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Abstract

The theories for thick plates and beams, namely Reissner-Mindlin’s and Timoshenko’s theories, are well

known to suffer numerical locking when approximated using the standard Galerkin finite element method for

small thicknesses. This occurs when the same interpolations are used for displacement and rotations, reason

for which stabilization becomes necessary. To overcome this problem, a Variational Multiscale stabilization

method is analyzed in this paper. In this framework, two different approaches are presented: the Algebraic

Sub-Grid Scale formulation and the Orthogonal Sub-Grid Scale formulation. Stability and convergence

is proved for both approaches, explaining why the latter performs much better. Although the numerical

examples show that the Algebraic Sub-Grid Scale approach is in some cases able to overcome the numerical

locking, it is highly sensitive to stabilization parameters and presents difficulties to converge optimally with

respect to the element size in the L2 norm. In this regard, the Orthogonal Sub-Grid Scale approach, which

considers the space of the sub-grid scales to be orthogonal to the finite element space, is shown to be stable

and optimally convergent independently of the thickness of the solid. The final formulation is similar to

approaches developed previously, thus justifying them in the frame of the Variational Multiscale concept.

Keywords: Reissner-Mindlin Plate, Timoshenko Beam, Shear Locking, Variational

Multiscale.

1 Introduction

In the context of computational mechanics, plates and beams are structural elements that are able to

represent three dimensional objects in which the length of one or two of its dimensions is significantly

smaller than the others. This dimensional reduction allows engineers to model complex structures at the

cost of introducing rotations as independent variables. The Reissner-Mindlin equations are commonly used

to describe the behavior of thin and moderately thick plates under transverse loads. This model differs from

the Poisson-Kirchhoff equations for thin plates by considering the shear deformations due to distortion. In

a physical sense, it is assumed that a straight line normal to the undeformed middle plane will remain

straight but not necessarily perpendicular to the middle plane after deformation. The same analogy applies
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to the Timoshenko equations for thin-thick beams, with respect to the Euler-Bernoulli equations for thin

beams. This leads to two groups of equations: the thin-thick theories, referred to as Reissner-Mindlin plates

and Timoshenko beams, and the thin theories, referred to as Poisson-Kirchhoff plates and Euler-Bernoulli

beams.

This paper is focused on the Finite Element (FE) stabilization of thin-thick theories of plates and beams,

founded on the fact that applications in engineering usually fall into this category, and in the interest of

using C0 interpolations for displacement and rotations that are not possible using thin theories. In this

context, both in Reissner-Mindlin plate and Timoshenko beam theories, the thickness of the structure

appears explicitly in the partial differential equations, which results in a dominance of the shear term as it

tends to the slender limit case. This fact together with the zero shear strain constraint leads to numerical

locking when the equations are solved using the same interpolation for deflection and rotations, and it is

the reason it needs to be stabilized. In the case of beams, the way locking occurs can be explicitly analyzed

from the stiffness matrix of the elements [1].

A considerable amount of work has been put into the design of locking-free elements, namely that the

order of convergence does not depend on the thickness of the structure. The existing approaches can be

classified depending on whether or not the problem is dealt with in the irreducible form or if the shear strain

is interpolated as an additional variable of the problem, which alleviates the zero shear constraint. In the

irreducible approach, the equations are presented in terms of deflections and rotations only, and if these

equations are discretized using standard polynomial spaces, the numerically simulated structure behaves

with a stiffness larger than it should for small thicknesses [2]. This pure numerical response is known as

numerical locking, and for this particular case, it is often called shear-locking because it occurs due to the

inability to reproduce a zero shear strain field. In that regard, the numerical locking will occur for any loading

that results in a pure bending state of the structure. On the other hand, the mixed formulation approach

consists in interpolating the shear strain from the constitutive equations as an additional unknown. This

can be extended, although not necessarily, to the dual-mixed formulation by also interpolating the bending

strain. This type of implementations is used to avoid restrictive constraints; however, they are inf-sup

deficient and also require stabilization. For a better understanding of the FE approach to plates the reader

can refer to [3, 4].

The most common approach used to solve the problem, independently of which variables are interpolated,

is to use MITC (Mixed Interpolation of Tensorial Components) elements, that allows one to use different

interpolations for each unknown. These approaches have been, and are still being developed for different

types of problems [5, 6]. The reader can refer to [7] for a general overview, and also to [8] for a general

analysis of the design procedure of MITC elements based on the velocity-pressure pair of the Stokes problem.

The main challenge of this approach is to develop a stabilized formulation that converges optimally for every

unknown using the lowest possible order of interpolation. A good insight of this in relation to the plate
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problem can be followed from [9], where it was established that shear stress is convergent if the bending

moment converges at a high enough rate. This led to further developments using a variational approach [10]

that was valid for any element of high enough order of interpolation for MITC elements, limited to using at

least quadratic interpolations for the displacements. This limitation was improved in [11] by adding some

consistent terms to the formulation. This type of elements has also been extended to shells [12], although

some sort of stabilization is also required in this framework [13].

A search of the literature shows that another common methodology to treat shear-locking is by using

different types of selective integration [14, 15]. This, however, is limited to particular element shapes and

element orders (for example for bilinear quads), but it is not a general approach. Stabilization of shear

locking can be achieved through many different approaches such as using Lagrange multipliers [16, 17], non-

conforming method approaches [18, 19] which have also been a common topic of discussion, or discontinuous

Petrov-Galerkin methods [20, 21], to name a few. Another approach was taken in [22], where the dual mixed

formulation was stabilized using inter-elemental jumps of the unknowns. This approach provides optimal

convergence of all the unknowns using linear interpolations only. A completely different approach was

followed in [23], where a locking-free formulation is obtained from general polygonal space discretization

rather than from standard finite elements.

Another methodology consists in formulating the stabilization from the multiscale perspective. It started

from the introduction of the Galerkin-Least Squares method [10] and was further developed in [24]. Another

least-squares type formulation was developed in [25] by introducing stabilization terms using the shear

stress computed from the equilibrium equations. A rather different approach was used in [26], where a

preconditioner was obtained using a multigrid method that was initially proposed in [27], where a conjugate

gradient iterative algorithm was used to solve the linear system. The mixed formulation was also solved

in [28] by introducing different interpolations for bending and shear effects. Also, in [29] a method was

developed using a modified version of the formulation presented in [30], where an additional term was

added to the mixed form. A similar approach to one of the stabilization methods to be described in the

following was adopted in [31], in particular applied to the Discrete Shear Gap (DSG) formulation, which

was already designed to avoid shear locking.

In this paper, the Reissner-Mindlin plate and the Timoshenko beam problems are addressed using the

Variational Multiscale (VMS) method, a framework to develop stabilized formulations originally introduced

in [32, 33]. In these formulations, the original Galerkin formulation is modified as little as possible us-

ing residual-based terms, making it consistent. The stabilized formulations presented in this paper share

some characteristics with other formulations presented in the literature, such as [4, 7, 11]; however, the

final outcome is not exactly the same and the motivation to derive the methods we propose is completely

different [34].

The paper is organized as follows: A brief overview of the physical problem is presented in section 2 and
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the variational form is given in section 3. The general form of the stabilized FE formulation is explained in

section 4 and its implementation for the plate and beam problems is presented in section 5. The numerical

analysis in which the method is proven to be stable and convergent is presented in section 6 and lastly,

numerical results are shown in section 7.

2 Continuous boundary value problem

Consider a general definition of the transverse deflection w and the rotation θ of a structure. In the case

of plates, the rotation is a vector that contains the rotations that make it bend in the x and y directions as

θ “ rθx, θys. Since the beam problem is a dimensional reduction of the plate problem, a single rotation in

the z direction is considered in this case, as θ “ θ “ θz. In the problems presented below, the geometries

and coordinate systems are defined under the convention presented in Fig. 1. Only beams in the plane will

be considered, the extension to 3D beams being straightforward.

Figure 1: Coordinate system and definition of variables in plates and beams.
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Let us define a domain in a general manner as Ω and its boundary Γ “ BΩ. Then Ω can be particularized

for plates as Ω “ ΩP and for beams as Ω “ ΩB , with their corresponding boundaries ΓP and ΓB . The

irreducible form of the Reissner-Mindlin plate problem consists in finding u “ rθ, ws in the domain ΩP of

R2 with boundary ΓP as the solution to

´k1∆θ ´ k2∇p∇ ¨ θq ´
1

ε
p∇w ´ θq “m in ΩP , (2.1)

´
1

ε
∇ ¨ p∇w ´ θq “ q in ΩP , (2.2)

w “ 0 in ΓP , (2.3)

θ “ 0 in ΓP , (2.4)

for properly defined external loading moments m “ rmx,mys, transverse loads q and

k1 “
Et3

24p1` νq
, k2 “

Et3

24p1´ νq
, ε “

2p1` νq

Eκt
, (2.5)

where E is the Young modulus, ν the Poisson ratio, t the thickness and κ the shear correction factor. In

the development presented below, only homogeneous Dirichlet conditions are considered in (2.3) and (2.4),

for simplicity. Note that ε Ñ 8 as t Ñ 0. However, k1 and k2 are Opt3q, whereas ε´1 is Optq. We have

used the symbol ε´1 for the shear stiffness to emphasize that it dominates the bending stiffnesses as tÑ 0.

Similarly, the Timoshenko beam problem consists in finding u “ rθ, ws defined in the domain ΩB of R

with boundary ΓB such that

´
d

dx

ˆ

EI
dθ

dx

˙

´GA˚
ˆ

dw

dx
´ θ

˙

“ m in ΩB , (2.6)

´
d

dx

„

GA˚
ˆ

dw

dx
´ θ

˙

“ q in ΩB , (2.7)

w “ 0 in ΓB , (2.8)

θ “ 0 in ΓB , (2.9)

where G is the shear modulus, I is the inertia in the bending axis, and A˚ is the traverse reduced section area

of the beam. The equilibrium equations are completed by the external moment, in this case m “ m “ mz,

and external loads q. Comparing the beam and the plate equations, it is observed that EI plays the role

of k1 and k2, whereas GA˚ plays the role of ε´1. Note that indeed both EI and k1, k2 are Opt3q, whereas

GA˚ and ε´1 are Optq, and the later become dominant when tÑ 0.

It is important to mention that thick theories account for the shear strains γ :“ ∇w ´ θ, contrary to

the γ “ 0 assumption of thin theories. Nevertheless, thick theories should converge to the corresponding

thin theory solution when approaching the thin limit tÑ 0.

Additional notation is necessary to build the formulations to be described below. Let us define, in a

general manner, a linear differential operator L, the trace operator D that makes the problem well defined,

and a external force vector f. Either the plate or beam problems can now be written as: find u : Ω ÝÑ Rn
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such that

Lu “ f in Ω, (2.10)

Du “ ū on Γ. (2.11)

For the problems we consider, Du is just the trace of u on Γ. As it has been mentioned, we will take ū “ 0

for simplicity.

We can refer to the Reissner-Mindlin plate problem when n “ 3, L “ LRM and f “ fRM, given by

LRMu “

»

—

–

´k1∆θ ´ k2∇p∇ ¨ θq ´ 1
ε p∇w ´ θq

´ 1
ε∇ ¨ p∇w ´ θq

fi

ffi

fl

, fRM “

»

–

m

q

fi

fl , (2.12)

and to the Timoshenko beam problem when n “ 2, L “ LT and f “ fT, given by

LTu “

»

—

–

´ d
dx

`

EI dθdx
˘

´GA˚
`

dw
dx ´ θ

˘

´ d
dx

`

GA˚
`

dw
dx ´ θ

˘˘

fi

ffi

fl

, fT “

»

–

m

q

fi

fl . (2.13)

To build the variational method below, it also is necessary to define the flux operator F . Following the

same notation as before, the flux operator corresponds to the Reissner-Mindlin problem when F “ FRM,

defined as

FRMpuq “

»

–

k1n ¨∇θ ` k2n∇ ¨ θ

n ¨ 1
ε p∇w ´ θq

fi

fl , (2.14)

and to the Timoshenko beam problem when F “ FT, given by

FTpuq “

»

—

–

EI dθdx

GA˚
`

dw
dx ´ θ

˘

fi

ffi

fl

. (2.15)

3 Variational Form

Consider H1pΩq as the space of functions in L2pΩq whose derivatives belong to L2pΩq and H1
0 pΩq the

subspace of H1pΩq of functions vanishing on Γ. In both specific problems, we denote the space of the

deflection as V “ H1
0 pΩq; the space of the rotations Q will correspond to Q “ H1

0 pΩq
2 when referring to

plates and to Q “ H1
0 pΩq when referring to beams.

Let us denote by p¨, ¨qΩ the L2-inner product and define x¨, ¨yΩ as the integral of the product of two

functions in Ω. We also denote as X “ V ˆ Q the spaces where the weak problem is defined, whose test

functions are v “ rφ, vs P X . Let us introduce the bilinear form of the problem B and the linear form L as

B pu,vq “ xLu,vyΩ ` xFu,DvyBΩ , (3.1)

Lpvq “ xf ,vyΩ . (3.2)

With all the above, the general problem in (2.10) and (2.11) is equivalent to the weak form of the problem,
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which consists in finding u P X such that

Bpu,vq “ Lpvq, (3.3)

for all v P X .

4 Stabilized Finite Element Formulation

The standard FE discretization consists in taking a finite partition tKu of the domain Ω. Let the

functional space where the continuous problem is posed be denoted by X from which the constructed

conforming FE space Xh is a subset. Then the Galerkin FE approximation consists in finding uh P X such

that

B puh,vhq “ L pvhq @ vh P Xh. (4.1)

The stabilized formulation analyzed in this paper is constructed in the VMS framework. The idea is to

add additional terms to the Galerkin formulation of the problem that enhance stability without upsetting

accuracy. This is achieved by splitting the space of unknowns as X “ Xh ‘ X 1, where Xh is the part that

can be solved in the FE space and X 1 is the remainder, or sub-grid scale, part. This leads to the splitting of

the unknowns u “ uh ` u1 and test functions v “ vh ` v1. This splitting modifies the original formulation

shown in (4.1) and turns the problem into: find uh P Xh and u1 P X 1 such that

B puh,vhq `B
`

u1,vh
˘

“ L pvhq @ vh P Xh, (4.2)

B
`

uh,v1
˘

`B
`

u1,v1
˘

“ L
`

v1
˘

@ v1 P X 1. (4.3)

The way this formulation is constructed requires an approximation of the sub-grid scales to be complete,

which will be computed as a function of the FE part, as shown below. Note that choosing X 1 “ t0u yields

the Galerkin method, making this method consistent by construction.

4.1 Sub-grid scales in the element interiors

At this point, the approximation requires to solve more variables than the initial problem. This is dealt

with by modifying (4.2) by using the additivity of the integral and the identity of the bilinear operator:

B pu,vq “
ÿ

K

xLu,vyK `
ÿ

K

xFu,DvyBK “
ÿ

K

xu,L˚vyK `
ÿ

K

xDu,F˚vyBK , (4.4)

where the superscript ˚ denotes the adjoint of an operator. In the current problems, the operators involved

are self-adjoint, which means that L˚ “ L and F˚ “ F ; nevertheless, the superscript is left as a reference.

In this manner, equation (4.2) can be written as

B puh,vhq `
ÿ

K

“@

u1,L˚vh
D

K
`
@

Du1,F˚vh
D

BK

‰

“ Lpvhq. (4.5)
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Then the problem reduces to find a proper approximation for u1. This can be achieved in (4.3) by approxi-

mating u1 in terms of uh. We have that

B
`

u1,v1
˘

“ L
`

v1
˘

´B
`

uh,v1
˘

,

“ L
`

v1
˘

´
ÿ

K

“@

Luh,v1
D

K
`
@

Fuh,Dv1
D

BK

‰

,

“
ÿ

K

“@

Ruh,v1
D

K
`
@

Fuh,Dv1
D

BK

‰

, (4.6)

where Ruh “ f ´ Luh is the FE residual. For now let us impose that Du1 “ 0 on BK in an essential way,

making the sub-grid scale test function satisfy Dv1 “ 0 on BK. This yields the following approximation

u1 “ L´1
`

Ruh ` v1K
˘

, (4.7)

where v1K guarantees that u1 P X 1. In this expression, L´1 cannot be computed directly, so it is approxi-

mated element by element as

u1 |K« τK
`

Ruh ` v1K
˘

|K , (4.8)

where τK is a matrix that approximates L´1 on each element K. The function v1K depends on the space

of the sub-grid scales, so it can be written in a general form as

u1 |K« τKP 1 pRuhq |K , (4.9)

where P 1 is the L2 projection onto the sub-grid scale space X 1 and P 1 “ I ´ P 1K, with I being the identity

in X . This approximation allows us to rewrite the modified version of the problem in (4.5) as a function of

the FE variables, making the number of unknowns to be the same as the original problem, as follows

B puh,vhq `
ÿ

K

@

τKP
1 pRuhq ,L˚vh

D

K
“ L pvhq . (4.10)

From this point onwards, it only remains to choose a proper projection of the residual. A typical choice of

the sub-grid scale space is the identity P 1 “ I, leading to the Algebraic Sub-Grid Scale (ASGS) formulation,

which means v1K “ 0. Choosing P 1 “ I ´ Ph :“ PKh , where Ph is the L2 projection onto the FE space

(including boundary conditions) yields the Orthogonal Sub-Grid Scale (OSGS) formulation, because it

corresponds to taking X 1 as the orthogonal complement of Xh.

4.2 Sub-grid scales in the element edges

The common procedure for the VMS formulation is to neglect the contribution of the sub-grid scales to

the inter-element boundaries; however, enhanced stability properties can be achieved by considering them

[35]. With the approach we follow, it is important to note that the sub-grid scales in the element interiors

do not account for the boundary values, and the sub-grid scales in the inter-element boundaries have to be

computed afterwards.

Let Eh “ tEu the collection of interior edges of the FE partition, and u1E the sub-grid scale on edge E,
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assumed to be uniquely valued. The sub-grid scales on the edges of the boundary of Ω are taken as zero.

Then, we may write equation (4.5) as:

B puh,vhq `
ÿ

K

@

u1,L˚vh
D

K
`
ÿ

E

@

u1E , JF˚vhK
D

E
“ Lpvhq. (4.11)

where JF˚vhK denotes the jump of F˚vh across E, i.e., the sum of the values of F˚vh computed with the

normals exterior to the elements that share edge E.

Imposing that the total fluxes are continuous across inter-element boundaries, it is argued in [36] that

the sub-grid scales on the edges of the FE partition can be approximated by

u1E « ´
δ

2
JFuhK,

where δ “ δ0h and δ0 is a dimensionless algorithmic parameter. Combining this with (4.9) we obtain the

stabilized FE formulation:

B puh,vhq `
ÿ

K

@

τKP
1 pRuhq ,L˚vh

D

K
´
ÿ

E

δ

2
xJFuhK, JF˚vhKyE “ L pvhq . (4.12)

5 Implementation

In this subsection, the stabilized formulation of the Reissner-Mindlin plate and the Timoshenko beam

theories are presented. To simplify the exposition, in this section we consider only linear elements, and

thus higher order derivatives in the element interiors are not considered. Nevertheless, the case of arbitrary

order of interpolation will be analyzed in the following section.

Let us first write the Galerkin FE form of each problem:

• Reissner-Mindlin plate

k1 p∇θh,∇φhq ` k2 p∇ ¨ θh,∇ ¨ φhq `
1

ε
p∇wh ´ θh,∇vh ´ φhq “ xm,φhy ` xq, vhy . (5.1)

• Timoshenko beam

EI

ˆ

dθh
dx

,
dφh
dx

˙

`GA˚
ˆ

dwh
dx

´ θh,
dvh
dx

´ φh

˙

“

A

m, φh

E

`

A

q, vh

E

. (5.2)

Consider α and β as the constants that multiply the shear and bending terms, respectively, namely

α “ GA˚ and β “ EI for beams and α “ ε´1, β “ Et3{24 for plates. In a general manner, the formulation

yields a system of equations of the form
»

–

αS1 αS2

αS3 αS4 ` βB

fi

fl

»

–

W

Θ

fi

fl “

»

–

F

M

fi

fl , (5.3)

where W and Θ are the displacements and rotations arrays, respectively, F is the array coming from the

transverse loads, M from the bending moments, B and Si (i “ 1, 2, 3, 4) are the components arising from
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the bending and shear terms, respectively (with S3 “ ST2 ). These notations can refer to matrix arrays

depending on the problem. The standard formulations gives a symmetric system that locks when t ÝÑ 0 and

Si " B (the inequality being understood component-wise), while in the stabilized formulations presented

below, the stabilization terms allow the system to avoid the dominance of one term over the other.

In the following, the stabilization matrices are taken to be diagonal, of the form τK “ diagpτθ, τθ, τwq

for plates and τK “ diagpτθ, τwq for beams, where τθ and τw are still to be defined. It is understood that

these parameters are evaluated element by element.

We will start writing the stabilized formulations without sub-grid scales on the inter-element boundaries.

These will be introduced later, as they are the same for both the ASGS and the OSGS formulations.

5.1 Algebraic Sub-Grid Scales

We first consider the ASGS formulation, which corresponds to v1K “ 0. Then P 1 is the identity on the

element residuals, and thus u1 “ τKrf´ Luhs in each element K. The formulation for linear elements and

assuming constant stabilization parameters (i.e., constant element sizes) reads:

• Reissner-Mindlin plates:

k1 p∇θh,∇φhq ` k2 p∇ ¨ θh,∇ ¨ φhq `
1

ε
p∇wh ´ θh,∇vh ´ φhq

´
τw
ε2

ÿ

K

x∇ ¨ θh,∇ ¨ φhyK ´
τθ
ε2

ÿ

K

x∇wh ´ θh,∇vh ´ φhyK “ xm,φhy ` xq, vhy . (5.4)

• Timoshenko beams:

EI

ˆ

dθh
dx

,
dφh
dx

˙

`GA˚
ˆ

dwh
dx

´ θh,
dvh
dx

´ φh

˙

´ τw pGA
˚q

2
ÿ

K

B

dθh
dx

,
dφh
dx

F

K

´ τθ pGA
˚q

2
ÿ

K

B

dwh
dx

´ θh ,
dvh
dx

´ φh

F

K

“

A

m, φh

E

`

A

q, vh

E

.

(5.5)

In a general manner, the matrix version of these equations is
»

–

pα´ τθα
2qS1 pα´ τθα

2qS2

pα´ τθα
2qS3 pα´ τθα

2qS4 ` pβ ´ τwα
2qB

fi

fl

»

–

W

Θ

fi

fl “

»

–

F

M

fi

fl . (5.6)

This allows the system not to fall into shear dominance when τK is properly designed. This part is crucial

to obtain a locking-free formulation, and it will be explained below in more detail.

5.2 Orthogonal Sub-Grid Scales

For this approach, the sub-grid scales are computed considering the orthogonal component of the residual

as u1 “ τKP
Krf ´ Luhs in each element K, i.e., P 1 “ PK “ I ´ Ph. If we denote, in a general manner,

ξh “ rξθ, ξws to be the FE projections of the residual onto Xh, and ηh “ rηθ, ηws to be the respective test

functions in Xh, the formulations for plates and beams can be written as:
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• Reissner-Mindlin plates:

k1 p∇θh,∇φhq ` k2 p∇ ¨ θh,∇ ¨ φhq `
1

ε
p∇wh ´ θh,∇vh ´ φhq

´
τw
ε2

ÿ

K

x∇ ¨ θh,∇ ¨ φhyK ´
τθ
ε2

ÿ

K

x∇wh ´ θh,∇vh ´ φhyK

`
τw
ε

ÿ

K

xξw,∇ ¨ φhyK `
τθ
ε

ÿ

K

xξθ,∇vh ´ φhyK “ xm,φhy ` xq, vhy , (5.7)

1

ε
p∇ ¨ θ, ηwq ´ pξw, ηwq “ 0, (5.8)

1

ε
p∇wh ´ θh,ηθq ´ pξθ,ηθq “ 0, (5.9)

for all rφh, vhs P Xh and rηθ, ηws P Xh.

• Timoshenko beams:

EI

ˆ

dθh
dx

,
dφh
dx

˙

`GA˚
ˆ

dwh
dx

´ θh,
dvh
dx

´ φh

˙

´τwpGA
˚q2

ÿ

K

B

dθh
dx

,
dφh
dx

F

K

´ τθpGA
˚q2

ÿ

K

B

dwh
dx

´ θh ,
dvh
dx

´ φh

F

K

`τwGA
˚
ÿ

K

B

ξw ,
dφh
dx

F

K

` τθGA
˚
ÿ

K

B

ξθ ,
dvh
dx

´ φh

F

K

“

A

m, φh

E

`

A

q, vh

E

,

(5.10)

GA˚
ˆ

dwh
dx

´ θh , ηθ

˙

´

´

ξθ , ηθ

¯

“ 0, (5.11)

GA˚
ˆ

dθh
dx

, ηw

˙

´

´

ξw , ηw

¯

“ 0, (5.12)

for all rφh, vhs P Xh and rηθ, ηws P Xh.

For this formulation, the matrix version of the equations is:
»

—

—

—

—

—

—

–

pα´ τθα
2qS1 pα´ τθα

2qS2 τθαP
θ
1 0

pα´ τθα
2qS3 pα´ τθα

2qS4 ` pβ ´ τwα
2qB τθαP

θ
2 τwαP

w

αQθ1 αQθ2 N 0

0 αQw 0 N

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

W

Θ

Ξθ

Ξw

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

F

M

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (5.13)

where N is the Gram matrix, Pw and P θi (i “ 1, 2) are the matrices containing ξw and ξθ, respectively, with

the corresponding test function associated to the index. In the same manner, Qw and Qθi (i “ 1, 2) are the

matrices containing deflection and rotations terms, depending on the index, with the test functions of the

projection equations. Note that the system can be symmetrized by multiplying the last two rows by τθ and

τw, respectively, since pQθi qT “ P θi , i “ 1, 2.

The OSGS implementation yields a system that shares some similarities with the mixed form of the

problem. The difference is that the later yields a saddle point problem that is usually addressed using a

mixed interpolation of the unknowns [10]. Note that similar formulations have been obtained in [4, 7, 11],
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where the shear force is computed using the L2 projection of the rotation onto the FE space in order to

soothe the zero shear strain constraint of the problem, which differs from the sub-grid scale approach of the

present work.

The implementation given by Eq. (5.13) is useful for the presentation of the formulation, but in prac-

tice two other alternatives are possible eliminating the degrees of freedom of the projections. One is an

iterative deffect-correction approach, evaluating these projections at the previous iteration when computing

displacements and rotations and then updating them. The other is a condensation of the projections, which

implies an increase of the stencil of the stiffness matrix. Both approaches are feasible because the matrix

that multiplies the degrees of freedom of the rotations is a mass matrix, easily invertible (in a direct or in an

iterative way). In this case, the formulation presented should be compared to those that do not introduce

new variables, but solve only for displacements and rotations.

5.3 Inter-element edge stabilization

The stabilization using the sub-grid scales in the element edges can be implemented independently of

the sub-grid scales in the element interiors, as stated in section 4. For the implementation, consider the

terms from the sub-grid scale in the inter-element edges added to the Galerkin form of the problem. The

resulting discrete problem is:

• Reissner-Mindlin plate

k1 p∇θh,∇φhq ` k2 p∇ ¨ θh,∇ ¨ φhq `
1

ε
p∇wh ´ θh,∇vh ´ φhq

´
δk1

2

ÿ

E

xJn ¨∇θhK, Jn ¨∇φhKyE ´
δk2

2

ÿ

E

xJn∇ ¨ θhK, Jn∇ ¨ φhKyE

´
δ

2ε

ÿ

E

xJn ¨∇whK , Jn ¨∇vhKyE “ xm,φhy ` xq, vhy . (5.14)

• Timoshenko beam

EI

ˆ

dθh
dx

,
dφh
dx

˙

`GA˚
ˆ

dwh
dx

´ θh,
dvh
dx

´ φh

˙

´
δEI

2

ÿ

E

Bs
dθh
dx

{
,

s
dφh
dx

{F

E

´
δGA˚

2

ÿ

E

Bs
dwh
dx

{
,

s
dvh
dx

{F

E

“

A

m, φh

E

`

A

q, vh

E

. (5.15)

Recall that, in both problems, δ is a parameter of the order of the element size.

5.4 Stabilization parameters

The design of τK is based on the definition proposed in [37] for the Reissner-Mindlin case, with some

modifications. According to that work, shear dominance can be dealt with by just introducing the shear

stabilization parameter τθ, and it was successful in that regard. However, convergence ratios were not tested.

Taking this into consideration, the stabilization parameters are defined as

12



• Reissner-Mindlin plate:

τK “ diag pτθ, τθ, τwq , τθ “

ˆ

c1
k

h2
` c2ε

´1

˙´1

, τw “

ˆ

c3
ε´1

h2
` c4

ε´2

k

˙´1

, (5.16)

• Timoshenko beam:

τK “ diag pτθ, τwq , τθ “

ˆ

c1
EI

h2
` c2GA

˚

˙´1

, τw “

˜

c3
GA˚

h2
` c4

pGA˚q
2

EI

¸´1

, (5.17)

where h is the element size, k “ k1 ` k2, and ci, i “ 1, 2 are constants to be defined. Note that in [37] the

constant c2 must be taken as c2 “ 1 to eliminate shear dominance; this is confirmed in the stability analysis

in section 6. In [31] the ASGS formulation is used together with the DSG approach taking τw “ 0 and a

similar expression of τθ to the one we propose, but taking also into account the possible anisotropy of the

elements.

To find which values of the stabilization constants can be used in the stabilization parameters, the matrix

form of the equations using the ASGS formulation of (5.6) is compared to the exact solution of the elastic

equations for the bending of an unloaded beam using Timoshenko’s theory. Consider a two noded beam of

length L, with nodal deflections wi and rotations θi, for nodes i “ 1, 2, and the corresponding nodal loads

Pi and Mi. For µ “ 12EI
GA˚L2 , the following system of equations is obtained:

»

—

—

—

—

—

—

–

12EI
p1`µqL3

6EI
p1`µqL2 ´ 12EI

p1`µqL3
6EI

p1`µqL2

6EI
p1`µqL2

p4`µqEI
p1`µqL ´ 12EI

p1`µqL2

p2´µqEI
p1`µqL

´ 12EI
p1`µqL2 ´ 6EI

p1`µqL2
12EI

p1`µqL2 ´ 6EI
p1`µqL2

6EI
p1`µqL2

p2´µqEI
p1`µqL ´ 12EI

p1`µqL2

p4`µqEI
p1`µqL

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

w1

θ1

w2

θ2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

P1

M1

P2

M2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5.18)

Comparing this system to the one obtained using the stabilized FE approximation we propose, we obtain

that, in the ASGS formulation of beams, the stabilization constants can be taken as c1 “ c3 “ 12 and

c2 “ c4 “ 1. In this case, the stiffness matrix of an element of length L is exactly the same as that of the

elastic equations of a Timoshenko beam. The behavior of the FE formulation in response to this selection

of constants as well as the constants used in the OSGS formulation will be discussed in section 7.

6 Numerical Analysis

In this section, the numerical analysis of the stabilized formulation for plates is analysed. The results

are inherited by the beam problem since it is equivalent to the dimensional reduction of the plate problem.

Consider } ¨ } to be the L2pΩq norm. Let us define some inequalities that will allow us to obtain a

stability estimate. For simplicity, we will assume the FE partition to be quasi-uniform, of size h. We may

thus assume that there is a constant Cinv, independent of the mesh size h, such that the following inverse

estimate holds:

}∇vh}K ď
Cinv

h
}vh}K , (6.1)
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for all FE functions vh defined on the partition tKu. Similarly, the following trace inequality holds: there

exists a a constant Ctrace independent of h such that

}v}2BK ď Ctrace

ˆ

1

h
}v}2K ` h}∇v}2K

˙

, (6.2)

for functions v P H1pKq. In this expression, the last term is dropped if v is a polynomial on the element

domain K.

Let now Eh “ tEu be the edges of the FE partition. For piecewise discontinuous polynomials ϕh and

continuous polynomials ψh there holds:

ÿ

E

} JnϕhK }2E ď 2
Ctrace

h

ÿ

K

}ϕh}
2
K ,

ÿ

E

}ψh}
2
E ď

Ctrace

2h

ÿ

K

}ψh}
2
K . (6.3)

In the following, C will denote a generic positive constant, not necessarily the same at different occur-

rences.

The stabilized FE formulation for elements of arbitrary polynomial degree can be written as:

Bstabpuh,vhq “ Lstabpvhq, (6.4)

where

Bstabpuh,vhq “ k1 p∇θh,∇φhq ` k2 p∇ ¨ θh,∇ ¨ φhq `
1

ε
p∇wh ´ θh,∇vh ´ φhq

` τθ
ÿ

K

B

P 1
„

k1∆θh ` k2∇p∇ ¨ θhq `
1

ε
p∇wh ´ θhq



,´k1∆φh ´ k2∇p∇ ¨ φhq ´
1

ε
p∇vh ´ φhq

F

K

` τw
ÿ

K

B

P 1
„

1

ε
∇ ¨ p∇wh ´ θhq



,´
1

ε
∇ ¨ p∇vh ´ φhq

F

K

, (6.5)

and

Lstabpvhq “ xm,φhy ` xq, vhy ´ τθ
ÿ

K

B

P 1 rms ,´k1∆φh ´ k2∇p∇ ¨ φhq ´
1

ε
p∇vh ´ φhq

F

K

´ τw
ÿ

K

B

P 1 rqs ,´
1

ε
∇ ¨ p∇vh ´ φhq

F

K

, (6.6)

where P 1 “ I for the ASGS formulation and P 1 “ PK for the OSGS method.

6.1 Stability analysis of the Algebraic Sub-Grid Scale formulation

Let us first recall the stability estimate presented in [37] for the plate problem, where the ASGS approach

was considered. In that work the terms multiplied by τw were neglected because they were not needed to get

rid of the numerical locking. This fact however, does not account for the convergence rate of the solution,

and τw is indeed necessary for it to be optimal, as will be explained and numerically proven below. The

formulation analyzed in [37] will now be extended in the same manner: for the stability estimate, take
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vh “ uh and consider γh “ ∇wh ´ θh. Using Schwarz’s inequality leads to:

Bstabpuh,uhq ě
ÿ

K

”

k1}∇θh}2K ` k2}∇ ¨ θh}2K `
1

ε
}γh}

2
K ´ τθk

2
1}∆θh}

2
K ´ τθk

2
2}∇ p∇ ¨ θhq }2K ´ τθ

1

ε2
}γh}

2
K

´ 2τθ
k1

ε
}∆θh}K}γh}K ´ 2τθ

k2

ε
}∇ p∇ ¨ θhq }K}γh}K ´ 2τθk1k2}∆θh}K}∇ p∇ ¨ θhq }K ´ τw

1

ε2
}∇ ¨ γh}2K

ı

.

(6.7)

Using the inverse estimate (6.1) and Young’s inequality, we obtain:

Bstabpuh,uhq ě
ÿ

K

”

k1}∇θh}2K ` k2}∇ ¨ θh}2K `
1

ε
}γh}

2
K ´ τθk

2
1

C2
inv

h2
}∇θh}2K ´ τθk2

2

C2
inv

h2
}∇ ¨ θh}2K ´ τθ

1

ε2
}γh}

2
K

´ τθ
k1

ε

ˆ

}∇θh}2K `
C2

inv

h2
}γh}

2
K

˙

´ τθ
k2

ε

ˆ

}∇ ¨ θh}2K `
C2

inv

h2
}γh}

2
K

˙

´ τθ

ˆ

k2
1

C2
inv

h2
}∇θh}2K ` k2

2

C2
inv

h2
}∇ ¨ θh}2K

˙

´ τw
1

ε2

C2
inv

h2
}γh}

2
K

ı

“
ÿ

K

”

β1}∇θh}2K ` β2}∇ ¨ θh}2K ` β3}γh}
2
K

ı

, (6.8)

where

β1 “τθ

„

c1
k2

1

h2
` c1

k1k2

h2
` c2

k1

ε
´ 2

C2
inv

h2
k2

1 ´
k1

ε



, (6.9)

β2 “τθ

„

c1
k1k2

h2
` c1

k2
2

h2
` c2

k2

ε
´ 2

C2
inv

h2
k2

2 ´
k2

ε



, (6.10)

β3 “τθ

„

c1
k

h2ε
` c2

1

ε2
´

1

ε2
´
k

ε

C2
inv

h2
´
k

ε

C2
inv

h2

ˆ

c1kε` c2h
2

c3kε` c4h2

˙

. (6.11)

Estimate (6.8) is not satisfactory because it does not provide a proper balance of the powers of the

thickness in the different terms it involves. This occurs regardless of the selection of stabilization parameters,

with the only exception of c1 “ c3 “ 12, and c2 “ c4 “ 1, which allow one to recover the stiffness matrix

coming from the elastic equations (5.18). To understand the reason, suppose that the physical properties

and the mesh size h are fixed and let us analyze the scaling of the parameters βi, i “ 1, 2, 3, with respect

to the thickness t. Assuming c3 ě c1, c4 ě c2 and c1 ą 2C2
inv and noting that k1, k2 scale as t3 and ε scales

as t´1, we have that

β1, β2 „ τθt
4

„

A1
t2

h2
`A2pc2 ´ 1q



, β3 „ τθt
4

„

B1
1

h2
`
B2

t2
pc2 ´ 1q



, (6.12)

where „ stands for scaling and A1, A2, B1, B2 are independent of t and h. From this we observe that in

order to avoid shear locking we need to take c2 “ 1, as it was observed in [37], but in this case also the last

term in β1, β2 vanishes, and we have that β1, β2 “ Opτθt6q while β3 “ Opτθt4q (for h fixed). Therefore,

the stability estimate (6.8) does not provide a balanced control of the shear term and the derivatives of the

rotation when t Ñ 0. We will see in the next subsection that the OSGS formulation does not suffer from

this misbehavior.
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6.2 Stability and convergence analysis of the Orthogonal Sub-Grid Scale formulation

The numerical analysis of the method considering the OSGS approach is presented next. For positive

and dimensionally correct αi pi “ 1, 2, 3q, the norm in which the results are presented is:

~vh~
2

:“α1 }∇φh}2 ` α2 }∇ ¨ φh}2 ` α3 }γh}
2
. (6.13)

This norm has the same form as for the Galerkin method and the ASGS formulation (see estimate (6.8)),

but with the advantage that the constants αi are such that locking is no longer possible, because they are

designed in a manner that none of them can become dominant over the others. In particular, it will be

shown that they behave as α1, α2 “ Opτθt4q and α3 “ Opτθt4h´2q.

In the following, it will be proved that the formulation is stable under the norm (6.13), in the form of

the inf-sup condition.

Theorem 6.1 (Stability). There is a constant C > 0 such that

inf
uhPXh

sup
vhPXh

Bstab puh,vhq
~uh~~vh~

ě C. (6.14)

Proof. Let us start noting that for any function uh P Xh we have

Bstabpuh,uhq “k1}∇θh}2 ` k2}∇ ¨ θh}2 ` ε´1}γh}
2

´ τθ
ÿ

K

›

›PK
`

k1∆θh ` k2∇p∇ ¨ θhq ` ε´1γh
˘
›

›

2

K
´ τw

ÿ

K

›

›PK
`

ε´1∇ ¨ γh
˘
›

›

2

K
. (6.15)

It is important to note that the Galerkin terms of the bilinear form B have already the necessary terms to

have control over the ∇θh and γh. However, the problem arises when t ÝÑ 0 and becomes shear dominant.

Because of this, the main idea is to obtain a stability estimate in which the shear dominance can be

prevented. This estimate comes from the terms whose orthogonal projections appear in Bstab, which is

obtained by bounding the bilinear form term by term as follows.

Let us consider vh1 :“ pτθφ1, 0q, where φ1 “ Ph
`

k1∆θh ` k2∇p∇ ¨ θhq ` ε´1γh
˘

and Ph is the L2

projection onto the FE space. It is understood that the term inside the projection is evaluated element-

wise. Taking vh1 as test function in the bilinear form, and integrating by parts the Galerkin terms, yields

Bstabpuh,vh1q “ ´
ÿ

K

τθ
@

k1∆θh ` k2∇p∇ ¨ θhq ` ε´1γh,φ1

D

K
` τθ

ÿ

E

xJk1n ¨∇θhK` Jk2n∇ ¨ θhK ,φ1yE

´ τ2
θ

ÿ

K

@

PK
`

k1∆θh ` k2∇p∇ ¨ θhq ` ε´1γh
˘

, k1∆φ1 ` k2∇p∇ ¨ φ1q ´ ε
´1φ1

D

K

´ τθτw
ÿ

K

@

PK
`

ε´1∇ ¨ γh
˘

,´ε´1∇ ¨ φ1

D

K
. (6.16)

Note that the equation contains terms projected in the space that is orthogonal to the FE space, which

disappear when tested with φ1 because it belongs to the FE space itself. Then, by using Schwarz’s inequality

and the inverse estimate (6.1), we obtain:

Bstabpuh,vh1q ě ´ τθ
ÿ

K

}φ1}
2
K ´ τθ

ÿ

E

}Jk1n ¨∇θhK}E }φ1}E ´ τθ
ÿ

E

}Jk2n∇ ¨ θhK}E }φ1}E
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´ τ2
θ k
C2

inv

h2

ÿ

K

›

›PK
`

k1∆θh ` k2∇p∇ ¨ θhq ` ε´1γh
˘
›

›

K
}φ1}K

´ τθτwε
´1Cinv

h

ÿ

K

›

›PK
`

ε´1∇ ¨ γh
˘
›

›

K
}φ1}K . (6.17)

Then, using Young’s inequality and the trace inequalities (6.3) it follows that:

Bstabpuh,vh1q ě ´ τθ
ÿ

K

}φ1}
2
K ´ τθ

ÿ

K

}φ1}
2
K ´ τθ

C2
trace

2h2

ÿ

K

}k1∇θh}2K ´ τθ
C2

trace

2h2

ÿ

K

}k2∇ ¨ θh}2K

´
τ2
θ k

2

C2
inv

h2

ÿ

K

´

}φ1}
2
K `

›

›PK
`

k1∆θh ` k2∇p∇ ¨ θhq ` ε´1γh
˘
›

›

2

K

¯

´ τθτw
ε´1

2

C2
inv

h2

ÿ

K

}φ1}
2
K ´ τθτw

ε´1

2

ÿ

K

›

›PK
`

ε´1∇ ¨ γh
˘
›

›

2

K
. (6.18)

Similarly, consider vh2 “ p0, τwv2q, where v2 “ Ph
`

ε´1∇ ¨ γh
˘

, as test function in the bilinear form. We

have that

Bstabpuh,vh2q “ ´ τw
`

ε´1∇ ¨ γh, v2

˘

` τw
ÿ

E

@

ε´1 Jn ¨ γhK , v2

D

E

´ τ2
wε
´1

ÿ

K

@

PK
`

ε´1∇ ¨ γh
˘

,∇ ¨∇v2

D

K

´ τθτwε
´1

ÿ

K

@

PK
`

k1∆θh ` k2∇p∇ ¨ θhq ` ε´1γh
˘

,∇v2

D

K
. (6.19)

Then following the same procedure as before, it follows that

Bstabpuh,vh2q ě ´ τw
ÿ

K

}v2}
2
K ´ τw

ÿ

K

}v2}
2
K ´ τw

C2
trace

4h2

ÿ

K

›

›ε´1γh
›

›

2

K

´ τ2
w

ε´1

2

C2
inv

h2

ÿ

K

´

}v2}
2
K `

›

›PK
`

ε´1∇ ¨ γh
˘
›

›

2

K

¯

´ τθτw
ε´1

2

ÿ

K

}v2}
2
K ´ τθτw

ε´1

2

C2
inv

h2

ÿ

K

›

›PK
`

k1∆θh ` k2∇p∇ ¨ θhq ` ε´1γh
˘
›

›

2

K
. (6.20)

Lastly, consider vh “ uh` 1
2vh1`

1
2vh2, which is equivalent to adding up (6.15), 1

2 (6.18), and
1
2 (6.20). This

yields

Bstabpuh,vhq ě
ˆ

k1 ´ τθk
2
1

C2
trace

4h2

˙

}∇θh}2 `
ˆ

k2 ´ τθk
2
2

C2
trace

4h2

˙

}∇ ¨ θh}2 `
ˆ

ε´1 ´ τwε
´2C

2
trace

8h2

˙

}γh}
2

´

ˆ

τθ `
τ2
θ k

2

C2
inv

h2
` τθτw

ε´1

2

C2
inv

h2

˙

ÿ

K

›

›k1∆θh ` k2∇p∇ ¨ θhq ` ε´1γh
›

›

2

K

´

ˆ

τw ` τθτw
ε´1

2
` τ2

w

ε´1

2

C2
inv

h2

˙

ÿ

K

›

›ε´1∇ ¨ γh
›

›

2

K
. (6.21)

The last two terms can be separated using the triangular inequality, enabling us to write the expression in

terms of the original variables only:

Bstabpuh,vhq ě α1}∇θh}2 ` α2}∇ ¨ θh}2 ` α3}γh}
2 ” ~uh~2, (6.22)
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where

α1 “τθ

„

c1
kk1

h2
` c2

k1

ε
´ k2

1

C2
inv

4h2

ˆ

Cinvkε

c1kε` c2h2

˙

´ k2
1

C2
inv

4h2

ˆ

C2
invkε

c3kε` c4h2

˙

´ k2
1

C2
trace

4h2



, (6.23)

α2 “τθ

„

c1
kk2

h2
` c2

k2

ε
´ k2

2

C2
inv

4h2

ˆ

Cinvkε

c1kε` c2h2

˙

´ k2
2

C2
inv

4h2

ˆ

C2
invkε

c3kε` c4h2

˙

´ k2
2

C2
trace

4h2



, (6.24)

α3 “τθ

„

c1
kε´1

h2
`
c2
ε2
´

1

ε2
´
k

ε

C2
inv

4h2

ˆ

h2

c1kε` c2h2

˙

´
k

ε

C2
inv

4h2

ˆ

h2

c3kε` c4h2

˙

´
k

ε

C2
trace

8h2

ˆ

c1kε` c2h
2

c3kε` c4h2

˙

´
k

ε

C2
inv

h2

ˆ

c1kε` c2h
2

c3kε` c4h2

˙

´
k

ε

C2
inv

2h2

ˆ

c1kε` c2h
2

c3kε` c4h2

˙ˆ

C2
invkε

´1

c3kε´1 ` c4ε´2h2

˙

. (6.25)

From the expression in (6.25) it can be verified again that the value c2 “ 1 is necessary to eliminate

shear dominance and that the constants must satisfy c3 ě c1 and c4 ě c2. It is also needed that c1 ą

2C2
inv `

1
4C

2
trace. In fact, for linear elements it suffices to take c1 ą 0, as the integration by parts in (6.16)

is not needed (the terms multiplied by Ctrace do not show up) and one may take the constant associated to

the inverse estimate for second derivatives as Cinv “ 0. Under all these conditions, it is readily checked that

α1, α2 „ τθt
4

„

A11
t2

h2
`A12c2



, α3 „ τθt
4

„

B11
1

h2
`
B12
t2
pc2 ´ 1q



, (6.26)

where A11, A12, B11, B12 are independent of t and h. Comparing (6.26) with (6.12) it is observed that the last

term in α1, α2 does not vanish when c2 “ 1, contrary to what happens for β1, β2. Thus, when t Ñ 0 we

have that α1, α2 “ Opτθt4q and α3 “ Opτθt4h´2q, as claimed earlier.

Therefore, we have proved that there is a positive constant C for which the following inequality holds:

Bstabpuh,vhq ě C~uh~2. (6.27)

It is also easy to check that

~vh1~
2 ď τ2

θ

C4
inv

h4
pα1 ` α2q

`

k2
1}∇θh}2K ` k2

2}∇ ¨ θh}2K
˘

` τ2
θ ε
´2C

2
inv

h2
pα1 ` α2q}γh}

2
K ď C~uh~2, (6.28)

~vh2~
2 ď τ2

wε
´2α3

C4
inv

h4
}γh}

2
K ď C~uh~2, (6.29)

and therefore ~vh~2 ď C~uh~2. From this result and (6.27) it follows that for each uh P Xh there exists

vh P Xh such that Bstabpuh,vhq ě C~uh~~vh~, from where the theorem follows. �

Once the stability is established, a standard procedure follows to prove convergence. There are two

preliminary lemmas that are needed to achieve it, concerning the consistency and the interpolation error.

Lemma 6.2 (Consistency). Let u P X be the solution of the continuous problem and uh P Xh the FE
solution of (6.5). If u is regular enough so that Bstabpu,vhq is well defined, then

Bstabpu´ uh,vhq “ 0, @vh P Xh. (6.30)

Proof. Since the stabilization terms are residual based and the Galerkin method does not contribute to

the consistency error, the lemma is satisfied by construction. �

The following lemma concerns an interpolation error in terms of the working norm ~ ¨~ and the bilinear
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form Bstab. Let Wh be a generic FE space of degree kv. The interpolation error εipvq for any function

v P Hk1v`1pΩq for i “ 0, 1 is defined as follows

inf
vhPWh

ÿ

K

}v ´ vh}HipKq ď Chk
2
v`1´i

ÿ

K

}v}
Hk2v`1pKq

“: εipvq, (6.31)

where k2v “ minpkv, k
1
vq. Also consider ṽh to be the best approximation of v inWh. Note that ε0pvq “ hε1pvq.

In particular, the notation will be v “ θ for the rotations and v “ w for the deflection, with orders of

interpolation kθ and kw, respectively.

The error function of the method will be proven to be:

Ephq :“
´

a

k1 `
a

k2

¯

ε1pθq `
1
?
ε
ε0pθq `

1
?
ε
ε1pwq. (6.32)

Lemma 6.3 (Interpolation error). Let u P X be the continuous solution, assumed to be regular enough,
and ũh P Xh its best FE approximation. Then the following inequalities hold:

Bstabpu´ ũh,vhq ď CEphq~vh~, (6.33)
~u´ ũh~ ď CEphq. (6.34)

Proof. Let us prove (6.34). Consider the definition of the working norm (6.13); it can be easily checked

that

~u´ ũh~2 ďC
“

α1ε
2
1pθq ` α2ε

2
1pθq ` α3ε

2
1pwq ` α3ε

2
0pθq

‰

, (6.35)

from where (6.34) follows using (5.16) for the expression of the stabilization parameters and (6.23)-(6.25)

for the expression of αi, i “ 1, 2, 3.

Then consider eu “ u ´ ũh “ reθ, ews, where eθ “ θ ´ θ̃h and ew “ w ´ w̃h; the proof of (6.33) is as

follows:

Bstabpeu,vhq “k1 p∇eθ,∇φhq ` k2 p∇ ¨ eθ,∇ ¨ φhq `
1

ε
p∇ew ´ eθ,∇vh ´ φhq

` τθ
ÿ

K

B

PKθ

„

k1∆eθ ` k2∇p∇ ¨ eθq `
1

ε
p∇ew ´ eθq



, PKθ

„

´k1∆φh ´ k2∇p∇ ¨ φhq ´
1

ε
γh

F

K

` τw
ÿ

K

B

PKw

„

1

ε
∇ ¨ p∇ew ´ eθq



, PKw

„

´
1

ε
∇ ¨ γh

F

K

ď
a

k1}∇eθ}
a

k1}∇φh} `
a

k2}∇ ¨ eθ}
a

k2}∇ ¨ φh} `
1
?
ε
}∇ew ´ eθ}

1
?
ε
}γh}

`

ˆ

τθ
k1

h
}∇eθ} ` τθ

k2

h
}∇ ¨ eθ} `

τθ
ε
p}∇ew} ` }eθ}q

˙ˆ

k1
Cinv

h
}∇φh}

`k2
Cinv

h
}∇ ¨ φh} `

1

ε
}γh}

˙

`

ˆ

τw
1

ε

1

h
}∇ew} ` τw

1

ε
}∇ ¨ eθ}

˙

Cinv

εh
}γh}

ď

„ˆ

k1 ` τθk
2
1

Cinv

h2

˙

}∇eθ} ` τθk1k2
Cinv

h2
}∇ ¨ eθ} ` τθ

k1

ε

Cinv

h
}∇ew}

`τθ
k1

ε

Cinv

h2
}eθ}



}∇φh} `
„

τθk1k2
Cinv

h2
}∇eθ} `

ˆ

k2 ` τθk
2
2

Cinv

h2

˙

}∇ ¨ eθ}

`τθ
k2

ε

Cinv

h
}∇ew} ` τθ

k2

ε

Cinv

h2
}eθ}



}∇ ¨ φh}
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`

„

τθ
k1

εh
}∇eθ} ` τθ

k2

εh
}∇ ¨ eθ} `

ˆ

1

ε
`
τθ
ε2
` τw

Cinv

ε2h2

˙

p}∇ew} ` }eθ}q


}γh}

ďC

„

k1}∇eθ} ` k2}∇ ¨ eθ} `
h

ε
}∇ew} `

h

ε
}eθ}

ˆ

}∇φh}K ` }∇ ¨ φh} `
1

h
}γh}

˙

ďC

„

´

a

k1 `
a

k2

¯

ε1pθq `
1
?
ε
ε0pθq `

1
?
ε
ε1pwq



p
?
α1 }∇φh} `

?
α2 }∇ ¨ φh} `

?
α3 }γh}q .

(6.36)

All the terms have been organized to see that it is clear that they are all bounded by CEphq~vh~, from

where (6.33) follows. �

With this, it only remains to prove convergence, which proceeds in a standard manner.

Theorem 6.4 (Convergence). Let u P X be the solution of the continuous problem, assumed to be regular
enough. There is a positive constant C such that

~u´ uh~ ď CEphq. (6.37)

Proof. Consider ũh´uh P Xh, where ũh is the best FE approximation to u. From the inf-sup condition

(6.14) it follows that there exists vh P Xh such that

C~ũh ´ uh~~vh~ ďBstabpũh ´ uh,vhq

“Bstabpũh ´ u,vhq pfrom the consistency (6.30)q

ďCEphq~vh~ pfrom (6.33)q,

from where ~ũh´uh~ ď CEphq. Subsequently, the theorem follows from the triangle inequality ~u´uh~ ď

~u´ ũh~ ` ~ũh ´ uh~ and the interpolation error estimate (6.34). �

From this result and the expression of the error function in (6.32) it follows that when t is ‘large’ the

optimal combination of interpolation orders for rotations and displacements is kθ “ kw. However, when t is

small, say t ă h, the best is to take kθ “ kw ´ 1, since in this case rotations and deflection contribute with

the same order of h to the error of the formulation.

7 Numerical results

All the examples of this section have been run considering linear continuous interpolation for both

rotations and displacements, i.e., kθ “ kw “ 1.

7.1 Shear-locking

In this section, the behavior of the ASGS and OSGS formulations is evaluated for the plate and beam

problems. From the physical point of view, the formulations must be able to represent thin behavior, or in

other words, the effects of shear deformations must become negligible for decreasing thickness. From the

numerical point of view, this can be verified if the numerical results are free from shear-locking. This implies

that the solution obtained using the Reissner-Mindlin and Timoshenko theories should coincide with the

solution of the Kirchhoff and the Euler-Bernoulli beam theory, respectively, for small thicknesses.
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To assess this behavior, let us consider a square plate of domain Ω “ p0, Lq2 clamped on all its sides and

subject to a uniform load q “ 1 and a cantilever beam of domain Ω “ p0, Lq with a point load P “ ´1 at

the right end and clamped at the left one. For the beam geometry we define a rectangular cross section of

side b “ 1 and thickness t, thus the inertia is I “ bt3{12. For the material properties we consider E “ 106

and ν “ 0.2 in all cases (SI units can be assumed to fix ideas). The analytical deflection at the center of the

plate and at the end of the beam according to the Kirchhoff and Euler-Bernoulli theories are, respectively:

wK “ 0.01524
qL4p1´ ν2q

Et3
, wE “

PL3

3EI
. (7.1)

For the numerical computations, we consider a mesh of 20 ˆ 20 square elements for the plate and 50

linear elements for the beam. The ratio between the deflection obtained numerically from the stabilized

formulations and the analytical solutions respect to the thickness is plotted in Fig. 2. Results show that

both formulations are able to represent the thin limit behavior.
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Figure 2: Comparison of deflection w from numerical results vs analytical solutions for different thicknesses of plates (left) and
beams (right).

In order to have a reference of the performance of the methods proposed, the behavior of ASGS and

OSGS formulations is compared to that obtained by the reduced integration of the shear terms, i.e., those

that involve rotations. In the case of beams, Fig. 3 shows that both ASGS and OSGS converge slightly

faster to the analytical solution compared to reduced integration; however, the convergence test presented

below shall depict the true nature of the formulations discussed in the present work.
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Figure 3: Comparison of relative deflection w from numerical results vs analytical solutions for different element sizes.

7.2 Convergence tests
7.2.1. Convergence for beams

To assess the convergence of the stabilized Timoshenko beam formulation, consider a beam oriented in

the x direction clamped at both sides, a homogeneous load q “ 1 on its entire length L “ 1, and the same

material and geometrical properties as in the previous beam example. Since the formulation has to be able

to represent the thin behavior, the solutions of the numerical method is compared to the analytical solution

of the Euler-Bernoulli beam theory:

θzpxq “
qx

12EI
pL´ xqp1´ 2xq, wpxq “

qx2

24EI
pL´ xq2.

The problem then is numerically solved for decreasing element sizes h, thicknesses of t “ 10´4, 10´5 which

correspond to slenderness ratios of L{t “ 104, 105, respectively, and the error is evaluated in the L2 norm.

For comparison purposes, results are shown for the standard Galerkin, ASGS and OSGS formulations, as

presented in Fig. 4. Results show that deflections and rotations are optimally convergent respect to the

element size using any of the two stabilized formulations.
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Figure 4: Beam L2-error norm for Galerkin, ASGS and OSGS formulations for L{t “ 104 (left) and L{t “ 105 (right).

For the numerical tests, the stabilization constants chosen for the ASGS formulation are c1 “ c3 “ 12,

as found in section 5. In the case of the OSGS formulation, the values of the constants have no justification

from the exact solution, and were chosen by testing different values. Nevertheless, this selection is not

arbitrary; it is known that the zero shear constraint is difficult to handle, and selecting small values of c1

can alleviate it. Under this assumption, it was found that values of c1 ď 10´3 have to be used to obtain

optimally convergent results. Recall that for linear elements the only condition needed for stability is that

c1 ą 0, as discussed in section 6.

One important aspect of a locking-free formulation is that its convergence should be independent of the

thickness, at least to some degree. To assess this dependence, the convergence curves of the displacements

are plotted for different thicknesses. As presented in Fig. 5, the ASGS formulation becomes noticeable

dependent on the thickness for low enough values, while the OSGS formulation shows a robust behavior

since it is almost independent of it.
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Figure 5: Beam displacement L2-error norm for different thicknesses, ASGS (left) and OSGS (right).
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7.2.2. Convergence for plates

To assess the convergence of the stabilized Reissner-Mindlin plate formulation, consider a square plate

of domain Ω “ p0, Lq2 clamped on all sides. The test is computed applying a load that follows the function

proposed in [19]:

qpx, yq “
E

12p1´ ν2q
r12ypy ´ 1qp5x2 ´ 5x` 1qp2y2py ´ 1q2 ` xpx´ 1qp5y2 ´ 5y ` 1qq

` 12xpx´ 1qp5y2 ´ 5y ` 1qp2x2px´ 1q2 ` ypy ´ 1qp5x2 ´ 5x` 1qqs,

for which the exact solutions of displacements and rotations are given by

wpx, yq “
x3y3

3t3
px´ 1q3py ´ 1q3 ´

2

5tp1´ νq
ry3py ´ 1q3xpx´ 1qp5x2 ´ 5x` 1q

` x3px´ 1q3ypy ´ 1qp5y2 ´ 5y ` 1qs,

θxpx, yq “
y3x2

t3
py ´ 1q3px´ 1q2p2x´ 1q,

θypx, yq “
x3y2

t3
px´ 1q3py ´ 1q2p2y ´ 1q.

The load, displacement and rotation fields are showed graphically in Fig. 6.

Figure 6: Applied Load (left) and numerical solutions of displacement (center) and norm of the rotation vector (right).

The problem then is solved for decreasing element sizes h, considering a constant thicknesses of t “ 10´4,

and 10´5 which correspond to slenderness ratios of L{t “ 104 and 105, respectively, and the error is evaluated

in the L2 norm. Numerical tests have been computed to evaluate which stabilization parameters are best

suited to obtain optimal convergence. In regard of this, the only constant that must remain fixed is c2 “ 1,

as proven in the convergence analysis. As for the other constants, optimal values have not been found

for the ASGS formulation, while in the OSGS formulation c1 ď 10´3 has proven to give good results. As

presented in Fig. 7 for the OSGS formulation, results prove to converge optimally respect to the element

size.
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Figure 7: Plates L2-error norm for OSGS formulation, for L{t “ 104 (left) and L{t “ 105 (right).

It is important to note that the constants c3 and c4, which are associated to τw, have little impact on the

solution. This is explained in detail in subsection 7.3. Recall that the theory does not predict locking-free

convergence for the ASGS formulation. Lastly, the dependency of the thickness is evaluated by comparing

the L2 error norm for the different thicknesses. As presented in Fig. 8, the accuracy of the solution does

not depend on the thickness of the plate.
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Figure 8: Plate displacement L2-error norm for different thicknesses using OSGS stabilization.

7.3 Sensitivity to stabilization constants

In this subsection, the sensitivity of the numerical solution to the stabilization constants is checked using

numerical examples. When evaluating the convergence of the ASGS formulation for beams, the stabilization

parameters were set using the constants c1 “ c3 “ 12 obtained from the elastic equations, which is not

possible in plates. Even though in the beam case the constants are well defined for the ASGS formulation,

it is important to check the performance of both ASGS and OSGS formulations for any set of constants.
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To address this, consider the same clamped beam with uniform load discussed previously in this section,

the problem is solved repeatedly for different values of c1 and c3, which are modified independently.

In the ASGS case, for the slenderness ratio of L{t “ 105 several values of the stabilization constants

are tested. The constant c1 is tested for slightly perturbed values, namely 12 ˘ 0.1 and c3 is tested for a

set of values ranged in r2, 20s, as shown in Fig. 9. Results show that the best convergence ratio is obtained

for c1 “ c3 “ 12, however, a slight variation of c1 is enough to lock the problem in a constant error

independently of the element size, while c3 allows a more flexible range of working values. The numerical

tests confirm that the values obtained from the elastic equations provide the best behavior of the solution,

which cannot be found in the case of plates. Regarding this, the convergence ratio curves of the ASGS

formulation for plates has the same behavior as the first image in Fig. 9. Since the values of c1 “ c3 “ 12

are not valid for plates and the constants that provide optimal convergence were were not found, results as

the second image of Fig. 9 can not be replicated.
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Figure 9: Sensitivity to c1 (left) and c3 (right) in L2-error norm, for L{t “ 105.

In the case of the OSGS formulation, the stabilization constants do not have a significant impact on the

final solution when c1 ď 10´3. In this regard, the flexibility to choose any value for c3 has to be assessed

properly. Let us compute the convergence curves for the same beam case presented above, but this time to

compare the results of extreme values of c3, as presented in Fig. 10.
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Figure 10: L2-error norm for different values of c3, for L{t “ 105.

Results show that the curves are almost identical independently of the value of c3. This is, however, an

important feature of the formulation: for high values of c3, the influence of the terms that contain τw is

reduced, and in fact, it would be more useful not to consider them at all. From the practical point of view,

this is equivalent to remove the projection of the force equilibrium equation, or ξw, from the formulation,

lowering the total number of degrees of freedom. This response to stabilization constants behaves exactly

the same for plates as well, and the fact that the number of degrees of freedom of the formulation can be

reduced is specially useful for lowering the cost of computations.

7.4 Applied examples

Three numerical examples are solved to illustrate the performance of the OSGS formulation with respect

to the Galerkin formulation. The cases presented below are just a few of the many examples found in the

literature. Results presented show that the OSGS formulation is free of locking and converges to the exact

solution much faster than the locked solution obtained using the Galerkin approach. This behavior is

independent of the thickness of the plate, which is consistent with the convergence tests presented in 7.2.2.

7.4.1. Clamped circular plate with uniform load

Consider a clamped circular plate of radius R “ 5 loaded with an uniform load of q “ 1. The geometry,

mesh, and boundary conditions are set up as in standard manner described in the literature [38, 39, 40, 41],

the solution of circular loaded plates set with different boundary conditions are described in [42]. Due to

the symmetry of the case, only a quarter of the geometry is modelled and symmetry boundary conditions

are set in both straight sides. The mesh structure, which is built in three patches of square elements, and

the deformed configuration are illustrated in Fig. 11.
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Figure 11: Clamped circular plate with uniform load: Mesh (left) and deformed configuration (right).

Cases are computed for two different thicknesses: t “ 0.1 and t “ 0.01 which correspond to slenderness

ratios of R{t “ 50 and R{t “ 500, respectively. These values are chosen to test cases with high shear-locking

effects. For the assessment, the displacements are tracked at the center of the plate (R “ 0), where they

reach their maximum values. Results are shown in Fig.12.
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Figure 12: Clamped circular plate with uniform load: relative maximum displacements for cases t “ 0.1 (left) and t “ 0.01
(right).

7.4.2. Simply supported annular plate with uniform load

Consider a simply supported annular plate of inner radius of Ri “ 1.5 and outter radius Ro “ 5, which

again correspond to slenderness ratios of Ro{t “ 50 and Ro{t “ 500, respectively, and loaded with an

uniform load of q “ 1. The solution of loaded annular plate problems are also described in [42]. As in the

previous case, only a quarter of the geometry is needed and symmetry boundary conditions are set in the
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straight sides. The mesh, which consists square elements aligned in the radial direction, and the deformed

configurations are illustrated in Fig. 13.

Figure 13: Simply supported annular plate with uniform load: Mesh (left) and deformed configuration (right).

The cases are computed using thicknesses of t “ 0.1 and t “ 0.01 for the same reason as the previous

case. In this example the displacements are tracked at the inner radius of the plate, where they reach their

maximum values. Results are shown in Fig. 14.
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Figure 14: Simply supported annular plate with uniform load: relative maximum displacements for cases t “ 0.1 (left) and
t “ 0.01 (right).

7.4.3. Cantilever plate with hole

The last case consists in a cantilever plate loaded with an uniform load of q “ 1, clamped in the wider

straight side. The geometry and mesh are illustrated in Fig. 15. The mesh is divided in four patches of four

sides each, so that the mesh refinements depend only on the number of elements set in each side.
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Figure 15: Cantilever plate with hole: geometry and mesh.

The cases are computed using thicknesses of t “ 20 and t “ 5, which correspond to slenderness ratios

of L{t “ 15 and L{t “ 60, respectively, and displacements are tracked at the opposite end to the clamped

side, where the displacement reach their maximum value, the deformed geometry is illustrated in Fig. 16.

In the case of t “ 20, results converge to 7.4341 ¨10´4 similar to those presented in [43]. In the more slender

case of t “ 5 the result converges to 0.046546 with mesh refinement. Note that since it is a linear elastic

problem, result are proportional to the cube of the thickness, which is p20{5q3 “ 64, with respect to the

known solution.

Figure 16: Cantilever plate with hole: deformed geometry.

Results obtained for both thicknesses, including the comparison of the OSGS and the Galerkin formula-

tions are shown in Fig. 17. Note that the converged results are used to compute the relative displacements.
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Figure 17: Cantilever plate with hole: relative maximum displacements for cases t “ 20 (left) and t “ 5 (right).

8 Conclusions

The numerical locking present in standard Galerkin formulations of Reissner-Mindlin plates and Timo-

shenko beams has been addressed using the Variational Multiscale Method. This, by itself, has the theo-

retical interest of developing a stable formulation for beams and plates using the same principles that have

led to stable and accurate numerical formulations in many other areas of computational engineering. Two

particular VMS formulations have been developed, namely, the ASGS and the OSGS methods. It has been

shown that the norm in which stability can be proved for the ASGS formulation is not free of locking when

tÑ 0, whereas optimal stability and convergence has been proven for the OSGS approach for arbitrary in-

terpolation of the variables. Nevertheless, for Timoshenko beams there exists a set of algorithmic constants

for which the element stiffness matrix of the ASGS formulation coincides with that of the elastic equations,

and in this case the method does converge. This, however, has to be considered a singularity rather than a

general possibility.

The practical interest of the formulation developed is twofold. First, it has less degrees of freedom than

than other formulations that interpolate shear and, furthermore, it can be implemented iteratively so as to

use only displacements and rotations as unknowns. And, second, contrary to most locking-free methods, it

is applicable to any type of elements, triangles or quads of any order and with arbitrary interpolations for

displacements and rotations.

Numerical tests confirm that the theoretical predictions. In particular, the OSGS formulation provides

optimally convergent rates, for both displacement and rotations. Moreover, this method is shown to be

mildly sensitive to the algorithmic constants. In particular, in the numerical experiments presented it

has been unnecessary to activate the stabilization terms corresponding to deflections to obtain optimally
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convergent results.
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