
Time-dependent semi-discrete analysis of the viscoelastic fluid

flow problem using a variational multiscale stabilised

formulation

Gabriel R. Barrenechea, ∗

Department of Mathematics and Statistics, University of Strathclyde, UK

Ernesto Castillo, †

Universidad de S. de Chile (USACH), Chile

and

Ramon Codina‡
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Abstract

In this article we analyse a stabilised finite element formulation recently proposed to approx-
imate viscoelastic fluid flows. The formulation has shown to have accuracy and robustness in
the different benchmarks tested in the viscoelastic framework and permitting the use of equal
interpolation of the unknown fields. We first present results about a linearised sub-problem, for
which well-posedness and stability results can be proved. Then, the semi-discrete nonlinear time-
dependent case is addressed using a fixed point theorem, which allows us to prove existence of
a semi-discrete solution, along with error estimates. Viscoelastic fluids; stabilised finite element
methods; time-dependent flows

1 Introduction

Viscoelastic fluids are a specific type of non-Newtonian fluids. They are characterized by having
complex and high-molecular-weight molecules with many internal degrees of freedom ([1]). The classical
examples of this type of fluids are the polymer solutions and molten polymers. The basic feature of
polymeric fluids is the presence of long chain molecules. In a flow, these chain molecules are stretched
out by the drag forces exerted on them by the surrounding fluid ([2]). The natural tendency of the
molecule to retract from this stretched configuration generates an elastic force which contributes to the
macroscopic stress tensor, and for this reason they are called viscoelastic fluids. The interest for fluids
of this kind has increased in the last years, due to the connections with the industrial applications.
This motivates the numerical and mathematical analysis of the governing equations (see, e.g., [3]).

For viscoelastic fluid flows, in contrast to the Navier-Stokes equations, well-posedness for general
models is not well understood. For initial value problems, the existence of solutions has been proved
only locally in time. Global existence in time of solutions has been proved only if the initial conditions
are small perturbations of the rest state, and for the steady state case existence of solutions can be
proved only for small perturbations of the Newtonian case (see [2] for a comprehensive review).
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The existence of slow steady flows of viscoelastic fluids using differential constitutive equations
was proved in [4] for Hilbert spaces. In this work, the author used an iterative method to show that
the solution can be bounded in a certain norm, and then he proved that all iterates converge in a
weaker norm. For the time-dependent case, existence of solutions locally in time, and for small data
globally in time, has been proved for Hilbert spaces in [5]. The extension to Banach spaces and a
complete review of uniqueness, regularity, well-posedness and stability results can be found in [3].
The existence of global weak solutions for general initial conditions using a co-rotational Oldroyd-B
model has been proved in [6] using a simplification (without physical justification) which consists in
replacing the velocity gradient in the stress equation by its skew-symmetric part. In [7] the authors
proved global existence of weak solutions in two dimensions to the Oldroyd-B model regularised with
the introduction of a diffusion term in the constitutive equation and assuming homogeneous natural
boundary conditions associated to this term. The proof in this paper is based on a mixed finite element
interpolation of the problem. The introduction of the stress diffusion can be physically justified. An
analysis of the effects it has on the numerical approximation can be found in [8].

From a finite element perspective, the finite element approximation of the flow of viscoelastic fluids
presents several numerical difficulties. One the one hand, there are all the problems inherited from
the incompressible Navier-Stokes equations, mainly the compatibility between the velocity-pressure
approximation and the treatment of the nonlinear advective term. But, on top of that, now the
constitutive equation is highly nonlinear, with an advective term that may lead to both global and
local oscillations in the numerical approximation. Moreover, even in the case of smooth solutions
it is necessary to meet some additional compatibility conditions between the velocity and the stress
interpolation in order to control velocity gradients. Elements that satisfy the compatibility require-
ments velocity-pressure and stress-velocity are scarce, particularly in the three-dimensional case (see,
e.g., [9, 10, 11]). In [12] one can find a good review of mixed methods that satisfy the two required
compatibility conditions.

In the finite element framework, the work of [13] was one of the first where the existence of an
approximate solution and error bounds were given for an Oldroyd-B fluid, using Brouwer’s fixed point
theorem, discontinuous interpolation for the elastic stresses and the method of Lesaint-Raviart for the
convection of the extra stress tensor in the stationary case. Later, Sandri extended ([14]) the study to
continuous approximation of the stress field, using P1-P2-P1 interpolation (linear-quadratic-linear) for
σ (stress), u (velocity) and p (pressure), respectively, and the SUPG method to treat the convective
term in the constitutive equation. The time-dependent case of the same continuous interpolation was
analysed in [15].

In the same finite element context, [16] analysed a stationary non-convective Oldroyd-B problem
proving a priori and a posteriori error estimates. In this work, the authors used the Galerkin Least
Squares (GLS) method to stabilise the momentum equation and the Elastic Viscous Split Stress (EVSS)
scheme for the constitutive equation. The extension to the time-dependent case was treated in [17]
for the same simplified Oldroyd-B problem, proving global existence in time in Banach spaces for
small data. For a Stokes/Oldroyd-B linearised problem, [18] presented optimal a priori error estimates
using the Interior-Penalty method. A similar problem was studied in [19] for the steady state case
but using the Johnson-Segalman linearised constitutive model, proving existence and uniqueness of
the continuous solution and of a finite element approximation under a small data assumption. In
another work, [20] analysed the Oldroyd-B time-dependent case both in the semi-discrete and in the
fully discrete cases using the SUPG method, and proving existence of a solution and deriving a priori
error estimates for the numerical approximation, assuming a Taylor-Hood pair approximation for the
velocity and pressure and a continuous approximation for the viscoelastic stresses. The same authors
extended later the analysis to a two-fluid flow problem in [21], giving a priori error estimates for the
approximation in terms of the mesh and time discretization parameters. In [22] the authors analysed
the time behaviour of the viscoelastic Oldroyd model in two dimensions using a Galerkin formulation
in space; in this work, the stress is eliminated through a proper projection operator, resulting in an
integro-differential equation in terms of velocity and pressure.

The stabilised finite element formulation analysed in this work has its roots in the Variational
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Multiscale (VMS) method introduced in [23] for the scalar convection-diffussion-reaction problem, and
extended later to the Stokes problem in [24], where the space of the sub-grid scales is taken orthogonal
to the finite element space. As we shall see, this is an important ingredient in the method analysed,
which consists in a sort of orthogonal term-by-term stabilised formulation. The key idea behind a VMS
method consists in splitting the unknowns of the problem in two scales, the finite element one and
the unresolvable one, called sub-grid scale. The latter needs to be approximated in a simple manner
in terms of the former, so as to capture its main effect and yield a globally stable formulation for the
finite element unknown, keeping therefore the number of degrees of freedom of the Galerkin method.

The objective of this paper is to analyse numerically the stabilised finite element formulation
proposed in [25] for the time-dependent viscoelastic flow problem. This formulation has shown to
have very good accuracy and robustness in stationary ([25]) and time-dependent ([26, 27]) cases.
The numerical analysis of a linearised stationary case was performed in [28], where in addition jump
functions were added to permit arbitrary discontinuous interpolations of pressure and stresses. As it
is usual in the analysis of numerical approximations to flow problems, even in the Newtonian case,
our analysis is based on some stringent regularity assumptions on the continuous solution. Apart from
analysing a non-standard stabilised formulation, the novelty of this work is also the treatment of some
of the terms that appear in the analysis.

The work is organised as follows. Section 2 defines some notation and presents general results
used in the subsequent analysis. In Section 3 we present the problem to be solved and its Galerkin
finite element approximation, explaining the sources of the numerical instability. Section 4 contains a
description of the stabilised finite element formulation analysed. Section 5 is devoted to the numerical
analysis of a linearised time-dependent subproblem, where the stability of the method and the existence
and uniqueness of the solution in the semi-discrete linearised case are proved. Section 6 analyses the
non-linear case, where existence of a solution is proved using a fixed point theorem. Finally, conclusions
and some remarks are summarised in Section 7.

2 Notation and preliminaries

2.1 Notation

Let us introduce some notation used hereafter. As usual, given a domain ω of Rd, d = 2, 3, Wm,p(ω)
denotes the Sobolev space of functions whose distributional derivatives of order up to m ∈ N belong
to Lp(ω), p ≥ 1, endowed with the standard norm. For p = 2 we write Wm,2(ω) ≡ Hm(ω). The space
H1

0 (ω) consists of functions in H1 (ω) vanishing on ∂ω. The topological dual of H1
0 (ω) is denoted

by H−1 (ω), the corresponding duality pairing by 〈·, ·〉ω, and the L2 inner product in ω (for scalars,
vectors and tensors) is denoted by (·, ·)ω. The symbol 〈·, ·〉ω is also used for the integral over ω of
the product of two functions, whenever it makes sense. When ω = Ω, the domain where the problem
is posed, the subscript or the domain information are omitted. Referring to the norms used in the
subsequent analysis, ‖·‖ represents the L2 (Ω)-norm, ‖·‖Lp the Lp (Ω)-norm (2 < p < ∞), ‖·‖∞ the
L∞ (Ω)-norm, ‖·‖k the Hk (Ω)-norm, ‖·‖l,p the norm for the space W l,p (Ω) (in particular, ‖·‖1,∞ is

the W 1,∞ (Ω)-norm) and |·|l,p the semi-norm.
The symbol . will be used for ≤ up to constants independent of the physical parameters and the

parameters of the numerical discretization. Given a vector field v, its symmetrical gradient will be
denoted by ∇sv; it is defined as

∇sv =
1

2

(
∇v + (∇v)

T
)
.

Finally, the temporal derivative will be written as ∂t.
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2.2 Preliminaries

Let us introduce some basic results. The gradient of a vector field v can be bounded in terms of its
symmetrical gradient as [29]:

‖∇v‖ ≤
√

2 ‖∇sv‖ , v ∈
(
H1

0 (Ω)
)d
.

Poincaré-Friedrich’s and Korn’s inequalities read as: for v ∈
(
H1

0 (Ω)
)d

, there exists constants cPF and
cΩ such that

‖v‖ ≤ cPF ‖∇v‖ , ‖v‖1 ≤ cK ‖∇
sv‖ .

From the Sobolev embedding theorems (see [30], for example), we can bound the L4(Ω)-norm in
terms of the H1(Ω)-norm as follows:

‖v‖L4 ≤ C12
04 ‖v‖1 . (1)

Constants cPF, cK and C12
04 depend on the shape and size of the domain Ω. We will use cPF as the

constant to bound the L2(Ω)-norm of a function by its H1(Ω)-norm.
For the finite element formulation that we shall consider, the discrete velocity field will not be point-

wise divergence free and the use of the skew-symmetric counterpart of the convective term simplifies
the subsequent analysis. Then, for u, v, w ∈ (H1

0 (Ω))d we define

c̃ (w, u, v) =
1

2
(c (w, u, v)− c (w, v, u)) , with c (w, u, v) = 〈w · ∇u, v〉.

The following properties are satisfied by this skew-symmetric form:

1. c̃ (w, u, v) = c (w, u, v) when ∇ · w = 0 and either w = 0 or u = 0 or v = 0 on ∂Ω.

2. c̃ (w, u, u) = 0, w, u ∈ (H1(Ω))d.

3. c̃ (w, u, v) ≤ (C12
04 )2‖w‖1‖u‖1‖v‖1, w, u, v ∈ (H1(Ω))d.

4. c̃ (w, u, v) ≤ ‖w‖∞(‖u‖1‖v‖+ ‖u‖‖v‖1), w ∈ (L∞(Ω))d, u, v ∈ (H1(Ω))d.

5. c̃ (w, u, v) ≤ ‖v‖(‖u‖∞‖∇w‖+ ‖∇u‖∞‖w‖), w ∈ (H1
0 (Ω))d, u ∈ (W 1,∞(Ω))d, v ∈ (L2(Ω))d.

6. c̃ (w, u, v) ≤ ‖v‖(‖u‖‖∇w‖∞ + ‖∇u‖‖w‖∞), w ∈ (W 1,∞(Ω))d, u ∈ (H1
0 (Ω))d, v ∈ (L2(Ω))d.

Integration by parts has to be used to prove the last two properties. The same definition of the tri-
linear forms c and c̃ and with the same properties can be introduced when the last two arguments are
tensor-valued and with the appropriate regularity.

Let us consider a finite element partition Th = {K} of the computational domain Ω. The diameter
of an element domain K ∈ Th is denoted by hK and the diameter of the partition, or mesh size, is
defined as h = max {hK | K ∈ Th}. We will consider for simplicity quasi-uniform families of meshes,
and thus all the element diameters can be bounded above and below by constants multiplying h.

Defining Vh := {vh : Ω→ R | vh|K ∈ Pk (K) ∀K ∈ Th}, Pk(K) being the set of polynomials of
degree k in K, we can write the following inverse inequality: there is a constant cinv, independent of
the mesh size h, such that

‖vh‖l,p,K ≤ cinvh
m−l+min(0, dp−

d
q ) ‖vh‖m,q,K , (2)

for all l ≥ m, l ∈ [1,+∞], and all finite element functions vh defined on K ∈ Th (see [31], for example),
where ‖vh‖l,p,K is the norm of vh in W l,p(K).

For v ∈ W l,p (Ω) we have the following interpolation estimate: there exists a constant C indepen-
dent of h, such that for all 0 ≤ l ≤ k + 1, 1 ≤ p ≤ ∞, there holds

‖v − P [v]‖Lp ≤Chl |v|l,p , (3)
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where P [v] ∈ Vh is the L2 (Ω)-projection of v in Vh (see [31] for more details). From Sobolev’s
embedding and the stability of P on finite element spaces we also have that

‖∇ (v − P [v])‖∞ ≤ C∞,3 ‖v‖3 , (4)

where C∞,3 is a positive constant independent of h.

3 Problem statement and Galerkin finite element discretiza-
tion

3.1 The boundary value problem

Let Ω be an open set of Rd occupied by the fluid, assumed to be bounded and polyhedral, and let ∂Ω
be its boundary. Aditionally, consider the time interval ]0, T [, with T < ∞. The incompressible and
isothermal viscoelastic fluid flow problem can be written as:

ρ (∂tu+ u · ∇u)−∇ · (2βµ∇su+ σ) +∇p = f in Ω, t ∈ ]0, T [ , (5)

∇ · u = 0 in Ω, t ∈ ]0, T [ , (6)

1

2µ
σ − (1− β)∇su+

λ

2µ
(∂tσ + u · ∇σ)

− λ

2µ

(
σ · ∇u+ (∇u)

T · σ
)

= 0 in Ω, t ∈ ]0, T [ , (7)

u = 0 on ∂Ω, t ∈ ]0, T [ , (8)

u |t=0 = u0 in Ω, (9)

σ |t=0 = σ0 in Ω. (10)

The unknowns of the problem are: the velocity field u (x, t), the pressure p (x, t) and the viscoleastic
or elastic part σ (x, t) of the extra stress tensor. The physical parameters are the dynamic viscosity
µ, the density of the fluid ρ, a real parameter β ∈ [0, 1] to define the amount of viscous or solvent
viscosity (µs = βµ) and elastic or polymeric viscosity (µp = (1− β)µ) in the fluid, and the relaxation
time λ, that represents the elasticity of the fluid. Finally, f ∈ (H−1(Ω))d is the external volume force
applied to the fluid confined in Ω.

For viscoelastic fluids, the problem is incomplete without the definition of a constitutive equation
for the elastic stresses (σ). A large variety of approaches exist to define it (see [32, 33] for a complete
description). In this work, we use the classical Oldroyd-B constitutive model (7) for this purpose.

The conservation laws (5)-(6) together with the Oldroyd-B constitutive equation (7) are a mixed
parabolic-hyperbolic problem, that needs to be complemented with initial (9)-(10) and boundary (8)
conditions to close the problem. For simplicity in the exposition, we will consider the simplest boundary
condition for the velocity and no boundary conditions for the stress field. With respect to the initial
conditions, u0 and σ0 are functions defined on the whole domain Ω. For a complete description of the
mathematical structure of the problem we refer to [3, 2].

3.2 Variational form

To write the weak form of problem (5)-(7) we need to introduce some functional spaces. Let V =
(H1

0 (Ω))d, Υ :=
{
τ | τ ∈ (L2 (Ω))d×dsym , w · ∇τ ∈ (L2(Ω))d×dsym ∀w ∈ V

}
(subscript sym standing for sym-

metric tensors) and Q = L2(Ω)/R, the spaces of the velocity, the elastic stresses and the pressure,
respectively. If we denote U := (u, p, σ), X := V × Q × Υ, the weak form of the problem consists in
finding U : ]0, T [→ X such that the initial conditions are satisfied and

ρ (∂tu, v) + ρ〈u · ∇u, v〉+ (2βµ∇su+ σ,∇sv)− (p,∇ · v) = 〈f, v〉 , (11)
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(∇ · u, q) = 0, (12)(
1

2µ
σ − (1− β)∇su, τ

)
+

λ

2µ
(∂tσ + u · ∇σ, τ)− λ

2µ
(g (u, σ) , τ) = 0, (13)

for all V = (v, q, τ) ∈ X . The last term of the constitutive equation represents the traction or rotational

term, defined as g (u, σ) := σ · ∇u+ (∇u)
T · σ.

In a compact form, problem (11)-(13) can be written as:

(Dt (U) , V ) +B (u, σ;U, V ) = 〈f, v〉 , (14)

for all V ∈ X ,where

B (û, σ̂;U, V ) =ρ〈û · ∇u, v〉+ 2βµ (∇su,∇sv) + (σ,∇sv)− (p,∇ · v) + (∇ · u, q) (15)

+
1

2µ
(σ, τ)− (1− β) (∇su, τ) +

λ

2µ
(û · ∇σ, τ)− λ

2µ
(g (û, σ̂) , τ) ,

and

(Dt (U) , V ) := ρ (∂tu, v) +
λ

2µ
(∂tσ, τ) . (16)

3.3 Galerkin finite element discretization

From Th we may construct conforming finite element spaces for the velocity, the pressure and the
elastic stress, Vh ⊂ V, Qh ⊂ Q and Υh ⊂ Υ, respectively. Denoting Xh = Vh ×Qh ×Υh, the Galerkin
finite element approximation of problem (14) consists in finding Uh : ]0, T [→ Xh such that

(Dt (Uh) , Vh) +B (uh, σh;Uh, Vh) = 〈f, vh〉 , (17)

for all Vh ∈ Xh, and satisfying the appropriate initial conditions.
Until now, we have posed no restrictions on the choice of the finite element spaces. However, let

us analyse the numerical stability of problem (17). If we take Vh = Uh1 = ((1− β)uh, (1− β)ph, σh),
it is found that

B (uh, σh;Uh, Uh1) = 2(1− β)βµ ‖∇suh‖2 +
1

2µ
‖σh‖2 −

λ

2µ
(g(uh, σh), σh) . (18)

It is seen from (18) that B is not coercive in Xh, and we can ensure only control on ‖σh‖ for all β
assuming λ∇uh to be small enough.

To ensure the control of ph and ∇suh, one has then to choose finite element spaces satisfying:

inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)

‖vh‖Vh ‖qh‖Qh

≥ C1, (19)

inf
vh∈Vh

sup
τh∈∓h

(τh,∇svh)

‖τh‖∓h
‖vh‖Vh

≥ C2, (20)

where C1 and C2 are positive constants. It is therefore required that the finite element spaces satisfy
(19) and (20), which is a stringent requirement inherited from the mixed form of the Navier-Stokes
problem ([34]).

The two compatibility conditions of the viscoelastic flow problem do not allow us the use of an
arbitrary interpolation for the different fields because the scheme may become unstable. The imple-
mentation of inf-sup stable elements is a possible solution for this problem; however, from the numerical
point of view, the spaces that fulfill these conditions are limited and complex, particularly when the
problem needs to be solved in three dimensions. The other possibility is to use a stabilised formulation
that permits the use of any interpolation for the variables, which is the approach studied in this work.
Note that the constitutive equation is of convective nature, and therefore, some kind of stabilisation
technique has to be used even if inf-sup stable elements are used, and likewise for the momentum
equation.
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4 Stabilised finite element method

In general, a stabilised formulation consists of replacing B in (14) by another multilinear form Bstab,
possibly mesh dependent, designed to enhance stability without upsetting accuracy. The formulation
we analyse, proposed in [25], is described next.

For the sake of conciseness, let us consider equal order continuous interpolation for all variables.
The case of discontinuous pressures and stresses can be treated using the technique employed in [28].

Thus, let us consider Xh = Vh×Qh×Υh, where Vh =
[
Vh ∩H1

0 (Ω)
]d

, Qh = [Vh ∩C0(Ω)]/R and Υh =[
Vh ∩ C0(Ω)

]d×d
sym

. The method consists in replacing (17) by the following problem: find Uh :]0, T [→ Xh
such that

(Dt (Uh) , Vh) +Bstab (uh, σh;Uh, Vh) = 〈f, v〉 , (21)

for all Vh ∈ Xh , where

Bstab (ûh, σ̂h;Uh, Vh) = B (ûh, σ̂h;Uh, Vh) +B∗ (ûh, σ̂h;Uh, Vh) , (22)

and B∗represents the additional stabilisation terms added to the Galerkin formulation. Using the same
notation as in [25], we can define B∗ as

B∗ (ûh, σ̂h;Uh, Vh) =S⊥1 (ûh;Uh, Vh) + S⊥2 (Uh, Vh) + S⊥3 (ûh, σ̂h;Uh, Vh) ,

where

S⊥1 (ûh;Uh, Vh) =αu(ûh)
(
P⊥u [ρûh · ∇uh] , P⊥u [ρûh · ∇vh]

)
+ αu(ûh)

(
P⊥u [∇ph] , P⊥u [∇qh]

)
+ αu(ûh)

(
P⊥u [∇ · σh] , P⊥u [(1− β)∇ · τh]

)
, (23)

S⊥2 (Uh, Vh) =αp(ûh)
(
P⊥p [∇ · uh] , P⊥p [∇ · vh]

)
, (24)

S⊥3 (ûh, σ̂h;Uh, Vh) =ασ(ûh)

(
P⊥σ

[
−(1− β)∇suh +

λ

2µ
(ûh · ∇σh − g (ûh, σ̂h))

]
,

P⊥σ

[
−∇svh +

λ

2µ
(ûh · ∇τh + g∗ (ûh, τh))

])
, (25)

and g∗ (ûh, τh), represents the adjoint operator of g (ûh, τh), defined as g∗ (ûh, τh) := τh · (∇ûh)
T

+
∇ûh · τh. Here P⊥u = I − Pu, where Pu : L2(Ω) → Ṽh is the L2(Ω)-projection onto Ṽh, the velocity
space without boundary conditions, and P⊥p and P⊥σ are defined in an analogous way. We will also
need Pu,0 := L2(Ω)→ Vh, that is to say, the L2(Ω)-projection onto the velocity space with boundary
conditions.

Note that all the stabilisation terms in (23)-(25) are multiplied by αi, i = u, p, σ. These terms are
the components of the stabilisation parameter matrix, that can be defined as

α = diag (αuId, αp, ασId×d) ,

where

αu(ûh) =

[
c1
µ

h2
+ c2

ρ ‖ûh‖∞
h

]−1

, (26)

αp(ûh) =
h2

c1αu(ûh)
, (27)

ασ(ûh) =

[
c3

1

2µ
+

λ

2µ

(
c4
‖ûh‖∞
h

+ 2c5 ‖∇ûh‖∞

)]−1

, (28)

where ci, i = 1, 2, 3, 4, 5, are algorithmic constants and Id and Id×d are respectively the second and
fourth order identity tensors. A general approach to design the terms of the stabilisation parameter
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matrix was proposed in [35] for the three-field Stokes problem. In this work, it is shown that the
parameters can be uniquely determined by dimensionality, assuming that this matrix is diagonal. In
general, to get optimal control the stabilisation parameters need to be evaluated element-wise (or even
point-wise). The constant expression adopted in this work allows us to simplify the analysis.

The stabilising mechanisms introduced by the terms S⊥1 , S⊥2 and S⊥3 are the following. The first
component of S⊥1 gives control on the convective term, the second component gives control on the
pressure gradient, and the third term gives control on the divergence of the viscoelastic stress. The
term S⊥2 is not a must but in some cases it improves stability of the problem. Finally, the term
S⊥3 adds stability in the constitutive equation. Note that some of the components of this last term
are the convective-convective term of the viscoelastic stress tensor and an equivalent EVSS-structure
component, among other cross local inner-product terms (see [25] for more details of this spatial
stabilised formulation). The addition of these three terms permits the approximation of convection
dominated problems both in velocity and in stress, and the implementation of equal order interpolation
for all the unknowns. The orthogonal projections introduce consistency errors, but of optimal order, a
key point in the design of accurate non-residual based methods. For stationary problems, the resulting
formulation turns out to have optimal order of convergence, as checked numerically in [25] for linear
and quadratic elements.

The term-by-term form of S⊥1 was proposed instead of a residual-based one, because the former
shows a better numerical behaviour in problems where high gradients in pressure and stress are present
(see [36] for more details about this fact).

We will need a condition on the interpolating spaces that holds in the case of equal order inter-
polations (see [37]), and that can be written as follows: given ah, vh ∈ Vh, qh ∈ Qh, τh ∈ Υh and
zh := ρah · ∇vh +∇qh −∇ · τh, there holds

‖zh‖ ≤ cm
(
‖Pu,0 (zh)‖+

∥∥P⊥u (zh)
∥∥) , (29)

for a constant cm > 0. According to this condition, the component of Pu (zh) that corresponds to the
boundary of Ω can be bounded in terms of the right-hand-side (RHS) of Eq. (29). To prove this, one
can use the macro-element technique employed in [37].

5 Linearised time-dependent case

The numerical analysis of the stabilised formulation presented in this work is divided in two steps. In
this Section we present the stability analysis of the linearised case. The second part (Section 6), is
devoted to the nonlinear analysis.

5.1 Linearised stabilised semi-discrete problem

The equations for incompressible viscoelastic flows have several nonlinear terms, both in the momentum
and in the constitutive equation. In the former we have the convective term, and in the latter we have
the term corresponding to the convection of stresses and the rotational term arising from the objective
derivative of stresses. On top of that, the stabilisation terms depend also on the velocity, introducing
therefore additional nonlinearities.

As it is usual for incompressible flow problems, for the convective term of the momentum equation
we can use a Picard scheme as linearisation technique, taking the advection velocity as the velocity
of the previous iteration. This leads only to first order convergence, but it is a robust option. The
constitutive equation is rather more complex and sometimes the implementation of combined algo-
rithms is recommended. See for example the work [25], where a Newton scheme was combined with a
continuation method, or the work [38], where different types of continuation methods were proposed.
For simplicity in the numerical analysis, we will use only the fixed point scheme for all the nonlin-
ear terms, including the terms associated to the matrix of stabilisation parameters α. Therefore, we
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analyse the following semi-discrete linearised problem: given ûh :]0, T [→ Vh and σ̂h :]0, T [→ Υh, find
Uh : ]0, T [→ Xh such that

ρ (∂tuh, vh) + ρc̃ (ûh, uh, vh) + (2βµ∇suh + σh,∇svh)− (ph,∇ · vh)

+αu
(
P⊥u [ρûh · ∇uh] , P⊥u [ρûh · ∇vh]

)
+ αp

(
P⊥p [∇ · uh] , P⊥p [∇ · vh]

)
+ασ

(
P⊥σ

[
(1− β)∇suh −

λ

2µ
(ûh · ∇σh − g (ûh, σ̂h))

]
, P⊥σ [∇svh]

)
= 〈f, vh〉 , (30)

(∇ · uh, qh) + αu
(
P⊥u [∇ph] , P⊥u [∇qh]

)
= 0, (31)(

1

2µ
σh − (1− β)∇suh, τh

)
+

λ

2µ
(∂tσh, τh) +

λ

2µ
c̃ (ûh, σh, τh)

− λ

2µ
(g (ûh, σ̂h) , τh) + (1− β)αu

(
P⊥u [∇ · σh] , P⊥u [∇ · τh]

)
+ασ

(
P⊥σ

[
−(1− β)∇suh +

λ

2µ
(ûh · ∇σh − g (ûh, σ̂h))

]
,

P⊥σ

[
λ

2µ
(ûh · ∇τh + g∗ (ûh, τh))

])
= 0, (32)

for all Vh = (vh, qh, τh) ∈ Xh. The initial conditions are set as appropriate projections of u0 and σ0.
The stabilisation parameters are computed using ûh (see (26)-(28)).

5.2 Existence and uniqueness of the semi-discrete solution

The following existence and uniqueness analysis of the discrete solution was motivated by the procedure
followed in [39] for the two-field Navier-Stokes problem.

To prove existence and uniqueness of the discrete linearised problem (30)-(32), we shall make use
of the following pressure and velocity subspaces:

Q?h =
{
qh ∈ Qh|

(
P⊥u,0 [∇qh] , P⊥u,0 [∇qh]

)
= 0
}
,

Vdiv
h = {vh ∈ Vh| (qh,∇ · vh) = 0, ∀qh ∈ Q?h} .

In addition, Qh\Q?h will stand for the supplementary of Q?h in Qh, i.e., Qh = (Qh\Q?h)⊕Q?h.
To ensure that Vdiv

h is not trivial, we use the following lemma:

Lemma 1. There exists a constant γ > 0, independent of h, such that

inf
qh∈Q?

h

sup
vh∈Vh

(qh,∇ · vh)

‖vh‖1 ‖qh‖
≥ γ.

Proof. Let qh ∈ Q?h. From inf-sup theory (see for example [30]), there exists vq ∈ (H1
0 (Ω))d such that

∇ · vq = qh, ‖vq‖1 . ‖qh‖ .

Integrating by parts, we have

‖qh‖2 = (qh,∇ · vq)
=− (∇qh, vq − Pu,0 [vq]) + (qh,∇ · Pu,0 [vq])

= (qh,∇ · Pu,0 [vq]) ,

since, as qh ∈ Q?h, then ∇qh ∈ Vh, and vq − Pu,0 [vq] belongs to the orthogonal to this space. In
addition, using the quasi-uniformity of the mesh and the Poincaré-Friedrics inequality we have

‖Pu,0 [vq]‖21 . ‖∇vq‖2 . ‖qh‖2 ,

which completes the proof.
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Theorem 1 (Existence-Uniqueness). The semi discrete problem (30)-(32) has a unique solution.

Proof. Problem (30)-(32), satisfying the initial conditions, can be written in operator form as

Mu∂tuh +Ku (ûh)uh +Gph −Dσσh = Muf in Vh, (33)

Duh = S⊥1,pph inQh, (34)

Mσ∂tσh +Kσ (ûh, σ̂h)σh − Suh = 0 in Υh. (35)

These are equations posed in terms of linear forms defined on the spaces specified in each equation.
The components these forms when applied to vh ∈ Vh, qh ∈ Qh and τh ∈ Υh are given by

Muf(vh) =〈f, vh〉,
(Ku(ûh)uh)(vh) =ρc̃ (ûh, uh, vh) + 2βµ (∇suh∇svh) + αu

(
P⊥u [ρûh · ∇uh] , P⊥u [ρûh · ∇vh]

)
+ αp

(
P⊥p [∇ · uh] , P⊥p [∇ · vh]

)
+ (1− β)ασ

(
P⊥σ

[
(1− β)∇suh −

λ

2µ
(ûh · ∇σh − g (ûh, σh))

]
, P⊥σ [∇svh]

)
,

Gph(vh) =− (ph,∇ · vh) ,

Dσσh(vh) = (σh,∇svh) ,

Duh(qh) = (∇ · uh, qh) ,

S⊥1,pph(qh) =− αu
(
P⊥u [∇qh] , P⊥u [∇qh]

)
,

Mσ∂tσh(τh) =
λ

2µ
(∂tσh, τh) ,

(Kσ(ûh, σ̂h)σh)(τh) =
1

2µ
(σh, τh) +

λ

2µ
c̃ (ûh, σh, τh) + (1− β)αu

(
P⊥u [∇ · σh] , P⊥u [∇ · τh]

)
+ ασ

(
P⊥σ

[
−(1− β)∇suh +

λ

2µ
(ûh · ∇σh − g (ûh, σ̂h))

]
,

P⊥σ

[
λ

2µ
(ûh · ∇τh + g∗ (ûh, τh))

])
,

Suh(τh) =− (1− β) (∇suh, τh) .

We also introduce the operator D1 : Vh −→ (Q?h)′, defined by

D1vh = (Dvh)Q?
h
, ∀vh ∈ Vh,

where the subscript stands for the restriction to Q?h. From Lemma 1, it follows that D1 is surjective

and
(
D1
)T

is injective, and therefore, Vdiv
h := ker

(
D1
)
6= {0}.

Let us consider the following reduced formulation, derived from (30)-(32) with Vh ∈ X ?h = Vdiv
h ×

(Qh\Q?h)×Υh: find Uh = (uh, p̃h, σh) : ]0, T [→ X ?h such that

Mu∂tuh +Ku (ûh)uh +Gp̃h −Dσσh = Muf in Vdiv
h , (36)

Duh = S⊥1,pp̃h in (Qh\Q?h) , (37)

Mσ∂tσh +Kσ (ûh, σ̂h)σh − Suh = 0 in Υh. (38)

Since, by construction, Q?h = Ker
(
S⊥1,p

)
, we conclude that S⊥1,p is invertible inQh\Q?h, and therefore,

from (37) we obtain

p̃h =
(
S⊥1,p

)−1

Qh\Q?
h

Duh.

By plugging this expression into (36), we obtain the following equivalent problem:

Mu∂tuh +Ku (ûh)uh +G
(
S⊥1,p

)−1

Qh\Q?
h

Duh −Dσσh = Muf in Vdiv
h , (39)
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Mσ∂tσh +Kσ (ûh, σ̂h)σh − Suh = 0 in Υh, (40)

which is a standard Cauchy problem for uh and σh. Existence and uniqueness for uh and σh follows
by the Lipschitz continuity of Ku (ûh) and Kσ (ûh, σ̂h). We may then recover p̃h uniquely from (37).
Therefore, the reduced problem (36)-(38) has a unique solution. On the other hand, from (36) it
follows that

Mu∂tuh +Ku (ûh)uh +Gp̃h −Dσσh −Muf ∈
(
Ker

(
D1
))0

,

with
(
Ker

(
D1
))0

standing for the polar set of Ker
(
D1
)
. From Lemma 1, it follows that D1 is an

isomorphism from Q?h onto
(
Ker

(
D1
))0

. Thus, there exists a unique p1 ∈ Q?h such that

Mu∂tuh +Ku (ûh)uh +Gp̃h −Dσσh −Muf =Gp1 inVh. (41)

Therefore, from (41) and the reduced problem (36)-(38), it follows that the discrete problem (30)-
(32) has a unique solution, given by

(
uh, p̃h − p1, σh

)
.

5.3 Stability of the linearised semi-discrete problem

We will use the following working norm in the subsequent analysis:

‖Vh‖2W = 2βµ(1− β) ‖∇svh‖2 +
1

2µ
‖τh‖2 + (1− β)αu

∥∥P⊥u [ρûh · ∇vh]
∥∥2

+ (1− β)αu ‖ρ∂tvh + ρûh · ∇vh +∇qh −∇ · τh‖2

+ (1− β)αp ‖∇ · vh‖2 + (1− β)αu
∥∥P⊥u [∇qh]

∥∥2
+ (1− β)αu

∥∥P⊥u [∇ · τh]
∥∥2

+ ασ

∥∥∥∥ λ2µ∂tτh − (1− β)∇svh +
λ

2µ
ûh · ∇τh

∥∥∥∥2

. (42)

The term multiplied by αp is not strictly necessary, since it is already contained in ‖∇svh‖, but
sometimes could reinforce stability. We will keep it for generality, to see the effect of the stabilising
term associated to the pressure.

From the definition of ‖·‖W it is observed that we have some control on the convective terms of the
momentum equation and of the constitutive equation. In view of the expression of the stabilisation
parameters, this control remains meaningful in the convection dominated limit for the momentum
equation. This property will no longer be valid in the nonlinear case, since, as it is standard in the
analysis of nonlinear problems involving the Navier-Stokes equation, the results will be proved in the
diffusion dominated regime.

The next result states the stability of the proposed semi-discrete formulation, defined in (30)-(32).

Theorem 2 (Stability). Let (uh, ph, σh) be the solution of (30)-(32). Then, the following stability
holds, for almost all t ∈ [0, T ]:

(1− β)
ρ

2
‖uh (t)‖2 +

λ

4µ
‖σh (t)‖2 +

∫ t

0

‖(uh, ph, σh)‖2W dt

.
c2K
2µ

∫ t

0

‖f‖2H−1 dt+
λ2

2µ

∫ t

0

‖g (ûh, σ̂h)‖2 dt+ (1− β)
ρ

2
‖u0‖2 +

λ

4µ
‖σ0‖2 . (43)

Proof. In this proof ε1, ε2, ... are positive constants used in the application of Young’s inequalities.
The values will be chosen at the end of the proof.

Taking (vh, qh, τh) = Uh1 = ((1− β)uh, (1− β)ph, σh) in (30)-(32), adding up the resulting equa-
tions and using Cauchy-Schwarz’s and Young’s inequalities we arrive at

(1− β)
ρ

2

d

dt
‖uh‖2 + 2µβ(1− β) ‖∇suh‖2 +

λ

4µ

d

dt
‖σh‖2
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+ (1− β)αp
∥∥P⊥p [∇ · uh]

∥∥2
+ (1− β)αu

∥∥P⊥u [∇ · σh]
∥∥2

+
1

2µ

(
1− ε1

2
− 4

ασ
2µ
λ2 ‖∇ûh‖2∞

(
1

2ε2
+

1

2ε4

))
‖σh‖2

+ (1− β)αu
∥∥P⊥u [ρûh · ∇uh]

∥∥2
+ (1− β)αu

∥∥P⊥u [∇ph]
∥∥2

+ ασ

(
1− ε2

2
− ε3

2

)∥∥∥∥P⊥σ [−(1− β)∇suh +
λ

2µ
(∂tσh + ûh · ∇σh)

]∥∥∥∥2

≤ (1− β) 〈f, uh〉+
λ2

4µ

[
1

ε1
‖g (ûh, σ̂h)‖2 +

ασ
µ

(
1

2ε3
+
ε4

2

)∥∥P⊥σ [g (ûh, σ̂h)]
∥∥2
]
. (44)

If we compare the bounded terms of expression (44) with the terms of the working norm (42), we
can see that the missing terms are all of them associated to the finite element space. The key point is
that this missing control comes from the Galerkin part of the multilinear form Bstab in Eq. (22).

Let us take Vh1 = (vh, qh, τh) = αu ((1− β)v1, 0, 0) with

v1 ≡ Pu,0 [ρ∂tuh + ρûh · ∇uh +∇ph −∇ · σh] .

Then, we can proceed in a similar way as in the Uh1 case. Taking v1 as test function, integrating
by parts the terms arising from the divergence of the total stress and the gradient of the pressure,
using the fact that ûh = 0 on ∂Ω, and applying Cauchy-Schwarz’s and Young’s inequalities and inverse
inequalities, we obtain the following result

(1− β)αu

(
1− αuc2inv

[
αp
h2

ε6

2
+
ρ ‖ûh‖∞

h

ε7

2
+
ασ
h2

(ε8

2
+
ε9

2

)]
−βαu

2µ

h2
c2inv

ε5

2
− αu

d

4ε10

c2K
2µ
ρ2 ‖∇ûh‖2∞

)
‖v1‖2

− 2µ(1− β)

(
β

1

2ε5
+
ε10

2

)
‖∇suh‖2 − (1− β)αp

1

2ε6

∥∥P⊥p [∇ · uh]
∥∥2

− (1− β)α2
u

ρ ‖ûh‖∞
h

1

2ε7

∥∥P⊥u [ρûh · ∇uh]
∥∥2

− (1− β)ασ
1

2ε8

∥∥∥∥P⊥σ [ λ2µ∂tσh − (1− β)∇suh +
λ

2µ
ûh · ∇σh

]∥∥∥∥2

≤ (1− β)αu 〈f, v1〉+
(1− β)

2ε9

λ2

2µ

ασ
2µ

∥∥P⊥σ [g (ûh, σ̂h)]
∥∥2
. (45)

To obtain the control of Pp [∇ · uh], we proceed taking Vh2 = (1 − β)αp (0, q2, 0) with q2 ≡
Pp [∇ · uh]:

(1− β)αp
(
(∇ · uh, q2) + αu

(
P⊥u [∇ph] ,∇q2

))
≥(1− β)αp

(
1− c2invαu

αp
h2

ε11

2

)
‖Pp [∇ · uh]‖2

− (1− β)αu
1

2ε11

∥∥P⊥u [∇ph]
∥∥2
. (46)

Finally, taking: Vh3 = ασ (0, 0, σ3) with σ3 ≡ Pσ

[
λ
2µ∂tσh − (1− β)∇suh + λ

2µ ûh · ∇σh
]
, and pro-

ceeding as before, we obtain

− 1

2µ

(
1

2ε12
+

1

2

1

2ε17

)
‖σh‖2 −

(1− β)

2ε14
αu
∥∥P⊥u [∇ · σh]

∥∥2

+ ασ

(
1− ασ

2µ

ε12

2
− ε13

2
− ε17

4

ασ
2µ
d (λ ‖∇ûh‖∞)

2 − c2inv(1− β)αu
ασ
h2

ε14

2
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−c2inv2α2
σ

[(
λ ‖ûh‖∞

2µh

)2

+ 4

(
λ ‖∇ûh‖∞

2µ

)2
](

1

2ε15
+

1

2ε16

))
‖σ3‖2

− ασ
ε15

2

∥∥∥∥P⊥σ [ λ2µ∂tσh − (1− β)∇suh +
λ

2µ
(ûh · ∇σh)

]∥∥∥∥2

≤ λ2

4µ

ασ
µ

(
1

2ε13
‖g (ûh, σ̂h)‖2 +

ε16

2

∥∥P⊥σ [g (ûh, σ̂h)]
∥∥2
)
. (47)

Let V ∗h = Uh1 + θ1Vh1 + θ2Vh2 + θ3Vh3, with Vhi, i = 1, ..., 3 introduced above. Adding (45)-(47)
multiplied by θi, i = 1, ..., 3, and adding also (44), we arrive at an expresion of the form

LHS (V ∗h ) ≤ RHS (V ∗h ) .

For the RHS, applying Young’s inequalities and the inverse inequality, we obtain

RHS (V ∗h ) ≤ (1− β)

(
1

2µ

(
1

2ε17
+ θ1

1

2ε18

)
c2Ω ‖f‖

2
H−1

+2µ
ε17

2
‖∇suh‖2 + θ1αu

(
αu

2µ

h2

)
c2inv

ε18

2
‖v1‖2

)
+
λ2

2µ

(
1

2ε1
+ θ3

ασ
2µ

+
ασ
2µ

(
1

2ε3
+
ε4

2
+ θ1

(1− β)

2ε9
+ θ3

ε16

2

))
‖g (ûh, σ̂h)‖2 . (48)

For the left-hand-side (LHS), integrating inequalities (44),(45),(46), (47) and (48) from 0 to t , we
obtain

(1− β)
ρ

2
‖uh‖2 (t) +

λ

4µ
‖σh‖2 (t) + 2µ(1− β)βC1

∫ t

0

‖∇suh‖2 dt

+
1

2µ
C2

∫ t

0

‖σh‖2 dt+ (1− β)C3αu

∫ t

0

∥∥P⊥u [ρûh · ∇uh]
∥∥2

dt

+ (1− β)C4αp

∫ t

0

∥∥P⊥p [∇ · uh]
∥∥2

dt+ (1− β)C5αu

∫ t

0

∥∥P⊥u [∇ · σh]
∥∥2

dt

+ (1− β)C6αu

∫ t

0

∥∥P⊥u [∇ph]
∥∥2

dt+ C7ασ

∫ t

0

∥∥∥∥P⊥σ [−(1− β)∇suh +
λ

2µ
(ûh · ∇σh)

]∥∥∥∥2

dt

+ (1− β)C8αu

∫ t

0

‖Pu,0 [ρ∂tuh + ρûh · ∇uh +∇ph −∇ · σh]‖2 dt

+ (1− β)C9αp

∫ t

0

‖Pp [∇ · uh]‖2 dt

+ C10ασ

∫ t

0

∥∥∥∥Pσ [ λ2µ∂tσh − (1− β)∇suh +
λ

2µ
ûh · ∇σh

]∥∥∥∥2

dt

≤ (1− β)
c2Ω
2µ
C11

∫ t

0

‖f‖2H−1 dt+
λ2

2µ
C12

∫ t

0

‖g (ûh, σ̂h)‖2 dt+ (1− β)
ρ

2
‖uh (0)‖2 +

λ

4µ
‖σh (0)‖2 ,

(49)

where Ci, i = 1, ..., 12, can be easily identified. The result then follows by choosing ε1, ..., ε18 and
θ1, ..., θ3, in such a way that Ci > 0 for all i, which is possible by choosing some of the constants and
the algorithmic stabilisation parameters sufficiently small. The missing control on ρ∂tuh+ρûh ·∇uh+
∇ph −∇ · σh follows from (29).

6 Analysis of the nonlinear problem

In this section we show that under suitable conditions, a solution to the discretized system exists.
Using the same procedure proposed by [20], the proof can be subdivided in the following four steps:
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1. Define an iterative map in such a way that a fixed point of the map is a solution to the original
problem.

2. Show that the map is well defined and bounded on bounded sets.

3. Show that there exists an invariant ball of the map.

4. Apply Schauder’s fixed point theorem to conclude there exists a discrete solution in this ball.

The results to be obtained in this section yield existence of a semi-discrete solution, as well as
stability and convergence. Due to the hypotheses needed in the proof of the results (most of which are
already present in the analysis of the Navier-Stokes equation), the norm in which the results are shown
is weaker than the norm used in the linearised problem. In essence, we will have L∞(0, T )-control
for both the L2(Ω)-norm of velocity and stresses and L2(0, T )-control for the H1(Ω)-norm of velocity.
The pressure, on the other hand, is controlled only in a norm involving the stabilisation term, and not
the natural L2(Ω)-norm.

The precise assumptions required on the continuous solution are:

Assumption 1. System (14) has a solution (u, p, σ) continuous in time and satisfying

sup
0≤t≤T

‖u‖∞ ≤ D1, sup
0≤t≤T

‖∇u‖∞ ≤ D2, sup
0≤t≤T

‖u‖k+1 ≤ D3,

sup
0≤t≤T

‖σ‖∞ ≤ D4, sup
0≤t≤T

‖∇σ‖∞ ≤ D5, sup
0≤t≤T

‖σ‖k+1 ≤ D6, (50)

sup
0≤t≤T

‖p‖k ≤ D7, sup
0≤t≤T

‖∂tu‖k ≤ D8, sup
0≤t≤T

‖∂tσ‖k ≤ D9,

for certain positive constants Di i = 1, ..., 9 which are supposed to be small enough.

For the time-discrete problem, if δt is the time step size, one usually needs a condition of the form
δt ≥ Cαu for a positive constant C, which is encountered in most stabilised finite element methods;
see [40, 41] and references therein for a description of the problem and a way to avoid this restriction,
which we shall not consider in this work. In the time continuous case, the boundedness in time of
‖p‖k and the assumption that T is large enough allows us to prove convergence, as we show next. We
do not pretend however to consider the long-term behaviour of the solution, which would require the
modification of the stabilised formulation and the analysis presented in [42].

In order to write all estimates in dimensionless form, let Ld be a characteristic length of the problem
and Td a characteristic time scale. These parameters may explode with the viscosity, and therefore
the estimates are not valid for high Reynolds numbers. The main result on existence and convergence
reads as follows:

Theorem 3 (Convergence). Let k be the interpolation order, assumed to be the same for all variables,
with k ≥ d/2. Suppose also that Assumptions 1 holds, that T is sufficiently large and that the
L2(0, T ; (H−1(Ω))d)-norm of f is bounded. Then, if the viscosity is sufficiently large, there exists a
solution to (30)-(32) satisfying

sup
0≤t≤T

‖u− uh‖2 +
1

Td

∫ T

0

(Ld ‖∇ (u− uh)‖)2
dt ≤u2

?h
2k,

sup
0≤t≤T

‖σ − σh‖2 ≤σ2
?h

2k, (51)∫ T

0

αu ‖∇ (p− ph)‖2 dt ≤ p2
?h

2k,

where u∗, p∗ and σ∗ are appropriate dimensional factors that render the estimates dimensionally
consistent.
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Proof. Step 1. The iterative map. A mapping δ : L2 (0, T ;Vh) × L2 (0, T ;Qh) × L∞ (0, T ; Υh) →
L2 (0, T ;Vh) × L2 (0, T ;Qh) × L∞ (0, T ; Υh) is defined via (uh, ph, σh) = δ (ûh, p̂h, σ̂h), where Uh =
(uh, ph, σh) satisfies (30)-(32), for all Vh = (vh, qh, τh) ∈ Xh. Thus, given an initial guess for the three
unknowns Ûh := (ûh, p̂h, σ̂h), solving the above system for (uh, ph, σh) gives a new approximation to
the solution. Also, it is clear that the fixed point is a solution to the approximating system (30)-(32),
i.e, δ (uh, ph, σh) = (uh, ph, σh) implies that (uh, ph, σh) is a solution to (21).

Step 2. The mapping δ is well defined and bounded on bounded sets.
The existence and uniqueness of the discrete solution was proved in subsection 5.2 for a linearised

problem, that can be associated to the solution of the fixed point problem.
The stability result proved in subsection 5.3 ensures that the linearised problem, that can be

viewed as a fixed point iteration of the nonlinear case, is stable and bounded under suitable regularity
assumptions. Note that this step is crucial in the definition of the fixed point mapping and can be
used to establish that the mapping δ is bounded on bounded sets.

Step 3. Existence of an invariant ball. We begin defining an invariant ball. Let R = hk, and for
V = (v, q, τ) let us define the norm

‖V ‖2B := ρ sup
0≤t≤T

‖v‖2 +
ρ

Td

∫ T

0

(Ld‖∇v‖)2dt+
λ

µ
sup

0≤t≤T
‖τ‖2 + αu

∫ T

0

‖∇q‖2dt. (52)

As we shall see, our result could be proved in a finer norm, but the additional terms that we could
include in ‖ · ‖B (see below) do not provide significant additional control for large viscosities. Let us
define now the ball Bh as

Bh =
{
V h = (vh, qh, τh) :]0, T [→ Xh such that ‖V h − U‖B ≤ U∗R

}
, (53)

where U2
∗ = ρu2

∗ + λ
µσ

2
∗ + p2

∗ and u∗, p∗ and σ∗ are constructed along the proof. In the definition (53),

U = (u, p, σ) is the solution of (14).
Let us pick now Ûh := (ûh, p̂h, σ̂h) ∈ Bh, arbitrary, and let Uh = (uh, ph, σh) = δ (ûh, p̂h, σ̂h); it

satisfies (30)-(32). Then, it is readily checked that

ρ (∂t (u− uh) , vh) + ρ (c̃ (u, u, vh)− c̃ (ûh, uh, vh))

+2βµ (∇s (u− uh) ,∇svh) + (σ − σh,∇svh)− (p− ph,∇ · vh)

−αu
(
P⊥u [ρûh · ∇uh] , P⊥u [ρûh · ∇vh]

)
− αp

(
P⊥p [∇ · uh] , P⊥p [∇ · vh]

)
+ (∇ · (u− uh) , qh)− αu

(
P⊥u [∇ph] , P⊥u [∇qh]

)
+

1

2µ
(σ − σh, τh)− (1− β) (∇s (u− uh) , τh) +

λ

2µ
(∂t (σ − σh) , τh)

+
λ

2µ
(c̃ (u, σ, τh)− c̃ (ûh, σh, τh))− λ

2µ
(g (u, σ) , τh) +

λ

2µ
(g (ûh, σ̂h) , τh)

−(1− β)αu
(
P⊥u [∇ · σh] , P⊥u [∇ · τh]

)
−ασ

(
P⊥σ

[
−(1− β)∇suh +

λ

2µ
(ûh · ∇σh − g (ûh, σ̂h))

]
,

P⊥σ

[
−∇svh +

λ

2µ
(ûh · ∇τh + g∗ (ûh, τh))

])
= 0. (54)

Let us define the following approximation and interpolation errors:

Λ = u− U and E = U − uh,
Γ = σ −Σ and F = Σ − σh,
Π = p− P and G = P − ph,
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where U = Pu,0 [u], Σ = Pσ [σ] and P = Pp [p]. We obviously have that eu = u − uh = Λ + E,
eσ = σ − σh = Γ + F , ep = p− ph = Π +G.

Let us describe the strategy to prove that U belongs to the ball Bh. Let P [U ] = (U , Σ,P). From
(54) we will show that

‖P [U ]− Uh‖2B ≤ ϕ1(D)‖U − Ûh‖2B + ‖U − P [U ]‖2I (55)

where ϕ1(D) is a certain function polynomial in terms of the components of the array of constants
D = (D1, . . . , D9) introduced in Assumption 1 and ‖ · ‖I is a norm of what we may consider the
interpolation error U − P [U ]; this norm will appear along the proof. Thanks to the properties of the
interpolation, we will check that

‖U − P [U ]‖2I ≤ ϕ2(D)h2k, (56)

and we can already verify that

‖U − P [U ]‖2B ≤ ϕ3(D)h2k.

Again, ϕ2(D) and ϕ3(D) are functions polynomial in terms of the components of D. Using the triangle
inequality, (55)-(56) and the fact that Ûh ∈ Bh, we will have that

‖U − Uh‖2B ≤ ‖P [U ]− Uh‖2B + ‖U − P [U ]‖2B
≤ ϕ1(D)U2

∗h
2k + ϕ2(D)h2k + ϕ3(D)h2k.

Taking the components of array D sufficiently small, we will be able to guarantee that

‖U − Uh‖2B ≤ U2
∗h

2k,

that is to say, Uh ∈ Bh. Therefore, the goal is to prove (55) and check that (56) holds. The constant
U∗, from which we can obtain u∗, p∗ and σ∗, can be taken as U2

∗ = c(ϕ2(D) + ϕ3(D)), with c > 1,
provided D is such that ϕ1(D) + c−1 ≤ 1.

Taking vh = (1−β) (E + γαuPu,0 [∇G]), with γ > 0, τh = F and qh = (1−β)G in (54), we obtain:

ρ(1− β)
d

dt
‖E‖2 +

λ

µ

d

dt
‖F‖2 +Q(t) . N(t) + S(t) +

23∑
j=1

Rj(t), (57)

where

Q(t) := β(1− β)µ ‖E‖21 +
1

µ
‖F‖2 + (1− β)αu

∥∥P⊥u [ρûh · ∇E]
∥∥2

+ (1− β)αp
∥∥P⊥p [∇ · E]

∥∥2

+ (1− β)αu

(∥∥P⊥u [∇G]
∥∥2

+ γ ‖Pu,0 [∇G]‖2
)

+ (1− β)αu
∥∥P⊥u [∇ · F ]

∥∥2

+ ασ

∥∥∥P⊥σ [−(1− β)∇sE +
λ

2µ
ûh · ∇F

]∥∥∥2

,

N(t) := −ρ(1− β) (c̃ (u, u,E)− c̃ (ûh, uh, E))− λ

2µ
(c̃ (u, σ, F )− c̃ (ûh, σh, F ))

−(1− β)γαuρ (c̃ (u, u, Pu,0 [∇G]) + c̃ (ûh, uh, Pu,0 [∇G])),

S(t) := −ασ
(
P⊥σ

[
−(1− β)∇sE +

λ

2µ
(ûh · ∇F )

]
, g∗(ûh, F )

)
,

and the terms Rj(t) are defined below. From (57), and using (29) for the pressure term, we have that

‖P [U ]− Uh‖2B . ρ(1− β) sup
0≤t≤T

‖E‖2 +
λ

µ
sup

0≤t≤T
‖F‖2 +

∫ T

0

Q(t) dt
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.
∫ T

0

(
N(t) + S(t) +

23∑
j=1

Rj(t)
)

dt. (58)

The objective is to see that all these terms in the RHS can be bounded as indicated in (55) or
absorbed by the LHS. We will not detail the positive dimensionless constants that appear in this
process, in which we will make frequent use of Young’s inequality; the parameter that appears when
using it will be generically denoted by ε or ξ, understanding that it is small enough. We could track
the different appearances of these parameters as we have done in the proof of Theorem 2, and choose
them at the end; however, since we are not interested in the values of the constants, we will proceed
in a more conceptual way.

We will start with the terms Rj(t) of (57). Using the L2-orthogonality between Λ and E and
between Γ and F and Young’s inequality, we have that

R1(t) = −(1− β)ρ (∂tΛ,E) = 0,

R2(t) = −λ
µ

(∂tΓ, F ) = 0,

R3(t) = (1− β) (Π,∇ · E) . µ(1− β)ε ‖E‖21 +
1

µ

(1− β)

ε
‖Π‖2 .

The term that involves the discrete error of the pressure needs a special treatment. Using (29) we have
that

R4(t) = −(1− β) (∇ · Λ,G) = (1− β) (Λ,∇G)

. α−1
u

(1− β)

ε
‖Λ‖2 + (1− β)εαu

(∥∥P⊥u [∇G]
∥∥2

+ ‖Pu,0 [∇G]‖2
)
.

The following terms only need Cauchy-Schwarz’s and Young’s inequalities:

R5(t) = −2β(1− β)µ (∇sΛ,∇sE) . β(1− β)µε ‖E‖21 + β(1− β)µ
1

ε
‖Λ‖21 ,

R6(t) = −(1− β) (Γ,∇sE) . µ(1− β)ε ‖E‖21 +
1

µ
(1− β)

1

ε
‖Γ‖2 ,

R7(t) = − 1

2µ
(Γ, F ) = 0,

R8(t) = (1− β) (∇sΛ,F ) .
1

µ
(1− β)ε ‖F‖2 + µ(1− β)

1

ε
‖Λ‖21 .

Taking the parameter ε small enough, it can be readily checked that the contributions from Rj can be
absorbed by Q(t) or are interpolation errors that behave as indicated in (56).

Let us treat now the terms of the RHS of (57) that come from the stabilisation. Using Cauchy-
Schwarz’s and Young’s inequalities, we can easily control de following terms:

R9(t) = (1− β)αu
(
P⊥u [ρûh · ∇U ] , P⊥u [ρûh · ∇E]

)
,

R10(t) = (1− β)αp
(
P⊥p [∇ · U ] , P⊥p [∇ · E]

)
,

R11(t) = (1− β)αu
(
P⊥u [∇P] , P⊥u [∇G]

)
,

R12(t) = (1− β)αu
(
P⊥u [∇ ·Σ] , P⊥u [∇ · F ]

)
,

R13(t) = ασ

(
P⊥σ

[
−(1− β)∇sU +

λ

2µ
(ûh · ∇Σ)

]
, P⊥σ

[
−(1− β)∇sE +

λ

2µ
(ûh · ∇F + g∗ (ûh, F ))

])
,

R14(t) = ασ

(
P⊥σ

[
− λ

2µ
g (ûh, σ̂h)

]
, P⊥σ

[
−(1− β)∇sE +

λ

2µ
(ûh · ∇F + g∗ (ûh, F ))

])
.
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Some of these terms need additional treatment. Let us consider first R9(t). When bounding it, we
need to make use of the fact that

αu
∥∥P⊥u [ρûh · ∇U ]

∥∥2 ≤ αuρ2
∥∥P⊥u [(ûh − u) · ∇ (U−u)]

∥∥2
+ αuρ

2
∥∥P⊥u [u · ∇ (U−u)]

∥∥2

+ αuρ
2
∥∥P⊥u [u · ∇u]

∥∥2
+ αuρ

2
∥∥P⊥u [(ûh − u) · ∇u]

∥∥2
, (59)

where the four terms of the RHS can be shown to have structure given by (55) due to Assumption 1
and making use of adequate interpolation estimates.

Terms R10(t) to R13(t) are again bounded by terms that can be absorbed by Q(t) as well as by
terms that involve the orthogonal projection of an operator applied to the projection onto the finite
element space of the continuous solution. They can all be treated using the triangle inequality. For
example, for the term bounding R10(t) we have:∥∥P⊥p [∇ · U ]

∥∥2 ≤
∥∥P⊥p [∇ · (U − u)]

∥∥2
+
∥∥P⊥p [∇ · u]

∥∥2
. ‖u‖2k+1h

2k, (60)

and can therefore be cast as (56). A similar strategy can be followed for the corresponding terms in
R11(t), R12(t) and R13(t). The bound for this last term requires some more work. The first term can
be treated as above, using the step just described for the term with U and the same strategy as in
(59) for ûh ·∇Σ. The second term in the bound of R13(t) can be absorbed by Q(t). It only remains to
treat the last term, which is particularly important because it is one of the terms responsible for the
need to have k ≥ d/2. It can be bounded as follows:∥∥P⊥σ [g∗ (ûh, F )]

∥∥2
.
∥∥P⊥σ [g∗ (ûh − u, F )]

∥∥2
+
∥∥P⊥σ [g∗ (u, F )]

∥∥2

. ‖∇ (ûh − u)‖2 ‖F‖2∞ + ‖∇u‖2∞ ‖F‖
2

.
(
h−d ‖∇ (ûh − u)‖2 + ‖∇u‖2∞

)
‖F‖2 , (61)

where an inverse inequality has been used in the last step. Since Ûh ∈ Bh, ‖∇ (ûh − u)‖2 is of order
h2k, and the condition k ≥ d/2 allows us to guarantee that the term in parenthesis remains bounded
as h → 0. Therefore, (61) (multiplied by ε) can be absorbed by Q(t). This concludes the analysis of
R13(t).

In the bound for R14(t), the second and third terms in the RHS have already appeared when dealing
with R13(t), and thus only the first term needs to be bounded. This can be done as follows:∥∥P⊥σ [g (ûh, σ̂h)]

∥∥2
. ‖g (ûh − u, σ̂h − σ)‖2 + ‖g (u, σ̂h − σ)‖2

+
∥∥P⊥σ [g (u, σ)]

∥∥2
+ ‖g (ûh − u, σ)‖2 , (62)

where the four terms of the RHS can be bounded using (4) and inverse inequalities. Using the fact
that Ûh ∈ Bh, k ≥ d/2 and Assumption 1, it follows that all terms contributing to bound R14(t) (with
the adequate factor) can be written as indicated in (55).

Term R15(t) in (57) corresponds to the traction or rotational term of the Oldroyd-B constitutive
model, and can be written as:

R15(t) = − λ

2µ
(g (u, σ) , F ) +

λ

2µ
(g (ûh, σ̂h) , F )

= − λ

2µ
(g (u, σ − σ̂h) , F ) +

λ

2µ
(g (u− ûh, σ − σ̂h) , F )− λ

2µ
(g (u− ûh, σ) , F ). (63)

The three terms in the RHS can be bounded using Cauchy-Schwarz’s and Young’s inequalities and the
inverse inequality (2). When these inequalities are used in (63) it is seen that we again recover (55).

The remaining Ri terms are all multiplied by γ. To distinguish these terms from the others we use
ξ instead of ε. The first of them can be bounded using Cauchy-Schwarz’s and Young’s inequalities, as
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well as the inverse inequality, as

R16(t) ≤ (1− β)γαu ‖∇Π‖ ‖Pu,0 [∇G]‖ . 1

µ
(1− β)γ

1

ξ
‖Π‖2 + (1− β)γµh−2α2

uξ ‖Pu,0 [∇G]‖2 .

The next term requires some more elaboration. Observe first that

(∂t(u− uh), Pu,0 [∇G]) = (∂tu, Pu,0 [∇G]) + (∂t∇ · uh, G).

Since u is divergence free and vanishes on ∂Ω, we have that

(∂tu, Pu,0 [∇G]) = (∂tu, Pu[∇G]−∇G) = −(P⊥u [∂tu], P⊥u [∇G]).

Making use of the continuity equation (31) we can write

(∂t∇ · uh, G) = −αu(∂tP
⊥
u [∇ph], P⊥u [∇G]) = αu(∂tP

⊥
u [∇G], P⊥u [∇G])− αu(∂tP

⊥
u [∇P], P⊥u [∇G]).

From these two equalities, we obtain:

R17(t) = (1− β)γαuρ(∂t(u− uh), Pu,0 [∇G])

= −(1− β)γαuρ(P⊥u [∂tu], P⊥u [∇G])

+ (1− β)γα2
uρ

1

2

d

dt
‖P⊥u [∇G]‖2 − (1− β)γα2

uρ(∂tP
⊥
u [∇P], P⊥u [∇G]).

After using Schwarz’s and Young’s inequalities, the first term in the RHS can be treated as R4(t) (note
that Λ = P⊥u [u]), and the third term can be treated as R11(t); therefore, they both can be cast as (56).
It only remains to deal with the second term. Let

χh(G(t)) := (1− β)αu‖P⊥u [∇G(t)]‖2 ≥ 0.

After integrating in time, in (58) we have the terms∫ T

0

χh(G(t))dt+ · · · . αuργχh(G(T )) + . . . , (64)

the one on the RHS coming from R17(t). Since Ûh ∈ Bh and because of the boundedness of U
described in Assumption 1, the RHS in (43) is bounded for all t. Since, as a consequence of the proof
of Theorem 1, ph is continuous in [0,∞), we have that αu‖P⊥u [∇ph(t)]‖2 is continuous and bounded
in t. Assumption 1 implies that αu‖P⊥u [∇p(t)]‖2 is also continuous and bounded in t, and therefore
χh(G(T )) is continuous and bounded for all T . In this case, there exists T0 such that

αuρχh(G(T )) ≤
∫ T

0

χh(G(t))dt =: G(T ), for all T ≥ T0. (65)

Let us prove this. The LHS is bounded in T , and thus the result is obvious if G(T ) is unbounded.
Suppose now that G(T )↗M <∞ as T →∞. In this case, χh(G(t))→ 0+ as t→∞. Thefore, there
must exist T1 such that G(T ) > M/2 for all T > T1 and T0 > T1 such that αuρχh(G(T )) < M/2 for
all T > T0, so that (65) holds.

Once (65) is proved, it is observed that the term in the RHS of (64) can be absorbed by the one in
the LHS for an appropriate γ. This concludes the analysis of R17(t).

The following terms can be controlled using the inverse inequality and Young’s inequality:

R18(t) . β(1− β)γαuµ (‖∇sE‖+ ‖∇sΛ‖) ‖∇s (Pu,0 [∇G])‖ ,
R19(t) ≤ (1− β)γαu (‖F‖+ ‖Γ‖) ‖∇s (Pu,0 [∇G])‖ .
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To see that the bounds obtained fall within the structure (55) we have to use the expression of the
stabilisation parameter αu to check that µh−2 . α−1

u and take γ small enough to balance ξ−1, which
may need to be large.

The next terms to consider come from the stabilisation:

R20(t) = (1− β)γα2
u

(
P⊥u [ρûh · ∇ (uh − U + U)] , P⊥u [ρûh · ∇ (Pu,0 [∇G])]

)
,

R21(t) = (1− β)γαuαp
(
P⊥p [∇ · (uh − U + U)] , P⊥p [∇ · (Pu,0 [∇G])]

)
,

R22(t) = (1− β)γαuασ

(
P⊥σ
[
(1− β)∇s (uh − U + U)− λ

2µ
ûh · ∇ (σh −Σ +Σ)

]
, P⊥σ [∇s (Pu,0 [∇G])]

)
,

R23(t) = (1− β)γαuασ

(
P⊥σ
[ λ
2µ
g (ûh, σ̂h)

]
, P⊥σ [∇s (Pu,0 [∇G])]

)
.

All these terms can be bounded using a similar strategy as before.
With this we conclude the analysis of the last term in (57) (or in (58)). The second term, S(t), is

easy to treat: after using Young’s inequality, the first term that arises can be absorbed by Q(t) and the
second bounded as in (61). We have written S(t) independently to emphasise that it arises because of
the linearisation of the rotational term: since we evaluate it with ûh and σ̂h, it does not contribute to
stability (that is to say, its contribution does not appear in Q(t)). We could however have considered
it as one more Rj(t) term.

It only remains to deal with the convective terms N(t) in (57). The first two of these terms can be
written as follows:

ρ(1− β) (c̃ (u, u,E)− c̃ (ûh, uh, E))

= ρ(1− β) (c̃ ((u− ûh) , u, E)− c̃ ((u− ûh) , Λ,E) + c̃ (u,Λ,E)) . (66)

The three RHS terms of the above equation can be easily bounded fitting the structure (55)-(56).
A similar procedure can be applied to the convective terms arising from the constitutive equation,

which can be written as:

λ

2µ
(c̃ (u, σ, F )− c̃ (ûh, σh, F )) =

λ

2µ
(c̃ ((u− ûh) , σ, F )− c̃ ((u− ûh) , Γ, F ) + c̃ (u, Γ, F )) .

The remaining convective terms to be controlled in the LHS of (57) can be written as

(1− β)γαuρ (c̃ (u, u, Pu,0 [∇G])− c̃ (ûh, uh, Pu,0 [∇G]))

= (1− β)γαuρ (c̃(u− ûh, u, Pu,0 [∇G])− c̃(u− ûh, u− uh, Pu,0 [∇G]) + c̃(u, u− uh, Pu,0 [∇G])) .

The strategy to bound these terms is similar to what we have used heretofore.
This concludes the proof of the third step.
Step 4. Fixed point theorem . According to Step 3, the ball Bh is invariant under the map δ,

that is to say, δ (Bh) ⊂ Bh. Therefore, applying Schauder’s fixed point theorem we conclude that there
exists (uh, ph, σh) ∈ Bh such that (uh, ph, σh) = δ(uh, ph, σh), which, in view of the definition of δ,
implies that (uh, ph, σh) is a solution of (21). Because of the definition of Bh in (51), we also obtain
an error estimate.

7 Conclusions

In this article we have presented the numerical analysis of a stabilised finite element approximation
proposed to solve viscoelastic fluid flows, in the nonlinear time-dependent case. This analysis has
confirmed the numerical results obtained in other works, where the method was proposed and tested
in nonlinear examples. In particular, we have shown this using a fixed point theorem under suitable
regularity conditions in velocity, stress and pressure. As it is usual for nonlinear problems involving
the Navier-Stokes equations, the estimates do not show information about their behaviour when the
local Reynolds and Weissenberg numbers increase. On the other hand, some control over the pressure,
although very weak, has been obtained.
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