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Abstract

In this chapter we present some Reduced-Order Modelling methods we have developed for
the stabilized incompressible Navier-Stokes equations. In the first part of the chapter, we depart
from the stabilized finite element approximation of incompressible flow equations and we build
an explicit proper-orthogonal decomposition based reduced-order model. To do this, we treat the
pressure and all the non-linear terms in an explicit way in the time integration scheme. This is
possible due to the fact that the reduced model snapshots and basis functions do already fulfill
an incompressibility constraint weakly. This allows a hyper-reduction approach in which only the
right-hand-side vector needs to be reconstructed.

In the second part of the chapter we present a domain decomposition approach for reduced-
order models. The method consists in restricting the reduced-order basis functions to the nodes
belonging to each of the subdomains. The method is extended to the particular case in which one
of the subdomains is solved by using the high-fidelity, full-order model, while the other ones are
solved by using the low-cost, reduced-order equations.
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1 Introduction

Reduced-order models (ROM) are nowadays receiving a lot of interest from the computational mechan-
ics community. Their most attractive feature is the capability of reproducing the response of complex
physical phenomena through the solution of systems of equations which involve only very few degrees
of freedom.

Amongst the various families of reduced-order models, Proper Orthogonal Decomposition [15, 27,
24] based ROMs consist in the training of the model by taking snapshots from a high-fidelity simulation
and using them to build an orthogonal basis which is capable of accurately representing the solution
through the combination of few of this basis functions. Particularly, we are interested in the application
of POD models to the incompressible Navier-Stokes equations, which we originally approximate by
using finite elements and a stabilized formulation. The problem of applying POD models to the incom-
pressible flow equations has been approached by several authors [13, 20, 21, 30, 25, 39, 40] in a range
of applications like shape optimization [1, 10, 28, 34] or flow control [3, 6, 22].

The major concerns when making use of a reduced-order model are, on the one hand, computational
cost, and on the other, accuracy. Obviously we are looking for a cheap reduced-order model which is
as accurate as possible. Unfortunately, this is not always possible. In this chapter we present some
approaches we have developed for POD models for the incompressible Navier-Stokes equations which
help enhance the computational cost and accuracy of the reduced-order models.

One of the a priori drawbacks of traditional POD is that a straightforward application of a POD
strategy to a non-linear problem does not turn out in a drastic reduction of the required computational
cost. This is so because in order to solve the reduced-order equations, the full-order, non-linear, system
of equations needs to be built first and then projected onto the reduced-order space. Recently, the so-
called hyper-reduction [32, 23, 9, 16, 35, 36, 4, 37, 38] has appeared as a means to circumvent this
problem. The main idea is to compute the non-linear system entries only at some few nodes of the
computational mesh, and then approximate the whole system by extrapolating it from the values of the
system at these entries.

In the first part of this chapter, we describe a reduced-order model which is particularly suitable
for hyper-reduction [8]. The basic idea is to build a reduced-order model based on a proper orthogonal
decomposition and a Galerkin projection and treat all the terms in an explicit way in the time integration
scheme. This results in a reduced-order model where only the right-hand side of the system needs to
be rebuilt at each time step. This is possible because the reduced model snapshots do already fulfill
the stabilized continuity equation and the pressure field can be automatically recovered at the end of
each time step from the reduced order basis and solution coefficients. We also present a method for
choosing the sampling entries from which the complete system is going to be extrapolated. The method
consists of choosing the sampling points such that the distance between the right-hand-side snapshots
and the recovered snapshots is minimized, with the restriction that the coordinates of sampling points
must coincide with the coordinates of the finite element mesh nodes.

Another issue which needs to be dealt with when using reduced-order models is the lack of ro-
bustness with respect to changes in the parameters which characterize the numerical simulation. This
lack of robustness causes the reduced model to be valid only in a small parameter region close to the
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parameter values for which the reduced model was built [3], requiring the snapshot collection and the
reduced model to be updated when an optimization process leads to a parameter configuration which
becomes too separated from the starting parameter set.

In the second part of this chapter we present a domain decomposition method for reduced-order
models [7] which we apply to the finite element approximation of the incompressible Navier-Stokes
equations. Domain decomposition methods for reduced-order models have been used for different sim-
ulation problems [31, 29, 11, 2, 41, 33]. In these partitioned approaches reduced-order models are
formulated independently and then glued together in either a monolithic or an iterative way. Contrary
to this approach, the domain decomposition method we propose is obtained simply by restricting the
reduced model basis functions to be non-null only in the nodes of the computational mesh belonging to
the considered subdomain. This definition of the partitioned problem directly ensures the continuity of
the recovered reduced-order solution at the interfaces. Also, there is no need to use the classical domain-
decomposition iteration by subdomain schemes, because the Domain Decomposition Reduced-Order
Model (DD-ROM) is written in terms of the partitioned reduced bases in a monolithic way. One of the
advantages of the proposed method is the ease for generating a hybrid full-order/reduced-order model,
as a particular case of the general DD-ROM method. The proposed hybrid DD-ROM model can be
easily used together with hyper-reduced models, as we demonstrate in the numerical examples section.

The chapter is organized as follows. In Section 2 we present an explicit ROM for the finite ele-
ment approximation of the incompressible Navier-Stokes equations, and a numerical example illustrates
the behavior of the model for low Reynolds flow cases. In Section 3 we describe the hyper-reduction
strategy we apply to the explicit ROM, and we also present the Discrete Best Points Interpolation
Method for the selection of sampling indices for the gappy-POD reconstruction process. Finally, the
domain-decomposition reduced-order model is presented in Section 4, where we also explain the hy-
brid full-order/reduced-order domain decomposition approach and present a numerical example. Some
conclusions close the chapter in Section 5.

2 An explicit reduced-order model for the incompressible Navier-Stokes
equations

When solving a non-linear problem by means of a POD based ROM, it is necessary to project the
full-order system of equations to the reduced-order space at each iteration of the non-linear problem.
For non-linear problems, this is troublesome because the expected orders of magnitude reduction in the
computational cost of solving the reduced-order system is not observed in practice: the computational
time of the reduced-order model is governed by the need of rebuilding the full-order system at each
iteration, and then projecting it to the reduced-order subspace.

This issue has motivated a lot of research recently, leading to several strategies which reduce the
cost of computing projected reduced-order system of equations [32, 23, 9, 16, 35, 36, 4, 37, 38].
These approaches are known as hyper-reduced models. In these methods, the non-linear and parameter-
dependent terms are recovered by means of a least-squares procedure from a series of sampling points
where the function to be approximated is computed. This allows to effectively reduce the amount of
computations required to build the reduced order system, and results in a reduced-order model whose
computational cost is directly proportional to its number of degrees of freedom.

We have been working in a hyper-reduced approach for the incompressible Navier-Stokes equations.
The particularity of the strategy we propose is that the equations for the reduced-order model are treated
in an explicit way. This allows to send all the non-linear terms to the right hand-side of the reduced-
order system, leaving in the left-hand side only the mass matrix due to the temporal derivatives. The
main advantage is, of course, that the mass matrix is linear, and the hyper-reduced approaches need only
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to be applied to right-hand side vector. This effectively reduces the overall cost of the reduced-order
model.

Let us start by introducing some notation for the POD approximation of a general problem. Let
U ∈ RM be the global unknown vector associated to a non-linear variational problem. Suppose that
after linearizing and fully discretizing in time and space the given problem, the following matrix form
is obtained which allows to obtain the vector of nodal unknownsU at a given iteration of the non-linear
procedure, for a certain time step:

AU = F , (1)

where A ∈ RM×M is the matrix of the system whose solution is U , and F ∈ RM the RHS vector.
The POD approximation of the previous system is obtained by projecting it onto a low dimensional
subspace U ⊂ RN . Vectors U are now approximated by:

U ≈ Φα, (2)

where Φ ∈ RM×N is the basis for U andN is the dimension of the reduced order model, withN < M .
α ∈ RN are the components in U expressed in the reference system defined by Φ. The reduced-order
basis Φ is obtained by means of the POD method [15, 27, 24], that is by doing the singular value
decomposition of a set of solution snapshots, which in our case are taken from the results of a full-order
simulation. After projecting the full-order system to this reduced-order subspace and applying a least
squares approach, the final reduced-order system is:

ΦTAΦα = ΦTF . (3)

2.1 Stabilized finite element approximation of the incompressible Navier-Stokes equa-
tions

In this section we summarize the finite element stabilized formulation for the incompressible Navier-
Stokes equations used in the rest of the chapter. Let us consider the transient incompressible Navier-
Stokes equations, which consist of finding u : Ω × (0, T ) −→ Rd and p : Ω × (0, T ) −→ R such
that:

∂tu− ν∆u+ u · ∇u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = ū on ΓD,

−pn+ νn · ∇u = 0 on ΓN .

for t > 0, where ∂tu is the local time derivative of the velocity field. Ω ⊂ Rd is a bounded domain,
with d = 2, 3, ν is the viscosity, and f the given source term. Appropriate initial conditions have to be
appended to this problem.

Let now V = H1(Ω)d, and V0 = {v ∈ V |v = 0 on ΓD}. Let also Q = L2(Ω) and D′(0, T ;Q)
be the distributions in time with values in Q. The variational problem consists of finding [u, p] ∈
L2(0, T ;V )×D′(0, T ;Q) such that:

(v, ∂tu) +B([v, q], [u, p]) = 〈v,f〉 ∀[v, q] ∈ V ×Q, (4)

with

u = ū on ΓD,
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where

B([v, q], [u, p]) := 〈v,u · ∇u〉+ ν(∇v,∇u)− (p,∇ · v) + (q,∇ · u).

Here, (·, ·) stands for the L2(Ω) inner product and 〈·, ·〉 for the integral of the product of two func-
tions, not necessarily in L2(Ω). Let {K} be a finite element partition of Ω, from which we construct the
finite element spaces Vh ⊂ V, Vn0 ⊂ V0, Qh ⊂ Q. The semilinear form B suffers from the well-known
stability issues due to the convective nature of the flow, but also requires a compatibility between the
velocity and pressure approximation spaces due to the classical LBB inf-sup condition. In order to deal
with these stability issues, we use a stabilized finite element formulation [17], which is as follows: for
eacht t, find uh(t) ∈ Vh, ph(t) ∈ Qh such that:

(vh, ∂tuh) +B([vh, qh], [uh, ph]) +
∑
K

τK(uh · ∇vh + ν∆vh +∇qh, r([uh, ph]))K = 〈vh,f〉,

(5)

for all vh ∈ Vh,0, qh ∈ Qh. Initial conditions need to be appended to this problem. In (5):

r([uh, ph]) = ∂tuh − ν∆uh + uh · ∇uh +∇ph − f , (6)

is the residual of the momentum equation, (·, ·)K is used to denote the L2 product in element K and τK
is the stabilization parameter:

τK =

(
c1
ν

h2
+ c2
|uh|K
h

)−1

,

where |uh|K is the mean velocity modulus in element K, h is the element size and c1 and c2 are
stabilization constants.

Regarding the discretization in time, we consider implicit integration schemes. For the full-order
system, only implicit time integration schemes can be used, because no time derivatives of the pressure
appear in the equations. Taking this into account, we can do the following: supposing that the veloc-
ity and pressure at time step n [unh, p

n
h] are known, we may solve (5) for example with ∂tuh being

discretized using a backward differences in time scheme:

∂tuh ≈ δtun+1
h ,

δtu
n+1
h :=

{
1
δt(u

n+1
h − unh) 1st order scheme

1
δt(

3
2u

n+1
h − 2unh + 1

2u
n−1
h ) 2nd order scheme

(7)

where δt is the time step size.

2.2 Explicit Reduced-Order model

As explained in the previous sections, it is convenient to treat the reduced-order model by using an
explicit time integration scheme, because this leads to important computational gains when using hyper-
reduced order reconstruction methods. However, we have also explained the need of using an implicit
time integration scheme for the full-order model of the incompressible Navier-Stokes equations, due
to the presence of the pressure field. Here we summarize the strategy we use for building an explicit
reduced-order model which is suitable for the incompressible Navier-Stokes equations [8].

Let us start by introducing the velocity and pressure reduced-order subspaces. Q̂ ⊂ Qh is the
pressure subspace defined by the pressure part of the POD basis functions Φ, p̂ ∈ Q̂ is the reduced-
order pressure field. V̂ ⊂ Vh is the velocity subspace defined by the velocity part of the POD basis
functions Φ. For each time t, û(t) ∈ V̂ is the reduced-order velocity. In order to develop the explicit
reduced-order model where the pressure is treated in an explicit way, we take into account that:

5



• All reduced basis functions do already fulfill the stabilized continuity equation. Since the reduced-
order basis is built from weakly incompressible solution snapshots and the incompressibility
constraint is linear, the reduced basis functions (and their linear combinations) do also fulfill it.

• If basis functions are taken to be joint velocity-pressure basis functions (that is Φ contains the
coefficients of functions in V̂ ×Q̂), then the pressure at time step n+1 is automatically recovered
from coefficients αn+1 and the reduced order basis Φ even if all the terms involving the pressure
are treated in an explicit way in the reduced order formulation.

The variational formulation for the first order in time reduced-order model that we propose is :

(v̂, δtû
n+1) + (v̂, ûn∗ · ∇ûn∗) + ν(∇v̂,∇ûn∗)− (p̂n∗,∇ · v̂)

+
∑
K

τK(ûn · ∇v̂ + ν∆v̂, δtû
n − ν∆ûn + ûn · ∇ûn +∇p̂n − fn)K = 〈v̂,fn〉. (8)

where the terms ûn∗ and p̂n∗ are a second order approximation of the state at n + 1 (the velocity and
the pressure at n+ 1) given by:

ûn∗ = 2ûn − ûn−1,

p̂n∗ = 2p̂n − p̂n−1. (9)

In the case of the second order in time reduced-order model, we use the same variational formulation
(8), but the terms ûn∗ and p̂n∗ are now a third order approximation of the state at n+ 1 given by:

ûn∗ =
12

5
ûn − 9

5
ûn−1 +

2

5
ûn−2,

p̂n∗ =
12

5
p̂n − 9

5
p̂n−1 +

2

5
p̂n−2. (10)

Note that for the first order explicit scheme we propose to use the second order extrapolation (9), and
for the second order scheme the third order extrapolation (10).

The key point of this formulation is that only the temporal derivative terms involve values of the
reduced-order velocity or pressures at the new time step. This ensures that the resulting reduced-order
matrix is linear. However, the reduced-order right-hand-side still needs to be approximated. After solv-
ing the reduced-order system, the velocity and pressure fields at n+ 1 can be recovered by multiplying
the reduced-order basis Φ by the obtained reduced-order components αn+1.

2.3 Numerical Example. Bidimensional flow past two cylinders

The first numerical example consists in the bidimensional flow past two cylinders. The computational
domain is a 16 × 8 rectangle. The cylinders are centered at coordinates (3, 3) and (6, 5), and both
of them are of diameter 1. The inflow velocity is 1, which together with the density ρ = 1 and the
viscosity µ = 0.01 results in a Reynolds number Re= 100. The time step is set to δt = 0.1. The mesh
is composed of 7310 linear triangular elements. After running the full-order simulation and taking the
corresponding snapshots, the explicit reduced-order model is run. The number of degrees of freedom
for the ROM is only 10.

Fig. 1 shows a comparison of the velocity and pressure fields for the full-order and the explicit
reduced-order model after 400 time steps of simulation. The high-fidelity and the reduced-order fields
are very similar. In Fig. 2 we compare the time history and Fourier transform of the vertical velocity
and the pressure at coordinates (8.5, 4). We observe that the time history and Fourier transform of both
vertical velocity and pressure are accurate for the reduced-order model. The cpu-time for running the
full-order model is 53.24s , the time for running the explicit reduced-order model is 19.78s, a 63%
reduction in computational time.
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Figure 1: Comparison of the FOM (left) and ROM (right) velocities (top) and pressures (bottom) after
400 time steps of simulation.

3 Hyper-reduction approach

At this point, we already have an explicit reduced-order model in which all the non-linear terms are
in the right-hand-side vector and the reduced system matrix is linear and does not change between
time steps. However, computing the right-hand-side vector at each time step is still expensive (number
of operations of O(M)), because we need to recompute F n+1 and then project it to the reduced-
order subspace by calculating ΦTF n+1. The approach we follow for reducing this computational cost
is to reconstruct the non-linear vector F n+1by sampling only some of the entries of this vector and
applying a lest-squares minimization strategy . The method we follow was first presented in [19], and
a similar approach has been recently used in [14] applied to an implicit reduced-order method for the
incompressible Navier-Stokes equations.

Let us consider a reduced order basis for the right-hand-side vectors F , ΦF , obtained by means of
a proper orthogonal decomposition of a set of snapshots for F . ΦF defines a low-dimensional subspace
F ⊂ RM , so that any right-hand-side vector F can be approximated as:

F ' ΦFFΦ,

where now FΦ ∈ RN are the reduced-order coefficients for the reconstruction. Let us also consider that
we only know the nodal values for F at some sampling components Fi(k), 1 ≤ k ≤ ns, where ns is
the number of sampling components of the vector , i(k) denotes the kth sampling component. We now
want to recover the reduced order basis coefficients FΦ of the reduced order basis ΦF for vector F .

In order to recover FΦ we can solve the least-squares minimization problem:

FΦ = arg min
a∈RN

ns∑
k=1

N∑
j=1

(ΦF,i(k)jaj − Fi(k))
2, (11)

where ΦF,i(k)j denotes the basis vector j evaluated at the kth sampling component, i(k).
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Figure 2: Comparison of the FOM and ROM velocity and pressure time history at the point (8.5, 4)
(left) and their Fourier transform (right).
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The previous procedure provides the tools required to extrapolate the right-hand-side vector arising
from the finite element problem. The main advantage is that in order to do so, only the nodal values at
certain few sampling components are needed. If ns is O(N), then the computational cost of rebuilding
F n+1 for solving each time step is reduced to O(N), and the overall cost of the reduced-order model
is O(N).

3.1 A Discrete version of the Best Points Interpolation Method (DBPM)

When using hyper-reduced order models the quality of the recovered right-hand-side vector highly
depends on the selected sampling components. Several strategies have been developed for choosing
these sampling components [5, 18, 9]. Amongst the most extensively used are the Discrete Empirical
Interpolation Method (DEIM) [16], where the sampling components are selected iteratively by imposing
that the error growth at each iteration is limited and the Best Points Interpolation Method (BPIM)
approach presented in [32], where the sampling points are chosen so that the distance between the
projection of the right-hand-side snapshots onto the reduced basis subspace and the recovered right-
hand-side is minimized.

The strategy we use, presented in [8], is a hybrid between the BPIM and the DEIM. We call it a
Discrete version of the Best Point Interpolation Method (DBPIM). Similarly to the BPIM, the method
consists of minimizing the error between the recovered right-hand-side vector snapshots and the actual
snapshots. However, in the strategy we use we force the sampling coordinates to coincide with nodal
points of the finite element mesh. Plus, once a component associated to a node of the finite element mesh
is selected, all the degrees of freedom associated to that node are included in the sampling selection.
Moreover, due to the lack of smoothness of the vectors which are being approximated we do not use a
Marquardt related strategy in order to advance to the optimal set of sampling nodes. Instead, we use an
algorithm which advances from one set of sampling nodes to the next one by evaluating the error of the
recovered snapshots at the neighbour points in the finite element mesh and replaces a sampling node
with its neighbour if the error diminishes. The DBPIM algorithm is detailed in Algorithm 1 for a scalar
unknown (where each sampling node is associated to a single sampling component).

The first step of the DBPIM algorithm consists of finding the projection ΠF of the snapshots onto
the reduced order subspace defined by the reduced order basis, F . For each snapshot, this yields the
coefficients F α

Φ . In the second step we choose an initial set of sampling nodes, which can be done by
using the DEIM method. If the DEIM method is used, it will give us a set of sampling components. For
a scalar problem, each component corresponds to a node of the finite element mesh. If the unknown
is a vector field, then the nodes associated to the DEIM sampling components are selected as initial
sampling nodes, and the number of sampling nodes is equal to the number of reduced basis functions.
Otherwise, we always choose the number of sampling nodes to be equal to the number of basis func-
tions times an (usually low) integer. After defining the initial set of sampling nodes, the degree(s) of
freedom associated to these sampling nodes become sampling components. For this initial set of sam-
pling nodes, we recover the approximated coefficients F α,aprox

Φ by means of the previously described
least-squares strategy. The error associated to a set of sampling components i ∈ Nns , whose k-th com-
ponent is indicated as i(k) ∈ 1, ...,M , is obtained by computing the difference between the exact and
the approximated F α

Φ coefficients:

e(i) =

Nsnapshots∑
α=1

||F α,aprox
Φ (i)− F α

Φ || (12)
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Algorithm 1 Discrete Best Points Interpolation Method
Compute the optimal basis coefficients for the snapshot set:
ΦFF

α
Φ = ΠF (F α), α = 1, Nsnapshots

Choose an initial set of sampling components i ∈ Nns | 1 ≤ i(k) ≤M, k = 1, ...ns.
Solve: F α,aprox

Φ (i) = arg mina∈RN

∑ns
k=1

∑N
j=1 (ΦF,i(k)jaj − Fαi(k))

2, α = 1, Nsnapshots

e(i) =
∑Nsnapshots

j=1 ||F α,aprox
Φ (i)− F α

Φ ||2
while set of sampling points has changed do

for m = 1 : ns do
for l = 1 : Nneigh(i(m)) do

if the lth neighbour of i(m) has not been previously tested then
Temporarily replace sampling node i(m) by its lth neighbour
Solve: F α,aprox

Φ (i) = arg mina∈RN

∑ns

k=1

∑N
j=1 (ΦF,i(k)jaj − Fαi(k))

2, α = 1, Nsnapshots

etemp(i) =
∑Nsnapshots

α=1 ||F α,aprox
Φ (i)− F α

Φ ||
if etemp < e then
e = etemp

Permanently replace sampling node i(m) by its lth neighbour
Restart l loop

end if
end if

end for
end for

end while

where

F α,aprox
Φ (i) = arg min

a∈RN

ns∑
k=1

N∑
j=1

(ΦF,i(k)jaj − Fαi(k))
2, α = 1, Nsnapshots (13)

For this definition of the error, we can define the optimal set of sampling components as:

b = arg min
i∈Nns | 1≤i(k)≤M, k=1,...ns

e(i) (14)

where e(i) is given in (12).
In order to obtain the set of sampling points to be used in the reduced order simulation we proceed

as follows: for each sampling node of the finite element mesh, we loop over its neighbours in the
computational mesh and we temporarily replace the sampling node by each of them. If the error of the
new set is lower than the original error, the sampling node is permanently replaced by its neighbour.
This procedure is repeated while the set of sampling points changes due to the algorithm (while loop in
Algorithm 1).

3.2 Numerical Example. Two-dimensional low Reynolds flow past a NACA airfoil

In this section we simulate the incompressible flow around a NACA 0012 airfoil profile [26]. The
computational domain is a 32 × 16 rectangle, with the trailing edge of the 8 unit long airfoil placed at
(16, 8). The horizontal inflow velocity is set to 1 at x = 0, and slip boundary conditions are applied at
the upper and lower walls of the computational domain. Velocity is prescribed to 0 at the airfoil surface.

The viscosity has been set to ν = 0.001, which yields a Reynolds number Re = 1000 based on
the height of the airfoil. The time step has been set to δt = 0.2. In this numerical example, the CFL
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number associated to the finite element mesh was CFL ∼ 62. A 29945 linear element mesh has been
used. The mesh is refined around the airfoil surface in order to be able to better capture the solution in
the region surrounding the boundary layer. The angle of attack has been set to α = 0.2, and a second
order backward differences scheme has been used for the time integration.

100 velocity-pressure snapshots have been taken and the 10 first reduced basis functions have been
kept for the reduced-order model. For the hyper-reduced order model, 100 additional snapshots for the
right-hand-side have been taken and the corresponding 12 first reduced basis functions have been kept.
The number of sampling nodes is 36.

Fig. 3 compares the velocity and pressure fields after 200 time steps for the full-order and the hyper-
reduced model. The reduced-order model almost exactly matches the results from the full order model.

Regarding the computational cost, the full order model takes 148.9 seconds to run, the reduced-
order model takes 49.6 seconds (33%). Finally, reduced-order model 2, in which the computational
cost depends only on the size of the reduced-order model, takes only 0.71 seconds (0.45%) to run.

Figure 3: Velocity (top) and pressure (bottom) contours at Re = 1000, α = 0.2 after 200 time steps.
Full-order (left) and Hyper-Reduced Order Model (right).

Fig. 4 and Fig. 5 show the time history and spectra for the velocity and pressure at (8, 0.5). Despite
the complex flow and the high number of oscillation modes present in the solution, the reduced-order
models manage to correctly capture the main modes amplitudes and frequencies.

4 A domain decomposition approach for POD reduced-order models

Despite the important reduction in computational cost provided by reduced-order models, one of their
major drawbacks is the lack of robustness with respect to changes in the parameters which characterize
the numerical simulation. This lack of robustness causes the reduced model to be valid only in a small
parameter region close to the parameter values for which the reduced model was built [3], requiring the
snapshot collection and the reduced model to be updated when, for instance, an optimization process
leads to a parameter configuration which becomes too separated from the starting parameter set.
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Figure 4: Velocity (left) and pressure (right) time history at a control point at the wake of the airfoil,
Re = 1000, α = 0.2, second order time integration.
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Figure 5: Velocity (left) and pressure (right) spectra at a control point at the wake of airfoil, Re = 1000,
α = 0.2, second order time integration.
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In this section we present a strategy which allows to improve the behavior of non-linear reduced
models (where hyper-reduction is used for the reconstruction of the reduced-order equations) in param-
eter configurations which are not present in the snapshot set from which the reduced model is built [7].
It is based on introducing a domain decomposition approach to the model reduction, partitioning the
computational domain into several regions, each of which is dealt with localized POD bases. This gives
us the possibility of treating each of the subdomains with a different degree of approximation, or even,
as we will see, solving the full-order equations in some of the subdomains.

4.1 Domain decomposition POD model

Let us consider the splitting of the computational domain Ω into two subdomains Ωk, k = 1, 2, and
the associated local unknowns Uk ∈ RMk , M = M1 +M2. If the domain decomposition is applied to
the equations arising from a finite element problem, the partition into subdomains is done by assigning
each of the nodes (and nodal unknowns) of the finite element mesh to a subdomain. This means that
there are no interface nodes, instead we define interface elements as those elements who own nodes
from different subdomains. Let us define a local reduced order basis φk consisting of the reduced basis
functions φki ∈ RMk , i = 1, ..., Nk, to approximate Uk in each subdomain. Note that the number of
basis functions in each subdomain is not necessarily the same, although we have considered it to be
equal from now on for simplicity. The possible ways to construct this basis are discussed later. This
local basis can be extended to the global domain by defining Φk

i ∈ RM :

Φ1
i :=

[
φ1
i

0

]
, Φ2

i :=

[
0
φ2
i

]
, (15)

where the null terms correspond to components of the global system which lie outside Ωk. Taking this
into account, the unknown U is approximated as:

U ≈
N∑
i=1

(Φ1
iα

1
i + Φ2

iα
2
i ) = (Φ1α1 + Φ2α2), Φk ∈ RM×N , αk ∈ RN k = 1, 2, (16)

where αk are the solution coefficients for subdomain k.
Let A ∈ RM×M be the matrix of the system whose solution is U ∈ RM , and F ∈ RM the RHS

vector. They can be partitioned into the components associated to each subdomain Ωk, k = 1, 2, so that

A =

[
A|11 A|12

A|21 A|22

]
, A|kl ∈ RMk×Ml , F =

[
F |1
F |2

]
, F |k ∈ RMk .

The monolithic approach for the domain decomposition ROM is obtained by introducing the union
of the extensions of the local bases to the global domain as the global reduced order basis:

(Φ1)TA(Φ1α1 + Φ2α2) = (Φ1)TF

(Φ2)TA(Φ1α1 + Φ2α2) = (Φ2)TF . (17)

Defining akl = (Φk)TAΦl ∈ RN×N and fk = (Φk)TF ∈ RN , we may write this system as

a11α
1 + a12α

2 = f1, (18)

a21α
1 + a22α

2 = f2. (19)

If we also consider the decomposition of A and F the final reduced order system can be written in
terms of the local bases φk:

13



Figure 6: Local basis functions for the domain decomposition approach. The green function is the
sum of the local basis function of the left subdomain (blue) and the local basis function of the right
subdomain (red).

(φ1)T (A|11φ
1α1 +A|12φ

2α2) = (φ1)TF |1
(φ2)T (A|21φ

1α1 +A|22φ
2α2) = (φ2)TF |2.

The off diagonal block matrices correspond to the coupling terms and are null except for the contri-
bution of the unknowns ubicated at the domain interfaces. It can be observed that the cost of computing
the ROM system is not larger than in the monolithic approach. However, the size of the reduced system
is larger (dimension 2N ).

An important point is that each algebraic local basis function Φk
i arises from a function defined in

space. This spatial function is a linear combination of the finite element shape functions of the nodes of
subdomain Ωk. As a consequence, each of the components in Φk

i corresponds to a nodal value of the
spatial field to be represented on the finite element mesh. This is illustrated in Fig.6, where examples
of local basis functions for a one-dimensional problem and linear finite elements are shown. Let us
also emphasize that, if the original finite element shape functions are continuous, any local (and global)
basis function will also be continuous, as a consequence of the definition of the extension of the basis
functions to the global domain 15. This will also hold for the combination of local basis functions, even
if these belong to different subdomains. In Fig.6 the blue basis function belongs to the left subdomain,
the red basis function belongs to the right subdomain. The green line represents the addition of the
blue and the red basis functions. Since both of the original functions are continuous, the green function
is also continuous. Note also that there is an overlapping region where both the left and right basis
functions are non-zero.
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4.2 Local POD (L-POD)

The strategy for building the local POD basis consists in performing a POD for the part of the snap-
shots corresponding to each of the subdomains. The snapshots are first partitioned according to the
domain decomposition strategy and the local basis φk is obtained from these partitioned snapshots. The
global basis is again defined as Φ =

[
Φ1,Φ2

]
. Note that the number of local basis functions in each

subdomain does not necessarily coincide, N1 6= N2, N = N1 +N2.
The main features of these domain-decomposition local POD bases are the following:

• Each local basis can be ensured to be orthonormal at the algebraic level. By construction, each
of the basis functions which conform the local POD has unitary norm and is orthogonal to all the
basis functions in its subdomain at the algebraic level. Moreover, due to the domain decomposi-
tion approach, the projection of a local basis of a given subdomain onto the space conformed by
the basis functions of any other subdomain is also zero. This ensures that if we consider the POD
decomposition globally, the union of the local bases is also an orthonormal basis.

• The computation of the singular value decomposition of the local snapshots for each subdomain
requires less memory than the computation of the singular value decomposition of the global
snapshots.

In the case we are using hyper reduced models which require additional POD bases for reconstructing
the system matrix and right-hand side, we can proceed in the same way.

Once the localized reduced order bases have been defined, the monolithic domain decomposition
reduced order model is obtained by using as reduced basis the union of the local reduced bases. The
fact that the basis functions are local makes the computational cost diminish with respect to the global
approach with the same number of basis functions, because the operations can be done at the local level.
However, the number of functions is usually larger in the domain decomposition approach, because a
sufficient number of components needs to be assigned to the reduced basis of each subdomain in order
to properly represent the solution in that subdomain.

4.3 Stabilization through overlapping and penalty terms

The previous domain decomposition strategy for reduced-order models, despite its simplicity, suffers
from unstable behavior when it is used in a straightforward manner in the explicit reduced-order model
for the stabilized finite element approximation of the incompressible Navier-Stokes equations described
in the previous sections. These instabilites can be easily explained taking into account that an explicit
time marching scheme is equivalent in this case to an explicit iteration-by-subdomain strategy, which is
known to have convergence and stability issues. This is the reason why we propose a domain interface
stabilization term, which is obtained by allowing some overlapping between subdomains and enforcing
the equality of the unknown values at this overlapping region.

As in classical iteration by subdomain strategies, the overlapping region Ω∩ is the part of Ω which
belongs to both Ω1 and Ω2. In our approach, in which the partitioning is obtained by assigning the nodes
of the finite element mesh to Ω1 and Ω2, overlapping is achieved by allowing some nodes close to the
interface to belong to both Ω1 and Ω2. The local reduced bases are computed by performing the POD
of the restriction of the snapshots to Ωk, but the obtained basis functions need to be corrected. Suppose
that the original overlapping local POD bases Φ01 ∈ RM×N1 and Φ02 ∈ RM×N2 are:

Φ01 =

 φ1

φ1∩

0

 , Φ02 =

 0
φ2∩

φ2

 , (20)
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Figure 7: Overlapping local basis functions. β =0.5. The overlapping nodes are depicted in gray. In
this particular case the value of the basis functions at the overlapping nodes coincides, which is not
necessarily the case for L-POD.

where now

φk ∈ RMk×Nk , (21)

is the restriction of the local basis functions in Ωk to the part of the subdomain without overlapping
(Mk components), and

φk∩ ∈ RMk∩×Nk , (22)

corresponds to the restriction of Φ0k to the overlapping domain Ω∩ (Mk∩ components). Note that
M∩ := M1∩ = M2∩, and now M = M1 +M2 +M∩.

In this case the corrected bases are:

Φ1 =

 φ1

βφ1∩

0

 , Φ2 =

 0
(1− β)φ2∩

φ2

 , (23)

where β ∈ [0, 1] is a weighting parameter. Note that the limits β = 0 and β = 1 correspond to the non
overlapping case. If several subdomains overlap in a certain region, then each subdomain is assigned a
weighting parameter βk and we must ensure that

∑
βk = 1. The motivation for this correction is the

requirement that the resulting global reduced basis (obtained as the union of the local bases for each
subdomain) is capable of representing the global snapshot set if N is equal to the number of snapshots.
This is shown in Fig. 7, where some illustrative basis functions for a one-dimensional problem are
depicted.

Supposing that the problem defined in (1) allows us to do so, the stabilization penalty term imposes
that the solution at the overlapping region recovered fromφ1∩ (prior to the introduction of the weighting
parameter β) is equal to the solution recovered from φ2∩:

φ1∩α1 = U1∩ = U2∩ = φ2∩α2 ∈ RM∩, (24)

where now we take αk ∈ RNk the ROM degrees of freedom for each subdomain.
This condition can be equivalently written as:
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(Φ1∩)TΦ1∩α1 − (Φ1∩)TΦ2∩α2 = 0,

(Φ2∩)TΦ1∩α1 − (Φ2∩)TΦ2∩α2 = 0, (25)

where

Φk∩ =

 0
φk∩

0

 . (26)

Introducing (25) as a penalized constraint in the ROM system we get:

a11α
1 + a12α

2 +
1

ε
(M11α

1 −M12α
2) = f1, (27)

a21α
1 + a22α

2 +
1

ε
(M21α

1 −M22α
2) = f2, (28)

where

Mkl = (Φk∩)TΦl∩ ∈ RNk×Nl . (29)

and the definition of Φk for building the a matrices is taken as in (23).
An important property of the block diagonal penalty matrices Mkk is that they can only be guar-

anteed be full-rank matrices if Ω∩ = Ω. However, this stabilization strategy shows good results in the
numerical examples even if Ω∩ 6= Ω. The introduction of theM matrices to the reduced order formula-
tion allows one to obtain a stable solution in the practical cases. The stabilization parameter ε is chosen
so that, on the one hand, the penalty terms are sufficiently large to provide the desired stabilization
effects, and on the other, the norm of 1

εM is proportional to the norm of A. In this way we ensure that
the resulting system does not become ill-conditioned.

4.4 Full-Order / Reduced-Order domain decomposition (FOM-ROM)

Another possibility is the use of a hybrid Full-Order / Reduced-Order (FOM-ROM) approach. This is
convenient if a high fidelity model is required in a certain region of the domain, or if the conditions in
a certain region strongly depart from the conditions at which the snapshots for building the POD bases
were taken. In this cases one can choose to solve the FOM problem in one of the subdomains, while
keeping the cheaper ROM approach in the less critical subdomains. Extending the described partitioned
ROM strategy to a hybrid FOM-ROM domain decomposition method is straightforward: the FOM-
ROM is obtained by taking as local basis for the FOM subdomain ΩF the nodal shape functions of the
finite element space for the unknown. In the ROM subdomain ΩR a local reduced basis needs to be
built. The hybrid FOM-ROM system without overlapping is:[

A|FF A|FRφR
(φR)TA|RF (φR)TA|RRφR

] [
UF

αR

]
=

[
F |F

(φR)TF |R

]
. (30)

Let us remark that the time stepping strategies need not to be the same for the full order and the reduced
order equations. For instance, if the explicit reduced order model described in the previous sections
is used for the incompressible Navier-Stokes equations, the A matrix and the F RHS vector for the
reduced order equations are taken from the explicit model, while the equations arising from the implicit
time stepping are kept for the full order equations:
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[
A|FF A|FRφR

(φR)TAexp|RF (φR)TAexp|RRφR
] [
UF

αR

]
=

[
F |F

(φR)TF exp|R

]
. (31)

If a Petrov-Galerkin projection is used, this can also be introduced in the ROM equations. For
instance, the FOM-ROM system for the Petrov-Galerkin projection described in [12, 14] would result
in the following system: [

A|FF A|FRφR
APG
RF APG

RRφ
R

] [
UF

αR

]
=

[
F |F
F PG
R

]
, (32)

where

APG
RF = (φR)T

(
A|TFRA|FF +A|TRRA|RF

)
,

APG
RR = (φR)T

(
A|TFRA|FR +A|TRRA|RR

)
,

F PG
R = (φR)TA|TFRF |F + (φR)TA|TRRF |R.

Also, any hyper-reduction technique for efficiently reconstructing the ROM equations can be used.
The described overlapping strategies and the use weighting coefficients need to be introduced in the
previous formulation. This can be done in a straightforward manner, including the use of different
weighting parameters β or ε for the FOM and the ROM equations.

4.5 Particularities of the application to the incompressible Navier-Stokes equations

The use of the domain decomposition ROM strategy to the particular problem of the incompressible
Navier-Stokes equations is straightforward if a ROM approach is used in all the subdomains. On the
other hand, some care needs to be taken when a FOM approximation is used in one of the subdo-
mains while a ROM approximation is used in its neighbour subdomains. As in the original domain
decomposition strategy, a penalization term through overlapping is convenient in this FOM-ROM ap-
proach. However, it is necessary to distinguish between the velocity and the pressure unknowns of the
incompressible Navier-Stokes equations in this case: only the equality between the FOM and the ROM
velocities in the overlapping region is imposed, and no condition is required on the FOM pressure field.
This is so because the pressure field can be understood as the Lagrange multiplier enforcing the incom-
pressibility constraint, and as such it is not possible to enforce the pressure value over the overlapping
domain.

4.6 Numerical example. Flow injection in a rectangular cylinder

In this numerical example we show the capability of the proposed FOM-ROM strategy to adapt to
flow configurations which were not present in the original snapshot set. The initial problem set is the
incompressible flow past a rectangular cylinder at Re = 100. The computational domain consists of
a 24 × 12 rectangle with a square cylinder with a side of size 1. The square cylinder is centered at
coordinates (8, 6). The horizontal inflow velocity is set to 1. Slip boundary conditions which allow the
flow to move in the direction parallel to the walls are set at y = 0 and y = 12, and velocity is set to 0
on the cylinder surface in the direction normal to the surface. A tangential force (computed by using a
wall-law approach) is used to model the velocity in the tangential direction. The viscosity has been set
to ν = 0.01, which yields a Reynolds number Re = 100 based on the dimension of the cylinder and
the inflow velocity. A second order backward difference scheme has been used for the time integration
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Figure 8: Comparison of the FOM and ROM velocities at (5,4) for the initial configuration.

with time step δt = 0.1 . In this example, a relatively fine 67224 linear element mesh has been used to
solve the problem.

An initial run of the full-order model is performed for the snapshot collection and no domain de-
composition strategy is applied in the initial run. The FOM model takes 849.36 seconds to run. After
the snapshot collection procedure, the ROM is capable of reproducing the FOM solution with a good
accuracy for the velocity field (2,1% of relative error in the L2-norm for the last oscillation period) ,
the pressure amplitude being underpredicted (but only with 0.8% of relative error in the last oscillation
period), and a very low computational cost (3.07 seconds, 0.37% of the original computational cost), as
illustrated in Fig. 8. For the ROM run, 10 basis functions are used, which are obtained from the POD
decomposition of the original 50 snapshot collection.

As illustrated in Fig. 8, the reduced-order model is capable of reproducing the solution of the full-
order model for the configuration in which the snapshots were taken. However, let us now consider the
flow injection in the downstream side of the cylinder illustrated in Fig. 9, which is introduced in order to
modify the flow. The velocity in the injection region (whose length is 0.2) is 0.1 in the direction normal
to the cylinder surface. Fig.10 illustrates the behavior of the reduced order model when the injection
is considered. Despite its very low computational cost compared to the FOM model, it is clear that the
ROM is incapable of reproducing the new flow configuration; the reason for this is that the snapshot set
from which the ROM basis was built does not contain the solution with the flow injection.

Let us now consider the FOM-ROM strategy described in the previous sections. We will decompose
the physical domain into two subdomains, based on our a priori knowledge of the boundary conditions
of the problem: the first subdomain corresponds to the region surrounding the square cylinder of the
rectangle (7, 10) × (5, 7). In this subdomain a FOM approach is going to be taken, and the Navier-
Stokes equations are going to be solved with full accuracy. The second subdomain covers the rest of
the computational domain. Since this region does not involve the critical area where the vortexes are
formed, it is going to be solved by means of the less accurate ROM strategy. The ROM basis are
obtained from a set of 100 snapshots, from which a L-POD basis of 10 basis functions is obtained. As
it will be shown, the combination of both strategies (FOM and ROM) allows us to recover a solution
which is close to the full FOM solution, but at a much lower computational cost.

Fig. 10 shows a comparison of the vertical velocity and pressure at a point at the wake of the
cylinder with coordinates (5, 4), for the FOM, the ROM and the FOM-ROM models. It is interesting to
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Figure 9: Flow injection configuration. The red dotted line denotes the FOM domain for the FOM-ROM
model.

note that the ROM model is not able to capture the physics of the problem; this is natural since the ROM
basis does not contain the solution of the injection case. The FOM-ROM model, on the other hand, is
capable of a quite accurate solution of the system evolution in the short term in the FOM domain (13.3%
relative error for the velocity time history in the last oscillation period and 4.6% error in the pressure).
Fig. 11 compares the velocity and pressure fields of the FOM and the FOM-ROM models. We can
observe that in the region surrounding the cylinder (FOM region) the velocity and pressure fields are
very similar, in the ROM region the velocity fields slightly differ, with more intense vortexes or bulbs
in the FOM simulation. This is due to the difficulties for the ROM model for representing the injected
velocity and pressure fields (the used snapshots are bad for the injection case). Despite this evident
lack of optimality of the snapshot set, the FOM-ROM model is capable of properly representing the
solution in the FOM region. Fig.12 shows a comparison between the FOM simulation and FOM-ROM
model for several injection velocities. The accuracy of the FOM-ROM model decreases as the absolute
value of the injection velocity increases. This is due to the fact that the larger the injection velocity, the
more different the flow becomes from the original FOM simulation without injection. Regarding the
computational cost, the FOM-ROM approach takes 55.56 seconds to run, which is only 6.7% of the
original FOM computational cost.

5 Conclusions

In this chapter we have discussed several strategies for dealing with the reduced-order approxima-
tion of the incompressible Navier-Stokes equations. We have departed from a stabilized finite element
full-order approximation and we have approached the order reduction by using a Proper Orthogonal
Decomposition (POD) method.

In the first part of the chapter, we have focused in the construction of an explicit reduced-order
model for the incompressible Navier-Stokes equations, and the application of hyper-reduction tech-
niques to it. The basic idea is to treat all the terms except the mass matrix in the temporal derivative in
an explicit way. This includes the non-linear convective term, but also the stabilization terms which can
be highly non-linear through the stabilization parameter τ . In order to do so, we take advantage of the
fact that the snapshots used for building the reduced-order basis through a singular value decomposition
in the POD procedure do already fulfill the stabilized continuity equation. Secondly, we also acknowl-
edge the fact that, if the velocity and pressure are treated jointly, then the pressure can be recovered
from the reduced-order basis and the solution coefficients at the end of each time step.

The proposed explicit reduced-order model performs well in practical cases, as illustrated in the
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Figure 10: Comparison of the vertical velocity (left) and pressure (right) at (5,4) for the FOM, FOM-
ROM and ROM models for the injection case.

Figure 11: Comparison of the velocity (top) and pressure (bottom) fields after 400 steps. Left: FOM.
Right: FOM-ROM.
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Figure 12: Comparison of the vertical velocity (left) and pressure (right) at (5,4) for the FOM, FOM-
ROM and ROM models for the injection case. Injection velocities, from top to bottom: 0.2, 0.5, -0.2.
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numerical examples section. Despite the time-stepping scheme being explicit, the Courant-Friedrichs-
Levy condition can be violated, which can be explained because the reduced basis functions expand
over the whole computational domain. On the other hand, the reduced model is sensitive to the inclusion
of noisy basis functions, which can cause unstable solutions to appear. The sensitivity of the explicit
reduced-order model to this issue can be improved by reducing the time step and refining the finite
element mesh.

A hyper-reduction strategy for the explicit reduced-order model has also been presented, which is
based on the reconstruction of the right-hand-side vector through a gappy-pod procedure. For the selec-
tion of the indices of the gappy reconstruction, we use a discrete version of the Best Points Interpolation
Method (DBPIM), which uses only values at the nodes of the finite element mesh, with the advantage
that the selected points can be guaranteed to be at least locally optimal.

In the second part of the chapter, we have presented a domain decomposition strategy for non-linear
hyper-reduced-order models. The method consists of restricting the reduced-order basis functions to the
nodes of each subdomain. This definition of the partitioned problem directly ensures the continuity of
the recovered solution. The local POD bases are obtained by computing a local POD decomposition
for the partitioned snapshots. When applied to the explicit reduced-order model for the incompressible
Navier-Stokes equations a stabilizing penalization term is required. This penalty term is defined so that
it weakly enforces the equality of the unknown between subdomains in an overlapping region.

The domain decomposition reduced-order model can be extended to a particular case, in which one
of the subdomains is solved by using the full-order finite element equations while the other ones are
solved using the reduced-order model. This diminishes the computational cost in the low-resolution
subdomains, while keeping the high fidelity solution in the domain regions which are subject to more
complex physical phenomena.

Numerical examples illustrate the accuracy of the proposed methods for the solution of incompress-
ible flow problems at a low computational cost: the reduced order-model allows us to save up to 65% of
the computational cost, while in the case of the hyper-reduced order models the computational saving
is larger than 99% the original computational cost.
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