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Abstract

This paper describes a modal analysis technique to approximate the vibrations of in-
compressible elastic solids using a stabilized finite element method to approximate the
associated eigenvalue problem. It is explained why residual based formulations are not
appropriate in this case, and a formulation involving only the pressure gradient is em-
ployed. The effect of the stabilization term compared to a Galerkin approach is detailed,
both in the derivation of the approximate formulation and in the error estimate provided.
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1. Introduction

Analyzing deformations in incompressible solid mechanics has become increasingly im-
portant in recent years due to its wide applications in industrial and research fields, and
it is currently the subject of an active research, see [1–8] and therein references. There are
numerous methodologies devised to approximate the incompressible linear elasticity equa-
tions, including stabilized finite element methods (FEM) [9–13], discontinuous Galerkin
methods [14], methods based on the least square approach [15], finite volume methods
[1], collocation approaches [16], isogeometric approaches [17–19], and boundary element
methods [20].

It is well known that the use of standard finite element approximations (as well as
other approaches, see, e.g., [1, 21, 22] and the references therein) in elasticity problems
is restricted due to the Poisson locking (dilatation), which is associated with the mathe-
matical formulation being dependent on the Poisson ratio. In the limiting case where the
Poisson ratio is equal to 0.5, the unknown of the problem (displacement) is divergence free,
whose imposition in the formulation leads to the locking phenomenon (see, for instance
[23–26]). As opposed to the application in various structural models involving compress-
ible materials, the incompressible media necessitate the incorporation of the pressure, or
mean stress, into the model. In the standard Galerkin formulations, the displacement
and pressure interpolations are required to satisfy the classical Babuška–Brezzi inf–sup
condition [14, 22, 27–29]. These considerations apply to both the classical boundary value
problem defining steady state incompressible elasticity (equivalently incompressible fluid
flows) and the eigenproblem to be described in the sequel.

Aiming at avoiding the volumetric locking at the incompressible limit as well as cir-
cumventing the restrictions associated with the inf–sup condition, a great number of alter-
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native stabilized finite element approaches have been proposed to solve the incompressible
elasticity problems. An analysis of a mixed enhanced strain finite element method for the
displacement-pressure formulation is presented in [30]. A mixed finite element method
using primal and dual meshes is implemented in [29], where the standard space for the
displacement is enriched with element-wise bubble functions. Another mixed formulation
based on the dynamic variational multiscale approach is proposed in [31], where the mo-
mentum equation is complemented by a rate equation for the evaluation of the pressure.
Stabilization strategies based on mesh-free polynomial projection methods are considered
in [32, 33]. In [27], a pressure-curl stabilization approach is proposed in which the deter-
mination of the pressure stabilization parameter is based on stability concerns, and the
curl stabilization parameter is determined on the account of dispersion.

In the case of transient problems, modal analysis constitutes an efficient alternative
that is widely implemented to handle vibration problems of elastic materials (see, e.g.,
[2, 34–36]). In particular, let us cite the recent work [6], where a finite element method
with discontinuous pressure basis functions is implemented to study the free vibrations of
incompressible rectangular plates.

In this paper, our main objective is to present a modal analysis technique to simu-
late the linear elastic behavior of incompressible elastic solids where the incompressibility
constraint is enforced by incorporating the pressure. The ultimate aim is to extend the
robustness and effectiveness of the modal analysis in the mixed finite element framework
recently proposed in [37]. In the system of transient elasticity equations consisting of a
second order temporal derivative, a harmonic behavior of the displacement is assumed
and each mode is considered to be of the form φ(x)eiωt, where φ(x) is the vector field
of displacement amplitudes associated with the frequency ω. This is substituted into
the equilibrium equations where the forcing terms are not considered in the case of free
vibrations, yielding an eigenvalue problem (EVP) in which the eigenfunctions are the am-
plitudes φ(x), and the eigenvalues are the squares of the frequencies, ω2. There exists a
complete set of eigensolutions corresponding to positive eigenvalues as the elasticity oper-
ator is symmetric and positive definite, and hence, and the true solution can be expressed
as a series of modes.

An eigenvalue problem has to be handled with a special precaution when it is ap-
proximated by using a stabilized finite element method. A residual based stabilization
technique may lead to a quadratic EVP even if it is applied to approximate a linear EVP.
We have proposed a FEM for the Stokes EVP that preserves the linearity of the continuous
problem in [38]. The method is framed within the variational multiscale (VMS) concept,
which assumes that the unknown can be split into a finite element component and a sub-
grid scale that needs to be modeled, and it has been applied to solve stationary boundary
value problems in incompressible linear elasticity models in [11–13, 28], for example. The
key point is to consider that this subgrid scale is orthogonal, in the L2-sense, to the finite
element component. After approximating it, the result is a problem for the finite element
component of the displacement amplitude and the pressure which permits any spatial in-
terpolation. This yields an EVP that is linear, and that can be solved using arbitrary
interpolations for the displacement and the pressure. We also remark here the possibility
of alternative directions in approximating EVPs. An example is given in a recent study [8]
in which two-field and three-field finite element least squares formulations are presented
for EVPs associated with linear elasticity.

This paper is organized as follows. In Section 2 we describe the problem to be solved
at the continuous level, both the original elastodynamic equations and the modal analysis,
and considering both the differential and the weak form of the equations to be solved. The
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stabilized finite element approximation we propose is described in Section 3. Section 4 is
concerned with the discrete modal analysis description, from which an approximate time
integration scheme is presented and analyzed in Section 5. Numerical results are presented
in Section 6, and finally conclusions are drawn in Section 7.

2. Statement of the problem

We consider the problem of modeling the vibrations of an incompressible linearly elastic
body, assuming in particular infinitesimal strains. This initial and boundary value problem
is considered to be defined on an open and bounded polyhedral domain Ω ⊂ Rd (d = 2, 3),
with boundary ∂Ω = Γu ∪ Γt, Γu ∩ Γt = ∅, and time t ∈ [0, T ). It consists of finding a
displacement field u : Ω× [0, T )→ Rd and a pressure field p : Ω× (0, T )→ R such that

ρ∂2
ttu− 2µ∇ · (∇Su) +∇p = f in Ω, t ∈ (0, T ), (1)

∇ · u = 0 in Ω, t ∈ (0, T ), (2)

u = 0 on Γu, t ∈ (0, T ), (3)

n · (−p I + 2µ∇Su) = t on Γt, t ∈ (0, T ), (4)

u = u0 in Ω, t = 0, (5)

∂tu = v0 in Ω, t = 0. (6)

In these equations, ∇ denotes the standard nabla operator and ∇S stands for the sym-
metrical part of the gradient of a vector field. The data of the problem are the force f ,
the surface traction t, the initial displacement u0(x) and the initial velocity v0(x). The
density ρ and the shear modulus µ are given physical properties. The unit exterior normal
to a domain is denoted as n.

To write the weak form of the problem, let V = {v ∈ H1(Ω)d | v = 0 on Γu} and
Q = L2(Ω) if Γt 6= ∅ and Q = L2(Ω)/R if Γt = ∅. The inner product in L2(Ω) (for
scalars, vectors or tensors) is written as (·, ·), in H1(Ω) as (·, ·)H1 , and the integral of
the product of two functions (for scalars or vectors) in a region R as 〈·, ·〉R. Assuming
f : (0, T ) → H−1(Ω)d, t : (0, T ) → H−1/2(Γt)

d, u0 ∈ V and v0 ∈ L2(Ω)d, the weak form
of Problem (1)-(6) consists of finding u : [0, T )→ V and p : (0, T )→ Q such that

ρ(∂2
ttu,v) + 2µ(∇Su,∇Sv)− (p,∇ · v) = 〈f ,v〉Ω + 〈t,v〉Γt ∀v ∈ V, t ∈ (0, T ), (7)

(q,∇ · u) = 0 ∀q ∈ Q, t ∈ (0, T ), (8)

(u,v)H1 = (u0,v)H1 ∀v ∈ V, t = 0, (9)

(∂tu,v) = (v0,v) ∀v ∈ L2(Ω)d, t = 0. (10)

The modal analysis at the continuous level of Problem (1)-(6) consists of expressing
the solution in terms of the modes of the solution of the homogeneous problem, i.e., the
problem obtained with f = 0 and t = 0:

ρ∂2
ttuH − 2µ∇ · (∇SuH) +∇pH = 0 in Ω, t ∈ (0, T ),

∇ · uH = 0 in Ω, t ∈ (0, T ),

uH = 0 on Γu, t ∈ (0, T ),

n · (−pH I + 2µ∇SuH) = 0 on Γt, t ∈ (0, T ),

uH = u0 in Ω, t = 0,

∂tuH = v0 in Ω, t = 0.
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Writing the solution to this problem as

uH(x, t) =

∞∑
n=0

eiωntφn(x), pH(x, t) =

∞∑
n=0

eiωntψn(x), (11)

and assuming the modes to be linearly independent, it turns out that the amplitudes of
the modes φn(x), ψn(x) and the frequencies ωn must be the solution of the EVP:

−2µ∇ · (∇Sφn) +∇ψn = ρω2
nφn in Ω, (12)

∇ · φn = 0 in Ω, (13)

φn = 0 on Γu, (14)

n · (−ψn I + 2µ∇Sφn) = 0 on Γt, (15)

for n = 1, 2, . . . . It is known that for this problem there is a complete set of eigenfunctions
and corresponding eigenvalues which can be arranged as

{φ1(x), . . . ,φn(x), . . . }, {ψ1(x), . . . , ψn(x), . . . }, 0 < ω2
1 ≤ ω2

2 ≤ . . . ω2
n ≤ . . . ,

which are eigenpairs (non-trivial solutions) of (12)-(15). The displacement eigenfunctions
and their symmetric gradients can be taken to be L2(Ω)-orthogonal, satisfying

(φi,φj) = |Ω|δij , 2µ(∇Sφi,∇Sφj) = ρω2
i |Ω|δij , i, j = 1, 2, . . . , (16)

where δij is the Kronecker delta. The volume of the computational domain |Ω| has been
introduced to consider the displacement eigenfunctions dimensionless. Thus, these eigen-
functions are indeed linearly independent.

In what follows, we shall omit the subscript n in the eigenfunctions φn, ψn and eigen-
values ω2

n, understanding that they correspond to a particular mode of the decomposition
in Equation (11). The same will be done for the discrete counterpart of the problem
developed in the following section.

The weak form of the EVP (12)-(15) can be written as follows: find φ ∈ V , ψ ∈ Q
and ω2 ∈ R+ such that

2µ(∇Sφ,∇Sv)− (ψ,∇ · v) = ρω2(φ,v) ∀v ∈ V, (17)

(q,∇ · φ) = 0 ∀q ∈ Q. (18)

3. Finite element approximation of the eigenproblem

3.1. Galerkin finite element approximation

Let us consider a finite element partition Th = {K} of the domain Ω, with size h =
maxK∈Th diam(K). The collection of all edges of this partition is denoted as Eh = {E}.
From Th we may construct finite element spaces Vh and Qh to approximate V and Q,
respectively. We will restrict in the following to conforming approximations. Likewise, we
shall need the space V̄h ⊂ H1(Ω)d, constructed as Vh but without prescribing the Dirichlet
boundary conditions.

Let nu be the number of nodes to interpolate the displacement and np the number
of nodes to interpolate the pressure. The finite element approximations to u and p,
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respectively denoted uh and ph, will be

u(x, t) ≈ uh(x, t) =

nu∑
a=1

Na
u(x)ua(t), p(x, t) ≈ ph(x, t) =

np∑
b=1

N b
p(x)pb(t), (19)

where Na
u(x) and N b

p(x) are the displacement and pressure shape functions and ua(t) and

pb(t) the displacement and pressure nodal values, respectively. The Galerkin finite element
approximation of Problem (7)-(10) consists of finding uh : [0, T ) → Vh and ph : (0, T ) →
Qh such that

ρ(∂2
ttuh,vh) + 2µ(∇Suh,∇Svh)− (ph,∇ · vh) = 〈f ,vh〉Ω + 〈t,vh〉Γt

∀vh ∈ Vh, t ∈ (0, T ), (20)

(qh,∇ · uh) = 0 ∀qh ∈ Qh, t ∈ (0, T ), (21)

(uh,vh)H1 = (u0,vh)H1 ∀vh ∈ Vh, t = 0, (22)

(∂tuh,vh) = (v0,vh) ∀vh ∈ Vh, t = 0. (23)

It is well known that this formulation yields stable displacement-pressure results only if an
inf–sup condition is satisfied between the corresponding approximation spaces Vh and Qh.
This restricts significantly the possible choices for these spaces. To avoid this restriction,
we propose in the following a stabilized finite element formulation that is stable for any
choice of Vh and Qh. Obviously, these comments for the elastodynamic Problem (7)-(10)
are also applicable to the EVP (17)-(18), whose discrete Galerkin finite element version
consists of finding φh ∈ Vh, ψh ∈ Qh and ω2

h ∈ R+ such that

2µ(∇Sφh,∇Svh)− (ψh,∇ · vh) = ρω2
h(φh,vh) ∀vh ∈ Vh, (24)

(qh,∇ · φh) = 0 ∀qh ∈ Qh. (25)

3.2. Stabilized finite element formulation

We propose to use a stabilized finite element method based on the Variational Multi-
Scale (VMS) concept. We will not detail the formulation here, which can be found else-
where [11–13, 39]. This formulation reads: find uh : [0, T ) → Vh and ph : (0, T ) → Qh

such that

ρ(∂2
ttuh,vh) + 2µ(∇Suh,∇Svh)− (ph,∇ · vh)

+ (qh,∇ · uh)− 〈f ,vh〉Ω − 〈t,vh〉Γt

+
∑
K

τK

〈
P̃
[
ρ∂2

ttuh − 2µ∇ · (∇Suh) +∇ph − f
]
, 2µ∇ · (∇Svh) +∇qh

〉
K

+
∑
E

τE
〈
J−phI + 2µ∇SuhK, J−qhI− 2µ∇SvhK

〉
E

= 0, (26)

for all vh ∈ Vh and qh ∈ Qh, and satisfying also the initial conditions (22) and (23). In
this equation, P̃ is a projection than can be taken as P̃ = I (the identity) in classical
residual-based stabilized finite element methods or P̃ = P⊥h , the L2(Ω)-projection to the
space orthogonal to V̄h (recall that Vh ⊂ V̄h, as functions in V̄h do not necessarily satisfy
the Dirichlet boundary conditions). The jump of a tensor T over an edge is defined as
JTKE = n1 · T|∂K1∩E + n2 · T|∂K2∩E , where K1 and K2 are the elements that share the
edge E, disregarding the second term if E ⊂ ∂Ω. Finally, τK and τE are the stabilization
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parameters, computed as

τK =
h2
K

4µk2
, τE =

hK
4µk

,

k being the order of the finite element polynomials. In the following, we will consider
the finite element meshes quasi-uniform, so that these parameters can be computed with
the diameter of the finite element partition. In the general case, the weighted projections
described in [40] can be used.

The formulation given by Equation (26) is quite general. It allows for arbitrary inter-
polations of displacement and pressure, yielding stable and optimally accurate solutions,
in particular when equal interpolation is used. However, particular care is needed if we
wish to apply it to the EVP (17)-(18). In this case, the stabilized version of Problem (25)
is: find φh ∈ Vh, ψh ∈ Qh and ω2

h ∈ R+ such that

2µ(∇Sφh,∇Svh)− (ψh,∇ · vh) + (qh,∇ · φh)− ρω2
h(φh,vh)

+
∑
K

τK

〈
P̃
[
−2µ∇ · (∇Sφh) +∇ψh − ω2

hφh

]
, 2µ∇ · (∇Svh) +∇qh + ω2

hvh

〉
K

+
∑
E

τE
〈
J−ψhI + 2µ∇SφhK, J−qhI− 2µ∇SvhK

〉
E

= 0, (27)

for all vh ∈ Vh and qh ∈ Qh. The obvious difficulty with this standard residual based
approach, in general, is that if P̃ [φh] 6= 0 the resulting EVP involves ω2

h and ω4
h, thus

introducing a nonlinearity that would complicate enormously the problem.
The way to overcome this difficulty is to take P̃ = P⊥h , since P⊥h [φh] = 0. This case

corresponds to the orthogonal sub-grid scale (OSGS) stabilization method. Moreover, we
have that P⊥h (f) converges to 0 with h at the optimal order in L2(Ω) for any function f
smooth enough (recall that P⊥h (f) ∈ V̄ ⊥h ). Thus, there are terms in problems (26) and
(27) that can be deleted without sacrificing accuracy. In particular, the shear terms in
the residual and in the test functions can be deleted, and P⊥h [f ] can be neglected. Noting
that P⊥h [∂2

ttuh] = 0, and that the jump of the shear terms does not contribute to stability,
instead of Problem (26) we consider: find uh : [0, T )→ Vh and ph : (0, T )→ Qh such that

ρ(∂2
ttuh,vh) + 2µ(∇Suh,∇Svh)− (ph,∇ · vh) + (qh,∇ · uh)− 〈f ,vh〉Ω − 〈t,vh〉Γt

+
∑
K

τK

〈
P⊥h [∇ph] , P⊥h [∇qh]

〉
K

+
∑
E

τE 〈JphIK, JqhIK〉E = 0, (28)

for all vh ∈ Vh and qh ∈ Qh, and satisfying also the initial conditions (22) and (23). Note
that we have applied P⊥h to ∇qh to highlight the symmetry of the formulation, even if it
has no effect for quasi-uniform meshes. Finally, instead of Problem (27) we consider: find
φh ∈ Vh, ψh ∈ Qh and ω2

h ∈ R+ such that

2µ(∇Sφh,∇Svh)− (ψh,∇ · vh) + (qh,∇ · φh)− ρω2
h(φh,vh)

+
∑
K

τK

〈
P⊥h [∇ψh] , P⊥h [∇qh]

〉
K

+
∑
E

τE 〈JψhIK, JqhIK〉E = 0, (29)

for all vh ∈ Vh and qh ∈ Qh. Note that the last term disappears if Qh is made of continuous
functions.

This is the two-field formulation for the Stokes EVP considered in [38]. It is shown
there that it provides stable and optimally accurate eigenfunctions and eigenvalues.
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3.3. Algebraic version

Let U(t) be the array that contains the displacement nodal values and P (t) the array
that contains the pressure nodal values (see Equation (19)). After imposing the Dirichlet
boundary conditions, let n′u be the size of U(t). Let also U0 and V0 be the initial conditions
for U(t) and its time derivative, respectively, resulting from equations (22)-(23). Denoting
with a dot the time derivative of U(t), the discrete Problem (28) can be written as a
differential-algebraic system of equations of the form

MÜ +KU +GP = F, t ∈ (0, T ), (30)

GTU − SP = 0, t ∈ (0, T ), (31)

U = U0 at t = 0, (32)

U̇ = V0 at t = 0, (33)

where U : [0, T ) → Rn′u , P : [0, T ) → Rnp , and with the obvious identification of the
matrices and arrays appearing in this expression. With the simplifications introduced, it
is observed that matrices M , K and G and the forcing array F are the same as in the
Galerkin approximation, with τK = 0 for all elements K ∈ Th and τE = 0 for all edges
E ∈ Eh. The only difference is the appearance of matrix S. In the way we have written
Equation (31), this matrix is symmetric and positive semi-definite. Obviously, matrices
M and K are symmetric and positive definite.

Let Φ ∈ Rn′u be the array of nodal values of displacement amplitudes and Ψ ∈ Rnp the
array of nodal values of pressure amplitudes. The discrete form of (29) can be written as

KΦ +GΨ = ω2
hMΦ, (34)

GTΦ− SΨ = 0. (35)

Since rank(M) = n′u (full rank), this system admits n′u solutions. The discrete eigenvectors
and eigenvalues can be written in the form

{Φ1, . . . ,Φn′u}, {Ψ1, . . . ,Ψn′u}, 0 < ω2
h,1 ≤ · · · ≤ ω2

h,n′u
.

Let us note here that the pressure eigenfunctions are associated to the displacement ones.
A generalized EVP with a positive definite matrix in the right-hand-side multiplying both
displacements and pressures would have n′u + np eigenvalues, but there is no term multi-
plying Ψ in the right-hand-side of Equation (35) (see [41]).

4. Discrete modal analysis

In the previous section we have presented the stabilized finite element formulation we
propose to solve the EVP arising in the modal analysis of elastodynamics. Now we derive
the expression of the solution of the discrete elastodynamic Problem (30)-(33) in terms of
the eigenvalues and eigenfunctions obtained from Problem (34)-(35). The expression to
be obtained is exact; we defer to the following section the truncation of this solution and
the analysis of the underlying error.

We will prove that the solution to (30)-(33) can be written as

[
U(t)
P (t)

]
=

n′u∑
j=1

zj(t)

[
Φj

Ψj

]
, (36)
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with appropriate scalar functions zj(t) to be determined, j = 1, . . . , n′u. The proof is
constructive, obtaining effectively the expression of these functions. In particular, it is
observed that the time evolution of the displacement modes is the same as that of the
pressure modes. The derivation will follow standard steps, although it will serve to high-
light the role played by the stabilization term represented by matrix S. Let

Ξ =

[
Φ1

Ψ1
. . .

Φn′u
Ψn′u

]
∈ R(n′u+np)×n′u , Z(t) =

 z1(t)
...

zn′u(t)

 ∈ Rn′u , (37)

which allow us to write [
U(t)
P (t)

]
= ΞZ(t). (38)

Substituting this into (30)-(31), and multiplying by the left by ΞT we get

ΞT

[
M 0
0 0

]
ΞZ̈(t) + ΞT

[
K G
GT −S

]
ΞZ(t) = ΞT

[
F
0

]
. (39)

In expanded form, we have

ΦT
i

n′u∑
j=1

MΦj z̈j + ΦT
i

n′u∑
j=1

(KΦj +GΨj) zj = ΦT
i F, i = 1, . . . , n′u, (40)

ΨT
i

n′u∑
j=1

(
GTΦj − SΨj

)
zj = 0, i = 1, . . . , n′u. (41)

The discrete counterpart of the L2(Ω)-orthogonality in (16) translates into:

ΦT
i MΦj = mδij , i, j = 1, . . . , n′u, (42)

where m = ρ|Ω| is a scalar with the units of M (mass, in our case). Therefore, from (34)
we get

ΦT
i (KΦj +GΨj) = ω2

h,jmδij . (43)

From (35) we have that (41) is automatically satisfied. Setting fi := m−1ΦT
i F , from (40)

we obtain

z̈i + ω2
h,izi = fi, i = 1, . . . , n′u. (44)

It is important to remark that the equations obtained are the same as for the non-
incompressible case using a displacement formulation and as for the Galerkin approxima-
tion to the incompressible case. For the Galerkin case (S = 0), we would have ΦT

i GΨj = 0,
but in fact what we need is (43), which also holds in the stabilized case. Also note that
expansion (36) has to be assumed in the method we have employed; however, one could in
principle use different expressions of z for the displacement and pressure in the Galerkin
case. Nevertheless, as the solution is unique, this is the one we will find.
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The solution of the differential equation (44) can be written as

zi(t) = zi,H(t) + zi,P (t), i = 1, . . . , n′u, (45)

where zi,H(t) is the general solution of the corresponding homogeneous equation, and
zi,P (t) is a particular solution. Note that in the case in which fi is independent of time,
the particular solution can be taken in the form zi,P = ω−2

h,ifi, i = 1, . . . , n′u.
Consequently, the solution of the non-homogeneous Problem (30)-(33) becomes

[
U(t)
P (t)

]
=

n′u∑
j=1

(Aje
iωh,jt +Bje

−iωh,jt + zj,P (t))

[
Φj

Ψj

]
, (46)

where Aj , Bj , j = 1, . . . , n′u, are the coefficients to be determined from the initial condi-
tions projected onto the subspace generated by the modes:

U(0) =

n′u∑
j=1

(Aj +Bj + zj,P (0))Φj =

n′u∑
j=1

1

m
(ΦT

j MU0)Φj , (47)

U̇(0) =

n′u∑
j=1

(iωh,jAj − iωh,jBj + żj,P (0))Φj =

n′u∑
j=1

1

m
(ΦT

j MV0)Φj , (48)

from which we arrive at the following relations

Aj +Bj + zj,P (0) =
1

m
ΦT
j MU0, iωh,jAj − iωh,jBj + żj,P (0) =

1

m
ΦT
j MV0, (49)

for j = 1, . . . , n′u. It is trivially checked that the solution for Aj , Bj is unique, thus proving
that the solution of Problem (30)-(33) can be written as indicated in Equation (36).

As a summary, the results obtained are analogous to those known for the irreducible
displacement formulation in the case of compressible elastic solids. Here he have extended
them to the incompressible case using a displacement-pressure formulation and a stabilized
finite element method.

5. Truncated solution and error analysis

The term modal analysis often refers to the approximate method in which only a few
modes of expansion (36) are kept, that is to say, the solution is approximated as

U(t) =

n′u∑
i=1

zi(t)Φi ≈ Umu(t) =

mu∑
i=1

zi(t)Φi, (50)

P (t) =

n′u∑
i=1

zi(t)Ψi ≈ Pmu(t) =

mu∑
i=1

zi(t)Ψi, (51)

with mu ≤ n′u (in the applications, mu � n′u). The concern now is to bound the error
associated to this approximation, and in particular to measure the difference U(t)−Umu(t).
This will be done with norms associated to matrices.

Let A be a n × n symmetric and positive definite matrix, and X, Y arrays of size n.

9



We define the norms:

‖X‖A := (XTAX)1/2, ‖Y ‖−A := sup
X 6=0

XTY

‖X‖A
.

It is assumed in the second expression that the product XTY makes sense; in particular,
the units of the components of X and Y make XTY dimensionally meaningful. Note
also that the Schwarz-type inequality XTY ≤ ‖X‖A‖Y ‖−A is easily checked. If A is only
positive semi-definite, ‖X‖A is a semi-norm rather than a norm.

In our problem, when A = M we have that ‖X‖A is the L2(Ω) norm of the finite
element function with nodal values X (multiplied by ρ) and when A = K it is equivalent
to the H1(Ω) seminorm of this function (multiplied by µ). When A = S, ‖X‖S is a
semi-norm.

We will obtain an estimate for ‖U −Umu‖M , that is to say, an L2(Ω) error estimate for
the displacement error when approximation (50) is used. Let us start noting that, because
of the L2(Ω)-orthogonality of the displacement modes, we have

‖U‖2M =

n′u∑
i,j=1

zizjΦ
T
i MΦj =

n′u∑
i=1

z2
im,

‖U − Umu‖2M =

n′u∑
i,j=m+1

zizjΦ
T
i MΦj =

n′u∑
i=m+1

z2
im. (52)

Let us evaluate now the following norm:

‖U‖2K + ‖P‖2S =

n′u∑
i,j=1

zizjΦ
T
i KΦj +

n′u∑
i,j=1

zizjΨ
T
i SΨj

=

n′u∑
i,j=1

zizjΦ
T
i KΦj +

n′u∑
i,j=1

zizjΨ
T
i G

TΦj (using (35))

=

n′u∑
i,j=1

zizjΦ
T
j (KΦi +GΨi)

=

n′u∑
i=1

z2
i ω

2
h,im (using (43)). (53)
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The error measure in Equation (52) can be bounded as follows:

‖U − Umu‖2M =

n′u∑
i=mu+1

z2
im

≤ 1

ω2
h,mu+1

n′u∑
i=mu+1

ω2
h,iz

2
im (since ω2

h,mu+1 ≤ ω2
h,i for i ≥ mu + 1)

≤ 1

ω2
h,mu+1

n′u∑
i=1

ω2
h,iz

2
im

=
1

ω2
h,mu+1

(
‖U‖2K + ‖P‖2S

)
(using (53)). (54)

This is in fact the result we were seeking. If we prove that ‖U‖2K + ‖P‖2S is bounded, that
is to say, the solution is stable in this norm, then the bound obtained establishes that the
L2(Ω) norm of the error in displacements is of the order of the inverse of the frequency of
the first term disregarded in approximation (50).

It remains therefore to obtain a stability estimate for ‖U‖2K + ‖P‖2S . Multiplying
Equation (30) by U̇T we get:

U̇TMÜ + U̇TKU + U̇TGP = U̇TF. (55)

From Equation (31) differentiated with respect to time we obtain:

U̇TGP = P TGT U̇ = P TSṖ . (56)

Taking into account the symmetry of M , K and S, Equations (55) and (56) yield:

1

2

d

dt
‖U̇‖2M +

1

2

d

dt
‖U‖2K +

1

2

d

dt
‖P‖2S = U̇TF. (57)

To obtain a bound from this expression, we will use the fact that the solution to Problem
(30)-(33) can be split as U = UI + UF , P = PI + PF , where subscript I refers to the
problem with zero forcing term but non-zero initial conditions and subscript F to the
problem with zero initial conditions and non-zero forcing term.

Since the initial pressure is not required, we may take it zero. Integrating Equation
(57) with respect to time up to an arbitrary t0 ∈ (0, T ) for the problem with F = 0 we
obtain:

‖U̇I(t0)‖2M + ‖UI(t0)‖2K + ‖PI(t0)‖2S = ‖V0‖2M + ‖U0‖2K ,

from where

max
t∈(0,T )

‖UI(t)‖2K + max
t∈(0,T )

‖PI(t)‖2S ≤ ‖V0‖2M + ‖U0‖2K . (58)

For the case with homogeneous initial conditions and F 6= 0, from Schwarz’ inequality
and Young’s inequality we obtain:

U̇T
F F ≤ ‖U̇F ‖M‖F‖−M ≤

1

2s
‖U̇F ‖2M +

s

2
‖F‖2−M ,
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for any time s ∈ (0, T ). Using this in (57) and integrating up to any t0 ∈ (0, T ), it follows
that

‖U̇F (t0)‖2M + ‖UF (t0)‖2K + ‖PF (t0)‖2S ≤
∫ t0

0

1

s
‖U̇F (s)‖2Mds+

∫ t0

0
s‖F (s)‖2−Mds. (59)

Now we need a boundedness assumption for F . For example, assuming that

‖F‖2T := max
t∈(0,T )

t

∫ t

0

1

s2

[∫ s

0
r‖F (r)‖2−Mdr

]
ds <∞,

using Gronwall’s Lemma it follows from (59) that

max
t∈(0,T )

‖UF (t)‖2K + max
t∈(0,T )

‖PF (t)‖2S ≤ ‖F‖2T . (60)

The triangle inequality combined with estimates (58) and (60) allows us to conclude that

max
t∈(0,T )

‖U(t)‖2K + max
t∈(0,T )

‖P (t)‖2S ≤ ‖V0‖2M + ‖U0‖2K + ‖F‖2T .

Finally, using this stability estimate in the error estimate (54) we obtain

max
t∈(0,T )

‖U(t)− Umu(t)‖M .
1

ωmu+1
(‖V0‖M + ‖U0‖K + ‖F‖T ) , (61)

where . stands for≤ up to constants. This is the error estimate we wished to prove. Again,
it is analogous to what would be obtained for the irreducible displacement formulation for
compressible materials. Apart from the novel proof, we have extended it to incompressible
elasticity using the displacement-pressure formulation, highlighting the role played by the
stabilization term given by matrix S.

6. Numerical results

We present our numerical results on incompressible linear elasticity equations that con-
firm the theoretical analysis of the formulation proposed in this work. We focus ourselves
on two different setups of plane stress problems, namely a rectangular cantilever beam and
the well known Cook’s membrane problem are considered. We have chosen these examples
because F = 0, U0 6= 0 for the cantilever beam and F 6= 0, U0 = 0 for Cook’s membrane.

In the numerical experiments, we use quadratic type triangular elements having six
nodes located at the vertices and on the midpoints of the edges to discretize each problem
domain, and employ the method with equal order interpolations for both the displacement
field and the pressure. The number of divisions in the horizontal and vertical directions
are denoted by Nx and Ny, respectively.

In order to be able to evaluate the results we obtain from the truncation of the sums
given in Equations (50)-(51), we approximate the solution of Problem (30)-(33) by directly
integrating in time with the use of a backward differentiation formula. This is a four–point
backward difference approximation to the second order time derivative which is second
order accurate, and is given for a time step δt on a discrete set of time instants ti = iδt,
i = 3, 4, . . . , NT in the interval [0, T ], as

Ü(ti) ≈ (−U(ti−3) + 4U(ti−2)− 5U(ti−1) + 2U(ti))/δt
2 . (62)
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In what follows, we refer to this formula as the finite difference (FD) time integration
scheme.
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Figure 1: Mesh tests for the cantilever beam problem (left) and Cook’s membrane problem (right).

We have performed all the numerical simulations by means of computer programs
written by us using MATLAB and exploiting its linear system and generalized matrix
eigenvalue problem solvers. In computing the modal expansion of the solutions, we de-
pend on the accuracy of the approximated eigensolutions. As already mentioned, it has
been established in [38] that the discrete eigensolutions convergence optimally to their
continuous counterparts. Consequently, to determine the number of elements used in the
simulations, for each problem we have carried out a mesh test in which we have examined
the maximum relative change in the first 10 frequencies contributing into expansion (46)
between two successive mesh levels. We have examined the variation of this quantity in
terms of the vector infinity norm, that is, ‖Λk − Λk−1‖∞/‖Λk−1‖∞, where Λk denotes
the array of the first 10 frequencies, ωh,j , j = 1, 2, . . . , 10, for each discretization level Nk.
In the cantilever beam domain we have taken Ny = Nk being varied from 5 to 11, with
Nx = 10Nk so as to have a uniform mesh, whereas for Cook’s membrane problem we
have considered Nx = Ny = Nk and let Nk vary from 8 to 38 with an increment of 2.
The results are shown in Figure 1, from which we have concluded that a sufficiently good
convergence is attained (specifically, with a tolerance of 10−4) when Ny = 10 for the can-
tilever beam and Ny = 36 for Cook’s membrane problems. We also list the corresponding
first ten approximate frequencies obtained using the aforementioned discretization levels
for each problem in Table 1. Consequently, we have used these discretization levels in all
the subsequent computations whose results are presented in the following.

Table 1: The first ten frequency approximations for both of the problems.

Cantilever beam Cook’s membrane

0.6420 2.2087
3.7900 5.3987
9.7946 6.8903
10.0443 10.6672
17.4510 13.3620
26.1549 14.7368
29.8846 17.0423
35.4818 18.5002
45.1756 19.5551
48.9939 20.8546
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6.1. Free vibration of a cantilever beam

Firstly, we analyze the free vibration of a rectangular beam clamped at the left vertical
edge and free at the other vertical side. We take ρ = 1 and µ = 103, omitting the units,
in Equation (1). The beam is assumed to undergo a sudden deflection as a response
to an initial load, and then allowed to vibrate harmonically. At the left vertical wall
the homogeneous Dirichlet boundary condition is imposed, whereas the other walls are
assumed to be free. Thus, the bending is initiated through the initial condition of the
displacement, and the initial velocity is assumed to be zero. Figure 2 depicts the initial
configuration of the model (where Ny = 10), in which the displacements are magnified 50
times to display the primary deformation.

0 1 2 3 4 5 6 7 8 9 10

-0.5

0

0.5

1

Figure 2: The initial setting of the cantilever beam problem (the displacements are magnified 50 times)
where Nx = 100 and Ny = 10.

As a prelude to analyze the cantilever problem we provide the structures of the first
eight eigenmodes that are associated to the displacement field on the finite element mesh
in Figure 3. As the problem is governed by the classical equilibrium equations of the
incompressible beam, the modes associated to the highest natural frequencies are simple-
and multiple-bending modes due to the bending associated with the initial deflection.
The eigenstructure contains also pure compression or decompression modes (e.g., Φ4 and
Φ7). On the other hand, the solution profile is not affected to a large extent with the
introduction of these modes as can easily be deduced from the convergence history depicted
in Figure 4.

Both to investigate the mechanism of the effect of introducing a new mode into the
modal expansion and to verify the convergence analysis given in the previous section,
we compute the error ‖U − Umu‖M using a reference solution obtained using 100 modes,
normalized using ‖U‖K , and depict its variation with the corresponding eigenvalue λmu+1,
for mu ≤ 60, in Figure 4. This figure presents the evolution of the error given at a certain
time level t = 5 where the vertical displacement attains a local maximum (see Figure 5);
in any case, all the time levels we explored yield analogous results, which we have not
included for conciseness.

In Figure 5 we depict the time evolution of the vertical displacement at the track-
ing point (the upper right tip of the beam) in the interval [0, 20] computed from three
different scenarios: the direct time integration using (62), the modal expansion solution
using 8 modes, and the modal expansion solution using 100 modes. The figure shows the
reasonably good agreement of the three approximations.

6.2. Cook’s membrane problem

We consider a dynamic version of Cook’s membrane problem, which is a widely used
benchmark test (see, e.g., [4, 31, 42]) to put to the proof the efficiency of the numerical
procedure we have proposed. The problem is defined on a quadrilateral domain with
corner coordinates given by (0, 0), (4.8, 4.4), (4.8, 6), and (0, 4.4). The discretization of this
domain (Nx = Ny = 36) is given in Figure 6. The linear elastic model is taken into account,
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Figure 3: Cantilever beam: The first eight eigenmodes.
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Figure 4: Cantilever beam: Variation of the error with respect to the eigenvalues at t = 5.

where the material is assumed to be incompressible with a normalized density (omitting
the units) ρ = 1, and Young’s modulus E = 250 (E = 3µ for incompressible materials).
The left vertical edge of the membrane is clamped and therefore zero Dirichlet boundary
conditions are imposed for the displacement at that side. The membrane is subjected to
a uniform vertical shearing load at the vertical right edge, so that t = (0, 6.25). Both
of the other two edges are assumed to be traction free. Homogeneous initial conditions
are considered for the displacement, velocity, and pressure fields and hence the solution is
expected to oscillate about the static equilibrium state.

To begin with, as in the previous case we display the displacement field plots associated
with the first eight modes on the finite element mesh of Cook’s membrane problem in
Figure 7. In this bending dominated problem where an additional constant traction exists
at the right wall, the characteristics of the computed solutions reflect the mechanics of the
membrane and the associated structures; each mode listed in this figure has a meaningful
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Figure 5: Cantilever beam: Transient behavior of the vertical displacement at the tracking point.
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Figure 6: Discretization of Cook’s membrane problem domain when Nx = Ny = 36.

contribution on the solution profile as can be deduced from the convergence history given
in Figure 8.

As has been done for the cantilever beam problem, we investigate the convergence
behavior at a certain time (t = 1.5) in Figure 8, where we depict the variation of the
normalized error between the computed solution with inclusion of the mu-th mode, with
mu ≤ 60, and a reference solution which is computed using 100 modes in expansion (36)
with respect to the corresponding eigenvalue, λmu+1. It can easily be seen from this figure
that the error validates the bound given in (61). As anticipated, it is also observed from
this figure that including certain modes (e.g., mu = 10 and 11) leads to a slight decrease
in the error not having a notable effect on the overall solution structure at the given time
for the present configuration.

In Figure 9, we depict the temporal evolution of the displacement by monitoring the
vertical displacement at the tracking point (the upper right tip of the membrane) in the
interval [0, 5.5] computed with three different schemes: the FD approximation using (62),
and the two modal expansion solutions using 8 and 100 modes. It is quite clear from this
figure as well that the transient behavior of the membrane can be well captured with a
relatively small number of combinations of the displacement modes.
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Figure 7: Cook’s membrane problem: The first eight eigenmodes.
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Figure 8: Cook’s membrane problem: Variation of the error with respect to the eigenvalues at t = 1.5.
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Figure 9: Cook’s membrane problem: Transient behavior of the vertical displacement at the tracking point.

Finally, to allow further comparison of the physical aspects of the solutions obtained,
we provide in Figure 10 the contour plots of the nodal magnitude distribution of the
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Figure 10: Cook’s membrane problem: Nodal displacement magnitude and pressure field at t = 1.5; 8-mode
(top) and FD in time (bottom) solutions.

displacement and the pressure field on the deformed membrane obtained using both the
modal approach with 8 modes and the FD time marching scheme. These results lead us to
infer that the solution characteristics obtained from two different approaches are in well
agreement, and hence to conclude that the incompressible elasticity model considered can
be effectively handled by the modal approach.

7. Conclusion

In this paper we have analyzed the modal analysis technique applied to elastic vibra-
tions of incompressible materials. Incompressibility requires the introduction of pressure
as a variable, so we have considered the displacement-pressure formulation. For the spatial
approximation of the problem we have adopted a finite element method and, instead of
adhering to the inf–sup condition between displacements and pressure to guarantee stabil-
ity, we have presented a stabilized finite element formulation. It has been highlighted that
standard residual based approaches are inappropriate for the associated eigenvalue prob-
lem, as they would convert it into a quadratic problem for the eigenvalue (the square of the
frequency). We have proposed a method that only involves the pressure in the stabilization
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terms, particularly suited for the problem at hand, stable and optimally convergent.
The algebraic version of the differential-algebraic system resulting from the space ap-

proximation has then been studied, describing the modal analysis and obtaining an error
estimate when the representation of the solution in terms of the modes is truncated. Both
this modal analysis and the error of the truncated solution are analogous to those that
would be obtained for the irreducible formulation of compressible elastic bodies. How-
ever, in the developments presented the pressure and its stabilization play a crucial role.
Likewise, a novel purely algebraic approach has been employed in this analysis.

Finally, the numerical results have confirmed that the methodology studied can be
effectively used as a time integration scheme to approximate the vibrations of elastic
incompressible bodies.
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Petrov-Galerkin formulation for the Stokes problem accommodating equal-order in-
terpolations, Computer Methods in Applied Mechanics and Engineering 59 (1986)
85–99.

19



[10] L. Franca, T. Hughes, A. Loula, I. Miranda, A new family of stable elements for nearly
incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation,
Numerische Mathematik 53 (1988) 123–141.

[11] R. Codina, J. Blasco, A finite element formulation for the Stokes problem allowing
equal velocity-pressure interpolation, Computer Methods in Applied Mechanics and
Engineering 143 (1997) 373–391.

[12] R. Codina, Stabilization of incompressibility and convection through orthogonal sub-
scales in finite element methods, Computer Methods in Applied Mechanics and En-
gineering 190 (2000) 1579–1599.

[13] R. Codina, J. Principe, J. Baiges, Subscales on the element boundaries in the varia-
tional two-scale finite element method, Computer Methods in Applied Mechanics and
Engineering 198 (2009) 838–852.

[14] P. Hansbo, M. G. Larson, Discontinuous Galerkin methods for incompressible and
nearly incompressible elasticity by Nitsche’s method, Computer Methods in Applied
Mechanics and Engineering 191 (17) (2002) 1895 – 1908.

[15] Z. Cai, G. Starke, Least-squares methods for linear elasticity, SIAM Journal on Nu-
merical Analysis 42 (2) (2004) 826–842.

[16] S.-W. Chi, J.-S. Chen, H.-Y. Hu, A weighted collocation on the strong form with
mixed radial basis approximations for incompressible linear elasticity, Computational
Mechanics 53 (2) (2014) 309–324.

[17] F. Auricchio, L. B. da Veiga, A. Buffa, C. Lovadina, A. Reali, G. Sangalli, A fully
locking-free isogeometric approach for plane linear elasticity problems: A stream func-
tion formulation, Computer Methods in Applied Mechanics and Engineering 197 (1)
(2007) 160–172.

[18] L. Beiro da Veiga, D. Cho, L. Pavarino, S. Scacchi, Isogeometric Schwarz precondi-
tioners for linear elasticity systems, Computer Methods in Applied Mechanics and
Engineering 253 (2013) 439–454.

[19] D. Cho, L. Pavarino, S. Scacchi, Overlapping additive Schwarz preconditioners for
isogeometric collocation discretizations of linear elasticity, Computers & Mathematics
with Applications 93 (2021) 66–77.

[20] D. Polyzos, S. Tsinopoulos, D. Beskos, Static and dynamic boundary element analysis
in incompressible linear elasticity, European Journal of Mechanics - A/Solids 17 (3)
(1998) 515–536.

[21] J. Dolbow, T. Belytschko, Volumetric locking in the element free Galerkin method,
International Journal for Numerical Methods in Engineering 46 (6) (1999) 925–942.

[22] D. Boffi, R. Stenberg, A remark on finite element schemes for nearly incompressible
elasticity, Computers & Mathematics with Applications 74 (9) (2017) 2047–2055.

[23] T. Hughes, Equivalence of finite elements for nearly-incompressible elasticity, Journal
of Applied Mechanics 44 (1977) 181–183.
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