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STABILITY ANALYSIS OF TIME DEPENDENT LINEARIZED VISCOELASTIC

FLOW PROBLEMS USING A STABILIZED FINITE ELEMENT

FORMULATION IN SPACE

R. Codina1 and L. Moreno2

Abstract. In this paper we present the stability analysis of a numerical approximation of the
linearized viscoelastic flow equations using finite elements in space and a finite difference scheme
in time. Both a standard and a log-conformation reformulation of the constitutive equations are
considered. The space approximation consists of a stabilized finite element formulation that allows
one to use equal interpolation for all variables and to deal with convection dominated flows. It is
based on the Variational-Multiscale concept, allowing the sub-grid scales arising in the formulation
to be time dependent. This permits to refine independently space and time, avoiding the small time
step instability.
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1. Introduction

The numerical approximation of the equations governing the flow of viscoelastic fluids presents several
numerical challenges. We will focus our attention on finite element (FE) approximations in space and finite
differences in time. Obviously, the difficulties associated to the approximation of the incompressible Navier-
Stokes equations are inherited, and these include the choice of the velocity-pressure interpolation and the
treatment of convection dominated flows and, in particular, the complex flow behavior encountered for high
Reynolds number. On top of that, now (part of) the stress needs to be considered as an independent variable,
as it is solution of an evolution equation, and this poses the question of how to interpolate it. Stress-velocity-
pressure interpolations that render the discrete problem stable using the standard Galerkin method are rare
and difficult to implement. Our option in this case has been to resort from the Galerkin to stabilized FE
methods, which allow one to use arbitrary interpolations. Moreover, these formulations also serve to deal
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with high Reynolds number problems and, to some extend, with high Weissenberg number problems, thus
allowing one to approximate flows with high inertia and high elasticity.

In fact, perhaps the most relevant issue in the approximation of viscoelastic flows is precisely the high
Weissenberg number problem (HWNP), which consists in the failure of iterative schemes to solve the discrete
problem when elasticity is beyond a threshold. To alleviate this issue, the log-conformation reformulation
(LCR) of the constitutive equation was introduced [1]. It essentially consists of a change of unknowns,
replacing the elastic stress by the logarithm of the conformation tensor. Thus, two sets of equations can be
considered when approximating viscoelastic flows, the standard one and the LCR.

In our group, we have designed FE methods for both the standard and the LCR form of the viscoelastic
flow equations. For the stationary problem, the design of a stabilized FE formulation for the standard form
can be found in [2, 3], whereas for the LCR form it can be found in [4]. Some insight on the behavior of
these formulations can be obtained analyzing the linearized form of the corresponding problems; this was
done in [5] for the standard approach and in [6] for the LCR (see also [7] for a review). In all cases, the
FE formulation developed and analyzed is based on the Variational-Multiscale (VMS) concept [8, 9], which
consists in splitting the unknown in terms of the FE component and the remainder, called sub-grid scale
(SGS). The equation for the SGS is then approximated so as to obtain a closed form expression for it in
terms of the FE component. Additional approximations can then be performed to obtain a convenient final
discrete problem.

In this paper we move our attention to the transient viscoelastic flow equations. The time dependent
nonlinear problem was analyzed in [10], under classical assumptions to guarantee uniqueness of solution and
considering time continuous. Here we study the numerical time integration of the linearized equations. This
time integration can be done using standard techniques, and in particular finite difference schemes. For the
analysis to be presented here we restrict ourselves to the simplest backward difference scheme of first order
(BDF1). This is enough to highlight the importance of one of the main features of our approach, namely,
that we allow the SGSs to be time dependent, and therefore we need to track them in time. This allows us
to avoid the so called small time step instability, which is a well known instability effect which occurs when
some stabilized FE methods in space are used in conjunction with time integration schemes and the time
step size is small (compared to a reference value) [11]. In particular, this prevents from letting the time step
go to zero while keeping fixed the mesh size (or, in general, when anisotropic space-time discretizations are
used, see [12]). We also use the BDF1 scheme to integrate in time the SGSs. The design and testing of the
formulation whose linarized form is analyzed here can be found in [13].

Even if it might seem a restrictive situation, the problem analyzed allows us to get some insight on the
behavior of the formulation considered that the general nonlinear problem does not permit. Let us describe
some results known for the nonlinear case and their restrictions. At the continuous level, even well-posedness
for general models is not well understood. Global existence in time of solutions has been proved only if the
initial conditions are small perturbations of the rest state, and for the steady-state case existence of solutions
can be proved only for small perturbations of the Newtonian case (see [14, 15] for comprehensive reviews).
The existence of slow steady flows of viscoelastic fluids using differential constitutive equations was proved
in [16] for Hilbert spaces. For the time-dependent case, the existence of solutions locally in time, and for
small data globally in time, has been proved for Hilbert spaces in [17]. The extension to Banach spaces and
a complete review of uniqueness, regularity, well-posedness and stability results can be found in [15]. The
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existence of global weak solutions for general initial conditions using a co-rotational Oldroyd-B model has
been proved in [18] in a simplified setting. In [19] the authors proved global existence of weak solutions in 2D
to the Oldroyd-B model regularized with the introduction of a diffusion term in the constitutive equation.
An analysis of the effects it has on the numerical approximation can be found in [20].

In the context of the FE approximation, for the steady-state case, one of the first works in which the
existence of approximate solutions and error analysis were presented is [21]. The authors used a discontinuous
interpolation (Lesaint-Raviart method) to treat the viscoelastic stresses. Later, in [22] it was shown that
a certain choice of interpolation of unknowns has a unique solution for which error bounds can be found.
In [23] a stationary nonlinear Stokes problem was analyzed. More recently, in [24] the authors presented an
error analysis of a very particular Oldroyd-B model with the limiting Weissenberg number going to infinity,
but assuming a suitable regularity of the exact solution for FE and finite volume methods.

The extension to the time-dependent case was treated in [25] for a nonlinear Stokes problem, proving
global existence in time under the small data assumption. For a Stokes/Oldroyd-B linearized problem,
in [26] optimal a priori error estimates using the Interior-Penalty method and adding some artificial diffusion
in the constitutive equation were presented. A similar problem was studied in [27] for the steady state case,
proving existence and uniqueness of the continuous problem and of a FE approximation under the small data
assumption. In [28] the Oldroyd-B time-dependent case was analyzed for small Weissnberg numbers, both
in the semi-discrete and in the fully discrete cases, proving existence and deriving a priori error estimates for
the numerical approximation. In [29] the authors analyzed the time behavior of the viscoelastic Oldroyd-B
model in 2D using a Galerkin formulation in space; in this work, the stress is eliminated through a proper
projection operator, resulting in an integro-differential equation in terms of velocity and pressure.

Our objective in this paper is to present the stability analysis of the formulation we propose for the
linearized problem, from which convergence follows using more or less classical arguments. More general
conditions than those assumed in the references mentioned can be considered, although we will also assume
small enough Weissenberg numbers. The analysis to be presented differs significantly from the one corre-
sponding to the stationary problem and presented in [5, 6], which is based on checking an inf-sup condition
in appropriate norms. Now we will be able to prove stability directly in a norm of the unknowns involving
both space and time, as a result of applying the discrete Gronwall inequality. The path we will follow is
essentially the same as in [30] for a much simpler problem, namely, the linearized equations of Newtonian
flows. Now, apart from extending the results to viscoelastic flows, using both the standard formulation and
the LCR, we consider a slightly different space stabilization, in which different SGSs are introduced for the
different terms of the equations (see [13]). Care is now needed in the projections involved in the definition of
the SGS spaces.

The outline of the paper is as follows. The problem to be solved and its discretization are presented in
Section 2, where both the standard and the LCR forms are considered. The stability results have been split
in two sections: in Section 3 they are written in terms of the SGSs, whereas in Section 4 they are formulated
in terms of the FE unknowns. Finally, conclusions are drawn in Section 5.
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2. Problem statement and discretization

2.1. Initial and boundary value problem

The linearized version of the problem we consider consists in assuming a known velocity in the nonlinear
terms of both the momentum and the constitutive equations, i.e., a fixed-point type linearization. Likewise,
for the LCR we also need to linearize the exponential of the conformation tensor. Thus, the linearized
Navier-Stokes equations can be written as

ρ
∂u

∂t
+ ρa · ∇u−∇ · T +∇p = f in Ω, t ∈ ]0, tf [, (2.1)

∇ · u = 0 in Ω, t ∈ ]0, tf [, (2.2)

where Ω is the domain of the problem contained in Rd (d = 2 or 3) whose boundary is denoted by ∂Ω,
and ]0, tf [ is the time interval of analysis. The constant density is denoted by ρ , p : Ω × ]0, tf [ → R is the
pressure field, u : Ω× ]0, tf [→ Rd is the unknown velocity field, a : Ω× ]0, tf [→ Rd is a given velocity field,
f : Ω× ]0, tf [→ Rd is the force field and T : Ω× ]0, tf [→ Rd ⊗Rd is the deviatoric stress tensor. In general,
T is defined in terms of a viscous and a viscoelastic contribution as T = 2ηs∇su + σ, where ∇su is the
symmetrical part of the velocity gradient and σ is the viscoelastic or elastic stress tensor. The effective (or
solvent) viscosity ηs and the polymeric viscosity ηp can be written as a function of the total viscosity η0 as
ηs = βη0 and ηp = (1− β)η0, with β ∈ [0, 1].

The constitutive equation for the viscoelastic stress tensor needs now to be defined. We consider the
linearized Oldroyd-B model, which reads:

1

2ηp
σ −∇su+

λ

2ηp

(
∂σ

∂t
+ a · ∇σ − σ · ∇a− (∇a)T · σ

)
= 0, in Ω, t ∈ ]0, tf [, (2.3)

where λ > 0 is the relaxation time.
As for the boundary conditions, for simplicity u = 0 on ∂Ω is considered. The elastic stresses do not

need to be prescribed. The problem is completed with the initial conditions for velocity and elastic stresses,
u = u0 and σ = σ0 at time t = 0, being u0 and σ0 functions defined in the whole domain Ω.

We will now briefly describe the viscoelastic equations when the LCR is considered. Note that the complete
development is extensively explained in [4]. The reformulation is derived from a change of variables, where
σ is replaced by σ =

ηp
λ0

(τ − I), and the conformation tensor τ is written as τ = exp(ψ) in (2.1) and

(2.3). The parameter λ0 is defined as λ0 = max {kλ, λ0,min}, being k a constant and λ0,min a given threshold.
Furthermore, exp(ψ) is linearized around a known function ψ̂ as exp(ψ) ≈ Eψ + E − Eψ̂, where matrix
E = exp(ψ̂) is known. With this in mind, the linearized form of the LCR can be written as

ρ
∂u

∂t
− ηp
λ0
∇ ·Eψ − 2ηs∇ · (∇su) + ρa · ∇u+∇p = fu, (2.4)

∇ · u = 0, (2.5)

1

2λ0
Eψ −∇su+

λ

2λ0

(
∂Eψ

∂t
+ a · ∇Eψ −Eψ · ∇a− (∇a)T ·Eψ + 2∇su

)
= fψ, (2.6)

where fu and fψ involve known terms arising from the linearization.
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2.2. Variational form

Let us introduce some notation to write the weak form of the problem. Given a set ω ⊂ Ω, L2(ω) is the
space of square integrable functions in ω; Hm(ω) is the space of functions whose distributional derivatives of
order up to m ≥ 0 (integer) belong to L2(ω). The space H1

0 (ω) comprises functions in H1(ω) vanishing on
∂ω, whereas H−1(Ω) is the topological dual of H1

0 (Ω), the duality pairing being 〈·, ·〉. The space of essentially
bounded functions is L∞(ω), and the space of functions in L∞(ω) with first derivatives in L∞(ω) isW 1,∞(ω).
An analogous notation is used for the time regularity. The L2 inner product in ω (for scalars, vectors and
tensors) is denoted by (·, ·)ω and the integral over ω of the product of two general functions is written as
〈·, ·〉ω, the subscript being omitted when ω = Ω. The norm in a space X is denoted by ‖ · ‖X , except in the
case X = L2(Ω), where the subscript is omitted.

Using this notation, the spaces for the continuous standard problem can be taken as: Υ = H1(Ω)d×dsym

(symmetric second order tensor with components in H1(Ω)) for the stress field, V0 = H1
0 (Ω)d for the velocity

field and Q = L2(Ω)/R for the pressure for each fixed time t (the regularity for the stress space could be
relaxed). The weak form of the problem consists then in finding U = [u, p,σ] : ]0, tf [ −→ X := V0 ×Q×Υ,
such that the initial conditions are satisfied and:(

ρ
∂u

∂t
,v

)
+ (σ,∇sv) + 2(ηs∇su,∇sv) + 〈ρa · ∇u,v〉 − (p,∇ · v) = 〈f ,v〉,

(q,∇ · u) = 0,

1

2ηp
(σ,χ)− (∇su,χ) +

λ

2ηp

(
∂σ

∂t
+ a · ∇σ − σ · ∇a− (∇a)T · σ,χ

)
= 0,

for all V = [v, q,χ] ∈ X , where it is assumed that a ∈ L∞(]0, tf [;W
1,∞(Ω)d), with ∇ · a = 0, n · a = 0 on

∂Ω (zero normal component), and f is such that 〈f ,v〉 is well defined. In compact form, the problem can
be written as:

Gstd(U ,V ) +Bstd(U ,V ) = Lstd(V ), (2.7)

for all V ∈ X , where

Gstd(U ,V ) =

(
ρ
∂u

∂t
,v

)
+

λ

2ηp

(
∂σ

∂t
,χ

)
, (2.8)

Bstd(U ,V ) = 2(ηs∇su,∇sv) + 〈ρa · ∇u,v〉+ (σ,∇sv)− (p,∇ · v) + (q,∇ · u)

+
1

2ηp
(σ,χ)− (∇su,χ) +

λ

2ηp

(
a · ∇σ − σ · ∇a− (∇a)T · σ,χ

)
, (2.9)

Lstd(V ) = 〈f ,v〉. (2.10)

Considering now the LCR, the spaces for the velocity and pressure for the continuous problems are the
ones defined above for the standard formulation, and now the space for tensor ψ is denoted by Ῡ for each
fixed time t. Assuming that the components of E belong to L∞(]0, tf [;W

1,∞(Ω)), we can take Ῡ = Υ, but
we will keep distinguishing these spaces as ψ and σ are different objects.
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The weak form of the problem consists in finding U = [u, p,ψ] : ]0, tf [ −→ X̄ := V0 ×Q× Ῡ, such that
the initial conditions are satisfied and:(

ρ
∂u

∂t
,v

)
+
ηp
λ0

(Eψ,∇sv) + 2(ηs∇su,∇sv) + 〈ρa · ∇u,v〉 − (p,∇ · v) = 〈fu,v〉, (2.11)

(q,∇ · u) = 0, (2.12)

1

2λ0
(Eψ,χ)− (∇su,χ)

+
λ

2λ0

(
∂Eψ

∂t
+ a · ∇Eψ −Eψ · ∇a− (∇a)T ·Eψ + 2∇su,χ

)
= 〈fψ,χ〉, (2.13)

for all V = [v, q,χ] ∈ X . Taking into account the new definition of U for this formulation, the problem can
be written as:

Glog(U ,V ) +Blog(U ,V ) = Llog(V ), (2.14)

where

Glog(U ,V ) =

(
ρ
∂u

∂t
,v

)
+

λ

2λ0

(
∂Eψ

∂t
,χ

)
, (2.15)

Blog(U ,V ) =
ηp
λ0

(Eψ,∇sv) + 2(ηs∇su,∇sv) + 〈ρa · ∇u,v〉 − (p,∇ · v) + (∇ · u, q)

+
1

2λ0
(Eψ,χ)− (∇su,χ) +

λ

2λ0

(
a · ∇Eψ −Eψ · ∇a− (∇a)T ·Eψ + 2∇su,χ

)
, (2.16)

Llog(V ) = 〈fu,v〉+ 〈fψ,χ〉. (2.17)

Note that we have taken χ ∈ Υ, not in Ῡ, i.e., we take the test function in the space of stresses even if the
unknown belongs to the space of logarithms of the conformation tensor. See [4] for further discussion.

2.3. Galerkin finite element discretization and time discretization

Consider a FE partition of the domain Ω, Th = {K}. The diameter of an element K ∈ Th is denoted by
hK and the diameter of the partition is defined as h = max{hK |K ∈ Th}. For simplicity, we will consider
quasi-uniform partitions, and thus h can be considered as the representative size of all the elements.

In the particular case of the standard formulation, from Th we may construct conforming FE spaces
for the velocity, the pressure and the elastic stress, Vh,0 ⊂ V0, Qh ⊂ Q, Υh ⊂ Υ, respectively. So,
calling X h := Vh,0 ×Qh ×Υh, the Galerkin FE approximation of the standard problem consists in finding
Uh : ]0, tf [ −→ X h, such that:

Gstd(Uh,V h) +Bstd(Uh,V h) = Lstd(V h), (2.18)

for all V h = [vh, qh,χh] ∈ X h, and satisfying the appropriate initial conditions.
Moving now to the LCR, from Th we may construct the FE space for the new variable ψ, Ῡh ⊂ Ῡ. In the

analysis to be presented, we will prove stability for the FE component of Eψh, ψh ∈ Ῡh, i.e., for Ph[Eψh],
where Ph : L2(Ω)d×dsym −→ Ῡh is the L2(Ω) projection. Thus, we may take directly as unknown of the problem
ψ̄h := Ph[Eψh]; note that using ψ̄h or Eψh is equivalent for terms to be tested with FE functions, and in
particular for the temporal derivative. If X̄ h := Vh,0 × Qh × Ῡh, the Galerkin approximation consists in
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finding Uh = [uh, ph, ψ̄h] : ]0, tf [ −→ X̄ h, such that

Glog(Uh,V h) +Blog(Uh,V h) = Llog(V h),

for all V h = [vh, qh,χh] ∈ X h.
It is well known that the Gakerkin approximation is unstable unless convective terms are not relevant and

appropriate compatibility conditions between Qh and Vh,0, on the one hand, and between Vh,0 and Υh, on
the other hand, are met (see for example [2] and references therein). In the next Subsection we will present
a stable formulation, able in particular to deal with continuous approximations for all fields, which is the
situation we shall consider.

The fully discrete problem is obtained after discretizing in time. To this end, we consider the BDF1
scheme. Let 0 = t0 < t1 < · · · < tN = tf be a uniform partition of the time interval of size δt = ti − ti−1,
i = 1, . . . , N . We will use a superscript to denote the time step counter, indicating by n the time level up to
which the solution is known. Likewise, we employ the notation δfn := fn+1 − fn and δtfn := δfn

δt for any
time dependent function f , fn being an approximation to f(tn). The fully discrete version of problem (2.18)
can be written as follows: given Un

h ∈ X h, find Un+1
h ∈ X h such that

(ρ δtu
n
h,vh) +

λ

2ηp
(δtσ

n
h,χh) +Bstd(Un+1

h ,V h) = Lstd(V h), (2.19)

for all V h ∈ X h, with U0
h determined by the initial conditions. When the forcing terms in Lstd(V h) depend

on time, it is understood that they are evaluated at tn+1, and likewise for the vector field a.
The time discrete version of the LCR problem can be written similarly.

2.4. Stabilized finite element method

Let us describe the stabilized FE method we analyze in the following. We will not derive it here, as it
was presented in detail in [13]. Let us only describe the main ingredients. The starting point is the VMS
approach, splitting the unknowns into their FE component and their SGS. The SGSs are considered time
dependent, and orthogonal to the FE space in the L2(Ω) sense. An important remark is required here: for
the velocity SGS, this orthogonality is to the FE space without boundary conditions, i.e., without imposing
that velocities vanish on the boundary. We will call Vh ⊂ H1(Ω)d this space, and Ph : L2(Ω)d −→ Vh the
L2(Ω) projection onto Vh (we use the same symbol Ph as for the L2(Ω) projection onto Υh or Ῡh). Note
that V⊥h ⊂ V⊥h,0, ⊥ standing for L2(Ω) orthogonality, and also that for any function f defined on Ω the
function P⊥h (f) ∈ V⊥h converges to zero as h → 0 in any suitable norm at the optimal rate provided by the
FE interpolation. This would not happen if Ph is replaced by the L2(Ω) projection onto Vh,0.

The method to be analyzed has as starting point the decompositions u ≈ uh + ũ1 + ũ2 + ũ3, p ≈ ph,
σ ≈ σh + σ̃. The velocity SGSs ũ1, ũ2, ũ3 ∈ V⊥h are considered to be independent for the design of the
method (see [3]). For the pressure, we could also introduce a pressure SGS p̃ ∈ Q⊥h , but this would only
introduce a marginal added value in the stability results. Finally, there is only one stress SGS, σ̃ ∈ Υ⊥h for
the standard formulation, and likewise for the LCR, for the reasons explained in [4].
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To simplify the exposition, we shall consider that spaces Qh and Υh are made of continuous functions.
Otherwise, terms involving jumps of pressures and stresses need to be introduced in the formulation, as it
was done in [5] for the stationary standard problem.

After adequate approximations for the SGSs and neglecting some terms that do not contribute to stability,
the method to be analyzed for the standard formulation reads as follows: given unh ∈ Vh,0, ũni ∈ V⊥h ,
i = 1, 2, 3, σnh ∈ Υh and σ̃n ∈ Υ⊥h , find u

n+1
h ∈ Vh,0, ũn+1

i ∈ V⊥h , i = 1, 2, 3, σn+1
h ∈ Υh, pn+1

h ∈ Qh and
σ̃n+1 ∈ Υ⊥h such that

(ρ δtu
n
h,vh) +

λ

2ηp
(δtσ

n
h,χh) +Bstd(Un+1

h ,V h)− Lstd(V h)

−
(
ũn+1

1 , ρa · ∇vh
)
−
(
ũn+1

2 ,∇qh
)

+
(
ũn+1

3 ,∇ · χh
)

+

(
σ̃n+1,∇svh −

λ

2ηp

(
a · ∇χh + χh · (∇a)T +∇a · χh

))
= 0, (2.20)

ρ δtũ
n
1 + α−1

1 ũn+1
1 = −P⊥h [ρa · ∇un+1

h ], (2.21)

ρ δtũ
n
2 + α−1

1 ũn+1
2 = −P⊥h [∇pn+1

h ], (2.22)

ρ δtũ
n
3 + α−1

1 ũn+1
3 = P⊥h [∇ · σn+1

h ], (2.23)

λ

2ηp
δtσ̃

n + α−1
3 σ̃n+1 = P⊥h

[
∇sun+1

h − λ

2ηp

(
a · ∇σn+1

h − σn+1
h · ∇a− (∇a)T · σn+1

h

)]
, (2.24)

where α1 and α3 are the stabilization parameters (the notation of [31] has been kept), computed within each
element K and at each time level n+ 1 as

α−1
1 = c1

η0

h2
+
‖a‖L∞(K)

h
, (2.25)

α−1
3 = c3

1

2ηp
+ c4

(
λ

2ηp

‖a‖L∞(K)

h
+

λ

ηp
‖∇a‖L∞(K)

)
, (2.26)

where ci, i = 1, 2, 3, 4, are algorithmic constants (see [7, 9] for an overview of the motivation to obtain α1,
α3 and the choice of the algorithmic constants). Observe that equations (2.21)-(2.24) result from the time
evolution of the SGSs; these are in fact ordinary differential equations that need to be integrated in time at
the numerical integration points of the FE mesh.

Let us move now to the LCR. Even though it is not crucial, from the implementation point of view it is
easier to compute the SGSs in terms of stresses rather than in terms of the variable ψ. Thus, the stabilized
FE problem we consider in this case can be written as follows: given unh ∈ Vh,0, ũni ∈ V⊥h , i = 1, 2, 3,
ψ̄
n
h ∈ Ῡh and σ̃n ∈ Υ⊥h , find U

n+1
h = [un+1

h , pn+1
h , ψ̄

n+1
h ] ∈ Vh,0 × Qh × Ῡh, ũn+1

i ∈ V⊥h , i = 1, 2, 3, and
σ̃n+1 ∈ Υ⊥h such that

(ρ δtu
n
h,vh) +

(
λ

2λ0
δtψ̄

n
h,χh

)
+Blog(Un+1

h ,V h)− Llog(V h)

−
(
ũn+1

1 , ρa · ∇vh
)
−
(
ũn+1

2 ,∇qh
)

+
(
ũn+1

3 ,∇ · χh
)
,

+

(
σ̃n+1,

1

2ηp
χh +∇svh −

λ

2ηp

(
a · ∇χh + χh · (∇a)T +∇a · χh

))
= 0 (2.27)

ρ δtũ
n
1 + α−1

1 ũn+1
1 = −P⊥h

[
ρa · ∇un+1

h

]
, (2.28)
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ρ δtũ
n
2 + α−1

1 ũn+1
2 = −P⊥h

[
∇pn+1

h

]
, (2.29)

ρ δtũ
n
3 + α−1

1 ũn+1
3 = P⊥h

[
ηp
λ0
∇ · ψ̄n+1

h

]
, (2.30)

λ

2ηp
δtσ̃

n + α−1
3 σ̃n+1 = P⊥h

[
∇un+1

h − λ

2λ0

(
a · ∇ψ̄n+1

h − ψ̄n+1
h · ∇a− (∇a)T · ψ̄n+1

h + 2∇suh
)]
. (2.31)

The parameters α1 and α3 are still given by (2.25) and (2.26), respectively.

3. Stability analysis in terms of the sub-grid scales

The analysis to be presented follows the same lines as the one presented in [30] for the stabilized FE
approximation of the incompressible flow of Newtonian fluids, where the SGSs are also considered time-
dependent. As in that reference, the analysis developed in this section aims at emphasizing the effect of
tracking the SGSs in time from the analytical perspective. Here we extend it to the two versions we are
considering of the viscoelastic flow problem and also using the three velocity SGSs introduced rather than
only one.

In this section we will prove stability considering that the SGSs are independent unknowns, deferring to
the following section stability results in terms of the FE unknowns only. Let us remark here that the stability
results to be obtained are independent of the expression of the stabilization parameters α1 and α3.

3.1. Preliminaries

Let us introduce some additional notation and tools to be used in the following:

• Consider a sequence of functions defined on Ω, F = {fn}, with index n ranging from 1 to N ,
the number of time intervals of the partition in time. Given a Banach space X of functions in
Ω, for 1 ≤ p < ∞ we say that F ∈ `p (X) if

∑N
n=1 δt ‖fn‖

p
X ≤ C < ∞, and F ∈ `∞ (X) if

maxn=1,...,N ‖fn‖X ≤ C <∞. Here and below, C denotes a generic positive constant.
• Given two sequences of functions defined in Ω, F = {fn} and G = {gn}, with f0 and g0 also given,

we will make use of the following discrete version of the integration-by-parts formula:

N−1∑
n=0

〈
δfn, gn+1〉 = −

N−1∑
n=0

〈fn, δgn〉+
〈
fN , gN

〉
−
〈
f0, g0

〉
.

• For FE functions fh in Ω, we will make use of the classical inverse estimate

‖∇fh‖ ≤
Cinv

h
‖fh‖ , (3.1)

which holds for quasi-uniform FE partitions as those we are considering, Cinv being a constant.
• Regarding the initial conditions, we will assume that they all have components in L2(Ω), both the

FE components and the SGSs. The latter, in fact, can be taken as zero, as considering the initial
conditions in the FE spaces keeps the convergence order of the formulation (which will not be analyzed
here). Furthermore, for the LCR we assume that

∥∥Ph (Eψ0
h

)∥∥ is bounded uniformly in h.



10 TITLE WILL BE SET BY THE PUBLISHER

• Concerning the force terms, the assumption of f ∈ L2
(
]0, tf [;L

2(Ω)d
)
for the standard formulation

leads to stability. We consider tf fixed and bounded (its exponential appears when applying the dis-
crete Gronwall inequality). For the time discrete problem, the counterpart of f ∈ L2

(
]0, tf [;L

2(Ω)d
)

is {fn} ∈ `2
(
L2(Ω)d

)
. Similar assumptions apply to the LCR for fu and fψ.

• We shall use the notation . for ≤ up to positive constants.

3.2. Stability bounds for the standard formulation

The first result we will prove is a classical stability estimate, in which only velocity and stresses are implied,
but not the pressure. In particular, for the standard formulation, the terms involved are the FE components
of the velocity and stresses and the SGSs of the velocity and the stresses (Theorem 1). In the case of the
LCR, the analogous result is proved in Theorem 2.

Theorem 1 (Stability bounds for the standard formulation). Let un+1
h , pn+1

h and σn+1
h be the solution of

(2.20) and ũn+1
1 , ũn+1

2 , ũn+1
3 , σ̃n+1 solutions of (2.21), (2.22), (2.23) and (2.24), respectively. Under the

assumptions stated for a, the following stability bounds hold for all δt > 0 and λ small enough:

max
n=0,...,N−1

{
ρ
∥∥un+1

h

∥∥2
+

λ

2ηp

∥∥σn+1
h

∥∥2
+ ρ

∥∥ũn+1
1

∥∥2
+ ρ

∥∥ũn+1
2

∥∥2
+ ρ

∥∥ũn+1
3

∥∥2
+

λ

2ηp

∥∥σ̃n+1
∥∥2
}

+

N−1∑
n=0

δt2ηs
∥∥∇un+1

h

∥∥2
+

N−1∑
n=0

δt
1

2ηp

∥∥σn+1
h

∥∥2
+

N−1∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2

+

N−1∑
n=0

δt
(∥∥α−1/2

1 ũn+1
1

∥∥2
+
∥∥α−1/2

1 ũn+1
2

∥∥2
+
∥∥α−1/2

1 ũn+1
3

∥∥2
)

.
N−1∑
n=0

δt
λ

ρ

∥∥fn+1
∥∥2

+ ρ
∥∥u0

h

∥∥2
+

λ

2ηp

∥∥σ0
h

∥∥2
.

Therefore, if {fn} ∈ `2(L2(Ω)d), u0
h ∈ L2(Ω)d, and σ0

h ∈ L2(Ω)d×dsym we have that

{unh} ∈ `∞
(
L2(Ω)d

)
∩ `2

(
H1(Ω)d

)
; {ũn1}, {ũn2}, {ũn3} ∈ `∞

(
L2(Ω)d

)
;

{α−1/2
1 ũn1}, {α

−1/2
1 ũn2}, {α

−1/2
1 ũn3} ∈ `2

(
L2(Ω)d

)
;

{σnh}, {σ̃n} ∈ `∞
(
L2(Ω)d×dsym

)
; {α−1/2

3 σ̃n} ∈ `2
(
L2(Ω)d×d

sym

)
.

Proof. In order to obtain stability bounds for the FE solution, first of all we test (2.20) by vh = un+1
h ,

qh = pn+1
h and χh = σn+1

h . Under the assumptions of the Theorem, we have that
(
a · ∇un+1

h ,un+1
h

)
= 0

and
(
a · ∇σn+1

h ,σn+1
h

)
= 0. Thus, we are left with:

ρ
(
δunh,u

n+1
h

)︸ ︷︷ ︸
(1)

+
λ

2ηp

(
δσnh,σ

n+1
h

)
︸ ︷︷ ︸

(2)

+δt2ηs
(
∇sun+1

h ,∇sun+1
h

)

+ δt
1

2ηp

(
σn+1
h ,σn+1

h

)
+ δt

λ

2ηp

(
−σn+1

h · ∇a− (∇a)T · σn+1
h ,σn+1

h

)
︸ ︷︷ ︸

(3)



TITLE WILL BE SET BY THE PUBLISHER 11

− δt
(
ũn+1

1 , ρa · ∇un+1
h

)
− δt

(
ũn+1

2 ,∇pn+1
h

)
+ δt

(
ũn+1

3 ,∇ · σn+1
h

)
+ δt

(
σ̃n+1,∇sun+1

h

)
− δt

(
σ̃n+1,

λ

2ηp

(
a · ∇σn+1

h + σn+1
h · (∇a)T +∇a · σn+1

h

))
= δt

(
fn+1,un+1

h

)︸ ︷︷ ︸
(4)

.

Now, we can add up the resulting equalities from n = 0 to an arbitrary time levelM and consider the equality

(a, a− b) =
1

2
a²− 1

2
b2 +

1

2
(a− b)2

.

In particular, if a and b are consecutive terms of a series, the term
1

2
a²− 1

2
b2 would be a telescoping series.

We then have:

(1) =

M∑
n=0

ρ
(
δunh,u

n+1
h

)
=

1

2

M∑
n=0

ρ ‖δunh‖
2

+
1

2
ρ
∥∥uM+1

h

∥∥2 − 1

2
ρ
∥∥u0

h

∥∥2
,

(2) =

M∑
n=0

λ

2ηp

(
δσnh,σ

n+1
h

)
=

1

2

M∑
n=0

λ

2ηp
‖δσnh‖

2
+

1

2

λ

2ηp

∥∥σM+1
h

∥∥2 − 1

2

λ

2ηp

∥∥σ0
h

∥∥2
.

We can bound (3) as:

(3) =−
M∑
n=0

δt
λ

2ηp

(
σn+1
h · ∇a+ (∇a)T · σn+1

h ,σn+1
h

)
≥ −

M∑
n=0

δt
λ

ηp
‖∇a‖L∞(Ω)

∥∥σn+1
h

∥∥2
.

Also considering the inequality
(
fn+1,un+1

h

)
≤ γ

2

∥∥fn+1
∥∥2

+ 1
2γ

∥∥un+1
h

∥∥2 ∀γ > 0, and taking the constant γ

as γ =
λε0

ρ
, with ε0 > 0 dimensionless:

(4) =

M∑
n=0

δt
(
fn+1,un+1

h

)
≤

M∑
n=0

δt
λε0

2ρ

∥∥fn+1
∥∥2

+

M∑
n=0

δt
ρ

2λε0

∥∥un+1
h

∥∥2
.

The last term is absorbed by the left-hand-side (LHS) using the discrete Gronwall inequality (see for example
[32]) for ε0 large enough. Thus, we obtain the following expression:

ρ
∥∥uM+1

h

∥∥2
+

M∑
n=0

ρ ‖δunh‖
2

+
λ

2ηp

∥∥σM+1
h

∥∥2
+

M∑
n=0

λ

2ηp
‖δσnh‖

2

+

M∑
n=0

δt2ηs
∥∥∇sun+1

h

∥∥2
+

M∑
n=0

δt

(
1

2ηp
− λ

ηp
‖∇a‖L∞(Ω)

)∥∥σn+1
h

∥∥2

−
M∑
n=0

δt
(
ũn+1

1 , ρa · ∇un+1
h

)
−

M∑
n=0

δt
(
ũn+1

2 ,∇pn+1
h

)
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+

M∑
n=0

δt
(
ũn+1

3 ,∇ · σn+1
h

)
+

M∑
n=0

δt
(
σ̃n+1,∇sun+1

h

)
−

M∑
n=0

δt

(
σ̃n+1,

λ

2ηp

(
a · ∇σn+1

h + σn+1
h · (∇a)T +∇a · σn+1

h

))

.
M∑
n=0

δt
λ

2ρ

∥∥fn+1
∥∥2

+ ρ
∥∥u0

h

∥∥2
+

λ

2ηp

∥∥σ0
h

∥∥2
. (3.2)

Now, multiplying (2.21) by ũn+1
1 , integrating over the whole domain and adding up the result from n = 0 to

n = M , we get

ρ
∥∥ũM+1

1

∥∥2
+

M∑
n=0

ρ
∥∥δũn1∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
1

∥∥2
. −

M∑
n=0

δt
(
ũn+1

1 , P⊥h
[
ρa · ∇un+1

h

])
+ ρ

∥∥ũ0
1

∥∥2
. (3.3)

Proceeding analogously for the remaining SGS expressions, (2.22) is multiplied by ũn+1
2 , (2.23) by ũn+1

3 and
(2.24) by σ̃n+1:

ρ
∥∥ũM+1

2

∥∥2
+

M∑
n=0

ρ
∥∥δũn2∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
2

∥∥2
. −

M∑
n=0

δt
(
ũn+1

2 , P⊥h
[
∇pn+1

h

])
+ ρ

∥∥ũ0
2

∥∥2
, (3.4)

ρ
∥∥ũM+1

3

∥∥2
+

M∑
n=0

ρ
∥∥δũn3∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
3

∥∥2
.

M∑
n=0

δt
(
ũn+1

3 , P⊥h
[
∇ · σn+1

h

])
+ ρ

∥∥ũ0
3

∥∥2
, (3.5)

λ

2ηp

∥∥σ̃M+1
∥∥2

+

M∑
n=0

λ

2ηp

∥∥δσ̃n∥∥2
+

M∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2
.

M∑
n=0

δt
(
σ̃n+1, P⊥h

[
∇sun+1

h

− λ

2ηp

(
a · ∇σn+1

h − σn+1
h · ∇a− (∇a)

T · σn+1
h

)])
+

λ

2ηp

∥∥σ̃0
∥∥2
. (3.6)

Finally, adding up equations (3.2)-(3.6) some terms are cancelled. Note that for any L2(Ω) vector function
v we have

(
ũn+1,v

)
=
(
ũn+1, P⊥h [v]

)
and for any L2(Ω)d×d tensor

(
σ̃n+1,χ

)
=
(
σ̃n+1, P⊥h [χ]

)
. The only

term that remains to be bounded in the right-hand-side (RHS) of (3.6) is

M∑
n=0

δt

(
σ̃n+1,

λ

ηp

(
σn+1
h · ∇a+ (∇a)

T · σn+1
h

))
≤

M∑
n=0

δt
λ

ηp
‖∇a‖L∞(Ω)

[
ε1

2

∥∥σ̃n+1
∥∥2

+
1

2ε1

∥∥σn+1
h

∥∥2
]
,

for any ε1 > 0. For this parameter small enough, the first term can be absorbed by λ
2ηp

∥∥σ̃M+1
∥∥2 applying

the discrete Gronwall inequality. Therefore, the final inequality is as follows:

ρ
∥∥uM+1

h

∥∥2
+

λ

2ηp

∥∥σM+1
h

∥∥2
+ ρ

∥∥ũM+1
1

∥∥2
+ ρ

∥∥ũM+1
2

∥∥2
+ ρ

∥∥ũM+1
3

∥∥2
+

λ

2ηp

∥∥σ̃M+1
∥∥2

+

M∑
n=0

δt2ηs
∥∥∇sun+1

h

∥∥2
+

M∑
n=0

δt
1

2ηp

(
1− λ ‖∇a‖L∞(Ω) −

λ

2ε1
‖∇a‖L∞(Ω)

)∥∥σn+1
h

∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
1

∥∥2
+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
2

∥∥2
+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
3

∥∥2
+

M∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2
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.
M∑
n=0

δt
λ

2ρ

∥∥fn+1
∥∥2

+ ρ
∥∥u0

h

∥∥2
+ ρ

(∥∥ũ0
1

∥∥2
+
∥∥ũ0

2

∥∥2
+
∥∥ũ0

3

∥∥2
)

+
λ

2ηp

∥∥σ0
h

∥∥2
+

λ

2ηp

∥∥σ̃0
∥∥2
,

from where the theorem follows for λ small enough. �

3.3. Stability bounds for the log-conformation reformulation

We can prove now a similar stability estimate for the LCR:

Theorem 2 (Stability bounds for the LCR). Let un+1
h , pn+1

h and ψ̄h
n+1 be the solution of (2.27) and ũn+1

1 ,
ũn+1

2 , ũn+1
3 , σ̃n+1 solutions of (2.28), (2.29), (2.30) and (2.31), respectively. Under the assumptions of

Theorem 1, the following stability bounds hold for all δt > 0:

max
n=0,...,N−1

{
ρ
∥∥un+1

h

∥∥2
+

λ

2λ0

ηp
λ0

∥∥ψ̄n+1
h

∥∥2
+ ρ

∥∥ũn+1
1

∥∥2
+ ρ

∥∥ũn+1
2

∥∥2
+ ρ

∥∥ũn+1
3

∥∥2
+

λ

2ηp

∥∥σ̃n+1
∥∥2
}

+

N−1∑
n=0

δt2ηs
∥∥∇un+1

h

∥∥2
+

N−1∑
n=0

δt
ηp
λ2

0

∥∥ψ̄n+1
h

∥∥2
+

N−1∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2

+

N−1∑
n=0

δt
(∥∥α−1/2

1 ũn+1
1

∥∥2
+
∥∥α−1/2

1 ũn+1
2

∥∥2
+
∥∥α−1/2

1 ũn+1
3

∥∥2
)

.
M∑
n=0

λ

2ρ
δt
∥∥fn+1

u

∥∥2
+

M∑
n=0

λ

2

ηp
λ0
δt
∥∥∥fn+1

ψ

∥∥∥2

+ ρ
∥∥u0

h

∥∥2
+

λ

2λ0

ηp
λ0

∥∥∥ψ̄0
h

∥∥∥2

.

Therefore, if {fnu} ∈ `2(L2(Ω)d), {fnψ} ∈ L2(Ω)d×dsym , u0
h ∈ L2(Ω)d and ψ̄0

h ∈ L2(Ω)d×dsym we have that

{unh} ∈ `∞
(
L2(Ω)d

)
∩ `2

(
H1(Ω)d

)
; {ũn1}, {ũn2}, {ũn3} ∈ `∞

(
L2(Ω)d

)
;

{α−1/2
1 ũn1}, {α

−1/2
1 ũn2}, {α

−1/2
1 ũn3} ∈ `2

(
L2(Ω)d

)
;

{σ̃n}, {ψ̄nh} ∈ `∞
(
L2(Ω)d×dsym

)
; {α−1/2

3 σ̃n} ∈ `2
(
L2(Ω)d×d

sym

)
.

Proof. In order to obtain stability bounds for the FE solution, first of all we test (2.27) by vh = un+1
h ,

qh = pn+1
h and χh =

ηp
λ0
ψ̄
n+1
h . Using the assumptions of Theorem 1, we have that

(
a · ∇un+1

h ,un+1
h

)
= 0

and
(
a · ∇ψ̄n+1

h , ψ̄
n+1
h

)
= 0. We thus obtain:

ρ
(
δunh,u

n+1
h

)︸ ︷︷ ︸
(1)

+
λ

2λ0

ηp
λ0

(
δψ̄

n
h, ψ̄

n+1
h

)
︸ ︷︷ ︸

(2)

+δt2ηs
(
∇sun+1

h ,∇sun+1
h

)

+ δt
1

2λ0

ηp
λ0

(
ψ̄
n+1
h , ψ̄

n+1
h

)
+

λ

2λ0

ηp
λ0
δt
(

2∇sun+1
h , ψ̄

n+1
h

)
︸ ︷︷ ︸

(3)

− δt λ
2λ0

ηp
λ0

(
ψ̄
n+1
h · ∇a+ (∇a)T · ψ̄n+1

h , ψ̄
n+1
h

)
︸ ︷︷ ︸

(4)

− δt
(
ũn+1

1 , ρa · ∇un+1
h

)
− δt

(
ũn+1

2 ,∇pn+1
h

)
+
ηp
λ0
δt
(
ũn+1

3 ,∇ · ψ̄n+1
h

)
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+ δt

(
σ̃n+1,∇sun+1

h − λ

2λ0

(
a · ∇ψ̄n+1

h + ψ̄
n+1
h · (∇a)T +∇a · ψ̄n+1

h

))
= δt

(
fn+1
u ,un+1

h

)︸ ︷︷ ︸
(5)

+ δt

(
fn+1
ψ ,

ηp
λ0
ψ̄
n+1
h

)
︸ ︷︷ ︸

(6)

.

Following the same strategy as in the proof of Theorem 1, we have:

(1) =

M∑
n=0

ρ
(
δunh,u

n+1
h

)
=

1

2

M∑
n=0

ρ ‖δunh‖2 +
1

2
ρ
∥∥uM+1

h

∥∥2 − 1

2
ρ
∥∥u0

h

∥∥2
,

(2) =

M∑
n=0

λ

2λ0

ηp
λ0

(
δψ̄

n
h, ψ̄

n+1
h

)
=

1

2

M∑
n=0

λ

2λ0

ηp
λ0

∥∥δψ̄nh∥∥2
+

1

2

λ

2λ0

ηp
λ0

∥∥∥ψ̄M+1
h

∥∥∥2

− 1

2

λ

2λ0

ηp
λ0

∥∥∥ψ̄0
h

∥∥∥2

,

(3) =

M∑
n=0

λ

2λ0

ηp
λ0
δt
(
∇sun+1

h , ψ̄
n+1
h

)
≥

M∑
n=0

ηp
λ

2λ0
δt

[
1

2ε0λ2
0

∥∥∥ψ̄n+1
h

∥∥∥2

+
ε0

2

∥∥∇sun+1
h

∥∥2
]
,

(4) = −
M∑
n=0

δt
λ

2λ0

ηp
λ0

(
ψ̄
n+1
h · ∇a+ (∇a)T · ψ̄n+1

h , ψ̄
n+1
h

)
≥ −

M∑
n=0

δt
λ

λ0

ηp
λ0
‖∇a‖L∞(Ω)

∥∥∥ψ̄n+1
h

∥∥∥2

,

(5) =

M∑
n=0

δt
(
fn+1
u ,un+1

h

)
≤

M∑
n=0

λε1

2ρ
δt
∥∥fn+1

u

∥∥2
+

M∑
n=0

ρ

2λε1
δt
∥∥un+1

h

∥∥2
,

(6) =

M∑
n=0

δt

(
fn+1
ψ ,

ηp
λ0
ψ̄
n+1
h

)
≤

M∑
n=0

δt
ηp
λ0

λε2

2

∥∥∥fn+1
ψ

∥∥∥2

+

M∑
n=0

δt
ηp
λ0

1

2λε2

∥∥∥ψ̄n+1
h

∥∥∥2

.

The last terms in (5) and (6) can be absorbed by the LHS for ε1 and ε2 large enough using the discrete
Gronwall inequality. To sum up we obtain the following expression:

ρ
∥∥uM+1

h

∥∥2
+

M∑
n=0

ρ ‖δunh‖+
λ

2λ0

ηp
λ0

∥∥∥ψ̄M+1
h

∥∥∥2

+

M∑
n=0

λ

2λ0

ηp
λ0

∥∥δψ̄nh∥∥2
+

M∑
n=0

δt

(
2ηs − ηp

ε0

2

λ

λ0

)∥∥∇sun+1
h

∥∥2

+

M∑
n=0

δt
ηp

2λ0

(
1

λ0
− λ

2ε0λ2
0

− 2λ

λ0
‖∇a‖L∞(Ω)

)∥∥∥ψ̄n+1
h

∥∥∥2

−
M∑
n=0

δt
(
ũn+1

1 , ρa · ∇un+1
h

)
−

M∑
n=0

δt
(
ũn+1

2 ,∇pn+1
h

)
+

M∑
n=0

δt
ηp
λ0

(
ũn+1

3 ,∇ · ψ̄n+1
h

)

+

M∑
n=0

δt

(
σ̃n+1,∇sun+1

h − λ

2λ0

(
a · ∇ψ̄n+1

h + ψ̄
n+1
h · (∇a)T +∇a · ψ̄n+1

h

))

.
M∑
n=0

λ

2ρ
δt
∥∥fn+1

u

∥∥2
+

M∑
n=0

λ

2

ηp
λ0
δt
∥∥∥fn+1

ψ

∥∥∥2

+ ρ
∥∥u0

h

∥∥2
+

λ

2λ0

ηp
λ0

∥∥∥ψ̄0
h

∥∥∥2

. (3.7)
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Now, we multiply (2.28) by ũn+1
1 , integrate over the whole domain and add up the result from n = 0 to

n = M :

ρ
∥∥ũM+1

1

∥∥2
+

M∑
n=0

ρ
∥∥δũn1∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
1

∥∥2
. −

M∑
n=0

δt
(
ũn+1

1 , P⊥h
[
ρa · ∇un+1

h

])
+ ρ

∥∥ũ0
1

∥∥2
, (3.8)

Analogously, we multiply (2.29) by ũn+1
2 , (2.30) by ũn+1

3 and (2.31) by σ̃n+1, to obtain:

ρ
∥∥ũM+1

2

∥∥2
+

M∑
n=0

ρ
∥∥δũn2∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
2

∥∥2
. −

M∑
n=0

δt
(
ũn+1

2 , P⊥h
[
∇pn+1

h

])
+ ρ

∥∥ũ0
2

∥∥2
, (3.9)

ρ
∥∥ũM+1

3

∥∥2
+

M∑
n=0

ρ
∥∥δũn3∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
3

∥∥2
.

M∑
n=0

δt
ηp
λ0

(
ũn+1

3 , P⊥h

[
∇ · ψ̄n+1

h

])
+ ρ

∥∥ũ0
3

∥∥2
, (3.10)

λ

2ηp

∥∥σ̃M+1
∥∥2

+

M∑
n=0

λ

2ηp

∥∥δσ̃n∥∥2
+

M∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2

.
M∑
n=0

δt
(
σ̃n+1, P⊥h

[
∇sun+1

h − λ

λ0
∇sun+1

h

− λ

2λ0

(
a · ∇ψ̄n+1

h − ψ̄n+1
h · (∇a)T −∇a · ψ̄n+1

h

)])
+

λ

2ηp

∥∥σ̃0
∥∥2
. (3.11)

Adding equations (3.7)-(3.11), some terms are cancelled. The term that remains to be bounded is:

λ

2λ0

M∑
n=0

δt
(
σ̃n+1, ψ̄

n+1
h · (∇a)

T
+∇a · ψ̄n+1

h

)

≥ − λ

2λ0

M∑
n=0

δt ‖∇a‖L∞(Ω)

[
λ0

2ηpε3

∥∥σ̃n+1
∥∥2

+
ε3

2

ηp
λ0

∥∥∥ψ̄n+1
h

∥∥∥2
]
.

The first term in the RHS can be controlled by the first term in the LHS of (3.11) using the discrete Gronwall
inequality for ε3 large enough. Altogether, we are left with:

ρ
∥∥uM+1

h

∥∥2
+

λ

2λ0

ηp
λ0

∥∥∥ψ̄M+1
h

∥∥∥2

+ ρ
∥∥ũM+1

1

∥∥2
+ ρ

∥∥ũM+1
2

∥∥2
+ ρ

∥∥ũM+1
3

∥∥2
+

λ

2ηp

∥∥σ̃M+1
∥∥2

+

M∑
n=0

δt

(
2ηs − ηp

ε0

2

λ

λ0

)∥∥∇sun+1
h

∥∥2

+

M∑
n=0

δt
ηp
λ0

(
1

2λ0
− λ

2ε0λ2
0

− λ

λ0

(
2 +

ε3

2

)
‖∇a‖L∞(Ω)

)∥∥∥ψ̄n+1
h

∥∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
1

∥∥2
+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
2

∥∥2
+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
3

∥∥2
+

M∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2

.
M∑
n=0

λε1

2ρ
δt
∥∥fn+1

u

∥∥2
+

M∑
n=0

λε2

2

ηp
λ0
δt
∥∥∥fn+1

ψ

∥∥∥2

+ ρ
∥∥u0

h

∥∥2
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+
λ

2λ0

ηp
λ0

∥∥∥ψ̄0
h

∥∥∥2

+ ρ
∥∥ũ0

1

∥∥2
+ ρ

∥∥ũ0
2

∥∥2
+ ρ

∥∥ũ0
3

∥∥2
+

λ

2ηp

∥∥σ̃0
∥∥2

from where the theorem follows for λ small enough. �

4. Stability analysis in terms of the finite element unknowns

4.1. Preliminaries

The stability obtained for ũn+1 and σ̃n+1 will be translated now into stability in terms of un+1
h , σn+1

h

and pn+1
h (and in terms of un+1

h , ψn+1
h and pn+1

h in the case of the LCR) using first dual norms (Theorems
3, 4, 5). Later, these results will be extended to a natural norm if a certain relationship between the time
step size and the stabilization parameters α1 and α3 holds (Theorem 6). If this relationship does not hold,
the stability results to be obtained are rather weak. For the case of the transient Stokes problem, they can
be improved by obtaining bounds for the discrete time derivative as done in [12]; in fact, this technique also
allows one to obtain explicit estimates for the pressure. However, we will not pursue this path in this work,
as for the problem we consider that would require stringent and unrealistic conditions on the Reynolds and
Weissenberg numbers.

The result obtained in Theorem 1 gives stability for {unh}, {ũn}, {σnh} and {σ̃
n}, and Theorem 2 for

{
ψ̄
n
h

}
instead of {σnh}. In the following we shall see that from these results we can get stability on the following
terms:

mn
1 := ρa · ∇unh, (4.1)

mn
2 := ∇pnh, (4.2)

mn
3 := −∇ · σnh, (4.3)

mn
4 :=

1

2ηp
σnh −∇sunh +

λ

2ηp

(
a · ∇σnh − σnh · ∇a− (∇a)T · σnh

)
, (4.4)

for n = 1, ..., N. In case of the LCRmn
1 andmn

2 are defined as in the standard formulation, butmn
3 andmn

4

must be redefined:

mn
3 := − ηp

λ0
∇ · ψ̄nh, (4.5)

mn
4 :=

1

2λ0
ψ̄
n
h −∇sunh +

λ

2λ0

(
2∇sunh + a · ∇ψ̄nh − ψ̄

n
h · ∇a− (∇a)T · ψ̄nh

)
. (4.6)

The term mn
1 provides control on the convective derivative, mn

2 over the gradient of the pressure, mn
3 on

the divergence of the stress tensor and mn
4 on some terms of the constitutive equation. We shall see that

for terms mn
1 , mn

2 and mn
3 it is possible to obtain separate stability of their components in V⊥h , but not of

their component in Vh,0. Furthermore, an additional condition on the FE mesh will be needed to obtain full
stability of the sum of these terms. For deeper discussion in the case of the Oseen problem, see [33].

We will follow the same procedure as in [30]. As indicated there, in the general situation without imposing
any condition on δt and α1, α3, we will prove stability in a rather weak dual norm. However, if we assume a
condition between α1, α3 and δt it is possible to improve this stability bound.
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Let us describe the dual norm in which stability will be first proved. Given a sequence F = {fn}, of scalar,
vector or tensor functions on Ω, we define the following norms:

‖F‖Xi
:=

(
N∑
n=0

δt ‖fn‖2
)1/2

+

N−1∑
n=0

δt
∥∥∥α1/2

i δtf
n
∥∥∥+ max

n=0,...,N

{
α

1/2
i ‖fn‖

}
, (4.7)

with i = 1, 3. These norms endow the spaces of sequences

Xi =
{
F = {fn} | F ∈ `2

(
L2 (Ω)

)
,
{
α

1/2
i δtf

n
}
∈ `1

(
L2 (Ω)

)
,
{
α

1/2
i fn

}
∈ `∞

(
L2 (Ω)

)}
of a Banach structure. Note that {δtfn} ∈ `1

(
L2 (Ω)

)
and F ∈ `∞

(
L2 (Ω)

)
certainly define strong topologies,

but the factors α1/2
i , i = 1, 3, prevent from any comparison between the different terms. Let now X ′i be the

dual space of Xi, the duality pairing being

〈F,G〉Xi×X′
i

:=

N∑
n=1

δt 〈fn, gn〉 ,

with F = {fn} ∈ Xi, G = {gn} ∈ X ′i. The norm in X ′i is given by

‖G‖X′
i

:= sup
F∈Xi,F 6=0

〈F,G〉Xi×X′
i

‖F‖Xi

. (4.8)

4.2. Stability in dual norms

Let us start proving some stability for {mn
i }, i = 1, 2, 3, in the norm of X ′1. Recall that the L2(Ω)

projection onto Vh is Ph, whereas P⊥h is the L2(Ω) projection onto V⊥h . The L2(Ω) projection onto the
velocity FE space Vh,0 will be denoted by Ph,0.

Theorem 3 (Stability in the dual norm X ′1 for the momentum equation terms). Under the assumptions of
Theorem 1, suppose also that the constants c1 and c3 in the definitions (2.25)-(2.26) of α1 and α3, respectively,
satisfy 2c3 ≤ c1. Then, there is a constant C such that

3∑
i=1

∥∥∥{α1/2
1 P⊥h [mn

i ]
}∥∥∥

X′
1

+
∥∥∥{α1/2

1 Ph,0 [mn
1 +mn

2 +mn
3 ]
}∥∥∥

X′
1

≤ C.

This result holds for both the standard formulation and the LCR.

Proof. Let {vn} ∈ X1 be an arbitrary sequence, which can be split as vn = vnh +vnb + ṽn with vnh = Ph,0[vn]

and ṽn = P⊥h [vn]. We can write equations (2.21)-(2.23) as

ρ δũni + δtα−1
1 ũn+1

i = −δtP⊥h
[
mn+1
i

]
, i = 1, 2, 3.

Multiplying each equation by α1/2
1 ṽn+1, integrating over Ω, and adding up the result from n = 0 to N − 1,

integrating by parts using the discrete integration formula and using the Cauchy-Schwartz inequality, we



18 TITLE WILL BE SET BY THE PUBLISHER

have:

N−1∑
n=0

δtα
1/2
1

(
P⊥h

[
mn+1
i

]
, ṽn+1

)
= −

N−1∑
n=0

ρα
1/2
1

(
δũni , ṽ

n+1
)
−
N−1∑
n=0

δtα
−1/2
1

(
ũn+1
i , ṽn+1

)
=

N−1∑
n=0

ρα
1/2
1 (ũni , δṽ

n)− ρα1/2
1

(
ũNi , ṽ

N
)

+ ρα
1/2
1

(
ũ0
i , ṽ

0
)
−
N−1∑
n=0

δtα
−1/2
1

(
ũn+1
i , ṽn+1

)
.ρ max

n=0,...,N−1
{‖ũni ‖}

N−1∑
n=0

δtα
1/2
1 ‖δtṽn‖+ 2ρ max

n=0,...,N−1
{‖ũni ‖}α

1/2
1 max

n=0,..,N
{‖ṽn‖}

+

(
N−1∑
n=0

δt
∥∥∥α−1/2

1 ũn+1
i

∥∥∥2
)1/2(N−1∑

n=0

δt
∥∥ṽn+1

∥∥2

)1/2

. (4.9)

Here and in what follows we have considered α1 constant to simplify the writing. Now, using Theorem 1 and
the definition of norm X1 (4.7), we can conclude that

〈
{vn} , α1/2

1

{
P⊥h [mn

i ]
}〉

X1×X′
1

=

N−1∑
n=0

δtα
1/2
1

(
P⊥h

[
mn+1
i

]
, ṽn+1

)
. ‖{vn}‖X1

.

Consequently, adding the three inequalities for i = 1, 2, 3 we have bounded∥∥∥{α1/2
1 P⊥h [mn

1 ]
}∥∥∥

X′
1

+
∥∥∥{α1/2

1 P⊥h [mn
2 ]
}∥∥∥

X′
1

+
∥∥∥{α1/2

1 P⊥h [mn
3 ]
}∥∥∥

X′
1

≤ C. (4.10)

The next step is to control the FE component, that is, to say, the term Ph,0 [mn
1 +mn

2 +mn
3 ] . Let us define,

for simplicity, the sequence mn
s =

∑3
i=1m

n
i . For this, we take equation (2.20), considering qh = 0 and

χh = 0, and vnh as defined at the beginning of the proof. Therefore, employing arguments similar to those of
the previous development, we have that:

N−1∑
n=0

δtα
1/2
1

(
Ph,0

[
mn+1
s

]
,vn+1
h

)
=

N−1∑
n=0

δtα
1/2
1

(
a · ∇un+1

h +∇pn+1
h −∇ · σn+1

h ,vn+1
h

)
=

N−1∑
n=0

δtα
1/2
1

〈
fn+1,vn+1

h

〉
−
N−1∑
n=0

α
1/2
1

(
δunh,v

n+1
h

)
−
N−1∑
n=0

2ηsδtα
1/2
1

(
∇sun+1

h ,∇svn+1
h

)
+

N−1∑
n=0

δtα
1/2
1

(
ũn+1

1 ,a · ∇vn+1
h

)
−
N−1∑
n=0

δtα
1/2
1

(
σ̃n+1,∇svn+1

h

)
.α1/2

1 max
n=1,...,N

{‖vnh‖}
N−1∑
n=0

δt
∥∥fn+1

∥∥+ max
n=1,...,N

{‖unh‖}
N−1∑
n=0

δtα
1/2
1 ‖δtvnh‖

+ max
n=0,...,N

{‖unh‖}α
1/2
1 max

n=1,...,N
{‖vnh‖}+

N−1∑
n=0

δtη1/2
s

∥∥∇sun+1
h

∥∥∥∥vn+1
h

∥∥
+

N−1∑
n=0

δtα1
−1/2

∥∥ũn+1
1

∥∥∥∥vn+1
h

∥∥+

N−1∑
n=0

δtα
−1/2
3

∥∥σ̃n+1
∥∥ ∥∥vn+1

h

∥∥ . (4.11)



TITLE WILL BE SET BY THE PUBLISHER 19

In particular, the three last terms have been obtained using the inverse estimate (3.1) together with the
definitions of α1 and α3, which in particular imply:

η0

h
α

1/2
1 ≤ Cη1/2

0 ,
‖a‖L∞(K)

h
≤ α−1

1 ,
α

1/2
1

h
≤ α−1/2

3 .

The last inequality holds under the condition 2c3 ≤ c1, being c1 and c3 the constants of the stabilization
parameters α1 and α3. Using now the assumptions on the data, Cauchy’s inequality for the last three terms
of (4.11) and finally using Theorem 1, it follows that

〈
{vn} , α1/2

1 {Ph,0 [mn
s ]}
〉
X1×X′

1

=

N−1∑
n=0

δtα
1/2
1

(
Ph,0

[
mn+1
s

]
,vn+1
h

)
. ‖{vn}‖X1

.

Therefore ∥∥∥{α1/2
1 Ph,0 [mn

1 +mn
2 +mn

3 ]
}∥∥∥

X′
1

≤ C. (4.12)

The theorem follows from the addition of (4.10) and (4.12).
The proof is analogous for the LCR case, considering (4.5) and replacing ∇·σn+1

h by
ηp
λ0
∇· ψ̄n+1

h in (4.11).

Details are omitted. �

Now we can proceed to prove a similar result for the constitutive equation. Since the stress or the logarithm
of the conformation tensor have no boundary conditions, we will be able to prove stability for {Ph[α

1/2
3 mn

4 ]}
and {P⊥h [α

1/2
3 mn

4 ]}, that is to say, for the whole sequence {α1/2
3 mn

4}.

Theorem 4 (Stability in the dual norm X ′3 for the constitutive equation). Under the assumptions of Theo-
rem 3, there is a constant C such that ∥∥∥{α1/2

3 mn
4

}∥∥∥
X′

3

≤ C,

both for the standard formulation and for the LCR.

Proof. Let {χn} ∈ X3 be an arbitrary sequence, which can be split as χn = χnh + χ̃n, with χnh = Ph [χn].
We can write (2.24) as

λ

2ηp
δσ̃n + δtα−1

3 σ̃n+1 = −δtP⊥h
[
mn+1

4

]
.

Now, we follow the same procedure as in Theorem 3: multiplying by α1/2
3 χ̃n+1, integrating over Ω and adding

up the result from n = 0 to N − 1, integrating by parts using the discrete integration formula and using the
Cauchy-Schwartz inequality, we have:

N−1∑
n=0

δtα
1/2
3

(
P⊥h

[
mn+1

4

]
, χ̃n+1

)
= −

N−1∑
n=0

λ

2ηp
α

1/2
3

(
δσ̃n, χ̃n+1

)
−
N−1∑
n=0

δtα
−1/2
3

(
σ̃n+1, χ̃n+1

)
=

N−1∑
n=0

λ

2ηp
α

1/2
3 (σ̃n, δχ̃n)− λ

2ηp
α

1/2
3

(
σ̃N , χ̃N

)
+

λ

2ηp
α

1/2
3

(
σ̃0, χ̃0

)
−
N−1∑
n=0

δtα
−1/2
3

(
σ̃n+1, χ̃n+1

)
.

λ

2ηp
max

n=0,...,N−1
{‖σ̃n‖}

N−1∑
n=0

δtα
1/2
3 ‖δtχ̃n‖+

λ

ηp
max

n=0,...,N−1
{‖σ̃n‖}α1/2

3 max
n=0,..,N

{‖χ̃n‖}
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+

(
N−1∑
n=0

δt
∥∥∥α−1/2

3 σ̃n+1
∥∥∥2
)1/2(N−1∑

n=0

δt
∥∥χ̃n+1

∥∥2

)1/2

. (4.13)

Therefore, using Theorem 1 and the definition of the norm in X3 (4.7), we can conclude that:

〈
{χn} , α1/2

3

{
P⊥h [mn

4 ]
}〉

X3×X′
3

=

N−1∑
n=0

δtα
1/2
3

(
P⊥h

[
mn+1

4

]
, χ̃n+1

)
. ‖{χnh}‖X3

. (4.14)

The next step is to control the FE component, that is, Ph [mn
4 ]. Now, we use equation (2.20) considering

qh = 0 and vh = 0, and χh as defined at the beginning of the proof. Therefore, employing arguments similar
to those of the previous development, we have that:

N−1∑
n=0

δtα
1/2
3

(
Ph
[
mn+1

4

]
,χn+1

h

)
=

N−1∑
n=0

δtα
1/2
3

(
1

2ηp
σn+1
h −∇sun+1

h ,χn+1
h

)

+

N−1∑
n=0

δtα
1/2
3

λ

2ηp

(
a · ∇σn+1

h − σn+1
h · ∇a− (∇a)T · σn+1

h ,χn+1
h

)
=−

N−1∑
n=0

α
1/2
3

λ

2ηp

(
δσnh,χ

n+1
h

)
−
N−1∑
n=0

δtα
1/2
3

(
ũn+1

3 ,∇ · χn+1
h

)
−
N−1∑
n=0

δtα
1/2
3

(
σ̃n+1,

1

2ηp
χh −

λ

2ηp

(
a · ∇χh + χh · (∇a)T +∇a · χh

))

.
λ

2ηp
max

n=1,...,N
{‖σnh‖}

N−1∑
n=0

δtα
1/2
3 ‖δχnh‖+ 2

λ

2ηp
max

n=0,...,N
{‖σnh‖}α

1/2
3 max

n=1,...,N
{‖χnh‖}

+

N−1∑
n=0

δtα3
−1/2

∥∥σ̃n+1
∥∥∥∥χn+1

h

∥∥+

N−1∑
n=0

δtα
−1/2
1

∥∥ũn+1
3

∥∥∥∥χn+1
h

∥∥ . (4.15)

In particular, the two last terms have been obtained using the inverse estimate (3.1) together with the
definitions of α1 and α3, which imply:

C

2η0
≤ α−1

3 ,
λ

2η0

‖a‖L∞(K)

h
≤ α−1

3 ,
λ

2η0
‖∇a‖L∞(K) ≤ α−1

3 ,
α

1/2
3

h
≤ α−1/2

1 .

As in Theorem 3, the last inequality holds under the assumption 2c3 ≤ c1, being c1 and c3 the constants
of the stabilization parameters α1 and α3.

Using the assumptions on the data, Cauchy’s inequality for the last two terms of (4.15) and finally using
Theorem 1, it follows that

〈
{χn} , α1/2

3 {Ph [mn
4 ]}
〉
X3×X′

3

=

N−1∑
n=0

δtα
1/2
3

(
Ph
[
mn+1

4

]
,χn+1

h

)
. ‖{χnh}‖X3

. (4.16)
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For the standard formulation, the theorem follows from (4.14) and (4.16).
For the LCR, there are slight differences in the proof. In this case we have to consider expression (4.6)

of mn
4 . In the step where the FE component is controlled, we use equation (2.27), considering qh = 0 and

vh = 0, and χh as defined above. Therefore, we have that:

N−1∑
n=0

δtα
1/2
3

(
Ph
[
mn+1

4

]
,χn+1

h

)
=

N−1∑
n=0

δtα
1/2
3

(
1

2λ0
ψ̄
n+1
h −∇sun+1

h ,χn+1
h

)
+

N−1∑
n=0

δtα
1/2
3

λ

2λ0

(
2∇sun+1

h + a · ∇ψ̄n+1
h

−ψ̄n+1
h · ∇a− (∇a)T · ψ̄n+1

h ,χn+1
h

)
=−

N−1∑
n=0

α
1/2
3

λ

2λ0

(
δψ̄

n
h,χ

n+1
h

)
−
N−1∑
n=0

δtα
1/2
3

(
ũn+1

3 ,∇ · χn+1
h

)
−
N−1∑
n=0

δtα
1/2
3

(
σ̃n+1,− λ

2ηp

(
a · ∇χh + χh · (∇a)T +∇a · χh

))

.
λ

2λ0
max

n=1,...,N

{∥∥ψ̄nh∥∥}N−1∑
n=0

δtα
1/2
3 ‖δtχnh‖

+ 2
λ

2λ0
max

n=0,...,N

{∥∥ψ̄nh∥∥}α1/2
3 max

n=1,...,N
{‖χnh‖}

+

N−1∑
n=0

δtα3
−1/2

∥∥σ̃n+1
∥∥ ∥∥χn+1

h

∥∥+

N−1∑
n=0

δtα
−1/2
1

∥∥ũn+1
3

∥∥∥∥χn+1
h

∥∥ ,
and this result is analogous to the one obtained for the standard formulation. �

As done in [30], we can obtain a sharper stability estimate using the fact the BDF1 time integration scheme
also provides control on the increments of the unknown between time steps. While the results in Theorems 3
and 4 could be extended to other time integration schemes with a more or less tedious algebra, the following
result is specific of the BDF1 scheme.

Although disregarded later, along the proofs of Theorems 1 and 2, we have obtained the following estimates:

ρ

M∑
n=0

‖δunh‖
2

+ ρ

(
M∑
n=0

∥∥δũn1∥∥2
+

M∑
n=0

∥∥δũn2∥∥2
+

M∑
n=0

∥∥δũn3∥∥2

)
≤ C, (4.17)

M∑
n=0

λ

2ηp
‖δσnh‖

2
+

M∑
n=0

λ

2ηp

∥∥δσ̃n∥∥2 ≤ C. (4.18)

For the LCR, the inequality to consider is:

M∑
n=0

λ

2λ0

∥∥δψ̄nh∥∥2
+

M∑
n=0

λ

2ηp

∥∥δσ̃n∥∥2 ≤ C. (4.19)
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Now we will define the following norm, that will replace norm ‖·‖Xi
in (4.7):

‖F‖Yi
:=

(
N∑
n=0

max {δt, αi} ‖fn‖2
)1/2

, i = 1, 3. (4.20)

Theorem 5 (Stability in the dual norm Y ′i ). Under the assumptions of Theorem 3, there holds:

a)

3∑
i=1

∥∥∥{α1/2
1 P⊥h (mn

i )
}∥∥∥

Y ′
1

+
∥∥∥{α1/2

1 Ph,0 (mn
1 +mn

2 +mn
3 )
}∥∥∥

Y ′
1

≤ C,

b)
∥∥∥{α1/2

3 mn
4

}∥∥∥
Y ′
3

≤ C.

Proof. For the terms of the momentum equation, a), the only difference with Theorem 3 is that we have to
deal with the terms:

N−1∑
n=0

ρα
1/2
1

(
δũni , ṽ

n+1
)
≤

(
N−1∑
n=0

ρ ‖δũni ‖
2

)1/2(N−1∑
n=0

ρα1 ‖ṽn‖2
)1/2

, (4.21)

N−1∑
n=0

ρα
1/2
1

(
δunh,v

n+1
h

)
≤

(
N−1∑
n=0

ρ ‖δunh‖
2

)1/2(N−1∑
n=0

ρα1 ‖vnh‖
2

)1/2

. (4.22)

The first expression would be employed in step (4.9), where the SGSs are bounded, and the second expression
would be used in step (4.11). In this last case the fields in the FE space are bounded. Using the properties
defined previously, (4.21) and (4.22) will be finally bounded by C ‖vn‖Y1

, from where result a) follows as in
Theorem 3.

Now in order to bound the terms corresponding to the constitutive equation, b), the inequality used is:

N−1∑
n=0

λ

2ηp
α

1/2
3

(
δσ̃n, χ̃n+1

)
≤

(
N−1∑
n=0

λ

2ηp
‖δσ̃n‖2

)1/2(N−1∑
n=0

λ

2ηp
α3 ‖χ̃n‖2

)1/2

. (4.23)

Employing again the properties defined previously, (4.18), we can bound (4.23) by C ‖χn‖Y3
, from where

result b) follows analogously as in Theorem 4.
For the LCR the arguments would be analogous for a) and b). The only difference is that in b) the

inequality for bounding the FE space component is the next one:

N−1∑
n=0

λ

2λ0
α

1/2
3

(
δψ̄

n
h,χ

n+1
h

)
≤

(
N−1∑
n=0

λ

2λ0

∥∥δψ̄nh∥∥2

)1/2(N−1∑
n=0

λ

2λ0
α3 ‖χnh‖

2

)1/2

. (4.24)

Finally, using (4.19), the expression above would be bounded by C ‖χnh‖Y3
. �

4.3. Stability in natural norms

From Theorem 5 the next result is straightforward to prove, which holds if the inequality δt ≥ Cαi for
i = 1, 3 is satisfied.
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Theorem 6 (Stability in the natural norm). Under the assumptions of Theorem 5, assume also that the
stabilization parameters satisfy α1 ≤ Cδt and α3 ≤ Cδt as h→ 0 and δt→ 0. Then, there holds:

a)

3∑
i=1

N∑
n=0

δt
∥∥∥{α1/2

1 P⊥h [mn
i ]
}∥∥∥2

+

N∑
n=0

δt
∥∥∥{α1/2

1 Ph,0 [mn
1 +mn

2 +mn
3 ]
}∥∥∥2

≤ C,

b)

N∑
n=0

δt
∥∥∥{α1/2

3 mn
4

}∥∥∥2

≤ C.

Proof. If inequalities α1 ≤ Cδt and α3 ≤ Cδt hold, it is immediately seen from definition (4.20) that Y =

`2
(
L2(Ω)

)
. This space satisfies Y = Y ′. Therefore the theorem is directly a consequence of Theorem 5. �

According to Theorem 6, we have control on the component of m1 +m2 +m3 in Vh,0 and V⊥h , but it
remains to prove stability on the component in Vh associated to functions defined on ∂Ω. As discussed in
previous works [6, 33], this is done by prescribing a (mild) condition on the FE mesh.

Corollary 1. Under the assumptions of Theorem 6, suppose also that the FE mesh is such that given
a,vh ∈ Vh, qh ∈ Qh, χh ∈ Υh and zh := ρa · ∇vh +∇qh −∇ · χh, there holds

‖zh‖ ≤ cm
(
‖Ph,0 [zh]‖+

∥∥P⊥h [zh]
∥∥) , for a constant cm > 0.

Then:
N∑
n=0

δt
∥∥∥α1/2

1 [mn
1 +mn

2 +mn
3 ]
∥∥∥2

≤ C. (4.25)

Proof. Let znh = α
1/2
1 [mn

1 +mn
2 +mn

3 ]. From the assumption made we have that

‖{znh}‖`2(L2(Ω)d) . ‖{Ph,0[znh]}‖`2(L2(Ω)d) + ‖{P⊥h [znh]}‖`2(L2(Ω)d)

. ‖{Ph,0[znh]}‖`2(L2(Ω)d) +

3∑
i=1

∥∥∥{α1/2
1 P⊥h [mn

i ]
}∥∥∥2

`2(L2(Ω)d)
,

from where the result follows using Theorem 6. �

5. Conclusions

In this paper we have presented the stability analysis of a VMS-based stabilized FE method for a linearized
viscoelastic flow problem discretized in time using the BDF1 scheme, using both the standard formulation
and the LCR. The main features of the formulation are to consider the SGSs as dynamic, orthogonal to the
FE space and assigning one velocity SGS for each of the terms of the momentum equation that need to be
stabilized. First, we have obtained stability for the FE component and the SGSs in standard norms; the
results obtained are the expected ones (Theorems 1 and 2). Of particular relevance is the `∞(L2(Ω)d) stability
obtained for the SGSs, which is a direct consequence of considering them dynamic. The stability bounds for
the SGSs can be translated into additional stability for the FE components of the unknowns. This is done
first in rather weak dual norms (Theorems 3 and 4), with a certain improvement if the dissipative nature of
the BDF1 scheme is employed (Theorem 5). Furthermore, if the classical condition relating the time step
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size and the stabilization parameters is assumed, a classical stability estimate can be derived (Theorem 6).
In all results proven, the constants in the stability estimates do not depend on the physical properties of
the problem being solved. All these results serve to assess that the formulation proposed is stable in the
terms that could be expected. From this stability one could prove convergence using more or less standard
arguments.

R. Codina gratefully acknowledges the support received from the ICREA Acadèmia Program, from the Catalan
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