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Abstract

In this paper we develop numerical approximations of the wave equation in mixed form supplemented with non-reflect-
ing boundary conditions (NRBCs) of Sommerfeld-type on artificial boundaries for truncated domains. We consider three
different variational forms for this problem, depending on the functional space for the solution, in particular, in what refers
to the regularity required on artificial boundaries. Then, stabilized finite element methods that can mimic these three func-
tional settings are described. Stability and convergence analyses of these stabilized formulations including the NRBC are
presented. Additionally, numerical convergence test are evaluated for various polynomial interpolations, stabilization
methods and variational forms. Finally, several benchmark problems are solved to determine the accuracy of these meth-
ods in 2D and 3D.
� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Many engineering problems dealing with waves involve infinite domains. Usually, the infinite domain is
truncated for computational purposes and the wave problem is solved in a finite domain [1,2]. Non-reflecting
boundaries (NRBs) have to be considered, which must allow the waves to leave the truncated domain avoiding
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spurious reflections that may pollute the solution in the interior of the computational domain of interest.
There are many types of NRBs, which can be classified into two groups, namely, non-reflecting boundary con-
ditions (NRBCs) and non-reflecting boundary layers (NRBLs). NRBCs are boundary conditions on the arti-
ficial boundary that absorb impinging waves. On the other hand, NRBLs have the property of absorbing
waves that are traveling inside the layer.

NRBL techniques have been applied to the time-domain wave equation in irreducible [3,4] and mixed form
[5,6], and to the linearized Euler equations [7–9]. Perhaps the most popular among the NRBL techniques is the
Perfectly Matched Layer (PML). The PML concept was developed by Berenger in 1994 for electromagnetic
scattering [10]. The idea is to add an absorbing layer to the domain designed to have zero reflection for
any plane wave and to make the solution decay exponentially inside the layer [11].

A classical example of NRBC is the so-called Sommerfeld boundary (or radiation) condition [12]. It relates
the temporal derivative and the normal derivative of the unknown in the case of boundaries far away from
sources and normal to the propagating wave. Thus, it is inexact for non-perpendicular wave incidence and
boundaries close to sources, and therefore it has to be understood as an approximate boundary condition
to avoid wave reflection in these cases. NRBCs have also been applied to the time-domain wave equation
in irreducible [13–16] and mixed form [17], as well as for the linearized Euler equations in [18,17].

The error E introduced by a NRBC is the difference between the exact solution in the unbounded domain
and the solution in the truncated domain with the artificial boundary. Let J be the order of the NRBC, R the
distance of the artificial boundary to the wave source, kt the tangential wave number and x the wave angular
frequency. The error E introduced by a NRBC of order J [2] behaves as
E ¼ O k2
t

x2

� �J

¼ O 1

R2

� �J

: ð1Þ
For a fixed location of the artificial boundary, increasing the order J reduces the error introduced by the
NRBC. If the error approaches zero as J increases the NRBC is exact, whereas if the error does not approach
zero the NRBC is asymptotic [1].

Many NRBCs have been developed and can be classified as classical, exact non-local and local high-order.
Among classical NRBCs we have those proposed by Engquist–Majda [19], Bayliss–Turkel [20] and Higdon
[21]. Classical NRBCs appeared as an improvement of Sommerfeld NRBC and can be high-order in theory,
but in practice only low-order versions are used because of the presence of high-order derivatives which are
difficult to handle numerically [11]. Among exact non-local NRBCs we have Dirichlet-to-Neumann formula-
tions [22] and the Difference Potential Method [23]. Exact non-local NRBCs involve a boundary integral oper-
ator which couples all the points on the boundary [11]. Among local high-order NRBCs we have those due to
Collino [24], Grote–Keller [25], Rowley–Colonius [26], Guddati–Tassoulas [27], Givoli–Neta [16] and
Hagstrom–Warburton [28]. Local high-order NRBCs are high-order in theory and can be implemented up
to any desired order in practice, which can be achieved introducing auxiliary variables [11].

The wave equations can be posed in irreducible form, leading to a second-order (in space and time) scalar
partial differential equation. Many applications require the vector-valued unknown of the problem, which can
be computed by the solution of the irreducible form plus a post-processing step, but leads to a poor approx-
imation of it. In order to improve the convergence rate for the vector field, we can consider the problem as a
first-order (in space and time) hyperbolic system, that involves both the scalar and vector unknowns. The wave
equation in mixed form is in fact mandatory for some applications in solid mechanics or in nonlinear waves in
shallow waters.

The finite element (FE) approximation in space of this hyperbolic problem is not straightforward, since its
well-posedness relies on an inf–sup condition. Thus, Galerkin FE schemes require mixed interpolations that
satisfy a discrete version of this compatibility condition [29]. Inf–sup stable FE formulations have been devel-
oped for several mixed problems, e.g., [30] for the Stokes problem, [31] for the Darcy problem, [32] for the
Maxwell problem, [33,34] for the Stokes–Darcy problem, [35] for the wave equation, and [36,37] for elastody-
namics. As an alternative to inf–sup stable formulations, we can consider stabilized FE formulations [38].
Stabilized FEs add new terms to the Galerkin formulation, which provide the required stability for well-posed-
ness (without the need to rely on a discrete inf–sup condition) keeping optimal convergence properties. This
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way, we are able to use equal interpolation for the scalar and vector unknowns of the wave equation in mixed
form.

In this work, we develop novel stabilized FE formulations for wave scattering problems on unbounded
domains truncated via Sommerfeld-type boundary conditions as the simplest example of NRBC. Our starting
point is the formulation recently presented and analyzed in [39]. It is a stabilized FE method with the impor-
tant feature of allowing for different functional settings. This is accomplished by transferring regularity from
the scalar to the vector unknowns or vice versa [39] through an appropriate integration by parts and design of
the stabilization parameters. Summarizing, the main contributions of the article are:

� Statement of the mixed form of the wave equation with Sommerfeld artificial boundary conditions in three
different functional settings. It is an extension of the work in [39], in which the functional setting has to be
properly modified in order to give sense to the Sommerfeld terms; extra regularity is required on the arti-
ficial boundary for the vector unknown. One of the resulting formulations has already been proposed in
[17], whereas the other two problem settings are new. We observe that the new functional spaces are in fact
complete.
� Extension of the stabilized FE formulations in [39] to deal with Sommerfeld boundary conditions. We

design stabilized FE formulations that can mimic the three functional settings proposed at the continuous
level. Stability and convergence results are presented, and their proof is sketched. A set of numerical exper-
iments is performed to check the convergence of the formulations, as well as the error introduced by the
Sommerfeld boundary condition.

The organization of the paper is as follows. In Section 2, we present the wave equation in irreducible and
mixed form and in time and frequency domain. Additionally, we describe the Sommerfeld boundary condition
applied to the wave equation. We also propose three different functional settings for the time-domain wave
problem in mixed form truncated with Sommerfeld boundary conditions. In Section 3, we describe the spatial
discretization we propose, which is a stabilized FE method (in two different versions), and show how to mimic
the three functional settings by properly integrating by parts and choosing the stabilization parameters. Sec-
tion 4 is devoted to the stability and convergence analysis of these formulations, respectively. In all these sec-
tions, time is left continuous, concentrating the exposition only in the spatial approximation. In Section 5 we
carry out convergence tests and evaluate the performance of the NRBC through various benchmark problems
in 2D and 3D. Finally, we draw some conclusions in Section 6.

2. Problem statement

In this section, we state the wave equation in mixed form in time and frequency domain. Further, we state
the Sommerfeld artificial boundary conditions in both cases. The use of Sommerfeld-type boundary condi-
tions for the mixed form of the wave equation has been used in [17] (without using this terminology). Waves
are commonly found in many physical phenomena such as acoustic and electromagnetic scattering, fluid
dynamics, and elastodynamics. To fix ideas, we will use the terminology of waves propagating in fluids,
although our approach is obviously general.

2.1. Wave equation in time and frequency domain

Waves can be described in time domain or frequency domain. In both cases, the problem involves a spatial
domain X � Rd , where d is the space dimension ðd ¼ 1; 2; 3Þ. Let C be its boundary and x 2 X any spatial
point. From hereafter, we will refer to vectors in Rd simply as vectors. Further, we use the following conven-
tion: lower-case bold italic letters represent vectors in Rd , and non-bold letters represent scalars. Both complex
and real numbers are used in this section. We implicitly assume real numbers unless otherwise specified.

In the time domain, the problem is posed in N :¼ X� !, where t 2 ! :¼ ð0; T Þ denotes a time value. The
long term behavior, i.e. T !1, will not be considered in this work. The time-domain wave equation in its
irreducible form reads as:
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1

c2
@ttp0 � Dp0 ¼ f 0; ð2Þ
where p0ðx; tÞ is the unknown (real-valued scalar function), f 0 is a forcing term and c is the wave speed. Alter-
natively, we can consider the wave equation in mixed form:
lp@tp0 þ r � u0 ¼ fp; ð3Þ

lu@tu
0 þ rp0 ¼ f u; ð4Þ
where the unknowns p0ðx; tÞ and u0ðx; tÞ are real-valued scalar and vector functions, respectively, lp > 0 and
lu > 0 are the physical parameters of the equation and fp; f u

� �
are forcing terms. The coefficients lp and lu

that characterize the mixed wave equation (3) and (4) are related to the wave speed c appearing in irreducible
form of the scalar wave equation (2) as follows:
c2 ¼ ðlpluÞ
�1
:

Time domain analysis solves the wave problem for the full range of frequencies involved. The only limit for
the frequencies captured at time-discrete level is the size of the time step used for the time discretization. Fre-
quency domain analysis results from a Fourier transform in time of the time-domain problem and solves the
wave problem for one angular frequency x. In the irreducible case, it leads to the scalar Helmholtz equation:
Dp̂ þ k2p̂ ¼ f̂ k; ð5Þ
where p̂ðxÞ is now the unknown (complex-valued scalar function), and k ¼ x=c is the wavenumber corre-
sponding to a certain angular frequency x. As in the time domain case, we can also make use of the Helmholtz
equation in mixed form:
� ilpxp̂ þr � û ¼ f̂ p; ð6Þ
� iluxûþrp̂ ¼ f̂ u; ð7Þ
where p̂ðxÞ and ûðxÞ are complex unknowns, x is the angular frequency, f̂ p and f̂ u are forcing terms and
i ¼

ffiffiffiffiffiffiffi
�1
p

.
Notice that the number of unknowns in the wave equation in mixed form (both in the time and frequency

domain) is d þ 1 times the ones in irreducible form, but the regularity requirements in space and time can be
made less stringent for p0. In all cases, the wave equation has to be supplemented with appropriate initial and
boundary conditions. In the case of the mixed form, boundary conditions also depend on the functional set-
ting of the problem.

2.2. Sommerfeld boundary condition

The Sommerfeld boundary condition is a type of NRBC, that takes its name from the German theoretical
physicist Arnold Sommerfeld, applicable when the sources are concentrated in a region of the space and the
exterior boundary is a sphere surrounding it and centered at the source region. Additionally, the spherical sur-
face has to be far away from the source, so that one can assume that the impinging waves only have radial
component when they reach the artificial boundary. In spherical coordinates and for the scalar Helmholtz
equation in 3D (frequency domain), the Sommerfeld radiation condition can be expressed as:
lim
r!1
ðrð@rp̂ � ikp̂ÞÞ ¼ 0;
where r is radial component in the spherical coordinate system and @r is the derivative in the radial direction.1

In spherical coordinates and for the scalar wave equation in irreducible form in 3D (time domain) the
Sommerfeld radiation condition can be written as:
e authors write the Sommerfeld radiation condition with a þ sign, but that depends on the time variation assumption. In this
we have assumed a harmonic time variation with harmonics of the form e�ixt, which gives the minus sign.
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lim
r!1

r @rp0 þ
1

c
@tp0

� �� �
¼ 0:
On the other hand, when considering the mixed form of these equations, the Sommerfeld radiation condition
can be written in two different ways:
lim
r!1

r
ffiffiffiffiffi
lp
p

@rp0 �
ffiffiffiffiffi
lu
p r � u0

� �� �
¼ 0;

lim
r!1

r
ffiffiffiffiffi
lp
p

@tp0 �
ffiffiffiffiffi
lu
p

@tu0r
� �� �

¼ 0: ð8Þ
In the frequency domain, these Sommerfeld boundary conditions lead to:
lim
r!1

r
ffiffiffiffiffi
lp
p

@rp̂ �
ffiffiffiffiffi
lu
p r � û

� �� �
¼ 0;

lim
r!1

r
ffiffiffiffiffi
lp
p

p̂ � ffiffiffiffiffi
lu
p

ûr

� �� �
¼ 0:
Condition (8) can be simplified taking out the temporal derivative, which yields
lim
r!1

r
ffiffiffiffiffi
lp
p

p0 � ffiffiffiffiffi
lu
p

u0r þ CðxÞ
� �� �

¼ 0:
CðxÞ is a time-independent function defined on C, which can be determined from initial conditions. Assuming
that

ffiffiffiffiffilp
p p0ðx; 0Þ � ffiffiffiffiffi

lu
p

u0rðx; 0Þ ¼ 0 holds on the artificial boundary, we get CðxÞ ¼ 0. It leads to the final
expression
lim
r!1

r
ffiffiffiffiffi
lp
p

p0 � ffiffiffiffiffi
lu
p

u0r
� �� �

¼ 0:
This Sommerfeld radiation condition is a limit for r !1, and establishes a fast decay of
ffiffiffiffiffilp
p p0 � ffiffiffiffiffi

lu
p

u0r. If
R <1, the approximation that we may consider is

ffiffiffiffiffilp
p p0 � ffiffiffiffiffi

lu
p

u0r ¼ 0 at r ¼ R. Moreover, if the boundary is
not a sphere, we may replace u0r by n � u0; n being the unit normal exterior to the boundary. Thus, we may
consider the approximation
ffiffiffiffiffi

lp
p

p0 � ffiffiffiffiffi
lu
p

n � u0 ¼ 0: ð9Þ
Because of its simplicity, this is the boundary condition we propose to enforce on the artificial boundary for
the mixed wave equation in time domain. In the following sections, we show that this boundary condition has
good non-reflecting properties and is stable, in spite of having been superseded in accuracy by high order
NRBCs. The analysis of its performance in combination with the FE method we propose is the subject of this
paper.
2.3. Initial and boundary value problem

Let us split C into three disjoint sets denoted as Cp; Cu and Co. The scalar unknown p is enforced on Cp, the
normal trace of the vector unknown cnu on Cu (cn denotes the normal trace operator), and the NRBC we wish
to analyze on Co (the artificial boundary). The problem consists in finding p : N�!R and u : N�!Rd such that:
lp@tp þr � u ¼ fp; ð10Þ

lu@tuþrp ¼ f u ð11Þ
with the initial conditions
pðx; 0Þ ¼ 0; uðx; 0Þ ¼ 0 ð12Þ
and with the boundary conditions
p ¼ 0 on Cp; cnu :¼ n � u ¼ 0 on Cu; l1=2
p p ¼ l1=2

u cnu on Co: ð13Þ
Let us define two auxiliary variables denoted as jp and ju defined as:
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jp :¼
lp

lu

� �1=2

; ju :¼ lu

lp

 !1=2

:

Let W be a generic spatial domain, i.e., X or C or part of them. Let L2ðWÞ be the space of square integrable
functions defined on W, and L2ðWÞd the space of vector functions with components in L2ðWÞ. H 1ðWÞ is the
space of functions in L2ðWÞ with derivatives in L2ðWÞ; Hðdiv; WÞ the space of vector functions with compo-
nents and divergence in L2ðWÞ. Any of the spaces defined previously will be denoted generically as X. Addi-
tionally, for an arbitrary functional space X, its norm will be denoted as k � kX . In the case of L2 Xð Þ or L2 Xð Þd ,
the L2-norm will simply be denoted as k � k and the L2-inner-product as ð�; �Þ. Furthermore, the space of func-
tions whose X-norm is Cr continuous in the time interval ! will be denoted by Crð!; X Þ. (We will only be inter-
ested in the cases r ¼ 0 and r ¼ 1.) Functions whose X-norm is Lp in ! will be denoted by Lpð!; X Þ.

Furthermore, let V p; V u be the functional spaces associated with p and u, respectively. These spaces will be
defined afterwards because they depend on the functional setting. Additionally, let us define V :¼ V p � V u and
L :¼ L2 Xð Þ � L2 Xð Þd .

Problem (10) and (11) with appropriate initial and boundary conditions will be stated for
p 2 C1ð!; L2ðXÞÞ \ C0ð!; V pÞ;
u 2 C1ð!; L2 Xð ÞdÞ \ C0ð!; V uÞ
with fp and f u in regular enough spaces.

2.4. Internal energy and power flux

Let us multiply (10) against p, (11) against u, add the resulting equations and integrate over X. Applying the
divergence theorem, we get the energy balance equation:
1

2
lp

d

dt
kpk2 þ 1

2
lu

d

dt
kuk2 ¼ �

Z
C

n � pu dCþ ðfp; pÞ þ ðf u; uÞ:
The total internal energy E is defined as:
E :¼ 1

2
ðlpkpk

2 þ lukuk
2Þ;
which contains the potential energy 1
2
lpkpk

2 and the kinetic energy 1
2
lukuk

2. The energy per unit time, i.e. the
power added through the boundary, is defined as:
P b :¼ �
Z

C
n � pudC;
whereas the power of the external forces is defined as:
P f :¼ ðfp; pÞ þ ðf u; uÞ:
The power flux (energy per unit time per unit surface) at any given point of the boundary is n � pu. The Som-
merfeld boundary condition prescribed on Co is the one that ensures that energy always flows out of the
boundary because n � pu P 0 everywhere at any instant of time, i.e., P b 6 0. It makes the problem well-posed,
since the solution is bounded by the data. With these definitions we can write the energy balance equation as:
dE
dt
¼ P b þ P f : ð14Þ
Our interest in Eq. (14) relies in the fact that it represents the power balance of the system and it reveals the
interaction of the forces and boundaries with the domain.
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2.5. Variational problem

The variational form of problem (10)–(13) can be expressed in three different ways. Each one requires a
certain regularity on the unknowns p and u, which amounts to say that p and u should belong to a particular
space of functions. In all cases the problem reads: find ½p; u� 2 C1ð!; LÞ \ C0ð!; V Þ such that
2 Th
the ve
paper.
Bð½p; u�; ½q; v�Þ ¼ Lð½q; v�Þ ð15Þ
for all test functions ½q; v� 2 V and the respective initial conditions. The bilinear form B, the linear form L and
the space V are defined in three different ways depending on the variational form into consideration. For sim-
plicity, we will assume that the forcing terms fp and f u are square integrable, although we could relax this reg-
ularity requirement and assume they belong to the dual space of V p and V u, respectively.

The three different variational formulations of problem (10)–(13) essentially differ in the way integration-
by-parts from the strong form of the problem is performed and in the regularity required for the unknowns. In
the problem statement given below, variational form I (16)–(20) is obtained without integrating by parts any
term. Thus, boundary conditions on both scalar and vector quantities have to be imposed strongly. Pressures
in H 1ðXÞ have well-defined traces in L2ðCÞ, and the pressure boundary condition on Cp has sense. The velocity
space Hðdiv; XÞ does not have a continuous cn operator onto L2ðCÞ. Thus, in order for the Sommerfeld con-
dition p ¼ jucnu to have sense in L2ðXÞ (which is required for p 2 H 1ðXÞ), we consider a more regular velocity
space, viz., the space of Hðdiv; XÞ with normal traces in L2ðXÞ. We can easily check that the resulting bilinear/
linear forms in (16) and (17) are continuous in this functional setting.

Variational form I
V p ¼ fq 2 H 1ðXÞjq ¼ 0 on Cpg;
V u ¼ fv 2 Hðdiv; XÞj cnv ¼ 0 on Cu and cnv 2 L2ðCoÞg;
Bð½p; u�; ½q; v�Þ ¼ lpð@tp; qÞ þ ðr � u; qÞ þ luð@tu; vÞ þ ðrp; vÞ; ð16Þ
Lð½q; v�Þ ¼ ðfp; qÞ þ ðf u; vÞ; ð17Þ
p ¼ 0 on Cp; strongly imposed; ð18Þ
cnu ¼ 0 on Cu; strongly imposed; ð19Þ
l1=2

p p ¼ l1=2
u cnu on Co; strongly imposed: ð20Þ
The variational form II (21)–(25) is obtained integrating by parts the term ðrp; vÞ, and using the
Sommerfeld condition (9) on Co:
ðrp; vÞ ¼ �ðp;r � vÞ þ
Z

Co

cnvp ¼ �ðp;r � vÞ þ ju

Z
Co

cnucnv:
The boundary integral on Cp [ Cu vanishes due to (23) and (24) below; the pressure condition on Cp is weakly
enforced and the velocity condition on Cu is strongly enforced. In this case, pressures only need to be in L2ðXÞ,
whereas velocities should belong to the same space as in the previous variational form. We observe that the
normal trace cn of velocity functions have to be in L2ðCoÞ in order to give sense to the Sommerfeld term on Co.
In this functional setting, the bilinear/linear forms (21) and (22) are continuous.2

Variational form II
V p ¼ L2ðXÞ;
V u ¼ fv 2 Hðdiv;XÞjcnv ¼ 0 on Cu and cnv 2 L2ðCoÞg;
is formulation has already been proposed in [17], but the functional setting was incorrect; only Hðdiv;XÞ regularity was assumed for
ctor unknowns and the Sommerfeld terms were ill-posed. In any case, the authors explicitly say that this is not the goal of their
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Bð½p; u�; ½q; v�Þ ¼ lpð@tp; qÞ þ ðr � u; qÞ þ luð@tu; vÞ � ðp;r � vÞ þ ju

Z
Co

cnvcnudC; ð21Þ

Lð½q; v�Þ ¼ ðfp; qÞ þ ðf u; vÞ; ð22Þ

p ¼ 0 on Cp; weakly imposed; ð23Þ

cnu ¼ 0 on Cu; strongly imposed; ð24Þ

l1=2
p p ¼ l1=2

u cnu on Co; weakly imposed: ð25Þ
Finally, the variational form III (26)–(30) is obtained integrating by parts the term ðr � u; qÞ and proceeding
analogously on the boundary:
ðr � u; qÞ ¼ �ðu;rqÞ þ
Z

Co

cnuq ¼ �ðu;rqÞ þ jp

Z
Co

pq:
In this case, the velocity condition on Cu is weakly enforced, whereas the pressure condition on Cp is strongly
enforced. The functional setting in this third case is standard.

Variational form III
V p ¼ fq 2 H 1ðXÞjq ¼ 0 on Cpg; V u ¼ L2 Xð Þd ;

Bð½p; u�; ½q; v�Þ ¼ lpð@tp; qÞ � ðu;rqÞ þ luð@tu; vÞ þ ðrp; vÞ þ jp

Z
Co

pq dC; ð26Þ

Lð½q; v�Þ ¼ ðfp; qÞ þ ðf u; vÞ; ð27Þ

p ¼ 0 on Cp; strongly imposed; ð28Þ

cnu ¼ 0 on Cu; weakly imposed; ð29Þ

l1=2
p p ¼ l1=2

u cnu on Co; weakly imposed: ð30Þ
Let us note that the Sommerfeld condition on Co is strongly enforced for the first variational form, whereas
it is weakly enforced in the other two cases. On the other hand, the introduction of the Sommerfeld boundary
conditions requires a more regular functional setting (see [39] for comparison).

Notice the way we have defined V u for variational forms I and II. When we move from the continuous level
to the discrete level we have to ensure the spaces we are working with are complete. The completeness of V u is
proved in the following lemma. A similar result with a similar proof but involving u 2 H and u� n 2 L2ðCÞ
can be found in [40, p. 69, p. 84].

Lemma 2.1 (Completeness of V u). The space V u for the variational forms I and II is complete when it is endowed

with the following norm:
jjjujjj2V u
:¼ 1

L2
0

kuk2 þ kr � uk2 þ 1

L0

kcnuk2
L2ðCoÞ: ð31Þ
Proof. Let fung be a Cauchy sequence in V u. Since Hðdiv;XÞ is complete, un�!w in Hðdiv;XÞ. Additionally,
cnun�!v in L2ðCoÞ since L2ðCoÞ is complete. Furthermore, cnun�!cnw in H�1=2 since the normal trace operator
cn goes from Hðdiv;XÞ to H�1=2. Since the limits must be the same, we conclude that cnw ¼ v in L2ðCoÞ and
therefore V u is complete. h
3. Stabilized finite element methods for the wave equation in mixed form

In this section, we present two stabilized FE methods, which we will denote by the acronyms ASGS and
OSS, aimed to overcome the instability problems of the standard Galerkin method. In general, the stabilized
FE methods we propose can be used with any type of continuous interpolation for p and u. In particular, we
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focus on equal order continuous interpolations. For conciseness, we consider quasi-uniform FE partitions of
size h. For stabilized formulations in general non-uniform non-degenerate cases, see [41].

Let V p;h and V u;h be the FE spaces to approximate p and u, respectively, with V p;h � V p and V u;h � V u. Addi-
tionally, let us define V h ¼ V p;h � V u;h. For any of these spaces we will make frequent use of the classical
inverse inequality jrvhj 6 Cinvh�1jvhj, with Cinv a constant independent of the FE function vh and the mesh
size h.

Stabilized FE methods deal with the following problem: Find a pair ½ph; uh� 2 C1ð!; V hÞ satisfying the initial
conditions phðx; 0Þ ¼ 0; uhðx; 0Þ ¼ 0 and such that
Bsð½ph; uh�; ½qh; vh�Þ ¼ Lsð½qh; vh�Þ ð32Þ
for all test functions ½qh; vh� 2 V h, where the bilinear form Bs and the linear form Ls include the Galerkin terms
and additional stabilization terms. Depending on how the stabilization part is designed, a different stabiliza-
tion method arises. Below, we propose two different types of methods, namely ASGS and OSS. The stabiliza-
tion terms depend on the choice of the so-called stabilization parameters sp and su.
3.1. Algebraic sub-grid scale (ASGS) method

The ASGS-type stabilization was originally proposed in [42,43]. The ASGS stabilization terms have the
same expression for the three variational forms introduced above. For the wave equation in mixed form,
the ASGS stabilized problem (32) is obtained by taking Bs and Ls as:
Bsð½ph; uh�; ½qh; vh�Þ ¼ Bð½ph; uh�; ½qh; vh�Þ þ ðlp@tph þr � uh; spr � vhÞ þ ðlu@tuh þrph; surqhÞ; ð33Þ
Lsð½qh; vh�Þ ¼ Lð½qh; vh�Þ þ ðfp; spr � vhÞ þ ðf u; surqhÞ: ð34Þ
It consists in subtracting to the Galerkin terms the integral of the residual of the equation times the adjoint of
the spatial differential operator and a stabilization parameter. ðsu; spÞ are the stabilization parameters, which
will be different for every variational formulation. The additional terms provide stability without harming con-
sistency and a priori error estimates.
3.2. Orthogonal sub-scale stabilization (OSS) method

The OSS stabilization technique was designed in [44,45]. Instead of considering the whole residual (as in
ASGS), it only includes quantities that provide stabilization. However, since it would spoil accuracy, the
FE projection of these quantities is subtracted, recovering optimal convergence. It consists in solving problem
(32) taking Bs and Ls as:
Bsð½ph; uh�; ½qh; vh�Þ ¼ Bð½ph; uh�; ½qh; vh�Þ þ P?p;hðr � uhÞ; spr � vh

	 

þ P?u;hðrphÞ; surqh

	 

; ð35Þ

Lsð½qh; vh�Þ ¼ Lð½qh; vh�Þ þ P?p;hðfpÞ; spr � vh

	 

þ P?u;hðf uÞ; surqh

	 

; ð36Þ
where P?p;hð�Þ ¼ Ið�Þ � P p;hð�Þ and P?u;hð�Þ ¼ Ið�Þ � P u;hð�Þ; P p;hð�Þ being the L2ðXÞ projection on V p;h and P u;hð�Þ
the L2ðXÞ projection on V u;h. This in particular implies that P p;hð�Þ ¼ 0 on Cp for variational forms I and III
and that n � P u;hð�Þ ¼ 0 on Cu for variational forms I and II.
3.3. The stabilization parameters

An important component of stabilized formulations are the stabilization parameters. In our case, we com-
pute them in all formulations as:
sp ¼ Cs

ffiffiffiffiffi
lu

lp

r
h

ffiffiffiffi
‘p

‘u

s
; su ¼ Cs

ffiffiffiffiffi
lp

lu

r
h

ffiffiffiffi
‘u

‘p

s
; ð37Þ
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where Cs is a dimensionless algorithmic constant and ‘p; ‘u are length scales corresponding to p and u respec-
tively. As it was shown in the analysis presented in [39], in order to mimic at the discrete level the proper func-
tional setting of the continuous problem, the length scales ‘p and ‘u should be taken as shown in Table 1,
where L0 is a fixed length scale of the problem that can be fixed a priori. The motivation for designing the
stabilization parameters can be found in [46,38].

4. Numerical analysis

4.1. Stability analysis

In this section, we present stability results for the ASGS and the OSS methods. We use the concept of
K-coercivity, originally introduced in [47], which aids us in the proof of stability and convergence analyses.
The proofs of the stability lemmata and theorems are very similar to the proofs shown in [39], the only
difference being the new terms on Co, due to the Sommerfeld artificial boundary condition. Since these terms
have required a more regular functional setting than the one in [39], the working norms now contain the new
terms jpkqhk

2
L2ð!;L2ðCoÞÞ and jukcnvhk2

L2ð!;L2ðCoÞÞ. These working norms are defined next:

Definition 4.1 (Working norms). Let
jjj½qh; vh�jjj20;h :¼ lpkqhk
2
L1ð!;L2ðXÞÞ þ lukvhk2

L1ð!;L2ðXÞÞ þ ð1þ rÞjpkqhk
2
L2ð!;L2ðCoÞÞ þ ð1� rÞjukcnvhk2

L2ð!;L2ðCoÞÞ
with r ¼ 0;�1; 1 for variational forms I, II and III, respectively. We define:

(i) Weak norm:
jjj½qh; vh�jjj2W ;h :¼ jjj½qh; vh�jjj20;h þ spklp@tqh þr � vhk2
L2ð!;L2ðXÞÞ þ suklu@tvh þrqhk

2
L2ð!;L2ðXÞÞ: ð38Þ
(ii) Strong norm:
jjj½qh; vh�jjj2S;h :¼ jjj½qh; vh�jjj20;h þ spkr � vhk2
L2ð!;L2ðXÞÞ þ sukrqhk

2
L2ð!;L2ðXÞÞ: ð39Þ
We state a first stability result in the form of K-coercivity. This concept is used here in the same sense as in
[39,47] for the ASGS and OSS methods. The results obtained apply to any of the variational forms, defined in
(16), (21), and (26).

In what follows, C denotes a positive constant, independent of lp; lu; ‘p and ‘u. In the discrete formulation
C will be independent of the mesh size h. The value of C may be different at different occurrences. Addition-
ally, we will use the notation A J B and A K B to indicate that A P CB and A 6 CB respectively, where A and
B are two quantities that might depend on the solution or mesh size.

The ASGS and OSS methods are not coercive in the norms of interest and therefore their well-posedness
needs to be proved via an inf–sup condition. For the subsequent analysis we use a more descriptive property
than the inf–sup condition. This property has been defined as K-coercivity in [47].

Definition 4.2 (K-coercivity). Let V be a normed space and f : V � V�!R a bilinear form. f is K-coercive if we
can define a continuous operator K : V�!V, i.e., kKðuÞkV K kukV 8u 2 V, such that
fðu;KðuÞÞJ kukVkKðuÞkV 8u 2 V:
Table 1
Stabilization parameters order and length scales definition.

Variational form I II III

sp OðhÞ Oð1Þ Oðh2Þ
su OðhÞ Oðh2Þ Oð1Þ

‘p ‘p ¼ ‘u L2
0=h h

‘u ‘p ¼ ‘u h L2
0=h
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Let us recall that the inf–sup condition for f implies that 8u 2 V 9 v 2 V such that fðu; vÞJ kukVkvkV with
kvkV K kukV . Thus, K-coercivity implies the inf–sup condition for a particular definition of norms but it is
stronger, since it also provides a continuous operator K that for every function u in V gives a function
v ¼ KðuÞ such that the inf–sup condition holds.

In the case of the OSS method we can state K-coercivity in two norms: the weak norm defined in (38) and
the strong norm defined in (39); ASGS stability can only be proved with the weak norm. The norm in (39) is
stronger, since it provides full control over rph and r � uh. The proof is just a slight modification of the one in
[39] to account for the boundary terms and we omit it. We detail the expressions of K that allow us to prove
K-coercivity because they in fact provide information about the stabilization mechanism of every method.

Lemma 4.1 (K-coercivity). Both the ASGS and the OSS methods are K-coercive in the norm defined in (38), i.e.,

their associated bilinear form satisfies
jjj½qh; vh�jjj2W ;h K
Z

!
Bsð½qh; vh�;Kð½qh; vh�ÞÞ dt 8½qh; vh�
with the following choices of Kð�Þ:

(i) ASGS method:
Kð½qh; vh�Þ :¼ ½qh þ splp@tqh; vh þ sulu@tvh�;
(ii) OSS method:
Kð½qh; vh�Þ :¼ ½qh; vh� þ b½spðlp@tqh þ P p;hðr � vhÞÞ; suðlu@tvh þ P u;hðrqhÞÞ�
with a small enough b > 0. Moreover, the OSS method is also K-coercive in the norm defined in (39), i.e., its
bilinear form satisfies
jjj½qh; vh�jjj2S;h K
Z

!
Bsð½qh; vh�;K1ð½qh; vh�ÞÞ dt þ

Z
!
Bsð½@tqh; @tvh�;K2ð½qh; vh�ÞÞ dt

þ Bsð½qh; vh�;K2ð½qh; vh�ÞÞjt¼0
for all ½qh; vh�, where
K1ð½qh; vh�Þ ¼ ½qh þ b1spP p;hðr � vhÞ; vh þ b1suP u;hðrqhÞ�;
K2ð½qh; vh�Þ ¼ b2½@tqh; @tvh�
with b1 > 0 small enough, b2 ¼ lpcp þ lucu,
cp ¼
a
2

T ðsp þ su
lu

lp
Þ; cu ¼

a
2

T su þ sp
lp

lu

� �
; ð40Þ
and a > 0 large enough.

Now, we state stability of the ASGS and the OSS methods. The results obtained apply to any of the var-
iational forms defined in (16)–(30). We start defining the norms in which the external forces need to be
bounded in order to obtain stability. Again, it provides information about the behavior of the two formula-
tions considered and, obviously, the regularity requirements on the data in order to have well-posedness.

Definition 4.3 (External Forces Norms). Let us consider the following norms of the data:
(i) External forces weak norm for the OSS method:
k½fp; f u�k2
W-OSS;h :¼ 1

lp
kfpk2

L1ð!;L2ðXÞÞ þ
1

lu
kf uk2

L1ð!;L2ðXÞÞ þ spkfpk2
L2ð!;L2ðXÞÞ þ sukf uk2

L2ð!;L2ðXÞÞ: ð41Þ
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(ii) External forces weak norm for the ASGS method:
k½fp; f u�k2
W-ASGS;h :¼ k½fp; f u�k2

W-OSS;h þ spsuluk@tfpk2
L1ð!;L2ðXÞÞ þ spsulpk@tf uk2

L1ð!;L2ðXÞÞ

þ spsulukfpk2
L1ð!;L2ðXÞÞ þ spsulpkf uk2

L1ð!;L2ðXÞÞ: ð42Þ
(iii) External forces strong norm for the OSS method:
k½fp; f u�k2
S-OSS;h :¼ k½fp; f u�k2

W-OSS;h þ cp k@tfpk2
L1ð!;L2ðXÞÞ þ kfpð0Þk2

	 

þ cu k@tf uk2

L1ð!;L2ðXÞÞ þ kf uð0Þk2
	 


þ b2spk@tfpk2
L2ð!;L2ðXÞÞ þ b2suk@tf uk2

L2ð!;L2ðXÞÞ ð43Þ
with cp and cu given in (40).

Next, we state the stability properties of the different methods. Their proof is very similar to the ones in [39],
the only modification being the boundary terms arising from the Sommerfeld boundary condition.

Theorem 4.1 (Stability). The solution ½ph; uh� of the ASGS-stabilized FE formulation (32) with (33) and (34)

satisfies
jjj½ph; uh�jjj2W ;h K k½fp; f u�k2
W-ASGS;h ð44Þ
with the norms defined in (38) and (42). On the other hand, the solution of the OSS-stabilized FE formulation (32)

with (35) and (36) satisfies
jjj½ph; uh�jjj2W ;h K k½fp; f u�k2
W-OSS;h ð45Þ
with the (weak) norms defined in (38) and (41), as well as
jjj½ph; uh�jjj2S;h K k½fp; f u�k2
S-OSS;h ð46Þ
with the (strong) norms defined in (39) and (43).
4.2. Convergence analysis

In this section we present convergence results for the stabilized FE methods proposed. The results obtained
apply to any of the variational forms defined in (16)–(30). Once again, the proof is omitted because it is very
similar to the proofs presented in [39], the only difference being the treatment of the boundary terms arising
from the Sommerfeld condition. The way to deal with them is shown in the following lemma.

Let us define pI as the P p;h projection of the exact solution p on V p;h and uI as the P u;h projection of the exact
solution u on V u;h. This projection, which, contrary to the classical L2 projection, incorporates boundary con-
ditions, turns out to be optimal:

Lemma 4.2 (Optimality of P p;h and P u;h). Let P p;h : V p�!V p;h and P u;h : V u�!V u;h be two projections defined

as:
ðP p;hðqÞ; vhÞ ¼ ðq; vhÞ 8vh 2 V p;h; P p;hðqÞ ¼ 0 on Cp;

ðP u;hðvÞ;whÞ ¼ ðv;whÞ 8wh 2 V u;h; n � P u;hðvÞ ¼ 0 on Cu:
Let k and l be the polynomial interpolation order for V p;h and V u;h, respectively. Then, P p;h and P u;h are optimal in

L2ðXÞ; H 1ðXÞ and L2ðCÞ, that is to say:
kq� P p;hðqÞkL2ðXÞK hkþ1jqjkþ1
H ðXÞ; kv� P u;hðvÞkL2ðXÞK hlþ1jvjlþ1

H ðXÞ;
kq� P p;hðqÞk1

HðXÞK hkjqjkþ1
H ðXÞ; kv� P u;hðvÞk1

H ðXÞK hljvjlþ1
H ðXÞ;

kq� P p;hðqÞk2
LðCÞK hkþ1

2jqj
Hkþ1

2ðCÞ
; kcnv� cnP u;hðvÞk2

LðCÞK hlþ1
2jvjlþ

1
2

H ðCÞ;
for smooth enough q 2 V p and v 2 V u.
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Proof. The proof follows the one in [39]. The additional ingredient is the error estimate for the boundary
terms, whose proof is a straightforward consequence of the classical interpolation estimates for traces of func-
tions on boundaries. Note that P p;hðqÞ ¼ q on Cp and cnP u;hðvÞ ¼ cnv on Cu. h

Let us define two types of error functions. The error of the approximate solution (obtained using the ASGS
or the OSS methods) with respect to the projected exact solution is defined as:
ep :¼ ph � pI ; eu :¼ uh � uI ;
whereas the error of the exact solution with respect to the projected exact solution is defined as:
ep :¼ p � pI ; eu :¼ u� uI :
Notice that ½ep; eu� belongs to the FE space and ½ep; eu� is orthogonal to the FE space with respect to the L2ðXÞ
inner product.

Definition 4.4 (Error Functions). Let us define the following error functions:

(i) OSS weak error function:
E2
W-OSSðhÞ :¼ lpkepk2

L1ð!;L2ðXÞÞ þ lukeuk2
L1ð!;L2ðXÞÞ þ sukrepk2

L2ð!;L2ðXÞÞ þ spkr � euk2
L2ð!;L2ðXÞÞ

þ spklp@tepk2
L2ð!;L2ðXÞÞ þ suklu@teuk2

L2ð!;L2ðXÞÞ þ
1

sp
kepk2

L2ð!;L2ðXÞÞ þ
1

su
keuk2

L2ð!;L2ðXÞÞ

þ ð1þ rÞjpkepk2
L2ð!;L2ðCoÞÞ þ ð1� rÞjukcneuk2

L2ð!;L2ðCoÞÞ: ð47Þ
(ii) ASGS error function:
E2
W-ASGSðhÞ :¼ E2

W-OSSðhÞ þ luspsuklp@tepk2
L1ð!;L2ðXÞÞ þ lpspsuklu@teuk2

L1ð!;L2ðXÞÞ þ luspsuklp@ttepk2
L1ð!;L2ðXÞÞ

þ lpspsuklu@tteuk2
L1ð!;L2ðXÞÞ þ lpspsukrepk2

L1ð!;L2ðXÞÞ þ luspsukr � euk2
L1ð!;L2ðXÞÞ

þ lpspsukr@tepk2
L1ð!;L2ðXÞÞ þ luspsukr � @teuk2

L1ð!;L2ðXÞÞ: ð48Þ
(iii) OSS strong error function:
E2
S-OSSðhÞ :¼E2

W-OSSðhÞþ cpklp@ttepþr�@teuk2
L1ð!;L2ðXÞÞ þ cuklu@tteuþr@tepk2

L1ð!;L2ðXÞÞb2spkr �@teuk2
L2ð!;L2ðXÞÞ

þb2sukr@tepk2
L2ð!;L2ðXÞÞ þ cpklp@tepð0Þk2þ cuklu@teuð0Þk2

: ð49Þ
The following theorem shows that the previous error functions are in fact the upper bounds for the error of
the methods we consider. The proof follows the same lines as in [39].

Theorem 4.2 (Convergence). Let ½p; u� be the solution of the continuous problem (15) and let ½ph; uh� be the

solution of the stabilized discrete problem (32). For the ASGS formulation (33) and (34), the discrete solution

satisfies the following error estimate:
jjj½p � ph; u� uh�jjjW ;h K EW-ASGSðhÞ ð50Þ
with the norm defined in (38) and the error function (48). On the other hand, the OSS formulation (35) and (36)
satisfies
jjj½p � ph; u� uh�jjjW ;h K EW-OSSðhÞ ð51Þ
with the norm defined in (38) and the error function (47), as well as
jjj½p � ph; u� uh�jjjS;h K ES-OSSðhÞ ð52Þ
with the norm (39) and the error function (49).
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4.3. Accuracy of ASGS and OSS Methods

Let k be the order of p-interpolation and l the order of u-interpolation. Analyzing the a priori error esti-
mates for the ASGS and the OSS methods from (50) and (51) and assuming regular enough solutions, we
can summarize the convergence rates of the formulations as shown in Table 2. Further, the OSS method also
satisfies the error estimate in the strong norm (52), summarized in Table 3. We stress the fact that the conver-
gence rates do depend on the choice of the stabilization parameters, and different convergence orders are
obtained for the three discrete variational formulations above. We note that the introduction of Sommerfeld
artificial boundary conditions does not spoil the convergence rates in [39].

5. Numerical experiments

In this section we perform numerical experiments with the finite element formulations presented. First, in
Section 5.1, we test convergence in h. To achieve that, we choose an analytical solution that satisfies the
boundary conditions. This experiment shows the convergence of the discrete solution to the analytical solu-
tion. The intention of this experiment is just to check the convergence in h of the stabilization methods for
all variational forms. Additionally, the intention is not to evaluate the accuracy of the NRBC because that
is done later on in Section 5.2.

Then, in Section 5.2, we evaluate the accuracy of the NRBC. The main objective is to evaluate how good is
the NRBC compared to the solution obtained in an unbounded domain. As the NRBC is not exact, we show
that the error of the discrete solution using the NRBC with respect to the solution in the unbounded domain
does not approach zero as we refine the mesh. This is the error introduced by the NRBC. Additionally, in
Section 5.2.5, we evaluate the error as a function of the NRBC location.

5.1. Convergence tests

Let us consider a two-dimensional transient problem with analytical solution to investigate the convergence
properties of the stabilized FE formulations proposed. We take X ¼ ð0; 1Þ � ð0; 1Þ, the time interval ½0; 0:01�,
physical properties lp ¼ 10:0 and lu ¼ 10:0, and the forcing terms fp and f u such that the exact solution is:
Table 2
Convergence rates according to the variational forms for the ASGS and OSS methods in the weak norm.

Variational form I II III

kp � phkL1ð!;L2ðXÞÞ hkþ1=2 þ hlþ1=2 hkþ1=2 þ hl hk þ hlþ1=2

Quasi-optimal Suboptimal Suboptimal

ku� uhkL1ð!;L2ðXÞÞ hkþ1=2 þ hlþ1=2 hkþ1=2 þ hl hk þ hlþ1=2

Quasi-optimal Suboptimal Suboptimal

klu@tðu� uhÞ þ rðp � phÞkL2ð!;L2ðXÞÞ hk þ hl hk�1=2 þ hl�1 hk þ hlþ1=2

Optimal Suboptimal Optimal

klp@tðp � phÞ þ r � ðu� uhÞkL2ð!;L2ðXÞÞ hk þ hl hkþ1=2 þ hl hk�1 þ hl�1=2

Optimal Optimal Suboptimal

k; l Optimal k ¼ l k þ 1=2 ¼ l k ¼ lþ 1=2

Table 3
Convergence rates according to the variational forms for the OSS method in the strong norm.

Variational form I II III

krðp � phÞkL2ð!;L2ðXÞÞ hk þ hl hk�1 þ hl�1 hk þ hl

Optimal Suboptimal Optimal

kr � ðu� uhÞkL2ð!;L2ðXÞÞ hk þ hl hk þ hl hk�1 þ hl�1

Optimal Optimal Suboptimal

k; l Optimal k ¼ l k ¼ l k ¼ l
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p ¼ sin
3

2
px

� �
sinð3pyÞ sinð2ptÞ; u ¼ ½p; p�:
We impose p ¼ 0 on x ¼ 0; y ¼ 0 and y ¼ 1. The NRBC is imposed on x ¼ 1.
For the spatial discretization, we have used four uniform FE meshes with h ¼ 0:010; h ¼ 0:005; h ¼ 0:002

and h ¼ 0:001. The elements used are P1 (three-node triangular elements) and P2 (six-node triangular ele-
ments). Fig. 1 shows the mesh for h ¼ 0:10. The other meshes are isotropic refinements of that one.

The stabilization parameters are computed with the algorithmic constant Cs ¼ 0:01 for P1 elements and
with Cs ¼ 0:4 for P2 elements. The characteristic domain length was taken as L0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
measðXÞd

p
¼ 1. The time

integration scheme is Crank–Nicolson with a time step size of 10�5. We have used a very small time step to
avoid any interference of the time marching algorithm into the spatial error since we are only interested in
the spatial error. With that time step size, the difference between the error of the scalar unknown in the norm
k � kL1ð!;L2ðXÞÞ and the error in the same norm with a time step size twice as big was less than 1% in the finest
mesh.

In Tables 4–7 the experimental convergence rates for the ASGS and the OSS methods are shown. In the
tables, the word Num stands for the numerical result and the word Min stands for the minimum expected con-
vergence rate based on theoretical analysis. All these numerical results match or are better than the conver-
gence rates predicted theoretically.
5.2. NRB performance evaluation

Many benchmark problems have been devised in order to evaluate the performance of NRBC and NRBL
formulations. Some procedures compare an analytical solution with the numerical solution in the truncated
Fig. 1. Mesh sample.

4
mental convergence rates for the ASGS method using P1=P1 interpolation.

ional form I II III

ary cond. Num Min Num Min Num Min

hkL1ð!;L2ðXÞÞ 2.01 1.5 1.97 1 1.98 1

hkL1ð!;L2ðXÞÞ 2.01 1.5 1.99 1 2.01 1
phÞkL2ð!;L2ðXÞÞ 1.00 1 1.00 0 1.00 1
� uhÞkL2ð!;L2ðXÞÞ 1.00 1 1.00 1 1.00 0

5
mental convergence rates for the OSS method using P1=P1 interpolation.

ional form I II III

ary Cond. Num Min Num Min Num Min

hkL1ð!;L2ðXÞÞ 2.01 1.5 1.97 1 1.98 1

hkL1ð!;L2ðXÞÞ 2.01 1.5 1.99 1 2.01 1
phÞkL2ð!;L2ðXÞÞ 1.00 1 1.00 0 1.00 1
� uhÞkL2ð!;L2ðXÞÞ 1.00 1 1.00 1 1.00 0



Table 6
Experimental convergence rates for the ASGS method using P2=P2 interpolation.

Variational form I II III

Boundary cond. Num Min Num Min Num Min

kp � phkL1ð!;L2ðXÞÞ 3.04 2.5 2.67 2 3.41 2
ku� uhkL1ð!;L2ðXÞÞ 3.01 2.5 2.62 2 2.77 2
krðp � phÞkL2ð!;L2ðXÞÞ 2.07 2 1.78 1 2.56 2
kr � ðu� uhÞkL2ð!;L2ðXÞÞ 2.08 2 2.57 2 1.78 1

Table 7
Experimental convergence rates for the OSS method using P2=P2 interpolation.

Variational form I II III

Boundary cond. Num Min Num Min Num Min

kp � phkL1ð!;L2ðXÞÞ 3.00 2.5 2.64 2 3.17 2
ku� uhkL1ð!;L2ðXÞÞ 3.00 2.5 2.48 2 2.75 2
krðp � phÞkL2ð!;L2ðXÞÞ 2.06 2 1.78 1 2.54 2
kr � ðu� uhÞkL2ð!;L2ðXÞÞ 2.06 2 2.53 2 1.78 1
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domain using the NRB, e.g., Problems 1 and 2 in Category 3 of [48]. Other examples are the Parts 1, 2 and 3 of
Problem 3 in Category 1 of [49]. Other procedures involve solving the problem in a truncated domain and in a
bigger domain, and compare the solution of the big domain restricted to the truncated domain with the solu-
tion obtained in the truncated domain with the NRB [6,18].
5.2.1. Benchmark problem with analytical solution

Let us consider Problem 1-Category 3 proposed in [48]. This problem has also appeared in [9]. The 2D
ðd ¼ 2Þ spatial domain is taken as X ¼ ð�100; 100Þ � ð�100; 100Þ The physical parameters are taken as
lu ¼ 1; lp ¼ 1. In all the boundary C of the domain NRBCs are imposed. In the references mentioned, the
problem is solved with a Mach number ðM ; 0Þ (mean flow in the x direction). In this work we have considered
the non-convected wave equation and therefore we take M ¼ 0 (zero mean flow). The simulation time is
T ¼ 150. The time step is taken as 1.0 and the time integration scheme used is BDF2. The initial condition is:
p ¼ exp �ðln 2Þ x2 þ y2

d2
a

 !" #
; u1 ¼ 0; u2 ¼ 0;
where da ¼ 20 is the radius of the acoustic pulse. The problem consists in finding the unknowns at various
instants of time.

Let a1 ¼ ln 2
d2

a
and g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The exact solution is:
p ¼ 1

2a1

Z 1

0

e
�n2

4a1 cosðntÞJ 0ðngÞn dn;

u1 ¼
x

2a1g

Z 1

0

e
�n2

4a1 sinðntÞJ 1ðngÞn dn;

u2 ¼
y

2a1g

Z 1

0

e
�n2

4a1 sinðntÞJ 1ðngÞn dn;
where J a are the Bessel functions of first kind of order a.
The mesh used to solve the problem was a structured mesh of various element sizes, ranging from h ¼ 20

(10 elements per direction) to h ¼ 2 (100 elements per direction). Fig. 2 shows the contours of the discrete solu-
tion ph at t ¼ 0; t ¼ 50 and t ¼ 150, computed using variational form I (VF I) and the ASGS method on the
mesh with h ¼ 5. Fig. 3 shows the contours of the exact solution p at t ¼ 0; 50 and 150. These figures are only



Fig. 2. Contours of ph for the benchmark problem with analytical solution (ASGS method, VF I, h ¼ 5).

Fig. 3. Contours of the exact p for the benchmark problem with analytical solution.
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intended to illustrate the type of solution of this problem and how the numerical solution behaves. Approx-
imate solutions obtained with other variational forms or with the OSS method are qualitatively very similar.

Fig. 4 shows a cut along y ¼ 0 from x ¼ 0 to x ¼ 100 of ph, and compares it with the analytical solution at
t ¼ 50; 100 and 150. Fig. 5 shows a cut along x ¼ y from ðx; yÞ ¼ 0 to ðx; yÞ ¼ ð100; 100Þ of ph and compares it
with the analytical solution at the same time instants. Once again, the discrete solution corresponds to the
ASGS method, VF I and h ¼ 5.

In Table 8 the results obtained are shown for various mesh sizes, polynomial interpolations, stabilization
methods and variational forms. The error is computed as the L1ð!; L2ðXÞÞ-norm of the numerical solution
respect to the exact solution and it is normalized by the L1ð!; L2ðXÞÞ-norm of the exact solution. For VF
II and III, the characteristic length is taken as L0 ¼ 100. The algorithmic constant is taken as Cs ¼ 0:05 for
linear elements and Cs ¼ 0:1 for quadratic elements in 2D and Cs ¼ 0:1 for linear elements in 3D. We have
Fig. 4. Cut at y ¼ 0 of p for the benchmark problem with analytical solution (ASGS method, VF I, h ¼ 5, Q1 elements, Cs ¼ 0:05).
Results shown at t ¼ 50, 100 and 150.



Fig. 5. Cut at x ¼ y of p for the benchmark problem with analytical solution (ASGS method, VF I, h ¼ 5, Q1 elements, Cs ¼ 0:05).
Results shown at t ¼ 50, 100 and 150.

Table 8
Error of the NRBC for the benchmark problem with analytical solution.

h Element Method VF Error in p Error in u

20 Q1 ASGS I 0.2166 0.2571
20 Q2 ASGS I 0.1120 0.1398
5 Q1 ASGS I 0.0385 0.0894
5 Q2 ASGS I 0.0379 0.0903
2 Q1 ASGS I 0.0383 0.0912
2 Q2 ASGS I 0.0384 0.0916
5 Q1 ASGS II 0.0439 0.0934
5 Q1 ASGS III 0.0443 0.0935
5 Q1 OSS I 0.0386 0.0897
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found experimentally that these values yield good results, and are the values used in all the examples. Note
that in all cases the error behaves as expected. When the error does not decrease as the mesh is refined or
the polynomial order is increased, it is because of the error introduced by the NRBC.

5.2.2. Big/small domain benchmark problem in 2D

A very interesting NRB performance test appeared in [18]. Using SI units throughout, the problem pro-
posed is defined on a square domain of side 10 000 centered at the origin of coordinates and divided into
100� 100 Q1 elements, with the NRB condition on the four sides. The reference state properties are density
q0 ¼ 1:2, pressure p0 ¼ 1:01� 105 and heat capacity ratio c ¼ 1:4. We take lp ¼ 1

cp0
, lu ¼ q0 and the initial

condition is
pðx; 0Þ ¼ 0:01 p0 cos pr
2R

� �
if r < R;

0 otherwise

�

with R ¼ 1000 and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The simulation time is T ¼ 24.

For comparison, a reference solution is obtained in a bigger domain, namely, a square of side 30 000 with
the region of interest in its center. The boundary condition used in the big domain is p ¼ 0 everywhere. The big
domain is discretized with a mesh of 300� 300 Q1 elements.

Let us denote as ½ph; uh� the solution in the small domain and as ½pR;h; uR;h� the solution in the big domain.
The error is computed as:
ep ¼ max
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼1

ðpR;hðxn; tÞ � phðxn; tÞÞ2
vuut

0
@

1
A max

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼1

ðpR;hðxn; tÞÞ2
vuut

0
@

1
A
�1

; ð53Þ
where N is the number of nodes of the problem in the small domain, with coordinates xn; n ¼ 1; . . . ;N . The
error for the x-component and y-component of u (eu and ev, respectively) is computed similarly.
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To get an qualitative impression of the type of solution we are looking for and how the NRBC behaves,
Fig. 6 shows the contours of ph in the small domain at t ¼ 0, 8 and 16, whereas Fig. 7 shows the contours
of pR;h in the same region and at the same time instants. As in the previous example, these solutions have been
computed using VF I and the ASGS method.

Fig. 8 shows a cut at y ¼ 0 for 0 6 x 6 5000 of ph and compares it with the solution pR;h obtained in the big
domain at t ¼ 8; 16 and 24. Fig. 9 shows a similar cut and at the same time instants, but along x ¼ y from
ðx; yÞ ¼ ð0; 0Þ to ðx; yÞ ¼ ð5000; 5000Þ. It is observed that the solutions in the big and small domains only differ
significantly at t ¼ 24, where a certain reflection is observed in spite of using the Sommerfeld boundary con-
dition. However, these reflections are very small. To see this, Fig. 10 shows the evolution in time of the energy
Fig. 6. Contours of ph in the small domain for the big/small domain benchmark problem in 2D. From the left to the right: t ¼ 8, t ¼ 16
and t ¼ 24.

Fig. 7. Contours of pR;h in the big domain for the big/small domain benchmark problem in 2D. From the left to the right: t ¼ 8, t ¼ 16 and
t ¼ 24.

Fig. 8. Cut at y ¼ 0 of ph and pR;h for the big/small domain benchmark problem in 2D. From the left to the right: t ¼ 8, t ¼ 16 and t ¼ 24.



Fig. 9. Cut at x ¼ y of ph and pR;h for the big/small domain benchmark problem in 2D. From the left to the right: t ¼ 8, t ¼ 16 and t ¼ 24.

Fig. 10. Evolution of total energy E for the big/small domain benchmark problem in 2D.
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E in the region of interest. It can be seen that the solution in the small domain with the NRBC behaves as the
big domain solution.

The results obtained with the NRBC are presented in Table 9 for various mesh sizes (100 and 50), polyno-
mial order (P1 and P2), stabilization methods (ASGS and OSS), variational forms (I, II and III), domain
length scales (10, 100 and 1000), time marching schemes (Crank Nicolson and 2nd order BDF) and time step
sizes (dt ¼0.16 and 0.08). It can be seen that the error for p is around 5:8% and the error for u is around 8:2%
for all cases, independently of the numerical strategy. It can therefore be concluded that this error comes
exclusively from the truncation of the domain with the NRBC. In [18] the errors reported are ep ¼ 2:9%
and eu ¼ ev ¼ 6:2% for a NRBC of order J ¼ 10, slightly smaller than those we have found. Additionally,
the errors obtained with our formulation are similar to the ones obtained with J ¼ 7. A second order finite
Table 9
Error of the NRBC for the big/small domain benchmark problem in 2D.

h Element Method VF L0 tsche dt ep eu ev

100 P1 ASGS I – CN 0.16 0.057 0.081 0.081
100 P1 ASGS I – BDF2 0.16 0.058 0.081 0.081
100 P2 ASGS I – BDF2 0.16 0.058 0.081 0.081
100 P1 OSS I – BDF2 0.16 0.058 0.081 0.081
100 P1 ASGS I – BDF2 0.08 0.057 0.081 0.081
50 P1 ASGS I – BDF2 0.08 0.056 0.081 0.081

100 P1 ASGS II 100 BDF2 0.16 0.058 0.082 0.082
100 P1 ASGS II 1000 BDF2 0.16 0.058 0.082 0.082
100 P1 ASGS II 10 BDF2 0.16 0.058 0.082 0.082
100 P1 ASGS III 100 BDF2 0.16 0.058 0.082 0.082
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difference formulation with a node spacing of 100 per direction and a second order explicit time integration
scheme is used in this reference, with a time step size equal to the critical time step needed for stability mul-
tiplied by 0.9.

5.2.3. Big/small domain benchmark problem in 3D

To test the NRBC in 3D, we solve a similar problem to the one in [18] extended to 3D. We choose the small
domain as a cube of side 10 000 centered at the origin. The small domain is divided in 50� 50� 50 Q1 ele-
ments (h ¼ 200) with the NRBC applied on the whole boundary. The simulation time is T ¼ 24, the time step
size is taken as 0.16 and the time scheme used is BDF2. The equation coefficients lp and lu, as well as the
initial condition, are chosen to be the same as before, in the 2D case. The only change is that the initial con-
dition is in a sphere of radius R, so now r is computed as r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

For comparison, a reference solution pR;h is obtained in a bigger domain, namely, a cube of side 20 000 with
the region of interest in its center. The big domain is divided in 100� 100� 100 Q1 elements and the boundary
condition pR;h ¼ 0 is imposed. The error is computed as in the 2D version of the case with Eq. (53). Fig. 11
shows the contours of p in the plane z ¼ 0 for the small domain at t ¼ 0; t ¼ 8 and t ¼ 16, whereas Fig. 12
shows the contours of p in the plane z ¼ 0 for the big domain at the same instants. A good qualitative agree-
ment is observed.

Fig. 13 shows a cut at y ¼ z ¼ 0 for 0 6 x 6 5000 of ph and pR;h at t ¼ 8; 16 and 24. Significant discrepan-
cies are only observed at t ¼ 24. However, they have small energy, as shown below.

The results obtained with our NRBC are presented in Table 10 for various mesh sizes (500, 250 and 200),
polynomial order (Q1 and Q2), stabilization methods (ASGS and OSS), variational forms (I–III) and domain
length scales (25, 250 and 2500). It can be seen that the error for p is around 7:9% and the error for u is around
8:6% for all cases.
Fig. 11. Contours of ph in the small domain for the big/small domain benchmark problem in 3D. From the left to the right: t ¼ 0, 8 and 16
(ASGS method, VF I, h ¼ 200, Q1 elements).

Fig. 12. Contours of pR;h in the big domain for the big/small domain benchmark problem in 3D. From the left to the right: t ¼ 0, 8 and 16
(ASGS method, VF I, h ¼ 200, Q1 elements).



Fig. 13. Cut at y ¼ 0 of p for the big/small domain benchmark problem in 3D (ASGS method, VF I, h ¼ 200, Q1 elements). From the left
to the right: t ¼ 8, 16 and 24.

Table 10
Error of the NRBC for the big/small domain benchmark problem in 3D.

h Element Method VF L0 ep eu

500 Q1 ASGS I – 0.077 0.084
250 Q1 ASGS I – 0.078 0.085
200 Q1 ASGS I – 0.077 0.085
250 Q2 ASGS I – 0.081 0.090
250 Q1 OSS I – 0.078 0.086
250 Q1 ASGS II 100 0.081 0.090
250 Q1 ASGS III 100 0.081 0.090
250 Q1 ASGS II 25 0.081 0.090
250 Q1 ASGS II 2500 0.081 0.090
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Fig. 14 shows the evolution in time of the energy E in the region of interest for the case with mesh size
250 m, the ASGS method, Q1 elements and VF I. It can be seen that the solution obtained with the NRBC
behaves as the big domain solution.

5.2.4. Showcase problem with NRBC in 2D

An illustrative NRBC showcase appeared in [17] by Glowinski et al. Although it is not a benchmark of the
NRBC, a plot of the evolution in time of the total energy of the system illustrates that the energy goes out of
the region of interest and never enters again because the total energy decreases monotonically. The problem is
defined in a square domain X ¼ ð�0:5; 0:5Þ � ð�0:5; 0:5Þ, with lp ¼ 1 and lu ¼ 1. The simulation time is
T ¼ 1. The initial solution is pðx; 0Þ ¼ 0 and
Fig. 14. Evolution of total energy E for the big/small domain benchmark problem in 3D.



Fig. 15

Fig. 16
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uðx; 0Þ ¼ � 4p
r sinð2prÞ cosð2prÞ

x

y

� 

r 6 R;

0 otherwise

8<
:

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; R ¼ 0:25. In all the boundary the NRBC is applied. The problem is solved with a mesh

size h ¼ 0:01, a time step of dt ¼ 0:002 and the time integration scheme is BDF2.
Additionally, we have defined a big domain to compare the results of the NRBC in the small domain. The

big domain is taken as X ¼ ð�1:5; 1:5Þ � ð�1:5; 1:5Þ. Fig. 15 shows the contours of juhj computed in the small
domain at t ¼ 0, t ¼ 0:3 and t ¼ 0:6. Fig. 16 shows the contours of juR;hj, the solution computed in the big
domain, at the same instants. It is observed that there is a certain distortion of the wave at t ¼ 0:6 close to
the boundary in the small domain case, which is not observed in the solution computed in the big domain.

The evolution of total energy inside the domain of interest is shown in Fig. 17. The agreement between the
energy computed in both the big and the small domains is very good, indicating that the wave distortion close
to the boundary of the solution computed in the small domain has low energy.

The error of the small domain with respect to the big domain in L1ð!; L2ðXÞÞ norm for VF I, the ASGS
method and P1 elements was 6:8% for p and 5.3% for u.
5.2.5. Showcase problem with NRBL in 2D

A NRBL example appeared in [6] by Qi et al. It uses PML as NRBL. We solve the same example using our
NRBC and compare the results. The domain is a hollow cylinder that extends from r ¼ 1 to r ¼ 1þ H , with
H ¼ 1. The mesh size is h ¼ 0:01 in the radial direction and has 720 divisions in the circumferential direction.
The coefficients of the equation are taken as lp ¼ 1 and lu ¼ 1. The simulation time is T ¼ 4, the time step size
is dt ¼ 0:005 and the time integration algorithm is BDF2. The initial condition is zero for both p and u. The
boundary condition at r ¼ 1 changes from a prescription in p to a prescription in cnu, and is given by:
. Contours of juhj in the small domain for the showcase problem with NRBC. From the left to the right: t ¼ 0, t ¼ 0:3 and t ¼ 0:6.

. Contours of juR;hj in the big domain for the showcase problem with NRBC. From the left to the right: t ¼ 0, t ¼ 0:3 and t ¼ 0:6.



Fig. 17. Evolution of total energy E for the showcase problem with NRBC.
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p ¼ cosð2ptÞ 0 < t 6 1; r ¼ 1;

cnu ¼ 0 1 < t < 4; r ¼ 1:
At r ¼ 1þ H the NRB is prescribed. In the case of [6], as a PML strategy is used, the domains extends from
r ¼ 1þ H to r ¼ 1þ H þ d to include the absorbing PML. The case with d ¼ 2 from [6] was chosen as it is the
one that provides less reflection according to their results. In Fig. 18 it is shown the evolution of p at r ¼ 1 with
our method and the comparison with the results obtained using PML by Qi and Geers [6].

In addition to the results presented in [6], we followed the big/small domain approach as in the previous
examples, taking 1 < r < 2ð1þ HÞ as the big domain. Fig. 19 shows the contours of ph in the small domain
at t ¼ 0; 0:5 and 1.0, whereas Fig. 20 shows the contours of the solution computed in the big domain, pR;h, at
the same time instants.

Fig. 21 shows the energy evolution inside the domain of interest. As in the previous examples, the differ-
ences between the solutions in the small and the big domains have low energy.

The error of the small domain with NRBC respect to the big domain in L1ð!; L2ðXÞÞ norm for VF I, the
ASGS method and Q1 elements was 5:3% for p and 3.8% for u.

In addition to the Big/Small domain analysis, we performed a Big/Medium/Small domain analysis. The
idea is to compare the solutions in the medium and small domains with respect to the solution in the big
domain. The medium domain was taken with H ¼ 1:83 and the error in the medium domain with respect
to the big domain in L1ð!; L2ðXÞÞ norm for VF I, the ASGS method and Q1 elements was 3:4% for p and
2:3% for u. The small domain corresponds to a location of the NRBC of R ¼ 2, whereas the medium domain
has R ¼ 2:83. With the errors obtained we can infer that the error is proportional to ð1=R2ÞJ with J � 0:66.
Fig. 18. Evolution of ph at r ¼ 1 for the showcase problem with NRBL.



Fig. 19. Contours of ph in the small domain for the showcase problem with NRBL. From the left to the right: t ¼ 0; t ¼ 0:5 and t ¼ 1:0.

Fig. 20. Contours of pR;h in the big domain for the showcase problem with NRBL. From the left to the right: t ¼ 0, t ¼ 0:5 and t ¼ 1:0.

Fig. 21. Evolution of total energy E for the showcase problem with NRBL.
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6. Conclusions

In this work, we have described a NRBC for the wave equation in mixed form in time domain. In partic-
ular, we have considered Sommerfeld-type artificial boundary conditions. The resulting system of equations
has been stated in three different functional settings, based on the regularity required for the scalar and vector
unknowns. The introduction of the NRBC terms require to increase the regularity of the functional setting for
problems in bounded domains [39]. The extra regularity required is somehow small because the set of
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functions in Hðdiv;XÞ with normal trace in L2ðCoÞ is close to Hðdiv;XÞ, considering that H
1
2þ�ðXÞ has trace in

L2ðCÞ for any � > 0 and that H 1ðXÞ has trace in H
1
2ðCÞ.

We have presented two stabilized FE methods (ASGS and OSS) including the NRBC. Additionally, the
stabilized methods can mimic the three variational forms of the problem, which require different regularity
of the unknowns, via a proper design of the stabilization parameters. Stability and convergence results have
been presented for these stabilized FE formulations. The NRBC does not affect previous results proved in [39]
for Dirichlet-type boundary conditions, although it requires extra regularity on the boundary for the vector
unknown in variational forms I and II. We normally use the stabilized FE formulations for equal interpolation
of the unknowns, but the analysis is not restricted to that and allows any continuous interpolation pair.

Numerical experiments have been carried out to check the accuracy of the methods and the results obtained
are in agreement with the accuracy predicted theoretically. Benchmark problems have been solved using the
NRBCs proposed and good results have been obtained when compared with other NRBCs or NRBLs. The
main practical advantage of the NRBC described over other NRBCs is its simplicity and the fact that no non-
linear or iterative methods are required. Further, for NRBC schemes, the truncated domain does not need to
be extended with an absorbing layer. Additionally, when compared to PML techniques, it avoids extra degrees
of freedom per node and avoids the solution of other governing equations in the absorbing layer.
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[32] J.-C. Nédélec, A new family of mixed finite elements in R3, Numer. Math. 50 (1986) 57–81.
[33] T. Arbogast, D. Brunson, A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium,

Comput. Geosci. 11 (2007) 207–218.
[34] K.-A. Mardal, X.-C. Tai, R. Winther, A robust finite element method for Darcy–Stokes flow, SIAM J. Numer. Anal. 40 (2002) 1605–

1631.
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