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Abstract Classical fractional step methods for viscous incompressible flows aim to
uncouple the calculation of the velocity and the pressure. In the case of viscoelastic
flows, a new variable appears, namely, a stress, which has an elastic and a viscous
contribution. The purpose of this article is to present two families of fractional step
methods for the time integration of this type of flows whose objective is to permit the
uncoupled calculation of velocities, stresses and pressure, both families designed at
the algebraic level. This means that the splitting of the equations is introduced once
the spatial and the temporal discretizations have been performed. The first family is
based on the extrapolation of the pressure and the stress in order to predict a velocity,
then the calculation of a new stress, the pressure and then a correction to render
the scheme stable. The second family has a discrete pressure Poisson equation as
starting point; in this equation, velocities and stresses are extrapolated to compute a
pressure, and from this pressure stresses and velocities can then be computed. This
work presents an overview of methods previously proposed in our group, as well as
some new schemes in the case of the second family.

1 Introduction

From the computational point of view, the key aspect in the complexity of the
approximation of the incompressible Navier-Stokes equations is the coupling be-
tween the velocity and the pressure degrees of freedom. Apart from the difficulties
in choosing a spatial interpolation for both variables that renders the final scheme
stable, once the discrete problem needs to be solved one has to face with unknowns
with different behavior from the standpoint of algebraic solvers. In incompressible
flows, it is usually the pressure the variable that drives the whole iterative behavior
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of linear solvers, and it is certainly a waste of effort that the velocity be dragged in
this process as a coupled variable. Moreover, special solvers with special precondi-
tioners could be used for the pressure if it could solved in an uncoupled manner.

The interest in fractional step methods in incompressible flows, also known as
splitting methods, started with the works of Chorin [6] and Temam [16], who at-
tempted the uncoupling of velocity and pressure at the continuous level, segregating
the calculation of the pressure from the momentum equation and then understand-
ing the final velocity correction as a projection onto the space of solenoidal fields.
Since then, many works have been devoted to a proper understanding of the orig-
inal schemes, their numerical analysis, their extension to order higher than one in
time and to the design of adequate boundary conditions. The reader is referred to
the survey [11] for the description of all these works.

There is also the possibility to look at the problem from the purely algebraic point
of view, when the equations have already been discretized in space and in time. This
way to approach the problem emerged after the identification in [13] of the classical
pressure segregation method as an inexact factorization of the system arising after
discretization. Several authors followed this path; for a review, see [1]. This point of
view has clear advantages, as for example its generality or the fact that it avoids any
issue related to boundary conditions, but also some inconveniences from the con-
vergence point of view, since estimates depend on derivatives of discrete functions
whose boundedness is not easy to prove.

In the case of viscoelastic flows, the main difficulty is the appearance of a new
variable, a stress, that evolves in time. Thus, there are three variables (velocity, stress
and pressure) that are in principle coupled and for which uncoupling algorithms
need to be devised. Obviously, the uncoupling needs to satisfy two main conditions:
it has to maintain the stability of the underlying time discretization (otherwise, a
simple explicit treatment of adequate terms would suffice) and it has to maintain also
its temporal order of accuracy. Surprisingly, even though several fractional schemes
have been proposed for this problem (see for example [15], perhaps one of the first
attempts), they either do not uncouple all the variables or are not natural extensions
of the most popular schemes used for viscous Newtonian flows; see for example the
bibliography cited in [5].

In [5] we proposed fractional step methods for viscoelastic flows based on the
segregation of the pressure and the stress in the momentum equation. The approach
proposed there is completely algebraical, working with the problem arising from
spatial and temporal discretization of the original initial and boundary value prob-
lem. We designed schemes of first, second and third order in time, and all motivated
from two perspectives: either the extrapolation in time of variables to allow their
segregation or the inexact factorization of the linear system to be solved at each
time step. All the schemes were tested in convergence tests, to check the predicted
order of accuracy, and in more realistic examples to experiment their robustness.

The purpose of this article is to present some fractional step methods for vis-
coelastic flows designed from the pure algebraic point of view. Two families of
approaches will be described. The first is the same as in [5], considering pressure
(and stress) extrapolations to allow for the calculation of an intermediate velocity,
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whereas the second is based on the extrapolation of the velocity to allow for the
calculation of the pressure. This second new approach is based in the design of frac-
tional step schemes based on a discrete pressure Poisson equation that was proposed
for viscous Newtonian flows in [2, 12].

The spatial approximation will not be discussed in detail. To fix ideas, we will
describe how the approximation can be done using the finite element method using
inf-sup stable approximations, although we favor the stabilized finite element ap-
proximation presented in [4]; minor modifications to the schemes to be described
need to be introduced in case this stabilized formulation is used. Likewise, we will
assume that the temporal discretization is performed using backward difference
(BDF) schemes, although any other time integration could be employed.

The outline of the paper is as follows. In Section 2 we state the continuous prob-
lem, its finite element approximation in space and its numerical integration in time.
In Section 3 we describe the schemes based on pressure extrapolation proposed
in [5], whereas in Section 4 we present new schemes based on velocity extrapola-
tion. Even though our objective is not the numerical analysis of the resulting meth-
ods, but only their design, some comments on their stability are also included in
Section 5. In Section 6 we also explain how to view the schemes as inexact factor-
izations of the fully discrete system. Finally, some conclusions are drawn in Sec-
tion 7.

2 Problem statement and numerical approximation

Let Ω be a bounded domain of Rd (d = 2,3) where the flow takes place, and let
[0, tf[ be the time interval of analysis. The viscoelastic (Olroyd-B) flow problem
we wish to consider consists of finding a velocity u : Ω×]0, tf[→ Rd , a pressure
p : Ω×]0, tf[→ R and a stress σ : Ω×]0, tf[→ Rd⊗Rd such that

ρ
∂u
∂ t

+ρu ·∇u−∇ ·T +∇p = f (1)

∇ ·u = 0 (2)

with T = 2βη0∇su+σ and

λ

2η0

∂σ

∂ t
+

1
2η0

σ − (1−β )∇
su+

λ

2η0

(
u ·∇σ −σ ·∇u− (∇u)T ·σ

)
= 0 (3)

In these equations, which hold in Ω×]0, tf[, f is the body force, ρ the fluid den-
sity, β , η0 and λ are positive physical parameters (0 ≤ β ≤ 1) and ∇s denotes the
symmetric part of the gradient of a vector field. Appropriate initial and boundary
conditions need to be added to close the problem (see [10], for example).

To write the weak form of the problem, let V , Q and ϒ be the spaces where ve-
locities, pressures and stresses, respectively, have to belong for each t ∈]0, tf[. Con-
sidering for example homogeneous velocity boundary conditions, V = H1

0 (Ω)d ,
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Q = L2(Ω)/R and ϒ is the space of tensor fields with components in L2(Ω), such
that the last term in parenthesis in (3) has components in L2(Ω) and satisfying the
appropriate boundary conditions. Let (·, ·) denote the inner product in L2(Ω) (for
scalars, vectors or tensors) and 〈·, ·〉 the integral of the product of two functions.
The weak form of the problem consists then of finding [u, p,σ ] :]0, tf[→ X :=
V ×Q×ϒ such that the initial conditions are satisfied and(

ρ
∂u
∂ t

,v
)
+2(βη0∇

su,∇sv)+ 〈ρu ·∇u,v〉+(σ ,∇sv)− (p,∇ · v) = 〈 f ,v〉 (4)

(q,∇ ·u) = 0 (5)(
λ

2η0

∂σ

∂ t
,τ

)
+

(
1

2η0
σ ,τ

)
− ((1−β )∇

su,τ)

+
λ

2η0

(
u ·∇σ −σ ·∇u− (∇u)T ·σ ,τ

)
= 0 (6)

for all [v,q,τ] ∈X , where it is assumed that f is such that 〈 f ,v〉 is well defined.
The fractional step schemes to be presented can be used in conjunction with any

space discretization. For the sake of conciseness, suppose that the finite element
method is used. From a finite element partition of the computational domain Ω

we may construct conforming finite element subspaces of V , Q and ϒ , that we
respectively denote by Vh, Qh and ϒh, the subscript h referring to the size of the
partition. We assume that these spaces render a stable approximation in space, a
point that turns out to be crucial and poses stringent requirements on the choice
of the finite element spaces (in the form of two inf-sup conditions). This can be
circumvented by using a stabilized finite element method, in which the discrete
variational form of the problem is modified with respect to the continuous form, and
therefore also the final algebraic system presented below is modified. Nevertheless,
since the spatial approximation is not our focus, we assume hereafter that the so-
called standard Galerkin method is used and refer to [8, 4] for further discussion.

Once X has been approximated by Xh := Vh×Qh×ϒh, the unknowns and test
functions can be expressed as a combination of the basis functions of each space
and the arrays of nodal values. We shall respectively denote the nodal values of uh,
ph and σh as U , P and Σ ; these arrays are time-dependent functions before the time
discretization.

Considering the time discretization prior to the splitting, any alternative could be
used. To fix ideas, and to simplify the notation, we will assume that backward dif-
ference schemes (BDF) of order k ≥ 1 are used. Let us consider a uniform partition
of the interval [0, tf] of size δ t, and let us denote with a superscript the time step
level at which functions are approximated. A BDF scheme of order k is based on
the k-th difference of a function, which when evaluated at tn+1 = (n+1)δ t reads

δkgn+1 =
1
γk

(
gn+1−

k−1

∑
i=0

ϕ
i
kgn−i

)
=:

1
γk

gn+1−g∗,n
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for a generic function g, and where γk and ϕ i
k are parameters that depend on k. In

particular, we will be interested in the cases k = 1,2,3.
We will also use the extrapolation operators of order k, defined as ĝn+1

k = gn+1 +

O(δ tk), which for k = 1, 2 and 3 are given by

ĝn+1
1 = gn

ĝn+1
2 = 2gn−gn−1

ĝn+1
3 = 3gn−3gn−1 +gn−2

As for the k-th difference of a function, proper initializations are required in the first
time steps.

Assuming space is discretized using the standard Galerkin method and time using
a BDF scheme of order k, the resulting algebraic structure of the approximation to
problem (4)-(6) is

Mu
δk

δ t
Un+1 +Ku

(
Un+1)Un+1 +GuPn+1−Dσ Σ

n+1 = Fn+1 (7)

DuUn+1 = 0 (8)

Mσ

δk

δ t
Σ

n+1 +Kσ

(
Un+1)

Σ
n+1−GσUn+1 = 0 (9)

The identification of the matrices and arrays appearing in these algebraic equations
with the terms arising from the discretization of (4)-(6) is straightforward. Let us
remark that matrices Gu and Du, coming from the gradient of the pressure and
the divergence of the velocity, respectively, are related by Gu = −DT

u . Similarly,
matrices Gσ and Dσ coming from the symmetric gradient of the velocity and the
divergence of the stress, respectively, are related by (1− β )Gσ = −DT

σ . We have
explicitly displayed the dependence of matrices Ku and Kσ on U , in the first case
due to the convective term in (1) and in the second to the convective and rotational
terms in (3).

Equations (7)-(9) can be written in compact form asA11 A12 A13
A21 A22 0
A31 0 0

Un+1

Σ n+1

Pn+1

=

Fn+1
1

Fn+1
2
0

 (10)

where only the unknowns at time step n+1 have been left in the left-hand-side and
the identification of the different matrices and arrays is obvious.

3 Schemes based on pressure extrapolation

The first family of schemes to be presented can be introduced using pressure and
stress extrapolation in the momentum equation. This implies that these terms are
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solved explicitly, and therefore this would lead to an at most conditionally sta-
ble time integration scheme. To keep the stability properties of the original BDF
scheme employed, a velocity correction is required once pressure and stress have
been obtained from their corresponding equations. We elaborate this idea in the next
subsection, where we present the schemes already proposed in [5]. Then we write
the problem posed in terms of the end-of-step unknowns, what we call equivalent
monolithic formulation, which allows us to foresee the order in time of the splitting
error.

3.1 Formulation of the algorithms

To motivate the schemes based on pressure extrapolation, let us write the algebraic
system (7)-(9) in the equivalent form

Mu
δk

δ t
Ũn+1 +Ku(Ũn+1)Ũn+1 +GuP̂n+1

k′−1−Dσ Σ̂
n+1
k′−1 = Fn+1 (11)

Mu
1

γkδ t
(Un+1−Ũn+1)+Nn+1

u +Gu(Pn+1− P̂n+1
k′−1)−Dσ (Σ

n+1− Σ̂
n+1
k′−1) = 0

(12)

Mσ

δk

δ t
Σ̃

n+1 +Kσ (Ũn+1)Σ̃ n+1−GσŨn+1 = 0 (13)

Mσ

1
γkδ t

(Σ n+1− Σ̃
n+1)+Nn+1

σ −Gσ (Un+1−Ũn+1) = 0 (14)

−DuŨn+1 + γkδ tDuM−1
u Nn+1

u + γkδ tDuM−1
u Gu(Pn+1− P̂n+1

k′−1)

− γkδ tDuM−1
u Dσ (Σ

n+1− Σ̂
n+1
k′−1) = 0 (15)

where

Nn+1
u := Ku(Un+1)Un+1−Ku(Ũn+1)Ũn+1

Nn+1
σ := Kσ (Un+1)Σ n+1−Kσ (Ũn+1)Σ̃ n+1

and Ũn+1 and Σ̃ n+1 are intermediate unknowns. That this system is equivalent to
(7)-(9) can be checked as follows: adding (11) and (12) we exactly recover (7),
adding (13) and (14) we exactly recover (9), and (15) is obtained multiplying (12)
by γkδ tDuM−1

u and making use of (8). The order k′ used in the extrapolated variables
can in principle be different from k.

Equations (11)-(15) motivate the following algorithm, which is only an approxi-
mation to (7)-(9) but allows one to compute the different variables sequentially:

1. Compute Ũn+1 from (11).
2. Compute Σ̃ n+1 from (13).
3. Compute an approximation to Pn+1 by solving (15) neglecting Nn+1

u and replac-
ing Σ n+1 by Σ̃ n+1.
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4. Compute an approximation to Un+1 from (12) neglecting Nn+1
u .

5. Compute an approximation to Σ n+1 from (14) neglecting Nn+1
σ .

Several remarks are in order:

• Steps 1 to 5 above allow one to uncouple the calculation of the different variables.
• Matrix DuM−1

u Gu appearing in the pressure Poisson equation can be approxi-
mated by the classical Laplacian matrix, L, with a reduced stencil. This intro-
duces a further approximation, except if an iterative scheme is employed where
L is simply used as a preconditioner (see [7, 2]).

• For k′ = k, the resulting scheme is of order O(δ tk) for a given spatial discretiza-
tion. We will come back to this point in the following subsection.

• The resulting scheme is only stable for k′ = 1,2. For k′ = 3, the extrapolation
P̂n+1

2 = 2Pn−Pn−1 is known to yield an unstable scheme (see the discussion in
[12, 1]).

• For k = 1 we have an extension to viscoelastic flows of the classical first order
fractional step method, whereas for k = 2 we have an extension of the second
order method.

In view of these comments, we consider k′ = k = 1,2, obtaining the following
system of equations:

First and second order pressure extrapolation schemes:

Mu
δk

δ t
Ũn+1 +Ku(Ũn+1)Ũn+1 +GuP̂n+1

k−1 −Dσ Σ̂
n+1
k−1 = Fn+1 (16)

Mσ

δk

δ t
Σ̃

n+1 +Kσ (Ũn+1)Σ̃ n+1−GσŨn+1 = 0 (17)

−DuŨn+1 + γkδ tDuM−1
u Gu(Pn+1− P̂n+1

k−1 )

− γkδ tDuM−1
u Dσ (Σ̃

n+1− Σ̂
n+1
k−1 ) = 0 (18)

1
γkδ t

Mu(Un+1−Ũn+1)+Gu(Pn+1− P̂n+1
k−1 )−Dσ (Σ̃

n+1− Σ̂
n+1
k−1 ) = 0 (19)

1
γkδ t

Mσ (Σ
n+1− Σ̃

n+1)−Gσ (Un+1−Ũn+1) = 0 (20)

These are the first and second order pressure extrapolation algorithms proposed
in [5]. In fact, it is not only the pressure, but also the stress, the variable extrapolated
in the first equation.

A third order scheme can be obtained with a different approximation to (11)-(15),
which can be related to Yosida’s factorization (see [5]). The steps are the following:

1. Compute Ũn+1 from (11) with k = 3 and k′ = 2.
2. Compute Σ̃ n+1 from (13) with k = 3 and k′ = 2.
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3. Compute an approximation to Pn+1 by solving (15) neglecting Nn+1
u , replacing

Σ n+1 by Σ̃ n+1 and taking k = 3 and k′ = 2.
4. Compute an approximation to Un+1 from (12) without neglecting Nn+1

u .
5. Compute an approximation to Σ n+1 from (14) neglecting Nn+1

σ .

Even if only a first order extrapolation is used for the pressure and the elastic stresses
in the momentum equation, including Nn+1

u in the fourth step allows one to obtain
third order accuracy.

The system of equations to be solved is presented next.

Third order pressure extrapolation scheme:

Mu
δ3

δ t
Ũn+1 +Ku(Ũn+1)Ũn+1 +GuPn−Dσ Σ

n = Fn+1 (21)

Mσ

δ3

δ t
Σ̃

n+1 +Kσ (Ũn+1)Σ̃ n+1−GσŨn+1 = 0 (22)

−DuŨn+1 + γ3δ tDuM−1
u Gu(Pn+1−Pn)

− γ3δ tDuM−1
u Dσ (Σ̃

n+1−Σ
n) = 0 (23)

1
γ3δ t

Mu(Un+1−Ũn+1)+Ku(Un+1)Un+1−Ku(Ũn+1)Ũn+1

+G(Pn+1−Pn)−Dσ (Σ̃
n+1−Σ

n) = 0 (24)
1

γ3δ t
Mσ (Σ

n+1− Σ̃
n+1)−Gσ (Un+1−Ũn+1) = 0 (25)

3.2 Equivalent monolithic formulations

A way to predict formally the order of approximation of the splitting schemes in-
troduced is to write the equations for the final unknowns, after the correction steps,
and see which is the perturbation with respect to the original monolithic equations.
Let us start with the first and second order schemes introduced earlier. Adding up
(16) and (19) on the one hand, and (17) and (20) on the other, we obtain

Mu
δk

δ t
Un+1 +Ku(Un+1)Un+1 +GuPn+1−Dσ Σ

n+1

−Nn+1
u −Dσ (Σ̃

n+1−Σ
n+1) = Fn+1

Mσ

δk

δ t
Σ

n+1 +Kσ (Un+1)Σ n+1−GσUn+1−Nn+1
σ = 0

from where we observe that the perturbation of the momentum equation is−Nn+1
u −

Dσ (Σ̃
n+1−Σ n+1) and the perturbation of the stress equation is −Nn+1

σ , as it could
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be expected from the steps followed. These are the only perturbations, since from
(18) and (19) it follows that

DuUn+1 = 0

i.e., the continuity equation is not perturbed (it would be perturbed if the classical
Laplacian matrix L is used, as mentioned earlier).

Let us analyze which is the expected order of accuracy. Combining (19) and (20)
we get [

1
γkδ t

Mu + γkδ tDσ M−1
σ Gσ

]
(Un+1−Ũn+1)

+Gu(Pn+1− P̂k−1)−Dσ (Σ
n+1− Σ̂k−1) = 0

from where we see that Un+1− Ũn+1 is of order O(δ tk) (in an adequate norm).
Knowing this, it follows from (20) that Σ n+1− Σ̃ n+1 is of order O(δ tk+1). From this
we conclude that the perturbation terms −Nn+1

u −Dσ (Σ̃
n+1−Σ n+1) and −Nn+1

σ

are of order O(δ tk) and, in fact, the correction step (20) is not needed to have a
splitting error of order O(δ tk). This last remark is relevant, since using the classical
factorization point of view described in [5] this last step does not appear.

Let us move our attention to the third order pressure extrapolation scheme.
Adding up (21) and (24) on the one hand, and (22) and (25) on the other, we obtain

Mu
δ3

δ t
Un+1 +Ku(Un+1)Un+1 +GuPn+1−Dσ Σ

n+1−Dσ (Σ̃
n+1−Σ

n+1) = Fn+1

Mσ

δ3

δ t
Σ

n+1 +Kσ (Un+1)Σ n+1−GσUn+1−Nn+1
σ = 0

from where it follows that the perturbation of the momentum equation is only
−Dσ (Σ̃

n+1 − Σ n+1) and the perturbation of the stress equation is −Nn+1
σ . Com-

bining (23) and (24) one gets

DuUn+1 + γ3δ tDuM−1
u Nn+1

u = 0

Let us verify formally which should be the order of accuracy of the scheme. Com-
bining (24) and (25) we get[

1
γ3δ t

Mu +Ku(Un+1)−Ku(Ũn+1)+ γ3δ tDσ M−1
σ Gσ

]
(Un+1−Ũn+1)

+Gu(Pn+1−Pn)−Dσ (Σ
n+1−Σ

n) = 0

Noting that Ku(U) is linear in U , from this expression it follows that Un+1−Ũn+1

is of order O(δ t2) (in an adequate norm). Knowing this, from (25) it follows that
Σ n+1− Σ̃ n+1 is of order O(δ t3). Contrary to the first and second order schemes,
the correction step (25) is now crucial, since it guarantees that the perturbation of
the momentum equation is O(δ t3), which is of the same order as the perturbation
of the stress equation and the perturbation of the continuity equation of the mono-
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lithic scheme. Therefore, we can expect (21)-(25) to be a third order fractional step
scheme. This was numerically checked in [5].

4 Schemes based on velocity extrapolation

In the schemes presented heretofore, pressure and stress have been extrapolated in
the momentum equation. This permits to compute a first guess for the velocity that
needs to be corrected. The idea now is to write an equation for the pressure and
extrapolate the velocity and the stress. That should allow one to compute a first
guess for the pressure, that may need to be corrected (or not). But such an equation
for the pressure is not explicit in (1)-(2), and so we will start reformulating the
continuous problem, although we shall see that it is not an appropriate option.

4.1 The continuous problem

We may replace the continuous equation (2) by the equation that is obtained taking
the divergence of (1) and using that fact that u must be divergence free. This leads
to:

∆ p = ∇ · ( f +2βη0∇ ·∇su−ρu ·∇u+∇ ·σ)

which has to hold in Ω and in the time interval ]0, tf[. The appropriate boundary
condition for this equation turn out to be that the normal derivative of the pressure
on ∂Ω be equal to the normal component of the term within parenthesis. If q is a
pressure test function, the weak form of this equation reads:

(∇q,∇p) = (∇q, f +2βη0∇ ·∇su−ρu ·∇u+∇ ·σ) (26)

for all test functions q. The continuous variational problem determined by equations
(4), (5) and (6) can be replaced by the problem made by equations (4), (26) and (6).
However, two remarks are needed:

• The regularity of the problem has changed. This is obvious from (26). It is well
posed for example for pressures in H1(Ω) in space, not only in L2(Ω), velocities
in H2(Ω) and stresses in H(div;Ω). The regularity of these variables could be
relaxed at the expenses of taking q in H2(Ω). This additional need of regular-
ity is not only a theoretical problem, but also could complicate enormously the
numerical approximation.

• For divergence free velocities, ∇ ·∇ ·∇su= 0, and therefore the term 2βη0∇ ·∇su
could be removed from (26). However, this does not only change the natural
boundary condition, but also yields an ill-posed problem (see the discussion and
references in [1]).
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In view of these comments, it seems clear that system (4), (26) and (6) is not a
good alternative. However, we could mimic the obtention of (26) at the algebraic
level, and design effective fractional step schemes from the resulting equations.

4.2 Formulation of the algorithms

Let us consider problem (7)-(9). Multiplying the first equation by γkδ tDuM−1
u and

using the fact that DuUn+1 = 0 we obtain

γkδ tDuM−1
u GuPn+1

= γkδ tDuM−1
u (Fn+1−Ku(Un+1)Un+1 +Dσ Σ

n+1)+DuU∗,n (27)

Mu
δk

δ t
Un+1 +Ku

(
Un+1)Un+1 +GuPn+1−Dσ Σ

n+1 = Fn+1 (28)

Mσ

δk

δ t
Σ

n+1 +Kσ

(
Un+1)

Σ
n+1−GσUn+1 = 0 (29)

This system is equivalent to (7)-(9), with the difference that now we have an equa-
tion for the pressure in terms of the velocity and the stress that is invertible, of
Poisson type, obtained from the original monolithic discretization of the problem.
To this system we can apply the same ideas as for the algorithms based on pressure
extrapolation:

• Compute an approximation to the pressure using a velocity and a stress extrapo-
lation in (27).

• Compute an approximation to the velocity using the pressure obtained and a
stress extrapolation in (28).

• Compute the stress using the velocity obtained in (29).
• Correct the velocity to cancel the effect of the extrapolated stress in (28).
• Correct the pressure to cancel the effect of the extrapolated velocity and stress

in (27).

To have an overall scheme of order k, the extrapolations need to be of order k−1.
The equations to be solved are thus the following:

First, second and third order velocity extrapolation schemes:

γkδ tDuM−1
u GuP̃n+1

= γkδ tDuM−1
u (Fn+1−Ku(Ûn+1

k−1 )Û
n+1
k−1 +Dσ Σ̂

n+1
k−1 )+DuU∗,n (30)

Mu
δk

δ t
Ũn+1 +Ku(Ũn+1)Ũn+1 +GuP̃n+1−Dσ Σ̂

n+1
k−1 = Fn+1 (31)

Mσ

δk

δ t
Σ

n+1 +Kσ (Ũn+1)Σ n+1−GσŨn+1 = 0 (32)
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1
γkδ t

Mu(Un+1−Ũn+1)−Dσ (Σ
n+1− Σ̂

n+1
k−1 ) = 0 (33)

DuM−1
u Gu(Pn+1− P̃n+1) = DuM−1

u (Ku(Ûn+1
k−1 )Û

n+1
k−1 −Dσ Σ̂

n+1
k−1 )

+DuM−1
u (−Ku(Un+1)Un+1 +Dσ Σ

n+1) (34)

This algorithms admits several modifications and requires some remarks:

• Matrix DuM−1
u Gu has a wide stencil. In principle, one could use the approxi-

mation DuM−1
u GuP̃n+1 ≈ LP̃n+1 +(DuM−1

u Gu−L)P̂k−1. However, the resulting
scheme turns out to be unstable for k = 3 because of the second order pressure
extrapolation, and thus it cannot be used to design a third order formulation. The
alternative could be to use L only as a preconditioner in an iterative scheme. See
[12] for further discussion.

• If instead of Σ̂
n+1
k−1 one uses Σ̂

n+1
k in (30), the fourth step (33) would be unneces-

sary from the accuracy point of view. However, stability would be affected, since
the intermediate velocities obtained from (31) depend on extrapolated stresses,
i.e., to an explicit treatment of the stress in the momentum equation.

• For the exact problem, DuU∗,n = 0. However, this does not hold with the ap-
proximations done, and the term DuU∗,n has to be kept in (30) to obtain a stable
scheme (see [2]).

• A very important point from the computational point of view is that the fifth
step (34) is in fact not needed, since pressure is not an evolution variable for
incompressible flows. However, it is formally convenient to maintain (34), since
it shows how the pressure should be corrected in case it is needed.

4.3 Equivalent monolithic formulation

As for the schemes based on pressure extrapolation, let us obtain the equivalent
monolithic system solved by (30)-(33). The resulting momentum equation is ob-
tained adding up (31) and (33) and the resulting stress equation is directly (32).
These equations can be written as

Mu
δk

δ t
Un+1 +Ku(Un+1)Un+1 +GuP̃n+1−Dσ Σ

n+1−Nn+1
u = Fn+1 (35)

Mσ

δk

δ t
Σ

n+1 +Kσ (Un+1)Σ n+1−GσUn+1

+[Kσ (Ũn+1)−Kσ (Un+1)]Σ n+1−Gσ (Ũn+1−Un+1) = 0 (36)

Multiplying (35) by γkδ tDuM−1
u and making use of (30) it is found that

DuUn+1 + γkδ tDuM−1
u [Ku(Un+1)Un+1−Ku(Ûn+1

k−1 )Û
n+1
k−1 ]
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+ γkδ tDuM−1
u [−Dσ (Σ

n+1− Σ̂
n+1
k−1 )−Nn+1

u ] = 0 (37)

From (33) it follows that Un+1− Ũn+1 is or order δ tk (in the appropriate norm).
Identifying P̃n+1 with the pressure to be computed, we observe that (35)-(37) is
a perturbation of the original system (7)-(9) with all the perturbation terms of or-
der δ tk.

5 Comments on stability

The obvious way to undertake the numerical analysis of the algorithms presented is
to evaluate the stability and convergence properties of the segregated schemes with
respect to their monolithic counterpart, and then rely on the estimates of stability and
convergence of the monolithic formulations with respect to the continuous problem.
The difficulty of this approach relies on the fact that convergence estimates of the
first step will depend on norms of discrete solutions. While in some cases it is possi-
ble to prove bounds for these norms (see [3] for an application of this technique to a
first order scheme), in general this boundedness has to be assumed. The order of ac-
curacy of the formulations has to be based solely on the formal derivation presented
before, comparing the fractional step schemes with their monolithic versions.

However, stability can be proved rigorously and at the pure algebraic level. This
was shown first in [7] for Newtonian fluids, and then the approach was followed in
[9, 2] with other schemes (see [1] for a review and additional references).

It is outside the scope of this article to present the stability proofs of the different
schemes presented. We will just describe the results that can be obtained in a de-
scriptive manner. To this end, given arrays X and Y of m components and a positive
definite m×m matrix A, we define

(X ,Y )A := XT AY, ‖X‖A := (XT AX)1/2, ‖X‖−A := sup
Y 6=0

XTY
‖Y‖A

Given a sequence of arrays {Xn}, n = 1,2, . . . ,N, we define

{Xn} ∈ `∞(A) ⇐⇒ ‖Xn‖A < ∞ for all n = 1,2, . . . ,N

{Xn} ∈ `p(A) ⇐⇒
N

∑
n=1

δ t‖Xn‖p
A < ∞ 1≤ p < ∞

where δ t = tf/N. We will apply these definitions to the sequences {Un}, {Ũn},
{Σ n}, {Σ̃ n} and {Pn} obtained using the first and second order schemes presented.
The third order formulations proposed have been based on the third order BDF
time integration scheme, which is only conditionally stable; therefore, unconditional
stability for the split schemes cannot be expected.

Let us denote by Ku,0 the symmetric part of Ku. From the original term in (4)
from which matrix comes, it is seen that it is zero when β = 0. The results one can
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prove for all the methods presented are the following:

{Un} ∈ `∞(Mu), {Ũn} ∈ `∞(Mu)∩ `2(Ku,0)

{Σ n} ∈ `∞(Mσ ), {Σ̃ n} ∈ `∞(Mσ )

provided ∑
N
n=1 δ t‖Fn‖2

Mu
< ∞. If β > 0, the stability for {Ũn} is optimal, and in

fact one only needs to have ∑
N
n=1 δ t‖Fn‖2

−L+ < ∞, where L+ = −L and L is the
Laplacian matrix, as before, but now extended to vector fields (the sequence of ar-
rays {Fn} comes from the approximation of the forcing term f ). However, if β = 0
(or β is very small), we do not have stability of {Ũn} in the discrete counterpart of
L2(0, tg;H1(Ω)d), which is precisely `2(Ku,0) if β > 0 or `2(L+) if β = 0 (again,
L+ is applied to vector fields).

To obtain the missing stability one has to make use of the inf-sup conditions that
need to be satisfied between the approximation of pressures and velocities on the
one hand and on the approximation of velocities and stresses on the other. Alter-
natively, one can use stabilized finite element formulations (see [8] and references
therein for further discussion). Using the first option, the conditions that need to be
satisfied can be written as follows. Let P be an array in the space coming from the
discretization of the pressure and let Mp be the matrix coming from the L2(Ω) inner
product in the pressure space. Let also U , V be generic arrays in the space coming
from the discretization of the velocity and Ψ an array in the space coming from the
discretization of the stress. Then, we assume that there exist β1 > 0 and β2 > 0,
constants, such that

For all P there exists V such that β1‖P‖Mp‖V‖L+ ≤ PT DuV

For all U there exists Ψ such that β2‖U‖L+‖Ψ‖Mσ
≤Ψ

T GσU

Under this assumption, one can prove that

{Ũn} ∈ `2(L+), {Pn} ∈ `2(Mp)

With this, we have all the stability results that could be expected. In fact, for schemes
based on velocity extrapolation one can prove some additional stability results that
do not have a counterpart at the continuous level (see the review in [1]).

6 The inexact factorization point of view

Let us apply the inexact factorization point of view to fractional step schemes for
viscoelastic flows. This idea was proposed in [13]; see also [14] for an interesting
elaboration.

Let A be the matrix of system (10), which we may factorize as A= LAUA, with LA
lower diagonal per blocks and UA upper diagonal. Writing (10) as AXn+1 = Rn+1,
we may solve the sequence LAX̃n+1 = Rn+1 and UAXn+1 = X̃n+1, the advantage be-
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ing that in each system we can solve sequentially for the different unknowns. The
problem is that this process involves the inversion of A11 and A22, which is compu-
tationally expensive. Therefore, the idea of inexact factorizations is to approximate
A−1

11 and A−1
22 , this yielding approximations to LA and UA respectively denoted by

L∗ and U∗. Thus, the matrix of the approximate factorization is A∗ = L∗U∗, and
the error matrix is E∗ = A−A∗. We will apply this idea to the first order schemes
based on pressure extrapolation and on velocity extrapolation. For the application to
second and third order schemes based on pressure extrapolation, see [5].

6.1 First order pressure extrapolation scheme as inexact
factorization

To simplify the notation, let us introduce the abbreviations

B := DuM−1
u Gu, Cu :=

1
δ t

Mu +Ku, Cσ :=
1
δ t

Mσ +Kσ

It is understood in all what follows that matrices Ku and Kσ are evaluated with Ũn+1.
If in algorithm (16)-(20) we take k = 1 and replace (20) by Σ n+1 = Σ̃ n+1 (that

can be done for the reasons explained in Subsection 3.2), we may understand this
algorithm as the sequence of solving first L∗X̃n+1 = Rn+1:

CuŨn+1 = Fn+1
1

Cσ Σ̃
n+1−GσŨn+1 = Fn+1

2

−DuŨn+1 +δ tBP̃n+1−δ tDuM−1
u Dσ Σ̃

n+1 = 0

and then solving U∗Xn+1 = X̃n+1:

Pn+1 = P̃n+1

Σ
n+1 = Σ̃

n+1

Un+1 +δ tM−1
u GuPn+1−δ tM−1

u Dσ Σ
n+1 = Ũn+1

Matrices L∗ and U∗ are now given by

L∗ =

 Cu 0 0
−Gσ Cσ 0
−Du −δ tDuM−1

u Dσ δ tB

 , U∗ =

 I −δ tM−1
u Dσ δ tM−1

u Gu
0 I 0
0 0 I


Thus, matrix A has effectively been approximated by A≈ A∗ = L∗U∗, where

A∗ =

 Cu −Dσ −δ tKuM−1
u Dσ Gu +δ tKuM−1

u Gu
−Gσ Cσ +δ tGσ M−1

u Dσ −δ tGσ M−1
u Gu

−Du 0 0


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The error matrix of the splitting scheme is

E∗ := A−A∗ =

0 δ tKuM−1
u Dσ −δ tKuM−1

u Gu
0 −δ tGσ M−1

u Dσ δ tGσ M−1
u Gu

0 0 0


This error matrix allows us to observe which are the terms approximated and that
they are of first order in time.

6.2 First order velocity extrapolation scheme as inexact
factorization

Schemes based on pressure extrapolation can be cast as a classical inexact LU
factorization. However, velocity correction schemes fit better as inexact general
factorizations of the system matrix into block triangular matrices. For Newtonian
flows, it was shown in [1] that they can be written as a factorization of the system
matrix A into two block triangular matrices, but not the canonical LU factoriza-
tion. In the case of viscoelastic flows, it is convenient to organize the unknowns as
(Σ n+1,Un+1,Pn+1) and split the matrix of the system to be solved as the product of
three triangular matrices. If in algorithm (30)-(34) we take k = 1 and neglect (34)
(for the reasons explained Subsection 4.2) this splitting is as follows:

A =

 Cσ −Gσ 0
−Dσ Cu Gu

0 Du 0


≈

Iσ 0 0
0 Iu 0
0 δ tDuM−1

u −δ tDuM−1
u Gu

Cσ −Gσ 0
0 Cu Gu
0 0 Ip

 Iσ 0 0
−δ tM−1

u Dσ Iu 0
0 0 Ip

 (38)

=

 Cσ −Gσ 0
−Dσ −Euσ Cu Gu
−Epσ Du−Epu 0

=: A∗

where Iσ , Iu and Ip are the identity matrices corresponding to stress, velocity and
pressure, respectively, and the error terms are:

Euσ = δ tKuM−1
u Dσ = O(δ t)

Epσ = δ t2DuM−1
u CuM−1

u Dσ = O(δ t)

Epu =−δ tM−1
u Ku = O(δ t)

which are all of order δ t.
In order to check that this splitting corresponds to (30)-(33), let us write now the

approximate factorization (38) as A∗ = T(1)T(2)T(3), where matrices T(i), i = 1,2,3,
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are all block triangular. This is what allows us to solve for the different unknowns
in an uncoupled way. Problem T(1)X(1) = Rn+1, with X(1) = (Σ n+1

(1) ,Un+1
(1) ,Pn+1

(1) ) and

Rn+1 = ( 1
δ t Mσ Σ n,Fn+1 + 1

δ t MuUn,0) yields:

Σ
n+1
(1) =

1
δ t

Mσ Σ
n

Un+1
(1) = Fn+1 +

1
δ t

MuUn

δ tDuM−1
u GuPn+1

(1) = δ tDuM−1
u Un+1

(1) = δ tDuM−1
u Fn+1 +DuUn

from where it follows that Pn+1
(1) = P̃n+1 is the solution of (30) (with k = 1). Solving

now T(2)X(2) = X(1) yields:

Pn+1
(2) = Pn+1

(1) = P̃n+1

CuUn+1
(2) +GuPn+1

(2) =Un+1
(1) ⇐⇒ CuUn+1

(2) = Fn+1 +
1
δ t

MuUn−GuP̃n+1

Cσ Σ
n+1
(2) −GσUn+1

(2) = Σ
n+1
(1) ⇐⇒ Cσ Σ

n+1
(2) −GσUn+1

(2) =
1
δ t

Mσ Σ
n

from where it follows that Un+1
(2) = Ũn+1 is the solution of (31) and Σ

n+1
(2) = Σ n+1

the solution of (32), with k = 1 in both cases. Finally, solving T(3)X(3) = X(2) yields:

Σ
n+1
(3) = Σ

n+1
(2) = Σ

n+1

−δ tM−1
u Dσ Σ

n+1
(3) +Un+1

(3) =Un+1
(2) ⇐⇒ Un+1

(3) = Ũn+1 +δ tM−1
u Dσ Σ

n+1

Pn+1
(3) = Pn+1

(2) = P̃n+1

from where Un+1
(3) = Un+1 is the solution of (33) with k = 1. Therefore, X(3) is the

solution of the first order version of (30)-(33), thus proving that this algorithm cor-
responds to the inexact factorization (38).

7 Conclusions

In this article we have explained the main aspects related to the design of fractional
step schemes for viscoelastic flows at the purely algebraic level. The design of the
algorithms has taken as starting point the fully discrete problem, discretized both
in space and in time. The driving idea in all cases is to extrapolate one variable
to allow the uncoupled calculation of the others and then to make a correction to
maintain the implicitness of the original time integration. Two families of schemes
have been presented, one based on pressure (and stress) extrapolation and the other
based on velocity (and stress) extrapolation. In the former case, the modifications
required to design a third order scheme have been explained, whereas the latter has
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been motivated from a discrete pressure Poisson equation that does not have the
theoretical difficulties of the continuous one.

A first way to understand the properties of the schemes proposed, and in particu-
lar their order of accuracy, is to write the equivalent monolithic problem. This shows
which equations of the original system are approximated a how. The interpretation
of the schemes as inexact factorization serves the same target, and is also a source
of inspiration to design other fractional steps schemes.

Comments about the stability of the schemes have been also provided. Summa-
rizing, one can prove at the discrete level the same stability results as those that hold
for the continuous counterpart, although using purely algebraic concepts.

Many of the points treated deserve further research. Related to the last point, for
example, the stability of third order schemes has not been undertaken, and the anal-
ysis of either inf-sup stable or stabilized formulations has many gaps to be filled,
although we have tried to explain the main lines. The same happens with the identi-
fication of inexact factorizations for all the schemes proposed, and even the analysis
of modifications that these factorizations suggest. Needless to say that all what has
been presented could be applied to time integration schemes other that BDF. The
usefulness of algebraic fractional step schemes to design preconditioners for linear
solvers has not even been touched. Nevertheless, our objective has been to provide
a global picture of this way to approach fractional step methods in computational
fluid mechanics, particularly applied to viscoelastic fluids.
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