods to
impose approximately the condition

u = umov on Γmov, t ∈ (0, T). (17)

A pure algebraic approach is presented in [14], whereas a method based on a predetermined
form of the Lagrange multiplier to enforce this condition is proposed in [13]. However, in
this work we shall restrict ourselves to the classical Nitsche’s method (see, e.g. [18]).

Let En
h = {En} be the collection of edges of T n

h , n = 1, 2, . . . , including the edges
generated by the intersection of Γmov(t

n) with Th. For simplicity, we assume that Γmov(t
n)

is made by the union of edges in En
h . In contrast with the exact imposition of condition (17),

in Nitsche’s method the test functions vh ∈ V n
h do not vanish on Γmov(t

n), and when the

R. CODINA ET AL. 12

differential equations are integrated by parts there is a contribution from this boundary.
Let {En

mov} be the collection of edges contained in Γmov(t
n). Nitsche’s method consists in

adding to the discrete variational form of the problem the terms∑
En+θ

mov

∫
En+θ

mov

vh · (pn+θ
h n− 2µn · ∇Sun+θ

h)

+
∑
En+θ

mov

∫
En+θ

mov

(un+θ
h − un+θ

mov) · (−qhn− 2µn · ∇Svh)

+
∑
En+θ

mov

∫
En+θ

mov

µN
hE

vh · (un+θ
h − un+θ

mov). (18)

Let us discuss the motivation for these three terms. The first term comes from the fact
that the test function vh does not vanish on Γmov(t

n+θ), and does not deserve further
explanation. Note that should there be Neumann boundary conditions prescribed on part
of Γmov(t

n), they would appear in the first integral of Eq. (18), and the resulting known
term treated as an external force. This would not affect the design of the fractional step
scheme proposed in Section 5.

The second term is added for symmetry reasons, and it is sometimes referred to as the
adjoint consistency term. If there is no convection (i.e, an updated Lagrangian approach is
used), it would lead to a symmetric contribution to the stiffness matrix, as the sign of the
continuity equation could be changed by taking −qh as pressure test function. However,
we use a negative sign for the viscous contribution of the second term, and this makes the
contribution non-symmetric for non-symmetric problems (with convection). This unusual
sign can be shown to have some enhanced stability and easy motivation in the context of
discontinuous Galerkin approximations [42].

Finally, the third term in Eq. (18) is the so called stabilisation term, although in fact
it is the term that penalises the restriction given by the boundary condition (17). There,
hE is the characteristic length of En+θ

mov and µN is an algorithmic parameter with units of
viscosity, that we compute for each edge as

µN = µ+ ρhE∥un+θ
h ∥L∞(En+θ

mov)
.

This completes the description of the version of Nitsche’s method that we employ.

4.2. Stabilisation of badly cut elements. It is known that this approach described
leads to unstable results because of the presence of ‘badly cut’ elements, i.e., elements cut
by Γmov(t

n+θ) of which only one small portion belongs to the flow domain Ω(tn+θ). Recall
that the integrals involved in the discrete variational form of the problem are performed
over this domain. There are different strategies to avoid this instability, which in fact can be
related to the algebraic ill-conditioning introduced by the badly cut elements in the stiffness
matrix. Among these techniques, let us mention the ghost-penalty method proposed in [20],
the shifted boundary method introduced in [21] or the aggregated unfitted FE method
proposed in [22]. Here we propose a new alternative. There are several reasons for using
the technique we propose next and not any of the methods just mentioned. First, it fits
well with the stabilisation technique we use for the flow equations, since now we will also
use projections onto FE spaces that we already have available, thus saving computing time.
Second, and perhaps the most important, we do not need any additional data structure,
such as the edge connectivities that are required for example in the implementation of the
method described in [20]; the new term to be introduced can be computed looping over the
elements, and only integrals over edges defining the boundary of the domain need to be
computed. This leads to a third benefit, which is the simplification in the parallelisation

R. CODINA ET AL. 13

of the method. Finally, we have found our approach quite effective and robust in our
computations; a simple numerical test is presented at the end of this section.

Let T n
h,cut = {Kn

cut} be the collection of elements of the background mesh Th cut by
Γmov(t

n) together with their neighbours in the interior of the flow domain Ω(tn). Let also
Ωn
cut =

∪
Kn

cut. In fact, Ωn
cut could be defined with an arbitrary number of layers inside

Ω(tn). Note that the elements of Ωn
cut cut by Γmov(t

n) will have a portion of them outside
Ω(tn). As degrees of freedom for the velocity and pressure interpolation we will use all
those of the sub-mesh T n

h,cut. As stabilising term to account for instability due to badly
cut elements, we introduce∑

Kn+θ
cut

∫
Kn+θ

cut

µC∇vh : (∇un+θ
h − Pcut[∇un+θ

h])

+
∑
Kn+θ

cut

∫
Kn+θ

cut

h2K
µC

∇qh : (∇pn+θ
h − Pcut[∇pn+θ

h]), (19)

where Pcut is the L2(Ωn
cut)-projection, i.e., for any function f (a scalar, a vector or a tensor)

defined in Ωn
cut, in general discontinuous, there holds∑

Kn+θ
cut

∫
Kn+θ

cut

vhPcut[f] =
∑
Kn+θ

cut

∫
Kn+θ

cut

vhf,

for all continuous FE functions vh in Ωn
cut of the same tensorial order as f . The parameter

µC has units of viscosity, and we compute it as

µC = µ+ ρhK∥un+θ
h ∥L∞(Kn+θ

cut),

where hK is the diameter of Kn+θ
cut . Since Pcut is the L2(Ωn

cut)-projection, we could also
write (19) as∑

Kn+θ
cut

∫
Kn+θ

cut

µCP
⊥
cut[∇vh] : P

⊥
cut[∇un+θ

h] +
∑
Kn+θ

cut

∫
Kn+θ

cut

h2K
µC

P⊥
cut[∇qh] : P⊥

cut[∇pn+θ
h], (20)

with P⊥
cut = I − Pcut, emphasising the symmetric nature of these terms.

It is observed that the terms in Eq. (20) are not consistent, in the sense that if we replace
uh by the exact velocity u and ph by the exact pressure p they do not vanish. However,
the difference |∇u − Pcut[∇u]| is expected to convergence to zero as the mesh is refined
with the optimal power of the mesh size that can be provided by the FE interpolation, and
likewise for |∇p− Pcut[∇p]|. Thus, there is a consistency error, but it is of optimal order.
A version of this method applied to free surface flows was already used in [43].

Combining Eqs. (9)-(10)-(14)-(15)-(18)-(19), we can finally write the fully discrete vari-
ational form of the formulation we propose. It reads as follows: given un

h ∈ V n
h , ũn ∈ V n,⊥

h

and pnh ∈ Qn
h, find un+1

h ∈ V n+1
h and pn+1

h ∈ Qn+1
h such that

mn+θ(vh, δtu
n+1
h

∣∣
xn) + an+θ(vh,u

n+θ
h)

+ cn+θ(vh,u
n+θ
h − un+θ

dom,u
n+θ
h)− bn+θ(pn+θ

h ,vh)

+
∑
Kn+θ

∫
Kn+θ

τn+θ
eff P⊥

u

[
ρ(un+θ

h − un+θ
dom) · ∇vh +∇ · (2µ∇Svh)

]
· P⊥

u

[
ρ(un+θ

h − un+θ
dom) · ∇un+θ

h −∇ · (2µ∇Sun+θ
h) +∇pn+θ

h

]
+
∑
En+θ

mov

∫
En+θ

mov

vh · (pn+θ
h n− 2µn · ∇Sun+θ

h)−
∑
En+θ

mov

∫
En+θ

mov

un+θ
h · 2µn · ∇Svh

R. CODINA ET AL. 14

+
∑
En+θ

mov

∫
En+θ

mov

µN
hE

vh · un+θ
h +

∑
Kn+θ

∫
Kn+θ

τn+θ
p P⊥

p [∇ · un+θ
h]P⊥

p [∇ · vh]

+
∑
Kn+θ

cut

∫
Kn+θ

cut

µCP
⊥
cut[∇vh] : P

⊥
cut[∇un+θ

h]

= l(vh) +
∑
Kn+θ

∫
Kn+θ

τn+θ
eff ρ(θδt)−1ũn · P⊥

u

[
ρ(un+θ

h − un+θ
dom) · ∇vh +∇ · (2µ∇Svh)

]
−
∑
En+θ

mov

∫
En+θ

mov

un+θ
mov · 2µn · ∇Svh +

∑
En+θ

mov

∫
En+θ

mov

µN
hE

vh · un+θ
mov

bn+θ(qh,u
n+θ
h) +

∑
Kn+θ

∫
Kn+θ

τn+θ
eff P⊥

u [∇qh]

· P⊥
u

[
ρ(un+θ

h − un+θ
dom) · ∇un+θ

h −∇ · (2µ∇Sun+θ
h) +∇pn+θ

h

]
−
∑
En+θ

mov

∫
En+θ

mov

un+θ
h · qhn+

∑
Kn+θ

cut

∫
Kn+θ

cut

h2K
µC

P⊥
cut[∇qh] : P⊥

cut[∇pn+θ
h]

= −
∑
En+θ

mov

∫
En+θ

mov

un+θ
mov · qhn,

for all test functions vh ∈ V n+1
0,h and qh ∈ Qn+1

h . Once un+θ
h is known, ũn+θ can be

computed using Eq. (13).
At this point it is convenient to write the structure of the stiffness matrix of the system.

Instead of Eq. (16), now we have[
A11 A12

A21 A22

]
=

[
KG(U) + KS(U) + KN + KC −BG + B1,S(U) + B2,S + BN

BT
G + BT

1,S(U)− BT
2,S − BT

N LS + LC

]
, (21)

where the contributions from Nitsche’s method have been identified with subscript N and
those from the stabilisation of the cuts with subscript C. Note that, although not explicitly
displayed, these matrices depend also on the velocity through the calculation of their
algorithmic parameters µN and µC.

Let us finally remark that when the orthogonal projection of the pressure gradient is
treated explicitly, as explained above, it is convenient to consider only the non-hydrostatic
pressure gradient, i.e., to subtract ρf from the total pressure gradient (assuming f to be
a potential field), for improving the behaviour of the iterative scheme.

4.3. A numerical test for the embedded formulation. Let us conclude this section
with a numerical test to check that the proposed technique to impose Dirichlet boundary
conditions and the stabilisation of badly cut elements provides an optimally accurate for-
mulation in L2(Ω). To this end, let us consider Ω as the unit square Π = (0, 1)×(0, 1) ⊂ R2

to which a circle Λ centred at (1/2, 1/2) and radius 0.3 is subtracted, i.e., Ω = Π \ Λ. On
the boundaries of Ω the velocity is prescribed and a force vector is introduced so that the
exact solution to the problem is

u0(x, y) = 100(f(x)f ′(y),−f ′(x)f(y)), with f(z) = z2(1− z)2, (22)

p(x, y) = 100x2. (23)

The viscosity is taken as µ = 0.1 and the density as ρ = 1. A structured uniform mesh of
triangles of size h = 1/n, n being the number of subdivisions per side of Π, is employed to
discretise Π. As a reference, the solution computed in the whole unit square Π, but with
the error computed only in Ω, is obtained; we refer to this as the solution obtained with

R. CODINA ET AL. 15

no cuts. Then the problem is solved prescribing weakly the boundary conditions on ∂Λ
(note that u = 0 on ∂Π). Linear interpolation is used for both velocity and pressure.

The L2(Ω)-norm of the velocity is shown in Fig. 3. It is observed that convergence is
virtually identical for the solution with no cuts and using the embedded formulation with
the stabilisation we propose.

101 102
n Mesh divisions

10−3

10−2

10−1

u
Er
ro
r L

2
no

rm

No cuts
Stabilized cuts
Slope = 2

Figure 3. Convergence test to check the performance of the embedded
formulation proposed in a stationary problem.

5. Artificial compressibility and fractional step scheme

5.1. Artificial compressibility technique. We have found convenient to use an artifi-
cial compressibility approach for efficiency purposes, but controlling the amount of added
compressibility to keep a good approximation to the original incompressibility condition
[24, 25]. The reason is simply that this leads to a better conditioning of the final pressure
equation obtained below, and iterative schemes to solve this equation converge significantly
better. This model can be motivated from the equations of isentropic compressible flows
neglecting some terms.

The idea is to replace the incompressibility condition given in Eq. (3) by
1

ρ c2
∂p

∂t
+∇ · u = 0,

where c is a parameter with units of velocity that we compute as c = βUmax, with Umax

the maximum velocity norm in the domain and β a parameter to be adjusted. Using the
same scheme to approximate the pressure time derivative as the velocity time derivative,
equations Eq. (5) and Eq. (8) need to be respectively replaced by:

1

ρ c2
δtp

n+1
h |xn +∇ · un+θ = 0 and

1

ρ c2
(qh, δtp

n+1
h |xn) + bn+θ(qh,u

n+θ
h) = 0.

As δtpn+1
h belongs to the pressure FE space, the stabilisation has no effect on the artificial

compressibility term. Thus, it is readily seen that the algebraic system to be solved at
each time step is [

MG 0
0 Mϵ

] [
δtU
δtP

]
+

[
A11 A12

A21 A22

] [
U
P

]
=

[
Fu

Fp

]
, (24)

where Mϵ is the mass matrix computed with pressure shape functions multiplied by ϵ :=
ρ−1c−2. The RHS accounts for all contributions to the discrete momentum and the discrete
continuity equations, including now non-homogeneous velocities, and the stiffness matrix
is given by Eq. (21). Of course the approximation of the temporal derivatives has terms
evaluated at tn that can be moved to the RHS, but it is convenient to keep them in the

R. CODINA ET AL. 16

left-hand-side (LHS) to design the fractional step scheme presented next. Recall that the
time step at which the unknowns are evaluated has been omitted, but it corresponds to
tn+θ for the unknown multiplying the stiffness matrix and the incremental quotient δtU is
computed with the difference between Un+1 and Un, and likewise for δtP.

5.2. Fractional step strategy. We present now a fractional step scheme designed at
the pure discrete level. As explained in [23], there are two ways to attempt the design
of algebraic fractional step schemes. The first is to consider an incomplete factorisation
of the matrix of the final algebraic system, and the second to extrapolate one of the
variables, compute the rest, and then correct the effect of the extrapolation. We pursue
this second path in this work. The plan for each time step is as follows: we consider first
an extrapolation of the pressure in the momentum equation that allows us to compute
an intermediate velocity, then we obtain a pressure equation that, after an additional
modification to make it easily solvable, allows us to compute the pressure and, with this
pressure at our disposal, we compute the final velocity to be used in the next time step.
The key point is that the modification of the pressure equation needs some care, as the
terms introduced by the weak imposition of boundary conditions complicates this. The
way to circumvent this issue is to use an extrapolation for these terms of one order higher
than for the pressure gradient in the first step and then skip its correction. This procedure
is described next and, since the order of the time integration scheme is at most 2 (for
θ = 1/2) the splitting scheme to be presented has to have also an additional error limited
to order O(δt2).

Let us consider the system, fully equivalent to (24), given by

1

θδt
MG(Û − Un) + A11U − BGPn + A12,R((1 + θ)Pn − θPn−1) = Fu, (25)

1

θδt
MG(U − Û)− BG(P − Pn) + A12,R[P − ((1 + θ)Pn − θPn−1)] = 0, (26)

1

θδt
Mϵ(P − Pn) + A21U + A22P = Fp. (27)

We have introduced a new variable Û and we have written A12 = −BG + A12,R. Clearly,
adding up (25) and (26) we recover the original discrete momentum equation. Since Pn

is an approximation of order O(δt) to P and (1 + θ)Pn − θPn−1 an extrapolation of order
O(δt2), we may expect the difference U− Û to be of order O(δt2). Therefore, if in (25) we
replace U by Û and in (26) we neglect P− ((1 + θ)Pn − θPn−1), the expected error will be
of order O(δt2). The resulting problem is:

1

θδt
MG(Û − Un) + A11Û − BGPn + A12,R((1 + θ)Pn − θPn−1) = Fu, (28)

1

θδt
MG(U − Û)− BG(P − Pn) = 0, (29)

1

θδt
Mϵ(P − Pn) + A21U + A22P = Fp. (30)

The main advantage of this system with respect to (25)-(27) is that the first equation
is uncoupled, i.e., it allows us to solve directly for Û (being understood that A11 is also
computed with this velocity). Furthermore, we can perform an additional approximation
to uncouple the calculation of P. To this end, let us also split A21 = BT

G + A21,R. If we
isolate U in terms of Û from Eq. (29) and insert the result in Eq. (30) we get:

1

θδt
Mϵ(P − Pn) + θδtBT

GM−1
G BG(P − Pn) + A21,RθδtM−1

G BG(P − Pn) + (LS + LC)P

= −A21Û + Fp. (31)

R. CODINA ET AL. 17

Since P = (1 + θ)Pn − θPn−1 +O(δt2), we have that

P − Pn = θ(Pn − Pn−1) +O(δt2).

We cannot approximate P − Pn by Pn − Pn−1 in all the LHS of Eq. (31), as there would
be no equation for P, but we can do it in the third term of the LHS. This implies an
explicit treatment of some terms, but in our calculations we have never observed a time
step limitation because of this approximation. Furthermore, matrix BT

GM−1
G BG represents

at the discrete level an approximation to the Laplacian operator, and can be replaced
by the standard Laplacian matrix LG (see [44]); this approximation is of optimal order
in space. Note that to be able to do this approximation it is crucial not to change the
mass matrix of the Galerkin problem, MG; we achieve this condition because of the use of
velocity SGSs orthogonal to the velocity FE space.

With the two approximations described, Eq. (31) leads to:
1

θδt
Mϵ(P − Pn) + (θδtLG + LS + LC)P

= θδtLGPn − A21,Rθ
2δtM−1

G BG(Pn − Pn−1)− A21Û + Fp.

This is an equation that can be solved for P once we have computed Û. It is understood
that matrix A21 is computed with this velocity. Therefore, we can solve the three following
equations sequentially:

1

θδt
MG(Û − Un) + A11Û − BGPn + A12,R((1 + θ)Pn − θPn−1) = Fu, (32)

1

θδt
Mϵ(P − Pn) + (θδtLG + LS + LC)P

= θδtLGPn − A21,Rθ
2δtM−1

G BG(Pn − Pn−1)− A21Û + Fp, (33)
1

θδt
MG(U − Û)− BG(P − Pn) = 0. (34)

This is the fractional step scheme we propose. The splitting error is of second order, and
for θ = 1/2 it is a globally second order time integration scheme. Of course, we could have
started from other monolithic time integration schemes, such as the second order BDF
method.

From Eq. (33) the need for approximating P − Pn by θ(Pn − Pn−1) in the second term
of the LHS of Eq. (31) becomes apparent. First, we can approximate BT

GM−1
G BG by ma-

trix LG of narrower stencil, but we do not have any means (at least to our knowledge) to
approximate matrix A21,Rθ

2δtM−1
G BG by a more compact one. Second, the terms treated

explicitly do not contribute at all to spatial stability, neither those coming from the sta-
bilised formulation (BT

1,S(Û)− BT
2,S) nor that coming from Nitsche’s method (BT

N).
The final scheme (32)-(34) has some nonlinear terms that need to be linearised. This can

be done in an iterative loop, using either a fixed point or a Newton-Raphson linearisation,
or directly taking the second order extrapolated velocity from previous time steps. The
same applies to the various orthogonal projections involved in the formulation, which can
be treated explicitly as explained earlier.

5.3. A numerical test for the fractional step scheme. To close this section, we extend
the test of subsection 4.3 to a transient test using the fractional step method proposed.
Boundary conditions, initial conditions and forcing term are chosen so that the exact
solution to the problem is

u(x, y, t) = cos(πt)(exp(−t) + 1)u0,

where u0 is given in (22) and the pressure is again given by (23). A rigid body horizon-
tal displacement x(t) = 0.1 sin(πt) is prescribed to the cylinder Λ, so that the problem

R. CODINA ET AL. 18

corresponds to an incompressible flow in a moving domain. The finest mesh used in sub-
section 4.3 is now employed for the space approximation. Only the embedded strategy is
considered. For the time approximation, both BDF1 and BDF2 schemes are considered,
combined with the fractional step scheme we have proposed.

Velocity convergence in the L2(Ω) norm at time t = 1 with the time step size is shown
in Fig. 4. It is seen that for BDF1 the error is driven by the temporal approximation, and
thus a perfect first order rate of convergence is observed. However, for BDF2 the error
saturates at the spatial error observed in Fig. 3 for the finest mesh. Thus, the convergence
curve moves from a steep straight line of slope around 2 to a horizontal asymptote. Never-
theless, this test demonstrates that the fractional step scheme proposed does not spoil the
convergence rate expected for the BDF2 scheme. The saturation error can be obviously
decreased using higher order elements, in particular quadratic triangles.

Fig. 4 also compares the results obtained with the fractional step scheme and those
found with a monolithic integration in time. For BDF1 the errors are very similar, but for
BDF2 the errors computed using the fractional step scheme are about 5 times higher than
using a monolithic scheme. This is a well known fact of fractional step methods, not to
be attributed to our formulation tailored for moving domains. In any case, convergence is
quadratic for BDF2, which is the best we can expect.

10−16×10−2
dt (s)

10−3

10−2

10−1

Er
ro
r L

2
no
rm

Fractional Step BDF1
Slope = 1
Fractional Step BDF2
Slope = 2
Monolithic BDF1
Monolithic BDF2

Figure 4. Convergence test to check the performance of the fractional
step scheme proposed.

6. Adaptive mesh refinement and parallel implementation

.

6.1. Level set function for the boundary definition. For the tracking of the moving
boundary, a standard option is to rely on the classical level set method. The main feature
of this method is that it allows for a sharp representation of the interface, which results
in an accurate definition of the fluid domain at time t, Ω(t). The level set function ψ is
defined on the whole landscape domain Ω0, in such a way that, at each time instant t:

ψ(x, t) = 0 on Γmov(t),

ψ(x, t) > 0 in Ω(t),

ψ(x, t) < 0 in Ω0\Ω(t).

For the definition of such boundary, contrary to other problems such as free surface or
multi-fluid flows, the level set function can be described directly from the geometry of the
moving boundary.

R. CODINA ET AL. 19

An alternative to the use of a classical level set function is to describe the moving object
by another auxiliary FE mesh that includes the geometry of the moving body. This mesh
moves in a rigid body (Lagrangian) way, following the movement of the moving obstacle.
Thus, this can be considered as a foreground mesh that moves on top of the background
mesh Th that covers the whole computational domain. One can then define a fixed level set
on this Lagrangian mesh, and then, at each time step, this level set function is projected
onto the background mesh. In turn, the way the level set function is constructed depends
on whether the foreground mesh is body fitted or not. If the foreground mesh is fitted
to the moving object, i.e., element boundaries of the foreground mesh define the object,
then ψ is easily constructed (for example by computing node-to-node distances). On the
contrary, if the foreground mesh is not body fitted and the object is defined from a surface
representation (in any format used in computational geometry), then this surface has to
be intersected with the foreground mesh to compute ψ. In the numerical simulation of
Section 7 we have considered a body fitted foreground mesh to ease the calculation of the
level set function, but there are of course other options. The key point is that the level
set function needs to be computed only once, as a preprocess, and then projected at each
time step to the background mesh.

6.2. Algorithmic strategy for the projection step. Let us start this subsection by
remarking that the method proposed in this work is implemented in a distributed memory
parallel platform. Algorithmic parallelism is achieved by computing a partition of the FE
mesh by using graph partitioning algorithms, specifically ParMetis [45] in our case, for
the partitioning of the mesh graph. The mesh partitioning algorithm in our approach is
nodally based, which means that each node belongs to a single subdomain or processor,
whereas elements can belong to multiple subdomains if they own nodes owned by different
processors.

As explained in the previous section, the fixed-mesh ALE method involves a stage at
each time step where the unknowns are projected onto the background fixed mesh. Also, at
each time step we require a projection of the level set function from the Lagrangian mesh to
the background Eulerian mesh. Independently of the case of projection considered, when
dealing with this in a parallel framework the element in which a node or integration point
lays after the deformation might belong to a different processor and parallel subdomain
after the projection, which introduces the additional difficulty of a parallel spatial search
across multiple threads. Several possible strategies exist for treating this issue.

The approach we favour for these projections consists in implementing an octree-based
(quadtree in two dimensions) search algorithm whose efficiency does not depend on the
time step size. It is important in this case to implement the search algorithm so that it can
be used in a parallel framework. The strategy we follow is to build first an octree search
data structure for the processor corresponding to each subdomain. This is followed by the
construction of a subdomain octree which allows to decide which, amongst the neighbour
processors, contains the sought element when it is not found in the current processor. Since
in the adaptive fixed-mesh ALE method described next the number of elements and the
position of the nodes evolves in time, the octree needs to be rebuilt at each time step.

6.3. Adaptive approach. For the adaptive refinement we rely on the algorithm presented
in [30], which allows the distributed memory parallel FE code to efficiently modify the mesh
in a hierarchical manner (both refining and coarsening of the mesh are possible) so that
it is refined only in the regions of the computational domain where it is required. In the
following we summarise the main features of the adaptive refinement algorithm and its
coupling with the fixed-mesh ALE method.

The adaptive refinement algorithm is based in a nodal parallel partition. As said above,
this means that each node of the mesh belongs to a processor. This feature, which is
strongly linked to the design of the parallel FE code, introduces some particularities when

R. CODINA ET AL. 20

designing the hierarchical mesh refiner. From the fixed-mesh ALE point of view the adap-
tive refinement algorithm acts as a black box that allows to modify the mesh during
runtime, with two particularities: first, a mesh refinement criterion needs to be provided
so that the algorithm can decide which areas of the mesh need to be refined; secondly, the
FE solver needs to deal with hanging nodes which, if a straightforward implementation is
done, results in non-conforming discretisations. The way we deal with hanging nodes is
to eliminate their associated degrees of freedom and impose that they are obtained from
the interpolation of the nodes of the parent element, i.e., the element that has been refined
but whose neighbour has not. This results in a conforming approximation. In particular,
in the case of linear elements, the unknowns at the hanging nodes are prescribed to be the
linear interpolation from the nodes of the parent element (see [43]).

With regards to the mesh refinement criterion, a very simple decision making algorithm
has been used, which enforces that the elements occupied by the fluid are sufficiently fine.
We define the refinement level as the number of hierarchical parents (in the refinement
process) an element has. Based on this, the criterion at tn reads as follows:

• If an element is occupied by the fluid and its refinement level is less than nRef

(given), then refine it.
• Else if the element is less than nLay (given) layers of elements away from the

interface Γmov(t
n) and its refinement level is less than nRef − nLay , then refine it.

• Else if the element is occupied by the fluid and its refinement level is greater than
nRef , then unrefine it.

• Else, unrefine the element.

This ensures that the refinement level of the elements covered by the fluid is sufficiently
fine and also that some additional refinement can be introduced in the region surrounding
Γmov(t

n) in order to have a more accurate representation of the geometry of the moving
obstacle. The only care which needs to be taken is in the parallel implementation of
this refinement criterion: as explained in [30], the parallel refinement algorithm requires
that the refinement criterion passed to the refiner is the same in all the processors. The
problem for this is that the nLay criterion is geometric and needs to propagate from the
interface through several layers of elements. When these layers cross from one subdomain
(attached to a parallel processor) to another, communications are needed. The solution
to this problem is to communicate the refinement criterion by marking the nodes of the
elements to be refined and then proceeding to communicate this information through the
processor boundaries as a usual nodal unknown communication in a nodally based partition
FE code. Obviously, an adaptive refinement strategy based on error estimators could also
be used, although this has not been used in the numerical experiments presented in this
work.

7. Numerical example

In this section we present an application of the methodology described. This methodol-
ogy is particularly well suited for large scale calculations, although the numerical example
we will present has been chosen solely for illustrative purposes.

We do not pretend to give details about the data of the problem and the quality of the
numerical results, but only to demonstrate qualitatively the application of the formulation
we propose. The accuracy and robustness of its different components has been proved
elsewhere. Concerning the new ingredients developed in this paper, we show that results
are completely smooth close to boundaries, demonstrating that the weak imposition of
boundary conditions and its stabilisation work properly, and give details of the savings in
computing time provided by the fractional step scheme proposed. We also show the type
of mesh refinement employed in this simulation.

R. CODINA ET AL. 21

Figure 5. Train travelling through the middle section of the tunnel.

7.1. Problem statement. The problem we consider is the circulation of a train through
a tunnel, with the particularity that there exists a change in the cross section of this tunnel
and the transition between tunnel sections (see Fig. 5). The objective of the simulation
was to evaluate the pressure peaks generated by the train circulation with the aim of
structurally designing fire-proof panels in the tunnel wall. This problem fits perfectly in
the type of problems described in this paper, as the only possibility to model it is to
consider the motion of a solid, the train, inside the tunnel.

The tunnel is composed of three sections: a narrow constant 20 m2 cross-section tunnel,
a 95 m long curvy tunnel with average section of 26 m2, and another constant section
tunnel of 83 m2. The section of greatest interest is the curvy region in the middle as well
as the transition when the train enters this section from the two adjacent ones. The other
sections are extended to reduce the impact of boundary conditions at the ends. As a result,
the total tunnel length of the computational model is 590 m.

In the studied case, the train is initially placed in the narrow tunnel section moving at
100 km/h. It travels through the middle curvy section and continues through the wide
tunnel. From now on, all physical units are assumed to be given in the SI system. The
values of viscosity and density employed are those corresponding to air.

The surfaces of the train and the tunnel walls are modelled as no-slip boundaries. The
ends of the computational domain are in reality sections where the tunnel continues but
where the flow is expected to be negligible. Therefore, they are modelled as zero velocity
Dirichlet surfaces. This assumption ensures mass conservation and avoids boundary insta-
bilities and it is an approximation to considering a tunnel of infinite length. Furthermore,
the length of the computational domain is large enough to ensure that boundary conditions
do not impact the flow around the train. The train surface is considered a moving no-slip
wall.

7.2. Numerical strategy. The problem is modelled by embedding a foreground and a
background mesh. The foreground mesh contains the geometry of the train and tracks
its displacement. The background mesh has the geometry of the air volume inside the
tunnel and it is where the computation of the incompressible Navier-Stokes problem takes
place. The position and velocity of the train in the foreground mesh is interpolated to the
background mesh every time step, where it is imposed as an embedded boundary condition
of the aerodynamic problem. Thus, in this case the definition of the solid surface is done
through an auxiliary FE mesh.

Two meshes are constructed to model the foreground and the background domains. On
the one hand, the foreground mesh focuses on accurately representing the details of the
geometry of the train, but this is the only requirement, and thus it can be relatively coarse.
The foreground mesh has 32702 nodes and 189335 tetrahedral elements. Its restriction to
the surface of the train is shown in Fig. 6a, whereas Fig. 6b shows the whole volume of the
foreground mesh in which the train is immersed; it is in this foreground mesh where the

R. CODINA ET AL. 22

(a) Foreground
surface mesh

(b) Foreground volume mesh

Figure 6. Foreground mesh.

(a) Background mesh, middle curvy tunnel (b) Background mesh, wide tunnel section

Figure 7. Unrefined background mesh.

level set is defined and projected onto the background mesh to obtain the position of the
train. The cost of generating the foreground mesh is very low (a few minutes, at most).

On the other hand, the background mesh contains the geometry of the tunnel and must
comply with the small grid size required by a high-fidelity Navier-Stokes computation. This
is achieved by constructing an initial coarse mesh to which adaptive mesh refinement is
applied during the computation. While the two tunnel regions with constant section have
semi-structured grids generated by extrusion of a surface mesh (see Fig. 7b), the curvy
middle section is fully unstructured (Fig. 7a). Smaller grid size is applied near the tunnel
walls to better capture the flow close to the train surface, although it is not our intention
to fully capture the turbulent boundary layer. As stated in [46], Nitsche’s method when
applied to turbulent flows acts as a wall law model. In total, the unrefined background mesh
has 2742050 tetrahedral elements and 528493 nodes. In the final computation, adaptive
mesh refinement is used on the background mesh. The refinement strategy is based on

R. CODINA ET AL. 23

layers around the surface of the train. In each time step, the 15 layers of elements around
the interpolated position of the surface of the train are refined. An additional uniform
refinement is also applied. Because the train moves along the tunnel, the refined mesh
changes every time step. The refined mesh reached over 60M elements and over 8M nodes.

Figure 8. Refined background mesh with adaptive refinement around the
position of the train.

The computation of the Navier-Stokes problem follows the methodology explained in the
previous sections. The background mesh is cut according to the current position of the train
surface in the foreground mesh. The velocity of the train is imposed as Dirichlet condition
at the cuts. This condition is weakly imposed using Nitsche’s method and stabilisation of
the cuts. The scheme is stabilised with the following algorithmic parameters for the VMS
method: c1 = 4.0 and c2 = 2.0.

The incompressible flow is computed with the fractional step algorithm described in
Section 5. In the resolution of the velocity step, 4 Picard (fixed point) iterations are
employed. A relaxation factor of 0.8 is used to improve the convergence of the non-linearity.

The artificial compressibility technique is employed, with a parameter of β = 30, result-
ing in c2 ≈ 106. The artificial compressibility does not help stabilising the pressure, since
it is already stable using the stabilisation scheme employed, but improves the conditioning
of the pressure equation resulting from the fractional step scheme without altering signif-
icantly the incompressibility approximation. In this particular example we have checked
for a few time steps that the norm of the velocity, which is not zero because of the inter-
polation (not divergence free) and the stabilisation (see Eq. (10)), is very similar with and
without this artificial compressibility, but much less iterations are required by the iterative
solver to converge. We cannot claim β = 30 is a universal value to be used, and choosing it
for each case may require running a few time steps of the simulation with different values
of β before launching the complete one. Nevertheless, β = 30 could be a reasonable initial
guess.

The transient movement of the train takes 7 seconds of physical time. Time integration
is done with a second order BDF2 scheme. The problem is computed along 1000 time steps.
The chosen time step of δt= 0.007 is found to be small enough to ensure the nonlinear
stability of the implicit integration and to enter the inertial range of the turbulent spectrum.

The computation was carried out on a HPC cluster using 16 Intel Xeon E5-2690v4
processors with a total of 224 CPUs. This represents mesh partitions of around 250000
elements per MPI process, which entails great parallel efficiency according to previous
scalability tests. Load rebalancing is also applied to ensure small parallelisation overhead.

Note that the methodology introduced here also works for smaller computations, but
the high mesh resolution and the turbulence capturing aimed for this application required
the use of a HPC cluster.

R. CODINA ET AL. 24

Figure 9. Geometry slices where results are presented.

Figure 10. Slices of lengthwise velocity.

Figure 11. Velocity Magnitude in the tunnel.

7.3. Numerical results. The results presented in this section are taken from an instant
when the train is half way through the middle tunnel. The slicing planes used for the
representation of results are shown in Fig. 9 in the seek of clarity.

As the train moves through the tunnel, it drags along a layer of air through shear
stresses (see Fig. 10). The displaced air from ahead travels in the opposite direction in
the gap between the train and the tunnel walls (Fig. 11). The problem is characterised by
strong turbulent flow (Fig. 12). The flow detaches at the nose of the train creating vortices
on both sides. Secondary vortices develop all along the sides of the train. Additional

R. CODINA ET AL. 25

Figure 12. Vortical structures represented with Iso Q-Criterion volumes.

Figure 13. Pressure distribution in the tunnel.

Figure 14. Flow streamlines around the train.

vortices are generated when the flow hits the sharp edges of the tunnel walls. Turbulence
is greatest at the tail of the train, where vortices are alternatively detached as air from
the sides of the train is sucked. As a result, the train leaves behind a wake region which
gradually dissipates downstream. As expected, the maximum pressure is found at the nose
of the train and the strongest suction appears at the tail (see Fig. 13 and Fig. 14). There
is a pressure drop along the sides of the train.

The results show a fluid problem computation with a high level of detail. The fine
discretisation allows for the resolution of a large range of turbulent scales, leading to an

R. CODINA ET AL. 26

Table 1. Performace of the solver of the fractional step algorithm for a
representative time step.

Problem [Picard iteration] Solver iterations Solver Time
Velocity [1] 140 18.3 s
Velocity [2] 135 17.5 s
Velocity [3] 136 17.6 s
Velocity [4] 141 18.1 s
Pressure Correction 574 31.5 s

accurate capturing of the eddies and complex features of the flow. The implemented
embedded methodology achieved the task of transferring the position and velocity of the
train, enabling the resolution of a fully transient and complicated problem which would
have been very difficult to solve with a single fixed mesh or with a classical ALE approach.

The adaptive mesh refinement (Fig. 8) also plays a significant role in the numerical
computation. Firstly, it provides the background mesh with fine element sizes in the region
close to the surface of the train. This optimises the imposition of boundary conditions,
thus enhancing the precision of the embedded strategy. Secondly, it refines the region
around the train where the most complex flow features appear. This guarantees a mesh
resolution capable of capturing sharp gradients and turbulent phenomena, even if we have
not aimed at fully capturing the boundary layer, while the regions further from the train
where the flow is smooth and easily computed remain unrefined. As a result, the refinement
strategy proves to be successful in increasing the accuracy of the numerical scheme and
the computational efficiency.

7.4. Numerical performance. The computation of the whole problem with 224 CPUs
took 35 h. 90% of the computation time was spent on the assembly and solving of the
linear systems of the different steps of the incompressible Navier-Stokes fractional step
algorithm. The velocity step non-linearity converged to the order of 10−3 with 4 Picard
iterations.

In terms of solver of the linear systems, the parallel library PETSc was employed [47].
The iterative BCGs (Biconjugate Gradients Stabilized) [48] solver with ILU preconditioner
was chosen for this problem. The convergence of the solver was stable, typically reaching
a tolerance of the order of 10−6. The linear solver of the fluid problem used a 73% of the
total CPU time. The solver information for a characteristic step is found in Table 1.

It is interesting to notice the high number of iterations and time required for the pres-
sure correction step compared to a velocity step. Had a monolithic algorithm been used
instead of the proposed fractional step, the solver of the monolithic system would have
taken at least the iterations required by the pressure correction step, creating a significant
computation overhead. Considering that each nonlinear iteration would involve four vari-
ables per node instead of three (pressure plus three velocity components), and that the
number iterations would be driven by the pressure (of the order of 574 instead of something
between 135 and 141), the expected factor of CPU increase would be about 5.5.

It is interesting to point out that the adaptive refinement uses 1.8% of the computation
time and the embedding operations take 1%. The computation overhead of both is negli-
gible compared to solving of the incompressible Navier-Stokes systems. This justifies the
use of the different ingredients of the methodology and proves its numerical efficiency.

8. Conclusions

In this paper we have presented a methodology to deal with large scale fluid flow prob-
lems in which the flow domain changes because of the motion of a solid moving inside a
fluid. The novelties of the paper consist of the tailoring of different numerical techniques

R. CODINA ET AL. 27

to this problem and also two specific new ingredients. The former include a stabilised
FE method that can be used as implicit LES, the fixed-mesh ALE strategy, the weak
imposition of boundary conditions in non-matching meshes, the artificial compressibility
technique and the adaptive mesh refinement, whereas the latter are the stabilisation of
badly cut elements and the design of the fractional step scheme. In all cases, the choice of
these techniques is motivated by the physical needs and, above all, by efficiency consider-
ations. This is why we favour for example fractional step schemes rather than monolithic
ones and fixed mesh methods rather than moving meshes.

The resulting formulation is very robust and efficient. We have presented a numerical
simulation with the objective of highlighting the convenience of the choices adopted and
the good numerical performance of this formulation, both from the point of view of the
quality of the results and from the computational efficiency.

Acknowledgements

R. Codina gratefully acknowledges the support received through the ICREA Acadèmia
Research Program of the Catalan Government. I. Castañar gratefully acknowledges the
support received from the Agència de Gestió d’Ajuts i de Recerca through the predoctoral
FI grant 2019-FI-B-00649. CIMNE is a recipient of a “Severo Ochoa Programme for Centers
of Excellence in R&D” grant (CEX2018-000797-S) by the Spanish Ministry of Economy
and Competitiveness.

References

[1] J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodríguez-Ferran, Arbitrary Lagrangian–Eulerian Methods,
in Encyclopedia of Computational Mechanics (eds E. Stein, R. Borst and T.J.R. Hughes), pp. 1–25.
John Wiley & Sons Ltd., 2004.

[2] S. Badia and R. Codina, “Analysis of a stabilized finite element approximation of the transient
convection-diffusion equation using an ALE framework,” SIAM Journal on Numerical Analysis, vol. 44,
pp. 2159–2197, 2006.

[3] G. Houzeaux and R. Codina, “A finite element model for the simulation of lost foam casting,” Inter-
national Journal for Numerical Methods in Fluids, vol. 46, pp. 203–226, 2004.

[4] R. Codina, J. Houzeaux, H. Coppola-Owen, and J. Baiges, “The fixed-mesh ALE approach for the
numerical approximation of flows in moving domains,” Journal of Computational Physics, vol. 228,
pp. 1591–1611, 2009.

[5] T. Hughes, “Multiscale phenomena: Green’s function, the Dirichlet-to-Neumann formulation, sub-
grid scale models, bubbles and the origins of stabilized formulations,” Computer Methods in Applied
Mechanics and Engineering, vol. 127, pp. 387–401, 1995.

[6] R. Codina, “Stabilized finite element approximation of transient incompressible flows using orthogonal
subscales,” Computer Methods in Applied Mechanics and Engineering, vol. 191, pp. 4295–4321, 2002.

[7] R. Codina, J. Principe, O. Guasch, and S. Badia, “Time dependent subscales in the stabilized finite
element approximation of incompressible flow problems,” Computer Methods in Applied Mechanics
and Engineering, vol. 196, pp. 2413–2430, 2007.

[8] M.-C. Lai and C. Peskin, “An immersed boundary method with formal second-order accuracy and
reduced numerical viscosity,” Journal of Computational Physics, vol. 160, pp. 705–719, 2000.

[9] C. Peskin, “Flow patterns around heart valves: A numerical method,” Journal of Computational
Physics, vol. 10, pp. 252–271, 1972.

[10] H. Barbosa and T. Hughes, “The finite element method with Lagrangian multipliers on the boundary:
circumventing the Babuška-Brezzi condition,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 85, pp. 109–128, 1991.

[11] A. Gerstenberger and W. Wall, “An embedded Dirichlet formulation for 3D continua,” International
Journal for Numerical Methods in Engineering, vol. 82, pp. 537–563, 2010.

[12] R. Glowinski, T. Pan, T. Hesla, D. Joseph, and J. Périaux, “A distributed Lagrange multi-
plier/fictitious domain method for flows around moving rigid bodies: application to particulate flow,”
International Journal for Numerical Methods in Fluids, vol. 30, pp. 1043–1066, 1999.

[13] J. Baiges, R. Codina, F. Henke, S. Shahmiri, and W. Wall, “A symmetric method for weakly im-
posing Dirichlet boundary conditions in embedded finite element meshes,” International Journal for
Numerical Methods in Engineering, vol. 90, pp. 636–658, 2012.

R. CODINA ET AL. 28

[14] R. Codina and J. Baiges, “Weak imposition of essential boundary conditions in the finite element
approximation of elliptic problems with non-matching meshes,” International Journal for Numerical
Methods in Engineering, vol. 104, pp. 624–654, 2015.

[15] E. Burman, “Projection stabilization of lagrange multipliers for the imposition of constraints on in-
terfaces and boundaries,” Numerical Methods for Partial Differential Equations, vol. 30, pp. 567–592,
2014.

[16] G. Barrenechea and F. Chouly, “A local projection stabilized method for fictitious domains,” Applied
Mathematical Letters, vol. 25, pp. 2071–2076, 2012.

[17] S. Amdouni, M. Moakher, and Y. Renard, “A local projection stabilization of fictitious domain method
for elliptic boundary value problems,” Applied Numerical Mathematics, vol. 76, pp. 60–75, 2014.

[18] M. Juntunen and R. Stenberg, “Nitsche’s method for general boundary conditions,” Mathematics of
Computation, vol. 78, pp. 1353–1374, 2009.

[19] P. Hansbo and M. Larson, “Discontinuous Galerkin methods for incompressible and nearly incom-
pressible elasticity by Nitsche’s method,” Computer Methods in Applied Mechanics and Engineering,
vol. 191, pp. 1895–1908, 2002.

[20] E. Burman and P. Hansbo, “Fictitious domain finite element methods using cut elements: II. A
stabilized Nitsche method,” Applied Numerical Mathematics, vol. 62, pp. 328–341, 2012.

[21] A. Main and G. Scovazzi, “The shifted boundary method for embedded domain computations. Part I:
Poisson and Stokes problems,” Journal of Computational Physics, vol. 372, pp. 972–995, 2018.

[22] S. Badia, A. F. Martín, E. Neiva, and F. Verdugo, “The aggregated unfitted finite element method on
parallel tree-based adaptive meshes,” SIAM Journal on Scientific Computing, vol. 43, pp. C203–C234,
2021.

[23] S. Badia and R. Codina, “Algebraic pressure segregation methods for the incompressible Navier–Stokes
equations,” Archives of Computational Methods in Engineering, vol. 15, pp. 1–52, 2007.

[24] A. Chorin, “Numerical solution of the Navier–Stokes equations,” Mathematics of Computation, vol. 22,
pp. 745–762, 1968.

[25] J.-L. Guermond and P. D. Minev, “High-order time stepping for the incompressible Navier–Stokes
equations,” SIAM Journal on Scientific Computing, vol. 37, pp. A2656 –A2681, 2015.

[26] E. Hachem, S. Feghali, R. Codina, and T. Coupez, “Anisotropic adaptive meshing and monolithic
variational multiscale method for fluidstructure interaction,” Computers & Structures, vol. 122, pp. 88–
100, 2013. Computational Fluid and Solid Mechanics 2013.

[27] P. J. Frey and F. Alauzet, “Anisotropic mesh adaptation for cfd computations,” Computer Methods
in Applied Mechanics and Engineering, vol. 194, no. 48, pp. 5068–5082, 2005. Unstructured Mesh
Generation.

[28] C. Dobrzynski and P. Frey, “Anisotropic delaunay mesh adaptation for unsteady simulations,” in
Proceedings of the 17th International Meshing Roundtable (R. V. Garimella, ed.), (Berlin, Heidelberg),
pp. 177–194, Springer Berlin Heidelberg, 2008.

[29] R. Löhner, “Adaptive remeshing for transient problems with moving bodies,” in 11th International
Conference on Numerical Methods in Fluid Dynamics (D. L. Dwoyer, M. Y. Hussaini, and R. G. Voigt,
eds.), (Berlin, Heidelberg), pp. 379–383, Springer Berlin Heidelberg, 1989.

[30] J. Baiges and C. Bayona, “Refficientlib: An Efficient Load-Rebalanced Adaptive Mesh Refinement
Algorithm for High-Performance Computational Physics Meshes,” SIAM Journal on Scientific Com-
puting, vol. 39, no. 2, pp. 65–95, 2017.

[31] D. Boffi and L. Gastaldi, “Stability and geometric conservation laws for ALE formulation,” Computer
Methods in Applied Mechanics and Engineering, vol. 193, pp. 4717–4739, 2004.

[32] M. Lesoinne and C. Farhat, “Geometric conservation laws for flow problems with moving boundaries
and deformable meshes, and their impact on aerolastic computations,” Computer Methods in Applied
Mechanics and Engineering, vol. 134, pp. 71–90, 1996.

[33] H. Coppola-Owen and R. Codina, “A finite element model for free surface flows on fixed meshes,”
International Journal for Numerical Methods in Fluids, vol. 54, pp. 1151–1171, 2007.

[34] J. Baiges and R. Codina, “The fixed-mesh ALE approach applied to solid mechanics and fluid-structure
interaction problems,” International Journal for Numerical Methods in Engineering, vol. 81, pp. 1529–
1557, 2010.

[35] R. Codina, “A stabilized finite element method for generalized stationary incompressible flows,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 190, pp. 2681–2706, 2001.

[36] R. Codina, S. Badia, J. Baiges, and J. Principe, Variational Multiscale Methods in Computational
Fluid Dynamics, in Encyclopedia of Computational Mechanics (eds E. Stein, R. Borst and T.J.R.
Hughes), pp. 1–28. John Wiley & Sons Ltd., 2017.

[37] R. Codina, J. Principe, and J. Baiges, “Subscales on the element boundaries in the variational two-
scale finite element method,” Computer Methods in Applied Mechanics and Engineering, vol. 198,
pp. 838–852, 2009.

R. CODINA ET AL. 29

[38] R. Codina, “Analysis of a stabilized finite element approximation of the Oseen equations using orthog-
onal subscales,” Applied Numerical Mathematics, vol. 58, pp. 264–283, 2008.

[39] E. Castillo and R. Codina, “Dynamic term-by-term stabilized finite element formulation using or-
thogonal subgrid-scales for the incompressible Navier-Stokes problem,” Computer Methods in Applied
Mechanics and Engineering, vol. 349, pp. 701–721, 2019.

[40] O. Guasch and R. Codina, “Statistical behavior of the orthogonal subgrid scale stabilization terms in
the finite element large eddy simulation of turbulent flows,” Computer Methods in Applied Mechanics
and Engineering, vol. 261-262, pp. 154–166, 2013.

[41] O. Colomés, S. Badia, R. Codina, and J. Principe, “Assessment of variational multiscale models for
the large eddy simulation of turbulent incompressible flows,” Computer Methods in Applied Mechanics
and Engineering, vol. 285, pp. 32–63, 2015.

[42] R. Codina and S. Badia, “On the design of discontinuous Galerkin methods for elliptic problems
based on hybrid formulations,” Computer Methods in Applied Mechanics and Engineering, vol. 263,
pp. 158–168, 2013.

[43] J. Baiges, R. Codina, A. Pont, and E. Castillo, “An adaptive fixed-mesh ALE method for free surface
flows,” Computer Methods in Applied Mechanics and Engineering, vol. 313, pp. 159–188, 2017.

[44] R. Codina, “Pressure stability in fractional step finite element methods for incompressible flows,”
Journal of Computational Physics, vol. 170, pp. 112–140, 2001.

[45] G. Karypis, K. Schloegel, and V. Kumar, “Parmetis parallel graph partitioning and sparse matrix
ordering library,” 1997.

[46] Y. Bazilevs, C. Michler, V. Calo, and T. Hughes, “Weak Dirichlet boundary conditions for wall-
bounded turbulent flows,” Computer Methods in Applied Mechanics and Engineering, vol. 196,
pp. 4853–4862, 2007.

[47] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Mun-
son, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, “PETSc Web page,
http://www.mcs.anl.gov/petsc,” 2015.

[48] H. A. V. der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems,” SIAM, Journal of Scientific and Statistical Computing, vol. 13, no. 2,
pp. 631 – 644, 1992.

	1. Introduction
	2. The Fixed-mesh ALE method
	2.1. ALE formulation of the flow equations
	2.2. Time discretisation
	2.3. Galerkin finite element approximation
	2.4. Fixed-mesh ALE implementation

	3. Stabilised finite element approximation
	4. Approximate imposition of boundary conditions
	4.1. Imposition of Dirichlet boundary conditions
	4.2. Stabilisation of badly cut elements
	4.3. A numerical test for the embedded formulation

	5. Artificial compressibility and fractional step scheme
	5.1. Artificial compressibility technique
	5.2. Fractional step strategy
	5.3. A numerical test for the fractional step scheme

	6. Adaptive mesh refinement and parallel implementation
	6.1. Level set function for the boundary definition
	6.2. Algorithmic strategy for the projection step
	6.3. Adaptive approach

	7. Numerical example
	7.1. Problem statement
	7.2. Numerical strategy
	7.3. Numerical results
	7.4. Numerical performance

	8. Conclusions
	Acknowledgements
	References

