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Abstract. In this work an algorithm for topological optimization, based on the topolog-
ical derivative concept, is proposed for both nearly and fully incompressible materials. In
order to deal with such materials, a new decomposition of the Polarization tensor is pro-
posed in terms of its deviatoric and volumetric components. Mixed formulations applied
in the context of linear elasticity do not only allow to deal with incompressible material
behavior but also to obtain a higher accuracy in the computation of stresses. The system
is stabilized by means of the Variational Multiscale method based on the decomposition of
the unknowns into resolvable and subgrid scales in order to prevent �uctuations. Several
numerical examples are presented and discussed to assess the robustness of the proposed
formulation and its applicability to Topology Optimization problems for incompressible
elastic solids.
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1. Introduction

Structural topology optimization aims to �nd the optimal layout of material within a
design domain for a given set of boundary conditions such that the resulting material
distribution meets a set of performance targets [1]. Several types of topology optimiza-
tion methodologies exist, such as density-based methods which include the popular SIMP
technique [2], hard-kill methods [3] and boundary variation methods [4], among others [5].
A relatively new approach for this kind of problem is based on the topological derivative
concept [6]. This derivative measures the sensitivity of a given shape functional with re-
spect to an in�nitesimal singular domain perturbation and it has become a very powerful
tool due to the fact that it can be used as a steepest-descent direction in an optimization
process [7, 8, 9].

An incompressible material is understood as one which keeps its volume constant through-
out a motion. In many cases, this is a common idealization and accepted assumption, often
invoked in continuum and computational mechanics. Numerous polymeric materials can
sustain �nite strains without noticeable volume changes. Furthermore, many biological
materials and several types of soils can be modeled as nearly or fully incompressible [10].

In small strain solid mechanics problems, standard irreducible low order �nite elements
are typically preferred [11]. Standard irreducible means that only the displacement �eld is
considered as the primary unknown of the problem and all other �elds, such as stress and
strain �elds, are obtained a posteriori. Unfortunately, this approach performs poorly in
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nearly and fully incompressible scenarios: volumetric and shear locking, pressure �uctua-
tions and poor performance in bending dominated situations are some of the e�ects that
can be observed [12].

To overcome these problems an approach which originated in �uid mechanics can be
adapted. When considering a static, incompressible, in�nitesimal strain case of the solid
mechanics problem, we obtain an elliptic problem which is identical to the formulation of
the Stokes problem in �uid mechanics [13, 14]. It is therefore reasonable to convey the
mixed velocity/pressure approach, used in �uid mechanics to the solid mechanics problem �
becoming the mixed displacement/pressure approach [15]. This approach led to the exten-
sion of di�erent implementations in the �eld of �uid mechanics to the solid mechanics area.
See for instance [16, 17, 18, 19], a set of works where the incompressible nonlinear material
problem is stabilized using the variational multiscale method. Note that in the cited papers
the orthogonal subscales method [34, 20] is used, which is a variant of the original stabiliza-
tion method proposed in [22]. These works, in which both strain/displacement as well as
stress/displacement pairs are used as primary variables, demonstrate the good performance
of mixed �nite elements in solid mechanics. By using more than one primary unknown,
the number of unknowns per node is considerably increased � especially when considering
stresses or strains � but they also increase the accuracy notably. Furthermore, in [23] the
idea of using displacement/pressure/stress or displacement/pressure/strain formulations,
proposed in [35], was tested and seen to be very e�ective when solving incompressible cases
in which also accurate results for the stress and strain �eld are required.

To the best of our knowledge, only few studies exist which face the topology optimiza-
tion problem of incompressible materials. In [24, 25], mixed formulations with very speci�c
interpolation schemes for the elements are applied with a class of SIMP interpolations [26]
for both the bulk and shear modulus. The subsequent optimization problem is solved using
the Method of Moving Asymptotes [27]. Further, [28] proposes the scaled boundary �nite
element method (SBFEM) formulation to avoid the inf-sup condition for the mixed dis-
placement/presure problem and applies the moving iso-surface threshold (MIST) method
to solve the topology optimization problem. Finally, in [29] a density-based topology op-
timization problem is proposed for several material interpolations and by also using the
mixed displacement/pressure formulation for nearly incompressible materials.

In the present work, we favor using the topological derivative concept in combination
with a level-set method to address the topology optimization problem. However, in the
context of structural topology design, the topological derivative has been only used as a
descent direction utilizing the classical displacement-based formulation [30]. This approach
is therefore limited to compressible materials. Considering nearly and fully incompressible
material behavior, both the formulation and the topological derivative expression become
singular. We overcome this problem by introducing the deviatoric/volumetric split, as
presented in [23], thus obtaining a mixed formulation. Following this approach, the present
work proposes a new expression for the split topological derivative which allows us to
compute the correct topological derivative for incompressible materials. Together with a
level-set method, this approach is used to obtain optimal designs.

This paper is organized as follows. In Section 2 the mixed displacement/pressure (u/p)
and the displacement/pressure/deviatoric strain (u/p/e) �nite element formulations for
linear elasticity are summarized and the sub-grid scale approach is outlined. In Section
3 a new topological derivative expression is de�ned through the volumetric-deviatoric de-
composition of the Polarization tensor. Next, in Section 4, the proposed iterative topology
optimization algorithm is presented. In Section 5 several numerical examples are presented
and discussed to assess the present algorithm and to validate its performance for nearly
and fully incompressible materials. Finally, in Section 6 some conclusions of the proposed
topology optimization formulations are drawn.
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2. Mixed formulations in linear Elasticity

2.1. The continuum problem statement. In this work, the equations of motion are
presented under the in�nitessimal strain assumption. Let Ω be an open, bounded and
polyhedral domain of Rd, where d is the number of spacial dimensions. Any point of the
body is labeled with the vector x. The boundary of the domain is denoted as Γ := ∂Ω and it
is split into a Dirichlet boundary ΓD, where the prescribed displacements are speci�ed, and
a Neumann boundary ΓN , where prescribed tractions are applied. The types of boundaries
do not intersect, ΓD ∩ ΓN = ∅ and together cover the whole boundary, ΓD ∪ ΓN = Γ.

The continuum mechanical problem of linear elasticity is de�ned by the following system
of equations

−∇ · σ = ρb in Ω, (1)

σ = C : ε in Ω, (2)

ε = ∇su in Ω, (3)

where u is the displacement �eld, σ the stress �eld and ε the strain �eld. Eq. (1) is the
balance of momentum equation, where ρb represents the external load per unit of volume
and ∇ · (·) is the divergence operator. Eq. (2) is the constitutive equation for linear
elasticity, where C is the 4th order constitutive tensor for isotropic materials de�ned as

C = 2µI + λI⊗ I. (4)

Here, I and I are the 4th rank and the 2nd rank identity tensors , respectively, and λ and
µ are Lamé's parameters. In the plane stress assumption they are expressed as

λ =
νE

1− ν2
and µ =

E

2(1 + ν)
, (5)

while in both 3D and plane strain they are de�ned as

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (6)

Here E is the Young modulus and ν the Poisson ratio. Finally, Eq. (3) is the kinematic
equation which relates the strain �eld with displacements, where ∇s(·) = 1

2

{
∇(·) +∇T (·)

}
denotes the symmetric gradient operator and ∇(·) is the gradient operator.

The classical irreducible displacement-based formulation is obtained by substituting Eqs.
(2-3) into Eq. (1). The result is known as Navier's equation

−∇ · {C : ∇su} = ρb in Ω, (7)

which is written in terms of the displacement �eld only.

2.2. The volumetric/deviatoric split. The objective of this subsection is the split of
both the constitutive and the kinematic equation into their volumetric and deviatoric parts.
The volumetric/deviatoric split is the starting point to develop a formulation able to tackle
the incompressible limit.

2.2.1. Volumetric and deviatoric operators. First of all, let us de�ne the volumetric and
deviatoric 4th order tensors V and D as

V =
1

3
I⊗ I, (8)

D = I− 1

3
I⊗ I, (9)

I = D + V. (10)

Using the operators V and D, it is possible to extract the spherical and the deviatoric
parts of generic 2nd and 4th order tensors.
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2.2.2. Split of stress and strain tensors. Particularly, when applied to the stress tensor σ
the result is

V : σ =

{
1

3
I⊗ I

}
: σ =

1

3
tr(σ)I := −pI, (11)

where p is the pressure, taken as positive in compression regime and

D : σ =

{
I− 1

3
I⊗ I

}
: σ = σ + pI = s, (12)

where s are the deviatoric stresses. Adding the volumetric and the deviatoric components,
the Cauchy stress tensor is rebuilt as

σ = s− pI. (13)

In a similar way, it is possible to split the strain tensor ε, as

V : ε =

{
1

3
I⊗ I

}
: ε =

1

3
tr(ε)I :=

1

3
evolI, (14)

where evol is the volumetric deformation and

D : ε =

{
I− 1

3
I⊗ I

}
: ε = ε− 1

3
evolI = e, (15)

where e are the deviatoric strains which account for the distortions.

2.2.3. Split of the kinematic equation . Applying the volumetric/deviatoric operators, Eq.
(3) is split as

evol = ∇ · u, (16)

e = D : ∇su. (17)

Adding the volumetric and the deviatoric components, the kinematic equation is rebuilt
as

ε =
1

3
evolI + e =

1

3
(∇ · u)I + D : ∇su. (18)

2.2.4. Split of the constitutive equation . Let us assume that the constitutive relation-
ship between stresses and strains can be expressed utilizing the Constitutive equation (2).
Hence, the volumetric and the deviatoric parts of the constitutive tensor Cvol and Cdev are
obtained as

Cvol = V : C = (λ+
2µ

3
)I⊗ I := κI⊗ I, (19)

Cdev = D : C = 2µ

{
I− 1

3
I⊗ I

}
, (20)

C = Cvol + Cdev, (21)

where κ is the bulk modulus of the material. Introducing the split of stresses and strains,
the constitutive relationship in Eq. (2) can be written as

{s− pI} =
{
Cvol + Cdev

}
:

{
1

3
(∇ · u)I + D : ∇su

}
(22)

By taking into account that the contraction between volumetric and deviatoric tensors is
identically null, Eq. (22) is split into two equations

p = −κ∇ · u, (23)

s = Cdev : ε = Cdev : e, (24)

which are the volumetric and the deviatoric counterparts of the original constitutive equa-
tion.
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2.3. The u/p two-�eld formulation. In this section, the well-known mixed u/p formu-
lation is introduced in order to deal with nearly and fully incompressible scenarios. In the
presented formulation the displacement and pressure �elds u and p are used as independent
variables. Hence, the governing equations of the problem are rewritten as

−∇ · s +∇p = ρb in Ω, (25)

s = Cdev : ∇su in Ω, (26)

∇ · u +
p

κ
= 0 in Ω. (27)

Eq. (25) allows us to formulate the linear momentum equation in terms of both displace-
ments u and pressure p, where the stress tensor decomposition (13) has been introduced
into the momentum equation. Furthermore, the constitutive law which relates deviatoric
stresses with displacements (26) allows us to introduce the displacement �eld in the balance
equation (25). Finally, Eq. (27) is in charge of both providing the constitutive equation
for the pressure and imposing the incompressibility constraint.

Remark 2.1. Let us recall that in the incompressible limit κ → ∞, and Eq. (27) will
reduce automatically to

∇ · u = 0, (28)

which is the incompressibility condition for in�nitesimal strain theory.

2.3.1. Governing equations. To complete this section, we introduce the mixed u/p problem,
which consists in �nding both a displacement u and a pressure p such that

−∇ ·
{
Cdev : ∇su

}
+∇p = ρb in Ω, (29)

∇ · u +
p

κ
= 0 in Ω. (30)

The governing equations must be supplied with a set of boundary conditions

u = uD on ΓD, (31)

σn
(13)
= sn− pn = t on ΓN , (32)

where n is the geometric unit outward normal vector on the boundary Γ. To simplify the
exposition, we will consider uD = 0 in the following.

2.3.2. Variational Form of the problem. We shall use the symbol (·, ·)ω to refer to the
L2(ω) inner product and 〈·, ·〉ω to refer to the integral of the product of two functions in a
domain ω, not necessarily in L2(ω). The subscript is omitted when ω = Ω.

Let Vd =
[
H1(Ω)

]d
and Q = L2(Ω) be, respectively, the proper functional spaces where

displacement and pressure solutions are well-de�ned. We denote by Vd0 functions in Vd
which vanish in the Dirichlet boundary ΓD. We shall be interested also in the spaces
W := V×Q, W0 := V0×Q. The variational statement of the problem is derived by testing
the system presented in Eqs. (29-30) againts arbitrary test functions V := [v, q]T , v ∈ Vd0
and q ∈ Q. The weak form of the problem reads: �nd U := [u, p]T ∈W0 such that initial
conditions are satis�ed and

A (U,V) = F (V) ∀V ∈W0, (33)

where A (U,V) is a bilinear form de�ned on W0 ×W0 as

A (U,V) :=
(
∇sv,Cdev : ∇su

)
− (∇ · v, p) + (q,∇ · u) +

(
q,

1

κ
p

)
. (34)

F (V) is a linear form de�ned on W0 as

F (V) := 〈v, ρb〉+ 〈v, t〉ΓN
. (35)
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As usual, integration by parts has been used in order to decrease the continuity require-
ments of unknowns u and p and the traction vector t has been identi�ed.

2.3.3. Galerkin Spatial Discretization. The standard Galerkin approximation of this ab-
stract variational problem is now straightforward. Let Ph denote a �nite element partition
of the domain Ω. The diameter of an element domain K ∈ Ph is denoted by hK and the
diameter on the �nite element partition by h = max{hK |K ∈ Ph}. We can now construct
conforming �nite element spaces Vh ⊂ V, Qh ⊂ Q and Wh = Vh×Qh in the usual manner,
as well as the corresponding subspaces Vh,0 ⊂ V0 and Wh,0 = Vh,0 ×Qh, Vh,0 being made
with functions that vanish on the Dirichlet boundary.

The Galerkin discrete version of problem (33) is: Find Uh ∈Wh,0 such that

A (Uh,Vh) = F (Vh) ∀Vh ∈Wh,0. (36)

The well posedness of this problem relies on an inf-sup condition [31]. This condition is
necessary and su�cient for the existence and uniqueness of the solution to the discrete
saddle-point problem. Convenient displacement-pressure interpolations, such as equal in-
terpolation, turn out to violate the inf-sup condition. This is why the so-called stabilized
formulations have been proposed to approximate this kind of problems. The main idea is
to replace (33) by another discrete variational problem in which the bilinear form A(·, ·) is
enhanced so that it has improved stability properties. In order to overcome the instabili-
ties previously discussed, we propose to use the stabilization technique described in next
section.

Remark 2.2. Taking a look on the bilinear form A(·, ·) one should notice that the only
term which involves q and p is

(
q, 1

κp
)
. Hence, in the nearly and fully incompressible cases,

when κ→∞, this term vanishes.

2.3.4. Stabilized u/p �nite element formulation. The stabilized �nite element method we
propose to use in the following is based on the variational multiscale concept (VMS)[22, 32].

Let W = Wh ⊕ W̃, where W̃ is any space to complete Wh in W. W̃ will be approximated
by a �nite-dimensional space despite the fact that it is in�nite-dimensional. The elements
of this space are denoted by Ũ ≡ [ũ, p̃]T and they are called subscales. Likewise, let

W0 = Wh,0 ⊕ W̃0.
Taking into account that A(·, ·) is a bilinear form, the continuous problem (33) is equiv-

alent to �nd U ∈Wh,0 and Ũ ∈ W̃0 such that

A (Uh,Vh) +A
(
Ũ,Vh

)
= F (Vh) ∀Vh ∈Wh,0, (37)

A
(
Uh, Ṽ

)
+A

(
Ũ, Ṽ

)
= F

(
Ṽ
)

∀Ṽ ∈ W̃0, (38)

where Eq. (37) is called the �nite element scale equation and Eq. (38) is called the subgrid
scale equation.

The main idea behind any stabilized �nite element method derived from the VMS frame-
work is to obtain an expression for the subscales from the subgrid scale equation (38). This
is done to complement our �nite element scale equation (37) to ensure consistency of the
stabilized mixed formulation so that the discrete solution converges to the continuous so-
lution on mesh re�nement. We assume the subscales to behave as bubble functions, which
means that they vanish across inter-element boundaries. Therefore, the sub-grid scale is
expressed in terms of the residual of the projected (Galerkin) counterpart of Eqs. (29�30)
to obtain

ũ ≈ τuΠ̃ (∇ · sh −∇ph − ρb) , (39)

p̃ ≈ τpΠ̃
(
−∇ · uh −

1

κ
ph

)
, (40)
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where Π̃ is the L2 projection onto the space of subscales and τu and τp are coe�cients
coming from a Fourier analysis of the problem for the subscales. In this work, we use the
stabilization parameters proposed in [17] for linear elastic cases

τu = c1
h2
K

2µ
and τp = 2c2

(
1

µ
+

2

3κ

)−1

, (41)

where c1 and c2 are algorithmic parameters which must be determined.
Introducing the approximate �elds (39-40) into the �nite element scale problem (37),

the VMS stabilized formulation of the problem is obtained as

A (Uh,Vh) +
∑
K

τu

〈
−∇qh, Π̃ (∇ · sh −∇ph − ρb)

〉
K

+
∑
K

τp

〈
−∇ · v +

1

κ
qh, Π̃

(
−∇ · uh −

1

κ
ph

)〉
K

= F (Vh) ∀Vh ∈Wh,0.

(42)

There exist several stabilization methods coming from the VMS technique depending on
the selection of the projection onto the subscales space. In this work, two di�erent options
are considered:

(1) We take the projection onto the subscales space as the identity when applied to
the residual. This approach is called Algebraic SubGrid Scales (ASGS), see [14]
for further details.

(2) In [34] it is argued that the natural approximation for the unknown subgrid space is
to take it orthogonal to the �nite element space. This approach is called Orthogonal
Subgrid Scales (OSS).

Remark 2.3. A key property of the OSS stabilization is that thanks to the orthogonal
projection onto the �nite element space, we keep the consistency of the formulation in a
weak sense despite including just the minimum number of terms to stabilize the solution if Π̃
does not include Dirichlet-type boundary conditions (see [32]). For this speci�c formulation,

we can reduce the stabilization terms to solely
∑

K τu

〈
∇qh, Π̃ (∇ph)

〉
.

2.4. The u/p/e three-�eld formulation. In this section we present the mixed three �eld
formulation used to deal with the solid mechanics problem. The methodology was originally
developed in [35] to deal with the Stokes problem in �uid mechanics, and extended to solid
mechanics in [23] by considering the deviatoric stresses as an additional unknown of the
problem. More recently, in [36], the formulation was adapted so that the main unknowns
are displacements, pressure and deviatoric strains, instead deviatoric stresses, which is the
approach we follow in this work. The displacement �eld u, together with the deviatoric
component of the strains e, as well as the pressure �eld p are taken as primary unknowns of
the problem. The objective is the de�nition of a general framework, which includes the well-
known mixed u/p formulation. Therefore we are capable of correctly describing nearly and
fully incompressible material behavior. Adding the deviatoric strains as unknowns allows
us to obtain a high degree of accuracy for the strain �eld but also for the stress �eld. The
governing equations of the problem are rewritten as

−∇ · s +∇p = ρb in Ω, (43)

s = Cdev : e in Ω, (44)

∇ · u +
p

κ
= 0 in Ω, (45)

e = D : ∇su in Ω. (46)

We have introduced the deviatoric strains e in system (25-27) by incorporating the de-
viatoric constitutive equation (44). Furthermore, the kinematic equation for deviatoric



I. CASTAÑAR, J. BAIGES, R. CODINA & H. VENGHAUS 8

components (46) has been added to the system to relate the displacement �eld u with the
deviatoric strains e.

Remark 2.4. Note that Eq.(44) allows us to obtain the deviatoric stresses as a function of
the deviatoric strains rather than the symmetric gradient of the displacements. Therefore,
we are hopefully incrementing the accuracy of the stress �eld σ, which now is going to be
computed as a function of both the pressure p and the deviatoric strains e.

2.4.1. Governing equations. To complete this section, we introduce the mixed u/p/e prob-
lem, which consists in �nding a displacement �eld u, a pressure p and a deviatoric strain
�eld e such that

−∇ ·
{
Cdev : e

}
+∇p = ρb in Ω, (47)

∇ · u +
p

κ
= 0 in Ω, (48)

Cdev : e− Cdev : ∇su = 0 in Ω, (49)

where the kinematic equation (46) has been contracted with Cdev to symmetrize the system.
The governing equations must be supplied with a set of boundary conditions

u = 0 in ΓD, (50)

σn
(13)
=
{
Cdev : e

}
n− pn = t in ΓN , (51)

2.4.2. Variational Form of the problem. Let us consider the same spaces and tests functions
we have de�ned previously for the mixed u/p problem. From the computational point of
view, it is interesting to adopt Voigt's notation, which transforms the tensorial format of a
generic symmetric tensor into a v-dimensional vector with v = 3 if d = 2 and v = 6 if d = 3.
Let E =

[
L2(Ω)

]v
be the proper functional space where deviatoric strain components are

well-de�ned. We shall be interested also in the spaces W := V×Q×E, W0 := V0×Q×E.
The variational statement of the problem is derived by testing system (47-49) against

arbitrary test functions V := [v, q, f ]T , v ∈ Vd0, q ∈ Q and f ∈ E. The weak form of the

problem reads: �nd U := [u, p, e]T ∈W0 such that initial conditions are satis�ed and

A (U,V) = F (V) ∀V ∈W0, (52)

where A (U,V) is a bilinear form de�ned on W0 ×W0 as

A (U,V) :=
(
∇sv,Cdev : e

)
− (∇ · v, p) + (q,∇ · u) +(

q,
1

κ
p

)
−
(
Cdev : f ,∇su

)
+
(
f ,Cdev : e

)
. (53)

F (V) is a linear form de�ned on W0 as

F (V) := 〈v, ρb〉+ 〈v, t〉ΓN
. (54)

As usual, integration by parts has been used in order to decrease the continuity require-
ments of the unknowns and the traction vector t has been identi�ed.

2.4.3. Galerkin Spatial Discretization. We can now construct a conforming �nite element
space Eh ⊂ E and rede�ne Wh = Vh × Qh × Eh as well as the corresponding subspace
Wh,0 = Vh,0 ×Qh × Eh in the usual manner.

The Galerkin discrete version of problem (52) is: Find Uh ∈Wh,0 such that

A (Uh,Vh) = F (Vh) ∀Vh ∈Wh,0. (55)

This problem also requires and inf-sup condition to be satis�ed between the interpolation
spaces. Otherwise, instabilities may appear. In order to overcome such instabilities, we
use again the stabilization technique described in next section.
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2.4.4. Stabilized u/p/e �nite element formulation. The elements of the subscale space are

now denoted by Ũ ≡ [ũ, p̃, ẽ]T . Taking into account that A(·, ·) is a bilinear form, the

continuous problem (52) is equivalent to �nd U ∈Wh,0 and Ũ ∈ W̃0 such that

A (Uh,Vh) +A
(
Ũ,Vh

)
= F (Vh) ∀Vh ∈Wh,0, (56)

A
(
Uh, Ṽ

)
+A

(
Ũ, Ṽ

)
= F

(
Ṽ
)

∀Ṽ ∈ W̃0. (57)

The sub-grid scale is expressed in terms of the residual of the projected (Galerkin) coun-
terpart of Eqs. (47�49) to obtain

ũ ≈ τuΠ̃
(
∇ ·
{
Cdev : e

}
−∇ph − ρb

)
, (58)

p̃ ≈ τpΠ̃
(
−∇ · uh −

1

κ
ph

)
, (59)

ẽ ≈ τeΠ̃ (D : ∇suh − eh) , (60)

where τe is a coe�cient coming from a Fourier analysis of the problem for the subscales.
In this work, we use the stabilization parameters proposed in [17] for linear elastic cases

τe = c3, (61)

where c3 is an algorithmic parameter which must be determined.
Introducing the approximate �elds (58-60) into the �nite element scale problem (56),

the VMS stabilized formulation of the problem is obtained as

A (Uh,Vh) +
∑
K

τu

〈
∇ ·
{
Cdev : f

}
−∇qh, Π̃ (∇ · sh −∇ph − ρb)

〉
K

+
∑
K

τp

〈
−∇ · v +

1

κ
qh, Π̃

(
−∇ · uh −

1

κ
ph

)〉
K

+
∑
K

τe

〈
Cdev : ∇sv + C : f , Π̃ (D : ∇suh − eh)

〉
K

= F (Vh) ∀Vh ∈Wh,0.

(62)

For this formulation, both the ASGS and the OSS methods are also considered.

Remark 2.5. Let us recall that the OSS stabilization allows us to include just the mini-
mum number of terms to stabilize the solution while keeping it consistent in a weak sense.

Therefore, we can reduce the stabilization terms to
∑

K τu

〈
∇qh, Π̃ (∇ph)

〉
to stabilize the

q/p component and to
∑

K τe

〈
Cdev : ∇sv, Π̃ (D : ∇suh)

〉
to introduce stabilization terms

in the v/u part.

3. Topological derivative-based topology optimization for nearly and

fully incompressible materials

3.1. Setting of the problem. In the following, the topology optimization problem is
stated under the assumptions of linear elasticity and small strains. To do so, let us consider
the linear elasticity system for either the u/p formulation (25-27) or the u/p/e formula-
tion (43-46). Generally speaking, the aim is to obtain an optimal topology such that it
minimizes a desired functional and satis�es particular constraints.

The description of the topology is determined by the characteristic function χ,de�ned
as

χ (x) =

{
1 x ∈ Ωs

0 x ∈ Ωw
, (63)
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where the domain Ω has been split into two parts, Ω = Ωs ∪ Ωw, Ωs ∩ Ωw = ∅. The
sub-domains Ωs and Ωw are made of di�erent materials. The characteristic function is in
charge of determining in the whole domain Ω what part corresponds to either material.
Such kind of problems are typically termed bi-material topology optimization problems.
The material corresponding to the domain Ωw exhibits a very small sti�ness approximating
the absence of material. The material parameters of the strong domain Ωs are denoted by
Es and νs and the parameters of the weak domain Ωw are considered as Ew = γEs and
νw, where γ stands for the jump of sti�ness. Note that γ > 0 is a parameter, small enough
for modeling void regions and large enough to entail invertibility properties to the sti�ness
matrix. The characteristic function allows us to rewrite the deviatoric constitutive tensor
de�ned in the whole domain as

Cdev (χ) = χCdev
s + (1− χ)Cdev

w , (64)

where Cdev
s and Cdev

w are the fourth order deviatoric constitutive tensors of the sti� and
the soft materials, respectively.

To obtain structures with minimum �exibility, a functional J (χ) is minimized. In
topological optimization problems this functional is usually referred to as the compliance
functional and is de�ned as

J (χ) =

∫
Ω
σ (χ,x) : ε (χ,x) dΩ. (65)

The whole Topology Optimization problem is then formulated as the minimization of the
compliance functional subjected to the maximum material allowed, as follows

min
χ∈XL

J (χ) =

∫
Ω
σ (χ,x) : ε (χ,x) dΩ

such that : A (U,V) = F (V) ∀V ∈W0,

XL =

{
χ ∈ L∞ (Ω, {0, 1}) ,

∫
Ω
χ (x) dΩ = L|Ω|

}
,

(66)

where XL is the feasible domain restricted to a volume constraint denoted as a fraction
0 < L < 1 of the domain Ω and A (·, ·) and F (·) are the bilinear and linear forms which
have been obtained in Section 2 depending upon the formulation de�ned as (34-35) for the
u/p formulation and as (53-54) for the u/p/e formulation.

3.2. Material Interpolation. In the traditional bi-material topological derivative topol-
ogy optimization approach, the Poisson ratio remains constant, ν = νs = νw, while only
the Young modulus is modi�ed depending on the value of the characteristic function χ.
For compressible materials, this approach ensures that the soft material is not notably
contributing to the sti�ness of the structure. However, when dealing with incompressible
materials, this leads to spurious solutions, because bubbles of weak material are still in-
�nitely sti� with respect to volumetric deformations. To avoid this, we consider the soft
material as compressible, which means νw < 0.5.

Remark 3.1. Over the last years, a physical interpretation is given to elements cut by the
discontinuity in χ in several works [37]. They are directly related with composite materials
composed with strong and weak material volume fraction. Furthermore, some physical
restrictions such as the Hashin-Shtrikman bounds [38] must be ful�lled.

3.3. Topology optimization using the topological derivative concept. Several ap-
proaches exist to solve the topology optimization problem (66). In this work we use the
topological derivative concept [8] together with a level-set approach in order to advance to
the optimal topology.

The topological derivative is a measurement of the sensitivity of a given functional with
respect to the apparition of an in�nitesimal inclusion in a given point of the domain of
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interest. In the problem studied, the objective is to obtain the sensitivity of the functional
J (χ). The topological derivative DT of this functional at a point x can be formally
computed as

DTJ (χ,x) = ε (χ,x) : P : σ (χ,x) + (1− γ)b · u (χ,x) , (67)

using the topological-shape sensitivity analysis proposed in [30]. In the given equation, P
stands for the fourth order Pólya-Szeg® polarization tensor. In this work, the classical
Polarization tensor expression, in which the same Poisson coe�cient is assumed for both
materials, is not suitable (see subsection 3.2). According to [39], the Polarization tensor is
de�ned as

P =
1

2
∆C :

{
C−1

e + C−1
i : T

}
, (68)

where Ci accounts for the constitutive tensor of the inclusion and Ce for the matrix material.
Furthermore ∆C := Ci−Ce and T is a 4th-order isotropic tensor called the Eshelby tensor,
originating from Eshelby's Theorem [40, 41].

Considering a plane strain scenario, the Polarization tensor is computed as

P = −1

2
(1 + β)

{
τ1 − γ
βγ + τ1

I− 1

4

(
α (γ − τ1τ2)

αγ + τ1τ2
+

2 (τ1 − γ)

βγ + τ1

)
I⊗ I

}
, (69)

where

α (νe) =
1

1− 2νe
, β (νe) = 3− 4νe, τ1 =

1 + νi

1 + νe
and τ2 =

1− 2νi

1− 2νe
. (70)

Considering a plane stress scenario on the other hand,

P = −1

2
(1 + β)

{
τ1 − γ
βγ + τ1

I− 1

4

(
γ (α+ τ2 − 1)− ατ1τ2

τ1 (αγ + τ2)
+

2 (τ1 − γ)

βγ + τ1

)
I⊗ I

}
(71)

and

α (νe) =
1 + νe

1− νe
, β (νe) =

3− νe

1 + νe
, τ1 =

1 + νi

1 + νe
and τ2 =

1− νi

1− νe
. (72)

Independently from the strain/stress assumption, the jump of sti�ness is de�ned as γ =
Ew/Es, while νe and νi are the Poisson ratios of the matrix and inclusion material.

Remark 3.2. If the same Poisson ratio is used for both materials νs = νw, andtherefore, νi =
νe, the Polarization tensors (69) and (71) reduce to

P = −1

2

1− γ
1 + βγ

{
(1 + β) I +

1

2
(α− β)

1− γ
1 + αγ

I⊗ I

}
, (73)

which is the formulation widely used in structural topological design [42].

In this work, the isotropic 2D plane strain polarization tensor has been used as an ap-
proximation for the 3D polarization tensor. By using this approximation, in�nitesimal
cylindrical inclusions are considered instead of spherical ones in the derivation of the topo-
logical derivative. Although spherical inclusions would be more appropriate, experience
shows that in�nitesimal cylindrical inclusions behave properly in 3D examples [7].

Considering a domain with weak and strong material, we can expect the following two
situations:

(1) an inclusion of the weak material in the strong material (x ∈ Ωs),
(2) an inclusion of the strong material in the weak material (x ∈ Ωw).

Consequently, rewriting the polarization tensor as P (α (νe) , β (νe) , γ, τ1, τ2), both cases
share the following properties

P =

{
Ps := P (α (νs) , β (νs) , γ, τ1, τ2) x ∈ Ωs

Pw := P
(
α (νw) , β (νw) , 1

γ ,
1
τ1
, 1
τ2

)
x ∈ Ωw

. (74)
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The properties of the polarization tensor ensure that

DTJ (χ,x) =

{
ε (χ,x) : Ps : σ (χ,x) + (1− γ)b · u (χ,x) ≤ 0 ∀x ∈ Ωs

ε (χ,x) : Pw : σ (χ,x) + (1− γ)b · u (χ,x) ≥ 0 ∀x ∈ Ωw.
. (75)

We can now de�ne a signed topological derivative such that

DTJ (χ,x) =

{
−DTJ (χ,x) x ∈ Ωs

DTJ (χ,x) x ∈ Ωw
. (76)

Let us now introduce the signed topological derivative interpretation, which will be used
in the subsequent sections of this work. For a given topology, computing the topological
derivative allows one to know, for each given spatial point, how the cost functional would
change if the material switches. Once the optimal value for the characteristic function
χ (x) has been reached, the following condition holds

DTJ (χ,x) ≥ DTJ (χ,y) , ∀x ∈ Ωs,∀y ∈ Ωw. (77)

Note that at the interface Ωs ∩ Ωw, the topological derivative has a jump, but the signed
topological derivative is continuous. Eq. (77) allows one to construct a level set function
ψ (χ,x), which will implicitly characterize Ωs and Ωw. This level set function is de�ned as

ψ (χ,x) = DTJ (χ,x) + λ, (78)

where λ ∈ R is a scalar, responsible for ensuring that the volume restriction in Eq. (66) is
ful�lled. The level-set function also allows us to characterize the descrption of the topology

ψ (χ,x)

{
> 0 x ∈ Ωs

< 0 x ∈ Ωw
. (79)

Furthermore, the level-set function allows us to keep a sharp interface when ψ (χ,x) = 0.
The scalar λ can be computed by enforcing∫

Ω
H (ψ (χ,x)) dΩ = L|Ω|, (80)

where H (·) is the Heaviside step function

H (ψ) =

{
1 if ψ ≥ 0

0 if ψ < 0
. (81)

From Eq. (79) and Eq. (81), it can be observed that for the solution of Eq. (66) there
holds:

χ = H (ψ) . (82)

Remark 3.3. When considering the �nite element approximation of the problem, an in-
consistency appears in the update of the level-set function in equation (78). According to
expressions (69,71), the topological derivative depends directly on the stresses and strains.
Clearly, this kind of functions are not continuous which is, in fact, the requirement for
updating the level-set function ψ (χ,x). As a remedy, an element-to-nodal regularization
must be considered. The regularization is carried out by a projection onto the �nite ele-
ment space (smoothing operation) but this results in a loss of a certain degree of accuracy.
Nevertheless, the level-set updating (78) is now possible.
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3.4. Topological Derivative for incompressible materials. Referring to expression
(69), which is valid for both plane strain and 3D scenarios, we observe that the Polarization
tensor becomes ill-de�ned due to the fact that when νe → 0.5, α = 1

1−2νe
→ ∞. It can

be clearly seen that the Polarization tensor cannot be used to compute the topological
derivative for incompressible materials in both cases. In order to deal with nearly and
fully incompressible materials we propose to apply the deviatoric-volumetric split to the
Polarization tensor as well. The volumetric and deviatoric counterparts of the Polarization
tensor are

Pvol = V : P =
α (1 + β)

8

γ − τ1τ2

αγ + τ1τ2
I⊗ I, (83)

Pdev = D : P = −1

2

(1 + β)(τ1 − γ)

τ1 + βγ

{
I− 1

3
I⊗ I

}
, (84)

P = Pvol + Pdev. (85)

Next, we can use the Polarization tensor decomposition to compute the topological deriv-
ative as

DTJ (χ,x) = ε (χ,x) : P : σ (χ,x) + (1− γ)b · u (χ,x)

(85)
= ε (χ,x) :

{
Pvol + Pdev

}
: σ (χ,x) + (1− γ)b · u (χ,x)

(13)
= ε (χ,x) :

{
Pvol + Pdev

}
: {s (χ,x)− p (χ,x) I}+ (1− γ)b · u (χ,x)

= ε (χ,x) : Pdev : s (χ,x)− ε (χ,x) : Pvol : p (χ,x) I + (1− γ)b · u (χ,x) .
(86)

The last equation holds by imposing that the contraction between volumetric and deviatoric
tensors is identically null. This fact allows to reduce the formulation further.

It is worth to study the �rst two components of the decomposed topological derivative
(86) in detail. The �rst summand accounts for the topological derivative due to deviatoric
e�ects. By introducing the strain �eld decomposition (15) we can reduce it to

ε (χ,x) : Pdev : s (χ,x) =

{
1

3
evol (χ,x) I + e (χ,x)

}
: Pdev : s (χ,x)

= e (χ,x) : Pdev : s (χ,x) .

(87)

The second summand in Eq. (86) accounts for the topological derivative changes due to
volumetric deformations. To solve the singularity which Pvol still presents when dealing
with nearly and fully incompressible materials, we need to introduce the pressure �eld as,

−ε (χ,x) : Pvol : p (χ,x) I = − evol (χ,x) · p (χ,x) I : Pvol : I

(16)
= −∇ · u (χ,x) · p (χ,x) I : Pvol : I

(23)
=
p (χ,x)

κ
· p (χ,x) I : Pvol : I

=

{
1

κ
I : Pvol : I

}
p2 (χ,x)

:= Pvolp2 (χ,x) ,

(88)

where Pvol is de�ned as the volumetric Polarization parameter and it is expressed as

Pvol =
1

κ
I : Pvol : I =

1 + β

Es

γ − τ1τ2

αγ + τ1τ2
. (89)

By introducing the compressibility modulus κ in the volumetric part of the polarization
tensor, we have solved the singularity that Pvol is presenting.
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Remark 3.4. In the incompressible limit, no volumetric changes should appear when both
materials are incompressible. Therefore, the contribution to the topological derivative made
by Pvol must be zero when ν = νe = νi = 0.5. Indeed, we have that

Pvol
∣∣∣
ν=0.5

=
1 + β

Es

γ − 1

αγ + 1
=

4− 4ν

Es

γ − 1
1

1−2ν γ + 1
=

2

Es

γ − 1
1
0γ + 1

= 0 (90)

Note that in this case, volumetric e�ects vanish and the topology optimization problem is
only driven by deviatoric changes.

Finally, the formula for the split topological derivative, which is valid for nearly and
fully incompressible materials and applicable in plane strain and 3D scenarios, is given as

DTJ (χ,x) = e (χ,x) : Pdev : s (χ,x) + Pvolp2 (χ,x) + (1− γ)b · u (χ,x) . (91)

Remark 3.5. It is worth pointing out the main di�erences between the two mixed formula-
tions with regards to the split topological derivative, shown in Eq. (91). When considering
the u/p formulation, both deviatoric stresses and strains are computed from the symmetric
gradient of the displacements ∇su, whereas when using the u/p/e formulation, deviatoric
stresses are now computed from deviatoric strains e which are an unknown of the problem.
Therefore, the computation of the topological derivative is expected to be more accurate.

3.5. Treatment of the interface elements. Let us discuss an issue related to the �nite
element approximation of the problem. Interface elements belong partially to the strong
and partially to the weak domain. These elements are therefore characterized by the
material properties of both domains and special attention needs to be payed to the behavior
of the topological derivative in those elements. In order to obtain the correct combination
of material properties, a homogenization technique is used.

Let us construct a conforming �nite element meshM, composed of N elements and let
us also split the domain into three di�erent sub-groups:

(1) elements which fully lie in the domain associated with the strong material Ts,
(2) elements which fully lie in the domain associated with the weak material Tw, and
(3) elements intersecting the interface, thus sharing both materials T Γ.

The description of the interface is based on the treatment of the characteristic function
χ (x), which, in turn, is based on the treatment of the level-set function ψ (χ,x). For the
description, two di�erent approaches are commonly used in topology optimization when
using the topological derivative: The In-or-Out approach and the P1-projection approach
[43, 44]. In our work a third option, the continuous regularized characteristic function
approach, is used.

Let us denote by KΓ the volume of an interface element in T Γ. KΓ
s and KΓ

w are the
subdivisions with strong and weak material obtained for that speci�c element when it is
cut by the level-set function. Then we can de�ne the volume fraction of sti� and soft
materials as

Vs =
KΓ

s

KΓ
∈ (0, 1) and Vw =

KΓ
w

KΓ
= 1− Vs ∈ (0, 1) . (92)

Furthermore we can rede�ne the regularized characteristic function as the volume fraction
of the strong material, i.e.

χ̃ (x) =
KΓ

s

KΓ
, x ∈ KΓ. (93)

Note, that when the element fully lies in the domain, associated with the strong material
KΓ

s /K
Γ = 1. In the opposite case the ratio becomes KΓ

s /K
Γ = 0. Whenever an element is

cut by the level-set function, we obtain a value between 0 and 1. This de�nition matches the
characteristic function we have de�ned in Eq. (63). We can now compute the constitutive
tensor of the element according to Eq. (64).
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Remark 3.6. In comparison with other approaches, the regularized characteristic function
approach evolves continuously when moving the level-set function. Consequently the devi-
atoric constitutive tensor varies between Cdev

w and Cdev
s at the interface between materials.

Next, we can compute stresses and strains according this new, regularized characteristic
function, thus allowing us to obtain continuous values of the properties for the interface
elements. The deviatoric Polarization tensor and the volumetric Polarizations parameter
for elements KΓ are de�ned as

Pdev =
ΩΓ

s

ΩΓ
Pdev

s +

(
1− ΩΓ

s

ΩΓ

)
Pdev

w , Pvol =
ΩΓ

s

ΩΓ
Pvol

s +

(
1− ΩΓ

s

ΩΓ

)
Pvol

w . (94)

Finally, the split topological derivative is also computed according to Eq. (91)

4. The Topology optimization algorithm

The last required ingredient is an algorithm to arrive to the solution of problem (66).
In this work, we apply the iterative topology optimization algorithm as it is de�ned in
[7]. The sequence of the individual steps is shown in the �owchart displayed in Fig 1 and
explained in more detail afterwards.

Set initial level-set function value

ψ0 (x) = 1

Compute characteristic function

χi (x) = H
(
ψi−1 (x)

)
Solve �nite element problem for u, p, e and s

A (U,V) = F (V)

Check stopping conditions

i > imax or |J i(χi)− J i−1(χi−1)| ≤ tol

Compute the signed topological derivative

DTJ i
(
χi,x

)
= e

(
χi,x

)
: Pdev : s

(
χi,x

)
+ Pvolp2

(
χi,x

)
+ (1− γ)b · u

(
χi,x

)
DTJ i

(
χi,x

)
=

{
−DTJ i

(
χi,x

)
x ∈ Ω+

DTJ i
(
χi,x

)
x ∈ Ω−

Compute relaxed and normalized function

φi
(
χi,x

)
= κi

Π
(
DTJ

i (
χi,x

))
‖Π
(
DTJ

i
(χi,x)

)
‖

+
(
1− κi

)
ψi−1

(
χi−1,x

)

Obtain volume control parameter λi from∫
Ω
H
(
φi
(
χi,x

)
+ λi

)
dΩ = L|Ω|

Compute level-set function

ψi
(
χi,x

)
= φi

(
χi,x

)
+ λi

in
cr
em

en
t
i stop

no

yes

Figure 1. Topology Optimization Algorithm Flowchart
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Initially, a level set function ψh is de�ned with unit initial value

ψ0 (x) = 1 in Ω, (95)

where the superscript indicates iteration number. From this level set value, a characteristic
function can be built:

χi (x) = H
(
ψi−1 (x)

)
in Ω, (96)

which allows one to solve the solid mechanics problem and compute the signed topological

derivative DTJ i
(
χi,x

)
. This is independent from the use of the u/p or the u/p/e for-

mulation. For convergence aspects, the algorithm also requires an intermediate function
φi
(
χi,x

)
. This function is initially de�ned as the projection onto the �nite element space

of the normalized topological derivative in order to bound the level-set function with a
relaxation scheme introduced as the iterative process advances, i.e.

φi
(
χi,x

)
= κi

Π
(
DTJ

i (
χi,x

))
‖Π
(
DTJ

i
(χi,x)

)
‖

+
(
1− κi

)
ψi−1

(
χi−1,x

)
. (97)

The relaxation parameter κi is computed according to [7], and Π indicates a projection
onto the �nite element space. In the numerical examples, Π is computed by using a
lumped mass matrix approach for computational e�ciency. This approach plays the role
of standard �ltering in topology optimization. Finally, the level set function at the current
iteration is de�ned as

ψi
(
χi,x

)
= φi

(
χi,x

)
+ λi, (98)

where λi is computed by using the secant method to solve the volume constraint equation∫
Ω
H
(
ψi
(
χi,x

))
dΩ = L|Ω|. (99)

As a stopping criteria we consider the evolution of the objective functional. The algorithm
concludes if the functional has not decreased by a large enough amount. Also, a maximum
number of iterations to be performed is set.

To determine κi, a spatial oscillation indicator is computed

ξi
(
χi,x

)
= sign


Π
(
DTJ

i
(χi,x)

)
‖Π

(
DTJ

i
(χi,x)

)
‖
− ψi−1

(
χi−1,x

)
ψi−1 (χi−1,x)− ψi−2 (χi−2,x)

 . (100)

Note that ξi
(
χi,x

)
= 1, if the iterative algorithm for computing the topological derivative

is advancing monotonically in the preceding iterations and ξi
(
χi,x

)
= −1 otherwise. This

indicator allows one to detect if there are oscillations in the iterative process. If there are
oscillations, the value for κi needs to be decreased, otherwise it can be increased up to a
maximum of 1. An intermediate function µi

(
χi,x

)
is introduced as

µi
(
χi,x

)
=

{
k1κ

i−1 if ξi
(
χi,x

)
= 1

k2κ
i−1 if ξi

(
χi,x

)
= −1

(101)

Since ξi
(
χi,x

)
is a spatial function, the information on the oscillations needs to be averaged

so that a scalar value for κi can be obtained, which is done as follows

κi = min


(∫

Ω

(
µi
(
χi,x

))k3 dΩ∫
Ω ψ

i (χi,x) dΩ

)−k3
, 1

 , (102)

where k1 ≥ 1, k2 ≤ 1 and k3 ≤ 1 are algorithmic parameters. In the numerical examples
k1 = 1.1, k2 = 0.5 and k3 = 0.1 are used.
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Remark 4.1. The volume restriction is exactly ful�lled at every iteration of the algorithm
unlike in alternative options. In our experience, this provides a higher global algorithmic
robustness.

Remark 4.2. The relaxation parameter κi is evaluated node-to-node to observe the evolu-
tion of the topology optimization algorithm. The spatial oscillation indicator allows us to
identify those nodes which are changing their material phase between iterations. Then, we
are able to slow down the relaxation scheme by introducing the weighted average equation
(102).

5. Numerical Examples

In this section, four numerical examples are presented to assess the performance of the
proposed formulation. The �rst case we consider is a simple test with di�erent Poisson's
ratio for the strong material νs in order to analyze the evolution of the di�erent formulations
while increasing the incompressibility of the strong material. Next, so as to analyze the
e�ect of considering either an incompressible weak material νw = 0.5 or a compressible
weak one νw = 0.4, we study the optimized structure of a bearing device which is obtained
for both scenarios. Thereafter, a L-shaped beam is explored in order to highlight the main
di�erences between the u/p and the u/p/e formulations. To end up, a 3D cantilever beam
is studied to show the behavior of our topology optimization algorithm in a 3D case.

For all subsequent numerical examples, the algorithmic parameters are set to c1 = 4,
c2 = 2 and c3 = 0.1. Unless otherwise speci�ed, the weak material is considered to be
compressible, with νw = 0.4. The jump of sti�ness γ is �xed to 10−3. In all the examples
presented, continuous linear interpolation is used for all the unknowns (P1 elements), both
in the u/p and in the u/p/e formulations.

5.1. Single-point load beam. As a �rst example, we study the topology optimization
process for a clamped-clamped beam with a single-point load (Fig. 2). The problem
consists of a rectangular panel, clamped in both the left and the right sides and subjected
to a single-point vertical load F = 3 N at the middle of the free bottom edge. Stress free
boundary conditions are applied on the remaining boundaries. We consider a linear elastic
material with a Young Modulus Es = 30 Pa.

Figure 2. Single-point load beam. Geometry

(a) νs = 0.4 (b) νs = 0.5

Figure 3. Single-point load beam. Final optimized structure in plane
stress scenario.
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Exploiting the symmetry of the structure only the left half of the original domain has
been discretized using about 51,200 linear triangular elements. The required �nal volume
is set to be 40% of the initial one. Let us mention that all �gures only show the left half
of the clamped beam.

First of all, let us consider the displacement-based formulation in a plane stress scenario.
As explained in Section 3, considering plane stress, the topology optimization problem
presents no singularities when the incompressible limit is reached. Therefore, even when
using the standard irreducible formulation, no numerical issues appear in this case. Fig. 3
shows the �nal optimized structure for both a compressible strong material νs = 0.4 and a
fully incompressible one, νs = 0.5. As it can be observed, a well-de�ned solution is reached
regardless of the incompressibility of the sti� material.

(a) νs = 0.4 (b) νs = 0.45

(c) νs = 0.49 (d) νs = 0.4999

Figure 4. Single-point load beam. Final optimized structure in plane
strain scenario while increasing the incompressibility of the sti� material.

(a) νs = 0.4. Displacement �eld (m) (b) νs = 0.4. Pressure �eld (Pa)

(c) νs = 0.45. Displacement �eld (m) (d) νs = 0.45. Pressure �eld (Pa)

Figure 5. Single-point load beam. Final optimized structure in plane
strain scenario for compressible materials with u/p formulation.

Let us now move to solutions obtained in a plane strain scenario. Fig. 4 displays
the evolution of the �nal optimized structure when increasing the incompressibility of the
strong material. As expected, the obtained result is feasible when dealing with compressible
materials as it can be observed in Figs. 4a-4b. However, when the incompressibility
of the sti� material is increased to a level high enough to consider the material almost
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incompressible, the algorithm fails to produce a physically plausible structure (Figs. 4c-4d).
This phenomenon is caused by the singularities that appear in the incompressibility limit
for both the displacement-based formulation (7) and the Polarization tensor expression
(69).

Let us now apply stabilized mixed formulations with the already-de�ned split topological
derivative expression (91). Figs. 5 and 6 show both displacement and pressure �elds of
the �nal optimized structure, obtained with the u/p and u/p/e formulations, respectively,
when considering compressible materials. Both �gures show almost the same solution,
compared to the one obtained with a displacement-based formulation, shown in Figs. 4a-
4b.

(a) νs = 0.4. Displacement �eld (m) (b) νs = 0.4. Pressure �eld (Pa)

(c) νs = 0.45. Displacement �eld (m) (d) νs = 0.45. Pressure �eld (Pa)

Figure 6. Single-point load beam. Final optimized structure in plane
strain scenario for compressible materials with u/p/e formulation.

Fig. 7 presents the results obtained for both mixed formulations when dealing with a
fully incompressible strong material. The obtained design for incompressible material is
quite di�erent to the one presented in compressible scenarios. This structure appears to
be made of less, yet thicker, structural elements.

(a) u/p formulation. Dis-
placement �eld (m)

(b) u/p formulation. Pressure
�eld (Pa)

(c) u/p/e formulation. Dis-
placement �eld (m)

(d) u/p/e formulation. Pres-
sure �eld (Pa)

Figure 7. Single-point load beam. Final optimized structure in plane
strain scenario for νs = 0.5 for both u/p and u/p/e formulations.



I. CASTAÑAR, J. BAIGES, R. CODINA & H. VENGHAUS 20

The minor di�erences that can be noticed between formulations are caused by the dif-
ferent ways of computing the strains. In the u/p formulation the strains are computed
from the displacement �eld, whereas, in the u/p/e formulation, they are directly obtained
as a nodal unknown.

Moving on to convergence issues, Fig. 8 shows a diagram referring to the compliance
evolution recorded during the iterative topology optimization procedure, that leads to the
designs shown in Fig. 7. Both formulations need less than 100 iterations to minimize the
compliance and achieve convergence.
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Figure 8. Single-point load beam. Convergence diagrams in plane strain
scenario for νs = 0.5 for both u/p and u/p/e formulations.

5.2. Bearing device. As a second example, the topology optimization of a bearing device
is explored. Since such devices are usually made of rubber we only consider the incompress-
ible case. The geometry consists of a rectangular panel, clamped in the bottom side and
subjected to a load distribution on the upper edge, t = 1, 80 N/m. Stress free boundary
conditions are applied on the remaining boundaries. We consider a linear elastic material
with a Young Modulus Es = 100 Pa. The geometry of this problem is shown in Fig. 9.

Figure 9. Bearing device. Geometry

Exploiting the symmetry of the structure, only the left half of the original domain has
been discretized, using about 19,200 linear triangular elements. The required �nal volume
is set to be 35% of the domain. The study is conducted using the u/p formulation.

Fig. 10 shows the optimal structure obtained by using strong and weak materials,
which are both incompressible. Because of the incompressibility of the weak material we
obtain an extended zone of weak material elements, enclosed by a structure made of strong
material, as outlined in a similar example in [25]. To avoid this kind of designs, the weak
material must be considered compressible, for example with νw = 0.4. Fig. 11 illustrates
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the optimal topology which is obtained when this is taken into account. By considering a
compressible weak material, widespread areas of elements made of weak material are not
able to transfer the external pressure to the supports.

(a) Displacement �eld (m)

(b) Pressure �eld (Pa)

Figure 10. Bearing device. Final optimized structure in plane strain sce-
nario for νs = 0.5 and νw = 0.5 for u/p formulation.

(a) Displacement �eld (m)

(b) Pressure �eld (Pa)

Figure 11. Bearing device. Final optimized structure in plane strain sce-
nario for νs = 0.5 and νw = 0.4 for u/p formulation.

For the sake of completeness, Fig. 12 shows the evolution of the compliance along itera-
tions for the previous two considerations of the weak material. In the fully incompressible
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case, the widespread area of weak material is able to transfer the external pressure to the
constraints, which results in a very low compliance. This is the reason why the algorithm
tends to this kind of `optimal' design, where the compliance is even lower than the one
obtained with a compressible weak material consideration.

It becomes evident, that weak material � if considered incompressible � can heavily con-
tribute to the sti�ness of the �nal structure, a behavior which goes against our assumption
that the weak material is simulating void regions.
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Figure 12. Bearing device. Convergence diagrams in plane strain scenario
for u/p formulation considering both νw = 0.4 and νw = 0.5.

5.3. L-shaped beam. The third example is an L-shaped beam, a commonly exhibited
problem in topology optimization. The speci�c feature of this problem is the geometrical
singularity. The structure is clamped at the top and a single point force is applied at the
middle of the right edge. Stress free boundary conditions are applied on the remaining
boundaries. A linear elastic material is set with a Young Modulus Es = 1 MPa. The
geometry of this beam is shown in Fig. 13.

Figure 13. L-shaped beam. Geometry.

The domain has been discretized using roughly 22,800 linear triangular elements. The
objective of this problem is to highlight the main di�erences between the mixed formu-
lations proposed in this work. The required �nal volume is set to be 50% of the initial
domain.

By using the deviatoric strains as an additional primary unknown in the u/p/e formula-
tion, the whole solution converges faster (upon h-re�nement). Therefore, also the pressure
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and displacement �elds are more accurate. This e�ect, however, is more dominant on
coarser meshes. Due to the relatively �ne discretization of our problem, we can only ob-
serve slight di�erences between the displacement and pressure �elds of Figs. 14-15 in the
�nal design of the optimized topology.

(a) u/p (b) u/p/e

Figure 14. L-shaped beam. Displacement �eld for the optimized structure
for νs = 0.5

(a) u/p (b) u/p/e

Figure 15. L-shaped beam. Pressure �eld for the optimized structure for
νs = 0.5

On the contrary, Fig. 16 shows the deviatoric strain �eld, obtained from both for-
mulations. Utilizing the u/p formulation, the strains are computed from the displacement
gradient and therefore de�ned element-wise. Because, linear triangular elements were used,
the strains are element-wise constant, hence particularly imprecise. Using the u/p/e for-
mulation however, the deviatoric strains are also a primary unknown of the problem, and
therefore de�ned at the nodes. The result is a continuous �eld, which is more precise in
the �rst place and, secondly, does not require nodal smoothing for postprocessing. As a
consequence the accuracy of the stresses is also increased.

Remark 5.1. This extra level of accuracy in stresses and strains can be very interesting for
several problems, such as Fluid-Structure Interaction or stress-constraint problems, among
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others. Note, however, that the rate of convergence of stresses and strains is expected to be
the same for both the u/p and the u/p/e formulations.

(a) u/p (b) u/p/e

(c) u/p (d) u/p/e

(e) u/p (f) u/p/e

Figure 16. L-shaped beam. Deviatoric strain �eld for the optimized struc-
ture for νs = 0.5
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5.4. A 3D problem. The �nal example is a 3D Cantilever beam. The structure is clamped
at the left face and a uniform traction is applied at the lower edge of the right face. Stress
free boundary conditions are applied on the remaining boundaries. A linear elastic material
is applied with a Young Modulus Es = 1 MPa. The geometry of this beam is shown in
Fig. 17.

Figure 17. 3D Cantilever beam. Geometry.

Taking into account the symmetry of the problem, the left half of the design domain is
discretized into 380,000 linear tetrahedral �nite elements. The required �nal volume is set
to be 10% of the initial domain. In Figs. 18-19 show the displacement and pressure �elds
for both formulations.

(a) u/p (b) u/p/e

Figure 18. 3D Cantilever beam. Displacement �eld for the optimized
structure in a 3D scenario for νs = 0.5.

Fig. 20 presents the deviatoric strain �eld for each formulation. Again, a higher level
of accuracy is obtained for the strains, obtained from the mixed u/p/e formulation. The
optimized structures are identical. The results of this problem indicate that it is reason-
able to approximate the proper 3D polarization tensor with its isotropic 2D plane strain
counterpart.



I. CASTAÑAR, J. BAIGES, R. CODINA & H. VENGHAUS 26

(a) u/p (b) u/p/e

Figure 19. 3D Cantilever beam. Pressure �eld for the optimized structure
in a 3D scenario for νs = 0.5.

(a) u/p (b) u/p/e

Figure 20. 3D Cantilever beam. Deviatoric strain �eld magnitude for the
optimized structure in a 3D scenario for νs = 0.5.

6. Conclusions

In this paper we have proposed a new method for handling topology optimization prob-
lems based on the topological derivative concept for nearly and fully incompressible materi-
als. Departing from the splitting of the Polarization tensor into its deviatoric and spherical
components, a new and simple expression for the topological derivative has been found.
With this formulation, the study of linear elasticity topology optimization problems � while
dealing with incompressible materials � is now possible.

The key to solving problems involving incompressibility was the introduction of two
mixed stabilized �nite element formulations in Section 2. On one hand, the well-known
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u/p formulation, in which the pressure is added as an unknown � the fundamental, when
dealing with incompressible materials. On the other hand, a relatively new three-�eld
formulation u/p/e which also adds the deviatoric strains as an unknown. In this setting,
extra accuracy � particularly for strains and stresses � is obtained. This is due to the strains
being no longer computed through the symmetric gradient of the displacement but directly
as nodal unknowns. The computation of the topological derivative bene�ts directly from
this extra accuracy, since it depends directly on strains and stresses as shown in Section 3.

Thanks to the volumetric/deviatoric splitting, we have obtained two formulations for the
Polarization tensor. One for computing the changes of the compliance shape functional,
caused by deviatoric e�ects and one for changes caused by volumetric e�ects. When the
incompressible limit is reached, the former one presents no singularities, since it is being
computed through both the deviatoric strains e and deviatoric stresses s. The latter one
depends on the pressure p and is formulated in terms of the bulk modulus κ to avoid
singularities.

Regarding the topology optimitzation algorithm, presented in Section 4, we have de-
veloped an iterative computation scheme for the topological derivative. This was coupled
with a level set strategy for the de�nition of the sti� and soft materials, which allows to
keep a sharp track of the interface.

In Section 5 several numerical examples have been shown to asses the performance of the
new split topological derivative expression. As presented in example 5.1, our formulation
can automatically deal with the topology optimization of structures regardless the incom-
pressibility of the given material. In example 5.2 we have shown the e�ects of considering
an incompressible weak material and explained why this leads to undesired designs. Next,
in example 5.3 we have presented the main di�erences between the u/p and the u/p/e
formulations with respect to the accuracy obtained for the main unknowns of the mechan-
ical problem. Finally, example 5.4 was shown to demonstrate the good performance of our
implementation in a 3D problem.
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