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‘We discuss the general mathematical conditions for solvability, stability and optimal error bounds of
mixed finite element discretizations. Our objective is to present these conditions with relatively simple
arguments. We present the conditions for solvability and stability by considering the general coefficient
matrix of mixed finite element discretizations, and then deduce the conditions for optimal error bounds
for the distance between the finite element solutions and the exact solution of the mathematical
problem. To exemplify our presentation we consider the solutions of various example problems.
Finally, we also present a numerical test that is useful to identify numerically whether, for the solution
of the general Stokes flow problem, a given finite element discretization satisfies the stability and .
optimal error bound conditions. N

1. Introduction .

During the recent years it has been recognized to an increasing extent that the use of mixed
finite elements can be of great benefit and may even be necessary to obtain reliable and
accurate solutions in certain fields of e gineering analysis. Mixed finite elements are currently
used with much success in the solutiOﬁ? of incompressible fluid flows, and continue to provide
great promise for the analysis of solids and structures [1, 2].

Of course, the largest area of finite element applications is still structural analysis and mixed
finite elements are, in principle, much suited for use in the analysis of almost incompressible
media (for example, for the analysis of rubber-like materials, elasto-plasticity and creep) and
the analysis of plates and shells. However, although many mixed finite elements have been
proposed over the last two decades in the research literature, it is apparent that mixed: finite
elements are hardly used in practical structural analysis.

The reason why mixed finite elements are not used abundantly in engineering practice is
that their predictive behavior is much more difficult to assess than for the conventional and
commonly used displacement-based elements. Whereas displacement-based elements, once
formulated and shown to work well on certain sets of examples (including the patch tests), can
be generally employed, mixed finite elements cannot be recommended for general use unless a
deeper analysis and understanding is available. Namely, ‘considering a certain category of
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28 F. Brezzi, K.J. Bathe, A discourse on the stability conditions for FE formulations

problems, a mixed finite element may work well in the solution of certain problems but
perform very poorly on other problems. Therefore, a mathematical analysis (even a limited
one) for the stability and convergence of a proposed formulation is an important requirement.
Such mathematical analysis should give sufficient insight as to the general applicability of the
finite element under consideration, and is in general no easy task.

Some researchers have proposed some easily applied ‘counting rules’ to assess whether a
mixed finite element can be recommended [3, 4]. However, such rules can at best give some
guide-lines and do not give the necessary information to assess whether an element is stable
and accurate.

Considering mixed finite element discretizations, we recognize that they are governed by a
system of equations with a coefficient matrix C, that we may write as

c=[5 7] IS

We quote as a main example the analysis of incompressible fluid flow, the Stokes problem,
when using the velocity—pressure formulation. Other important examples of interest are the
analysis of incompressible solids and the analysis of plates and shells. In principle, many
solutions can be formulated using a mixed or hybrid method that results into the coefficient
matrix (1.1), because this matrix is reached by minimizing a functional under linear con-
straints [1]. .

The general mathematical theory for the solution of problems that are governed by the
coefficient matrix in (1.1) is now quite well established and the detailed applications of this
theory to a number of important problem categories is available. We know necessary and
sufficient conditions for the existence and uniqueness of the solution, both for the continuous
and the discretized problems. We also know necessary and sufficient conditions on the choice
of the discretizations in order to have optimal error bounds [1, 5]. This information is most
valuable for the design and analysis of mixed finite elements because the basic mathematical
results are quite generally applicable (while the detailed application to problem areas may of
course not be- straight-forward). } : '

Our objective in this paper is twp-fold. The first aim is to present the genéral mathematical
results quoted above with relatix%)ly simple arguments. For this purpose we consider the
general coefficient matrix of mixed finite element formulations and deduce the conditions of
solvability and stability. In proceeding this way, we refer to the continuous problem only when
necessary (since the treatment of the continuous problem requires a background in functional
analysis) and we concentrate on the discretized (finite-dimensional) problem. However, we
succeed in pointing out the basic mathematical conditions on the discretization and in showing
that they are necessary to have stability and optimal error estimates.

Our second aim in this paper is to propose a simple numerical procedure for checking
whether the above mathematical conditions are satisfied for a given mixed finite element
formulation. Such a procedure is useful because it may be employed to check a formulation
and its computer program implementation (much like the patch test is used for incompatible
displacement-based finite element formulations). We consider in this discussion the analysis of
incompressible fluid flow and our test is closely related to ‘Fortin’s trick’ to identify whether
the mathematical conditions of stability and optimal error bounds are satisfied. = .



F. Brezzi, K.J. Bathe, A discourse on the stability conditions for FE formulations 29

The paper is organized into the following sections. In Section 2 we recall some basic
properties of square matrix systems and introduce the basic concepts of stability and
optimality. In Section 3 we then deal with the special case of systems of the form (1.1); hence
here we focus onto the analysis of mixed finite element formulations in detail. Finally, in
Section 4 we discuss two applications and introduce our test for checking the good quality of a
giVén discretization, using as an example the case of an incompressible fluid. We then
conclude our presentation in Section 5.

2. Some preliminaries and the general problem of solvability and stability

Let us consider the general case of an N X N matrix M and the associated system
Given b€RY find xER" such that Mx=5. - (2.1)

The following theorem is a well-known cornerstone in linear algebra.

THEOREM 2.1. Problem (2.1) has a unique solution for every given right-hand side b, if and
only if the associated homogeneous system Mx =0 has only the solution x = 0.

In other words, in order to have a solvable problem in (2.1) for every possible b € RY we
need the following condition to hold:

if Mx=0, thenx=0. (2.2)

Condition (2.2) answers the problem of the solvability of (2.1) but not of its stability.
Roughly speaking, we would like that a small change in b determines only a small change in x.
However, in order to measure the magnitude of such change we have to introduce norms.
Assume that we choose a norm || ||, for measuring the size of solutions and a norm | llg for
right-hand sides. In principle, we are allowed to choose the same norm for both, but we shall
see that this, in general, is not the most convenient choice. We also point out explicitly that, in
finite-dimensional spaces, all norms are equivalent in the sense that for any two norms || ||,

and || || in R" there exist two positive constants s, and s, such that '

Jolls, <s:flolls, 3 23)
lolls, <s,lloll;, . (2.4)

for every vector v in RY, However, these constants s, and s, will, in general, depend on the
dimension N. ’

EXAMPLE. This is a very simple eiémple, only used to fix our ideas [2]. Let
lolls, :=max o, = [Jv]],,, (2.5)

”v”sz":: El: v, = ”U”z1 J | (2.6)
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then it is easy to see that
max [u,| Sz lv.l, (2.7
Z lv,|<N max |v,| , (28

so that s, =1 and s, = N. Similarly we have for the Euclidean norm,

folle:=(S 1) = o, @9
ol =VFlol,,  loll, =Vloll,. @10

that

We have seen that the choice of one norm or another can change, asymptotically, the
dependence on N of the various constants. We shall come back to this point with usefu
guidelines for the most convenient choices. For the moment, we assume that the choice o
| [l and || ||z has been performed and define stability in terms of these norms.

DEFINITION. Let M be a non-singular N X N matrix. We define the stability constant of M

with respect to the norms || ||_ and || ||, as the smallest possible constant Spr such that
[[3x][ [135]|=
<S 211
L= 5 ol | (

for all vectors x and 8x in R™ with Mx =: b and M &x =:3b. C

In other words, (2.11) bounds the relative change in x (in the norm L) by means of the
relative change in the right-hand side b (in the norm R). We point out that such a constant Sz
always exists. However, if we consider a sequence of problems of type (2.1) with increasing
dimension N (corresponding, in general, to a finer and finer finite element mesh) we might
find that the corresponding constants Sir depend on N and become infinitely large when
N— +ew. Thus we might say that a sequence of problems of the type (2.1) is stable with
respect to the norms || ||, and || || if the stability constant S.r is uniformly bounded.

. We would like now to present stability from a slightly different point of view. For this, let us
introduce the matrix norms '

“M}’“R

-~ M|l = P | (2.12)
134 |, = sup ”—A,T—Z% . | (2.13)

From (2.13) for z =8b (so that M ™'z = Sx) we easily obtain

[[3x],

1M e = e | @

=~
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while (2.12), for y = x (and My = b), gives

0], = Hi“: : (2.15)
From (2.14) and (2.15) we then have

e = Il ey, L2l 216)
from which
S Ml M .17)
REMARK 2.1. Noting Fhat for every x one has x = M _1Mx, we obtain

el = 0 g Ml e . 0.19)
which easily implies

Sr =IM e IMll =1, 219
REMARK 2.2.1f we choose || [l = 1| llx =|| |l (Buclidean norm) and if M is symmetric and
positive definite, then

IMll = A s M7 =170, , (2:20)

" where A_,, and A, are the maximum and (respectively) minimum eigenvalues of M.

Hence, for the case of M being symmetric and positive definite, we have that

/\max ‘ |
Sir = Sgg = Y (2.21)

min

coincides with the usual condition number. Note however, that a different choice of norms will
(obviously) produce different stability constants. For instance, by taking

=201 W=l =1, (22)

(see (2.5) and (2.6) for the definition of the norms | |, and || ), we have

/\maxz%(3+\/§)’ Ami =%(3_\'/§)7 ”M”Lst’ | “M—IHRL:]‘ (223)

min

80 that Spp =(3+V5)/(3- \/3) (= condition number) while S;, =5. We shall see in the

following that for practical problems we have, in a natural way, choices for the norms || ||,

and || || for which S, will be uniformly bounded while Sgg is not.
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From (2.17) we see that a sequence of problems will be stable with respect to the norms
| |l and || || if both ||M]| 5 and ||M ||, are uniformly bounded. In the applications it is
very easy to find norms || ||, such that :

yMx<kyllyll lIxll. Vx, y, (2.24)

with k,, uniformly bounded from above and from below. From (2.24) we have a natural
choice for || ||y that produces a uniform bound for || M||, ;. Indeed, if we define the dual norm

of || || by

t

lzllpe := sup —“—y}-,ZI—L ; (2.25)

we have the following proposition.

PROPOSITION 2.1. Let M be an N x N matrix, let || ||, be a norm in RN and let k,, be the
smallest possible constant for which (2.24) holds true, that is,

3 y'Mx
kM = qu)P m . | (2.26)
If we choose || ||g = || |lor (dual norm of || ||, as defined in (2.25)), then

M|l Lx = ks - (2.27)

PROOF. We have

1) = sup W e (2,129

[l

—sup % wse Il e =1l floo)

t

_ 1 y Mx
“w (i) e ea

y

=su _—thx = U | |
sx}) =T k, (use (2.26)). D (2.28)

If we assume now that we are given a sequence of problems such that

yMx<kyllyll Ixll. Vx, y,

with k,, uniformly bounded from above and from below, and if we choose || ||z =|| ||p., then
the sequence of problems will be stable with respect to the norms || ||, and || ||, if and only if
||M ™" ||, is uniformly bounded. In the following proposition we express ||M ™ l|ge in terms of
the norm || ||, alone. ' A
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PROPOSITION 2.2. Let M be a non-singular N X N matrix. Let || ||,

be a norm in RN dnd;let
| |lg be the dual norm of || ||, as defined in (2.25). Then

(1M flq)"" = inf sup Wy—l%%c—”: - (2.29)

PROOF. We have

(IIM"IIIRL)”:(sgp %y =igf~—”—z—”£— (use (2.13))

Tl
= int ”ﬁ’ll‘ (set z = Mx)
=it 1D e = )
- igf{ ﬂ}c_llE sup ﬁyMTli} (use (2.25))
= iI}f SL;p ﬂx—l}l);lﬁ);TL O | (2‘.‘30)

The following proposition summarizes Propositions 2.1 and 2.2.

PROPOSITION 2.3. Let M be an N X N non-singular matrix, let | Il bea no!rm' in RY and let
| Il be its dual norm as defined in (2.25). Setting

o y'Mx

=S Dl T, | 230
= infsu ________thx '

Yo = RSP L (2:32)

the stability constant S, of M is given by

Sir=kylvy - ~ : | ‘.(2-33)‘
The proof is obvious from (2.17), (2.27), (2.29), (2.31) and (2.32).
REMARK 2.3. If we assume to be dealing with a sequence of problems where

yMx<klyly vl vy, (239

“with k uniformly bounded from above, then k,, < k and in order to have a uniform bound for
Sir We only need Yu 10 be uniformly bounded from below, that is, we need a constant y > 0
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such that
t
. y Mx
mfsup 7——— =y >0 2.35
PP T o, (239)

for every problem of the sequence.
REMARK 2.4. We remember that the solvability of (2.1) was expressed in (2.2) by
Mx=0 > x=0. (2.36)

Under the assumption (2.34) we have now that the stability can be expressed by (2.35) which,
in turn, can be written as : : :

Ty >0 such that (Ml = yllel, . | 2.37)

Indeed (2.35) can be written as

t

3y >0 such that sup ﬁ)% =y|x|l, Vx, (2.38)
y L

which becomes (2.37) by using the definition of the dual norm (2.25).

We end this section by analyzing the connection of the above results with the use of
Galerkin methods for the discretization of variational problems. Let us consider a general
linear elasticity problem characterized by a given Hilbert space W and a bilinear form m(¢, ¢)
defined on W X W. Given a linear functional B(¢) from W to R, we want to approximate the
solution of the continuous problem

Find ¢ €W such that m(é, ¥)=B(y) Yyew , (2.39)
by means of the sequence of finite dimensiona] problems
Find ¢, €W, such that m(g,, ) =B(W) Yy, EW,, (2.40)

where W, is a sequence of finite dimensional subspaces of W,. Let us note that (2.40) is a very
general mixed formulation. However, it may help the intuition of the reader to think of a
displacement-based finite element discretization, which is the easiest case.

By choosing a basis ¢, ... ; ¢™ in W, we can associate with every vector ¢ € R the
element

E_ (o e W, : (2.41)
(in the usual way). Every problem (2.40) has now the form (2.1) with

Myi=m(¢?P, ¢@), b= p@®). - | (2.42)
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If the bilinear form m(¢, ) satisfies

m(o, ¥)<k,ll¢lwl¥lly Vo, 0EW, (2.43)
then (2.34) will easily hold with k = k,, (with k,, independent of h) if we choose
lel=||= 662, (2.4

as a norm in RY. The stability condition (2.35) can now be written in terms of the bilinear
form m(¢, ) and of the space W, as

) m(¢h> ‘/’h)
= 0 .
o S Tl Tl ~ Y~ (2.45)

with y independent of 4.

We point out that (2.45) on one hand implies (as we have seen) the solvability of every
discrete problem (2.40). On the other hand, if (2.45) holds with y independent of &, then one
can deduce optimal error bounds for the distance between the solution ¢ of (2.39) and the
solution ¢, of (2.40). Incidentally, we point out that (2.45), together with

tim { inf |~ pall} =0 VU EW - (2.49)

implies that (2.39) has a unique solution. We shall not report here the proof of this fact (which
has basically little bearing upon our discussion), and shall instead report the proof of the

optimal error bounds.

THEOREM 2.2 [6]. Assume that the bilinear form m(, &) and the sequence of subspaces
W, C W satisfy (2.43), (2.45) and (2.49). Let ¢ be the solution of (2.39) and ¢, the solution of
(2.40). Then

16 = ull= (L Kl Jint 16 = il | (2.50)
PROOF. For every s, € W, we have
I = dully = sup P X) e 245y
xXnE W), ”Xh“W ‘ »
= sup (i = &, x) = m(@ = b, X)) (add and subtract ¢)
X, EWy .“Xh“W o ,
= sup i G d’ Xs) (use (2.39) and (2.40)
XnEWy, ”Xh“W 7 - ,
B R 5 A PR
XpEWy ”Xh”W

=k, |l — ¢llw - (2.51)
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From (2.51) we have, using the triangle inequality,

”¢h - ¢”W.< ”(th - ‘f’h”w + ”’vbh - ¢”W
S(km/')’)”'ﬁh - ¢”W + ”‘/fh - ¢“W
=(1+ km/?’)”% - ¢”W (2.52)

and (2.50) follows since (2.52) holds for every y, € W,. O

3. Solvability and stability of mixed finite element formulations

We consider now a special case of (2.1). Namely we assume that the matrix M has the
typical form arrived at when using a mixed finite element formulation,

weli ol

where A is a square NA x NA matrix and B a rectangular NB x NA matrix with (obviously)
NA+ NB=N, Accordingly we split the unknown x — (u, p) with u € R¥ and p ER and
the right-hand side b = (f, & with f e RN g ER™. With this notation, the linear system
under examination can be written as

Au+Bp=f, Bu=g. | (3.2)

The analysis of the solvability, stability and optimality of mixed formulations has been
performed in [5]. However, we shall follow here the more elegant presentation of Arnold [7].
In any case, the following space is of crucial importance. We set

K={veR"|Bv=0) (3.3)
(in other words K = Ker(B)). Let NK be the dimension of K ; we can split R™ as

R™=ToK | (3.4)

where T is the orthogonal of K in R™, As a consequence of (3.4) every v € R™ can be split,
in a unique way, as a sum

V=vr+ug withv, €T, v, €K and VU =0, (3.5)

It NT is the dimension of T,
Let us now assume that the
suitable basis so that we can

A:[ATT ATK]

AKT AKK

we will obviously have NT + NK = NA.
system of equations with the matrix M has been established in a
write the matrix A as

(3.6)
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The notation (3.6) implies that the choice of the basis and the ordering of the unknowns in
R"™* has been done in such a way that every v, € T has only the first NT components which -
are a priori different from zero, while every v, € K has only the last NK components (a
priori) different from zero. With a (quite natural) abuse of notation we shall therefore, when
convenient, treat v, as an element of R™” (discarding the last NK components which are
identically zero). Similarly we shall treat, when convenient, v, as an element of RYX
(diSCarding the first NT components) so that, for v = v, + Ug, Wwe can write

Av=(A rrVr T ArgUg) + (AKTUT + AggUg) (37)

In (3.7) the first term of the right-hand side belongs to T and the second one belongs to K.
Similarly, the matrix B will have the form

B=[Br Bg], (3.8)
with

Bv = Bv; + Byvg, (3.9)
always with the notation (3.5). Note now that from (3.3) and the definition of T we will have

Bug=Byvgy=0 Vv ,€K - (3.10)
and |

Bv, =B, =0 iff v,=0, o V (3.11)
so that (3.9) can actually be written as

Bv=B,uv,. ’ | | (3.12)
We also have

B'q=B,qET YqeR" | | (3.13)

With a similar splitting for the right-hand side f = f,. + f, the original syStem (3.2) can now be
written as ' - - o
Agppiir + Aggig + Brp=fy, .
Agpliy + A gy =fK o - (3.14)
Bu;=g. ; .
The conditions for the solvability of (3.14) (and hence of (3.2)) are now clear: we need that (i)
the equation B,u,. = g is solvable for every g € R, (ii) the equation A4 xxUx = fx 1 solvable

for every f, € K and (iii) the equation Bj.p = f, is solvable for every frin T. Condition (i) is
~_equivalent to ‘

B, as a mapping: T— R"?, is invertible . (3.15)
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On the other hand, condition (ii) is equivalent to
A KK‘, as a mapping: K— K, is invertible . (3.16)

Note now that, from the definition of B, and in particular from (3.11) we have that B, is
always injective, so that (3.15) implies NT = NB. Now we conclude that the matrix B;,asa
mapping : T— R"%, is a non-singular square matrix, and therefore its transposed matrix B is
also non-singular and (iii) is automatically satisfied.

We now want to express (3.15) and (3.16) in terms of the matrices A and B, and of the
kernel K (defined in (3.3)). Condition (3.15) is clearly equivalent to

Bp=0 => p=0, (3.17)
while (3.16) can be written as
(€K and vAu=0 VvEK) > u=0. (3.18)

Conditions (3.17) and (3.18) are necessary and sufficient for the solvability of (3.2) for every
right-hand side f € R™ and g € R*. We can summarize the above results in the following
proposition.

PROPOSITION 3.1. Let A be an NA X NA square matrix and let B be an NB x NA matrix,
and let K (the kernel of B) be defined as in (3.3). The linear system (3.2) is uniquely solvable
for every f ERY and for every g €R™® if and only if conditions (3.17) and (3.18) are
satisfied. 0

Note that, in particular, condition (3.17) implies
NA=NK+ NT=NK+ NB=NB, : (3.19)

which is (obviously) a necessary condition for the solvability of (3.2). However, we now
recognize that the use of (3.19) as a test for solvability (or, worse, for stability) is too
simplistic and hence misleading. Note also that, if A is symmetric and positive semi-definite,
then (3.18) can be expressed by the easier form

vAv>0 VYveK. (3.20)

We address now the problem of stability of (3.2). In agreement with the approach of the
previous section we might decide now from the very beginning to use dual norms for
measuring the right-hand sides. Hence we assume that we have chosen a norm || ||, in R¥
and a norm || ||, in R™” and define the stability constant S as the smallest constant such that

elly + 182 llg _ ¢ 117 oy + 136115
”u”V+“p”Q h l,fIIDV+IlgIIDQ

for all u, p, du, dp and f, g, 8f, g with Au+ B'p =, Bu=g; Adu+ B'8p=38f and
B du = dg. From the previous section we have again S =1.

. (3.21)

%

e
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5 7, REMARK 3.1. Definition (3.21) coincides with (2.11) if we take
* I Pl = llly + 1l | (3.2)
I @llx =1 Flloy + 11 gllne - (3:23)

We notice that in this case the norm || || is not the dual norm of || ||, . Actually we have

”(f’ g)”DL = max (“f”DV? ”g”DQ) . (3.24)

* However one can easily check that

”(fa g)”DLs ”(f’ g)”R SZ”(f, g)”DL > | | : v (3.25)

‘ so that the conditions for the uniform stability are still as discussed in the previous section.

Qur aim is now to give conditions on a sequence of problems (3.2) in order to have §
uniformly bounded. We might of course use, for instance, (2.34) and (2.35) as in the previous
1 section (since we are dealing here with a particular case of the previous discussion). However,
we prefer to have separate conditions on the (sequence of) matrices A and B, as we did for the
solvability problem. This, actually, is much more convenient in actual apphcat_lons

We assume, for the \sake of simplicity, that there exist two constants kK, and kj such that

S

,’

vAu<k,|vlly llull, Yv,u, B - 62)

v‘B‘q<k lvlly llally Vv, q, . o : (3 27)

with &k, and k z uniformly bounded from above and from below In actual apphcatlons (3 26)
and (3 27), are easily fulfilled with the ‘natural choice’ for the norms || ||, and || ||,,. Notice

that (3.26) and (3.27) immediately imply that A has norm <k, from || ||, into || ||,y (as in
the previous section, Proposition 2.1). Similarly B, has norm < k from || || into || ||pq- On
the other hand (3. 26) and (3.27) also imply

Ml < ko + 2k, | (3.28)

for M given in (3.1) and the norms H ll. and || ||z as in (3.22), (3 23) Hence, in view of
(2.17) we only have to control ||M™*||,. Assuming that M is invertible (and hence by (3.14)
Ay and B, are also invertible) we easily have from (3.14) that

lurlly <IBZ' I lglloe> | L (3.29)

gl < | Axx (Il fllov + “AKTuT”DV)_ _ 1
<[l Axxll(ll fellov + *alluzlly) 5 P ‘ (3.30)
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“P“Q = “(Btr)‘lu(”fT”Dv + ”ATTuT”DV + ”ATKuK”DV)

<D llow + Ealllelly + lluglly) (3.31)

where
1B || = sup %%’ , (3.32)
k- Ll o 6.3
(B2 || = sup ”_(]m__%ﬂg . (3.34)

Substituting (3.29) into (3.30) and then (3.29) and (3.30) into (3.31), one obtains
-l p)ll<‘6(llB;1H_, [l Axxll, II(B‘T)‘lll,kA)-II(f, 2l - | - (3.35)

Since, as is easy to check, |
E=IEn . G

it follows from (3.35) that, in order to have a uniform bound for § (in (3.21)), we only need
that || B7'|| (or (B%)™'||) and || AZL|| are uniformly bounded from above. In order to express
this condition in terms of the matrices A, B (and of the kernel K as defined in (3.3)) we shall
rather write that [[(B7)™'[|™" and ||AgL||™" are uniformly bounded from below by some
positive constant. Actually we have

NI [0 S PR
1B —(g;pW) (use (3.35))

£+ o
B L

= inf ”Bth”DV
- P

(use f7 = B1q)

Bl
elan (use (3.13))

. v'B tq
TP Tl o, e @20

q'Bv

S T, Tala

(3.37)
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and
| Axill ™" = (522 ———————”"l?fﬁ‘:llv)—l (use (3.33))
itk e
= inf ——————-”AITLI;ITJJDV (use v = A 1)

ZA gyl
= inf su use (2.25
pnunv (o @)

uek zekK

= inf su
:».1 uEK zeg ” ”V “ “V

(use (3.7)) . S (3;38)

From (3.37), (3.38) and the prev1ous discussion we now have the following proposition.

PROPOSITION 3.2. Assume that we are given a sequence of problems of type (3.2). Assume
that the matrices A and B satisfy (3.26) and (3.27) with k, and ky uniformly bounded. The
stability constant S in (3.21) will then be uniformly bounded if and only if there exist two

positive constants o and B such that.

inf su
u€K ueg ”v“V ”u”V

and
4l t

) q Bv
infsup —————7—
2 5P Tolly Tall,

for every problem of the sequence.

~pg>0. o (3.40)

REMARK 3. 2. If every matrix A is symmetnc and positive semi-definite, then (3.39) takes the
51mpler form

Fa>0 such that vAv = aH HV Vv € K , (3.41)
with K (as in (3.39)) always given by (3.3). In some apphcatlons (typically in the solution of
Stokes fluid flow problems) the matrices A will be positive definite and satisfy (3.41) for all v

- in R4 This led some authors to consider (3.40) as the condition for stability and convergence
o of mixed methods, which obviously is not the case. For instance, in the analysis of the mixed
(o, u) formulation of elast1c1ty problems in the nearly incompressible case, condition (3.39) is

-~ more - delicate to enforce -than-(3.40).-On the same erroneous trend, some authors seem
_ incapable of dlstmgulshmg between (2.35) (which is a condition on the whole matrix M) and

; (3 40) (which is a condltlon on the rectangular submatnx Bofa special case of the matrix M,
namely (3 1))

>a>0 : IR (3.39)
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Let us consider now, as we did in the previous section, an abstract continuous problem and
its Galerkin approximation. Assume that we are given two Hilbert spaces V and Q and two
bilinear forms a(u, v) (on'V X V) and b(v, p) (on V x'Q). We assume from the beginning
that the two forms are continuous in the sense that there exist two positive constants k,and k,

such that

a(u, v) < k,|lully lvll, Yu,veEV (3.42)

and
b, py<kllvlly llpll, YveV,peQ. (3.43)
We can also introduce a kernel

H={vEV|bl,q)=0VqeEQ}, (3.44)

which is the continuous version of the kernel K defined by (3.3). For the sake of simplicity we
shall also assume that a(u, v) is symmetric and positive semi-definite, that is,

a(u,v)=a(v,u) Yu,veEV, (3.45)
~a(v,v)=0 VYvevV. (3.46)
Finally, in analogy with (3.40) and (3.41) we make the following assumptions:
23>0 such that a(v,v)=alv|2 Vved, G4
. . bw,g) _ |
dB >0 such that inf su =f.
g 20 5eb Toll, llall, ~ P (3:48)

We have the following existence and uniqueness theorem.

THEOREM 3.1. [5] Assume (3.42)—(3.48). For every f €V’ and for every g € Q', where V'
and Q' are the dual spaces of V and Q, respectively, there exists a unique pair (u, p)in VX Q

such that
a(u, v) + b(v, p) = f(v) WvEV, |
b(u,q)=g(q) Vq€Q. | | (3.49)

Assume now that we are given a sequence (V,, Q,) of finite diménsional subspaces of V and
O, respectively, and consider the finite dimensional approximations of (3.49): :

Find u, €V, and p, € Q, such that
a(uy, v,) + by, p) =fV,) Vo, €V, | (3.50)
b(u,, q,) = 8(q,) Vq9,€0,.

O ]
S

.
.
&
g
:
|
i
§
-
‘
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It will also be convenient to introduce the finite dimensional kernels
%, ={v, EV, | b(vy, 4,) =0 Vg, € 0y} . (3.51)

It is clear that, by choosing béses in V, and Q,, (3.50) can be written in the form (3.2). As
a consequence, the solvability conditions for (3.50) will be

a(v,,v,)>0 | Yv, €%, , (3.52)
{b(vy, 4,)=0 Vv, €V} = ¢q,=0, (3.53)

as it can easily be deduced from (3.20) and (3.17). The uniform stability conditions now
become
Ja*>0 such that a(v,,v,)=a*||v,|> Vv, E%,, (3.549)

e b, 4 _ : ~
3B*>0 such that inf sup ——7=— = B*, - (3.55
g 026, 525, Toully Taullo 3%
with a* and B* independent of A. It is clear that (3.54) and (3.55) are just a different way of
writing (3.41) and (3.40). It is also clear that (3.54) implies (3.52), and (3.55) 1mphes (3.53),

so that stability implies solvability.
As far as error estimates are concerned we have the following theorem.

* THEOREM 3.2. [5] Assume that the sequence of subspaces (V,, Q,) satisfies (3.54) and
% (3.55). Then problem (3.50) has a unique solution (uh, D) for every h>0. Moreover there
- exists a constant ¢ >0, depending only onk, (3 42), k, (3.43), a™ (3. 54) and B* (3.55) such

that

lu—w,ll, + “P_ph”Qs C{v}lg;f,hllu—vhllv +\q;.lfl§l£h ”P_Qh”Q} > v (3.56)
where (u, p) is the solution of (3.49).
PROOF. We shall only sketch the proof, which is based on a classical stabilitY—consistency‘

‘argument. Let u} and pj be the best approximation one can have for u and p, respectively, in
-+ the subspaces, that is,

”u - u “V = ingh ”u - vh”V > ) (3.57)
’ ”P Ph ”Q —"qlng,, ”P“‘ qh“Q " - ’ . (3.58)

Let now : e
""*‘ f(vh) = a(uh 5 vh) + b(vh: i), , (3.59)

@)=, q,), . (3.60)
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and notice that
(f=H@,) =a(w—1u}, v,)+ b(v,, p - pt), (3.61)
(8- 8)g)=bu—uf,q,). (3.62)

Notice finally that (v, — u}, p, — p%) solves a problem of type (3.50) with right-hand side
given by (f—f, g — §). The stability of (3.50) implies that

lwy = willy +lpw = Pill o< C,(1 F = Fllpy + Il g — £llna)
(f=H©,) (g—&)(q,)

- Goup S o B < gl 5 - i,

Up

(3.63)
with C, and C, depending only on a*, B*, k,, k,. From (3.62) and the triangle inequality we
now have

le=w,lly +1lp = palle < @+ CY(Nlu = utlly, + 1 p - pE]l,) (3.64)

and (3.64) with (3.57) and (3.58) gives (3.56). O

We end this section with some observations regarding penalty methods applied to systems

. of the form (3.2). For the sake of simplicity, assume that NA = 3, NB =2 and that M has the
N form :
a0 0 0 B, 0
0 o 0 0 3B,
M=|0 0 a 0 0 (3.65)
B, 0 0 0 0
0 B 0 0 0

For a more realistic situation we have to think of (3.65) as a block partitioning of M. Tt is clear
that the system (3.2) splits now into '

U, +Aﬁipi =f Bu=g, i=1,2 - (3.66)

aus =f, . (3.67)

and

If one of the B; vanishes then (3.17) is violated and M is singular. If instead 8,0 (i=1, 2),
then \ '

K={(0,0,u;)|u, ER} (3.68)

and a, # 0 satisfies (3.18). Assuming that all the a; (i=1,2,3) are bounded away from zero
(for the sake of simplicity) we only have to consider systems of type (3.66) that we consider
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through their typical representative: |
au+pp=f, PBu=g. (3.69) . |
A penalty approach to (3.69) consists in finding, for £ >0 (and ‘small’), the solution of i
au,+Bp.=f, Bu,—ep.=8§, (3.70)

which is given by

_ef+Bg _Bf—ag 371
ue-—ga+Bz, Ps 8a+62‘ ( )

It is clear that (for a #0) the solution (3.70) always exists, even for g =0. Howtever, for ,
p=0,p,—~xase—>0 when g # 0. On the other hand, in some gpplications (as, for instance,
incompressibility conditions with zero Dirichlet boundary conditions), we have g =0, and the
situation improves. For g =0 (3.71) becomes

&f __BI | | 3.72
uE_8a+B2, Pe 8a+ﬁ2' ( )

For B =0 (3.72) gives |
u I p.=0, (3.73)

which is a nice result. Actually a closer look at (3.69) for p=g= Ofshovws a singular but
compatible system with solution u = fla, p = undetermined. Clearly (3.73) gives the solution
of minimum norm. ' ‘

~ Let us now consider the case g =0 and B very small. The ‘system (3.69) will have a very
largé stability constant. However, if we look only at the u, component of (3.72), we have

u,—0 for e—0 (B fixed) ‘ | (3.74)

and ug is uniformly bounded (in &) as & goes to zero. On the other hand
AR g {; " for B—0 (¢ fixed), | . (3.75)

which _}yis‘hows 4t:hth we have difficulties to interpret the results even if u, is computed as a

~ number of re,asénab:lei size. ‘A look at the p, part of the solution shows that
o pod freso (e | S
Ava B isfv'ery smélh p,will be very large and this indicates that a change in discretization may be
required. o -
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In a practical analysis, there will generally be only a limited number of the B;’s that are
small. Hence, only the corresponding p, components will be large, and this can explain the
appearance of the so-called checker-board modes that appear, even when u, behaves nicely.
Note also that, when solving with the penalty approach (for g =0) a small B, can be more
dangerous than a §; =0, as shown by (3.73) compared with (3.74) and (3.76).

4. Examples of applications

In this section we present two examples that demonstrate the theory we have presented in
the earlier part of the paper, and we also present a numerical procedure to test whether the
inf-sup condition is satisfied for a finite element formulation to solve Stokes fluid flow

problems.
4.1. Mixed methods for linear second-order elliptic problems

We start here with a very simple example to show the importance of the condition (3.54)
(%,-ellipticity). Consider the mixed formulation of the model problem

w'=1 =in]-L1[, ¥(-1)=g1)=0. (4.1)
The solution is clearly

W) = 1~ 1). (42)
Introducing the additional variable

o=y, (4.3)
the mixed formulation of (4.1) now reads

f_ll ordx + f_ll Yr'dx=0 Vr, (4.4)

f_ll o'¢pdx = f_ll ¢dx Vo, . (4.5)
which is clearly of the form (3.49) with

V={reL’Q-L1D|~ €LA-1L,10),  |rll2 = =12 + 1|, (4.6)

0=L0-1,1D, léllo=lél,. 4.7)

1 1
ao, )= | ordx, b= yrax, (4.8)
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where in (4.6) and (4.7) we used
1 -

Jolli= |, o) 05 9)

 Note how the form of a z;nd b in (4.8) easily determines the norms (4.6) and (4.7) which

are needed to have (3.42) and (3.43).
Let us check, as an exercise, that our problem satisfies (3.47) and (3.48). We first have to

find what % is, as defined by (3.44). We have

1
{f ¢’ dx=0 qu} & 1'=0 & r7=constant, (4.10)
~1
so that % contains only the constant functions. For 7 € % we have
a(r, ) =75 =17l (since 7' =0) (4.11)

and therefore (3.47) holds with a = 1.
Let us now turn to (3. 48) For every ¢ € L*(]—1, 1[) we can set

0= [ dar. | 4.12)
We then obviously have )
— 1 - -
b(7, ) = f_l ¢ =olls, (4.13)
N7l =1l , (4.14)
Furthermore | |
AIFlle =Nl | | - (4.15)

and hence we have

br, ) _bEE) _ Al
I = Tl - A+ 1™

R 1 A
~ AP+l ™ ~ V2 1l

;,rSmce (4 16) holds for every ¢ we obtain (3. 48) with g8 =1/V2.

~ Let us now consider the discretization of (4.4), (4.5). We take a decomposition of ]—1, 1]
_into N equal intervals and set

sup

(use (4.14) and (4.15)).  (4.16)

= {plecew1se constants (= &, with the notation of [1])} . (4.17)
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It would now be reasonable to take

V, = {piecewise linear continuous functions (= #1)} . (4.18)

(4.12) still works, since ¢ € L4 implies 7 € 1. Hence (3.55) also holds, with B*=11N2, and
the assumptions of Theorem 3.2 are fulfilled. In our particular case (g = 1) it is also easy to

o,(x)=x in]-1, 1[, _ (4.19)

which is the exact solution. '
Assume now, for our discussion, that we take a larger V., namely

V., = {piecewise quadratic continuous functions =) . (4.20)

Setting

B, = {piecewise quadratic functions vanishing at the subdivision nodes},  (4.21)

we easily have

We can now make an observation which is of general validity: the choice of 2 larger V, (with
the same Q,) makes the mf-sup condition (3.55) easier to satisfy and the J,-ellipticity
condition (3.54) more difficult to satisfy (unless, obviously, the bilinear form a is V-elliptic: in
such a case (3.54) is always satisfied for all choices of V, and Q,). In our case

1 |
/_1 ¢1'dx =0 V¢ e.z)g} =X®B,, (4.23)

9{,1={Te££§

where % is the Space of global constants as in (4.10). Let now, for every subinterval ‘
L(k=1,...,N), b, be the second order polynomial vanishing at the endpoints of I, and |
normalized in such a way that :

| war=1, (4.24)
k
A simple computation shows that

2o =10/n, (4.25) |

so that »
a(b,, by) = “bk“g =1 (4.26) ,
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and

5.5 = 1Bl + 1b4ll6 =1+ 10/R, (4.27)
and condition (3.54) can only hold for

Wthh is not bounded uniformly from below. On the other hand it is obvious that for every
PEZ, 9 we have

br.d) _  bng) _
S T, S e =5 191

(4.29)

and (3.55) as predicted is easier satisfied with a larger V,. We are therefore facing a case
where the mf—sup condition (3.55) is easily satisfied, but the J¢,-ellipticity condition (3.54)
" holds only with a* ~ h. Notice that (3.52) is still satlsﬁed so that the discrete problem will be
umquely solvable. Notice as well that we started with an effective discretization (V, = %1,
0, =2)), that gave the exact value for o,, and that we enlarged V, (which, as we have seen,

does not affect the ability to satisfy the inf-sup condition). The key question must now of
course be. ‘how is our solution accuracy affected by the enlargement by V v

The solution of the dlscrete problem:

Find 0, € #; and ¢, € £ such that
1 1
f—1 O‘hfrdx-i—f_l g, 7"dx=0 VrEZ;, ‘ | (4.30)
| doiar—[ gax=0 voess, S (4.31)
can again be computed by h‘and, Namely, from (4.31) we obtain

N
o,(x)=x+c+ >, ci.b (%),
. k=1

with ¢ and ¢, to be determined. Now ¢ =0 for symmetry reasons (the solution is unique) and
choosing 7 = b,(x) in (4.30) yields =

' ——ck :-[Ik xbk(x) dx =: (x: bk) s . (432)
SOthat -

e Zheme), | (439)
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and the L? norm of the error O —0=0, —xis given by

Find u € (H1(02))? ang PELQ)/R such that

Lgradu:gradvd()~/;2pdivvd{2=/;2f-vd!2 Vv,
fﬂ gdivudn =9 Vg, (4.35)
which is again of type (3.49) for

V=(H;2))? = {ve (Lz(.()))zlgrad veE (Lz((l))4 and |

Q=L2(!2)/R={qEL2(Q)UQ qd!)=0}
and

a(u, v) =[ﬂ grad u:grad vy dn ,

80=0}3

b(v, Q):L gdive dg .

which are the
inequality,

de=c(Q) with [n;v;zda

< C(ﬂ)[g grad v? 40 Yvey
NOwW ensures that
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choice of V, CV and Q, C Q. Hence we can concentrate our attention on (3.48) and (3.55),
that is, on the inf—sup condition. As far as (3.48) is concerned we remark that we actually

have

, [, qdivedQ
38(£2)>0 such that inf sup

Inf sup “o Ty, T AW (442)

which is a nontrivial result in functional analysis (see, e.g., [8, 9]). We also notice that the

following result obviously holds as an immediate consequence of (4.42): for every set ¥ with

(HYQ) C ¥V CH'(Q) (4.43)

we have
) q divv d2
inf sup

> ' 4.44
int sup Sy, ~ A (4.44)

since the supremum over ¥ is obviously larger than the supremum over V= (H q(2)Y. Ina
sense we can therefore say that the case of homogeneous Dirichlet boundary conditions is the
most difficult to treat. This is the reason why we shall mainly concentrate on this case only.
Assume now that we are given a sequence of finite dimensional subspaces V, €V and
Q, € Q and consider the discrete problem: :

‘Find u, €V, and p, € Q, such that
a(uy, vy) — b(vy, py) = Jﬂ f-v,d Vu, €V,
b(u,, q,)=0 Vq,€0,. (4.45)
As wehave observed above, we only have to check condition (3.55) in order to have
solvability, stability and optimal error bounds. The following theorem, known as ‘Fortin’s

trick’ (see [10]) is often useful in order to prove (3.55) (see e.g. [11]).

THEOREM 4.1. Assuhze that (3.48) holds and that, for every h, we can build a linear operator
11,:V—V, with the following properties: . o ,

by, g)=0 YWEV Vq,EQ,, (4.46)
C 3y>0 swehtat [Tl <olbl, VeV, - (6.47)
where i independent of h. Then (3.55) holds with B* = By |
!-iéfRé‘}OF.y!We; e fc'si,everyfq,; €0,

- V€V ;”vh”f/ vev ¢ ”HhUHV

|
|
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= sup M (use (4.46))

= sup égg’—?—]l—hl (use (4.47))

veEV ’)I”U 1%

=B7llaully (wse (3.48)), | (4.48)

- where the first inequality holds since the image II,(V) is contained in Vv, O

In many cases, it will actually be sufficient to prove that for every g, € Q, we have

sup 2 ) o (4.49)

ey, oally

where « is independent of 4 and
7, = {L*-projection of qh onto the space | of piecewise constants} . (4.50)
Here for instance we present two classes of discretizations for which (4.49) implies (3.55).

PROPOSITION 4.1. Assume that Q, C C0) (and piecewise polynomial) and that V, is
locally first order accurate in the sense that for every v €V there exists q v’ eV, with

lo =o' < chlloll,, (4.51)
o]l < cllvlly - (4.52)

Assume finally that the decomposition is quasi-uniform, in the sense that the maximum diameter
h is bounded by C3Pin (Bin IS the minimum diameter of the element). Then (4.49) implies
(3.55). - ' ’ ’

PROOF. We note that for every g, € O, there exists a v €V such that

P20 = Gl - (453

ol

b(U;n ‘]h) > b(v_la Qh)
v, EV, ”vh Il ”I;I”V
— b(v—l~ 5’ qh) b(6> Qh)
AT
_ b0 -v,9,) b0, q,)
A G PP ET

(+0)

(use (4.52))
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M) g, e 459)

fa 4n div(s’ — 9) d2
cllolly
Jo(0—7v - grad g, d2

= — e +Bllg,ll, (integrate by parts)
cllolly :

. o =o'
2B“%”Q . —WI‘V—O l|lgrad q,,|, -

+ Bllg,ll, (definition of b)

= Bllaille ~ ¢t lerad gyllo - (use (451) (4.54)
Now a simple scaling argument (using the quasi-uniformity of the mesh) shows _that |
|  hllgrad gyllo=cll g, ~ @l (455)
and from (4.54) and (4.55) we have
sup “ped = llg, o~ el gy =l | S s

It is now clear that (4.49) and (4.56) imply
K b(U ’, q ) ‘ ' » ' At
(1 ) (sup ) = E2 g, (4.57)

wmevi vally

and (3. 55) holds with B* = Bi/cs/(1 + K/CS) O

REMARK 4.1. The quasi-uniformity assumptlon is actually not necessary. We used it only in
order to simplify the argument. See [1, 12] for the general case.

PROPOSI TION 4.2. Assume that we know that for all qh € ££°

7 b(v,, q o o ,
S Sup ” hh“ 1) /71”‘]11“0 - | (4.58)

‘ ’ thVh
Then (4 49) zmplzes (3 55 ) R
~ PROOF. We have, for every 4, €0,

- b(U 5 V b(v 5. b(v 5
sup—”-ﬁ—qh—):sp{(” qn — )+ (h%)} (£d,)
ECo Y P DR A
‘ i Sup M S ;rrb)(vm 4, — )
VA€V, ”vh”V. vREV, ”vh”V :

‘2')’1”@1”0_”%_@;”0- o (4.59)

e A A A - U .
s e o e e Y ST s
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Now from (4.59) and (4.49) we deduce (as in (4.57)) that

b > 1h K 1 -
ey gfth';;qv) e LA (4.60)

Finally from (4.49) and (4.60) the result follows. [

REMARK 4.2, As we can see, (4.49) implies the inf-sup condition in an impressive number

following: we can use ag degrees of freedom the values v - 5, (normal component of velocity) at

midpoints of edges (tespectively, faces in R?). Indeed, if this is the case, we can (roughly)
consider a ‘Fortin interpolator’ II, such that

| f (v—ILv) -nde=0 for all edges (faces) e , (4.61)
and ’ |

‘v=1ILv’ for the other degrees of freedom . (4.62)

From (4.61) and'(4.62) We now have, for every g, € £¢,

L div(v — ILv)g, dK = fa < (v — ILv) "ng, de (use Gauss’ theorem) \
=0 (use (4.61) on each e) - (4.63)

for every element g This gives (4.46) for O, =3, which is the essential step (through

Theorem 4.1) in order to have (4.58). Note however that the actual proof of this fact has some |
more technicalities (see [1, 13] for similar arguments). It is clear by now that, in designing a
new element, to satisfy (4.49) is the essential step in almost every case. ' .

PROPOSITION 4.3, Assume that P, and P, are unions of elements, with PN P, =0. Assume
that, for | = 1,2, we have for all 2, €0, . :

Jo, 4, div v, - o \ :
ey, ”Uh ”V = Ki” q, — Qh”Lz(@,.) > : (4.64)
v4=0 in 2\, ’ ’
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then
Jo.ue, 4 A1V U, _
sup : ”2 I = x| g, — Qh|'L2(91u92) (4.65)
v, EV;, Unily
v, =0in 2\(PUP))
for all g, € Oy, and with
Kk = min(ky, K,) - (4.66)

PROOF. The proof is elementary. From (4.64) we have, for all g, € Q,, two elements

v e (HY(P))’ NV, (i=1,2), such that |
b(Uia q;) = w:llgn = th“?ﬁ(gg) ' . (4.67)

and

Hv“llv <llg,— q—han(g’i) . ‘(4.68)

| Taking v = v! + v* we have

2 o _ .
) b(v, q,) = 21 Ki” qn — qh“i?(@,.) = k|| g, — Qh“iz(@lu@z) (use (4.66)) (4.69)

and 2 :—2 2152 -z |
“U“V = “U ”V + Hv ”V = HQh - qh”Lz(Q’IUQ’Z) R ‘ (4.70)

and (4.69) with (4.70) implies (4.65). O

REMARK 4.47. The condition #, N P, =0, as we can see from the proof, is not crucial. Its
only purpose is to avoid a factor 2 in (4.69) and (4.70). However, we always think of using the
result in the ‘disjoint’ case. ' - - e C o

REMARK 4.5. In (4.64), (4.65) the choice of g, as an element by element projection onto the
space £ of piecewise constants is unnecessary. We might as well use a ‘patch by patch’
projection, that is, we might assume that g, is constant in every patch (and equal to the mean
‘value of g,). On the other hand, the choice g, =0 (which would give directly the inf-sup
‘condition without passing through Propositions 4.1 and 4.2) is not allowed. If g, has zero
mean value on %, U %, it does not necessarily have zero mean value separately on %, and on
'P,. But (4.64) is unrealistic if the right-hand side does not have zero mean value. Finally let us
note that, if g, is the element by element projection and g, is the patch by patch projection,
then = S DU N R o v ,

~~REMARK 4.6. Proposition 4.3 deals with two fpatc-:hes. 1t is clear that the argument applies as

- well to any finite number of patches: the smallest k; gives the global . o .

, REMARK 47 It 1s very ii{nportant’ to point out that conditions (4.64) do not depend ortl: the

b
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size of the patches. Assume that we have, for a given patch, say, of size one
div v
sup Jo q h
v, EV(P) ”Uh”HI(.@)

for all ¢, € Q,(P), where V() is a finite element subspace of (Hy(2))? and O, (P)is a
finite element subspace of L*(P) and finally g, is the mean value of g, on 2. If we shrink % to
a small patch 2° of size 4 by the change of variable,

= ” q, — éh”L%@) ‘ (4-71:

POx=¢/h, Ee P, — _ (4.72)
and if we change the finite element Spaces accordingly, we have

s > le Us
sup f@ qy h

: =rlla® — a8 . 4.73)
viEVS ”Uh”HI(@s) ”qh qh”LZ(@) ( ) :

exactly with the same « as in (4.71).

the Jacobian matrix, § will depend on [J7-|I7]]? and II-177%), and for reasonable
distortions « will remain greater than zero.
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and optimal error bounds are available for the solution of incompressible fluid flow [1] and the
analysis of incompressible or almost incompressible solid media [1, 14, 15]. However, the
situation is quite different, for example, in the field of analysis of plate and shell structures
[16]. Here numerous mixed finite elements have been proposed but mathematical analyses are
hardly available. Indeed the construction of effective mixed plate and shell elements that can
be analysed and satisfy the- mathematical conditions of stability and optimal error bounds is

very difficult, and such elements are now under active research, see for example [16-18].
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