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Abstract

In this work, we address the finite element computation of flow noise in the presence of arbitrarily slowly
moving rigid bodies at low Mach numbers, by means of hybrid and direct computational aeroacoustics (CAA)
strategies. As regards the former, the problem could be dealt with by means of the Ffowcs Williams-Hawkings
acoustic analogy. That reduces to Curle’s analogy for a static body, which is analogous to a problem of
diffraction of sound waves generated by flow eddies in the vicinity of the body. Acoustic analogies in CAA
first demand computing the flow motion to extract an acoustic source term from it and then use the latter to
calculate the acoustic pressure field. However, in the case of low Mach number flows, the Ffowcs Williams-
Hawkings and Curle analogies present a problem as they require knowing the total pressure distribution on
the body’s boundary (i.e. the aerodynamic pressure plus the acoustic one). As incompressible computational
fluid dynamics (CFD) simulations are usually performed to determine the flow motion, the acoustic pressure
distribution on the body surface is unavoidably missing, which can yield acoustic analogies inaccurate.
In a recent work, it was proposed to tackle that problem for static and rigid surfaces, by keeping the
incompressible CFD and then splitting the acoustic pressure into direct and diffracted components. Two
separate wave equations were solved for them, in the framework of the finite element method (FEM). In
this article, we extend that work to compute the aerodynamic sound generated by a flow interacting with
a slowly moving rigid body. The incompressible Navier-Stokes equations are first solved in an arbitrary
Lagrangian-Eulerian (ALE) frame of reference to obtain the acoustic source term. Advantage is then taken
from the same computational run to separately solve two acoustic ALE wave equations in mixed form for
the incident and diffracted acoustic pressure components. For validation of the total acoustic pressure field,
an ALE formulation of a direct CAA approach consisting of a unified solver for a compressible isentropic
flow in primitive variables is considered. The performance of the exposed methods is illustrated for the
aeroacoustics of flow past a slowly oscillating two-dimensional NACA airfoil and for flow exiting a duct with
a moving teeth-shaped obstacle at its termination.
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1. Introduction

The goal of this paper is to extend some of the authors previous finite element methods for computational
aeroacoustics (CAA) at low Mach numbers to the case of slow time-dependent domains. Typical related
problems could range from aspects concerning the computational generation of sibilant sounds (see e.g., [1–
4]) to duct and valve problems in underwater vehicles [5]. In particular, we would like to adapt the hybrid
CAA approach for the computation of direct and diffracted aeroacoustic waves in [6] and the direct noise
computation (DNC) method consisting of an isentropic compressible solver in [7], to aeroacoustic problems
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involving slow moving bodies. Prior to getting into details, however, let us contextualize these two methods
in the field of CAA.

Approaches to CAA can be classified into two big groups, namely hybrid CAA and DNC, which are
further subdivided into subgroups. The main characteristic of hybrid CAA is that the computation gets
split into two parts: a first computational fluid dynamics (CFD) simulation that provides acoustic source
terms extracted from the flow motion, and a second simulation which yields the acoustic pressure field (and,
in occasions, the acoustic particle velocity as well). As opposed, in DNC a single CFD simulation of a
compressible flow is carried out, from which the flow dynamics and the acoustic perturbations naturally
arise. The way in which flow and acoustic quantities are separated apart defines the different approaches
to hybrid CAA. The most celebrated one is that of acoustic analogies, which started with the pioneering
work of Lighthill [8]. The key idea of acoustic analogies is that of reorganizing the compressible Navier-
Stokes equations as an inhomogeneous equation involving a wave operator and a source term depending
on flow variables [9]. Whether terms in Lighthill’s source tensor shall be transferred or not to the acoustic
wave operator, as being part of the propagation phenomenon rather than to the source itself, and how
to approximate the latter, determines different types of analogies. Some well-known analogies are those
of Ribner [10, 11], Phillips [12], Lilley [13], Powell and Howe [14, 15], Möhring [16] and more recently,
Goldstein [17]. Another important aspect of acoustic analogies is how to modify them to include the presence
of bodies into the flow domain. Curle find an ingenious way to do so by representing the influence of a rigid
body as an additional source term consisting of a distribution of dipoles [18]. His method allows one to
use the free-space Green function for the wave equation to compute the acoustic pressure field, instead of
having to find a tailored Green function satisfying specific boundary conditions at the body’s surface. Curle’s
formulation was generalized to the case of arbitrarily moving bodies by Ffowcs Williams and Hawkings [19].

Acoustic analogies are not the only way to separate flow and acoustic variables and two other common
approaches are used in hybrid CAA. If one departs from the continuity, momentum and energy conservation
equations for an inviscid fluid and then linearizes them by splitting the flow variables into temporal mean
components and acoustic fluctuating ones, the so-called linearized Euler equations (LEE) are obtained [20].
The LEE have been applied to a wide range of problems such as jet [21, 22] and cavity noise [23], among
others, and in fact they do not only account for acoustic perturbations but also for vortical end entropy
ones. In addition to acoustic analogies and the LEE, the third big subgroup of hybrid CAA methods is that
relying on the acoustic perturbation equations (APE) [24], which filter the source terms of the LEE once
transformed in the wavenumber-frequency domain. Several formulations of the APE have been proposed, an
appealing one for incompressible CFD being the APE-2 (see [24]), recently reformulated in [25] (see also [26]
for a stabilized FEM implementation). A complete review on hybrid CAA strategies has been recently
published in [27].

In this work we are concerned with acoustic analogies to determine flow noise in the presence of bodies.
The first step is to compute the flow motion by means of CFD. In the case of low Mach number flows, the
incompressible Navier-Stokes equations are typically solved and then a boundary element method (BEM)
is employed to get the acoustic pressure from the analogy integral formulation. Both, Curle’s and Ffowcs
Williams-Hawkings analogies present a problem though: the strength of the dipole distribution on the static
or moving body surface depends on the total pressure, i.e., the aerodynamic plus the acoustic one, but
only the former can be obtained from incompressible CFD. To solve that issue, some improvements have
been proposed in literature like resorting to the Laplacian Green’s function instead of the wave equation
one in the integral solution of the analogies [28]. However, one can directly skip the problem by solving
both, the CFD and the acoustic wave equation with FEM, avoiding the need of BEM. That is a totally
valid approach if one does not need to know the acoustic pressure at very far distances from the source flow
region. It only requires making use of the low Mach number approximation for Lighthill’s acoustic analogy
source term and avoids the inconsistency that appears when solving the integral formulation of Curle’s and
Ffowcs Williams-Hawkings analogies. This was the option chosen, e.g., in [29–32], but the price to be paid
is that it is no longer possible to distinguish the separate acoustic contributions from the body and the
flow motion to the total acoustic pressure. To achieve that in the case of a rigid, static body, one can take
advantage of the fact that Curle’s analogy can be posed as a problem of diffraction [33–35] and solve two,
instead of one, acoustic wave equations in the second step of hybrid CAA (one for the direct acoustic field
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and the other one for the diffracted field). This was the proposal in [6]. The first, and main, contribution of
this work is to revisit the strategy in [6] and extend it to the case of flow noise generation in the presence
of slow moving bodies. It will be shown that for a rigid body and small velocities, the Ffowcs Williams-
Hawkings analogy can also be viewed as a quasi-stationary diffraction problem. The force exerted by the
flow on the body dominates over the rate of change of flow momentum due to the body displacement and
it makes sense to establish a separation between incident and diffracted acoustic waves to determine their
distinct contributions to the total acoustic pressure. Yet, implementing the hybrid CAA in [6] in moving
domains is not straightforward. First, both the incompressible Navier-Stokes and acoustic wave equations
need to be solved in an arbitrary Lagrangian-Eulerian frame of reference to account for the computational
mesh movement. The quasi-Eulerian approach in [36, 37] will be used for that purpose. Second, it must be
taken into account that it is not possible to set the irreducible wave equation in an ALE framework [38],
so one must deal with its mixed formulation (namely the linearized continuity and momentum conservation
equations for the acoustic pressure and particle velocity [38, 39]). In this work, all these considerations
will be accounted for in the splitting strategy of [6]. Emphasis will be put on the acoustic computation,
rather than on the incompressible CFD one, for which a vast amount of literature exists in the framework
of stabilized FEM.

The second contribution of this work concerns DNC, and in particular the unified isentropic compressible
solver in [7], for which a fractional step formulation has been recently derived [40]. DNC presents some
advantages and disadvantages when compared to hybrid CAA. On the one hand, it only requires a single CFD
simulation for solving the compressible Navier-Stokes equations, yet that turns to be computationally costly
unless some simplifications are introduced. DNC directly provides the flow motion, including the acoustic
waves, but it does not allow one to distinguish between sound and pseudo-sound in the flow region [41]. On
the computational side, DNC has to deal with two main difficulties, namely the performance at low Mach
numbers when the flow behaviour is nearly incompressible [42] and the imposition of boundary conditions
being valid for both, the flow motion and the acoustic waves [43, 44]. Although several strategies have been
proposed to accommodate all compressibility regimes [45–47], those are generally not capable of capturing
the aeroacoustic waves as well. A suitable option is to set the equations in primitive variables [48] so they
simplify to the incompressible Navier-Stokes equations in the limit of constant density [49]. One can go
one step further and assume the flow is isentropic to get rid of the temperature equation and arrive at the
compressible approach proposed in [7, 40]. In order to extend the latter for the slow-time dependent domains
in this work, we simply need to express the corresponding equations in an ALE framework. Therefore, the
basic difference between the herein formulation and that in [7] is that all convective terms in the compressible
velocity and pressure equations, and in the boundary conditions, will be now affected by the mesh motion.
Given that the hybrid CAA has to deal with an incompressible CFD plus the wave equation in mixed
form, the isentropic compressible formulation can become a computationally effective alternative for some
aeroacoustic problems (although no distinction between incident and diffracted fields is gathered). As regards
the imposition of the boundary conditions, we keep the strategy in [7] where the compressible velocity and
pressure were filtered into mean and perturbation (acoustic) fields and different conditions were prescribed
for them. Penalization using Nitsche’s method [50] was employed to impose Dirichlet conditions in weak
form. That option was proved valid in [7] and can be supplemented with a perfectly matched layer (PML)
if necessary [51, 52].

All the equations in this work are solved by means of stabilized finite element methods to deal with
convective instabilities (either associated to flow convection and/or to the mesh motion) and to use equal
interpolation fields for all the involved unknowns. The implemented stabilized FEM belong to the family of
variational multi-scale (VMS) methods proposed by Hughes [53, 54]. Although in general we favour the use
of orthogonal subgrid scale (OSS) stabilization [55] including time-dependent subscales [56], some simplified
models will be introduced for the ease of exposition. An important aspect of some models of VMS FEM
stabilization is that for flow dynamics, they have proved capable of implicitly reproducing the large eddy
simulation of turbulent flows, without need of pre-filtering the Navier-Stokes equations at the continuous
level [56–58]. This is certainly an advantage when dealing with sound generated by turbulent flow motion.
A preliminary version of some of the results reported in this work was presented in [59].

The remaining of this paper paper is organized as follows. In section 2, we introduce the generic aeroa-
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coustic problem we want to solve and show how for slow-moving bodies it makes sense to identify the Ffowcs
Williams-Hawkings analogy with a quasi stationary problem of diffraction. In section 3, we extend the hybrid
CAA formulation in [6] by setting the equation in an ALE framework and using the wave equation in mixed
form to compute the incident and diffracted acoustic pressure and velocity fields. The ALE formulation of
the isentropic compressible flow solver in [7] is presented in section 4. Section 5 introduces two numerical
examples to illustrate the performance of the methods exposed in the previous sections. The case of a slowly
oscillating two-dimensional NACA0012 airfoil with its center of rotation placed the leading edge is studied,
as well as the case of a duct termination with a moving teeth-shaped object at its end. Conclusions close
the paper in section 6.

2. Flow noise for slow moving rigid bodies as a diffraction problem

2.1. Ffowcs Williams-Hawkings analogy and related diffraction problem

The Ffowcs Williams-Hawkings (FWH) analogy provides a formal solution to the problem of flow noise
generation in the presence of arbitrary moving surfaces. In addition to Lighthill’s quadrupolar source term
for aerodynamic noise production in free space [8], the influence of moving boundaries is included in the
FWH formulation by means of additional dipole and monopole source terms in the inhomogeneous wave
equation for the acoustic pressure. This allows one to solve the latter using the free-space Green function.
The acoustic density fluctuations in a domain Ωac(t) ⊂ Rd (d = 2, 3) resulting from flow motion and its
interaction with a moving body of volume Ωb(t) and boundary Γb(t) (see Fig. 1, which is to be compared
with Fig. 1 in [6]) is provided by [19, 60],

H(f)c20 (ρ− ρ0) (x, t) =
∂2

∂xi∂xj

∫
Ωac(τ)

[Tij ]
d3y

4π | x− y |

− ∂

∂xi

∫
Γb(τ)

[
ρvi
(
vi − vbj

)
+ p′ij

] dSj (y)

4π | x− y |

+
∂

∂t

∫
Γb(τ)

[
ρvi
(
vi − vbj

)
+ ρ0v

b
j

] dSj (y)

4π | x− y |
, (1)

where ρ stands for the total density, ρ0 for the average one and c0 for the speed of sound. Tij in the first
line of (1) represents Lighthill’s tensor while, in the second line p′ij ≡ Pδij − σij with P being the full
compressible flow pressure. σij denotes the viscous stress tensor. In the second and third lines, vi designates
the i-th component of the flow velocity vector v and vbi the i-th component of the body velocity vb. The
square brackets in the integrals denote, as usual, evaluation at the retarded time τ := t − |x− y| /c0. The
surface differential in the boundary integrals is given by dSj = njdS, with nj being the j-th component of
the normal vector pointing outwards the surface S. H is the Heaviside function so that H(f) = 1 in Ωac(t)
and H(f) = 0 in Ωb(t) (i.e., f is defined such that f > 0 in Ωac and f < 0 in Ωb). The term in the first
line involves a spatial double divergence and therefore stands for a quadrupole source contribution, while
the term in the second line acts as a dipole distribution. That in the third line represents a monopole. In
the case of a stationary rigid body surface, the FWH analogy in (1) reduces to Curle’s analogy [18, 60].

In this work, we will be concerned with the following simplifications in (1). First, low Mach number (M)
flows will be assumed for which Lighthill’s tensor can be approximated by the Reynolds stress, i.e., Tij ≈
ρ0u

0
iu

0
j , with u0

i standing for the i-th component of the incompressible flow velocity u0. In addition, high
Reynolds numbers will be considered so that σij ≈ 0. Moreover, only the case of rigid bodies will be
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Figure 1: Sketch for the aeroacoustic problem. Noise generated by flow past a slowly moving body. Direct (incident) and
diffracted acoustic pressure components. The Navier-Stokes computational domain ΩNS only makes sense for the first step of
the hybrid CAA approach of section 3. The isentropic compressible flow simulation in section 4 is totally performed in Ωac(t).
The body is rigid so the volume of the acoustic and body domains are constant but can change their shape.

addressed for which v = vb at Γb. Inserting these assumptions in (1) yields,

H(f)c20 (ρ− ρ0) (x, t) =
∂2

∂xi∂xj

∫
Ωac(τ)

[
ρ0u

0
iu

0
j

] d3y

4π | x− y |

− ∂

∂xi

∫
Γb(τ)

[Pδij ]
dSj (y)

4π | x− y |

+
∂

∂t

∫
Γb(τ)

[
ρ0v

b
j

] dSj (y)

4π | x− y |
. (2)

As explained above, the third term in the right hand side (r.h.s) corresponds to a monopole distribution.
However, one could not expect a net outflow of volume flow from a rigid surface so the monople integral
must correspond to a combination of higher order multipoles. This is a well-known fact and it is shown
e.g., in [41, 60] how this term corresponds to the summation of a dipole distribution plus a quadrupole one,
which involve integrals over the interior of the body Ωb of expressions depending on the body velocity vb.
We do not reproduce this result here though, as it is unnecessary for the forthcoming discussion.

The most typical application of (2) concerns propeller and rotor noise. In such case, the dipole and
”monopole” terms in (2) clearly dominate noise production at the far field and the quadrupole one can be
neglected. The noise generated by the dipole distribution is usually referred to as the loading noise, while
that of the ”monopole” is known as the thickness noise. When the magnitude of the body velocity |vb| is high
(e.g., a helicopter, turbine or fan blade), both the loading and thickness noise significantly contribute to the
overall acoustic pressure. However, if the body moves very slowly, the monopole contribution will be small as
compared to the dipole one. In fact, it can be proved that for compact bodies (i.e. when ` ≡ diam(Ωb)� λ,
λ being the acoustic wavelength) variations in retarded time are negligible and at the far field, where as said
the quadrupole terms become insignificant, we get (see [41]),

c20 (ρ− ρ0) (x, t) ≈ p(x, t) ∼
x→∞

− 1

4π

∂

∂xi

fi + ρ0`
3Dvi/Dt∣∣∣1− xivi
|x|c0

∣∣∣
 ∼ − 1

4π

∂

∂xi

[
fi + ρ0`

3Dvi/Dt
]
. (3)
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In this equation, fi represents the total force exerted by the flow on the body surface Γb in the i-th direction
and ρ0`

3Dvi/Dt would be the rate of change of momentum of the body if it had density ρ0, also in the
i-th direction. In the second approximation we have neglected the Doppler factor in the denominator as
M � 1. Equation (3) represents a dipole acoustic source whose strength is slightly modified by the body
motion. As mentioned in the Introduction, such circumstance can be encountered, for instance, in sibilant
and syllable voice production or in the slow closing of a duct termination conveying a flow. The motion of
the body (e.g., the teeth in the mouth) will essentially alter the flow eddy pattern and diffract the acoustic
waves they generate, but will not act as a direct and substantial source of sound (i.e., ρ0`

3Dvi/Dt would
be negligible in front of fi if the body moves very slowly). Essentially, the problem will be very similar to
that encountered when considering flow noise generation by a rigid and stationary surface. As said above,
such case is described by Curle’s analogy and it is well-known that such analogy can also be viewed as a
diffraction problem for the acoustic waves generated by quadrupole sources due to flow motion close to a
rigid, stationary body [33–35]. We could therefore refer to the situation we want to handle in this paper as
that of a quasi-stationary diffraction problem.

Let us assume, that a tailored Green function G(x, t | y, τ) was available for the noise problem in Fig. 1,
satisfying appropriate boundary conditions on Γb(t). That would directly provide the acoustic pressure field
generated by the flow motion interacting with the moving surface as,

p (x, t) =

∫ ∞
−∞

∫
Ωac(τ)

G(x, t | y, τ)
∂2

∂yi∂yj
(ρ0u

0
iu

0
j )d

3ydτ, (4)

where, as seen in (3), p (x, t) = c20 (ρ− ρ0) (x, t). If the body was translating, rotating and/or oscillating
very slowly so that its movement was unable to generate sound waves, we could set the problem in Fig. 1
as a quasi-stationary diffraction problem and split the Green function in (4) as the free-space one (i.e,. in
the absence of the body) plus the body diffraction contribution, namely

G(x, t | y, τ) = GF (x, t | y, τ) +GD(x, t | y, τ), (5)

with

GF (x, t | y, τ) =
1

4π|x− y|
δ

(
t− τ − |x− y|

c0

)
, (6)

δ being the Dirac delta function. Inserting (5) into (4), integrating by parts and considering (6), provides

p (x, t) =
∂2

∂xi∂xj

∫
Ωac(τ)

1

4π|x− y|
[
ρ0u

0
iu

0
j

]
d3y +

∫ ∞
−∞

∫
Ωac(τ)

GD
∂2

∂yi∂yj
(ρ0u

0
iu

0
j )d

3ydτ. (7)

Comparing (7) with (2) allows one to mathematically identify the diffracted acoustic pressure contribution
in (7) with the dipole and monople distributions in (2),∫ ∞

−∞

∫
Ωac(τ)

GD
∂2

∂yi∂yj
(ρ0u

0
iu

0
j )d

3ydτ = − ∂

∂xi

∫
Γb(τ)

[Pδij ]
dSj (y)

4π | x− y |

+
∂

∂t

∫
Γb(τ)

[
ρ0v

b
j

] dSj (y)

4π | x− y |
. (8)

For the identification to make full physical sense in the context of diffraction, the monopole term should be
small as discussed for equation (3), so that∫ ∞

−∞

∫
Ωac(τ)

GD
∂2

∂yi∂yj
(ρ0u

0
iu

0
j )d

3ydτ ≈ − ∂

∂xi

∫
Γb(τ)

[Pδij ]
dSj (y)

4π | x− y |
. (9)

In what follows, it will be assumed that (9) is essentially valid.
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It shall be noted that if we remove the monopole component from the simplified FWH in (2) we ba-
sically recover Curle’s analogy except for the fact that now the body can have some slow motion. One
could therefore compute the generated flow noise by solving the corresponding integrals in the time varying
domains. Unfortunately, such procedure inherits the same flaw as Curle’s analogy if one derives the terms
in the integrals from an incompressible CFD simulation. While the latter provides the incompressible flow
velocity and pressure fields, u0 and p0, the total pressure (i.e., including the acoustic fluctuations) is needed
in the integrand of the dipole term. A way out to this problem is to exploit the relation we have estab-
lished between the FWH analogy in (2) and the diffraction problem in (9), and abandon the framework of
the FWH integral formulation. Our proposal is to resort to a hybrid CAA approach consisting of a first
incompressible CFD simulation to obtain u0 and p0 and, in the same computational run, solve two separate
wave equations, one for the incident acoustic pressure and the other one for the diffracted pressure. This
idea was proposed in [6] for the case of a rigid and stationary body and will be extended in next section to
slowly moving surfaces. All involved equations are solved by means of subgrid scale stabilized FEM to be
detailed in section 3.

2.2. Flow noise problem in an arbitrary Lagrangian-Eulerian frame of reference

Before presenting how to apply the flow noise formulation in [6] to the case of slow moving domains,
let us introduce some considerations for the problem at hand. The first thing we should realize is that all
involved partial differential equations (PDE), namely the incompressible Navier-Stokes equation to describe
the flow dynamics and the acoustic wave equation for the aerodynamic generated sound must be set in
arbitrary Lagrangian-Eulerian (ALE) framework to account for the domain time variation. An efficient way
to do so is by means of a quasi-Eulerian approach [36, 37] in which the time derivative of any variable is
expressed in a referential frame that moves with the domain, while the variable spatial partial derivatives
are kept in an Eulerian framework. If g denotes a generic variable and udom stands for the domain velocity,
which in a numerical simulation is identified with the mesh velocity at every node, one should replace ∂tg
in the corresponding PDE by ∂tg − udom · ∇g.

The second point is to recognize that it is not possible to find an irreducible wave equation for the acoustic
pressure in an ALE framework and one must deal, instead, with the linearized continuity and momentum
equations to describe acoustic wave propagation [38]. These are given by,

1

ρ0c20

∂p

∂t
+∇ · u = Q, (10a)

ρ0
∂u

∂t
+∇p = f , (10b)

and are sometimes shortly referred to as the wave equation in mixed form [39]. Here, p(x, t) designates the
acoustic pressure and u(x, t) the acoustic particle velocity. The inhomogeneous terms Q(x, t) and f(x, t)
respectively represent a volume source distribution and an external body force per unit volume.

Expressing (10) in an ALE frame of reference results in

1

ρ0c20

∂p

∂t
− 1

ρ0c20
udom · ∇p+∇ · u = Q, (11a)

ρ0
∂u

∂t
− ρ0udom · ∇u+∇p = f . (11b)

To solve the flow noise problem in Fig. 1, equation (11) must be supplemented with appropriate initial and
boundary conditions. These are given by,

u · n = udom · n on Γb(t) t > 0, (12a)

u · n =
1

Z0
p on Γ∞ t > 0, (12b)

p (x, 0) = 0, u (x, 0) = 0, in Ωac(t), t = 0, (12c)
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where (12b) is nothing but Sommerfeld’s radiation condition in mixed form (see e.g., [61]) and Z0 = ρ0c0
is the fluid acoustic impedance. In what concerns the source terms Q and f in (11), they will depend on
the acoustic analogy under consideration. For instance, in Ribner’s one [10, 11] the inhomogeneous source
term for the irreducible wave equation is c20∂

2p0/∂t2, while for Lighthill’s low Mach number approximation
the source becomes ρ0∂

2(u0
iu

0
j )/∂xi∂xj . If one deals with the wave equation in mixed form in an ALE

framework in (11), these source terms can be formulated as,

Lighthill’s analogy : fi = −ρ0

∂(u0
iu

0
j )

∂xj
, Q = 0 (13a)

Ribner’s analogy : f = 0, Q = −(1/ρ0c
2
0)

[
∂p0

∂t
− udom · ∇p0

]
. (13b)

The incompressible velocity field in (13a) and the incompressible pressure field in (13b) are to be obtained
from the solution of the ALE incompressible Navier-Stokes equations, namely (see Fig. 1),

∂u0

∂t
− ν∆u0 +

(
u0 − udom

)
· ∇u0 +∇p0 = f in ΩNS(t), t > 0, (14a)

∇ · u0 = 0 in ΩNS(t), t > 0, (14b)

u0 (x, 0) = u0
0 (x) in ΩNS(t), t = 0, (14c)

u0 (x, t) = udom (x, t) on Γb(t), t > 0, (14d)

u0 (x, t) = u0
D (x, t) + udom (x, t) on ΓD(t), t > 0, (14e)

n · σ (x, t) = tN (x, t) on ΓN (t), t > 0, (14f)

where, ΩNS(t) corresponds to the computational domain where the Navier-Stokes equations are solved
(which does not need to necessarily coincide with Ωac(t)) and ΓD and ΓN respectively denote boundaries
with prescribed Dirichlet and Neumann conditions. n is the outward pointing normal at the boundary and
tN stands for the traction.

2.3. Splitting the total acoustic pressure into incident and diffracted components
At this point we have all ingredients to apply the flow noise strategy in [6] to the current problem with

time varying domains. The key idea is to split the acoustic fields into incident and diffracted components.
As quoted in [6], this is valid for any general linear wave operator. In the current case, the operator is
the wave equation in mixed form, which acts both on the acoustic pressure p and on the acoustic particle
velocity u. If we take u = ui + ud and p = pi + pd in (11), the subscripts i and d respectively standing for
incident and diffracted, we are left with the incident field problem

1

ρ0c20
∂tpi −

1

ρ0c20
udom · ∇pi +∇ · ui = Q in Ωac(t) ∪ Ωb(t), t > 0, (15a)

ρ0∂tui − ρ0udom · ∇ui +∇pi = f in Ωac(t) ∪ Ωb(t), t > 0, (15b)

ui · n =
1

Z0
pi on Γ∞, t > 0, (15c)

pi (x, 0) = 0, ui (x, 0) = 0, in Ωac(t) ∪ Ωb(t), t = 0, (15d)

and the diffracted one,

1

ρ0c20
∂tpd −

1

ρ0c20
udom · ∇pd +∇ · ud = 0 in Ωac(t), t > 0, (16a)

ρ0∂tud − ρ0udom · ∇ud +∇pd = 0 in Ωac(t), t > 0, (16b)

ud · n = (udom − ui) · n on Γb(t), t > 0, (16c)

ud · n =
1

Z0
pd on Γ∞, t > 0, (16d)

pd (x, 0) = 0, ud (x, 0) = 0, in Ωac(t), t = 0. (16e)
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Note that the summation of problems (15) and (16) recovers the original one in (11), with the initial and
boundary conditions prescribed in (12). Furthermore, one should be aware of a tricky aspect of equations (15)
and (16). They are not solved in the same computational domains. To simulate the incident field one has to
include the region occupied by the body as part of the computational domain, while this has to be removed
when solving the wave equation for the diffracted pressure. That is, the wave equation for pi is solved in
Ωac(t) ∪ Ωb(t) while that for pd is solved in Ωac(t) (see equations (15a) and (16a)). The incident acoustic
particle velocity enters the diffracted wave equation through the boundary condition (16c).

In what follows, our goal consists in solving the wave equations (15) and (16) together with the in-
compressible Navier-Stokes equations in (14) to obtain the flow noise source terms, using a finite element
approach. The weak formulation and discretization for the latter will be not presented as it can be found
elsewhere in literature (see e.g., [55, 56, 58] among many others) and we will concentrate on equations (15)
and (16). Later, in section 4, we will introduce the ALE formulation for the isentropic compressible solver
in [7], which will be used for comparison purposes. Its FEM and time discretization will be briefly exposed
as it has not been published before.

3. Numerical discretization of the acoustic wave equation in mixed form for the incident and
diffracted acoustic pressure fields

3.1. Continuous weak form of the incident and diffracted wave problems

To discretize the wave equations in mixed form (15) and (16) using a FEM approach we first need to
express them in weak form. To that goal, we proceed as usual by multiplying equations (15a) and (16a) with
the scalar test function q, and equations (15b) and (16b) with the vector test function v. The resulting
scalar equations are then integrated over their respective computational domains Ωac(t)∪Ωb(t) and Ωac(t).
If the problems are solved in the time interval [0, T ] and we denote by (f, g) :=

∫
Ω
fg dΩ the integral of the

product of functions f and g, the weak formulation of (15) and (16) will read as follows.
For the incident pressure field, we need to find find pi ∈ W i

p([0, T ],V i
p) and ui ∈ W i

u([0, T ],V i
u) such

that

1

ρ0c20
(∂tpi, q)−

1

ρ0c20
(udom · ∇pi, q) + (∇ · ui, q) = (Q, q) ∀ q ∈ V i

p, (17a)

ρ0(∂tui,v)− ρ0(udom · ∇ui,v) + (∇pi,v) = (f ,v) ∀ v ∈ V i
u, (17b)

whereW i
p, W

i
u, V i

p and V i
u stand for suitable functional spaces for the incident acoustic pressure and acoustic

particle velocity that will not be described here to avoid technicalities (see e.g., [38] for details). In what
concerns the variational formulation for the diffracted problem, this consists in finding pd ∈ Wd

p ([0, T ],Vd
p )

and ud ∈Wd
u([0, T ],Vd

u) such that

1

ρ0c20
(∂tpd, q)−

1

ρ0c20
(udom · ∇pd, q) + (∇ · ud, q)− (q,ud · n)Γb

= − (q, (udom − ui) · n)Γb
∀ q ∈ Vd

p ,

(18a)

ρ0(∂tud,v)− ρ0(udom · ∇ud,v)− (∇ · v, pd) + (v · n, pd)Γb
+ α(v · n,ud · n− (udom − ui) · n)Γb

= 0

∀ v ∈ Vd
u. (18b)

Here, (·, ·)Γb
denotes the integral on the boundary Γb, and, once again, Wd

p , Wd
u, Vd

p and Vd
u designate

appropriate functional spaces for the diffracted acoustic pressure and acoustic particle velocity, which will
be not specified. Note that the Dirichlet boundary conditions (15c), (16c) and (16d) must be prescribed
strongly on Γb(t) and Γ∞ for problems (17) and (18). However, since the code reads a full mesh where Γb

belongs to interior nodes, it would be convenient to set the strong condition ud ·n = (udom − ui) ·n in weak
form. To that goal we have symmetrized (18) to employ Nitsche’s method [50] using a penalty parameter

α = β ρ0|ud|h . For the present case, β = 1 has sufficed to enforce the boundary condition on Γb.
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3.2. Spatial discretization: stabilized finite element method

The FEM discretization of the wave equations in mixed form (17) and (18) is not straightforward. Even
in the case of no convection, instabilities occur if equal order interpolation is employed for the pressure and
velocity fields [39]. To avoid using different interpolations for p and u, one can resort to FEM stabilized
approaches like those based in the VMS method, see e,g. [53, 54]. In this work, we will follow the VMS
strategy in [38, 62] to deal with waves set in an ALE framework and/or in the presence of convection.
Orthogonal subgrid scales (OSS), (see [39, 55]), will be employed to eliminate the instabilities encountered
when directly applying the Galerkin FEM to (17) and (18).

Let us introduce the FEM spaces V i
ph
⊂ V i

p and V i
uh
⊂ V i

u. The discrete stabilized FEM formulation

of the incident problem (17) becomes that of finding pih ∈ W i
p([0, T ],V i

ph
) and uih ∈W i

u([0, T ],V i
uh

) such
that

1

ρ0c20
(∂tpih , qh)− 1

ρ0c20
(udom · ∇pih , qh) + (∇ · uih , qh)

+
∑
Ωel

(τpP
[
− 1

ρ0c20
udom · ∇pih +∇ · uih −Q

]
,− 1

ρ0c20
udom · ∇qh +∇ · vh)Ωe(t) = (Qn+1, qh), (19a)

ρ0(∂tuih ,vh)− ρ0(udom · ∇uih ,vh) + (∇pih ,vh)

+
∑
Ωel

(τuP
[
− ρ0udom · ∇uih +∇pih − f

]
,−ρ0udom · ∇vh +∇qh)Ωe(t) = (f ,vh), (19b)

for all qh ∈ V i
ph

and vh ∈ V i
uh

. The first rows in equations (19a) and (19b) correspond to the Galerkin
FEM terms, while the second rows contain the stabilizing ones. Notice that we have limited here to the case
of quasi-static subscales for simplicity. Ωel(t) represents a time evolving element of the FEM mesh. The
operator P in (19) represents a projection that is applied to scalars or vectors depending on the argument.
In the OSS FEM method P = I − Πh, where I stands for the identity and Πh for the L2-projection onto
the finite element space. In what concerns the stabilization parameters τp and τu in (19a) and (19b), they
are given by (see [38]),

τu =
h

C1ρ0|uh|+ ρ0c0C2
, τp =

ρ0c
2
0h

C1|uh|+ c0C2
, (20)

with C1 and C2 denoting constants obtained from numerical experiments. In [38], the following values were
deemed appropriate for simulations using linear elements, C1 = C2 = 100.

As regards the diffraction problem in (18), its stabilized OSS FEM formulation consists in finding pdh ∈
Wd
p ([0, T ],Vd

ph
) and udh ∈Wd

u([0, T ],Vd
uh

) such that

1

ρ0c20
(∂tpdh , qh)− 1

ρ0c20
(udom · ∇pdh , qh) + (∇ · udh , qh)− (qh,udh · n)Γb

+
∑
Ωel

(τpP
[
− 1

ρ0c20
udom · ∇pdh +∇ · udh

]
,− 1

ρ0c20
udom · ∇qh +∇ · vh)Ωe(t)

= − (qh, (udom − uih) · n)Γb
(21a)

ρ0(∂tudh ,vh)− ρ0(udom · ∇udh ,vh)− (∇ · vh, pdh) + (vh · n, pdh)Γb
+ α(vh,udh · n− (udom − uih) · n)Γb

+
∑
Ωel

(τuP
[
− ρ0udom · ∇udh +∇pdh

]
,−ρ0udom · ∇vh +∇qh)Ωe(t) = 0, (21b)

for all qh ∈ Vd
ph

and vh ∈ Vd
uh

. Again, the first rows of (21a) and (21b) contain the Galerkin FEM terms,
while the stabilization ones with parameters in (20) are provided in the second rows.

3.3. Final spatial and time numerical discretization

Once discretized in space, the FEM equations (19) and (21) must be discretized in time. To that
purpose we divide the time interval [0 T ] into N steps tn, n = 1 . . . N , with time step size ∆t = tn+1 − tn

10



and t1 = ∆t, tN = T . For any arbitrary scalar g or vector g time-dependent functions, gn and gn will
denote an approximation to their evaluation at time tn = n∆t. For the examples in the current work, a
second order backward differentiation formula (BDF2) will be used as an approximation to the first order
time derivative of g ≡ p and g ≡ u, so that dg/dt

∣∣
tn
≈ δtg

n+1 := (1/2∆t)(3gn+1 − 4gn + gn−1). The FEM
time discrete formulation of the incident wave acoustic problem (19) is therefore given by

1

ρ0c20
(δtp

n+1
ih

, qh)− 1

ρ0c20
(udom · ∇pn+1

ih
, qh) + (∇ · un+1

ih
, qh)

+
∑
Ωel

(τpP
[
− 1

ρ0c20
udom · ∇pn+1

ih
+∇ · un+1

ih
−Qn+1

]
,− 1

ρ0c20
udom · ∇qh +∇ · vh)Ωe(tn) = (Qn+1, qh),

(22a)

ρ0(δtu
n+1
ih

,vh)− ρ0(udom · ∇un+1
ih

,vh) + (∇pn+1
ih

,vh)

+
∑
Ωel

(τuP
[
− ρ0udom · ∇un+1

ih
+∇pn+1

ih
− fn+1

]
,−ρ0udom · ∇vh +∇qh)Ωe(tn) = (fn+1,vh). (22b)

Observe that P(δtph) = 0 and P(δtuh) = 0 in (22) because we are dealing with orthogonal subscales.
Analogously, the FEM time discrete version of the diffraction wave problem (21) reads,

1

ρ0c20
(δtp

n+1
dh

, qh)− 1

ρ0c20
(udom · ∇pn+1

dh
, qh) + (∇ · un+1

dh
, qh)− (qh,u

n+1
dh
· n)Γb

+
∑
Ωel

(τpP
[
− 1

ρ0c20
udom · ∇pn+1

dh
+∇ · un+1

dh

]
,− 1

ρ0c20
udom · ∇qh +∇ · vh)Ωe(tn)

= −
(
qh,
(
udom − un+1

ih

)
· n
)

Γb
, (23a)

ρ0(δtu
n+1
dh

,vh)− ρ0(udom · ∇un+1
dh

,vh)− (∇ · vh, pn+1
dh

) + (vh · n, pn+1
dh

)Γb

+ α(vh,u
n+1
dh
· n−

(
udom − un+1

ih

)
· n)Γb

+
∑
Ωel

(τuP
[
− ρ0udom · ∇un+1

dh
+∇pn+1

dh

]
,−ρ0udom · ∇vh +∇qh)Ωe(tn) = 0. (23b)

4. Unified flow and acoustics isentropic compressible solver in an ALE frame of reference

4.1. Problem statement: the differential continuous problem

As explained in the Introduction, the CAA method proposed in the previous section belongs to the
group of hybrid CAA strategies, which segregate the flow dynamics and the acoustic problems. In this
work, the total acoustic pressure computed in this way will be compared with that from a DNC CAA
computation. In particular, we will resort to the DNC isentropic compressible flow equations in primitive
variables presented by the authors in [7], which is set herein in an ALE framework. The formulation in [7]
consists of a unified solver for the continuity and momentum conservation equations for the compressible
velocity and pressure fields. It can be applied to a large number of gas flow problems in the subsonic regime.
The isentropic assumption allows one to get rid of the energy conservation equation and drastically reduces
the computational cost if compared to that of a fully compressible approach (see e.g., [48, 63]). The result
is a solver which converges to a DNC in the low Mach number regime and reduces the complexity gap
between the compressible formulations and the hybrid ones in computational aeroacoustics. As said in the
Introduction, a monolithic scheme will be used for the isentropic compressible flow problem in this paper,
though, recently, a fractional step method has been derived for it [40].

Unlike hybrid approaches, there is no separation here between the acoustic and the Navier-Stokes com-
putational domains in Fig.1. The isentropic compressible equations must be solved in the whole acoustic
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domain Ωac(t) using an ALE frame of reference. Our goal is that of finding the compressible velocity uc

and pressure pc that satisfy the non-linear equations

1

ρc2
∂pc

∂t
+

1

ρc2
(uc − udom) · ∇pc +∇ · uc = Q in Ωac(t), t > 0, (24a)

ρ
∂uc

∂t
+ ρ (uc − udom) · ∇uc − µ∆uc − 1

3
µ∇(∇ · uc) +∇pc = f in Ωac(t), t > 0, (24b)

where µ is the dynamic viscosity. In addition to uc and pc, these equations contain as unknowns the speed
of sound c(x, t) and the density ρ(x, t), so they need to be closed. This is done by taking,

ρ = ρ0

(
1 +

γ − 1

2
M2

) −1
γ−1

, (25a)

c2 = c20

(
1 +

γ − 1

2
M2

)−1

, (25b)

with γ being the adiabatic constant of the gas and M = |uc| /c0 the local Mach number.
Equations (24) plus (25) are to be supplemented with appropriate initial and boundary conditions. In

fact, imposing boundary conditions on Γ∞, which, as seen in Fig. 1, has been split into Γ∞ = ΓLi ∪
ΓLu ∪ ΓLd ∪ ΓO (with null intersection between them and with udom = 0 on Γ∞), constitutes the main
difficulty of the method (stabilization FEM issues aside). While in a CFD simulation one would typically
prescribe an inlet velocity at ΓLi, a zero normal velocity component at ΓLu and ΓLd, and no traction at ΓO,
such conditions do not prevent reflections from the aeroacoustic waves at the boundary Γ∞. As explained
in [7], the strategy to avoid this problem and allow acoustic waves propagate towards infinity is to perform
a decomposition of the computed compressible velocity uc and pressure pc fields into mean and acoustic
components, and impose different boundary conditions on them. We get,

uc (x, t) =ū (x, t) + u (x, t) , (26a)

pc (x, t) =p̄ (x, t) + p (x, t) , (26b)

where ū and p̄ denote the mean quantities and u and p, the acoustic ones (according to the notation in
section 3). The mean components are obtained by low-pass filtering uc and pc, i.e.,

ū = T−1
w

∫ t

t−Tw
uc(x, s)ds, p̄ = T−1

w

∫ t

t−Tw
pc(x, s)ds (27)

where Tw is the time window that determines the cut-off frequency. It is to be noted that if viscosity was
ignored and the mean velocity was set to zero, substitution of (26) into (24) would recover equation (11),
after linearization.

The boundary conditions on Γ∞ = ΓLi ∪ ΓLu ∪ ΓLd ∪ ΓO are set as follows. On ΓLi, ΓLu and ΓLd we
impose standard Dirichlet conditions for ū but mixed conditions (normal component and tangent stress) for
the acoustic velocity u. On ΓO, we prescribe Neumann boundary conditions for ū (no traction) and again
mixed conditions for u. All conditions on ΓLi, ΓLu, ΓLd and ΓO will be weakly imposed in the variational
formulation of the problem (see next section). As regards the body surface Γb(t), it is considered to be rigid
so the compressible velocity uc will vanish there and the velocity at the boundary will be that of the moving
mesh udom. The initial and boundary conditions that complete equations (24) are therefore given by (see
Fig. 1),

uc (x, 0) = uc0 (x) in Ωac(t), t = 0, (28a)

uc (x, t) = udom (x, t) on Γb(t), t > 0, (28b)

ū (x, t) = uLi on ΓLi, t > 0, (28c)

n · u = − 1

ρ0c0
n · [n · σ (u, p)] on ΓLi, t > 0, (28d)
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m · [n · σ (u, p)] = 0 on ΓLi, t > 0, (28e)

n · ū (x, t) = 0 on ΓLu ∪ ΓLd, t > 0, (28f)

n · u = − 1

ρc
n · [n · σ (u, p)] on ΓLu ∪ ΓLd, t > 0, (28g)

m · [n · σ (u, p)] = 0 on ΓLu ∪ ΓLd, t > 0, (28h)

n · σ (ū, p̄) = 0 on ΓO, t > 0, (28i)

n · u = − 1

ρc
n · [n · σ (u, p)] on ΓO, t > 0, (28j)

m · [n · σ (u, p)] = 0 on ΓO, t > 0, (28k)

where σ(uc, pc) = −pcI + µ∇uc + 1
3µ (∇ · uc) I stands for the the stress tensor, I being the identity and

n and m the normal and tangent vectors to a boundary. The mesh velocity udom vanishes at Γ∞. It is
to be noted that in the case of an inviscid flow (µ = 0), the condition on the tangent component of the
acoustic velocities at Γ∞ (equations (28e), (28h) and (28k)) vanishes as one could expect, and that for the
normal component (equations (28d), (28g) and (28j)) reduces to the well-known Sommerfeld’s radiation
condition for acoustic waves, p = ρc (u · n). In what follows and to condensate the notation, we will unify
the boundaries ΓLi ∪ΓLu ∪ΓLd =: ΓL so that ūL will generally designate the different mean values assigned
to the subsets of ΓL (remember that udom = 0 on ΓL). The same will hold true for the conditions for the
acoustic velocity u on ΓL.

4.2. Weak formulation of the ALE isentropic compressible flow problem
For the FEM approximation of problem (24) we first need to get its variational formulation. To that goal

we multiply (24a) by a scalar test function q and (24b) by a vector test function v, and then integrate over
the computational domain. After integration by parts and application of the boundary conditions, we are
left with the weak form we were looking for. Two points are to be noted. The first one concerns notation. In
order to get more compact expressions, all terms involving the problem unknowns and integration over the
computational domain Ωac(t) will be grouped in a semilinear form B([uc, pc], [v, q]), while terms involving the
problem unknowns and integration on the boundary Γ∞ will be collected in a bilinear form BB([uc, pc], [v, q]).
Concerning the later, it shall be mentioned that to make the boundary conditions for the acoustic and mean
components compatible, they all have to be prescribed in weak form. To impose the Dirichlet conditions
ū = uL weakly, we therefore resort again to penalization using Nitsche’s method [50], which demands
symmetry of the boundary terms. The rigidity condition on the moving body surface Γb(t) is imposed
strongly. Finally, problem data involving known boundary values and/or external forces and volume sources
are grouped in a linear form LB(v, q) (in what follows we take f = 0 and Q = 0). The expressions for
B([uc, pc], [v, q]), BB([uc, pc], [v, q]) and LB(v, q) are given by,

B ([uc, pc], [v, q]) =

(
ρv,

∂uc

∂t

)
+ (ρv, [(uc − udom) · ∇]uc) + µ (∇v,∇uc) (29a)

+
1

3
µ (∇ · v,∇ · uc)− (∇ · v, pc) +

(
1

ρc2
q,
∂pc

∂t

)
+

(
1

ρc2
q, (uc − udom) · ∇pc

)
+ (q,∇ · uc) ,

BB([uc, pc], [v, q]) := − (v,n · σ (ū, p̄))ΓL
− (ū,n · σ (v, q))ΓL

+ β
µp
lp

(v, ū)ΓL
(29b)

+ (ρcv · n,u · n)ΓL
+ (ρcv · n,u · n)ΓO

,

LB([v, q]) := − (uL + udom,n · σ (v, q))ΓL
+ β

µp
lp

(v,uL)ΓL
, (29c)

where β, µp, lp are numerical parameters to be determined. The first one is dimensionless, the second one
has units of viscosity and the third has length units.

With the above identifications, the variational isentropic compressible problem can be posed as that of
finding pc ∈ Wc

p([0, T ],Vcp) and uc ∈Wc
u([0, T ],Vc

u) such that

B ([uc, pc], [v, q]) +BB([uc, pc], [v, q]) = LB([v, q]) (30)
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for all q ∈ Vcp and v ∈ Vc
u. Again, Wc

p, Wc
u, Vcp and Vc

u designate appropriate functional spaces not to
be detailed herein. The variational problem (30) is essentially that in [7] except for the mesh velocity that
affects the convective terms and the boundary conditions.

4.3. Fully discrete problem for the ALE isentropic compressible flow problem

Full details on the FEM space and finite difference time discretization of the non-ALE counterpart of (30)
can be found in [7], so we will only succinctly describe how to get a fully discrete scheme for the ALE one in
this section, due to the close similarity. As for the FEM space discretization, we start finding finite element
spaces Vcph ⊂ Vcp and Vc

uh ⊂ Vc
u such that the approximate FEM compressible flow velocity uch and pressure

pch (as well as their corresponding test functions) can be expressed as a linear combination of the bases
spanning Vcph and Vc

uh. On the other hand, as we are dealing with a mixed problem, stabilization is required
if we want to use the same interpolation for the compressible velocity and pressure fields [54]. Concerning
the time dicretization, we use a BDF2 time integrator, like in section 3.3. The fully discrete variational
version of (30) consists in solving, at time step tn+1,

Bn+1 ([uch, p
c
h], [vh, qh]) +Bn+1

B ([uch, p
c
h], [vh, qh]) +Bn+1

S ([uch, p
c
h], [vh, qh]) = Ln+1

B ([vh, qh]), (31)

where Bn+1
S ([uch, p

c
h], [vh, qh]) is the semilinear form for the stabilization terms, to be detailed below, and

Bn+1 ([uch, p
c
h], [vh, qh]), Bn+1

B ([uch, p
c
h], [vh, qh]) and Ln+1

B ([vh, qh]) are the discrete, straightforward counter-
parts of (29a), (29b) and (29c). Before introducing Bn+1

S ([uch, p
c
h], [vh, qh]), let us draw our attention to

some general aspects of (31). When expressed in matrix form, the sole unknowns of the problem must be uch
and pch. All other variables in (31) shall be written in terms of them. As for the density, ρ, and the speed of
sound, c, (see (29a) and (29b)), this can be done through equations (25a) and (25b), by computing the local
Mach number in terms of uch. The situation is more intricate for the discrete mean, ūh, p̄h and acoustic,
uh, ph quantities in Bn+1

B ([uch, p
c
h], [vh, qh]), arising from (29b). In this case one can relate them to uch and

pch once the filter operation in (27) has been discretized using a trapezoidal rule. As regards the constants
β, µp and lp in Bn+1

B ([uch, p
c
h], [vh, qh]) and Ln+1

B ([vh, qh]), they can be taken as β = 1, µp = µ+ ρ|uch|h, and
lp = h (see [64]).

In what concerns the stabilization term Bn+1
S ([uch, p

c
h], [vh, qh]) in (31), this has been obtained from an

algebraic subgrid scale approach (ASGS) [65], which yields,

Bn+1
S ([uch, p

c
h] , [vh, qh])

=
∑
Ωel

τ1,el((ρu
c,n+1
h − udom) · ∇vh +∇qh, ρδtuc,n+1

h + ρ(uc,n+1
h − udom) · ∇uc,n+1

h −∇ · σn+1
h )Ωel

+
∑
Ωel

τ2,el(∇ · vh +
1

ρc2
(uc,n+1

h − udom) · ∇qh,∇ · uc,n+1
h +

1

c2
(uc,n+1

h − udom) · ∇pc,n+1
h +

1

ρc2
δtp

c,n+1
h )Ωel ,

(32)

where τ1,el and τ2,el are suitable stabilization parameters defined in each element [55]. These are obtained
as,

τ1,el =

[
c1
µ

h2
+ c2ρ

|uc,n+1
h − udom|Ωel

h

]−1

, τ2,el =
h2

c1τ1,el
, (33)

with |uc,n+1
h |Ωel standing for the mean Euclidean norm of the velocity in the element Ωel. The constants

c1 and c2 depend on the polynomial order of the interpolation and are set to c1 = 4 and c2 = 2 for linear
elements. The reader is referred to [7] for a more detailed explanation on the choices for the discretization
scheme presented in this section.
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Figure 2: Sketch of the pitching NACA0012 airfoil aeroacoustic problem addressed with the hybrid splitting CAA strategy and
the isentropic compressible solver. Location of the control points P1, P2, P3 and P4.

5. Numerical examples

To illustrate the performance of the ALE hybrid splitting CAA strategy of section 3 and the ALE direct
isentropic compressible one in section 4, two numerical examples will be presented down below. The first one
addresses the noise generated by flow past a two-dimensional NACA0012 airfoil that is oscillating with the
center of rotation (pitching axis) located at its leading edge. The second example is also two-dimensional and
consists of computing the sound generated by flow past a teeth-shaped object at a duct termination, which
opens progressively. The motion of the airfoil and of the duct closure is prescribed resulting in a deformation
of the FEM mesh. That is accounted for by solving an associated elastic problem for the displacament of the
mesh nodes, as exposed in [66]. Given that the mesh distortion is not very high for the current examples,
this strategy avoids the need of remeshing, which significantly reduces the computational cost. All units in
the next sections are in SI, so we will not explicitly specify them.

5.1. Aeroacoustics of a slow oscillating 2D NACA0012 airfoil at M = 0.1

The first example consists of flow impinging on a two-dimensional NACA 0012 airfoil, which has an initial
angle of attack of γ = 5◦ [67], see Fig. 2. The Reynolds number based on the incident flow speed and airfoil
chord (c = 0.1524) is Rec = 2.08 × 105, whereas the Mach number is M = 0.2. The airfoil pitches around
the leading edge, where we place the origin of coordinates, with an angular frequency of ωa = 40. This is
much lower than the frequency of the shed vortices for the static airfoil, which turns to be ωs ∼ 1.35× 104,
as demanded for the correct characterization of the quasi-stationary diffraction problem. Departing from
the initial value γ = 5◦, the angle of attack decreases to zero and keeps diminishing until the trailing edge
reaches its maximum height corresponding to γmin = −1.5◦. Then, γ starts increasing, passes through zero,
and reaches its maximum value (minimum height of the trailing edge) at γmax = 10.5◦. Note that the
oscillation is not symmetric.

The computational domain has dimensions 1.5×1.5 and has been discretized with an unstructured mesh
of nearly 6× 105 linear elements, using equal interpolation spaces for the velocity and pressure fields. The
mesh size is h ∼ 4× 10−5 on the airfoil surface Γb(t). The case has been ran up to a time of T = 0.045, with
a time step of ∆t = 10−5, starting from an initial incompressible solution to ease the initial convergence of
the solver. As said before, the mesh deformation due to the airfoil motion has been computed following the
approach in [66] and its velocity has been accounted for in the flow dynamics and the acoustics by means
of the ALE formulations in sections 3 and 4. The prescription of the Dirichlet boundary condition (16c) for
the diffracted problem on the airfoil surface in a weak sense, using Nitsche’s method, has turned to be one
of the most important features for numerical convergence. The penalty parameter in (18b) must be very
high (∼ 105) to prevent mass losses.

15



(a) (b)

(c) (d)

(e) (f)

Figure 3: Zoomed snapshots of the incompressible (left column) and isentropic compressible (right column) velocity profiles for
three different angles of attack: γ0 = 0◦ (first row), γmin = −1.5◦ (second row) and γmax = 10.5◦ (third row).

In Figs. 3 and 4 we first present results for the flow dynamics. The snaphshots in Fig. 3 correspond
to velocity isosurfaces at different angles of attack. The first row shows the results for γ0 (corresponding
to γ = 0◦), the second row for γmin and the third one for γmax. The plots in the first column display
the incompressible velocity around the airfoil computed in the first step of the hybrid CAA approach in
section 3, while the second column contains plots for the compressible velocity calculated with the formulation
in section 4. The results in the two columns of the figures are very close indicating that the isentropic
compressible formulation correctly reproduces the nearly incompressible behaviour of the flow (though one
should bear in mind that these are velocity profiles at a given instant). In Figs. 3a and b it is observed for
γ0 how the boundary layer slightly first detaches from the upper surface and how vortices are shed at the
airfoil trailing edge. As opposed, for γmin the boundary layer starts detaching from the lower surface. The
oscillation of the airfoil perturbs the periodicity of the vortex shedding and one may find aperiodic patterns
for the velocity (see e.g., Fig. 3c), from time to time. In the case of γmax, strong changes are appreciated.
The boundary layer detaches from the upper surface but now at a point very close to the leading edge,
which results in vortices travelling all over the airfoil upper surface and on larger and more intense vortex
shedding at the trailing edge. As it will be shown below, that would have great impact on the generated
aeroacoustic noise.

In Fig. 4, analogous results to those in Fig. 3 are presented, but now for the pressure. Each row in the
figure respectively corresponds to angles of attack γ0, γmin and γmax. The plots in the first column show
the incompressible pressure obtained from the incompressible Navier-Stokes equations, whereas the second
column depicts the compressible pressure from the unified isentropic compressible solver. Both pressure
fields would look very similar in the vicinity of the airfoil (as happened with the velocity in Fig. 3), but
what it is interesting here is to check what occurs at the far field. Therefore, the pressure distribution over
the whole computational domain is plotted in Fig. 4, instead of the zoom used for Fig. 3. As regards the
results in the first column, it should be noted that the fluctuations in Figs. 4a, c and e are not acoustic
waves propagating with the sound speed but incompressible pressure fluctuations. These fluctuations do

16



(a) (b)

(c) (d)

(e) (f)

Figure 4: Snapshots of the incompressible (left column) and isentropic compressible (right column) pressure profiles for three
different angles of attack: γ0 = 0◦ (first row), γmin = −1.5◦ (second row) and γmax = 10.5◦ (third row).

not satisfy an acoustic wave equation. As opposed, the pressure fluctuations at the far field in the second
column of the figure do correspond to acoustic waves propagating outwards. If we compare the plots in the
two columns, the results are significantly different, both in intensity and in separation between the extreme
values of the fluctuations (which, as said, correspond to acoustic wavelengths for the compressible case). It is
also apparent from the simulations that the acoustic field has a dipole pattern and that for γmax the pressure
variations are more intense than for γ0 and γmin (see Figs. 4b, d and f), which was expected given than the
absolute value of γmax is much higher than that of γmin (rememeber that the oscillations are not symmetric
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(a) (b)

(c) (d)

Figure 5: Total acoustic pressure spectrum at the far-field reference points (a) P1, (b) P2, (c) P3 and (d) P4 of Fig. 2.
Comparison between the hybrid splitting CAA approach (Lighthill) and the isentropic compressible solver.

with respect to the chord line at γ0). It is also worth mentioning that the non-reflecting conditions for the
acoustic fluctuations imposed at the boundary ΓL (see (28)) work properly as no bouncing waves from ΓL
are detected.

For a more quantitative, rather than qualitative, comparison between the ALE hybrid splitting and
isentropic compressible CAA strategies, in Fig. 5 we present the spectra for the total acoustic pressure
at the four far-field points P1 = (−1.4, 0.0)>, P2 = (0.0, 1.4)>, P3 = (1.4, 0.0)> and P4 = (0.0,−1.4)>

depicted in Fig. 2. As mentioned before, the far-field acoustic field has a dipole pattern, which means that
the spectra for points P2 and P4 in Figs 5b and d should be substantially higher than those of points P1
and P3 in Figs 5a and c. This is clearly appreciated in the figures, specially for the mid-high frequency range
where the levels at P2 and P4 are ∼ 30 dB higher than those of P1 and P3. On the other hand, the spectra
of P1 and P3 exhibit significant differences. The latter has much larger low frequency content. This is due
to the fact that the flow wake, though weakened, is still active at P3 and the pressure becomes affected by
passing vortices. It is to be noted that Lighthill’s analogy is not actually reliable for points like P3, which
are still in the flow region, as the analogy cannot distinguish sound from pseudo-sound. More elaborated
acoustic wave operators should be used instead (see the Introduction section for alternatives). However, the
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Incident (first column) and diffracted (second column) acoustic pressure for the ALE hybrid CAA Lighthill approach
for different angles of attack: γ0 = 0◦ (first row), γmin = −1.5◦ (second row) and γmax = 10.5◦ (third row).

results for the isentropic compressible solver closely resemble those of Lighthill for P3. In fact, despite some
peak differences the spectra computed with the two methods at all points exhibit similar average trends.

Fig. 6 shows the incident (first column) and diffracted (second column) acoustic fields obtained from
the numerical solution of equations (22) and (23) in the hybrid CAA (Lighthill) approach. As in previous
figures, rows from one to three respectively correspond to angles of attack γ0, γmin and γmax. It is clear
from Figs. 6a, c and e that the incident field has a general quadrupole character, while the diffracted one is
dominant at the far field and has a dipole pattern, even if the airfoil is moving (see the explanations following
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(a) (b)

(c) (d)

Figure 7: Incident and diffracted acoustic pressure components of the total hybrid CAA spectra in Fig. 5 for points (a) P1,
(b) P2, (c) P3 and (d) P4 of Fig. 2.

equation (3) in section 2.1.). As expected, the violent and earlier detachment of the boundary layer for γmax

in Fig. 6f produces a much stronger dipole than those for γ0 and γmin in Figs. 6b and d (as also observed for
the isentropic compressible solver in Fig. 4f). Finally, in Fig. 7, we have plotted the spectra of the incident
and diffracted acoustic pressure components at points P1, P2, P3 and P4. The energy summation of these
spectra at each point provides the total ones depicted in Fig. 5 for the hybrid CAA strategy. The results
confirm previous considerations. As observed, at the far-field points P2 and P4, which are aligned with
the dipole axis, the diffracted noise clearly dominates the spectra for the whole frequency range and almost
justifies the total acoustic pressure levels of Figs. 5b and c. The situation is not so clear for points P1 and
P3 in the normal axis of the dipole, as almost no diffracted noise is emitted in that direction. For P1 in
Fig. (7)a, it can be seen that the incident acoustic pressure field is somewhat larger than the diffracted one
for almost all frequencies. For point P3 in Fig. (7)c, the dominance of the incident acoustic pressure is very
apparent. As explained before, this point is placed in the wake of the airfoil, and despite the long distance
apart, weakened vortices still cross it, resulting in the high incident pressure level at low frequencies. As
mentioned, such pressure probably cannot be fully associated to acoustic waves.
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Figure 8: Scheme of the computational domain close to the duct exit. The teeth-shaped obstacle evolves from minimum to
maximum opening. Only a portion of the outer domain is shown in the figure.

(a) (b)

Figure 9: Evolution of the flow velocity at (a) t = 0.02 (minimum aperture) (b) t = 0.04 (maximum aperture).

(a) (b) (c)

Figure 10: Incident (a), diffracted (b) and total (c) acoustic pressure in the central section of the domain at t = 0.02.
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(a) (b)

Figure 11: Spectra of the incident, diffracted and total acoustic pressure for (a) point P1 located at the exit of the duct and
(b) point P2 located at one corner of the computational domain.

5.2. Aeroacoustics of a two-dimensional opening teeth-shaped obstacle

As a second example, we address the aeroacoustics problem of a flow exiting a duct whose termination
slowly transitions from an initial small aperture to a larger one. This type of situations is important, for
instance, in numerical voice generation. A sibilant sound like /s/ is produced when the flow emanating
from the lungs is accelerated by moving the tongue upwards to the hard palate, which results in a small air
constriction. The turbulent air jet that goes through it impinges on the upper teeth and then passes through
the inter-dental space generating strong vortices between the lower teeth and lower lips, which in turn trigger
acoustic waves. The latter propagate outwards and also become diffracted by the teeth [1, 2, 4, 68]. The
vocal tract geometry in the generation of a single sibilant is basically static, but if one attempts to generate
more complex sounds like sibilant-vowel syllables (e.g., /sa/) the vocal tract will change its shape and the
inter-dental aperture will vary [3, 69]. The current example may be viewed as a very simplified model related
to some of the physics underlying such voice generation problem. Only the hybrid splitting CAA approach
will be applied in this section as comparisons with the isentropic solver have been already performed in the
previous one, and separating the contributions from the direct and diffracted acoustic waves is what usually
matters to better understand sibilant generation processes (see e.g., [2, 68]).

The problem at hand consists of a three-dimensional computational domain in which a duct exits at a flat
baffle. The spanwise dimension is though very small so the acoustic results are essentially two-dimensional.
A sketch illustrating the central section of the geometry is depicted in Fig. 8. The duct has a length of
0.09 and a teeth-shaped termination which transitions from an initial aperture of 3× 10−3 to a final one of
18 × 10−3, according to a prescribed velocity ramp. Since the analysis focuses on the contribution of the
direct and diffracted acoustic pressure contributions of the termination, the opening starts at t = 0.02, once
the flow and acoustic field have fully developed, and finishes at t = 0.04. The inlet velocity is 2.4 and a time
step of ∆t = 10−5 has been used for the simulations. The exit domain has dimensions 1 × 1 × 0.025. As
in the previous example, equal interpolation has been used for the acoustic pressure and acoustic particle
velocity and an unstructured mesh of ∼ 3.4×105 elements has been employed to discretize the computational
domain.

The initial occlusion induces an air jet whose oscillations shed aperiodic vortices of various dimensions,
which produce acoustic waves covering a wide range of frequencies and a high noise level. The jet clearly
manifests in the snpahshot for the incompressible velocity field at t = 0.02, in Fig. 9a. Once the termination
is totally opened at t = 0.04, the jet has lost most of its power and larger and slower vortices are shed
from the duct termination, see Fig. 9b. On the other hand, in Fig. 10 we have plotted snapshots for the
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incident, diffracted and total acoustic pressure at t = 0.02. As observed, and as one could expect, the total
acoustic pressure in Fig. 10c is a combination of the incident one in Fig. 10a and the diffracted pressure in
Fig. 10b (note that the colour scales change from one figure to another to better appreciate their contents).
The incident pressure mainly dominates the near field total pressure while the diffracted field is mostly
responsible for the total acoustic pressure at the far field. However, at the far field the incident pressure still
manifests as vortices are shed in several directions from the duct exit (see Fig. 9), resulting in a disorganized
wake affecting the whole computational domain. This can be clearly appreciated if we plot the spectra
of the incident and diffracted waves and the total spectra for two points respectively placed close to the
duct exit and far away from it. Let us consider P1 = (0.09, 0.025,−0, 0125) at the exit of the duct and
P2 = (0.98, 0.47,−0.0125) at one corner of the computational domain (whose origin is centered at the
entrance of the duct). While the spectra of P1 is totally determined by the incident field the diffracted one
being negligible (see Fig 11a), in the case of P2, both, the incident and diffracted acoustic fields equally
contribute to the total acoustic pressure (see Fig 11b). As said before, the fact that the incident pressure
is still of importance at P2 is because shed vortices are still active in the region. If the minimum aperture
of the teeth-shaped termination was kept constant, the vortex wake would be more focused and would have
less influence on P2. In such circumstance the diffracted field would be dominant at that point, similarly to
what happened for P2 and P4 in the case of the NACA airfoil.

6. Conclusions

In this work, we have expanded some previous research on CAA at low Mach numbers to the case of flow
sound generated in the presence of slowly moving bodies. In particular, the hybrid CAA approach in [6],
which was able to separate the incident and diffracted noise contributions of rigid objects to far-field points,
has been adapted to account for the slow motion of such objects. In such circumstances, the thickness noise
turns to be negligible and the loading noise aeroacoustics can be posed as a quasi-static diffraction problem.
The latter is numerically solved with FEM and by setting the involved equations in an ALE framework. The
incompressible ALE Navier-Stokes equations are first resolved to obtain the acoustic source term and then
the acoustic pressure field is determined. It is to be mentioned that it is not possible to set the irreducible
acoustic wave equation in an ALE framework and one has to deal with its mixed formulation, which requires
FEM stabilization strategies, as presented. For comparison, we have also introduced an ALE version of the
direct CAA strategy in [7], consisting of an isentropic compressible solver.

The proposed formulations have been tested in two situations. The first one consists of a 2D oscillating
NACA0012 airfoil. The hybrid ALE CAA method and the isentropic compressible ALE solver have provided
similar results for the total acoustic pressure. Furthermore, the simulations of the former clearly show the
quadrupole character of the incident noise field and the dipole pattern of the diffracted field. As expected,
when the airfoil motion reaches its higher angle of attack the aerodynamic noise strongly increases because
the boundary layer detaches close to the leading edge and sheds large vortices. For far-field points at right
angle to the static airfoil chord, the diffracted noise is totally responsible for the total noise, while for points
located in the axis of the chord in front of the airfoil, the incident noise dominates. For points in the wake
both the incident and diffracted fields have similar contributions. On the other hand, the second example
has consisted in a duct with a teeth-shaped termination that progressively opens from a small aperture to a
large one. Such case reminds of situations found in the numerical production of voice, like in the generation
of a syllable involving a sibilant sound like /s/, which is of an aeroacoustic nature. The obtained results
indicate that in the near field the contribution of the incident acoustic pressure dominates. At the far field,
the diffraction component would be the most important one for small teeth apertures, but for large apertures
vortices are shed in many directions balancing the contributions of the incident and diffracted components
to the total acoustic pressure. It is expected that the proposed numerical strategies could be particularly
helpful for future developments in numerical voice production.
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[35] X. Gloerfelt, F. Pérot, C. Bailly, D. Juvé, Flow-induced cylinder noise formulated as a diffraction problem for low Mach

numbers, J. Sound Vib. 287 (2005) 129–151.
[36] T. Hughes, W. Liu, T. Zimmermann, Lagrangian-Eulerian finite-element formulation for compressible viscous flows,

Comput. Methods Appl. Mech. Engrg. 29 (1981) 329–349.
[37] A. Huerta, W. Liu, Viscous flow with large free surface motion, Comput. Methods Appl. Mech. Engrg. 69 (1988) 277–324.
[38] O. Guasch, M. Arnela, R. Codina, H. Espinoza, A stabilized finite element method for the mixed wave equation in an

ALE framework with application to diphthong production, Acta Acust. united Ac. 102 (2016) 94–106.
[39] R. Codina, Finite element approximation of the hyperbolic wave equation in mixed form, Comput. Methods Appl. Mech.

Engrg. 197(13–16) (2008) 1305–1322.
[40] S. Parada, J. Baiges, R. Codina, A fractional step method for computational aeroacoustics using weak imposition of

Dirichlet boundary conditions, Comput. Fluids 197 (2020) 104374.
[41] D. Crighton, A. Dowling, J. Ffowcs Williams, M. Heckl, F. Leppington, Modern Methods in Analytical Acoustics-Lecture

Notes, Springer-Verlag (1992).
[42] J. Wong, D. Darmofal, J. Peraire, The solution of the compressible Euler equations at low Mach numbers using a stabilized

finite element algorithm, Comput. Methods Appl. Mech. Engrg. 190 (2001) 5719–5737.
[43] T. Colonius, S. K. Lele, P. Moin, Boundary conditions for direct computation of aerodynamic sound generation, AIAA J.

31 (1993) 1574–1582.
[44] T. Colonius, Modeling artificial boundary conditions for compressible flow, Annu. Rev. Fluid Mech. 36 (2004) 315–345.
[45] T. Yabe, P.-Y. Wang, Unified numerical procedure for compressible and incompressible fluid, J. Phys. Soc. Japan 60

(1991) 2105–2108.
[46] F. Xiao, R. Akoh, S. Ii, Unified formulation for compressible and incompressible flows by using multi-integrated moments

ii: Multi-dimensional version for compressible and incompressible flows, J. Comput. Phys. 213 (2006) 31–56.
[47] L. Pesch, J. J. van der Vegt, A discontinuous Galerkin finite element discretization of the Euler equations for compressible

and incompressible fluids, J. Comput. Phys. 227 (2008) 5426–5446.
[48] C. Bayona, J. Baiges, R. Codina, Solution of low Mach number aeroacoustic flows using a Variational Multi-Scale finite

element formulation of the compressible Navier–Stokes equations written in primitive variables, Comput. Methods Appl.
Mech. Engrg. 344 (2019) 1073–1103.

[49] M. Billaud, G. Gallice, B. Nkonga, A simple stabilized finite element method for solving two phase compressible–
incompressible interface flows, Comput. Methods Appl. Mech. Engrg. 200 (2011) 1272–1290.

[50] M. Juntunen, R. Stenberg, Nitsche’s method for general boundary conditions, Mathematics of computation 78 (2009)
1353–1374.

[51] J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (2) (1994)
185–200.

[52] F. Q. Hu, Development of PML absorbing boundary conditions for computational aeroacoustics: A progress review,
Comput. Fluids 37 (2008) 336–348.

[53] T. Hughes, Multiscale phenomena: Green’s function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles
and the origins of stabilized formulations, Comput. Methods Appl. Mech. Engrg. 127 (1995) 387–401.
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[66] G. Chiandussi, G. Bugeda, E. Oñate, A simple method for automatic update of finite element meshes, Int. J. Numer.
Meth. Biomed. Engrg. 16 (2000) 1–19.

[67] W. R. Wolf, S. K. Lele, Trailing edge noise predictions using compressible les and acoustic analogy, in: Proceedings of
the 17th AIAA/CEAS Aeroacoustics Conference, AIAA Paper, volume 2784, pp. 1–25.

[68] M. Howe, R. McGowan, Aeroacoustics of [s], Proc. R. Soc. A 461 (2005) 1005–1028.
[69] M. Arnela, O. Guasch, Finite element simulation of/asa/in a three-dimensional vocal tract using a simplified aeroacoustic
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