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Abstract. In this paper we present a general idea to correct coarse models by intro-
ducing a correcting term designed from fine solutions. We apply this idea to the wave
equation in both the time domain and the frequency domain. This correcting term is com-
puted and trained by making use of learning algorithms, such as the least squares model
or a model constructed from an artificial neural network. The performance of the method
is tested through four different acoustic numerical examples, where the fine solutions are
characterized for having a finer discretization either in time or in space.
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1. Introduction

Numerical simulations have become one of the most important tools in a considerable
amount of scientific fields. In spite of this, the computational cost is still the main limi-
tation, as the growing of computational power leads to deal with more complex problems
and to target more accurate simulations. In order to overcome this obstacle, one of the
proposed solutions is the use of the so called Reduced Order Models (ROM) (see, e.g.
[1]), whose main objective is to reproduce the features and accuracy of Full Order Models
(FOM), with models that require less degrees of freedom and therefore, less computational
cost. Obviously, classical ROM is not the only method that makes use of the idea of reduc-
ing the number of degrees of the problem (see for example [2, 3, 4, 5]). The simplest way
to achieve this reduction is by coarsening the numerical approximation, either in space,
in time or both, but having at our disposal samples of FOM solutions. This is what we
explore in this paper. In this sense, this work is an extension of [6], where a ROM based on
adaptive finite element (FE) meshes and correction terms combined with Artificial Neural
Networks (ANNs) is presented. The aim of this paper is to extend how these models can be
used in general and to apply them in wave problems; so firstly, a little review of the wave
problems is presented, secondly, how this specific method to reduce the number of degrees
of freedom works is explained, and finally, the contributions of this paper are exposed.

Wave problems can be analyzed and solved in two separated frameworks, the time
domain and the frequency domain, the change from one to the other being provided by the
Fourier transform. Furthermore, the equations of each domain can be formulated in two
different forms: the irreducible form, where just one variable needs to be solved, and the
mixed form, where two or more variables have to be computed. In order to change from one
form to the other, some analytical manipulation is needed. The variables of the equations
depend on the problem being considered; for instance, in acoustics the irreducible form
would only involve the acoustic pressure, whereas the mixed form would require solving
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for both the acoustic pressure and the acoustic velocity. For conciseness, we will refer to
this case, although any other wave problem could be considered.

The irreducible form of the wave equation in the time domain is perhaps the most
classical form of the wave equation. This is a very well-known second order linear partial
differential equation which describes the temporal evolution of the velocity or the pressure
of waves. The irreducible wave equation in the frequency domain is also an equation with
vast literature, also known as the Helmholtz equation; it describes the velocity or the
pressure of the wave for a certain frequency [7]. The mixed form of the wave equation
in the time domain is less common; it describes the temporal evolution of the pressure
and the velocity of waves at the same time [8, 9]. One of its advantages compared to
irreducible forms is that it can provide a better approximation of the acoustic velocity
and can be applied to time dependent domains using an Arbitrary Lagrangian Eulerian
(ALE) approach [10]. The last case is the least studied one, it is the mixed form of the
wave equation in the frequency domain; it describes both the velocity and the pressure of
the wave for a certain frequency [11, 12]. This approach has the advantages of the mixed
form of the wave equation and the computational savings associated to solving for a single
frequency.

One of the most popular methods to work in the field of acoustics is the boundary
element method (see, e.g., [13, 14, 15]). However, in some situations, like small domains or
aero-acoustic problems, the FE method is also a good option for the spatial discretization
of the problem (see [16]). Since we are interested in working with small domains, the
FE method is used in this paper. While for the irreducible form in the time domain the
standard Galerkin method can be used for the spatial discretization, all other forms of
the wave equation require some sort of stabilization. The Helmholtz equation needs to
be stabilized when high frequencies are considered, leading to pollution errors (see [7] and
references therein), whereas the mixed forms require stabilization if one wants to use equal
interpolation for the acoustic pressure and the acoustic velocity (see [8, 12]). The FE
formulation we employ belongs to the computational framework of Variational Multi-Scale
(VMS) methods [17, 18], a group of techniques based on splitting the unknowns of the
problem into two different scales, where one of those scales can be approximated by the
FE mesh and the other one represents the sub-grid scale, which cannot be captured by the
FE space. Thanks to these techniques, the instability problems of the Galerkin method
can be solved.

To compute accurate solutions, the number of degrees of freedom of the problem can be
huge, which causes an enormous computational cost and, many times, results in the need
for using supercomputing facilities. This is where the aforementioned ROMs come in and,
in particular, the mesh coarsening approach with correcting terms presented in [6], which
departs from the work presented in [19]. The idea presented there consists of a training
model based on two equal cases that have two different meshes; the case of the coarse mesh
plays the role of the ROM and case of the fine mesh plays the role of the FOM. This second
one is computationally expensive but necessary, since it provides the information that we
need in order to create the correcting model. The required data of the fine mesh is sent to
the coarse mesh and the results are compared and introduced to a training algorithm. This
algorithm receives the results of the FOM and projects them to the coarse mesh. With
this information, it is able to create a correction term that will be added to the coarse
approximation in future simulations, thus yielding results closer to the ones that would be
obtained with the fine model.

The main objective of this work is to construct and make use of this kind of training
models in wave problems, and not only applying these correction models in the space
discretization, but also adapting and using them for the time discretization. It is important
to note that even though we use these models for this specific purpose, they are actually
a general method that allows one to transfer information from fine models (FOMs) to
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coarse models (e.g., classical ROMs), so they could be used in many other applications.
In this sense, our approach can be considered a hybrid one, combining an underlying
numerical approximation (a FE approximation, in our case) with a correction term designed
by a training model. The most common hybrid models combine physical models with
corrections, but the same idea applies by replacing physical models by numerical models.

Regarding the correction model, we will explore two options. On the one hand, a classic
Least Squares (LS) model will be used (see [20]); it turns out to work well in simple
models but it has limitations in complex scenarios. On the other hand, ANNs will be used,
its flexibility and capacity to adapt to almost every model being its main feature. The
implementation used for this learning algorithm is the one provided by the open source
library FANN (see [21]). The use of ANNs to train models that correct solutions of wave
problems is one of the main novelties of this work. However, it is important to note that
ANNs have been applied to FE problems in a lot of different ways and approaches (see
[22, 23]), although not as a correction tool as we propose here. ANNs have been also used
to perform the numerical time integration itself [24, 25], as a way to design ROMs (see
[26]) or as a way to approximate the Helmholtz equation with an unsupervised learning
technique (see [27]).

This paper is organized as follows. In Section 2, the equations of the wave problem, their
variational forms and their discretization in time and space are described. In Section 3,
the general concept of the correcting term is presented. In Section 4, the concept that
has been explained in general in the previous section is applied to the wave equation. In
Section 5, four acoustic numerical examples are shown. Finally, in Section 6 conclusions
are drawn.

2. Problem statement and finite element approximation

2.1. The continuous wave equation. Wave phenomena can be described by the wave
equation written in different forms. To fix ideas, in this paper we will use the terminology of
acoustics, so that the unknowns to compute are the acoustic pressure (p) and the acoustic
velocity (u) in the case of mixed formulations, and just the acoustic pressure in the case
of irreducible formulations.

The problems we consider are initial and boundary value problems posed in a spatial
domain Ω ⊂ Rd, where d = 1, 2, 3 is the spatial dimension. Let ∂Ω be the boundary of
the domain Ω. We split this boundary into two disjoint sets denoted as Γp and Γu, where
the boundary conditions corresponding to the unknowns p and n · u will be enforced,
respectively, n being the unit normal to ∂Ω. The time domain is the interval (0, T ). Initial
conditions need to be provided at time t = 0.

Even though we will only present numerical examples corresponding to irreducibe for-
mulations, the ideas to be proposed can be also applied to mixed formulations. Let us start
writing the mixed formulation in the time domain, which consists of finding the acoustic
pressure p : Ω× (0, T )→ R and the acoustic velocity u : Ω× (0, T )→ Rd such that{

µp∂tp+∇ · u = fp

µu∂tu +∇p = f u
, (1)

with the initial conditions

p(x, 0) = p0(x), u(x, 0) = u0(x), x ∈ Ω, (2)

p0(x) and u0(x) being given functions, and with the boundary conditions

p = 0 on Γp, n · u = 0 on Γu, t ∈ (0, T ). (3)

For simplicity, the boundary conditions have been considered homogeneous. Non-reflecting
boundary conditions (NRBCs) could also be easily incorporated, and in fact we will use
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them in the numerical examples. The forcing terms fp and f u are assumed to be given
and µp > 0, µu > 0 are physical properties.

The mixed problem in the frequency domain consists of finding p : Ω→ C and u : Ω→
Cd such that {

−iµpω p+∇ · u = fp

−iµuω u +∇p = f u
, (4)

with the same boundary conditions as in Eq. (3). In fact, the unknowns here are the
amplitudes associated to the given frequency ω of the unknowns in Eqs. (1), although we
have used the same symbol in both problems, and likewise for the forcing terms.

Let c = (µuµp)
−1/2 be the speed of the wave. The irreducible wave equation in the

time domain is obtained by taking the time derivative of the first equation in Eqs. (1) and
making use of the second to eliminate the acoustic velocity as unknown. Still calling fp the
resulting right-hand-side (RHS), the equation found consists of finding p : Ω× (0, T )→ R
such that

1

c2
∂ttp−∆p = fp, (5)

with the initial conditions

p(x, 0) = p0(x), ∂tp|t=0 = ṗ0(x), x ∈ Ω, (6)

where p0(x) and ṗ0(x) are given functions, and boundary conditions

p = 0 on Γp, n · ∇p =:
∂p

∂n
= 0 on Γu. (7)

Let ω be a given frequency and k = ω
c the wave number associated to this frequency

and the wave speed c. The irreducible form of the wave equation in the frequency domain
consists of finding p : Ω→ C solution of the Helmholtz equation

−∆p− k2 p = fp, (8)

with the same boundary conditions as in Eq. (7). The same comments regarding the
notation as in the mixed form in the frequency domain apply now. This equation can be
found considering that p is the amplitude associated to the frequency ω of the solution of
Eq. (5) or directly multiplying by iω the first equation in Eqs. (4) and making use of the
second to eliminate the acoustic velocity as an unknown of the problem.

To write the weak form of the problem, we need to introduce some notation. Let w
be a subdomain of Ω. L2(w) denotes the space of square integrable functions in w, with
inner product (·, ·)w, L2(w)d is the space of vector valued functions with components in
L2(w), H1(w) is the space of functions in L2(w) with derivatives in L2(w) and H(div, w)
is the space of vector functions with components and divergence in L2(w). We will use the
simplification (a, b)Ω ≡ (a, b).

Let Vp := {q ∈ H1(Ω) | q = 0 on Γp} and let us define the bilinear form B(p, q) :=
(∇p,∇q) and the linear form L(q) := (fp, q) (the meaning of fp depending on the problem).
The weak form of the irreducible wave equation in the time domain consists of finding
p : (0, T )→ Vp such that

1

c2
(∂ttp, q) +B(p, q) = L(q), ∀q ∈ Vp,

(p(0), q) = (p0, q), (∂tp(0), q) = (ṗ0, q), ∀q ∈ L2(Ω),

whereas the weak form in the frequency domain consists of finding p ∈ Vp such that

− k2(p, q) +B(p, q) = L(q), ∀q ∈ Vp.

Note that in this case p may be complex valued, whereas for the problem in the time
domain it is real valued.
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For the irreducible problems (either in the time or in the frequency domains) p needs to
be in H1(Ω) and the associated acoustic velocity (which could be computed after knowing
p) belongs to L2(Ω)d. The weak form of the mixed formulation can be written considering
two different functional settings, one which is the same as for the irreducible form and
another one in which p belongs to L2(Ω) in space and u to H(div,Ω). However, since we
will present numerical results for the irreducible formulation only, we shall omit details of
the mixed formulation, for the sake of conciseness. See [8, 9, 11, 12] for details.

2.2. Finite element approximation in space. Let us assume for simplicity that Ω is
a polyhedral domain and let Th = {K} be a FE partition of size h. The collection of
interior edges will be denoted by {E}. The subscript h will be employed to refer to FE
functions and FE spaces. The L2 inner product inK (resp. E) will be represented as (·, ·)K
(resp. E). From Th we may construct conforming FE spaces Vp,h ⊂ Vp to approximate the
pressure. In the case of mixed formulations, special care is needed to construct the velocity
FE space to yield a stable numerical formulation; the approach we favor is to use arbitrary
interpolations for velocity and pressure and modify the standard Galerkin method using
a stabilized FE formulation, in our case case based on the Variational Multi-Scale (VMS)
approach [17, 18, 8, 12, 28].

For the irreducible formulation in the time domain, the standard Galerkin method is
stable. The semi-discrete problem (discretized in space, continuous in time) reads: find
ph : (0, T )→ Vp,h such that

1

c2
(∂ttph, qh) +B(ph, qh) = L(qh), ∀qh ∈ Vp,h, (9)

(ph(0), qh) = (p0, qh), (∂tph(0), qh) = (ṗ0, qh), ∀qh ∈ Ṽp,h, (10)

where Ṽp,h is constructed as Vp,h but without the imposition of boundary conditions.
Let P(t) be the array of nodal unknowns of the pressure ph. Denoting with a dot the

temporal derivatives, the matrix version of Eq. (9) is

1

c2
MP̈ + KP = F0,

where M is the standard mass matrix, K the matrix coming from the Laplacian and F0 the
resulting force vector. The initial conditions for this problem are obtained from Eq. (10).

The Galerkin formulation for the Helmholtz equation reads as follows: find ph ∈ Vp,h
such that

− k2(ph, qh) +B(ph, qh) = L(qh), ∀qh ∈ Vp,h. (11)

It is well known that for high values of the wave number k this problem suffers from
pollution errors. The general approach we propose to stabilize the problem and avoid the
pollution effect is based on the VMS framework. Details can be found in [7], here we will
just state the formulation. It consists of finding ph ∈ Vp,h such that

− k2(ph, qh) +B(ph, qh) +
∑
K

τ(−k2qh −∆qh, P̃ (−k2ph −∆ph − fp))K

+
∑
E

δ

([[
∂qh
∂n

]]
,

[[
∂ph
∂n

]])
E

= L(qh), ∀qh ∈ Vp,h,

where [[ · ]] stands for the jump over the edges and τ and δ are parameters of the formulation
(see [7]). P̃ is a projection which can be taken as the identity (case in which we may set
δ = 0) or the projection orthogonal to the FE space. In this last case, P̃ (−k2ph −∆ph −
fp) = P̃ (−∆ph− fp) = 0 for linear elements and fp a FE function; it is thus clear that the
stabilizing terms evaluated on the element boundaries are crucial.
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Calling

Bs(ph, qh) := B(ph, qh) +
∑
K

τ(−k2qh −∆qh, P̃ (−k2ph −∆ph))K

+
∑
E

δ

([[
∂qh
∂n

]]
,

[[
∂ph
∂n

]])
E

Ls(qh) := L(qh) +
∑
K

τ(−k2qh −∆qh, P̃ (fp))K ,

the stabilized version of Eq. (11) consists of finding ph ∈ Vp,h such that

− k2(ph, qh) +Bs(ph, qh) = Ls(qh), ∀qh ∈ Vp,h. (12)

The matrix structure of this problem is

−k2MP + KsP = Fs, (13)

where Ks is the matrix arising from the bilinear form Bs(ph, qh) and Fs the forcing array
arising from Ls(qh).

2.3. Time integration and fully discrete problem. In the case of the wave equation
in the time domain, we need to discretize the problem in time. Our discussion is indepen-
dent of the time integration scheme employed, but in the numerical examples we will use
backward differences (BDF) of second order (BDF2).

Let 0 = t0 < · · · < tn < · · · < tnf = T be a partition of the time interval (0, T ), for
simplicity uniform and of size δt. Let f(t) be a generic time dependent function and let
fn be an approximation to f(tn). The BDF2 scheme consists of approximating

d2f

dt2

∣∣∣∣
t=tn
≈ 2fn − 5fn−1 + 4fn−2 − fn−3

δt2
. (14)

Thus, the fully discrete version of Eq. (9) is

1

c2δt2
(2pnh − 5pn−1

h + 4pn−2
h − pn−3

h , qh) +B(pnh, qh) = L(qh), ∀qh ∈ Vp,h.

For n = 1, p0
h and p−1

h can be determined from the initial conditions in Eq. (10), but since
p−2
h is unknown the time integration algorithm has to be initialized with a first order BDF

scheme for the second derivative, as usual.
The algebraic version of the problem can be written as

2

c2δt2
MPn + KPn = F0 +

5

c2δt2
MPn−1 − 4

c2δt2
MPn−2 +

1

c2δt2
MPn−3, (15)

for n = 2, . . . , nf .

3. Correction terms based on training: the general concept

In the previous section we have presented the numerical approximation we propose to
solve the wave equation. In this section we present a general concept to correct fully
discrete problems based on the knowledge of fine solutions, i.e., solutions corresponding to
finer discretizations. It is in fact irrelevant the reason because we have at our disposal finer
solutions. It can be due to a finer time discretization, to a finer FE mesh approximation
or to an interpolation of higher degree.
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3.1. Coarse and fine problems. Suppose that we have a coarse and linear algebraic
problem of the form:

AUc = F, (16)

with Uc, F arrays of m components, and A an m×m matrix, i.e., Uc,F ∈ Rm, A ∈ Rm×m.
Given F and matrix A, the unknown Uc could be computed by solving (16), but we intend
to modify this system to enhance the accuracy of Uc. The example of interest in this work
is that in which problem (16) is obtained from a coarse discretization of the wave equation,
but the idea to be presented is general. In wave problems we would have:

A = −k2M + Ks, F = Fs, Uc = P,

in the case of the Helmholtz equation in Eq. (13) and

A =
2

c2δt2
M + K, F = F0 +

5

c2δt2
MPn−1 − 4

c2δt2
MPn−2 +

1

c2δt2
MPn−3, Uc = Pn,

in the case of the discrete wave equation in the time domain in Eq. (15).
Suppose that, by any means, we know a finer approximation to the same continuous

problem, most likely obtained from a discrete problem like (16) but with dimensionM ≥ m.
Different possibilities to obtain this finer solution for wave propagation problems will be
discussed in the following section. Let Uf ∈ RM be this finer solution (the system which it
solves is in fact irrelevant), and suppose that we can construct a projection

Pfc : RM −→ Rm,

i.e., a projection from the space where the fine solution belongs to the space where the
coarse solution is defined. Again, the way to construct this projection is irrelevant, and
will be discussed in the following section for the particular case of the wave equation.

The correction we will propose is based on the following fundamental assumption:

Assumption 1. The best coarse solution is Uc = Pfc(Uf).

In the case of a single linear problem, it is trivial to introduce a correction to (16), say
Dex ∈ Rm, so that the solution is Pfc(Uf). Indeed, the solution to

AUc + Dex = F with Dex = F− APfc(Uf), (17)

is precisely Uc = Pfc(Uf), as it is trivially checked (A is assumed to be invertible, obviously).
For a single solve, such a correction is unnecessary, as we already have Uf . However,

system (16) may be parameter dependent, and the fine solution may be known for some
of the parameters, but not for all of them.

3.2. Configurations. Given a partial differential equation to be solved, the structure of
the (coarse) discretization can be written as problem (16), but the particular expressions of
matrix A and the RHS vector F depend on the data of the problem, including parameters.
We will call configuration a particular realization of these data and parameters. Therefore,
different configurations may correspond to changes in:

• Boundary conditions, which would affect both matrix A and the array F. Even
though changes in the type of boundary conditions could change the dimension m
of the problem, we will consider it fixed.
• Forcing terms, which would affect the array F.
• Physical properties, which again would affect both matrix A and the array F.
• Time instants, which would correspond to taking time t as a parameter of the
problem. In a time evolution problem as the wave equation, problem (16) has to
be understood as the problem to be solved at a certain time step, and thus different
time steps can be considered different configurations.
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Let us assume that we have N configurations for which we know the fine solution, Uf,α,
α = 1, . . . , N . We will use a subscript in matrix A, array F and the unknown of the
coarse problem, Uc, to refer to each particular configuration. Thus, the uncorrected coarse
problem for each configuration is

AαUc,α = Fα, α = 1, . . . , N.

Since these are the configurations in which we know the fine solution, Uf,α, we can introduce
an exact correction Dex,α, given by

Dex,α = Fα − AαPfc(Uf,α), α = 1, . . . , N, (18)

so that the solution to the corrected coarse problem

AαUc,α + Dex,α = Fα, (19)

is Uc,α = Pfc(Uf,α), considered optimal, for α = 1, . . . , N .

3.3. The correcting term and main modelling assumption. As in the case of a
single solve in which we know the fine solution, the corrected coarse problems (19) are
unnecessary, since we know the fine solution Uf,α, α = 1, . . . , N . We will call the set of these
fine solutions the training set, and the associated configurations the training configurations.

The objective now is to introduce a correction D ∈ Rm to the coarse problem (16) for
any configuration, not only for the training configurations, so that the solution to

AUc + D = F,

has improved accuracy with respect to that of problem (16). We now have to decide
the structure of the correcting term D and the way it is computed. Our proposal is the
following:

Assumption 2 (Main modelling assumption). The correcting term D depends only on the
unknown Uc, i.e., D = D(Uc), and it is designed under the condition that it is as close as
possible to Dex,α in (18), α = 1, . . . , N , at the training configurations.

According to this assumption, the problem to be solved is of the form

AUc + D(Uc) = F. (20)

What remains open is how to construct D(Uc) to make it close to Dex,α, α = 1, . . . , N , at
the training configurations. In the following we describe two possibilities, namely, the case
is which D(Uc) is a linear function and that in which D(Uc) is an ANN.

3.4. Linear correction term: a least-squares approach. The simplest model for D =
D(Uc) is a linear one:

D(Uc) = AlsUc + Fls, (21)

where Als is anm×mmatrix and Fls an array ofm components, both to be determined. The
motivation for such a simple expression of the correction term can be found in stabilized FE
methods. Indeed, the matrix structure of the stabilizing terms is precisely (21), derived from
different heuristic arguments and with matrix Als and array Fls possibly mesh-dependent.

Here we take as starting point expression (21) and design Als and Fls according to
Assumption 2. A possible way to fulfil it is to impose that D(Pfc(Uf,α)) be as close as
possible to Dex,α, α = 1, . . . , N , in a least-square (LS) sense. Thus, we obtain Als and Fls

by solving the optimization problem:

[Als,Fls] = arg min
Ad,Fd

N∑
α=1

‖Dex,α − (AdPfc(Uf,α) + Fd)‖2, (22)
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where the norm involved in this expression can be taken as the standard Euclidian one,
possibly scaled if the components of F have different units in the particular example of
application.

As it will be shown in the numerical examples, the simple approach given by (21)-(22)
is effective and the accuracy of the solution Uc to the resulting problem (20) is higher than
that of problem (16). However, it suffers from two inconveniences: first, the limited scope
of (21) and, secondly, the typical instabilities of the LS approximation (22). The latter are
manifested for example by the fact that very different solutions [Als,Fls] can be obtained
by introducing small changes in the training set, such as the introduction of a new element
in this set.

3.5. Correcting term obtained from an artificial neural network. A much more
general approach than using (21)-(22) is to use an ANN to model D(Uc). In this work we
consider ANNs simply as best fitting functions to a set of data. In particular, the ANN we
wish to construct aims to fit the inputs {Pfc(Uf,α)}Nα=1 and the outputs {Dex,α}Nα=1 given
by equation (18). Thus, the ANN to be constructed will be a highly nonlinear mapping

D : Rm −→ Rm,

trained with the pairs {Pfc(Uf,α),Dex,α}Nα=1.
The use of ANNs clearly solves the two deficiencies mentioned for the linear approach

with a LS fitting. First, ANNs are highly flexible, allowing to construct in an efficient
way complex nonlinear functions. And, second, new terms can be added to the training
set with little computational effort and in a very stable manner. Moreover, the correction
term constructed from ANNs can be introduced both to linear and nonlinear problems.

We will not analyze here the particular implementation of the ANN we use, and we defer
its description to the numerical examples. Let us just say that we have found sufficient
to use simple topologies (architectures) of the network, with only a few hidden layers
(shallow networks) and a few neurons per layer. For the moment, we have only considered
feedforward architectures with back-propagation algorithms to determine the weights and
the biases, and with the sigmoid as activation function. However, the flexibility of ANNs
would allow for a lot of possibilities in the context of correcting coarse models that we are
describing.

Let us describe how to apply ANNs to our problem:
• We design D(Uc) component-wise. This means that in fact we construct m fitting
functions corresponding to the components of D, Dj , j = 1, . . . ,m. These are the
outputs of the ANN.
• The input of the ANN is in principle the set {Pfc(Uf,α)}Nα=1. However, a particular
implementation is possible in our context, since each Pfc(Uf,α) can be considered as
the vector of nodal values of a certain function uc,α(x) defined on the coarse mesh
(scalar or vectorial). Thus, it makes perfect sense to use only a few components
of Pfc(Uf,α) when trying to obtain the jth component of D, for example those
associated to nodes linked to the node with the jth degree of freedom. Moreover,
a way to introduce the effect of the neighboring nodes to that node can be through
derivatives of uc,α(x). Thus, considering for simplicity the case in which uc,α(x)
is a scalar field, a possible input to compute Dj can be uc,α(xj) and ∇uc,α(xj),
where xj are the coordinates of the jth node, j = 1, . . . ,m, α = 1, . . . , N .
• The weights and biases of the ANN are determined by minimizing a certain loss
function. According to Assumption 2, we take as loss function

C =
N∑
α=1

‖Dex,α − D(Pfc(Uf,α))‖2. (23)
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This means that the ANN is trained with the configurations for which the exact
correction is known. As in the case of the LS fitting for linear corrections, the
norm in this expression can be scaled when the components of D have different
physical meaning.

Let us stress again that the construction of D(Uc) only requires the fine solutions, but
not the problem they solve. In fact, these could be obtained by means not necessarily
numerical (such as experimental, analytical or semi-analytical). Our focus, however, is the
case in which the training configurations are solved numerically with an approximation
finer than the coarse one.

Once we have constructed the correction term D(Uc), the problem to be solved is (20).
While for the linear approximation with a LS fitting it reduces to the linear problem

(A + Als)Uc = F− Fls,

for ANNs problem (20) is highly non-linear. Let Dann be the correction term in this case.
Standard linearization techniques can be used to linearize it. In our examples we have
found efficient the simplest iterative procedure

AUc
(k) = F− Dann(Uc

(k−1)), (24)

where the superscript denotes the iteration counter. In the case in which the problem
corresponds to the system to be solved at a certain time step, the obvious initialization is
to take Uc

(0) as the value of Uc at the previous time step. This often suffices to improve
the accuracy of the coarse solution and no iterations are needed, although it implies an
explicit treatment of the correction term that could introduce instability problems in time.

The alternative to the simplest iteration (24) is a Newton-Raphson scheme:

(A + J(Uc
(k−1)))Uc

(k) = F− Dann(Uc
(k−1)) + J(Uc

(k−1))Uc
(k−1), (25)

where

J(Uc) =
∂Dann(Uc)

∂Uc
,

is the Jacobian of the ANN. This implies computing derivatives of the ANN with respect
to the inputs, a feasible alternative that we have not explored.

4. Discrete wave equation with correction terms

This section intends to be the combination of the two previous sections; the general
concept of the correcting terms based on training explained in Section 3 will be applied to
the wave problems that have been explained in Section 2.

4.1. Fine solutions and definition of the projection Pfc. As it has been explained in
the previous section, a reference solution has to be provided in order to train the correction
term for the coarse case. This solution is supposed to be more accurate than the coarse
one, so it has to be supplied by a more accurate version of the same problem. In this
case, this improvement on accuracy is produced by using a finer space discretization or a
finer time discretization, in other words, with a smaller mesh size or a smaller time step.
In the first case we would have M > m, whereas in the second M = m. The possibility
of taking M < m will not be considered; it could correspond to a solution obtained on a
mesh coarser than that of Uc but with a smaller time step.

Once the coarse and the fine cases are created, the connection between them is crucial
to perform the best possible training for the correction term. The two most important
aspects at this point are what data we want to use from the fine case and how we project
it to the coarse case.

On the one hand, three possible entry parameters for the correction term model could
be the solution of the problem and its space derivatives, just the derivatives or just the
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solution. Physical parameters or other derivatives of the solution of the problem could
also be used to improve the training. It would also be possible to just enter the solution
and make the model calculate the space derivatives from it; however, we rather prefer to
facilitate the construction of the model by calculating it separately.

On the other hand, how we project these data to the coarse case will depend on the
type of the fine case. If the fine case corresponds to a finer time discretization, but the
mesh used for the spatial discretization is the same, then Pfc is simply the identity, i.e.,
Pfc(Uf) = Uf . This projection needs to be performed at the time levels in which the
fine solution is available and we wish to include in the training to solve the optimization
problem in Eq. (22) in the LS approach or in Eq. (23) when ANNs are used. However,
these problems require the system matrix A and the RHS vector F to be known at these
time levels. For linear problems, A is constant, but F changes with the time level n. If
the time step of the coarse model is not a multiple of the time step of the fine model,
interpolation in time is required, for example interpolating the fine solution at the time
levels in which the coarse solution is to be computed. In this case it has to be remarked
that there are many options to perform the training, in particular it can be performed in
certain time windows. For example, we can train the model with the fine solution during
a certain number of time steps at the beginning of the simulation and then run the coarse
model for longer time periods with the correction determined by this training. This is
what we do in two of the numerical examples.

Let us consider now the situation in which the fine case corresponds to a finer space
discretization. If the finer mesh is obtained from a hierarchical refinement of the coarse
mesh, Pfc(Uf) can be taken simply as the restriction of the fine solution to the nodes of the
coarse mesh that also belong to the fine mesh. In fact, this would be a particular case of
projection on general meshes, namely, the interpolation of the fine solution to the coarse
mesh. To do this, the position of each node of the coarse mesh on the fine one needs to be
determined, and once this is done the value of the fine solution on the node of the coarse
mesh can be calculated. This requires a standard search algorithm to obtain the element
of the fine mesh to which a node of the coarse one belongs. Let us call Ifc the resulting
interpolation.

The same search algorithm described above is required for another option to choose
Pfc(Uf), namely, the L2 projection from the fine mesh to the coarse one. Considering the
unknown to be the acoustic pressure for conciseness, if pf is the solution on the fine mesh
and Ph(pf) its L2 projection, it is obtained by solving

(qh, Ph(pf)) = (qh, pf) ∀qh ∈ Ṽp,h.

Let P2,fc be the L2 projection at the algebraic level. The two options described are

Pfc =

{
Ifc in the case of standard interpolation
P2,fc in the case of the L2 projection

Both options can be modified to incorporate restrictions of the projected solution [29].
The projection for the spatial derivatives of the solution of the problem can be done in

the same way for both situations (finer solutions corresponding to finer time discretizations
or to finer space discretizations). Physical parameters of the problem do not have to be
projected, they can be directly sent from the fine case to the coarse one.

4.2. Fully discrete system. At this point, it is straightforward to obtain the fully discrete
form of the problem. We just need to combine the matrix equations of the previous sections
with the correction term of Eq. (21) in the case of the LS approach, or with the procedure
of Eq. (24) in the case of ANNs.
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Thus, the fully discrete form of the irreducible wave equation in the time domain for
the LS training system is

2

δt2
MUn + KUn + AlsU

n = F− Fls +
5

δt2
MUn−1 − 4

δt2
MUn−2 +

1

δt2
MUn−3, (26)

and the fully discrete form for the ANN training system, using an explicit treatment of the
correction, is

2

δt2
MUn + KUn = F +

5

δt2
MUn−1 − 4

δt2
MUn−2 +

1

δt2
MUn−3 − Dann(Un−1). (27)

Two remarks are in order:
• In Eq. (26) the correction term depends only on Un and in Eq. (27) only on Un−1,
in this case due to the explicit treatment of the correction. It could be argued that
this correction could depend also on previous values of the unknown. The fact that
we do not consider this dependence in our model can be understood as a sort of
orthogonality of the correction term with respect to the unknown. In fact, this
type of correction is what is encountered in stabilized FE methods based on the
VMS concept using orthogonal sub-grid scales (see [28] for a review on the topic).
• Note that in Eq. (27) no iterations have been used in this approximation. This is
possible because the equation belongs to the time domain and the previous time
step can play the role that used to play the previous iteration. An implicit treat-
ment of the correction term would require a linearization of Dann(Un) as explained
in the previous section.

We can proceed similarly in the case of the equations in the frequency domain. The
corrected version of Eq. (13) using the LS approach is

−k2MP + (Ks + Als)P = Fs − Fls, (28)

whereas the corrected version using ANNs and a simple fix point iteration is

−k2MP(i) + KsP
(i) = Fs − Dann(P(i−1)), (29)

where i corresponds now to the iteration counter.

4.3. Practical implementation. Let us explain now how our algorithm specifically works.
First of all, it is important to differentiate the two main phases of the algorithm: the train-
ing phase and the execution phase. It is obvious that before starting the execution phase,
the training one has to be completed at least for one case, so let us start with the training
phase.

Once the coarse and fine training cases are ready, the training model is selected and the
data that we want to use from the fine problem is defined; we then launch the coarse version
of the problem with one processor and the fine version with another parallel processor. At
this point, depending on which kind of training we want, the communication between the
processors is different. On the one hand, in the situation of the finer mesh discretization
and in the case of nested meshes, the processor that is launching the fine case only sends
the desired information on the coincident nodes but at every single time step; in the case
of non-nested meshes, non-trivial projections are required, as explained earlier. On the
other hand, in the situation of the finer time discretization, the processor that is launching
the fine case only sends the desired information at the coincident times, in other words, at
the times when the coarse case solves the problem, so the coarse case has to wait for the
fine case to do its extra time steps; again, in the case in which time levels never coincide,
interpolation in time is required. Obviously, in this second case the data is sent to every
node, assuming the mesh of the two cases to be exactly the same. When the processor
of the coarse case receives the data, it is entered to the model. Depending on whether it
is the LS or the ANN model, the information is treated in a different way; however, the
objective of the model is the same in both situations. While this process is underway, the
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model creates a new file and writes on it its specific correction parameters. Once the two
cases are finished this new file is saved, this is where the information that will be used in
the execution phase is stored.

Now that the training phase is finished, it is time to prepare the execution case. The
possible changes in the execution cases are called configurations and have been explained
in Section 3. When this new case is launched, the algorithm acts in a completely different
way. Firstly, the data that has been written in the previous phase is read, so the model
has all the information that needs to improve the solution of the problem. Secondly, the
first time step or iteration of the problem is solved without any correction; nevertheless,
this solution will be used to make the correction that is used to improve the solution of
the second time step or iteration. Finally, each solution is used to calculate the correction
of the next one until the problem ends. An important point is that if we are dealing with
a problem that is unstable in its first time steps, we can add a delay so that the correction
starts at the time we choose.

Additionally, there is something that can be significant in the performance of the cor-
rection algorithm, which is to use the data of the previous time step or iteration in the
training phase instead of the data of the same time step or iteration. This is pretty obvious
if we take into account that in the execution phase we are forced to use the data of the
previous time step or iteration, so doing this we would be training the model in the same
way as we use it.

5. Numerical Examples

In this section, some numerical examples that illustrate the improvement of wave prob-
lem results with correcting terms based on training with ANN and LS models are shown.
These specific examples have been solved with the irreducible form of the wave equation,
the first two in the frequency domain and the other two in the time domain. Moreover, the
two corresponding to the time domain have been improved using a finer time discretiza-
tion, and the two corresponding to the frequency domain have been improved using a finer
space discretization. However, other combinations as using mixed forms or improving time
domain problems with finer space discretization could be considered. In all the examples
we have used linear triangular elements for the spatial discretization, and the BDF2 scheme
in the case of transient problems. When using ANNs, the sigmoid has been employed as
activation function.

5.1. Dipole localization coarse mesh training. This first example consists in training
a model to give a better solution for whatever is the position of the source in a circular
domain that has a radius of R = 300 m. More precisely, the source is a circular dipole
of radius r = 10 m. In this case, we use a simple ANN model of 2 layers and 3 neurons
each, with a learning momentum of 0.1. This problem has been solved with the irreducible
wave equation in the frequency domain. NRBCs of Sommerfeld’s type, the same as in the
following examples, have been used in order to avoid reflected waves.

The training set is a grid of dipoles launched one by one in the training phase. The
coarse and the fine meshes and their element sizes can be seen in Figure 1 (a) and (b),
respectively. The element size is smaller at the border of the dipoles in both meshes so as
to have better results. The specific position of the training set dipoles and the external
ones that will be used to test the model can be seen in Figure 1 (c).

It is easy to see that the results of the trained cases are more similar to the results of
the finer cases than to the coarse cases. For example, if we look at the top of the circular
domain of Figure 4, we can see that the fine and the trained cases have a clear last red
stripe, while in the coarse case this red stripe is almost imperceptible. In the other dipoles
similar qualitative differences can be found.
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(a) Mesh with h = 10 m. (b) Mesh with h = 5 m. (c) Trained dipoles (green) and
used dipoles (yellow).

Figure 1.

(a) Coarse. (b) Fine. (c) Trained.

Figure 2. Imaginary part of the acoustic pressure for the first dipole.

(a) Coarse. (b) Fine. (c) Trained.

Figure 3. Imaginary part of the acoustic pressure for the second dipole.

5.2. Plane wave propagation coarse mesh training. The second example consists in
training a model to give a better solution for a determined range of frequencies. We will
consider a freely propagating two-dimensional plane wave, the same example that has been
used in [7]. The domain is a square with side s = 1 m. The element size is h = 0.05 m for
the coarse mesh and h = 0.025 m for the fine mesh. This problem has been solved with the
irreducible wave equation in the frequency domain and without stabilization, i.e., using
the standard Galerkin method, to explore the possibility of the correction to alleviate the
pollution error.
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(a) Coarse. (b) Fine. (c) Trained.

Figure 4. Imaginary part of the acoustic pressure for the third dipole.

(a) Coarse. (b) Fine. (c) Trained.

Figure 5. Real part of the acoustic pressure for ω = 32 s−1.

The training set is a range of frequencies that goes from ω = 10 s−1 to ω = 42 s−1 with
intervals of 4 s−1. This time, an ANN model of 3 layers and 3 neurons each has been used,
with a learning momentum of 0.5. For the purpose of testing this model, the execution
phase is launched with a frequency of ω = 32 s−1, which does not appear in the training
set.

In Figure 5, it can be seen that the coarse case has stability problems, the stripes are
not perfectly straight and there is some pollution down left the domain. On the contrary,
in the fine case these problems are solved due to the smaller element size. Although it is
not exactly equal to the fine case, a clear improvement can be seen in the trained case, the
lines are more straight than in the coarse case and there is no pollution error anywhere.
Therefore, it is obvious that the model has made better the solution of this problem.

5.3. Dipole coarse time training in the time domain. This third example consists
in training a model to give a better solution with any time step inside a time interval.
The domain here is exactly the same that we have used in the first numerical example,
the source is also the same and has the same size but this time it is fixed and positioned
at the center of the circle. A triangular mesh of element size h = 5 m around the source
and progressively increased to h = 20 m at the external borders has been used. NRBCs
have been used in order to avoid reflected waves. The training set is composed by the
solution in all the time steps between t = 400 s and t = 700 s, the finer time step for the
whole training being fixed at δt = 0.1 s. On the contrary, the time step of the coarse case
is not fixed, so in the same run we can use different time steps for various time intervals.
Specifically, a coarse time step of δt = 1 s from t = 400 s to t = 500 s has been used, and
δt = 2 s from t = 500 s to t = 600 s and δt = 4 s from t = 600 s to t = 700 s have been
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(a) Coarse (b) Fine (c) Trained

Figure 6. Acoustic pressure at t = 891 s.

Figure 7. Acoustic pressure of the three cases at point (0,100) m of the
dipole that we can see in Figure 6.

employed. This problem has been solved with the irreducible wave equation in the time
domain.

To show that not only ANNs can correct and improve the solutions of wave problems,
in this example we have used a LS model. For the purpose of testing this model, the
execution phase is launched with a fixed time step of δt = 3 s, a time step that has not
been used in the training phase.

On the one hand, a big qualitative improvement of the solution can be seen in Figure 6,
which shows the solution of the problem for a concrete time step. Even though the stripes
are perfectly located in the three situations, the amplitudes of the waves are clearly better
in the fine and trained cases. On the other hand, in order to make a quantitative analysis,
in Figure 7 the time evolution of the solution of the problem at one specific point is plotted
for the three cases. It can be seen that from t = 0 s to t = 400 s, the trained case and the
coarse case are exactly equal; this is because the correcting term is activated at t = 400
s. At this point, the trained case starts to change, approaching to the behavior of the
fine case almost perfectly. In spite of the fact that the training set ends at t = 700 s, the
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(a) Coarse (b) Fine

(c) Trained

Figure 8. Acoustic pressure at t = 400 s.

periodicity of the solution allows us to extend the time of the simulation as far as we want
and get the same improvement.

5.4. Dipole coarse time step training in a cavity. This example is similar to the
previous one, the kind of model that we want to create and the used equation are the
same, so the training is performed in the same way. The source is also a circular dipole
with radius r = 4 m. A triangular mesh of element length h = 1 m has been used. However,
this time the domain is different and we will create the model using an ANN with 3 layers,
7 neurons per layer and with a learning momentum of 0.7. The domain in this case is a
cavity composed by a big rectangle of length L = 200 m and width W = 100 m and a
small rectangle of length l = 50 m and width w = 35 m centered at the top of the big
one (see Figure 8). NRBCs have only been used on the borders of the big rectangle, and
therefore there are reflecting waves inside the cavity, adding complexity to the problem.

The training set is composed by the solution in all the time steps between times t = 200
s and t = 400 s; the finer time step for the whole training is fixed and it is δt = 0.1 s. As
it has been done in the previous example, we use different time steps in the coarse case.
Concretely, a coarse time step of δt = 0.2 s has been used from t = 200 s to t = 240 s, and
δt = 0.4 s from t = 240 s to t = 300 s. For the purpose of testing the model, the execution
phase is launched with a fixed time step of δt = 0.3 s.

The results of this example are similar to the results of the previous one. On the one
hand, a big qualitative improvement of the solution of the trained coarse model can be seen
in Figure 8; the waves that are far from the source are almost imperceptible in the coarse
case but perfectly defined in the fine and trained cases. On the other hand, in order to
make a quantitative evaluation of the problem, the time evolution of the acoustic pressure
at a specific point can be seen in Figure 9. Although the point is really close to the source,
it can be seen that even there the improvement in the trained case is enormous. As in
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Figure 9. Acoustic pressure of the three cases at point (0,50) m, marked
in Figure 8 c.

the previous example, the correcting term is activated at time t = 200 s; at this point the
amplitude of the oscillations starts to increase until it reaches the amplitude of the fine
case, making the correction almost perfect.

6. Conclusions

In this paper, a general idea to enhance the solutions of coarse simulations through
learning algorithms from fine solutions has been presented. This improvement is possible
thanks to the training of correcting terms, that can be performed by LS or ANN models.
This idea has been applied in this paper to the wave equation, both in the time and in the
frequency domain.

The general concept of correction terms has been explained and some of its different
possibilities have been described. Moreover, the specific correcting terms of the two differ-
ent learning algorithms (LS and ANN) have been set and compared. The need for using
iterative schemes in the case of using an ANN model has been explained, as well as the
algorithmic issues of the application of this model in the time domain version of the wave
equation.

Finally, the performance of the correcting terms based on training has been tested
in different numerical examples. The first one corresponds to the Helmholtz equation
trained with an ANN. The fine solutions have been chosen to be computed from a set of
source positions with a fine mesh. It has been checked that the algorithm improves the
coarse solution no matter which is the position of the source for a given frequency. The
second example corresponds to the Helmholtz equation, also trained with an ANN. The
fine solutions have been chosen to be those obtained from a set of different frequencies
and computed with a fine mesh. Again, it has been checked that the algorithm improves
the coarse solution no matter what is the frequency in a certain range. The third and the
fourth examples are similar, both have been done with the irreducible form of the wave
equation in the time domain, the former has a circular domain and it is solved with the
LS model and the latter has a rectangular domain with a cavity and it is solved with an
ANN model. The training cases have been chosen to be computed from a set of different
coarse time steps while the fine solution in each case is computed using a fixed finer time
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step. It has been shown in both examples that the algorithm improves the coarse solution,
no matter what is the chosen coarse time step.
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