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Abstract. In this work a new methodology for finite strain solid dynamics problems
for stress accurate analysis including the incompressible limit is presented. In previous
works, the authors have presented the stabilized mixed displacement/pressure formulation
to deal with the incompressibility constraint in finite strain solid dynamics. To this end,
the momentum equation is complemented with a constitutive law for the pressure which
emerges from the deviatoric/volumetric decomposition of the strain energy function for
any hyperelastic material model. The incompressible limit is attained automatically de-
pending on the material bulk modulus. This work exploits the concept of mixed methods to
formulate stable displacement/pressure/deviatoric stress finite elements. The final goal
is to design a finite element technology able to tackle simultaneously problems which may
involve incompressible behavior together with a high degree of accuracy of the stress field.
The Variational Multi-Scale stabilization technique and, in particular, the Orthogonal
Subgrid Scale method allows the use of equal-order interpolations. These stabilization
procedures lead to discrete problems which are fully stable, free of volumetric locking,
stress oscillations and pressure fluctuations. Numerical benchmarks show that the results
obtained compare very favorably with those obtained with the corresponding stabilized
mixed displacement/pressure formulation.

Keywords: Incompressible hyperelasticity, Solid dynamics, Mixed interpolations, Stabi-
lization methods, Orthogonal subgrid scales.

1. INTRODUCTION

Several industrial manufacturing processes such as metal forming, forging, or friction stir
welding among many others require, at the same time, stress accuracy and performance
in the incompressible limit [1, 2]. It becomes crucial in these cases to use a finite element
(FE) technology capable of dealing with complex phenomena such as strain localization
[3], the formation of shear bands, the prediction of crack propagation [4] or the isochoric
behavior of the inelastic strains [5].

Incompressibility is a widely accepted assumption used in continuum and computational
mechanics [6]. In biomechanics, several materials can be modeled as nearly or fully incom-
pressible [7]. Stress accuracy enhancement becomes very useful in many fields, such as
cardiac electromechanics [8, 9] in which stress tensor acts as the coupling field with the
equations describing electrical propagation in stress-assisted diffusion models [10].

Displacement-based low order FE methods perform poorly in such nearly and fully
incompressible scenarios [11]. Volumetric and shear locking, pressure fluctuations and
poor performance in bending dominated cases are some of the effects that are often found
[12]. Popular solutions to tackle the nearly incompressible limit in the solid mechanics
community are reduced and selective integration techniques [13], the B-bar and the F-bar
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methods [14] or the well-known mean dilatation FE method, which avoid these numerical
instabilities by reducing the evaluation of the incompressibility constraints at quadrature
points. However, these strategies are only designed to work with structured hexahedral
meshes and they are not able to tackle the fully incompressible regime.

Mixed formulations are well established and regularly used to avoid these instabilities.
The use of different stabilization techniques, and particularly those based on the Varia-
tional Multi-Scale (VMS) framework [15], allows for the use of equal-order interpolations
for all master fields. A particular formulation of this type, namely, the Orthogonal Sub-
grid Scale (OSGS) method [16], was used in [17] to design a stabilized FE formulation for
the three-field linear Stokes problem, using displacements, pressure and deviatoric stresses
as variables. The analysis and FE approximation of Darcy’s problem presented in [18]
motivated the introduction of both strains/displacements and stresses/displacements pairs
as primary variables in [19] for infinitesimal strain elasticity; in this particular case, one
can change the functional framework to increase the accuracy in the calculation of the
stresses. To tackle the incompressible limit, the pressure needs to be introduced as a
variable [20, 21, 22], although it is also possible to design a formulation using the volu-
metric strain as unknown [23]. Formulations including stresses as unknowns produce a
considerable increase in the number of unknowns per node, but they also increase the
accuracy for strains and stresses. Furthermore, in [24] the idea of using a three-field dis-
placement/pressure/deviatoric stress formulation was tested and seen to be very effective
when solving incompressible cases in which accurate results for stress and strain fields
are required. These FE technologies have demonstrated enhanced stress accuracy as well
as the ability to capture stress concentrations and strain localizations guaranteeing stress
convergence upon mesh refinement for first order elements.

Mixed formulations are also applied under the transient finite strain assumption. In
[25, 26] the velocity/pressure pair is taken as unknown of the problem and the displacement
field is updated explicitly as a final step. The problem is stabilized with the VMS frame-
work. A family of first-order form of the equations is presented in [27, 28, 29, 30, 31, 32]
where the authors propose to use as primary variables the linear momentum p, the deforma-
tion gradient F, the cofactor tensor of the deformation gradient H and the jacobian J ; the
objective for this choice of variables is to ease dealing with some complex constitutive laws,
and in particular with polyconvex hyperelastic potentials. In [33] the incompressibility of
the material is treated with the displacement/pressure pair in an updated Lagrangian for-
mulation framework. Another possibility is to consider Finite Volume schemes to present a
conservative cell-centered Lagrangian Finite Volume scheme for solving the hyperelasticity
equations on unstructured multidimensional grids [34].

In previous works, the authors have applied stabilized mixed formulations for elasticity.
Lately, a stabilized mixed displacement/pressure was presented in [35] for both nearly and
fully incompressible hyperelastic material models. The system was stabilized by means
of the VMS framework. The present work makes a step forward introducing a mixed
three-field formulation based on displacement/pressure/deviatoric stress1 elements with
equal-order interpolations for all master fields. The only requirement is the introduction
of the constitutive law for deviatoric stresses in the system of equations to be solved. This
technology is expected to enhance stress accuracy as well as to increase the ability to cap-
ture stress concentrations with the guarantee of stress convergence upon mesh refinement.

This work is organized as follows: In Section 2 the solid dynamics equations in finite
strain theory are summarized and a novel mixed three-field formulation is developed. Fur-
thermore, the variational form of the problem, its linearization and several employed time
integrators are introduced. In Section 3 some VMS stabilization techniques are presented
and the resulting stabilized forms of the three-field formulation are shown. In Section 4

1As it will be shown, the stress used as unknown is deviatoric in the deformed configuration only.
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several benchmarks and numerical examples are tested to assess the present formulation
and to validate its performance. Also a comparison with its two-field formulation counter-
part are highlighted. To end up, in Section 5 some conclusions of the proposed formulation
are drawn.

2. SOLID DYNAMICS PROBLEM

In this work we employ index notation to identify a vector or tensor with its Cartesian
coordinates, either in the reference or the deformed configuration. As usual, repeated
indexes imply summation for all space dimensions (see e.g. [6]). To denote scalar, vector
and tensor quantities we use uppercase letters when they are evaluated in the reference
configuration and lowercase letters if they are reckoned in the deformed one. We employ
the index zero for quantities acting in the reference configuration.

2.1. Conservation equations. Let Ω0 := Ω (0) be an open, bounded and polyhedral
domain of Rd, where d ∈ {2, 3} is the number of space dimensions. The initial configuration
of the body is Ω0, whereas the current configuration of the body at time t is denoted by
Ω (t). The motion is described by a function ψ which links a material particle X ∈ Ω0 to
the spatial configuration x ∈ Ω (t) according to

ψ : Ω0 −→ Ω (t) , x = ψ(X, t), ∀X ∈ Ω0, t ≥ 0.

The boundary of the reference configuration is denoted as Γ0 := ∂Ω0 and Γ (t) := ∂Ω (t)
represents the boundary of the current configuration at time t. We always assume that
the mapping between both boundaries is defined through the motion, i.e., ψ(Γ0, t) = Γ (t).
We denote as ]0, T [ the time interval of analysis.

The conservation of linear momentum in finite strain theory in a total Lagrangian for-
mulation framework reads as

(1) ρ0
∂2ua
∂t2

− ∂

∂XA
{FaBSBA} = ρ0ba in Ω0 × ]0,T[ ,

where ρ0 is the initial density, F = ∂x
∂X is the deformation gradient, S is the second Piola-

Kirchhoff (PK2) stress tensor and ρ0b are the body forces. Mass conservation implies
that

(2) ρJ = ρ0,

where ρ is the density at time t and J = det F > 0 is the Jacobian of F. With regards to the
balance of angular momentum, it implies that the PK2 stress tensor must be symmetric.

The objective of this work is to obtain a mixed formulation for stress accurate analysis
including the incompressible limit. The volumetric/deviatoric split of the Cauchy stress
tensor σ is the starting point to develop such formulation:

(3) σ = σdev − pI,

where σdev is the deviatoric part of σ, p is the pressure and I the second-order identity
tensor. We can now use the relation between stresses to obtain a proper decomposition for
the PK2 stress tensor [36]:

(4) SAB = JF−1
AaF

−1
Bb σab

(3)
= JF−1

AaF
−1
Bb σ

dev
ab − pJC−1

AB := S′AB − pJC−1
AB,

where we have introduced the ‘deviatoric’ PK2 stresses S′ (see Remark 2.1 below) and the
right Cauchy-Green tensor C = FTF.

Thanks to the decomposition in Eq. (4), the conservation of linear momentum can be
reformulated as

(5) ρ0
∂2ua
∂t2

− ∂

∂XA

{
FaBS

′
BA

}
+

∂

∂XA

{
pJF−1

Aa

}
= ρ0ba in Ω0 × ]0,T[ .
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Remark 2.1. Tensor S′ is often referred to as the ‘true’ deviatoric component of S. The
trace of σdev is zero by construction. However, it does not imply that the trace of S′ also
vanishes, and thus S′ is not deviatoric in the algebraic sense. In fact, the ‘true’ deviatoric
component of S satisfies the following equation (see for instance [36]):

(6) S′ : C = 0,

which can be interpreted as the trace with respect to the metric tensor C. The above
equation enables the hydrostatic pressure p to be evaluated directly from S as

(7) p =
1

3J
S : C.

2.2. Constitutive model. Let us restrict ourselves to nonlinear isotropic hyperelastic
models (see [6, 11, 36] for further details). These models postulate the existence of a
Helmholtz free-energy function (or strain energy function) Ψ. The PK2 stress tensor can
be derived by taking derivatives of the Helmholtz free-energy functional with respect to
the right Cauchy-Green tensor, namely

(8) S = 2
∂Ψ (C)

∂C
.

We want to deal with compressible models that can reach the incompressible limit case.
To characterize such models, it is convenient to adopt a decoupled representation of the
strain energy function of the specific form

(9) Ψ (C) = W
(
C̄
)

+ U (J) ,

where C̄ = J−2/3C is the volume-preserving part of C. Let us remark that this decomposi-
tion allows one to split the elastic response of the material into the so-called deviatoric and
volumetric parts, respectively, measured in the initial configuration. We can now derive
the PK2 stress tensor as

(10) S = 2
∂Ψ

∂C
= 2

∂W

∂C
+ 2

∂U

∂C
= 2

∂W

∂C
+
dU

dJ
JC−1.

By comparing this definition with Eq. (4) we obtain expressions for both the pressure and
the deviatoric PK2 stress tensor

(11) S′ = 2
∂W

∂C
and p = −dU

dJ
.

Several constitutive models for both deviatoric and volumetric components are shown in
[35]. Let us just describe the ones which will be applied in this work. Readers are referred
to [11, 25] for further details on this kind of models.

2.2.1. Deviatoric models. The strain energy density must be written in terms of the strain
invariants, which are defined for the volume-preserving tensor C̄ by

Ī1 = trace C̄, Ī2 =
1

2

[(
trace C̄

)2 − trace
(
C̄2
)]
.(12)

Let us present two suitable functions for the deviatoric component of the strain energy
function:

• Neo-Hookean model
This model results from considering only the first principal invariant:

(13) W
(
Ī1

)
=
µ

2

(
Ī1 − 3

)
,

where µ > 0 is the shear modulus.
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• Mooney-Rivlin model
This model is derived considering the dependance on the second invariant as

(14) W
(
Ī1, Ī2

)
= α1

(
Ī1 − 3

)
+ α2

(
Ī2 − 3

)
,

where α1 and α2 are material parameters that must satisfy µ = 2 (α1 + α2) > 0.

2.2.2. Volumetric models. Due to the decoupled form of the strain energy density, com-
pressibility is accounted for by the volumetric strain energy function. Let us now show two
models that depend upon the bulk modulus κ = 2µ(1+ν)

3(1−2ν) , where ν is the Poisson ratio.

• Quadratic model [37]:

(15) U(J) =
κ

2
(J − 1)2 ;

dU

dJ
= κ (J − 1) .

• Simo-Taylor model [38]:

(16) U(J) =
κ

4

(
J2 − 1− 2 log J

)
;

dU

dJ
=
κ

2

(
J − 1

J

)
.

Remark 2.2. The volumetric functions can be written as U(J) = κG(J). Therefore, Eq.
(11) can be used to obtain a proper way to impose the incompressibility of an hyperelastic
material

(17) p = −dU
dJ

⇔ p = −κdG
dJ

⇔ p

κ
+
dG

dJ
= 0.

This equation can be applied regardless of the compressibility of the material under study.
It is interesting to observe that in the incompressible limit, when Poisson’s ratio ν → 0.5
(for isotropic materials) then κ→∞ and Eq. (17) reduces automatically to

(18)
dG

dJ
= 0.

Eq. (18) imposes directly that J = 1, which is in fact the condition that a material must
satisfy to be incompressible in finite strain theory.

Remark 2.3. It is interesting to show how to impose incompressibility if the real de-
viatoric/volumetric decomposition of the PK2 stress tensor is considered. The following
relation holds:

S = Sdev − p∗I = S′ − pJC−1,

where p∗ = 1
3traceS. If we take the trace of the PK2 stress tensor, we can obtain an

expression for the pseudo-pressure p∗ as

p∗ = −1

3

(
S′AA + κ

dG

dJ
JC−1

AA

)
,

which allows us to write the volumetric component of the constitutive equation as

1

κ

3p∗ + S′AA
JC−1

AA

+
dG

dJ
= 0.

Taking into account the widely used decomposition of the strain energy function given by
Eq. (9), it seems more natural and effective to consider the classical decomposition, which
gives us simpler equations in nearly incompressible scenarios.
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2.3. Governing equations. In this section, a novel three-field formulation is introduced.
The objective is the definition of a general framework, which includes the mixed two-field
formulation presented in [35] to be able to tackle the incompressible limit and introduces
S′ as primary unknown to obtain a higher accuracy in the computation of stresses in finite
strain problems. To this end, let us introduce the three-field mixed upS′ formulation.
Let D = {(X, t) |X ∈ Ω0, 0 < t < T} be the space-time domain where the problem is
defined. The problem consists of finding a displacement field, u : D −→ Rd, together with
a deviatoric component of the PK2 stress tensor, S′ : D −→ Rd ⊗ Rd and a pressure field,
p : D −→ R such that

ρ0
∂2ua
∂t2

− ∂

∂XA

{
FaBS

′
BA

}
+

∂

∂XA

{
pJF−1

Aa

}
= ρ0ba in Ω0 × ]0,T[ ,(19)

p

κ
+
dG

dJ
= 0 in Ω0 × ]0,T[ ,(20)

S′AB − 2
∂W

∂CAB
= 0 in Ω0 × ]0,T[ .(21)

The governing equations must be supplied with initial conditions of the form u = u0,
∂u
∂t = v0 in Ω0 at t = 0, with u0 and v0 given, and a set of boundary conditions which can
be split into Dirichlet boundary conditions (22), where the displacement is prescribed, or
Neumann boundary conditions (23), where the value of tractions tN are prescribed, i.e.:

u = uD on Γ0,D,(22)

n0 · (F · S)
(4)
= n0 · (F · S′)− pJn0 · F−T = tN on Γ0,N ,(23)

where n0 is the geometric unit outward normal vector on the boundary of the reference
configuration Γ0.

Remark 2.4. Verifying that this formulation reduces to the three-field mixed formulation
in linear elasticty when infinitesimal strains theory is considered is crucial. Regarding to
the momentum equation (19), the following simplifications are obtained:

FaBS
′
BA

(4)
≈ Jσ′ab ≈

(
1 +

∂uc
∂xc

)
σ′ab = σ′ab +���

���:
≈ 0

(∇ · u)σ′ab ≈ σ′ab(24)

pJF−1 ≈ p (1 +∇ · u) I = pI +���
�:≈ 0

p∇ · uI ≈ pI(25)

and taking into account that both the reference and current configurations match, we obtain
the simplified momentum equation for linear elasticity

(26) ρ
∂2ua
∂t2

−
∂σ′ab
∂xa

+
∂p

∂xa
= ρba in Ω0 × ]0,T[ .

With respect to the incompressibility equation (20), as it was previously mentioned, dG
dJ is

a function which imposes J = 1. Therefore,

(27)
p

κ
+
dG

dJ
≈ p

κ
+ J − 1 ≈ p

κ
+ (1 +∇ · u)− 1 =

p

κ
+∇ · u = 0

which is exactly the constitutive law of the pressure when considering linear elasticity. Let
us recall that in the incompressible limit κ→∞, and this equation will reduce automatically
to

(28) ∇ · u = 0

which is the incompressibility condition for infinitesimal strain theory. Finally, with regards
to the deviatoric constitutive law (21) we can observe that

S′ = JF−1σdevF−T ≈ (1 +∇ · u) (I +∇u)−1 σdev (I +∇u)−T

= σdev +O
(
‖u‖2

)
≈ σdev(29)
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and all the deviatoric models of the strain energy presented in this work must satisfy that,
in the infinitesimal strain assumption, they recover the deviatoric constitutive law of linear
elasticity when second order terms are neglected. Therefore

(30) σdev = 2
∂W

∂C
≈ Cdev : ε,

where ε is the infinitesimal strain field and Cdev is the 4th order deviatoric constitutive
tensor for isotropic linear elastic materials and it is defined as

(31) Cdev = 2µ

{
I− 1

3
I⊗ I

}
,

where I is the 4th order identity tensor. With Eqs. (26, 27 and 30) we recover automatically
the three-field formulation for linear elasticity presented in [24].

2.4. Variational form of the problem. Given a set ω ⊂ Ω0, we shall use the symbol
〈·, ·〉ω to refer to the integral of the product of two functions, assuming it well-defined. The
subscript is omitted when ω = Ω0.

Let V, Q and T be, respectively, the proper functional spaces where displacement,
pressure and deviatoric PK2 stress solutions are well-defined for each fixed time t ∈ ]0, T [.
We denote by V0 functions in V which vanish in the Dirichlet boundary Γ0,D. We shall be
interested also in the spaces W := V×Q× T and W0 := V0 ×Q× T.

The variational statement of the problem is derived by testing system (19)-(21) against
arbitrary test functions, V := [v, q,T]T , v ∈ V0, q ∈ Q and T ∈ T. The weak form of
the problem reads: find U := [u, p,S′]T : ]0, T [ → W such that initial conditions and the
Dirichlet condition (22) are satisfied and

(32)
〈
va, ρ0

∂2ua
∂t2

〉
+A (U,V) = F (V) ∀V ∈W0,

where A (U,V) is a semilinear form defined on W×W0 as

A (U,V) :=

〈
∂va
∂XA

, FaBS
′
BA

〉
−
〈
∂va
∂XA

, pJF−1
Aa

〉
+

〈
q,
dG

dJ

〉
+
〈
q,
p

κ

〉
+
〈
TAB, S

′
AB

〉
−
〈
TAB, 2

∂W

∂CAB

〉
.(33)

In addition, F (V) is a linear form defined on W0 as

(34) F (V) := 〈va, ρ0ba〉+ 〈va, tNa〉Γ0,N
.

Integration by parts has been used in order to decrease the continuity requirements of
unknowns p and S′.

2.5. Time discretization. In this work implicit time integrators are considered. When
the material under study is either nearly or fully incompressible, the Courant-Friedrichs-
Lewy condition, which involves the bulk modulus, becomes very restrictive. If explicit
time integrators are considered, extremely small time steps are needed in order to satisfy
it. Furthermore, in the fully incompressible case, as κ → ∞, solving the problem with
explicit time integration is not possible.

Although in principle any implicit time discretization method can be applied, it has to
be taken into account that a hyperbolic system of equations of second order in time is
being solved . It is important to control spurious high-frequency oscillations that might
appear in the solution for both nearly and fully incompressible hyperelastic materials. As
a consequence, numerical time integrators with high-frequency dissipation will be applied.

Let us now consider a partition of the time interval [0, T ] into N time steps of size δt,
assumed to be constant.
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2.5.1. Backward differentiation formula (BDF). Given a generic time dependent function
at a time step tn+1 = tn + δt, for n = 0, 1, 2, ... the approximation of the time derivative
of order k = 1, 2, ... is written using information from already computed time instants.
In our problem, we have to approximate the second time derivative of the displacement,
∂2u
∂t2

n+1
:= an+1. Depending on the accuracy of the method, we can select the specific

formulae:

BDF1 : an+1 =
1

δt2
[un+1 − 2un + un−1] +O (δt) ,

BDF2 : an+1 =
1

δt2
[2un+1 − 5un + 4un−1 − un−2] +O

(
δt2
)
.

2.5.2. Newmark-β equations. This is a popular class of time integrators [11]. In this time
integration formula, the updated acceleration an+1 and velocity vn+1 are given by:

an+1 ≈ 1

βδt2
[un+1 − un − δtvn − δt2

2
(1− 2β) an],

vn+1 ≈ vn + (1− γ) δtan + γδtan+1.

Here β and γ are parameters to be tuned. When β = 1
4 and γ = 1

2 the Newmark-β method
is implicit, unconditionally stable and second-order accurate for linear problems.

Remark 2.5. Newmark-β method is not unconditionally stable for nonlinear problems.
The algorithmic energy conservation was recognized as the key to achieve stability in long
term simulations according to the generalized theorem presented in [39]. The stability in
time is further studied in [40, 41]. In [42, 43] several energy-momentum consistent time-
stepping schemes are proposed for some mixed formulations in nonlinear problems.

2.6. Linearization. In order to solve the problem, the system needs to be linearized so
that a bilinear operator which allows to compute a correction δU of a given guess for the
solution at time tn+1 is obtained, that we denote by Un+1. Iteration counters will be
omitted to simplify the notation. After using a Newton-Raphson scheme, we obtain the
following linearized form of the problem. Given Un+1 as the solution at time tn+1 and the
previous iteration, find a correction δU := [δu, δp, δS′]T ∈W0 such that

(35)
〈

v, ρ0
C

δt2
δu

〉
+ B (δU,V) = F (V)−A

(
Un+1,V

)
−
〈
v, ρ0a

n+1
〉
∀V ∈W0,

where B (δU,V) is the bilinear form obtained through the Newton-Raphson linearization
and it is defined on W0 ×W0 as

B (δU,V) =

〈
∂va
∂XA

,
∂δua
∂XB

S′BA

〉
+

〈
∂va
∂XA

, FaBδS
′
BA

〉
−
〈
∂va
∂XA

, JpF−1
Bb

∂δub
∂XB

F−1
Aa

〉
+

〈
∂va
∂XA

, JpF−1
Ab

∂δub
∂XB

F−1
Ba

〉
−
〈
∂va
∂XA

, JδpF−1
Aa

〉
+

〈
q, f (J)F−1

Aa

∂δua
∂XA

〉
+

〈
q,
δp

κ

〉
−
〈
TAB,C′ABCDFaC

∂δua
∂XD

〉
+
〈
TAB, δS

′
AB

〉
,(36)

where f (J) is a function coming from the linearization of dGdJ and depends upon the volu-
metric strain energy function into consideration and C′ABCD = 2 ∂2W

∂CAB∂CCD
is the deviatoric

constitutive tangent matrix which relates variations of the deviatoric PK2 stress tensor,
δS′, with variations of the Right Cauchy tensor, δC.

Note that for every implicit time integrator presented here, we can write:

∂2u

∂t2

∣∣∣∣
tn+1

≈ C

δt2
δu + an+1,
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where C is a coefficient depending on the time integration scheme and an+1 is the accel-
eration computed at the previous iteration, which in the time discretized problem will be
given by any of the expressions introduced above.

2.7. Symmetrization. In the way we have written the problem, it is not symmetric. To
achieve symmetry2, it is possible to modify Eq. (35) by

(37)
〈

v, ρ0
C

δt2
δu

〉
+Bmod (δU,V) = F (V)−Amod

(
Un+1,V

)
−
〈
v, ρ0a

n+1
〉
∀V ∈W0,

where Bmod (δU,V) is the bilinear form defined on W0 ×W0 as

Bmod (δU,V) =

〈
∂va
∂XA

,
∂δua
∂XB

S′BA

〉
+

〈
∂va
∂XA

, FaBδS
′
BA

〉
−
〈
∂va
∂XA

, JpF−1
Bb

∂δub
∂XB

F−1
Aa

〉
+

〈
∂va
∂XA

, JpF−1
Ab

∂δub
∂XB

F−1
Ba

〉
−
〈
∂va
∂XA

, JδpF−1
Aa

〉
+

〈
q, JF−1

Aa

∂δua
∂XA

〉
+

〈
q,

J

f (J)

δp

κ

〉
−
〈
TAB, FaA

∂δua
∂XB

〉
+
〈
TAB,C′−1

ABCDδSCD
〉
,(38)

and Amod (U,V) is a semilinear form defined on W×W0 as

Amod (U,V) :=

〈
∂va
∂XA

, FaBS
′
BA

〉
−
〈
∂va
∂XA

, pJF−1
Aa

〉
+

〈
q,

J

f (J)

dG

dJ

〉
+

〈
q,

J

f (J)

p

κ

〉
+
〈
TAB,C′−1

ABCDS
′
CD

〉
−
〈
TAB,C′−1

ABCD2
∂W

∂CCD

〉
,(39)

where we have multiplied the second equation by the linearized term J
f(J) and we have

introduced C′−1 as the inverse deviatoric constitutive tangent matrix. To define such 4th

order tensor, it is necessary to obtain the inverse strain energy function, which involves a
nonlinear problem.

In spite of this difficulty, the symmetric form of the problem can be interesting from
both the theoretical and the practical point of views. From the theoretical point of view,
the problem to be solved corresponds to the minimization of a certain mechanical energy,
whereas from the practical point of view the symmetry can be exploited when solving the
linear system. Also from the conceptual standpoint, the test functions for the constitutive
equation in the non-symmetric case are in fact strains, whereas in the symmetric case they
are stresses.

Let us also remark that, while in the infinitesimal strain theory it is equivalent to use
stresses or strains as unknowns, in finite strain elasticity the symmetrization of the problem
using strains (e.g. the Green-Lagrange strain E) is much more involved than using the
PK2 stress that we have presented. In any case, we will not discuss here the introduction
of strains as unknowns of the problem.

For simplicity, we will employ the non-symmetric form of the problem in what follows,
although the use of the symmetric version would be straightforward.

2.8. Galerkin spatial discretization. The standard Galerkin approximation of this ab-
stract variational problem is now straightforward. Let Ph denote a FE partition of the
domain Ω0. The diameter of an element domain K ∈ Ph is denoted by hK and the diam-
eter on the FE partition by h = max{hK |K ∈ Ph}. We can now construct conforming
FE spaces Vh ⊂ V, Qh ⊂ Q, Th ⊂ T and Wh = Vh × Qh × Th in the usual manner, as
well as the corresponding subspaces Vh,0 ⊂ V0 and Wh,0 = Vh,0 × Qh × Th, Vh,0 being
made of functions that vanish on the Dirichlet boundary. In principle, functions in Vh are
continuous, whereas functions in both Qh and Th not necessarily.

2In the case of homogeneous boundary conditions, obviously.
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The Galerkin discrete version of problem (35) is: for a given time tn+1 and a fixed
iteration, find δUh := [δuh, δph, δS

′
h]T ∈Wh,0 such that

(40)〈
vh, ρ0

C

δt2
δuh

〉
+ B (δUh,Vh) = F (Vh)−A

(
Un+1
h ,Vh

)
−
〈
vh, ρ0a

n+1
h

〉
∀Vh ∈Wh,0.

The stability of the discrete formulation depends on compatibility restrictions on the in-
terpolation functions chosen for the displacement, deviatoric PK2 stress and pressure fields,
as stated by the appropriate inf–sup condition [44]. According to these restrictions, mixed
elements with continuous equal order linear interpolation for all fields are not stable. How-
ever, the inf–sup condition can be circumvented by using a stabilization technique. This is
why the so-called stabilized formulations have been proposed to approximate this kind of
problems. The main idea is to replace Eq. (35) by another discrete variational problem in
which the bilinear form B is enhanced so that it has improved stability properties. In order
to overcome the instabilities previously discussed, we propose the stabilization technique
described in next section.

Remark 2.6. In principle, we have posed no restrictions on the choice of the FE spaces.
However, the Galerkin formulation is only stable if two inf-sup conditions are satisfied, one
between the displacements and the stresses and another one between the displacements and
the pressure. This conditions are explained in [17] for the linear Stokes problem, and are
obviously inherited in the nonlinear problem considered now. Only stresses can be controlled
with the Gakerkin formulation, and in the case of compressible materials also the pressure,
but this control disappears as κ→∞. Displacement gradients need to be controlled using an
inf-sup condition and pressures (regardless of the compressibility) using another one. The
alternative to using the Galerkin method with FE spaces satisfying the inf-sup conditions
is to use a stabilized FE method, as the one we describe next.

3. SOLID DYNAMICS STABILIZED FINITE ELEMENT FORMULATION

In this work, the VMS method [15, 45] is introduced to stabilize the discrete formulation
of the mixed problem allowing for the use of linear interpolations for all master fields. The
basic idea of the VMS approach is to enlarge Galerkin’s space of approximation, Wh,
adding a finer resolution space, W̃, referred to as the subgrid scale (SGS) space. Let
W = Wh ⊕ W̃. The elements of this space are denoted by Ũ := [ũ, p̃, S̃′]T and they are
called SGSs. Likewise, let W0 = Wh,0 ⊕ W̃0, where W̃0 is being made of displacement
SGSs (defined at element level) that vanish at all the element boundaries.

Taking into account that B is a bilinear form, the continuous problem (40) is equivalent
to find δUh ∈Wh,0 and Ũ ∈ W̃ such that〈

vh, ρ0
C

δt2
δuh

〉
+
〈
vh, ρ0ã

n+1
〉

+ B (δUh,Vh) + B
(
Ũ,Vh

)
= F (Vh)−A

(
Un+1
h ,Vh

)
−
〈
vh, ρ0a

n+1
h

〉
∀Vh ∈Wh,0,(41) 〈

ṽ, ρ0
C

δt2
δuh

〉
+
〈
ṽ, ρ0ã

n+1
〉

+ B
(
δUh, Ṽ

)
+ B

(
Ũ, Ṽ

)
= F

(
Ṽ
)
−A

(
Un+1
h , Ṽ

)
−
〈
ṽ, ρ0a

n+1
h

〉
∀Ṽ ∈ W̃,(42)

where Eq. (41) is called the FE scale equation and Eq. (42) is called the SGS equation.
The approximation to the acceleration obtained from the displacement SGS at time tn+1

has been denoted by ãn+1.
The main idea behind any stabilized FE method derived from the VMS framework is

to obtain an expression for the SGSs from the SGS equation in order to complement our
FE scale equation. First of all let us make some assumptions about the SGS functions.



I. CASTAÑAR, R. CODINA & J. BAIGES 11

In this work we consider the SGSs to be quasi-static, which means that we neglect their
time derivative. We also assume the SGSs to behave as bubble functions, which means
that their velocity component vanishes across inter-element boundaries. Taking this into
account, we can integrate by parts within each element in Eq. (42) to obtain:∑

K

〈
ṽ, ρ0

C

δt2
δuh

〉
K

+
∑
K

〈
Ṽ,B (δUh)

〉
K

+
∑
K

〈
Ṽ,B

(
Ũ
)〉

K

=
∑
K

〈
Ṽ,F

〉
K
−
∑
K

〈
Ṽ,A

(
Un+1
h

)〉
K
−
∑
K

〈
ṽ, ρ0a

n+1
h

〉
K
∀Ṽ ∈ W̃,(43)

where
∑

K stands for the summation over allK ∈ Ph and B = [Bu,Bp,BS ]T is a linear oper-
ator coming from the integration by parts of B such that B

(
δUh, Ṽ

)
=
∑

K

〈
Ṽ,B (δUh)

〉
K

and it is defined as

Bu (δUh)a = − ∂

∂XA

{
∂δuha
∂XB

S′AB

}
− ∂

∂XA

{
FaBδS

′
hAB

}
+

∂

∂XA

{
JpF−1

Bb

∂δuhb
∂XB

F−1
Aa

}
− ∂

∂XA

{
JpF−1

Ab

∂δuhb
∂XB

F−1
Ba

}
+

∂

∂XA

{
JδphF

−1
Aa

}
,(44)

Bp (δUh) = f (J)F−1
Aa

∂δuha
∂XA

+
δph
κ
,(45)

BS (δUh)AB = −C′ABCDFaC
∂δuha
∂XD

+ δS′hAB
.(46)

Regarding the right-hand side, F = [Fu,Fp,FS ]T appears from the external forces form
F and it is given by

(47) Fua = ρ0ba ; Fp = 0 ; FSAB
= 0,

and finally A
(
Un+1
h

)
=
[
Au

(
Un+1
h

)
,Ap

(
Un+1
h

)
,AS

(
Un+1
h

)]T comes from the integration
by parts of A and it is defined as

Au

(
Un+1
h

)
a

=− ∂

∂XA
{FaBS′BA}+

∂

∂XA
{JpF−1

Aa },(48)

Ap

(
Un+1
h

)
=
dG

dJ
+
p

κ
,(49)

AS

(
Un+1
h

)
AB

=S′AB − 2
∂W

∂CAB
.(50)

Eq. (43) must be satisfied for all elements K ∈ Ph and for any Ṽ ∈ W̃, which strictly
enforces that

(51) Π̃
(

B (δUh) + B
(
Ũ
))

= Π̃
(
F−A

(
Un+1
h

))
,

where Π̃ is the L2(Ω0) projection onto the SGS space. This equation allows us to obtain
an expression for the SGSs:

(52) Π̃
(

B
(
Ũ
))

= Π̃
(
F−A

(
Un+1
h

)
− B (δUh)

)
:= Π̃

(
R
(
Un+1
h

)
+ RδU (δUh)

)
,

where the residuals are defined as RδU (δUh) := −B (δUh) and R
(
Un+1
h

)
:= F−A

(
Un+1
h

)
.

The idea now is to approximate operator B by a matrix τ−1
K within each element K.

Since we may consider that τ−1
K Ũ already belongs to the SGS space, Π̃

(
τ−1
K Ũ

)
= τ−1

K Ũ,
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and from Eq. (52) we obtain

(53) Ũ ≈ τKΠ̃
(
R
(
Un+1
h

)
+ RδU (δUh)

)
in K ∈ Ph,

where τK is a matrix of algorithmic parameters depending on K and the operator B.
This approximation for Ũ is intended to mimic the effect of B

(
Ũ
)
in the volume integral

(41). Let us remark that τK is taken as a diagonal matrix of stabilization parameters,
τK = diag (τuId, τp, τSI), with Id the identity on vectors of Rd and parameters τu, τp and
τS are coefficients coming from the study of the behavior of the stabilization parameters
based on a Fourier analysis of the problem for the SGSs. In this work, we propose to use
the stabilization parameters presented in [24] for linear elastic cases:

(54) τu = c1
h2
K

2µ
and τp = 2c2µ and τS = c3,

where c1, c2 and c3 are algorithmic parameters which must be determined.
Finally, Eq. (53) can be introduced into the FE scale equation to obtain the following

stabilized weak form〈
vh, ρ0

C

δt2
δuh

〉
+ B (δUh,Vh) +

∑
K

τK

〈
L (Vh) , Π̃

(
R
(
Un+1
h

)
+ RδU (δUh)

)〉
= F (Vh)−A

(
Un+1
h ,Vh

)
−
〈
vh, ρ0a

n+1
h

〉
∀Vh ∈Wh,0,(55)

where L (Vh) = [Lu (Vh) ,Lp (Vh) ,LS (Vh)]T is a linear operator coming from the inte-
gration by parts of B such that B

(
Ũ,Vh

)
=
∑

K

〈
L (Vh) , Ũ

〉
K

and it is defined as

Lu (Vh)a =− ∂

∂XA

{
∂vha
∂XB

S′AB

}
+

∂

∂XA

{
JpF−1

Aa

∂vhb
∂XB

F−1
Bb

}
− ∂

∂XA

{
JpF−1

Ba

∂vhb
∂XB

F−1
Ab

}
− ∂

∂XA

{
qf(J)F−1

Aa

}
+

∂

∂XD

{
TABC′ABCDFaC

}
,(56)

Lp (Vh) =
∂vha
∂XA

JF−1
Aa +

q

κ
,(57)

LS (Vh)AB =
∂vha
∂XA

FaB + TAB.(58)

There exist several stabilization methods coming from the VMS technique depending on
the selection of the projection onto the SGS space. In this work, three different options
are considered.

Remark 3.1. Matrix τK can be understood as an algebraic approximation to the inverse
of the tangent operator introduced in the linearization of the originally nonlinear problem.
Therefore, different linearization strategies could lead to different stabilized FE formula-
tions. This idea is further elaborated in [46].

3.1. Algebraic SubGrid Scales (ASGS). This is the simplest choice. We take the
projection onto the SGS space as the identity when applied to the residual (see [18] for
further details), so that

(59) Π̃
(
R
(
Un+1
h

)
+ RδU (δUh)

)
= R

(
Un+1
h

)
+ RδU (δUh) ,

and we obtain as a final stabilized formulation〈
vh, ρ0

C

δt2
δuh

〉
+ B (δUh,Vh) +

∑
K

τK 〈L (Vh) ,RδU (δUh)〉 = F (Vh)
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−A
(
Un+1
h ,Vh

)
−
〈
vh, ρ0a

n+1
h

〉
−
∑
K

τK
〈
L (Vh) ,R

(
Un+1
h

)〉
∀Vh ∈Wh,0.(60)

3.2. Orthogonal Subgrid Scales (OSGS). In [47] it is argued that a natural approxi-
mation for the unknown SGS space it to take it orthogonal to the FE space:

Π̃
(
R
(
Un+1
h

)
+ RδU (δUh)

)
= R

(
Un+1
h

)
+ RδU (δUh)−Πh

(
R
(
Un+1
h

))
,

where Πh is the L2 (Ω0) projection onto the FE space. Due to the fact that this projection
would increase the size of our system if we compute it in an implicit way, we have decided
to approximate it with the residual of the previous iteration by neglecting the projection
of the operator RδU (δUh). The final form of the stabilized problem with OSGS method
emerges as〈

vh, ρ0
C

δt2
δuh

〉
+ B (δUh,Vh) +

∑
K

τK 〈L (Vh) ,RδU (δUh)〉 = F (Vh)−A
(
Un+1
h ,Vh

)
−
〈
vh, ρ0a

n+1
h

〉
−
∑
K

τK

〈
L (Vh) ,R

(
Un+1
h

)
−Πh (R (Un

h))
〉
∀Vh ∈Wh,0.(61)

3.3. Split Orthogonal Subgrid Scales (S-OSGS). A key property of the OSGS sta-
bilization is that, thanks to the projection onto the FE space, we keep the consistency of
the formulation in a weak sense in spite of including just the minimum number of terms
to stabilize the solution. This property allows us to propose the following split version of
the OSGS method:〈

vh, ρ0
C

δt2
δuh

〉
+ B (δUh,Vh) +

∑
K

τK 〈L∗ (Vh) ,R∗δU (δUh)〉 = F (Vh)−A
(
Un+1
h ,Vh

)
−
〈
vh, ρ0a

n+1
h

〉
−
∑
K

τK

〈
L∗ (Vh) ,R∗

(
Un+1
h

)
−Πh (R∗ (Un

h))
〉
∀Vh ∈Wh,0,(62)

where the split operators are defined as

B∗u (δUh)a =
∂

∂XA

{
JδphF

−1
Aa

}
, B∗p (δUh) = 0, B∗S (δUh)AB = −C′ABCDFaC

∂δuha
∂XD

,

A∗u
(
Un+1
h

)
a

=
∂

∂XA
{JpF−1

Aa }, A∗p
(
Un+1
h

)
= 0, A∗S

(
Un+1
h

)
AB

= −2
∂W

∂CAB
,

L∗u (Vh)a = − ∂

∂XA

{
qf(J)F−1

Aa

}
, L∗p (Vh) = 0, L∗S (Vh)AB =

∂vha
∂XA

FaB.

The S-OSGS method is not just a simplification of the OSGS one. For smooth solutions,
both have an optimal convergence rate in mesh size. However, in problems where the
solution has strong gradients, we have found the S-OSGS more robust, similarly to what
it is explained in [48].

4. NUMERICAL EXAMPLES

In this section, several numerical examples are presented to assess the performance of
the proposed three-field formulation. As a first case, a test with a manufactured solution
is considered to analyze the spatial discretization errors upon mesh refinement and the
nonlinear iteration convergence error with a Newton-Raphson scheme for each unknown
of the problem. Later, we consider a bending problem for a beam-like structure in order
to show the behavior of the method in bending dominated scenarios. Finally, a twisting
column is set which presents extreme nonlinear deformations. All these examples are
widely used in incompressible hyperelastic cases [25, 26, 49, 50]. To highlight the main
advantages of the presented three field mixed upS′ formulation with respect to the two-
field one presented in [35], some comparisons will be done against the stabilized mixed up
formulation proposed in this last reference.



I. CASTAÑAR, R. CODINA & J. BAIGES 14

For all the numerical examples included next, hyperelastic models are considered fully
incompressible, and so the bulk modulus is κ =∞, unless otherwise specified. With regards
to the stabilization technique, we select the S-OSGS method except where otherwise stated.
The algorithmic parameters are set to c1 = 1, c2 = 1 and c3 = 0.5. As previously discussed,
the nonlinearities in the problem are solved via a Newton-Raphson scheme. Depending on
these nonlinearities, the initial guess of the iterative procedure needs to be close enough
to the solution to guarantee convergence of the nonlinear iterations. In time-depending
schemes, the time step is the parameter which controls the evolution of the nonlinear
iterations, so we will have to tune it depending on the nonlinearities of each numerical
example. A maximum of 10 iterations is set, and the numerical tolerance for the L2 (Ω0)
norm is 10−7. In order to solve the monolithic system of linear equations, we use the
Biconjugate Gradients solver, BiCGstab [51], which is already implemented in the PETSc
parallel solver library [52].

4.1. A test with analytical solution. Let us first perform a simple test whose main
objective is to numerically check the order of convergence of the proposed scheme with
respect to the mesh size. For this purpose we use the so-called method of manufactured
solutions.

In this procedure, an exact analytical solution is defined a priori and later substituted
into the continuum equations in order to obtain the associated forcing terms. These forc-
ing terms are then introduced in the FE computation. The manufactured solutions are
composed of smooth functions. Dirichlet boundary conditions are prescribed over the
boundaries upon evaluation of the displacement analytical solution. So as to avoid mixing
both spatial and time errors, we consider static solutions.

The region we consider is the unit square plate Ω0 = [0, 1] × [0, 1] under plain strain
assumption and we impose the following manufactured displacement and pressure fields:

u(X,Y ) = k [exp(X + Y ),− exp(X + Y )] ,(63)
p(X,Y ) = µ sin(2πX) sin(2πY ),(64)

where k = 0.01 and X and Y referring to the Cartesian axes in the reference configuration.
All quantities are assumed dimensionless in this example. It is important to note that
this displacement field gives an incompressible motion due to the fact that the Jacobian
is J (u(X,Y )) = 1 for all X,Y . We set a Neo-Hookean material for the deviatoric part of
the stresses, with shear modulus µ = 3.3× 106 and Poisson ratio ν = 0.5 and a quadratic
law for the volumetric response. Therefore, the manufactured deviatoric PK2 stress field
is computed with respect to the manufactured displacement field as

S(X,Y ) = µ

{
I− 1

3
trace [C (u(X,Y ))] C−1 (u(X,Y ))

}
.(65)

We study the convergence behavior of the proposed method by running the case on
seven meshes obtained by refinement. The sequence is of structured grids of n2 linear
quadrilateral elements, being n the number of FEs along each side of the domain.

The normalized error has been computed in the L2 (Ω0) norm for displacement, pressure
and deviatoric PK2 stress fields with ASGS, OSGS and S-OSGS stabilization techniques.
Fig. 1a shows the displacement convergence rate upon mesh size. As expected, all stabiliza-
tion methods present the same slope of 2.0. With respect to both pressure and deviatoric
PK2 stress fields, all methods converge with a slope of 1.5 upon mesh refinement, as it
can be observed in Figs. 1c-1e. This, in fact, corresponds to a superconvergent behavior,
as the theoretical order of convergence should be 1 using linear elements. In [17] it is
shown for the linear problem that the convergence order for displacements is k+ 1 and for
stresses and pressures it is k in the L2 (Ω0) norm, k being the polynomial order of the FE
interpolation. For the stress-displacement formulation presented in [19] one can consider
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Figure 1. Manufactured convergence test. Convergence rate of the upS′

formulation upon mesh refinement and nonlinear iteration convergence er-
ror.

dual formulations and increase the order of convergence for the stresses and the expense of
decreasing it for the displacements, but this is not possible when pressures are introduced
as unknowns.
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For the sake of completeness, Figs. 1b-1d-1f show the nonlinear iteration convergence
error for each unknown of the formulation. As it can be seen, a quadratic convergence is
attained thanks to the Newton-Raphson linearization of the problem.
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(e) Deviatoric stress error upon CPU time

Figure 2. Manufactured convergence test. Comparison of convergence
between the upS′ formulation and the up formulation
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Mesh Number of elements

1 6× 6× 36× 6
2 8× 8× 48× 6
3 12× 12× 72× 6

Table 1. Bending Beam. Different mesh and number of elements.

More interesting results are obtained when comparing these convergence rates with
respect to the ones obtained with the mixed up formulation. Figs 2a-2b show the dis-
placement and pressure convergence rates upon mesh refinement, respectively. Both fields
are considered as primary unknowns of both formulations and therefore a similar accuracy
for a given mesh size can be expected. Fig. 2c displays the deviatoric PK2 stress con-
vergence rates upon mesh refinement for both formulations. As expected, higher accuracy
is achieved for a given mesh size for the mixed upS′ formulation. To achieve the same
accuracy, e.g. 0.1% of global error, the up formulation requires a mesh size, h, almost 10
times finer (h ≈ 0.003) than the upS′ formulation (h ≈ 0.03) as it can be seen in Fig. 2c.

Furthermore, to obtain a fairer comparison, the same study is conducted in terms of the
number of degrees of freedom (DOFs) in Fig. 2d. To get an error lower than 0.1%, the
up formulation requires 6 · 104 DOFs approximately, while the upS′ formulation needs less
than 2 ·103 DOFs (25 times lesser than the up formulation). Results clearly show that both
the upS′ and the up formulations deal appropriately with the incompressibility constraint
but the three-field formulation exhibits a higher accuracy in the stress field, even for very
coarse meshes.

For the sake of exhaustiveness, Fig. 2e depicts the total CPU time needed by each FE
technology to achieve a given global deviatoric stress accuracy. In particular, to reduce the
simulation error below 0.1%, the upS′ formulation is more or less 10 times faster compared
to the up one.

Remark 4.1. Note that the up formulation computes the stresses (locally) at the numerical
integration points, while the upS′ formulation adopts a continuous stress field. To compare
stress accuracy, a local smoothing technique has been applied to the original discontinuous
stress fields of the mixed two-field formulation. So, Figs. 2c-2d-2e present the continuous
values obtained after the smoothing operation.

4.2. Bending beam. As a second test in finite strain elasticity, we consider a three di-
mensional beam of square section clamped on its bottom face very similar to the one
presented in [25, 35]. The initial geometry is a thick column of dimensions 1 × 1 × 6
m as shown in Fig. 3a. We consider stress free conditions in all boundaries except the
clamped one in which zero displacement is imposed. An initial linear in space velocity field
v0 (X,Y, Z) =

(
5
3Z, 0, 0

)T m/s is imposed so as to start the column oscillations in time,
leading to a large oscillatory bending deformation.

A Mooney-Rivlin material with initial density ρ0 = 1.1 × 103 kg/m3 and material pa-
rameters α1 = 2.69 MPa and α2 = 0.142 MPa is considered. In order to avoid unphysical
modes appearing from the time integration scheme, we have selected the mildly-dissipative
BDF2 time integrator with time step δt = 0.01 s.

The main goal of this example is to show that our stabilized mixed formulation works
properly in bending dominated scenarios and in 3D cases. For this reason, we have selected
3 different structured linear tetrahedral meshes (as the one shown in Fig. 3b), specified in
Table 1.

Let us start showing some interesting properties about the three-field mixed upS′ for-
mulation presented here with respect to the classical displacement-based formulation [36]
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(a) Geometry (b)
Mesh

Figure 3. Bending Beam. Geometry (3a) and tetrahedral structured mesh (3b).

(from now on named as u formulation). To do so, let us consider the bending beam prob-
lem for several compressible regimes. We consider 3 differents scenarios: ν = 0.2, which
reproduces a compressible material, ν = 0.49, which mimics a nearly incompressible ma-
terial and finally, we take ν = 0.5 to reach the incompressible limit. All these cases are
performed with Mesh 2. Fig. 4a displays the evolution in time up to T = 3 for the first
component of the displacement field at point A. As expected, in the compressible regime
(ν = 0.2), both formulations exhibit very similar results. More interesting conclusions can
be drawn when moving to the nearly incompressible regime (ν = 0.49). In such case, the
displacement-based formulation presents volumetric locking, which tends to show smaller
displacements than the expected ones. On the contrary, the upS′ formulation is able to
obtain proper solutions without presenting these instabilities. Furthermore, in the incom-
pressible limit (ν = 0.5), the upS′ formulation gives us precise solutions whereas the u
formulation fails over the running stage. To end up this study, Figs. 4b-4c-4d show the
pressure field and some components of the deviatoric PK2 stress tensor run with the upS′

formulation. As it can be clearly seen, well-defined solutions are obtained regardless the
incompressibility of the material and no oscillations can be appreciated even for this coarse
mesh.

From now on, let us consider a fully incompressible material with ν = 0.5. Fig. 5 presents
the evolution of point A along time up to T = 3 s for both up and upS′ formulations.
Figs. 5a-5b show the L2 (Ω0) norm for the displacement field and the pressure field,
respectively. As previously commented, both unknowns are considered as main variables
of the problem. Very similar results can be observed for the displacement field when
comparing both formulations for a fixed mesh. Despite the fact that the pressure field is
a master field for both formulations, it turns out that more accurate results are obtained
for the upS′ formulation for a fixed mesh due to the capability of the method to capture
stress concentrations better than the up formulation. It is interesting to remark, that
the observed behavior seems to be more dissipative in the three-field formulation. This
indicates that including the deviatoric PK2 stress tensor as unknown of the problem in
the upS′ formulation both enhances the accuracy of the solution and its energy dissipation
rate. On the contrary the up formulation shows a less optimal dissipative behavior for
the same mesh. Furthermore, Fig. 5c presents the evolution for the L2 (Ω0) norm for
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(a) X-Displacement component (m) (b) Pressure (Pa)

(c) XX-Deviatoric PK2 stress component (Pa) (d) XY-Deviatoric PK2 stress component (Pa)

Figure 4. Bending beam. Comparison between u and upS′ formulations
while increasing the incompressibility of the material at point A.

the deviatoric PK2 stress field. As expected, for a fixed mesh, more accurate results are
obtained when introducing the deviatoric PK2 stresses S′ as an extra unknown of the
problem in the three-field formulation.

For the sake of thoroughness, we show in Figs. 6-7 the deformed beam at t = 2.25 s
and at t = 3 s, respectively run with Mesh 1. First of all, we can observe that very similar
deformations and pressure fields are appreciated for both formulations. Finally, regarding
the deviatoric PK2 stress tensor, one can see the gain of accuracy in this field for the
upS′ formulation by including this field as primary unknown of the problem instead of
computing it from the displacement derivatives.

4.3. Twisting column. As a final example, we present the twisting column test. This test
is widely used to assess the robustness of any formulation in extreme nonlinear deformations
[25, 26, 35, 49, 50]. The initial geometry of the column is the same as the one shown in
Fig. 3a. We consider stress free conditions and zero displacement initial conditions are
applied on the corresponding boundaries. In order to make the column twist, we apply an
initial sinusoidal velocity field:

(66) v0 (X,Y, Z) = ω sin
(
πZ

12

)
(Y,−X, 0)T m/s

where ω = 100 rad/s. The material is considered to be Neo-Hookean with initial density
ρ0 = 1.1 × 103 kg/m3, shear modulus µ = 5.7 × 106 Pa and Poisson ratio ν = 0.5, to
model a fully incompressible material. To define the deviatoric part of the material, we
consider a Simo-Taylor law. Several levels of refinement have been considered to perform
the computations. To construct the meshes, we select structured hexahedral elements.
So we consider 3 different meshes. Mesh 1, with 6 × 6 × 36 trilinear FEs, Mesh 2 with
16 × 16 × 96 FEs and we end up with Mesh 3 with 32 × 32 × 192 FEs. We select a time
step δt = 0.002 s.
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(a) L2 (Ω0) norm displacement (m)

(b) Pressure (Pa)

(c) L2 (Ω0) norm deviatoric PK2 stress (Pa)

Figure 5. Bending beam. Evolution of point A along time for both up
and upS′ formulations.
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(a) upS′ (b) up (c) upS′ (d) up

Figure 6. Bending beam. Comparison between upS′ and up at t = 2.25
s. Pressure field (Pa) and L2 (Ω0) norm of the deviatoric PK2 stress (Pa)

(a) upS′ (b) up (c) upS′ (d) up

Figure 7. Bending beam. Comparison between upS′ and up at t = 3 s.
Pressure field (Pa) and L2 (Ω0) norm of the deviatoric PK2 stress (Pa)

First of all, let us perform some analysis for the different time integration schemes
presented in Section 2. We run the same problem with different schemes and Mesh 2
and the main results can be seen in Fig. 8. On the one hand, left figures display the
main unknowns up to T = 0.5 s. As it can be seen, both BDF schemes are capable of
reproducing the whole event. However, BDF1 is only first-order accurate in time and
it is highly dissipative, excessively mitigating physical oscillations. With regards to the
BDF2 scheme, it is able to dissipate the nonphysical modes, which helps preventing high
frequency oscillations while keeping the second-order accuracy of the method. On the other
hand, right figures illustrate the evolution obtained with a Newmark scheme for β = 1

4 and
γ = 1

2 , which results in a second-order scheme in time. This method does not introduce
any numerical dissipation, and therefore, it does not eliminate high frequency nonphysical
oscillations.

Next, let us fix BDF2 as time integration scheme and perform some comparisons between
the up and the upS′ formulations. Fig. 9 shows the evolution of point A up to T = 0.5
s. In Fig. 9a we can observe a comparison for the displacement field. As expected,
both formulations show very similar results, which become closer upon mesh refinement.
Moving to the pressure field in Fig. 9b, one can see that for a fixed mesh, similar evolutions
are obtained but the upS′ formulation gives more accurate results taking into account the
evolution when refining the mesh. More interesting remarks can be made for the deviatoric
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BDF1

BDF2

(a) Displacement BDF1 and BDF2

Newmark

(b) Displacement Newmark

BDF1

BDF2

(c) Pressure BDF1 and BDF2

Newmark

(d) Pressure Newmark

BDF1

BDF2

(e) Deviatoric PK2 stress BDF1 and BDF2

Newmark

(f) Deviatoric PK2 stress Newmark

Figure 8. Twisting column. Time integrators comparison.

PK2 stress tensor in Fig 9c. As it can be clearly appreciated, for a fixed mesh the three-
field formulation attains more accurate results than the two-field version of the problem. In
fact, we can observe that we need always an extra level of refinement for the up formulation
to be able to achieve the same accuracy as the one given by the upS′ formulation.

To complete this example, Figs. 10-11 display the evolution of the deformation for the
twisting column at different stages of the problem with Mesh 2. As it can be observed, the
problem is well-captured, and no numerical oscillations can be seen neither for the pressure
field nor for the deviatoric PK2 stress tensor. Let us remark, once more, the capability of
the formulation to capture stress concentrations, in this case, placed at the clamped face
of the twisting column.

5. CONCLUSIONS

In this paper we have described a new stabilized FE method for stress accurate anal-
ysis in solid dynamics when considering nearly and fully incompressible materials. The
point of departure is the splitting of the Cauchy stress tensor into deviatoric and spherical
components, which then translates into a splitting of the second Piola–Kirchhoff stress
tensor.

The momentum equation is complemented with a constitutive law for the pressure which
emerges from the deviatoric/volumetric decomposition of the strain energy function for
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(a) L2 (Ω0) norm displacement (m)

(b) Pressure

(c) L2 (Ω0) norm deviatoric PK2 stress (Pa)

Figure 9. Twisting column. Evolution at point A.
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(a) 0.1 s (b) 0.2 s (c) 0.3 s (d) 0.4 s (e) 0.5 s

Figure 10. Twisting column. Deformation and Pressure field (Pa) along time.

(a) 0.1 s (b) 0.2 s (c) 0.3 s (d) 0.4 s (e) 0.5 s

Figure 11. Twisting column. Deformation and L2 (Ω0) norm deviatoric
PK2 stress (Pa) along time.

any hyperelastic material model. This law is formulated properly to obtain a simple way
to impose the incompressibility of the material automatically. Furthermore, to design a
FE technology with a high degree of accuracy of the stress field, the constitutive law for
deviatoric stresses is added to the system to obtain a monolithic system of equations for the
displacement/pressure/deviatoric stress formulation. The presented three-field approach
is able to deal with any hyperelastic material, including fully incompressible cases.

We have proposed two residual-based (ASGS and OSGS) and a term-by-term (S-OSGS)
type stabilization techniques based on the decomposition of the unknowns into FE scales
and SGSs. All stabilization techniques are able to circumvent the compatibility restrictions
on the interpolation functions among the primary unknowns of the problem. Furthermore,
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the proposed scheme shows the desired rate of convergence upon mesh refinement regardless
the stabilization technique. It is interesting to remark that the S-OSGS stabilization
technique allows us to obtain well-defined solutions and to neglect terms that do not
contribute to stability. This methods turns out to be more robust for solving problems
when large stress gradients are present. Likewise, for the examples we have considered,
we have been able to assume quasi-static SGSs, although dynamic SGSs might need to be
considered if very small time step sizes are required.

Concerning the computational cost of the method, we have observed that the proposed
methods display quadratic non-linear convergence regardless the stabilization technique,
as it is expected from the implementation of a Newton–Raphson iterative procedure. The
proposed three-field formulation is convergent upon mesh refinement, virtually free of any
volumetric or shear locking. The technology is suitable for engineering applications in
which a higher accuracy of stresses is needed. A comparison with the two-field formulation
(displacement/pressure) is also carried out. Results clearly show that both the upS′ and
the up formulations deal appropriately with the incompressibility constraint but the three-
field formulation exhibits a higher accuracy in the stress field, even for very coarse meshes.
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