
A VMS-BASED FRACTIONAL STEP TECHNIQUE FOR THE
COMPRESSIBLE NAVIER–STOKES EQUATIONS USING

CONSERVATIVE VARIABLES.

SAMUEL PARADA†,‡, RAMON CODINA†,‡ AND JOAN BAIGES‡

Abstract. In this paper we address the compressible Navier–Stokes equations written in
the so-called conservative formulation. In particular, we focus on the possibility of uncou-
pling the computation of the problem unknowns, namely, density, linear momentum and
total energy, a technique usually labeled as fractional step scheme and which can reduce
the associated computational cost. The proposed methodology is a finite-element solver
supplemented with a stabilization technique within the Variational Multi-Scale framework.
In this regard, we consider orthogonal and dynamic definitions for the subscales. This dis-
cretization in space shows an adequate stability, permitting in particular the use of equal
interpolation for all variables in play, although we complement it with a shock-capturing
operator in order to solve problems involving shocks. Several representative benchmark
flow simulations are performed, which demonstrate the suitability of the proposed algo-
rithm for a vast range of regimes.

Keywords: Compressible flow, Variational Mulsticale Method (VMS), Fractional step
schemes, Finite element method, Supersonic flows.

1. Introduction

The so-called compressible Navier–Stokes equations are commonly used to model flow
problems where compressibility effects become relevant, e.g., in the aerodynamic and aeroa-
coustic fields, with applications ranging from classical turbo-machinery design to modern
speech therapy simulations. The general mathematical setting consists of the momentum,
mass and energy conservation equations together with thermodynamic properties, consti-
tutive relations and proper initial and boundary conditions, which are appended to close
the mathematical description ensuring the well-posedness of the problem. Such a set of
partial differential equations describes a wide range of scales and, in general, computing
its solution is a challenge in itself. One could proceed either by choosing small mesh and
time step sizes or by using high precision numerical schemes. Regardless of the selected
approach, obtaining a representative solution is particularly demanding from the compu-
tational viewpoint. This fact still remains as one of the main limitations in compressible
flow simulations in spite of the increasing amount of computing facilities available for the
scientific and engineering communities.

In this work, we are going to focus in the finite element approximation of the Navier–
Stokes compressible flow problem. Particularly, we aim at solving it in a segregated man-
ner, that is to say, uncoupling the calculation of the problem unknowns. These are the
well-known conservative variables, i.e., density, momentum, and total energy. However,
when these equations are approximated by the classical raw Galerkin approach, numerical
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instabilities may appear mainly due to the hyperbolic nature of the equations. These incon-
veniences can be overcome by resorting to a stabilized finite element formulation. Within
this concept, the Streamline Upwind Petrov Galerkin (SUPG) method [1] appeared as one
of the first approaches, originally introduced as an extension of stabilization methods pre-
viously developed for convection-diffusion flow problems. The foundation of the method
was to introduce numerical diffusion along the streamlines in an optimal manner by defin-
ing a certain stabilization term. Such stabilization term contained a matrix of algorithmic
parameters, an operator applied to the test function, and the residual of the differential
equation (see [2]). Later, modifications to that operator applied to the test function were
introduced, giving raise to the commonly named Galerkin Least Squares (GLS) method
(see e.g., [3, 4]).

The multi-scale concept was first presented in the context of compressible Navier–Stokes
formulations as a turbulence model. For this reason, it originally played the role of a nu-
merical artifact to account for the effect of the unresolved scales rather than a stabilization
method. In this regard, [5] introduced a mixed formulation to approximate the solution by
separating in advance the resolved and unresolved turbulent scales, whose effect is mod-
eled using a Reynolds stress tensor. This initial work was contrasted in [6], specifically
in the definition of the unresolved scales, proposing a Fourier-Spectral projector, which
could be implemented with a discontinuous Galerkin method. More examples on this topic
are [7, 8] which also include turbulence energy spectra results for turbulent compressible
flows. However, the Variational Multi-Scale (VMS) framework serves here as a source for
the design of a stabilization technique with different capabilities. The idea of understand-
ing VMS methods as a stabilization technique dates back to the original works of [9, 10]
and more recently to [11]. The cornerstone of this approach is the splitting of the un-
knowns of the problem into two components, namely, a coarse-scale that belongs to the
finite element space and a subgrid scale or subscale, which is the remainder. Therefore, the
original problem can be divided into two separated subproblems, one involving the finite
element scales, and another for the subscales. For an in-depth review of the application
of the VMS framework in CFD we refer the reader to [12]. Specifically in the context
of compressible flows, [13] presents a review of different stabilized methods for compress-
ible flow computations with a historical perspective from initial developments to modern
approaches. In addition, [14] was the first attempt to introduce stabilization techniques
strictly in the frame of VMS methods. In these references, VMS-based formulations previ-
ously developed for the incompressible case are satisfactorily extended to its compressible
counterpart. More recently, in [15] the VMS method was applied in order to stabilize the
Euler equations, where the authors demonstrated the convergence of the numerical method
in a wide range of stratified flows, yet they restricted the explicit formulation to a linear
Euler time integration scheme.

Although global stability is ensured by a VMS-based stabilized formulation, some lo-
calized oscillations may arise from sharp gradients in the solution, particularly at su-
personic regimes. This effect is innate to compressible flows involving shocks (disconti-
nuities). Hence, stabilized formulations usually need to be complemented with a local
shock-capturing methodology. A possible approach to model shocks is the residual-based
shock-capturing technique, first introduced in [16] and later tested in [17] for a SUPG
compressible flow formulation. Another popular option is the "YZβ" approach [18]. In
contrast to the previous formulations, our strategy is to introduce the numerical diffusion
in a “physical manner”, that is to say, we shall modify the diffusion of the momentum and
energy equations, but we avoid introducing artificial diffusion into the mass equation.

Nevertheless, in this work our main goal is the development of segregation methods for
the transient compressible Navier–Stokes equations using a finite element approximation
for the space discretization. As a reference in the comparisons, we shall take the solution
of the so-called monolithic problem, i.e., the standard coupled calculation involving all
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the problem unknowns. The fully discrete and linearized monolithic scheme leads to an
algebraic system, whose structure may be exploited in order to solve independently for
the density, momentum and energy degrees of freedom. Referring to the time integration,
on the following we shall concentrate on first and second order implicit finite difference
schemes. The backward Euler method will be used for the former, whereas for second order
methods we will stick to backward differentiation schemes, also known as Gear schemes.
However, our developments are not restricted and, in principle, any other discretization
methods might be used to advance the solution in time.

The technique we will discuss here corresponds to the classical fractional step algo-
rithms, which might be seen as an alternative methodology to solve transient problems.
Fractional step methods, commonly referred in the literature as splitting or projection
methods, started to gain adepts after the original works published in [19] and [20]. In
these publications, the uncoupling of velocity and pressure unknowns at the continuous
level is attempted for the incompressible equations. Since then, many works have been
devoted to a proper understanding of the original schemes, their numerical analysis, their
extension to higher order approximations and to the design of adequate boundary condi-
tions (see e.g. [21] and references therein). Nonetheless, our approach in this work is to
present a splitting of the equations at the algebraic level once the equations have already
been discretized in space and in time. This way to face the problem emerged after the
identification in [22] of the classical pressure segregation method as an inexact factorization
of the final algebraic system. This algebraic viewpoint is generally simpler and it makes
possible to obviate a discussion on specific boundary conditions for the different stages of
the fractional step scheme (see e.g. [23, 24]). Furthermore, it has been extensively probed
to be effective in a variety of cases in computational physics, including incompressible
[23, 25], viscoelastici [26], isentropic [27] and compressible (primitive variables) [28] prob-
lems. The literature regarding fractional step schemes for compressible flow applications is
not as vast as for the incompressible problem. However, many innovative and diverse col-
lections of uncoupling techniques [3, 29, 30, 31, 32, 33] have been published, which involve
distinct spatial discretizations (finite differences, finite volumes, finite elements), temporal
schemes (explicit, implicit, semi-implicit) and also different sets of unknowns (conservative,
primitive and even combinations of both).

The article is structured as follows: in Section 2 we introduce the compressible Navier–
Stokes problem together with its variational formulation. In Section 3 we present the
numerical approximation including different features such as the VMS-based stabilized
formulation and the shock-capturing technique. Section 4 is devoted to the design of the
fractional step scheme. Numerical experiments are conducted in Section 5, and, finally, we
close the paper with some concluding statements in Section 6.

2. Problem statement

2.1. Initial and boundary value problem. Let Ω be an open, bounded and polyhedral
domain of Rnsd (nsd = 2 or 3 refers to the number of space dimensions) and [0, tf] the time
interval of analysis. The Navier–Stokes equations, governing unsteady viscous compressible
flows are formulated as the following system of partial differential equations:

∂tρ+ div(ρu) = 0 in Ω× (0, tf),(1a)

∂t(ρu) + div(ρu⊗ u− σσσd) + grad p = ρf in Ω× (0, tf),(1b)

∂t(ρe) + div((ρe+ p)u + q− σσσdu) = ρ(f · u + r) in Ω× (0, tf),(1c)

where we have made use of the short notation for the partial time derivative ∂(�)/∂t :=
∂t(�). Here and in what follows, ρ(x, t), u(x, t), p(x, t), σσσd(x, t), e(x, t) and q(x, t) denote,
respectively, density, velocity, pressure, viscous stress tensor, total energy per unit mass,
and heat flux vector. In addition to this, f(x, t) is a possible external acceleration and r(x, t)
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is a possible heat source, which may include chemical reactions or even electromagnetic
effects.

The viscous stress tensor is defined as,

(2) σσσd = σσσd(u(x, t)) := 2µεεε+ (µB + λ)(div u)Insd
,

where εεε = εεε(u(x, t)) := grads(u) is the strain rate tensor computed as the symmetric
gradient of velocity, i.e., grads(�) := (grad(�) + gradᵀ(�))/2, where (•)ᵀ denotes the
transpose of (•). Likewise, µ(x, t), µB(x, t) and λ(x, t) are respectively, the so-called
molecular (or shear), bulk (or volumetric) and second viscosity coefficients, non-constant
in the general case and positive.

The heat flux vector is calculated using Fourier’s law of heat conduction, which in general
can be written as q = −grad g(ϑ) where g is a nonlinear function of the temperature
ϑ(x, t). Although nonlinear diffusion problems are often found in practice, we will restrict
ourselves to the classical linear relation in order to ease the discussion. Hence we write,

(3) q := −k grad ϑ,

where k is the (symmetrical second-order) tensor of thermal conductivity, which is a prop-
erty of the fluid. For the isotropic case, the thermal conductivity tensor is a spherical tensor
k = κInsd

and depends on the scalar parameter κ(x, t), which is the thermal conductivity
of the fluid.

Henceforth, we will make use of the most frequently encountered form of the thermal
equation of state, i.e., the ideal-gas law,

(4) p = ρRgϑ,

where Rg is the constant of the gas under consideration, defined as Rg = R0M−1
w being

R0 = 8.31 J/(mol K) the universal gas constant and Mw the molecular weight. For a
calorically perfect gas, the internal energy ι is a sole function of the temperature, i.e.,

(5) ι = ι(ϑ) := cvϑ,

and hence,

(6) e = cvϑ+
1

2
‖u‖2.

In the sequel, cv denotes the specific heat at constant volume, and cp stands for the specific
heat at constant pressure. We also define the ratio of specific heats as γ := cp/cv.

Remark 2.1. A common practice in the analysis of the motion of compressible fluids is
to make use of the well-known Stokes hypothesis, i.e., λ + 2

3µ = µB = 0. Setting µB = 0
is supported by the kinetic theory of gases and such assumption renders the mathematical
treatment of compressible flows notably easier, yet it has been the object of long-lasting
discussions on compressible flows simulations.

Remark 2.2. According to experimental evidence, only in very particular conditions will
the term µB(div u) be of practical significance. This may happen for instance when the
fluid exhibits large values of µB (e.g., CO2), or the motion is such that extremely large
values of div u occur, for example in hypersonic flows, which are not in the scope of the
present article.

Remark 2.3. Although µ and κ might be assumed to be constant to ease the discussion,
several models can be introduced in order to reproduce more realistic conditions. Apart
from the classical Sutherland law which makes the variables temperature dependent, other
expressions based on the kinetic theory can be considered such as the Chapman-Cowling
relation for µ or the modified Eucken correction formula for κ (see e.g. [34, 35, 36]).
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2.2. Compact and quasi-linear form of the problem. The Navier–Stokes equations
of compressible flows can be compactly written as,

(7) ∂tU + div
(
Fc(U) + Fd(U ,grad U)

)
= F(U) in Ω× (0, tf),

where U ∈ Rnsd+2 is the vector of conservative variables, Fc(U) and Fd(U ,grad U) ∈
R(nsd+2)×nsd are the convective and diffusion flux tensors, and F(U) ∈ Rnsd+2 is the vector
of external forcing terms, all of them respectively given by,

U :=

 ρ
ρu
ρe

 , Fc(U) =

 ρuᵀ

ρu⊗ u + pInsd

(ρe+ p)uᵀ

 ,(8a)

Fd(U ,grad U) =

 0
−σσσd(

q− σσσdu
)ᵀ
 , F(U) =

 0
ρf

ρ(r + fᵀ · u)

 .(8b)

However, the divergence of the convective and diffusive flux tensors from the original
system, Eq. (7), can be written in a more convenient manner upon the definition of the
so-called Euler Jacobian and diffusion matrices. Making use of index notation, those are
related to the convective and diffusive flux tensors as follows:

Aj(U) :=
∂Fc

j(U)

∂U ∀ j = 1, . . . , nsd,(9a)

∂Fd
j (U)

∂xj
:= − ∂

∂xk

(
Kkj(U)

∂U
∂xj

)
∀ j, k = 1, . . . , nsd.(9b)

The expressions of Aj(U) and Kkj(U) are given in Appendix A. The last term in Eq. (7),
the vector of sources, can also be rewritten by means of a reactive-like term of the form,

(10) F(U) := SU .
Therefore, taking all this information into account, the original compressible Navier–Stokes
system can be now stated as: find the set of conservative unknowns U such that the
following is satisfied,

(11) ∂tU + L(U ;U) = 0 in Ω× (0, tf).

The second-order nonlinear operator L(U ;U) includes the previous definitions for the con-
vective, diffusive, and reactive terms and it is written as,

(12) L(U0;U) := Aj(U0)
∂U
∂xj
− ∂

∂xk

(
Kkj(U0)

∂U
∂xj

)
− SU ∀ j, k = 1, . . . , nsd,

being non–linear in the first argument due to the dependency of the Euler Jacobian and
diffusivity matrices on the unknowns.

The compressible Navier–Stokes problem is a non-linear initial and boundary value prob-
lem of parabolic–hyperbolic type which needs to be complemented with appropriate initial
and boundary conditions. In general, these can be expressed in vector form as,

nk

(
Kkj(U)

∂U
∂xj

)
= h on ∂ΩN, t ∈ (0, tf),(13a)

DU = DUD on ∂ΩD, t ∈ (0, tf),(13b)
U = U0(x), in Ω, t = 0.(13c)

Neumann boundary conditions h are diffusive fluxes. For the sake of simplicity, let us
assume h = 0 in the following. The Dirichlet boundary operator D is used to impose the
Dirichlet boundary conditions from given values UD. Although we have grouped Neumann
conditions on ∂ΩN and Dirichlet conditions on ∂ΩD, a mixed type of conditions could be
applied to different variables on the same part of the boundary, and hence they may overlap.
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We shall explicitly indicate in our examples how the initial and boundary conditions are
prescribed.

The description of the problem can be further complemented with the definition of the
Reynolds, Prandtl and Mach numbers, respectively given as follows:

Re =
ρ∞‖u∞‖L

µ∞
,(14a)

Pr =
cpµ∞
κ∞

,(14b)

Ma =
‖u∞‖
a∞

.(14c)

In these equations, a :=
√
γp/ρ denotes the speed of sound and L is a characteristic length.

Variables are expressed in terms of reference free-stream values, indicated by the subscript
∞.

Remark 2.4. The non-dimensional Mach number defines the compressibility regime. It
can range from subsonic (Ma < 0.8), transonic (0.8 < Ma < 1.2), supersonic (Ma > 1.2),
and hypersonic flow (Ma � 1). Boundary conditions need to be prescribed appropriately
according to the compressibility regime. In this paper, all conservative variables are imposed
at the inflow part of the Dirichlet boundary, i.e., ∂Ωin := {x ∈ ∂Ω|(u · n) < 0}, regardless
the compressibility regime. For the supersonic case, no Dirichlet conditions need to be
imposed at the outflow, defined as ∂Ωout := {x ∈ ∂Ω|(u · n) > 0}. In the case of subsonic
flow, only density (pressure) might be imposed at the outflow boundary ∂Ωout.

Remark 2.5. Solid boundaries can be represented as a slip condition u ·n = 0, as a no-slip
condition u = 0, as an isothermal wall with a given temperature value or an adiabatic wall
−κn · grad ϑ = 0.

2.3. Variational formulation. Let V be an appropriate trial functional space where the
solution is to be sought. The weak form of the problem is obtained by testing Eq. (11)
against an arbitrary set of test functions δU = [δρ, δ(ρu), δ(ρe)]ᵀ which we consider time-
independent and such that they vanish separately on the Dirichlet part of the boundary.
The weak form can be generally written after integration by parts of the second order
terms as: find U : (0, tf)→ V such that,

(15)
∫

Ω
δUᵀ · ∂tU dΩ + B(U , δU) = 0 ∀ δU ,

where the following form is introduced,

(16) B(U , δU) =

∫
Ω
δUᵀ ·

(
Aj(U)

∂U
∂xj
− SU

)
dΩ +

∫
Ω

∂δUᵀ

∂xk
·
(
Kkj(U)

∂U
∂xj

)
dΩ.

3. Numerical approximation

3.1. Galerkin finite element discretization. The finite element approximation of the
continuous variational problem Eq. (15) can be performed via the standard Galerkin
method. For this purpose, let Th be a shape-regular and conforming partition of Ω, such
that Ω = ∪nel

e=1Ω
(e) being nel the total number of elements in the partition. This triangula-

tion is described by the characteristic mesh size, defined as h := max{h(e) | Ω(e) ∈ Th(Ω)}
with h(e) = diam

(
Ω(e)

)
. In the following, finite element functions will be identified with

a subscript h. The conforming functional space Vh ⊂ V is defined as a continuous piece-
wise set of polynomials. Hence, the Galerkin finite element approximation of the problem
consists now in finding, Uh : (0, tf)→ Vh such that,

(17)
∫

Ω
δUᵀ

h · ∂tUh dΩ + B(Uh, δUh) = 0 ∀ δUh,
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together with the appropriate initial and boundary conditions.
However, it is well known that raw Galerkin formulations may suffer from different types

of numerical instabilities when applied to flow problems. The main ones arise, precisely,
from the non-elliptic nature of the equations and also due to an inf-sup-like condition
which restrains the compatibility of the interpolation spaces of the different variables in
play. Both inconveniences can be overcome by resorting to a stabilized finite element
formulation. We shall further discuss this point later.

3.2. Time discretization. The problem can be discretized in time using a uniform par-
tition of the time interval (0, tf). Given a time step δt, we set t0 = 0, tn = t0 + nδt (for
any n ≥ 1). Denoting by fn an approximation to a time-dependent function f(t) at time
tn, we consider backward difference (BDF) schemes with the operator,

Dkf
n+1 =

1

φk

(
fn+1 −

k−1∑
i=0

ξikf
n−i

)
,

being φk and ξik numerical parameters depending on the order of the temporal approxi-
mation. In particular, for the first and second order schemes, i.e., k = 1, 2, it is found
that:

D1f
n+1 = δfn+1 = fn+1 − fn,(18a)

D2f
n+1 =

3

2

(
fn+1 − 4

3
fn +

1

3
fn−1

)
.(18b)

For the design of fractional step schemes, it is particularly useful to make use of the
backward extrapolation operators,

f̂n+1
0 = 0,(19a)

f̂n+1
1 = fn,(19b)

f̂n+1
2 = 2fn − fn−1,(19c)

or, in general,

(20) f̂n+1
k := fn+1 − δ(k)fn+1 = fn+1 +O(δtk), k = 0, 1, 2 . . .

with δ(i+1)fn+1 := δ(i)fn+1 − δ(i)fn, i = 1, 2, 3, . . ..
Therefore, the fully discrete problem finally reads: find Un+1

h ∈ Vh such that,

(21)
∫

Ω
δUᵀ

h ·
DkUn+1

h

δt
dΩ + B(Un+1

h , δUh) = 0 ∀ δUh.

3.3. Residual-based stabilized formulation. In this subsection we present a stabilized
formulation for the compressible Navier–Stokes equations based on the VMS approach. As
stated in the introduction, the key idea behind this framework is to approximate the effect
of the part of the solution of the continuous problem which cannot be reproduced by the
finite element space.

3.3.1. VMS framework. The starting idea of VMS methods is to split the continuous space
of the problem as V = Vh ⊕ V̆ , where Vh is the finite element space (and hence finite
dimensional) and V̆ is any complementary space which completes Vh in V , usually termed
subgrid space and which is in principle infinite dimensional. Such splitting of the space V
induces a scale separation of unknowns of the form U := Uh + Ŭ (and same for the test
functions). It is readily checked that the continuous problem can be written as the system
of equations: ∫

Ω
δUᵀ

h · ∂tU dΩ + B(U , δUh) = 0 ∀ δUh,(22a)
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Ω
δŬᵀ · ∂tU dΩ + B(U , δŬ) dΩ = 0 ∀ δŬ ,(22b)

where the first raw Eq. (22a) is termed finite element scale equation and the second raw
Eq. (22b) is referred as subgrid scale equation in the literature. From this point, the goal is
to find an approximation of the subscales in order to end up with a problem which should
depend just on the finite element scale.

After integration by parts in Eq. (22a), which avoids introducing a model for the
derivatives of the subscales, one finds,

(23)
∫

Ω
δUᵀ

h · ∂tU dΩ + B(Uh, δUh) +

nel∑
e=1

∫
Ω(e)

[L∗(U ; δUh)]ᵀ Ŭ dΩ = 0 ∀ δUh,

where inter-element terms are neglected by supposing that the subscales vanish at the
element boundaries, though this assumption could be relaxed by including the subscales
on the element boundaries, as discussed in [37]. Furthermore, we have introduced the
formal adjoint operator of L(U ;U) denoted with the asterisk superscript. Such adjoint
operator satisfies, up to boundary terms,

(24)
∫

Ω
δUᵀL(U ;W) dΩ =

∫
Ω

[L∗(U ; δU)]ᵀW dΩ ∀ U ,W , δU .

The outcome of the adjoint of the non-linear operator when applied to the test functions
vector is,

L∗(U ; δUh) :=−
{

∂

∂xj

[
Aᵀ
j (U)δUh

]
+

∂

∂xj

[
Kᵀ
kj(U)

∂δUh

∂xk

]
+ SᵀδUh

}
∀ j, k = 1, . . . , nsd.(25)

It is important to remark the contribution of the derivative of the Euler Jacobian matrix
in the first term on the right hand side. In this work we linearize the derivatives of the
first and second terms on the right hand side of the previous expression, respectively as:

∂

∂xj

[
Aᵀ
j (U)δUh

]
≈ Aᵀ

j (U)
∂δUh

∂xj
+
∂Aᵀ

j (U)

∂U
∂Uh

∂xj
δUh ∀ j = 1, . . . , nsd,(26)

∂

∂xj

[
Kᵀ
kj(U)

∂δUh

∂xk

]
≈ Kᵀ

kj(U)
∂2δUh

∂xj∂xk
+
∂Kᵀ

kj(U)

∂U
∂Uh

∂xj

∂δUh

∂xk
∀ j, k = 1, . . . , nsd.

(27)

The finite element scale equation can be seen as the projection of the original problem
onto the finite element space. Similarly, the subgrid scale equation is nothing but a pro-
jection of the equations onto the space of subscales. If Π̆ denotes the L2-projection onto
the space of subscales, Eq. (22b) can be rewritten as,

(28) ∂tŬ + L(U ; Ŭ) = Π̆ [R(U ;Uh)] ,

where the finite element residual,

(29) R(U ;Uh) := −∂tUh −L(U ;Uh),

has been introduced.
Since the subscales cannot be represented by the finite element mesh, the effect of the

non-linear operator applied to the subscales in Eq. (28) needs to be modeled somehow.
However, the goal of this paper is not to propose a new stabilization technique, but rather
to present the application of a well established approach. This method can be obtained by
solving for the subscales as a result of the following nonlinear evolution problem,

(30) ∂tŬ + τ−1(U)Ŭ = Π̆ [R(U ;Uh)] ,
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where τ (U) is the so-called matrix of stabilization parameters. There are different approx-
imations in order to calculate Ŭ from the previous equation. The most common approach
is to take Π̆ = I , the identity, when applied to the finite element residual. Another pos-
sibility, the one that we favor in this work, is to take Π̆ = Π⊥h as the projection onto the
space orthogonal to Vh, i.e., the orthogonal projection to the finite element space.

3.3.2. Orthogonal-dynamic subgrid scale formulation. When the space of subscales is en-
forced to be L2-orthogonal to the finite element space Vh, the method is termed Orthogonal
SubGrid-Scale (OSGS or simply OSS). It corresponds to taking Π̆ = Π⊥h = I − Πh where
Πh is the projection operator onto the appropriate finite element space without boundary
conditions. The particularity of this method is that it makes the subscales active in regions
which cannot be resolved by the finite element mesh [38]. As a result, the OSGS method
allows certain type of simplifications, which we state next.

• The orthogonal projection of the external forces might be neglected. External
loads are assumed to belong to the finite element space or are approximated by an
element of the corresponding space. Hence,

Π⊥h (ρr) ≈ 0, Π⊥h (ρf) ≈ 0.

• The orthogonal projection of terms involving temporal derivatives can be neglected,
taking into account that,

Π⊥h (∂tfh) = ∂tfh −Πh(∂tfh) = 0, ∀ fh ∈ Vh,

due to the orthogonality property.
In addition to the previous developments, we will also consider the time tracking of the

subscales, which has become an effective feature in order to eliminate numerical oscillations
originated by initial transients while minimizing numerical dissipation [39]. In this regard,
Eq. (28) can be for instance integrated in time with a classical backward Euler scheme
and this yields,

(31) Ŭn+1
= τdyn(Un+1)Π̆

[
R(Un+1;Un+1

h )
]

+ τdyn(Un+1)
Ŭn

δt
,

with τdyn =
[
(1/δt) Insd+2 + τ−1(Un+1)

]−1. The rationale behind using such a dissipative
scheme for the time integration of the the fine scales is precisely the assumption of bubble
functions. However, it can be shown that this choice would not modify a second-order
accuracy in time of the finite element solution (large scales) [40].

Upon substitution of Eq. (31) into the time discretized version of Eq. (23), the final
problem to be solved in this work finally reads: find Uh ∈ Vh such that,∫

Ω
δUᵀ

h ·
DkUn+1

h

δt
dΩ + B(Un+1

h , δUh)

+

nel∑
e=1

∫
Ω(e)

[L∗(Un+1; δUh)]ᵀτdyn(Un+1)Π⊥h
[
R(Un+1;Un+1

h )
]

dΩ

−
nel∑
e=1

∫
Ω(e)

[L∗(Un+1; δUh)]ᵀτdyn(Un+1)
Ŭn

δt
dΩ = 0 ∀ δUh.(32)

3.3.3. On the stabilization parameters. Although the application of the VMS method to the
compressible Navier–Stokes problem has already been discussed, the stabilization technique
is not completed until one introduces a definition to compute the matrix of stabilization
parameters τ (U) (generally nonlinear).

Up to our knowledge, there is no general rule to define it for systems of equations. It
must be designed for each particular problem taking into account its stability deficiencies
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or even scaling requirements. The usual definition of the compressible stabilization param-
eters include a local sound velocity that arises from a linearization of the characteristic
compressible flow problem. In this paper we follow our previous findings published in [41]
(see section 3.3 from that paper for a complete and detailed exposition) which are based
on a Fourier analysis of the non-linear operator of the problem.

Therefore, the stabilization matrix for the 3D case is computed here as,

(33) τ−1 =

τ−1
ρ 0ᵀ 0
0 τ−1

ρu Insd
0

0 0ᵀ τ−1
ρe


with the following non-zero entries,

τ−1
ρ = c2

(‖u‖+ a)

h
+ c3

r2 + 2‖f‖2a2 +
√
r4 + 4a2‖f‖2r2

2a4

1/2

,(34a)

τ−1
ρu = c1

4µ

3ρh2
+ c2

(‖u‖+ a)

h
+ c3

r2 + 2‖f‖2a2 +
√
r4 + 4a2‖f‖2r2

2a4

1/2

,(34b)

τ−1
ρe = c1

κ

ρcph2
+ c2

(‖u‖+ a)

h
+ c3

r2 + 2‖f‖2a2 +
√
r4 + 4a2‖f‖2r2

2a4

1/2

.(34c)

It is understood that these expressions are evaluated element by element. The numerical
constants c1 and c2 are independent of the physical parameters of the problem. In the
numerical calculations we take them as c1 = 12ω4, c2 = 2ω, c3 = 1, ω being the order of
the finite element interpolation.

3.4. Discontinuity capturing technique. Although the previous stabilized finite ele-
ment formulation yields a globally stable solution, i.e., norms of the unknowns over the
whole domain Ω are bounded, local stability is not guaranteed in the vicinity of shocks
or regions with sharp gradients. In order to mitigate these possible local oscillations, an
artificial shock-capturing (SC) term is added to the numerical approximation of the prob-
lem. The main idea of a shock capturing technique is to increase the amount of numerical
dissipation in the proximity of sharp gradients. Many different approaches can be adopted
to introduce artificial dissipation. Here, two different alternatives are presented, which
introduce numerical diffusion only in the momentum and energy equations.

The first non-linear method that we implement is a classical residual-based technique,
which is consistent, that is to say, when it is applied to the exact solution, the added
diffusion is zero. For this technique we calculate the artificial kinematic viscosity as,

νsc =
Csch

2

|Rρu(U ;Uh)|
|grad (ρu)h|

, if |grad (ρu)h| 6= 0,(35a)

νsc = 0, otherwise,(35b)

where Csc is an algorithmic constant to be set before the simulation, h is the characteristic
length that gives dimensional consistency to the expression, and |grad(ρu)h| is the Frobe-
nius norm of the gradient of the momentum finite element solution. In a similar manner,
for the energy equation we introduce an artificial thermal diffusivity computed as,

αsc =
Csch

2

|Rρe(U ,Uh)|
‖grad (ρe)h‖

, if ‖grad (ρe)h‖ 6= 0,(36a)

αsc = 0, otherwise,(36b)

where ||grad (ρe)h|| is the norm of the gradient of the total energy finite element solution.
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An alternative to introduce the numerical diffusion is the weakly consistent orthogonal
projection technique from [42]. It is based on the orthogonal projection onto the finite
element space of the gradient of the unknown, instead of the common residual approach.
Mathematically speaking, we take the artificial viscosity as follows:

νsc =
Csch‖u‖

2

|Π⊥h [grad (ρu)h)] |
|grad (ρu)h|

, if |grad (ρu)h| 6= 0,(37a)

νsc = 0, otherwise,(37b)

and,

αsc =
Csch||u||

2

||Π⊥h (grad (ρe)h)||
‖grad (ρe)h‖

, if ||grad (ρe)h|| 6= 0,(38a)

αsc = 0, otherwise,(38b)

where the norm of the velocity gives dimensional consistency.
In practice, the added numerical diffusion is introduced into the diffusive Galerkin term

by computing a modified viscous stress tensor σ̃σσd and heat flux q̃ vector in the following
isotropic manner,

σ̃d
ij =

(
1 +

ρνsc

µ

)
σd
ij , ∀ i, j = 1, . . . , nsd(39a)

q̃i =
(

1 +
ρcvαsc

κ

)
qi ∀ i = 1, . . . , nsd.(39b)

3.5. On the linearization of the discrete problem. Apart from the classical non-
linearities appearing in the convective terms due to the advection velocity, there are others
inherent to the nature of the compressible Navier–Stokes equations. In any fractional step
scheme, the time step of the computation δt cannot be taken very large for the method to
be effective, when it is compared for example to the critical time step of an explicit time
integration scheme. This fact is of remarkable importance in compressible flow simulations,
as the time step should be sufficiently small in order to reproduce the wide range of different
scales that the compressible Navier–Stokes problem spans. Thus, for a given solution at
a particular non-linear iteration, the next solution should be particularly close and our
experience shows that the fixed-point option is usually enough. Otherwise one should
expand the equations by means of a Taylor series. Although this may be appealing, and it
is actually a preferred approach in the literature, it definitely introduces some burden in
the formulation since the resulting terms involve rational expressions which are in general
arduous to integrate numerically.

Let us also explain how we manage the orthogonal projection calculation. When com-
pared to the raw Galerkin method, the matrices emerging from the orthogonal projection
of the unknowns show a wide stencil. In order to avoid dealing with them, at the i-th
iteration of the n-th time step, we may approximate Π⊥h

(
fn,(i)

)
≈ fn,(i)−Πh

(
fn,(i−1)

)
or

Π⊥h
(
fn,(i)

)
≈ fn,(i) − Πh

(
fn−1

)
for any generic function f . In other words, we perform

the projection by means of known values from either the previous iteration or time step.
Numerical experiments reveal that both options are effective, the latter being chosen in
the simulations presented in Section 5.

4. Fractional step methods

Instead of solving the monolithic system, an alternative is to use a fractional step method
in time, in which various equations need to be solved for the different variables in an
uncoupled way, probably with the addition of some correction steps. The splitting of the
equations introduced in fractional step methods has an additional temporal error, that
has to be at least of the order of the time integration scheme used to approximate time
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derivatives. Otherwise, time accuracy is broken. In this section we develop a novel algebraic
fractional step method for the compressible Navier–Stokes problem. The basic procedure
entails a calculation of an intermediate momentum with a guess of the density and total
energy. After solving for density and energy (in that order), we will finally correct the
intermediate momentum calculation, so as to ensure that the global time accuracy of the
method is maintained.

4.1. Algebraic problem. We assume that ρnh, (ρu)nh and (ρe)nh are constructed using the
standard finite element interpolation from the nodal values, which we denote hereinafter as
%n, Un and En respectively. These are computed as the solution of a non-linear algebraic
problem, which is obtained directly from Eq. (21). We shall skip the stabilization terms for
the sake of conciseness. Their addition is straightforward once the fractional step method
is developed.

The structure of the final system can be written in a compact matrix form as KΦ = f
with,

K =

 Mρ
ρ
Dk
δt Cρu

ρ 0

Aρ
ρu(%,U) Mρu

ρu
Dk
δt +Aρu

ρu(%,U) Cρe
ρu

Aρ
ρe(%,U ,E) Aρu

ρe (%,U ,E) Mρe
ρe

Dk
δt +Aρe

ρe(%,U)

 ,(40a)

Φ = [%n+1,Un+1,En+1]ᵀ,(40b)

f = [F n+1
ρ ,F n+1

ρu ,F n+1
ρe ]ᵀ,(40c)

and,

Aρu
ρu := Cρu

ρu(%,U) +Dρu
ρu(%) Aρ

ρu := Cρ
ρu(%,U) +Dρ

ρu(%,U)(41a)
Aρ
ρe := Cρ

ρe(%,U ,E) +Dρ
ρe(%,U ,E) Aρu

ρe := Cρu
ρe (%,U ,E) +Dρu

ρe (%,U)(41b)
Aρe
ρe := Cρe

ρe(%,U) +Dρe
ρe(%)(41c)

The subscript on the arrays refers to the mass (ρ), momentum (ρu) and energy (ρe)
equations, whereas the superscript stands for the unknown to which the term refers to.
The high non-linear character of the problem is made explicit in the system by including the
dependence of the arrays on the variables in the parenthesis, which are all evaluated at time
step n+ 1. Mass matrices as labeled with the symbol M , convective-like matrices with C
and diffusive-like matrices with the symbol D. The latter comes from the discretization of
the terms insideKkj and the convective matrices from those inAj (see Section 2.2). All the
arrays in the system are computed from the local assembly of the elemental contributions.
Furthermore, the right hand side terms in f contain known terms such as external forces or
known values of the unknowns from previous times steps due to temporal discretization.

In order to derive the fractional step method, let us start by writing the previous system
in the following equivalent form,

Mρu
ρu

Dk

δt
Ũn+1 +Cρu

ρu(%n+1, Ũn+1)Ũn+1 +Dρu
ρu(%n+1)Ũn+1

+Cρ
ρu(%n+1,Un+1)%̂n+1

k−1 +Dρ
ρu(%n+1,Un+1)%̂n+1

k−1 +Cρe
ρuÊ

n+1
k−1 = F n+1

ρu ,(42a)

Mρu
ρu

1

φkδt

(
Un+1 − Ũn+1

)
+Nn+1

ρu +Nn+1
ρ +Nn+1

ρe = 0,(42b)

Mρ
ρ

Dk

δt
%n+1 +Cρu

ρ U
n+1 = F n+1

ρ ,(42c)

Mρe
ρe

Dk

δt
En+1 +Cρe

ρe(%n+1,Un+1)En+1 +Dρe
ρe(%

n+1)En+1

+Cρ
ρe(%

n+1,Un+1,En+1)%n+1 +Dρ
ρe(%

n+1,Un+1,En+1)%n+1

+Cρu
ρe (%n+1,Un+1,En+1)Un+1 +Dρu

ρe (%n+1,Un+1)Un+1 = F n+1
ρe ,(42d)
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with the following definitions,

Nn+1
ρu :=

[
Cρu
ρu(%n+1,Un+1) +Dρu

ρu(%n+1)
]
Un+1

−
[
Cρu
ρu(%n+1, Ũn+1) +Dρu

ρu(%n+1)
]
Ũn+1,(43a)

Nn+1
ρ :=

[
Cρ
ρu(%n+1,Un+1) +Dρ

ρu(%n+1,Un+1)
] (
%n+1 − %̂n+1

k−1

)
,(43b)

Nn+1
ρe := Cρe

ρu

(
En+1 − Ên+1

k−1

)
,(43c)

and where DkŨ
n+1 is computed as DkU

n+1 but replacing Un+1 by a yet undetermined
function Ũn+1 (intermediate momentum). The reader should note that adding up Eqs.
(42a)–(42b) with the definitions in Eqs (43a)–(43c), we obtain the former momentum
equation, i.e., the second row of the original system KΦ = f in Eqs. (40a)–(40c). We
shall refer to Eq. (42a) as the intermediate momentum equation and Eq. (42b) as the
momentum correction equation. The purpose of the latter is precisely to ensure that the
global time accuracy is not broken.

If we denote the node indexes with superscripts a, b, and the standard shape function
of node a by ϕa, the components of the matrix Cρu

ρ are,

(44)
[
Cρu
ρ

]ab
j

=
nel

A
e=1

∫
∂Ω(e)

ϕa∂jϕ
b dΩ ∀ j = 1, . . . , nsd,

where A symbolizes the assembly of the local contributions (addition plus injection) to the
global equation. Let us now proceed as follows: first, integration by parts over that term
in the mass equation would momentarily yield,

(45) Mρ
ρ

Dk

δt
%n+1 − Čρu

ρ U
n+1 = F n+1

ρ − F̌ n+1
ρ ,

where, [
Čρu
ρ

]ab
j

=
nel

A
e=1

∫
Ω(e)

∂jϕ
aϕb dΩ ∀ j = 1, . . . , nsd,(46) [

F̌ n+1
ρ

]a
=

nel

A
e=1

∫
∂Ω(e)

ϕa(n ·Un+1) d∂Ω.(47)

Now, solving for Un+1 from Eq. (42b) and multiplying by Čρuρ it gives,

(48) Čρu
ρ U

n+1 = Čρu
ρ Ũ

n+1 − φkδtČρu
ρ

[
Mρu

ρu

]−1 [
Nn+1
ρ +Nn+1

ρu +Nn+1
ρe

]
.

This new expression can be now used in Eq. (45). Hence,
(49)

Mρ
ρ

Dk

δt
%n+1 + φkδtČ

ρu
ρ

[
Mρu

ρu

]−1 [
Nn+1
ρ +Nn+1

ρu +Nn+1
ρe

]
= F n+1

ρ − F̌ n+1
ρ + Čρu

ρ Ũ
n+1.

At this point, we have modified the original mass equation by introducing some burden that
we need to solve. One should notice that the resulting matrix from Čρu

ρ

[
Mρu

ρu

]−1
Cρ
ρu can

be viewed as an approximation to the discrete version of a Laplacian-like operator, [43]. In
order to avoid dealing with this matrix, which is in general dense and might still be expen-
sive to compute even whenMρu

ρu is lumped, we use the approximation Čρu
ρ

[
Mρu

ρu

]−1
Cρ
ρu ≈

L where L is a Laplacian matrix computed using the gradient of the standard shape func-
tions and defined at the element level as [L(e)]ab =

∫
Ω(e) 0.5(u·u)(γ−1)∂jϕ

a∂jϕ
b dΩ, where

the first factors in the integrand are introduced to keep the proper scaling (see Appendix
A). Being able to perform this approximation is what led us to obtain matrix Čρu

ρ instead
of working directly with Cρu

ρ .

Remark 4.1. Recalling the definition of the extrapolation operators, Eq. (20), note that
the difference

∥∥%n+1 − %̂n+1
k−1

∥∥ or ∥∥∥En+1 − Ên+1
k−1

∥∥∥ is of order O(δtk−1). Therefore, it is easy
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to see from Eq. (42b) that O(||Un+1 − Ũn+1||) = O(δtk), and thus, the global accuracy of
the temporal integrator is formally maintained for the intermediate momentum variable.

Remark 4.2. Note that if we substitute Un+1 by Ũn+1 in the definition of F̌ n+1
ρ , which

is supported by the previous remark, the last two terms in Eq. (45) can be grouped as
−Cρu

ρ Ũn+1 (integration by parts).

Up to our knowledge, there is not a possible approximation for the rest of the products
involved in Čρu

ρ

[
Mρu

ρu

]−1 [
Nn+1
ρ +Nn+1

ρu +Nn+1
ρe

]
. However, the presence of such extra

products involving density and energy could be avoided by performing an extrapolation of
the same order of that used to approximate time derivatives in the intermediate momentum
equation. Then, we shall use Dρ

ρu%̂
n+1
k instead of Dρ

ρu%̂
n+1
k−1 and Cρe

ρuÊ
n+1
k instead of

Cρe
ρuÊ

n+1
k−1 in Eq. (42a). Therefore, there is no need to include such terms in the correction

equation Eq. (42b) since
∥∥%n+1 − %̂n+1

k

∥∥ and ∥∥∥En+1 − Ên+1
k

∥∥∥ are already of order O
(
δtk
)
.

Remark 4.3. Using directly Dρ
ρu%̂

n+1
k and Cρe

ρuÊ
n+1
k involves an explicit treatment of

density and energy in the momentum equation that could imply the introduction of a critical
time step to ensure stability. However, in practice we have not observed such time step
limitation.

4.2. Fractional step algorithm. Taking all the previous information into account, the
fractional step approach that we favor to solve the fully compressible Navier–Stokes prob-
lem in conservative variables is composed of four main steps:

i. Compute an intermediate momentum from Eq. (42a) making use of %̂n+1
k and

Ên+1
k .

ii. Compute an approximation to the density from Eq. (42c), neglectingNn+1
ρu , replac-

ing Un+1 by Ũn+1 and taking into account the previous Laplacian approximation.

(50)
[
Mρ

ρ

Dk

δt
+ φkδtL

]
%n+1 = F n+1

ρ −Cρu
ρ Ũ

n+1 + φkδtL%̂
n+1
k−1 .

iii. Compute an approximation to the total energy from Eq. (42d), replacing Un+1 by
Ũn+1 (already known as a result of the first step).

iv. Update the end-of-step momentum with Eq. (42b) neglecting Nn+1
ρu .

This procedure will make possible to segregate the calculation of the unknowns of the
problem and we shall refer to it as density/energy-correction algorithm, using a similar
nomenclature as it is usually done for incompressible/low Mach algorithms. See Algo-
rithm 1.

Once we introduce the VMS-based stabilization terms, new coupling terms involving the
three unknown conservative variables appear. Hence, some extra information is required in
order to achieve the complete uncoupling process. When needed, we may replace Un+1 by
Ũn+1, %n+1 by %̂n+1

k and En+1 by Ên+1
k . These approximations are supported by Remark

4.1. The remaining terms which could still couple the problem variables can be evaluated
by taking the known values of the unknowns from the previous iteration, time step or
from the intermediate equations. In particular, note that density and energy equations
become coupled, an important fact for the development of the whole methodology. The
coupling blocks are taken to the right-hand side and treated in an explicit manner, generally
with the most up-to-date known values. However, when evaluating the residuals and the
projections, we have found of critical importance to perform the computations with all the
terms evaluated at the same time instant. Otherwise, convergence problems may appear
which we associate with the strong coupling between thermodynamic variables.

Remark 4.4. In the design of fractional step methods for incompressible flows there are
two equations in play taking velocity and pressure as main variables. The classic and
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well-established pressure-correction procedure [23, 26] allows to split the calculation of the
unknowns after performing some extrapolation in the momentum equation, prior to solving
the continuity one. A similar design was carried out in [27] for isentropic flows. However,
for the case of compressible flows, as the problem includes also the energy equation, there
are more possibilities to perform the splitting and hence to design the algorithm. Our
intention in this paper was to follow the same pattern as in previous developments in our
group [23, 24, 25, 26, 27, 28, 44] where the first equation to be solved is the intermediate
momentum equation. Nevertheless, other approaches might be explored.

Algorithm 1 Fractional-step method, order k = 1, 2

(1) Compute the intermediate momentum with density and energy extrapolations as
follows:[

Mρu
ρu

Dk

δt
+Cρu

ρu(%̂n+1
k , Ũn+1) +Dρu

ρu(%̂n+1
k )

]
Ũn+1 = F n+1

ρu −Cρ
ρu(%̂n+1

k , Ũn+1)%n+1
k−1

−Dρ
ρu(%̂n+1

k , Ũn+1)%̂n+1
k −Cρe

ρuÊ
n+1
k

(2) Compute density using the previous intermediate momentum values:[
Mρ

ρ

Dk

δt
+ φkδtL

]
%n+1 = F n+1

ρ −Cρu
ρ Ũ

n+1 + φkδtL%̂
n+1
k−1

(3) Compute energy using intermediate momentum and density solutions:[
Mρe

ρe

Dk

δt
+Cρe

ρe(%n+1, Ũn+1) +Dρe
ρe(%

n+1)

]
En+1 = F n+1

ρe −Cρ
ρe(%

n+1, Ũn+1, Ên+1
k )%n+1

−Dρ
ρe(%

n+1, Ũn+1, Ên+1
k )%n+1 −Cρu

ρe (%n+1, Ũn+1, Ên+1
k )Ũn+1

−Dρu
ρe (%n+1, Ũn+1)Ũn+1

(4) Momentum correction, i.e., end-of-step momentum calculation:

Mρu
ρu

Un+1

φkδt
= Mρu

ρu

Ũn+1

φkδt
−Cρ

ρu(%n+1 − %n+1
k−1)

5. Numerical examples

In this section, a set of numerical examples is presented to show the capabilities of
the proposed fractional step method for the simulation of compressible flows at different
regimes.

All the implementations of the algorithms in this paper have been carried out into
our in-house code FEMUSS (Finite Element Method Using Subgrid Scales). FEMUSS is an
object-oriented Fortran-based finite element code which follows a modular approach for
multiphysics interaction and performs parallel computations under MPI directives. In order
to solve the final underlying systems of linear equations, and if nothing else is stated, we
make use of an iterative algorithm based on the stabilized version of the BiConjugate
Gradient method BiCGstab [45], which is already included as a part of the parallel solver
library PETSc [46], which has been coupled with FEMUSS.

We consider an ideal gas with γ = 1.4 (Rg = 287 J/(kg K)) and cp = 1004.5 J/(kg K)
and Pr = 0.72. A maximum of 10 iterations is set to solve each non-linear problem, and
the relative numerical tolerance for the L2-norm is 1× 10−5. All the plots are in SI units.

5.1. Convergence test. In this first example we consider a simple convergence test whose
goal is to check numerically the time rate of convergence for the proposed fractional step
algorithm. We recall that as time integration scheme we use backward differences, of the
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same order as the fractional step to be tested. Here we make use of the manufactured
solutions method, which serves as a tool to quantify the numerical errors of PDE solvers.
In particular, exact solutions for density, momentum and energy are specified a priori,
which are composed of smooth functions, although they have no physical meaning. The
compressible Navier–Stokes problem is solved over the unit square Ω = [0, 1] × [0, 1] and
the force term is set so that the exact solution of the problem is,

ρ(x, y, t) := π + x cos(sin t) + y sin(sin t),(51a)
ρu(x, y, t) := −y cos(t),(51b)
ρv(x, y, t) := x cos(t),(51c)
ρe(x, y, t) := 4π + x cos(sin(t)) + y sin(sin(t)).(51d)

The finite element partition is structured and uniform. It contains Q1/Q1/Q1 finite
elements of size h = 1/100. Both the boundary and initial conditions are evaluated from
the previous equations, and particularized for each of the sides of the square at each time
step and for t = 0, respectively. We select a range of time step sizes and, in addition, we
set µ = 1×10−5 kg/(m s), κ = 0.0015 W/(m K), and we make use of a sparse direct solver
from the MUMPS library [47, 48]. The error between the exact solution and the numerical
one is measured in the `2-norm of the sequence of spatial L2-norms of the solutions, i.e.,

Ef :=

(
δt

N∑
n=1

‖fnh − f(tn)‖2L2

‖f(tn)‖2L2

)1/2

,

for f = ρ, ρu or ρe, respectively.
Figure 1 shows the convergence results obtained with the fractional step algorithm for

both first and second order time integration schemes. The expected convergence rate can
be clearly seen for both temporal approximations and for all the time step sizes.

5.2. Supersonic viscous flow over a flat plate. The so–called Carter’s flat plate is
a simple and classical benchmark to examine the performance of the solver in a problem
involving shock waves, boundary layers and the interaction between them. This example
is based on a 2D viscous supersonic flow over a flat plate with conditions, Re∞ = 1, 000
and Ma∞ = 3.0.

Figure 2 shows the problem setup. If the coordinate origin is placed and the tip of the
plate, the computational domain is the rectangle covering from −0.25 m ≤ x ≤ 1.2 m and
0 ≤ y ≤ 0.8 m. Density, velocity and temperature are set at the left and top boundaries
of the domain. These prescribed values are, respectively, ρ∞ = 1 kg/m3, u∞ = 1 m/s,
v∞ = 0 m/s and ϑ∞ = 2.769 × 10−4 K. The no-slip boundary condition u = 0 m/s is
enforced at the plate wall, together with the stagnation temperature, which is computed
as,

(52) ϑstag = ϑ∞

(
1 +

γ − 1

2
Ma2
∞

)
.

On the "symmetric wall", i.e., the boundary prior to the plate, normal velocity, tangential
traction, and heat flux are all set to zero. No prescriptions are made at the outflow, and
the computations are initialized with the free-stream value for each degree of freedom in
the entire domain. The temperature-dependent viscosity is computed according to the
following form of the Sutherland’s law,

(53) µ = µ(ϑ) = C1
ϑ1.5

ϑ+ S
,

where S = 0.0001406, and C1 = 0.0906 is a scaling factor chosen so as to yield the desired
free-stream conditions. The simulation was carried out using a time step corresponding to
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Figure 1. Convergence test: time convergence of the relative errors of the
three unknown variables measured in the `2(0, tf, L

2(Ω))-norm. The number
after the dash symbol stands for first (1) or second (2) order scheme in time.

a CFL of 4. Here, we estimate the critical time step for the explicit scheme as the minimum
of the stabilization parameters, i.e., δt = min(τρ, τρu, τρe).

Figure 2. Supersonic flow over a flat plate. Problem setup and boundary
conditions.

In addition, we discretize the domain with a structured mesh of square elements of size
h = 0.01. Figure 3 displays the obtained contours of density, velocity and temperature.
The data is in general agreement with literature results, e.g. [49, 50, 51, 52]. The solution
is computed with the gradient-based shock capturing operator. Several values for the
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operator constant Csc were tested, Csc = {0.25, 0.5, 0.75} although the results were all
really similar. We shall use Csc = 0.25 in the upcoming examples.

(a) Density, ρ (b) Velocity magnitude, ‖u‖

(c) Temperature, ϑ

Figure 3. Carter’s flow problem: (a) density, (b) velocity magnitude and
(c) temperature contours computed with the monolithic algorithm.

In Figure 4, we plot the normalized density and temperature profiles along the line
x = 1.2 for the stationary solution, in order to further compare our solutions with the
literature. Although the obtained peak point values are not coincident with the reference
ones, an overall good agreement with the reference results can be observed.

Since the solution is stationary, this example serves to demonstrate that the approxima-
tions in the matrices introduced in the design of the fractional step scheme maintain the
accuracy and the ability to model shocks of the monolithic formulation.

5.3. Sypersonic viscous flow over a cylinder. Another classical example in compress-
ible flows is the supersonic viscous flow over a cylinder, as sketched in Figure 5, with free
stream conditions Re∞ = 2, 000 and Ma∞ = 2.

The specification of boundary conditions is as follows: all variables are specified on the
upstream boundary matching those conditions. The cylinder wall is assumed to be adia-
batic, no-slip condition is specified for the velocity on its surface, and at the downstream
boundary, no conditions are imposed. The computations are initialized with the free-
stream values for each degree of freedom in the entire domain. Likewise, we set µ = 0.001
kg/(m s) and κ = 1.39514 W/(m K).

The finite element mesh is unstructured and it is composed by 31,288 linear triangular
elements. Smaller elements are used near the wall cylinder, whereas the mesh is coarser in
the rest of the domain. The mesh size was fixed to h = 0.005 m in the finer region near
the cylinder wall.
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Figure 4. Carter’s flow problem: Comparison of the obtained (a) nor-
malized temperature and (b) normalized density along the line x = 1.2
m with some results reported in the literature. Hereinafter, MN stands for
monolithic results and FS for fractional step results.

Figure 5. Supersonic flow over a cylinder: domain specification. The com-
putational domain is defined as the area enclosed within two arcs passing,
respectively, through points A(0,15), B(-4,0), C(0,-15), and A, D(10,0) and
C. The cylinder is placed at the origin of coordinates with diameter equal
to 2 m.

Comparing the solution obtained with monolithic and fractional step formulations, the
field contours are almost identical, what shows, as in the previous example, that the space
accuracy is not affected by the design of the fractional step scheme. Density, pressure, Mach
number and temperature distributions are shown in Figure 6. A supersonic expansion
develops from the cylinder surface, while in the wake the flow pattern is characterized
by a recirculation zone and a weak tail shock. The presented contours for the steady
state solution are in accordance with the ones presented in [14, 41, 53], although neither
Sutherland law nor power law were used for viscosity in this example.

Since no noticeable qualitative differences were observed in our results, some aerody-
namic integral values of the flow were computed. In particular, we calculate the lift and
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(a) Density, ρ (b) Pressure, p

(c) Mach number, Ma (d) Temperature, ϑ

Figure 6. Supersonic flow over a cylinder: (a) density, (b) pressure, (c)
Mach number and (d) temperature contours. The solution is obtained using
the fractional step formulation together with the isotropic gradient-based
shock capturing method.

drag non-dimensional coefficients, i.e.,

Cd =
fx

1
2ρ∞‖u‖

2
∞D

,(54a)

Cl =
fy

1
2ρ∞‖u‖

2
∞D

,(54b)

where the exerted force of the fluid over the cylinder is,

(55) f = −
∫
∂ΩCylinder

(
−pInsd

+ σσσd) · n d∂Ω.

The results are Cd = 1.439 for the monolithic case and Cd = 1.442 for the fractional
step counterpart, which have an accuracy comparable to that reported in [53], Cd = 1.44.



S. PARADA, R. CODINA & J. BAIGES 21

5.4. NACA0012 airfoil. In this section we consider the well-known geometry of the
NACA0012 airfoil with chord length c = 1 m and a sharp trailing edge. The objective
now is to test our methodology in a wider range of regimes. For this purpose, we consider
two cases with angle of attack AoA = 0°: first a subsonic case with Ma∞ = 0.5 and
Re∞ = 5, 000, and later Ma∞ = 0.85 and Re∞ = 10, 000, a transonic problem.

In order to perform the simulation, we define a circular O-type domain with the mid-
chord point of the airfoil located at the coordinate origin. The far-field boundary is placed
at 15 chord lengths from the airfoil. In the inflow part of the boundary, velocity and
temperature are fixed according to the selected Reynolds and Mach numbers, whereas in
the outflow part only density is prescribed. A no slip adiabatic wall condition is imposed
at the airfoil surface and the computations are initialized with free-stream conditions in
the entire domain. Furthermore, we use an unstructured mesh of triangular elements,
including non-uniform refinement towards the airfoil surface. Figure 7 reports the details
of the mesh, which features 254,186 elements. The problem is solved with a time step
corresponding to a CFL of 12.

(a) General view of the mesh.

(b) Mesh around the airfoil. (c) Airfoil surface refinement.

Figure 7. Mesh refinement for the NACA 0012 simulations.

5.4.1. Ma=0.5, Re=5,000. First we present the subsonic viscous flow simulation. Figure 8
displays density, Mach number and temperature distributions for the steady-state solution
of this problem. Likewise, Figure 9 contains the chord-wise distributions of pressure and
skin friction coefficients, comparing both fractional step and monolithic results with other
researchers [49, 53, 54]. These are computed from,

Cp =
p− p∞

1
2ρ∞||u||2∞

,(56a)
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Cf =
τw

1
2ρ∞||u||2∞

,(56b)

where p∞ is the inflow static pressure and τw = (σσσ · n) · t is the wall stress, with t the
tangent vector to the surface. It is observed that the results exhibit a clear agreement with
the literature.

(a) Density, ρ/ρ∞ (b) Mach number

(c) Temperature, ϑ/ϑ∞

Figure 8. Subsonic flow over a NACA 0012 profile: (a) density, (b) Mach
number and (c) temperature distributions around the airfoil computed with
the second order version of the fractional step scheme.
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(b) Skin friction coefficient, Cf

Figure 9. Subsonic flow over a NACA 0012 profile: (a) Pressure coeffi-
cient, and (b) skin friction coefficient on the aerofoil.

Additionally, the drag coefficient values are Cd = 0.0548 for the monolithic computations
and Cd = 0.0551 for the fractional step counterpart, which are in line with the values
reported by Mittal [53], Cd = 0.0550 and Venkatkrishnan [54], Cd = 0.0554. Finally, for
the separation point, it is located at 82.7 % and 82.9 % of the chord from the leading edge,
respectively for monolithic and fractional step algorithms. These results are summarized
in Table 1 down below.
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Ref. Cd xs/c
Mittal [53] 0.0550 0.813

Venkatkrishnan [54] 0.0554 [0.810,0.825]
Present-Monolithic 0.0548 0.827
Present-Fractional 0.0551 0.829

Table 1. Subsonic flow over a NACA 0012 profile: comparison of drag
coefficient and separation point.

5.4.2. Ma=0.85, Re=10,000. We switch now the conditions of the problem to a transonic
regime with Re = 10, 000 and turn on the gradient-based shock capturing operator with
Csc = 0.25. After an initial transient period is overcome, a fully developed periodic solution
is established. Figure 10 displays density, Mach number and temperature distributions
once this periodic flow has been fully developed, and Figure 11 contains the pressure time
history comparing fractional step and monolithic solutions. Both formulations obtain very
similar results. The flow evolves as described in the literature [55]: it originally expands
from the front stagnation point and then the boundary layer thickness begins to increase
until the interaction between the layer and the shock wave results in the separation of flow.
It is to be noticed that the vortices are shed from both, the upper and the lower surfaces
of the airfoil. Moreover, two different instability mechanisms are active in the wake region,
one mainly associated with the shear layer (also known as Kelvin-Helmoltz mechanism),
and the other one resulting from the interaction between the layer and the shock wave.

5.5. 3D flow over a sphere. In this final numerical example we model a 3D flow over a
sphere. The purpose of this simulation is twofold. First, we use this example to show the
applicability of the developed compressible formulation in complex 3D problems. Second,
we will perform some simple tests in order to provide some insights on the actual com-
putational savings that the fractional step implementation may offer with respect to the
standard monolithic solver. We consider the flow around a sphere at Re∞ = 5, 000 and
two different Mach numbers, Ma∞ = 0.25 and Ma∞ = 0.75.

The problem setup is shown in Figure 12. A uniform flow with the desired conditions
impinges the left-inlet boundary, where density, velocity and temperature are prescribed.
The lateral boundaries are defined as no-penetration and adiabatic, and the right-outflow
boundary is traction free and adiabatic. The surface of the sphere is no-slip as well as
adiabatic. As usual, the computations are initiated with free stream values. In order
to build up the mesh, we first assign a size h = 0.005 over the sphere with uniform
triangles. Likewise, two cylindrical refinement zones around and downstream of the sphere
are introduced in order to better reproduce the wake of the flow, one with diameter of 2
m and the second one with diameter of 5 m. The remainder of the domain is filled with
tetrahedral elements. A cut through the mesh is shown in Figure 13 in order to illustrate
the interior of the domain. The mesh accounts for a total of ∼ 5.8 million elements. Figure
14 shows streamlines just to give and idea of the features of the flow.

The left part in Table 2 shows the savings in CPU time of the fractional step algorithms
(second order) for the two cases considered with respect to the monolithic formulation. A
simple implementation over a series of time steps has been used. The savings are presented
as the ratio between the CPU time of the fractional step scheme over the CPU time of the
corresponding monolithic scheme. In addition, we collect the number of iterations needed
by the solver to obtain the solution of the system of equations and the number of non-
linear iterations used to obtain converged results. In fractional step schemes, each variable
requires a different number of iterations to solve the corresponding linear system. Apart
from the fact that the linear systems to be solved in the fractional step method are smaller
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(a) Density, ρ/ρ∞ (b) Mach number

(c) Temperature, ϑ/ϑ∞

Figure 10. Transonic flow over a NACA 0012 profile: (a) Density, (b)
Mach number and (c) temperature distributions around the aerofoil com-
puted with the second order version of the fractional step scheme.
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Figure 11. Transonic flow over a NACA 0012 profile: pressure time his-
tory for both formulations at point (3.5,0) located at the wake of the airfoil.

and usually better conditioned, the main drawback of the monolithic formulation is that
the total number of iterations of the linear system solver is driven by the slowest variable.
This is at least our experience from our previous works on fractional step algorithms



S. PARADA, R. CODINA & J. BAIGES 25

Figure 12. Flow around a sphere. Problem setup and domain specification.

Figure 13. Flow around a sphere. Mesh cut.

Case Time ratio Monolithic Fractional step
nni/nsi nniρu/nsiρu nsiρ nniρe/nsiρe

Ma=0.25 0.58 8/9 5/7 11 2/7
Ma=0.75 0.89 7/7 5/6 7 4/6

Table 2. Comparison between the number of non-linear and solver iter-
ations of the monolithic and of the second order fractional step algorithm
using the BDF2 time integrator. Here, nni is the average number of nonlin-
ear iterations to achieve convergence and nsi stands for the average number
of iterations needed by the iterative algebraic solver.

for incompressible, isentropic and compressible-primitive formulations (see the section of
numerical results and conclusions in [26, 27, 28]). The general trend is that the slowest
variable in those cases is the pressure. This point is illustrated by the first raw of Table
2. As expected, for the low Mach subsonic Ma∞ = 0.25 case the slowest variable is the
density (pressure). Not only there is a reduction in the computational cost but also the
non-linearities are solved in a better manner. However, the benefit of using a fractional step
scheme in conservative variables degrades as the Mach number is progressively increased.
As the problem is far from the incompressible behavior, the density stops being the slowest
variable and then we observe that the number of iterations of the solver is basically the
same for both monolithic and fractional step methodologies. This is why the obtained
savings of the Ma∞ = 0.75 case are not very important, although more important savings
should be expected in very large scale problems.
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Figure 14. Flow around a sphere: stream lines for Ma = 0.25.

6. Conclusions

In this article, we have introduced a fractional step technique to solve the compressible
Navier–Stokes equations using conservative variables. The development of this methodol-
ogy, which is up to second order in time, has been designed at the algebraic level, departing
from the fully discretized monolithic problem both in space and in time and by using the
extrapolation concept.

From the numerical viewpoint, the herein proposed fractional step compressible model
is based on a stabilized VMS method and an implicit scheme to advance the solution in
time. In addition, other ingredients were appended, such as the orthogonal and dynamic
definition of subscales and the shock-captuting operator which is calculated by using the
orthogonal projection onto the finite element space of the gradient of the solution.

First, we have shown that the fractional step method introduces an splitting error but it
maintains the general temporal accuracy of the time integration scheme. Furthermore, the
supersonic viscous flow over a cylinder and the classical flow over a plate have been used
to test the performance of the algorithm in the supersonic regime, where the interaction
of shocks and shear layers is relevant. Similarly, the NACA0012 flow problem was used
to evaluate the behavior of the implementation in subsonic and transonic cases also with
adequate results. Finally we have shown an involved 3D case and also we have provided
some insights on the possible savings that a fractional step scheme may offer.
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Appendix A

In order to derive the complete expressions for the Euler and diffusion matrices, it
is mandatory to express the constitutive relations in terms of the vector of conservative
variables, namely U , defined in Eq. (8a).

In this section we will use index notation, with indexes i, j, k, l, b running from 1 to nsd.
Taking into account the definition of the viscous part of the Newtonian stress tensor in Eq.
(2) and denoting by m := ρu the linear momentum, that tensor can be directly calculated
using the conservative variables as,

σd
ij = ν

(
∂mi

∂xj
+
∂mj

∂xi

)
− 2ν

3

(
∂mb

∂xb

)
δij

− ν

ρ

(
mi

∂ρ

∂xj
+mj

∂ρ

∂xi

)
+

2ν

3ρ

(
ml

∂ρ

∂xl

)
δij .(57)

In this equation, δij is the Kronecker delta (i.e., δij = 1 if i = j and δij = 0 if i 6= j) and
ν is the kinematic viscosity. In order to calculate the pressure and the speed of sound in
terms of conservative variables, the caloric equation of state Eq. (5) and the ideal gas state
equation Eq. (4) are used. It is then found that the pressure and the speed of sound can
be written respectively as,

p = (γ − 1)

(
(ρe)− m ·m

2ρ

)
,(58)

a =

√
γ(γ − 1)

(
(ρe)

ρ
− m ·m

2ρ2

)
.(59)

In a similar fashion, applying the caloric and state equations to expand Eq. (3), the heat
flux vector can be computed as,

(60) qi =

[
κ(ρe)

cvρ2
− κ(m ·m)

cvρ3

]
∂ρ

∂xi
+
κmj

cvρ2

∂mj

∂xi
− κ

ρcv

∂(ρe)

∂xi
.

The Euler matrix Aj(U) is developed using the spatial derivatives of the pressure using
Eq. (58) and it gives,

Aj(U) =

 0 eᵀj 0

uuj + a1ej Insd
uj + u⊗ ej − (γ − 1)(ej ⊗ ej)u

ᵀ (γ − 1)(ej ⊗ ej)
(a1 − a2)uj −(γ − 1)uᵀuj + a2e

ᵀ
j γuj

 ,
for j = 1, . . . , nsd., and where ej stands for the unit vector in the j-th direction. In the
previous definition, the thermodynamic relations a1 and a2 stand for,

a1 =
1

2
(γ − 1)|u|2,

a2 =
(ρe) + p

ρ
.

Let us denote by 0 the vector of Rnsd with null components. Using the viscous stress
tensor and heat flux vector definitions based on conservative variables i.e. Eqs. (57) – (60)
and the ideal gas law, each matrix component in the diffusive matrix can be respectively
computed as,

Kjj(U) =

 0 0ᵀ 0
−νu νInsd

0

(α− ν)|u|2 − α
ρ (ρe) (ν − α)uᵀ α

 ,
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with j = 1, . . . , nsd and,

Kkj(U) =

 0 0ᵀ 0
−νukej + 2

3νujek ν(ej ⊗ ek)− 2
3ν(ek ⊗ ej) 0

−1
3νukuj νuje

ᵀ
k −

2
3νuke

ᵀ
j 0

 ,
with j, k = 1, . . . , nsd, and k 6= j. Finally, the reactive matrix can be written in terms of
the external sources as,

(61) S =

0 0 0
f 0 0
r fᵀ 0

 .
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