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Abstract

In this work we consider the approximation of the isentropic Navier-Stokes equations. The model we
present is capable of taking into account acoustics and flow scales at once. Once space and time discretiza-
tions have been chosen, it is very convenient from the computational point of view to design fractional step
schemes in time so as to permit a segregated calculation of the problem unknowns. While these segregation
schemes are well established for incompressible flows, much less is known in the case of isentropic flows.
We discuss this issue in this article and, furthermore, we study the way to impose Dirichlet boundary con-
ditions weakly via Nitsche’s method. In order to avoid spurious reflections of the acoustic waves, Nitsche’s
method is combined with a non-reflecting boundary condition. Employing a purely algebraic approach to
discuss the problem, some of the boundary contributions are treated explicitly and we explain how these are
included in the different steps of the final algorithm. Numerical evidence shows that this explicit treatment
does not have a significant impact on the convergence rate of the resulting time integration scheme. The
equations of the formulation are solved using a subgrid scale technique based on a term-by-term stabiliza-
tion.

Keywords: Isentropic flow, fractional step methods, weak boundary conditions, term-by-term
stabilization, aeroacoustics.

1. Introduction

Within the field of Computational Aeroacoustics (CAA), the solution of the complete set of Navier-
Stokes equations written in its conservative form, i.e. the coupled problem involving mass, momentum
and energy conservation equations, is referred as Direct Noise Computation (DNC)[1]. This formulation
represents a direct path to consistently deal with aerodynamic and acoustic scales in an unified manner.
The solution of this fully compressible problem via the Finite Element Method (FEM) [2] is known to be
excessively demanding in terms of computational power. Likewise, most of the compressible flow solvers
found in the literature exhibit an inadequate performance in the low Mach number regime. This is mainly
due to the fact that flow and acoustic scales start to considerably differ one from each other under the
subsonic condition as the Mach number is progressively reduced. As a consequence, the algebraic systems
arising from those formulations are usually ill-conditioned.

With the aim of overcoming such conditioning issues, several hybrid methods arose for which the com-
putations of aerodynamics and acoustics are decoupled and hence solved independently. The most re-
markable work in this area is probably the well-known Lighthill analogy [3], in which the acoustic field is
obtained upon the derivation of a source term computed with the flow equations. It is also worth mentioning
the socalled incompressible-acoustic split method (see e.g. [4, 5, 6] and references therein) which consists
in solving the incompressible Navier-Stokes equations followed by an inviscid acoustic part which accounts
for the wave propagation. In [7], this approach is revised by also retaining the viscous terms in the acoustic
set of equations. The advantage of these techniques with respect to the acoustic analogies is that the source
term is directly obtained and it accounts for both sound generation and scattering. These type of hybrid
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methods allow a certain flexibility, in the sense that they permit the usage of different models for flow and
acoustics. However, since the incompressible problem is solved prior to the acoustic one, these methods do
not account for feedback from acoustics to the flow.

The methodology used in this work aims at combining the simplicity of hybrid methods with the unified
scale computation of DNC. Assuming a low Mach number flow, with neither shocks nor thermal sources,
and entropy to remain constant, a simplified compressible Navier-Stokes problem involving only velocity
and pressure fields as unknowns can be derived. This is the socalled isentropic flow problem [8]. Solving
monolithically the algebraic system of equations that arises after the discretization via the finite element
method of the continuous isentropic problem is the classical solution strategy. Despite of the several sim-
plifications that can be introduced thanks to the constant entropy assumption, solving the resulting linear
system of equations might still be computationally expensive, specially in 3D geometries. The unknowns
are highly coupled and nonlinearities need to be solved too. An alternative to that standard approach is to
solve the problem by means of a fractional step method in time. This technique consists in segregating the
calculation of the unknowns, so that they can be computed separately, probably with the addition of some
correction steps. On the negative side, fractional step methods have an associated temporal error, frequently
labeled as fractional or segregation error. It is indispensable to ensure that such error is at least of the order
of the integration scheme used in time, with the purpose of maintaining the global temporal accuracy of the
method.

Fractional step methods were originally called projection methods (indistinctly called fractional step or
segregation methods in the following) as they were based on the decomposition of differential operators at
the continuous level. The pioneering works of Chorin and Temam [9, 10] in the late 1960’s established the
basis of this novel technique. Apart from this continuous approach, fractional step methods can be intro-
duced at the purely algebraic level too. For a review on both approaches in the case of the incompressible
Navier-Stokes equations, we refer the reader to [11, 12]. Eventually, fractional step methods have enjoyed
an extensive recognition mainly due to two reasons: they allow an important reduction of computational
time and present an intrinsic stability over the pressure gradient term [13].

Apart from a possible compatibility restriction between velocity and pressure interpolating spaces, the
convective terms appearing in the governing equations may render the solution unstable when using a finite
element formulation, showing spurious node-to-node oscillations. Though this fluctuating behavior could
be avoided setting a specific mesh size (which commonly is not computationally affordable), stabilized
formulations appear to circumvent this issue. In these formulations, the weak form of the problem obtained
by the classical Galerkin method is modified upon the introduction of some mesh-dependent terms weighted
by the residuals (or even part of them) of the differential equations. Several numerical techniques have been
developed within this context: the well known Streamline/Upwind-Petrov-Galerkin (SUPG) method [14]
or Galerkin-Least Square (GLS) method [15], the Taylor-Galerkin method [16] and the Variational Multi-
Scale method (VMS) [17, 18], being the latter the one adopted in this work. The VMS technique provides
a general variational framework for subgrid scale models [19].

The key idea behind the VMS approach is to split the unknowns of the problem into two scales, namely,
the scale that can be approximated by the finite element mesh and the subgrid scale, the unresolvable
one. The general methodology consists in finding an approximation for the subgrid scale so as to yield
a stable formulation involving only the finite element scales, hence maintaining the number of degrees of
freedom of the starting Galerkin variational problem. There are different ways to model the subgrid scale,
provided a definition of the functional space where it belongs. In this article, we will define such space
as the orthogonal one to the finite element space and, using this concept, we will state a term-by-term
technique by neglecting the extra cross products which do not play any stability role in the formulation.
As a result, this stabilized formulation is not residual based, and hence not consistent, being consistency
understood in the classical finite element context. However, for the incompressible flow problem this term-
by-term possibility provides a slightly improved pressure stability [20], and in [21, 22] it was applied to the
viscoelastic flow problem making it possible to solve more elastic cases than a residual-based formulation.

Another important feature of nearly incompressible aeroacoustic flows in that external computational
boundaries may produce deceptive wave reflections which pollute the solution. Ingoing waves can interfere
with acoustic signals as well as originate numerical instabilities if the numerical technique is unable to
introduce enough dissipation. This distinguishing issue has been widely studied and as a result, there are
several numerical techniques which deal with the backscattering of waves in the aeroacoustics field. Among
the most remarkable ones are: the damping of the compressible equations, the addition of an artificial
counter signal, and the application of non-reflecting boundary conditions. Performing a damping of some
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terms of the compressible equations is a robust approach to face spurious reflections at the boundary (buffer
zones). However, this technique brings an extra computational effort associated with the new terms that
need to be included, and hence other approaches are often adopted. The literature on compressible boundary
conditions is extensive, so we refer to the reviews in [23, 24, 25] and references therein. For the specific
case of the isentropic problem, a novel method for the unified prescription of boundary conditions was
introduced in [8] (Section 3). The particularity of the method is that it combines a weak imposition of
Dirichlet boundary conditions [26] of the mean flow variables, plus a Sommerfeld non-reflecting boundary
condition for the acoustic component of the pressure [27].

In this paper, we present an algrebraic-fractional step method in time which allows to solve the isentropic
Navier-Stokes problem in a segregated manner. Our algorithm includes a stabilization within the VMS
framework, making use of the orthogonal subscale concept to derive a term-by-term technique. In order
to avoid any artificial reflection at the external boundaries, we incorporate the above-mentioned unified
prescription of boundary conditions for the isentropic problem, formulating here its segregated counterpart.
The set of equations to be discussed in the following can be understood as an extension of the incompressible
case, since the final problem to be solved requires to compute only velocity and pressure fields, being the
thermal problem mathematically uncoupled. This is possible due to the constant entropy assumption, which
in turn allows to a establish a direct connection between density and pressure derivatives. As a result, the
isentropic model presents two main advantages: first it takes into account any possible acoustic feedback
on the flow scales and second, the validity of the acoustic field is not subjected to the particular motion of
the flow. On top of that, the computational cost of the present technique is reduced with respect to other
methods. Apart from the fact that both acoustic and flow scales are solved altogether and that we get rid
of the energy conservation equation, the final system is better conditioned (we refer to [8] for a detailed
discussion on this).

The article is organized as follows: in Section 2 the isentropic compressible Navier-Stokes equations
are introduced, as well as its variational formulation. The details of the compatible prescription of boundary
conditions are reviewed in Section 3, whereas in Section 4 we present the variational formulation and the
monolithic time discretization of the problem with the boundary conditions described earlier. Section 5 is
devoted to the design of the fractional step scheme from an algebraic viewpoint, taking into account the
modifications due to the application of boundary conditions. In Section 6, we state the stabilized finite
element formulation we favor, together with the relevant adjustments that need to be considered. Numerical
experiments are conducted in Section 7 and, finally, conclusions are drawn in Section 8.

2. Isentropic compressible flow problem

2.1. Initial considerations

Let us start the exposition of our work by recalling some of the basic relations of the compressible
flow theory for ideal gases, (see e.g. [28] for details). By definition of an isentropic flow, the entropy
remains constant. This fact allows one to show that pressure and density are related through the following
fundamental expression,

p
%γ

= C (a constant), (1)

where γ is the socalled adiabatic coefficient, γ .
= cp/cv, being cp and cv the specific heat of the fluid at

constant pressure and volume, respectively. Additionally, p denotes the total pressure and % is the total
density, including any probable perturbations that the compressible nature of the medium might cause.
There exist two useful expressions which relate density and pressure for two locations, being one of them
at the stagnation conditions, that is to say, those that would exist if the flow at any point of a stream was
isentropically brought to rest,

%0

%
=

(
1 +

γ − 1
2

Ma2
) 1
γ−1

, (2)

p0

p
=

(
1 +

γ − 1
2

Ma2
) γ
γ−1

, (3)

where (·)0 stands for variables at stagnation conditions. The symbol Ma refers to the Mach number, defined
as Ma .

= |u|/c0 being |u| the modulus of the pointwise flow velocity and c0 the speed of sound of an ideal
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gas, computed as c0
.
=

√
γRθ0/M. In this last expression, R [J/K-mol] is the universal gas constant, M

[kg/mol] is the molar mass of the gas under consideration and θ0 [K] denotes the temperature.
Relating (2)-(3) one can easily derive the following equality,

p0

p
=

(
%0

%

)γ
, (4)

which is in direct agreement with the fundamental expression of isentropic flows (1).
Now, taking derivatives with respect to time in both sides of (4) and recalling the equation of state of an

ideal gas, i.e., p0M = %0Rθ0, an expression directly relating density and pressure time derivatives arises,

∂t p =
p0

%0
γ

(
1 +

γ − 1
2

Ma2
)−1

∂t% =
Rθ0

M
γ

(
1 +

γ − 1
2

Ma2
)−1

∂t%,

where the standard short notation for the time derivative was introduced. If instead of the time derivative,
one takes spatial derivatives, an equivalent expression can be found relating gradients. Both equations can
be simplified if we identify the speed of sound as,

c = c0

(
1 +

γ − 1
2

Ma2
)− 1

2

, (5)

so that in practice the following relations can be used,

∂t p = c2∂t%, ∇p = c2∇%. (6)

Equation (6) establishes a connection between pressure and density variations in a straightforward man-
ner and it reduces the general complexity of the problem while making possible to capture the acoustic
scales of the flow. This fact is in contraposition to other non-isentropic formulations for low Mach flows
(see e.g. [29]) in which density variations might be related to temperature instead of pressure, and hence no
acoustics are modeled.

2.2. Initial and boundary value problem
Let Ω ⊂ Rd (d = 2 or 3) be a domain where we want to solve the isentropic Navier-Stokes problem

during the time interval [0,T ]. Considering a Newtonian fluid under isentropic compressible conditions,
the system of partial differential equations is initially written as,

%∂tu + %(u · ∇)u − µ∆u −
µ

3
∇(∇·u) + ∇p = f in Ω × (0,T ),

∂t% + (u · ∇)% + %∇·u = 0 in Ω × (0,T ),

where % is the density, p is the pressure, u stands for the velocity field, µ for the fluid dynamic viscosity,
and f is a given force vector. As usual, bold characters refer to vector variables and the symbol ∆(·) denotes
the Laplacian operator. Making use of (6), the continuity equation can be reformulated so that density
derivatives are replaced by pressure derivatives. Hence, the problem finally consists in finding the fluid
velocity u : Ω × (0,T ) → Rd and the pressure p : Ω × (0,T ) → R, which are solution of the following
strong form of the isentropic compressible Navier-Stokes problem,

%∂tu + %(u · ∇)u − µ∆u −
µ

3
∇(∇·u) + ∇p = f in Ω × (0,T ), (7)

1
%c2 ∂t p +

1
%c2 (u · ∇)p + ∇·u = 0 in Ω × (0,T ), (8)

where the sound velocity c can be computed using (5). Problem (7) – (8) can be rewritten in a more compact
manner. If we define U .

= [u, p]ᵀ, F = [ f , 0]ᵀ and,

L(a; U) .=
[
%(a · ∇)u − µ∆u −

µ

3
∇(∇ · u) + ∇p,

1
%c2 a · ∇p + ∇ · u

]ᵀ
,

for some advection velocity a and,

Dt(U) .=
[
%∂tu,

1
%c2 ∂t p

]ᵀ
,
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we may state the strong form as,
Dt(U) +L(u,U) = F.

The governing equations need to be complemented with a suitable set of both initial and boundary condi-
tions to ensure the well-posedness of the problem, being the latter discussed in the next section. The initial
conditions are set for velocity and pressure, and shall be written in the form u = u0 and p = p0 at time
t = 0, being u0 and p0 functions defined over the whole domain Ω. Note that (7)–(8) can be seen as a direct
extension of the incompressible Navier-Stokes case with the addition of a temporal and convective term for
the pressure.

The reader might have noticed that although several simplifications were introduced, the governing
equations still depend on both density and sound velocity fields. In order to resolve these additional nonlin-
earities, (2) and (5) are used to complete the formulation and computed explicitly in time, so that one would
need to solve only for velocity and pressure fields, as previously stated.

2.3. Variational form
Let us first introduce some notation. The space of square integrable functions in a domain ω will be

denoted by L2(ω). We shall also use 〈 f , g〉 =
∫
ω

f g, where f and g are two generic functions defined on a
region ω such that the integral of their product is well defined. Subscript ω will be omitted when ω = Ω. In
addition to this, for a given Banach space X we write as Lm(0,T ; X) the Bochner spaces of functions such
that their X-norm is an Lm(0,T ) function in time, i.e., its m-th power is integrable if 1 ≤ m < ∞ or bounded
if m = ∞. Finally, n will denote the geometric unit outward normal vector on the boundary Γ = ∂Ω.

Let now Vd and Q be, respectively, the proper functional spaces where velocity and pressure solutions
are well defined for each fixed time t ∈ (0,T ), with appropriate regularity not analyzed here. The weak form
of the problem is derived by testing (7)-(8) against arbitrary test functions, namely v ∈ Vd and q ∈ Q. The
variational problem prior to the application of boundary conditions written in a condensed manner reads:
find U ∈ L2(0,T ; Vd × Q) such that the initial conditions are satisfied and,

〈Dt(U),V〉 + B(u; U,V) = 〈v, f 〉 + 〈v, n ·σσσ(u, p)〉Γ , (9)

for all V .
= [v, q]ᵀ ∈ Vd × Q and where,

B(u; U,V) .= 〈%v, (u · ∇)u〉 + µ 〈∇v,∇u〉 +
µ

3
〈∇ · v,∇ · u〉 − 〈∇ · v, p〉

+

〈
q,

1
%c2 u · ∇p

〉
+ 〈q,∇ · u〉 .

As usual, integration by parts was used and the stress tensor was identified as σσσ(u, p) = −pI + µ∇u +
1
3µ(∇·u)I. Special care needs to be taken on the imposition of boundary conditions of the isentropic problem.
This is to be treated next, so that the right hand side boundary term of (9) is modified in order to allow a
compatible treatment of waves and flow velocity conditions.

3. Imposition of boundary conditions

Since the formulation we present aims at accounting for both flow and acoustic scales at once, there must
be a compatibility requirement between the treatment of acoustic waves and the flow boundary conditions.
In particular, a special type of condition must be imposed for the pressure field, whose main purpose is
to allow the sound waves to leave the external boundaries of the computational domain smoothly. In this
section we review the method proposed in [8] for the prescription of boundary conditions for the isentropic
problem. The reader should note that the splitting of unknowns done in this section is a particularity of the
technique to incorporate the boundary conditions and has nothing to do with the derivation of the fractional
step method to be discussed later on.

3.1. Unknown and boundary splitting
The starting idea of the method is the splitting of the two unknown fields of the problem, i.e., velocity

and pressure, into mean and oscillatory components. For a given time instant t ∈ [0,T ] and a point in the
spatial domain x ∈ Ω, we have,

u(x, t) = ū(x, t) + u′(x, t), p(x, t) = p̄(x, t) + p′(x, t), (10)
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where the mean variables are mathematically described as,

ū(x, t) .=
1

Tw

∫ t

t−Tw

u(x, α) dα, p̄(x, t) .=
1

Tw

∫ t

t−Tw

p(x, α) dα, (11)

being Tw an appropriate time window. In the following, we will identify the oscillatory components with
the acoustic fluctuations and the mean variables with the flow variables. The main idea is that in (11), Tw

implicitly defines a filtering frequency for the acoustic waves, which must be chosen small enough to allow
a damping of the acoustic waves while still reproducing the flow behavior with certainty.

Let us now introduce a boundary splitting at the continuous level, in order to manage the flow and
acoustic boundary conditions in a suitable manner. The boundary Γ = ∂Ω is divided into three different
disjoint subsets, namely, ΓS , ΓL and ΓO (see Fig. 1). These subsets are such that ΓS ∩ ΓL = ∅, ΓL ∩ ΓO = ∅,
ΓO ∩ ΓS = ∅ and ΓS ∪ ΓL ∪ ΓO = Γ. The boundary ΓS refers to the solid boundary and ΓL is identified with
the lateral boundaries, i.e. any frontier with at least one component of the velocity prescribed to a known
value. Finally, ΓO stands for the outlet. On ΓL and ΓO, which are in the far field, it is assumed that the
acoustic scales are dominant.

Figure 1: Example of boundary splitting at the continuous level to allow a compatible prescription of boundary conditions. This setting
corresponds to the examples presented in Section 7.2 and 7.3.

3.2. Unified prescription of boundary conditions
The two main ingredients of the methodology are: the weak prescription of essential boundary condi-

tions and the application of Sommerfeld-like non-reflecting boundary conditions, NRBC. Next, we summa-
rize the different conditions to be applied on each boundary.

On the solid boundary, i.e. ΓS , the velocity is known and we apply:

u = ū + u′ = us on ΓS ,

being us the prescribed velocity. This is a classical strong-Dirichlet type boundary.
On the frontiers belonging to the truncation boundary ΓL, distinct conditions are enforced:

• The mean value of the velocity is prescribed to the flow inlet velocity,

ū = uL on ΓL.

• A Sommerfeld-like non-reflecting boundary condition is prescribed for the acoustic component of
the velocity field. In the normal direction to the boundary we define,

n · u′ = −
1
%c

n · [n ·σσσ(u′, p′)] on ΓL,

and for the tangential direction we directly write,

m · [n ·σσσ(u′, p′)] = 0 on ΓL,

for any vector m in the tangent direction to ΓL.
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The prescription of ū = uL will be done weakly through the popular Nitche’s method [30] which provides a
better conditioned problem. Finally, on the outflow boundary ΓO, the following conditions are considered:

• The mean value tractions are prescribed to a value tO, i.e.,

n ·σσσ(ū, p̄) = tO on ΓO.

• The same approach as in ΓL is used now for the fluctuating component. Then,

n · u′ = −
1
%c

n · [n ·σσσ(u′, p′)] on ΓO,

m · [n ·σσσ(u′, p′)] = 0 on ΓO.

This is a boundary with natural conditions prescribed for ū and Sommerfeld conditions for u′.
Taking now into account these definitions, the prescription of boundary conditions in the weak form of

the problem can be done upon the modification of the right hand side term of (9). Thus,

〈v, n ·σσσ(u, p)〉Γ = 〈v, n ·σσσ(u, p)〉ΓL
+ 〈v, n ·σσσ(u, p)〉ΓO

= 〈v, n ·σσσ(ū, p̄)〉ΓL
+

〈
v, n ·σσσ(u′, p′)

〉
ΓL

+ 〈v, n ·σσσ(ū, p̄)〉ΓO

+
〈
v, n ·σσσ(u′, p′)

〉
ΓO
,

which after the introduction of the symmetrization and the penalty terms for the imposition of ū = uL via
Nitche’s method reads,

〈v, n ·σσσ(u, p)〉Γ = 〈v, n ·σσσ(ū, p̄)〉ΓL
−

〈
v · n, %cu′ · n

〉
ΓL

+ 〈ū − uL, n ·σσσ(v, q)〉ΓL
,

−β 〈v, ū − uL〉ΓL
−

〈
v · n, %cu′ · n

〉
ΓO

+ 〈v, tO〉ΓO
, (12)

being β the numerical penalty parameter and where there is no contribution over ΓS , since the condition is
prescribed strongly there. It just remains to provide a definition of the outflow traction tO. Assuming that
ΓO is placed sufficiently far away from the solid boundary, i.e., in the far field-region, it is reasonable to set
p̄ ≈ 0 and ∇ū ≈ 0 and hence the natural condition to be imposed is tO = 0. The reader should also note
that there are several terms in (12) which are known and therefore can be taken to the right hand side of the
problem. Let us group those boundary terms introducing the following forms,

BΓ(U,V) .=
〈
v · n, %cu′ · n

〉
ΓL∪ΓO

− 〈v, n ·σσσ(ū, p̄)〉ΓL
− 〈ū, n ·σσσ(v, q)〉ΓL

+ β 〈v, ū〉ΓL
, (13)

LΓ(V) .= β 〈v,uL〉ΓL
− 〈uL, n ·σσσ(v, q)〉ΓL

, (14)

which will go to the left and right hand side of the problem, respectively.
Finally, the variational formulation with the boundary conditions would now read as follows: find U ∈

L2(0,T ; Vd × Q) such that,

〈Dt(U),V〉 + B(u; U,V) + BΓ(U,V) = L(V),

for all V ∈ Vd × Q, satisfying the initial conditions and where now L(V) .= LΓ(V) + 〈v, f 〉.

4. Numerical approximation

In this section we derive the finite element approximation of the isentropic compressible Navier-Stokes
equations, which is the base of the final segregation scheme.

4.1. Galerkin finite element approximation

Let Th(Ω) be a regular-shaped and conforming partition of Ω, such that Ω = ∪K∈Th K. This triangulation
is described by the characteristic mesh size, defined as h .

= max{hk | K ∈ Th(Ω)} with hK = diam(K).
Let now be Vd

h ⊂ Vd and Qh ⊂ Q the velocity and pressure finite element spaces associated with the
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triangulation. The Galerkin semi-discrete problem consits in finding Uh
.
= [uh, ph]ᵀ ∈ L2(0,T ; Vd

h × Qh)
such that,

〈Dt(Uh),Vh〉 + B(uh; Uh,Vh) + BΓ(Uh,Vh) = L(Vh), (15)

for all Vh
.
= [vh, qh]ᵀ ∈ Vd

h × Qh, satisfying the appropriate initial conditions.
As we shall see at the end of this section and in contrast to the classical incompressible case, the

algebraic system arising from the discrete isentropic problem is no longer of the saddle point type, yet some
prerequisites might be needed so as to ensure that the matrix of the whole system has a full rank. Likewise,
instabilities may also arise due to the presence of the convective terms. For the sake of simplicity, and
without loss of generality, we will assume for the moment that the Galerkin formulation is stable. Later, in
Section 6, we will deeply describe the stabilized finite element formulation we favor, which allows one to
solve highly convective cases.

4.2. Monolithic time discretization
We restrict ourselves to the classical backward-difference (BDF) approximation for clearness in the

discussion, yet in principle any time discretization method might be used to advance the solution in time.
Let us now consider a partition of the time interval [0,T ] into N time steps of size δt, assumed to be constant,
for simplicity. Given a generic time dependent function g(t) at a time step tn+1 = tn + δt, for n = 0, 1, 2, . . .,
the approximation of the time derivative of g(t) of order k = 1, 2, . . . is written as δkgn+1/δt, where the
numerator is given by the following BDF operator,

δkgn+1 =
1
ψk

gn+1 −

k−1∑
i=0

ξi
kgn−i

 ,
being ψk and ξi

k numerical parameters depending on the order of the temporal approximation. In particular,
for the first and second order schemes, i.e. k = 1, 2, it is found that:

δ1gn+1 = δgn+1 = gn+1 − gn,

δ2gn+1 =
3
2

(
gn+1 −

4
3

gn +
1
3

gn−1
)
.

In the design of fractional step schemes, it is useful to define the extrapolation operators of order k,
formally written as ĝn+1

k = gn+1 + O(δtk), which for k = 1, 2 are given by,

ĝn+1
1 = gn, (16)

ĝn+1
2 = 2gn − gn−1. (17)

Using the aforementioned BDF schemes, the time discretization of the semi-discrete equation (15) is
stated as: for n = 0, 1, 2, . . . , find Un+1 ∈ Vd

h × Qh such that,〈
Dt,k(Un+1

h ),Vh

〉
+ B(un+1

h ; Un+1
h ,Vh) + BΓ(Un+1

h ,Vh) = L(Vh), (18)

for all test functions. For the sake of clarity, we include also the expanded discrete problem, i.e., for
n = 0, 1, 2, . . . , find un+1

h , pn+1
h ∈ Vd

h × Qh such that,〈
vh, %

n+1 δkun+1
h

δt

〉
+

〈
%n+1vh, (un+1

h · ∇)un+1
h

〉
+ µ

〈
∇vh,∇un+1

h

〉
+
µ

3

〈
∇ · vh,∇ · un+1

h

〉
−

〈
∇ · vh, pn+1

h

〉
+

〈
vh · n, %n+1cn+1u

′n+1
h · n

〉
ΓL∪ΓO

+
〈
vh · n, p̄n+1

h

〉
ΓL

−
〈
vh, µn · ∇ūn+1

h

〉
ΓL
−
µ

3

〈
vh · n,∇ · ūn+1

h

〉
ΓL

+ β
〈
vh, ūn+1

h

〉
ΓL

− µ
〈
n · ∇vh, ūn+1

h

〉
ΓL
−
µ

3

〈
∇ · vh, ūn+1

h · n
〉

ΓL
= β 〈vh,uL〉ΓL

− µ 〈n · ∇vh,uL〉ΓL
−
µ

3
〈∇ · vh,uL · n〉ΓL

+ 〈vh, f 〉 , (19)〈
qh,

1

%n+1 (
c2)n+1

δk pn+1
h

δt

〉
+

〈
qh,

1

%n+1 (
c2)n+1 un+1

h · ∇pn+1
h

〉
+

〈
qh,∇ · un+1

h

〉
+

〈
qh, ūn+1

h · n
〉

ΓL
= 〈qh,uL · n〉ΓL

, (20)

8



for all vh, qh ∈ Vd
h × Qh.

Regarding the boundary condition terms, it remains to provide a discrete expression to compute the
mean components of the unknowns. At the discrete level, the time window introduced in (11) is computed
as Tw = Nwδt being Nw a certain amount of time steps. It is proposed to use the trapezoidal rule for
integration in order to compute the mean variables. The expression we use for the average values is,

ūn+1
h =

δt
Tw

1
2

un+1
h +

n∑
j=n−Nw+2

u j
h +

1
2

un−Nw+1
h

 ,
and equivalently for the pressure. This expression maintains the integration implicit and second order
accurate, but several time steps need to be run prior to its application so as to obtain representative data for
a reliable mean computation.

4.3. Monolithic algebraic system

The fully discretized equations in (19)-(20) provide an algebraic system for the nodal values of the
finite element unknowns, i.e. [un+1

h , pn+1
h ]. In order to get the final finite element matrix problem, we simply

need to substitute their finite element approximation and the analogous for the test functions vh, qh. If Pn+1

denotes the unknown nodal pressure values and Un+1 the unknown nodal velocity values at each time step,
the algebraic structure of the variational formulation (18) results in,

Mu
δk

δt
Un+1 + Ku(Un+1)Un+1 + MΓUn+1 + KΓUn+1

+ GPn+1 + GΓPn+1 = Fn+1 + Fn+1
Γ,u , (21)

Mp
δk

δt
Pn+1 + Kp(Un+1)Pn+1 + DUn+1 + DΓUn+1 = Fn+1

Γ,p , (22)

where subscripts (·)u and (·)p refer to matrices of the momentum and continuity equation. The dependence
of matrices Ku and Kp on the vector of velocity unknowns U has been explicitly displayed in order to remark
the nonlinear character of the problem. In addition, (·)Γ stands for terms arising from the special treatment
of boundary conditions, with MΓ containing the penalty term and KΓ,GΓ and DΓ the remaining Nitsche and
Sommerfeld contributions. It is straightforward to identify the rest of arrays in (21)-(22) and the expressions
in (19)-(20).

5. Design of the fractional step method

The approach chosen in this work is to introduce a segregation technique at the pure algebraic level,
as done for instance in [31] for the viscoelastic flow problem, in contrast to the space continuous level.
Although specific boundary conditions were discussed for the isentropic problem in order to avoid the
backscattering of sound waves, the adopted algebraic viewpoint precludes a further analysis on the correct
pressure boundary conditions for the different stages of the fractional step algorithm.

5.1. Pressure-correction algorithm

The method we propose in this section is directly linked to a pressure-correction scheme applied to
the incompressible flow problem, in which a velocity guess is first computed and then corrected once the
pressure is calculated. Another possibility would be to calculate first a pressure guess, what would provide
a velocity-correction-like algorithm. We will not discuss them here, yet the ideas presented next could be
also used to design velocity-correction schemes (see [11] and references therein).
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In order to derive the method, let us start by writing system (21)-(22) in the following equivalent manner,

Mu
δk

δt
Ũn+1 + Ku(Ũn+1)Ũn+1 + MΓŨn+1 + KΓŨn+1

+ (G + GΓ)P̂n+1
k′ = Fn+1 + Fn+1

Γ,u , (23)
1

ψkδt
Mu(Un+1 − Ũn+1) + Nn+1

u + Nn+1
β + Nn+1

Γ

+ (G + GΓ)(Pn+1 − P̂n+1
k′ ) = 0, (24)

Mp
δk

δt
Pn+1 + Kp(Un+1)Pn+1 − ψkδt(D + DΓ)M−1

u Nn+1
u

− ψkδt(D + DΓ)M−1
u Nn+1

β − ψkδt(D + DΓ)M−1
u Nn+1

Γ

− ψkδt(D + DΓ)M−1
u (G + GΓ)(Pn+1 − P̂n+1

k′ ) + (D + DΓ)Ũn+1 = Fn+1
Γ,p , (25)

where,

Nn+1
u = Ku(Un+1)Un+1 − Ku(Ũn+1)Ũn+1,

Nn+1
β = MΓUn+1 −MΓŨn+1,

Nn+1
Γ = KΓUn+1 − KΓŨn+1,

and Ũn+1 is an auxiliary variable to which we shall refer as intermediate velocity. Likewise, P̂n+1
k′ is an

extrapolation of the pressure of order k′ at time step tn+1. See (16)-(17) for details. The reader should
note that adding up (23) and (24) we recover (21), and that (25) is derived upon substitution into (22) of
the relation between Un+1 and Ũn+1 obtained from (24). Generally speaking, the fractional step approach
to solve the isentropic compressible Navier-Stokes problem has three steps: first compute the intermediate
velocity from (23), then obtain the pressure from (25), and finally correct the velocity result using (24).

This scheme will make possible to segregate the calculation of the unknowns of the problem and pro-
vides a pressure-correction-like algorithm. However, some extra information is needed since equations (24)
and (25) still couple Un+1 and Pn+1. At this point, it is very convenient to make the following observations:

Remark 5.1. One should notice that the resulting matrix from DM−1
u G in (25) can be viewed as an ap-

proximation to the discrete version of the Laplacian operator ∆(·), [32]. In order to avoid dealing with this
matrix, which has a wide stencil and might be computationally feasible only if Mu is approximated by a
diagonal matrix, we can work with DM−1

u G ≈ L where L is a Laplacian matrix obtained using the gradient
of the standard shape functions.

Remark 5.2. If we wanted to compute the pressure from equation (25), we would still have to face the
difficulty of computing terms such as DΓM−1

u G, DM−1
u GΓ and DΓM−1

u GΓ. Such computations can be really
time consuming and burdensome. Note that an approximation similar to the one just commented above is
not possible due to the character of the boundary matrices DΓ and GΓ.

5.2. Explicit treatment of boundary terms and final segregated scheme
Having the previous information in mind, the novel idea we propose in this work is to modify (23) and

(25) in such a way that both boundary terms GΓPn+1 and DΓUn+1 are treated explicitly, by means of an
extrapolation of the same order of the time integration scheme, k. This implies that system (23)-(25) would
now read,

Mu
δk

δt
Ũn+1 + Ku(Ũn+1)Ũn+1 + MΓŨn+1 + KΓŨn+1 + GP̂n+1

k′

+ GΓP̂n+1
k = Fn+1 + Fn+1

Γ,u , (26)
1

ψkδt
Mu(Un+1 − Ũn+1) + Nn+1

u + Nn+1
β + Nn+1

Γ + G(Pn+1 − P̂n+1
k′ ) = 0, (27)

Mp
δk

δt
Pn+1 + Kp(Un+1)Pn+1 − ψkδt(D + DΓ)M−1

u Nn+1
u

− ψkδt(D + DΓ)M−1
u Nn+1

β − ψkδt(D + DΓ)M−1
u Nn+1

Γ

− ψkδtDM−1
u G(Pn+1 − P̂n+1

k′ ) + DŨn+1 + DΓÛn+1
k = Fn+1

Γ,p . (28)
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Note that now the products DΓM−1
u G, DM−1

u GΓ and DΓM−1
u GΓ do not appear in the formulation and that

we treat some terms on the boundary explicitly via extrapolations in GΓP̂n+1
k and DΓÛn+1

k . Formally, the
fractional step algorithm of order k can be stated by taking k′ = k − 1 and it entails the following steps:

1. Compute an intermediate velocity Ũn+1 from (26).
2. Compute an approximation to the pressure Pn+1 from (28) neglecting Nn+1

u , Nn+1
β Nn+1

Γ
and substituting

Un+1 by Ũn+1 in the term Kp(Un+1)Pn+1. It can be seen that formally this perturbation is of order
O(δtk). It is the key point that permits to uncouple the calculation of Un+1 and Pn+1.

3. Perform the correction and compute the end-of-step velocity Un+1 from (27) neglecting Nn+1
u , Nn+1

Γ

but taking into account Nn+1
β . This can be seen as a sort of Yosida factorization for the imposition of

boundary conditions.

It is well known that the extrapolation of second order of the term GP̂n+1
k′ , i.e., taking k′ = 2, is unstable (see

[11] and references inside). Hence the resulting scheme is known to be stable up to k = 2. In fact, this issue
motivated the study of velocity correction algorithms, which allow to design fractional step schemes of third
order in time. Still, we did not observe any erratic behaviour of the term GΓP̂n+1

k for the extrapolation of
second order. The final algorithm in its matrix form is included in Algorithm 1.

Algorithm 1 First and second order fractional step scheme for the isentropic problem, k = 1, 2

1. Nonlinear problem to compute the intermediate velocity Ũn+1 using the pressure extrapolations:

Mu
δk

δt
Ũn+1 + Ku(Ũn+1)Ũn+1 + MΓŨn+1 + KΓŨn+1 = Fn+1 + Fn+1

Γ,u − GP̂n+1
k−1 − GΓP̂n+1

k

2. Compute the pressure Pn+1 using the intermediate velocity from the previous step:

Mp
δk

δt
Pn+1 + Kp(Ũn+1)Pn+1 − ψkδtLPn+1 = Fn+1

Γ,p − DŨn+1 − DΓÛn+1
k − ψkδtLP̂n+1

k−1

3. Velocity correction to obtain the end-of-step velocity Un+1:

1
ψkδt

MuUn+1 + MΓUn+1 =
1

ψkδt
MuŨn+1 + MΓŨn+1 − G(Pn+1 − P̂n+1

k−1)

Although the previous technique provides a practical way to segregate the computations while account-
ing for a weak imposition of boundary conditions, some errors are introduced which can compromise the
accuracy of the solution. The first error is due to the fact that the momentum equation (26) is solved for
the intermediate velocity Ũn+1 instead of the end of step velocity Un+1. On top of that, an extra Dirichlet
boundary condition needs to be provided for the second step. The essential boundary condition we enforce
(at the continuous level) is:

p̄ = 0 in ΓO,

p′ = %c(u′ · n) in ΓO, (29)

where we take into account the decomposition of the pressure in average (flow) and oscillatory (acoustic)
components as suggested in Section 3 . Equation (29) aids to enforce the NRBC when solving the continuity
equation.

The inclusion of the penalization correction Nn+1
β in the last step of the algorithm aids to properly impose

the boundary conditions of the problem avoiding boundary instabilities. It seems reasonable to take it into
account, bearing in mind that the splitting of the momentum equation in (26)-(28) needs to be done taking
into account boundary conditions, similarly to the case in which boundary conditions are enforced strongly.
It is also important to note that MΓ displays a structure of mass matrix but for boundary contributions, what
in turn would allow to solve directly the system for Un+1 if a lumping technique is used. Moreover, the
correction of the convective term Nn+1

u could also be taken into consideration in this last step, yielding a
complete Yosida scheme. This would permit to derive a high order method in time (see [11], Section 4.3).

Finally, another possibility for the extrapolation of the velocity boundary term could be argued. Since
Ũn+1 is an approximation of O(δtk) to Un+1, and the intermediate velocity is already computed when the
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term DΓUn+1 needs to be treated explicitly, one could even consider to compute DΓŨn+1 instead of DΓÛn+1
k .

Numerical experiments show that both options provide comparable results.

6. Isentropic-compressible stabilized finite element formulation

The last part of a robust formulation consists in developing an appropriate stabilization scheme which
enables to solve highly convective problems, thus avoiding spurious solutions. Apart from that, it is helpful
to use formulations which permit arbitrary velocity-pressure interpolations, not neccessarily satisfying any
inf-sup-like condition. The stabilized formulation we propose in this work is within the VMS framework
and, in particular, it is based on the Orthogonal Subgrid Scale concept (see [33] for a detailed review with
examples of application).

6.1. Variational Mulsti-Scale framework: The subscale concept
Let us start by considering a general transient nonlinear problem, which we will use to illustrate the

VMS procedure. Hence, let us analyze,

M(U)∂tU +L(U,U) = F,

being U the unknown, M(U) a matrix of coefficients associated to the temporal term (possibly nonlinear in
the most general case), F is any possible right hand side field andL(U, ·) a spatial differential operator, linear
in the second argument. The weak form of this evolution problem is formally stated as: find U : (0,T )→ W,
such that,

(M(U)∂tU,V) + 〈L(U,U),V〉 = 〈F,V〉 , (30)

for any test function V ∈ W with appropriate regularity. Any possible terms that might arise from the
imposition of boundary conditions need to be taken into account and the reader should understand that are
incorporated in the duality 〈·, ·〉.

The starting idea of the VMS methods is to consider a splitting of the space W of the form W = Wh⊕W̆,
that is to say, a decomposition into a finite element part Wh and any complementary space to it W̆, usually
termed subgrid space. Such decomposition induces a scale separation of unknowns and associated test
functions, i.e., U = Uh + Ŭ and V = Vh + V̆, such that Uh,Vh ∈ Wh and Ŭ, V̆ ∈ W̆. The aforementioned
decomposition at the continuous level of spaces, unknowns and test functions implies that one could divide
(30) into two subproblems. Therefore,

(M(U)∂tU,Vh) + 〈L(U,U),Vh〉 = 〈F,Vh〉 ∀Vh ∈ Wh, (31)(
M(U)∂tU, V̆

)
+

〈
L(U,U), V̆

〉
=

〈
F, V̆

〉
∀V̆ ∈ W̆. (32)

System (31)-(32) is exactly equivalent to the prior weak form (30). Equation (31) is referred as the
equation for the finite element unknowns whereas (32) is termed the equation for the subgrid scales.

6.2. Derivation of the subscale stabilized formulation
The objective of this technique is to define an expression to numerically compute the subscales by

solving (32) so that once this is introduced into (31), we end up with only a problem for the finite element
unknowns Uh. However, several approximations have to be made since the subgrid space W̆ is in principle
infinite dimensional. Although not enough to define a numerical scheme, subcales are usually modeled as
bubble functions and thus inter-element terms are neglected.

Applying integration by parts to isolate the subscale variables, Equations (31)-(32) can be rewritten as
follows,

(M(U)∂tU,Vh) + 〈L(U,Uh),Vh〉 +
〈
Ŭ,L∗(U,Vh)

〉
= 〈F,Vh〉 ∀Vh ∈ Wh, (33)(

M(U)∂tU, V̆
)

+
〈
L(U,Uh), V̆

〉
+

〈
L(U, Ŭ), V̆

〉
=

〈
F, V̆

〉
∀V̆ ∈ W̆, (34)

where L∗(U, ·) refers to the formal adjoint of the spatial operator L(U, ·). Similarly as the finite element
equation (31) can be understood as the projection of the original equations onto the finite element space, the
equations for the subscales are obtained by projecting the original equations onto the corresponding space.
Therefore, Equation (34) could be rewritten as,

P̆
[
M(U)∂tŬ +L(U, Ŭ)

]
= P̆ [R(U; Uh)] ,

12



where the symbol P̆[·] stands for the linear projection operator onto the space of subscales and R(U; Uh) .=
F − L(U,Uh) − M(U)∂tUh is identified with the finite element residual.

The additional assumption is based on replacing the spatial operator L(U, ·) by an algebraic operator
which could be computed somehow and inverted and so that the new terms have approximately the same
L2-norm as the replaced ones. This fact motivates the introduction of a matrix τ, usually referred as matrix
of stabilization parameters and defined element-wise in such a way that the following approximation is
made,

L(U, Ŭ) ≈ τ−1(U)Ŭ. (35)

With the abovementioned assumption, the subscales could be computed in each element K ∈ Th(Ω) by
solving the following nonlinear ordinary differential equation,

M(U)∂tŬ + τ−1(U)Ŭ = P̆ [F − L(U,Uh) − M(U)∂tUh] ,

where, for simplicity, we have assumed that the terms on the left hand side already belong to the space of
subscales and thus their projection onto W̆ its equal to the terms themselves.

Different types of VMS methods arise when we provide distinct definitions of the projection operator P̆.
When one considers the space of subscales as that of the residuals, i.e., one sets P̆ = I (the identity operator)
when applied to the finite element residuals, the method which arises is termed Algebraic SubGrid-Scale
(ASGS) [34]. Although this method is the simplest one, it is not really suitable for designing fractional step
schemes. The ASGS approach combined with a segregation technique involves to compute the inverse of
matrices with a wide stencil, which is usually computationally unaffordable. When the space of subscales W̆
is enforced to be L2-orthogonal to the finite element space Wh, the method is termed Orthogonal SubGrid-
Scale (OSGS or simply OSS). It corresponds to taking P̆ = P⊥h = I − Ph where Ph is the projection operator
onto the finite element space without boundary conditions. This definition makes the subscales active in
regions which cannot be resolved by the finite element mesh. Both of these methods are residual based by
construction, and hence also consistent, being consistency understood in the finite element context, that is
to say, the stabilization terms which modify the variational form of the problem vanish when the continuous
solution is introduced.

6.3. Stabilized formulation applied to the isentropic Navier-Stokes problem
Once the general procedure has been described, let us apply these ideas to the isentropic compressible

case. For reasons already discussed, we consider the OSGS technique. Let us depart from the following
problem for the finite element scales (still continuous in time):

〈Dt(Uh),Vh〉 + B(u∗; Uh,Vh) + BΓ(Uh,Vh) −
∑
K∈Th

〈
1

c2%
u∗ · ∇qh + ∇·vh, p̆

〉
K

−
∑
K∈Th

〈
%u∗ · ∇vh + µ∆vh +

µ

3
∇(∇·vh) + ∇qh, ŭ

〉
K

= L(Vh),

for all test functions Vh, where the symbols ŭ and p̆ denote, respectively, the velocity and pressure subscales.
For simplicity we will take the advection velocity to be u∗ = uh (see e.g. [35] for the effect of taking
u∗ = uh + ŭ). A simple calculation shows that the last two terms on the left hand side correspond to〈
Ŭ,L∗(U,Vh)

〉
in (33). Likewise, the subgrid scales are computed as the solution of the following system:

%∂tŭ + τ−1
1 ŭ = P⊥h

[
f − %∂tuh − %u∗ · ∇uh + µ∆uh +

1
3
µ∇(∇·uh) − ∇ph

]
, (36)

1
c2%

∂t p̆ + τ−1
2 p̆ = P⊥h

[
−

1
c2%

∂t ph −
1

c2%
u∗ · ∇ph − ∇ · uh

]
, (37)

where matrix τ in (35) has been taken of the form τ = diag(τ1Id, τ2), Id being the d × d identity matrix.
Several remarks are now in order:

Remark 6.1. A simple approach is to neglect the time derivatives of the subscales in (36)-(37). In this
situation, the subcales are named quasi-static in contrast to dynamic subscales, when they are considered to
be time-dependent. Quasi-static subscales can be unstable in time for anisotropic space-time discretization
(see [36, 37, 38] and references therein).
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Remark 6.2. It is assumed that the orthogonal projections of the residual temporal terms cancels, i.e.,
P⊥h

[
%∂tuh

]
≈ 0 and P⊥h

[
1

c2%
∂t ph

]
≈ 0. They would be exactly zero if both % and c were equal to a constant,

which is not the case for the isentropic problem. However, we consider as true that both variables are such
that %∂tuh and 1

c2%
∂t ph already belong to the finite element spaces and hence its orthogonal projection onto

Vd
h × Qh vanishes. Additionally, we assume P⊥h [ f ] ≈ 0, which yields a weakly consistent method.

From the point of view of stability, not all the terms of the finite element residual in (36)-(37) aid to
enhance the stability of the formulation. Therefore, some of them could be even neglected and a less costly
method emerges. Precisely, it is this last idea the one that motivates the socalled term-by-term stabilization
methods ([39, 22]).

6.4. Term-by-term stabilization and monolithic formulation
The stabilized formulation we favor in this work is a term-by-term OSS approach, also referred as split

OSS. Although this scheme is not completely residual-based, it has been proven that it has an optimal
consistency error (see [40] for a formal discussion and numerical analysis on the Oseen equations). The
key idea behind this method resides in neglecting the extra cross products among operators applied on both
test and trial functions, which arise from the classical orthogonal stabilization. Let us rewrite (36)-(37) as
follows,

%∂tŭ + τ−1
1 ŭ = − P⊥h

[
%uh · ∇uh

]
− P⊥h

[
∇ph

]
+ P⊥h [µ∆uh]

+ P⊥h

[
1
3
µ∇(∇ · uh)

]
, (38)

1
c2%

∂t p̆ + τ−1
2 p̆ = − P⊥h [∇ · uh] − P⊥h

[
1

c2%
uh · ∇ph

]
. (39)

It is clear that omitting any of the projections in (38)-(39) would have a remarkable effect on the stability
of the final formulation, yet this does not affect the general accuracy of the scheme. In order to provide
stability and convergence on both convective terms, P⊥h

[
−%uh · ∇uh

]
and P⊥h

[
− 1

c2%
uh · ∇ph

]
are essential. In

addition, control is also needed over the pressure gradient, P⊥h
[
−∇ph

]
. Thus, we might neglect the viscous

terms P⊥h [µ∆uh] + P⊥h
[

1
3µ∇(∇ · uh)

]
. We also consider that both velocity and pressure subscales can be split

in the form ŭ = ŭ1 + ŭ2 and p̆ = p̆1 + p̆2, each component corresponding to the first and second terms in the
right hand side of (38) and (39), so that the stabilization terms are independent (see [41]).

Taking all this into account, the term-by-term finite element formulation we propose in this work reads:
find Uh ∈ L2(0,T ; Vd

h × Qh) such that,

〈Dt(Uh),Vh〉 + B(uh; Uh,Vh) + BΓ(Uh,Vh) −
∑
K∈Th

〈%uh · ∇vh, ŭ1〉K

−
∑
K∈Th

〈∇ · vh, p̆1〉K −
∑
K∈Th

〈∇qh, ŭ2〉K −
∑
K∈Th

〈
1

c2%
uh · ∇qh, p̆2

〉
K

= L(Vh),

for all test functions Vh ∈ Vd
h × Qh.

The stabilization parameters τ1 and τ2 defined over each element K ∈ Th contribute to provide the
stabilization for the weak forms of the momentum and mass conservation equations. Their definition is
based on a Fourier analysis, which we will not discuss here (see [20]). They are computed as:

τ1 =

[
C1

µ

h2 + C2%
|uh|K

h

]−1

; τ2 =
h2

C1τ1,K
,

where |uh|K is the mean Euclidean norm of the velocity in each element K ∈ Th(Ω). Note that their values
are needed at each integration point. The algorithmic constants C1 and C2 depend on the polynomial order
of the interpolation. For linear elements, it is commonly set C1 = 4 and C2 = 2. The four subscales ŭ1, ŭ2,
p̆1 and p̆2 are computed from the solution of:

%∂tŭ1 + τ−1
1 ŭ1 = −P⊥h [uh · ∇uh] ,

1
c2%

∂t p̆1 + τ−1
2 p̆1 = −P⊥h [∇·uh] ,

%∂tŭ2 + τ−1
1 ŭ2 = −P⊥h

[
∇ph

]
,

1
c2%

∂t p̆2 + τ−1
2 p̆2 = −P⊥h

[
1

c2%
uh · ∇ph

]
,
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with zero initial condition for all of them. From this point, one can choose either to include the time
derivatives of the subscales or to neglect them. For the sake of clarity in the exposition, let us consider the
steady behavior of subscales. Hence,

ŭ1 = −τ1P⊥h [uh · ∇uh] , p̆1 = −τ2P⊥h [∇ · uh] ,

ŭ2 = −τ1P⊥h
[
∇ph

]
, p̆2 = −τ2P⊥h

[
1

c2%
uh · ∇ph

]
.

The proposed method, which replaces the weak form (15) consists in finding uh ∈ L2(0,T ; Vd
h × Qh), such

that:

〈Dt(Uh),Vh〉 + B(uh; Uh,Vh) + BΓ(Uh,Vh)
+ B⊥1 (uh; uh, vh) + B⊥2 (uh; ph, qh) = L(Vh), (40)

for all Vh ∈ Vd
h × Qh, satisfying the proper initial conditions and where,

B⊥1 (uh; uh, vh) =
∑
K∈Th

〈
%uh · ∇vh, τ1P⊥h

[
%uh · ∇uh

]〉
K

+
∑
K∈Th

〈
∇·vh, τ2P⊥h [∇·uh]

〉
K
,

B⊥2 (uh; ph, qh) =
∑
K∈Th

〈
1

c2%
uh · ∇qh, τ2P⊥h

[
1

c2%
uh · ∇ph

]〉
K

+
∑
K∈Th

〈
∇qh, τ1P⊥h

[
∇ph

]〉
K
.

The terms in B⊥1 (uh; uh, vh) and B⊥2 (uh; ph, qh) modify, respectively, the weak forms of the momentum and
continuity equations. At the end we have obtained a stabilized formulation which adds the numerical
diffusion in an efficient manner by means of completely symmetric terms.

6.5. Algebraic formulation and stabilized fractional step algorithm
The final variational formulation of the isentropic compressible problem was stated in (40). From there,

the derivation of the matrix version is straightforward and the matrix system that needs to be solved at
each time step has the same algebraic structure as (21)–(22) with the addition of two stabilization matrices,
namely Su and Sp, which arise from the discretization of B⊥1 (uh; uh, vh) and B⊥2 (uh; ph, qh), respectively.
Note that if the time dependency of subscales is not neglected, then the right hand side vectors of the
system would also be modified in order to account for the contributions of the subscales from the previous
time step. With these observations in mind, the general procedure described in Section 5 is facilely extended
to the stabilized algorithm.

The only nonlinear problem in the whole process is the one associated to the intermediate velocity, Ũn+1.
We solve the nonlinearities considering a fixed-point approach, that is to say, taking the known values from
the previous iteration. In Algorithm 2 we include the final scheme in its matrix form, where the superscript
i denotes the nonlinear iteration counter. Note that the additional stabilization term in the system for the
pressure, Sp(Ũn+1)Pn+1, does not need to be linearized since Ũn+1 is already known by the time that Pn+1

needs to be computed.
Finally, let us explain how we manage the orthogonal projections P⊥h . When compared to the raw

Galerkin method, the matrices emerging from the orthogonal projection of the unknowns show a wide
stencil. In order to avoid dealing with them, at the i-th iterion of the n-th time step we may approximate
P⊥h (gn,i) ≈ gn,i − Ph(gn,i−1) or P⊥h (gn,i) ≈ gn,i − Ph(gn−1) for any generic function g. In other words, we
perform the projection by means of known values from either the previous iteration or time step. Numerical
tests reveal that both options are effective, the latter being chosen in the numerical examples included next.

7. Numerical results

In this section, some numerical examples are presented to show the performance of the proposed for-
mulation. The first case we consider is a test with a manufactured solution in order to analyze the time
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Algorithm 2 First and second order stabilized fractional step scheme for the isentropic problem, k = 1, 2

1. Nonlinear problem to compute the intermediate velocity Ũn+1 using the pressure extrapolations:

Set Ũn+1,0 = Un. For i = 0, 1, 2, . . . until convergence, compute Ũn+1,i+1 from:

Mu
δk

δt
Ũn+1,i+1 + Ku(Ũn+1,i)Ũn+1,i+1 + Su(Ũn+1,i)Ũn+1,i+1 + MΓŨn+1,i+1

+ KΓŨn+1,i+1 = Fn+1 + Fn+1
Γ,u − GP̂n+1

k−1 − GΓP̂n+1
k

2. Compute the pressure Pn+1 using the intermediate velocity from the previous step:

Mp
δk

δt
Pn+1 + Kp(Ũn+1)Pn+1 + Sp(Ũn+1)Pn+1

− ψkδtLPn+1 = Fn+1
Γ,p − DŨn+1 − DΓÛn+1

k + ψkδtLP̂n+1
k−1

3. Velocity correction to obtain the end-of-step velocity Un+1:

1
ψkδt

MuUn+1 + MΓUn+1 =
1

ψkδt
MuŨn+1 + MΓŨn+1 − G(Pn+1 − P̂n+1

k−1)

discretization errors of the fractional step technique. After that, a 2D low-speed viscous flow over a cylin-
der at Ma = 0.0583 is calculated. Later, we include a flow around a 3D NACA 0012 airfoil at Ma = 0.4 and
finally the noise radiated by the flow over a cavity at Ma=0.7 is discussed.

For all the numerical examples, the flow is considered as an ideal gas, with adiabatic coefficient γ = 1.4,
molar mass M = 0.02897 kg/mol and temperature θ0 = 293.15 K. Hence, the speed of sound is c0 =

343.29 m/s. In addition to this, the boundary formulation with the weak imposition of Dirichlet boundary
conditions plus the NRBC is used, as explained in Section 3. Hence, a penalty parameter needs to be set
to perform the simulation, β. In the case, this parameter behaves as β = β0(µ/h + %|uh|) for some constant
β0 and mesh size h, which will be fixed for each example. As previously discussed, the nonlinearities in
the problem are solved via Picard’s scheme. This leads to a monotonically decreasing relative error among
consecutive iterations, ensuring the convergence of the method. A maximum of 20 iterations is set, and
the numerical tolerance for the L2 norm is 1 × 10−6. In order to solve the underlying systems of linear
equations, we use the Biconjugate Gradients solver, BiCGstab [42], which is already implemented in the
PETSc parallel solver library [43]. All units in the upcoming plots are in SI.

7.1. A test with analytical solution
Let us first perform a simple test whose main objective is to numerically check the time convergence of

the fractional step schemes defined in Algorithm 2. For this purpose we use the socalled method of man-
ufactured solutions. In this procedure, an exact analytical solution is defined a priori and later substituted
into the continuum equations in order to obtain the associated forcing terms. Continuedly, these forcing
terms are introduced as perturbations in the finite element computation. The time-dependent manufactured
solutions are composed of smooth functions with no physical meaning. Dirichlet boundary conditions are
prescribed weakly over the boundaries upon evaluation of the velocity analytical solution and the initial
conditions arise from the prescribed functions evaluated at t = 0 over the whole computational domain.

The region we consider is the unit square, i.e. Ω = [0, 1] × [0, 1] and we assume the following manu-
factured fields,

u(x1, x2, t) = g(t)[− cos(x1) sin(x2), sin(x1) cos(x2)] (41)

p(x1, x2, t) = −
1
4

g2(t)(cos(2x1) + cos(2x2)) (42)

with g(t) = sin(2t), t ∈ (0, 1) and x1 and x2 referring to the Cartesian axes. The values of air for density and
viscosity at the bulk temperature have been used. A structured mesh of size h = 0.05 with bilinear elements
has been employed to discretize the computational domain. Finally a constant β0 = 1000 has been chosen
to ensure a proper prescription of boundary conditions, thus avoiding excessive boundary errors.
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The normalized error E has been computed in different norms: `∞(L2(Ω)) (maximum of the time se-
quence of spatial L2-norms of the solution) and `2(H1(Ω)) (`2-norm of the time sequence of spatial H1-
norms of the solution) for velocity, and `∞(L2(Ω)) for pressure. Fig. 2a shows the convergence plot for
the fractional step algorithm using a BDF1 scheme in time and Fig. 2b for the case of second order, i.e.
using BDF2. The reader can note that the schemes proposed in previous sections show the desired rate of
convergence, and hence the extrapolations of the boundary terms explained in Section 5 do maintain the
general temporal accuracy of the method. From the convergence plots it is also observed that the spatial
error is not significant for the mesh size used.

E

(a)

E

(b)

Figure 2: Convergence test results for the proposed fractional step algorithm for the isentropic compressible Navier-Stokes problem:
(a) BDF1 scheme, (b) BDF2 scheme.

7.2. Aeolian tones of low Mach viscous flow

The second numerical example we have considered for a proper assessment of the proposed formulation
is the benchmark consisting in the aerodynamic sound radiated by an uniform flow past a cylinder, what is
commonly referred as aeolian tones problem in the literaute (see e.g. [44, 45]). In this example, the cylinder
undergoes lift fluctuations in response to the vortex shedding generated at the lee of the cylinder, and such
fluctuations generate the sound pressure pulses. The emitted sound is named aeolian tone.

The problem domain is [0, L] × [0, L] with L = 200 m, with the cylinder diameter D = 0.3 m and
located at the center point of the square. The domain is big enough to describe the far field conditions far
away from the cylinder. The prescription of boundary conditions is as follows: the flow is injected from the
left boundary with constant horizontal velocity U = 20 m/s. Over both upper and lower walls the vertical
component of the velocity is imposed to zero. These prescriptions are done weakly, using β0 = 10. We
have taken a dynamic viscosity coefficient of µ = 0.006 kg/(m s) and density of % = 1 kg/m3 to initiate
the computation. All this information leads to the following Reynolds and Mach numbers, Re = 1, 000,
Ma = 0.0583, used by the benchmark solution.

In order to complete the simulation, we set a filtering frequency of 50 Hz to avoid reflections at the
external boundaries. The unstructured mesh for the simulation is composed of nearly 500, 000 P1 elements
using equal interpolation for velocity and pressure thanks to the stabilized formulation above discussed.
The mesh near the cylinder wall is of 3 × 10−3D in size, so as to capture the expected high gradients in
that region. The time step size selected for the computation is δt = 1 × 10−3 s. It is important to note
that the time step has to be small enough in order to be able to reproduce the aeroacoustic signal in an
adequate manner. The second order BDF2 scheme has been used for the large scales time evolution, while
a first order scheme has been used for the tracking of subscales. We recall here the necessity of letting the
code run for several time steps prior to the application of the boundary formulation, in order to accumulate
representative data for the computations. The initial condition for the simulation is provided by several time
steps of an incompressible segregated solver.

In Fig. 3a–3b we present the flow pressure contour for a certain time step of the vortex shedding cycle,
qualitatively comparing the proposed fractional step scheme with its monolithic version (for the same mesh
and time step size), already validated in [8]. It can be observed that the pressure pulses evolve radially from
the cylinder area with time, yet they do not propagate normally to the flow direction since this case is based
on an uniform flow. Additionally for this configuration of the flow, the classical oscillating wake after the
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cylinder is also developed (cf. Fig. 3c). Fig. 3d displays the pressure pulse along the positive x2 axis
for both formulations for the same time instant. The reader can notice that the acoustic wave propagation
obtained with the segregation algorithm manages to reasonably reproduce the amplitude and frequency of
the wave obtained with the monolithic reference scheme. Although some minor discrepancies might be
noticed, the overall results are equivalent in a reasonable manner. The differences should come from the
errors introduced by the fractional step approach and the approximate boundary condition.

As pointed out previously, the behavior of pressure waves once they reach the external artificial bound-
aries is a controversial situation in compressible solvers. The raw isentropic formulation would lead to the
reflection of waves into the computational domain, but the compatible prescription for flow and acoustic
variables adopted in this work allows the pressure pulses to abandon the domain in a smooth fashion. This
fact demonstrates the satisfactory performance of the weak imposition of Dirichlet boundary conditions
combined with a segregation technique and, similarly, it exposes the ability of the non-reflecting boundary
conditions to attenuate the propagated sound waves.

(a) (b)

(c) (d)

Figure 3: Aeolian tones: (a) flow pressure contour for the segregated scheme, (b) pressure contour for the monolithic case, (c) velocity
contour in the near field and (d) comparison of wave propagation along the x2 direction.

In order to further asses the suitability of the fractional step approach so as to replace its monolithic
counterpart (taken as reference), we perform a comparison on both non-dimensional lift CL and drag CD

coefficients of the cylinder. In order to illustrate this point, the time histories of these coefficients are in-
cluded in Fig. 4a and 4b. Both exhibit the expected sinusoidal behavior, with minimal deviation between
the two formulations, as a result of the segregation error. We also take these historical values to the fre-
quency domain via a Fourier transform algorithm, and the results are shown in Figs. 4c and 4d. For the case
of the lift coefficient and the monolithic scheme, it has an amplitude of 1.363 and oscillates at the vortex
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shedding frequency of 15.625 Hz (St= 0.234). These values have a remarkable agreement with the ones
reported in [45], where the problem is solved using a convected Helmholtz equation (see Section 4.2 in that
publication). When the solution is obtained with the segregated approach, CL has an amplitude of 1.335 and
shows a frequency of 15.435 Hz (St= 0.231). In addition to this, the drag coefficient displays an amplitude
of 0.181 for the monolithic solution and 0.169 for the fractional counterpart. In terms of frequency, CD

oscillates at 31.251 Hz for the monolithic (which is precisely twice the vortex shedding frequency) and at
31.105 Hz for the segregated algorithm, what translates into a relative error of ∼ 0.5 % with respect to the
reference solution. These values are collected in Table 1 down below.

(a)

(b)

(c) (d)

Figure 4: Aeolian tones: (a) time evolution of non-dimensional lift coefficient, (b) time evolution of non-dimensional drag coefficient,
(c) non-dimensional lift coefficient spectrum (d) non-dimensional drag coefficient spectrum. In all figures red and blue colors refer to
monolithic and fractional step results, respectively.

Monolithic Segregated
Amplitude [-] Frequency [Hz] Amplitude [-] Frequency [Hz]

CL 1.363 15.625 1.335 15.435
CD 0.181 31.265 0.169 31.105

Table 1: Comparison of frequency and amplitude values for the non-dimensional lift and drag coefficients when the solution of the
problem is computed with the monolithic or fractional step algorithms.

The computational savings that segregation techniques offer when compared to monolithic schemes are
undoubted. The linear systems to be solved in fractional step methods are smaller and better conditioned,
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and usually each unknown requires a distinct number of iterations to solve its corresponding linear sys-
tem. Although in this example we have used the same solver for all subsystems arising in the segregation
method, specific solving techniques could be exploited in order to improve the performance of fractional
step schemes even further. For the problem in hand, it was obtained that the CPU time of the fractional step
algorithm over the CPU time of the monolithic case was 0.39. In other words, the computational savings
go up to 60%.

In view of the information provided by previous quantitative comparisons, we can conclude that the
fractional step approach is an effective alternative to the classical monolithic technique.

7.3. Aerodynamic sound generated by the flow past an airfoil
The next example consists in the uniform flow over a NACA 0012 airfoil with an angle of attack of 5◦,

which will be used for an extra qualitative validation of the formulation developed in this work. Similarly as
in the cylinder example, the vortex shedding phenomena originates the pressure pulses which emanate from
the airfoil surface. This same geometry has been solved in [46] by means of a compressible LES model
for the flow scales plus an acoustic analogy to compute the acoustic component. It is not our goal in this
simulation to investigate the performance of the isentropic solver in specific mesh typologies or to replicate
the details of a particular problem and conditions, but to examine the propagation of the acoustic scales and
the applicability of the solver to reproduce flow patterns at Ma= 0.4. Additionally, this example is intended
to show the capability of the implementation to handle 3D configurations avoiding spurious reflections at
the external contours.

The configuration of the domain is the box [0, L]×[0,H]×[0,W] with L = 15 m, H = 10 m and W = 1 m.
The airfoil has its trailing edge located at point (5,5) and its chord line is of d = 0.1524 m in length. The
prescription of the boundary conditions is essentially the same as for the cylinder problem in the previous
subsection, yet over the walls on the x3 direction we assign periodic boundary conditions. The incident
horizontal velocity in the left surface is chosen to be U = 140 m/s, and we take µ = 2.56 × 10−3 kg/(m s)
and % = 1.2 kg/m3. Therefore the Reynolds and Mach numbers are Re ≈ 10, 000 and Ma = 0.4. The cutoff

frequency for this problem is set to 1, 000 Hz. For the simulation, the domain is discretized with a semi-
structured mesh which entails about 800, 000 tetrahedral elements. The case has been run up to T = 0.1 s
with a time step size of δt = 1 × 10−5 s. The coefficient for the weak imposition of Dirichlet boundary
conditions has been taken as β0 = 3. A BDF2 scheme has been used for the large scales evolution, and a
first order scheme has been used for the tracking of subscales.

In Fig. 5 we include the pressure wave propagation towards the far field. It is observed that pressure
waves evolve from the airfoil area, and eventually reach the artificial exterior boundaries. Although in
the nearest region around the airfoil the propagation is not clearly visible since it is small compared to
the aerodynamic scale (precisely one of the downsides of DNC), it eventually evolves comparably as in
[46]. Again, the most important feature is that the solution is not polluted by spurious pressure reflections.
Our fractional step implementation is capable of prescribing the scale separation avoiding reflections in a
reasonable manner, since it accounts for smooth variations of the mean flow variables which do not interfere
with the acoustic field evolution.

Similarly, we compared the computational times of the segregation scheme with respect to the mono-
lithic counterpart. For this 3D computation, the ratio of CPU times turns out to be 0.25, what reveals even
a further reduction in comparison with the previous 2D problem.

7.4. Noise radiated by the flow past an open cavity
As a final numerical example, the simulation of the noise radiated by a 2D flow past an open cavity is

performed in order to further investigate the aeroacoustic feedback of the formulation. The problem setting
consists in an infinitely long rectangular cavity of aspect ratio 2, with depth D = 0.00254 m and length
L = 2D. The accurate simulation of the acoustic radiation from the cavity relies on an adequate definition
of the boundaries. Hence, the computational domain extends over H = 25D vertically and W = 50D
horizontally, meaning that both upstream and downstream walls are sufficiently far away from the cavity
itself in order to avoid any possible self-forcing and to allow a proper impinging of the propagated sound
waves, see Fig. 6a. This is a challenging problem, where acoustics and flow dynamics are highly coupled.
Essentially, periodic vortices are formed just downstream the leading edge of the cavity, and when they
impinge the trailing edge, pressure pulses are generated which start propagating upstream.

Non slip boundary conditions are prescribed on the cavity walls and the flow is injected at the left-
most side with uniform velocity U = 245 m/s. The right-most side is left free and over the higher wall
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(a) (b)

Figure 5: Flow past an airfoil: (a) close-up view of the pressure isosurfaces around the airfoil, (b) pressure contour plot (scale between
∓ 150 Pa) over the plane x3 = 0, free of spurious reflections on the boundary.

the vertical component of the velocity is prescribed to zero. Additional parameters for the simulation are
chosen as follows: % = 1.16 kg/m3, µ = 1.76 × 10−5 kg/(m s), β0 = 25, δt = 5 × 10−7, and the filtering
frequency is 5, 000 Hz. Hence, we obtain Ma=0.7 and Re=41,000 (based on cavity depth), conditions
that have been studied by several authors in the literature [47, 48, 49]. An unstructured mesh with nearly
275, 000 triangular elements is used for the computations.

Let us start by assessing the far-field results. We monitored the pressure history at point P with coordi-
nates x1 = −0.04D and x2 = 2D which is located at the beginning at the acoustic region outside the cavity.
Fig. 6b shows the corresponding sound pressure level spectrum versus the Strouhal number, St = f L/U.
The principal peak is located at St = 0.64 whereas in [49] (where a DNS of the compressible flow equations
is performed and taken as reference here) it is located at St = 0.66, what induces a small error. A maximum
of 158 dB was obtained, which agrees with the values shown in that publication. Most important, the slope
of the cascade that appears at higher Strouhal numbers is similar, what validates the formulation in terms of
energy transfer.

Likewise, the propagation of acoustic waves can be visualized and compared in Figs. 6c–6d. Pressure
contours obtained in the present simulation, in contrast to the ones from [49] are depicted. Visual compar-
isons of the radiated pressure field coincide reasonably. The reader should also note that the computational
domain used for the simulation does not affect the solution as it allows to damp completely the reflection of
the sound waves at the artificial walls. The aforementioned agreement cannot be achieved without the use
of non-reflecting conditions (or any similar damping technique).

With regard to the near field results, Figs. 6e–6f present the vorticity and pressure fields for a given
time instant once the fluctuating mechanism is established. In Fig. 6e one can observe different vortical
structures. One of them inside the cavity, as the interaction between flow and acoustics causes a highly
chaotic behavior in this region. Another vortex can be seen just above the trailing edge. As the vortex first
hits this edge, it spills over the corner and, eventually, it is convected downstream, increasing the thickness
of the reattached boundary layer. Fig. 6f is the corresponding pressure field. A recirculation zone is located
in the second half of the cavity, which is mainly associated with the low pressure region in the plot (in
blue). In addition, a subsequent high-low pressure structure outside the cavity can be observed, which is
propagating towards the far field. This sequence can be directly compared to the ones presented in [49] (see
Section 2 in that publication), so we conclude that the present implementation manages to reproduce the
same flow patterns (same scaling is used for the comparison).

8. Conclusions

In this article, a methodology up to second order in time to solve the isentropic compressible Navier-
Stokes equations in a segregated manner has been presented. The formulation is constructed using the
extrapolation concept at the pure algebraic level. From the numerical point of view, the fractional step
approach has been combined with other ingredients, such as the split-orthogonal and dynamic definition of
subscales, the weak imposition of Dirichlet boundary conditions via extrapolations of boundary terms and
the application of non-reflecting boundary conditions, a major issue in compressible solvers.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Flow past a cavity: (a) cavity flow problem setting, (b) spectrum of pressure fluctuations versus the Strouhal number at the
beginning of the acoustic region, (c) DNS reference pressure field [49], (d) calculated pressure field using the second order fractional
step approach (scale between ∓3000 Pa), (e) vorticity contours and (f) pressure contours for a given time instant within the main
oscillation. Fifteen contours between ωx3 D/U = −10.5 and 1.35 for vorticity and twenty five contours between ∓10000 Pa for
pressure are used.

The accuracy of the resulting schemes has been tested numerically using the method of manufactured
solutions, obtaining optimal convergence rates for smooth enough solutions. Additionally, the implementa-
tion managed to reproduce the aeolian tones radiated by a flow past a cylinder, a convective simulation of
a 3D airfoil geometry, and the problem of flow past a cavity at M = 0.7. All these examples completely
cover the subsonic range and highlight the satisfactory performance of the proposed prescription of bound-
ary conditions, combining Nitche’s method and a Sommerfeld-like non-reflecting condition in a segregated
approach. The inclusion of the latter is crucial in this problem, in which reflections at the boundaries de-
velop oscillations and instabilities that end up affecting the simulation results if a standard methodology is
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used. In addition to this, an important reduction in the CPU time with respect to the monolithic case has
been verified.

The low implementation requirements when departing from a Navier-Stokes (incompressible) solver,
added to the computational savings of the segregated approach, make this algorithm appealing for aeroa-
coustic problems within the subsonic regime, where shocks and heat transfer can be neglected.
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