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Summary. The objective of this paper is to give an overview of the finite element
approximation of the convection-diffusion equation that we have been developing
in our group during the last years, together with some recent methods. We discuss
three main aspects, namely, the global stabilization in the convective dominated
regime, the treatment of the local instabilities that still remain close to layers when
a stabilized formulation is used and the way to deal with transient problems.

The starting point of our formulation is the variational multiscale framework.
The main idea is to split the unknown into a finite element component and a re-
mainder that is assumed that the finite element mesh cannot resolve. A closed form
expression is then proposed for this remainder, referred to as subgrid-scale. When
inserted into the equation for the finite element component, a method with en-
hanced stability properties is obtained. In our approach, we take the space for the
subgrid-scales orthogonal to the finite element space.

Once global instabilities have been overcome, there are still local oscillations near
layers due to the lack of monotonicity of the method. Shock capturing techniques
are often employed to deal with them. Here, our point of view is that this lack of
monotonicity is inherent to the integral as duality pairing intrinsic to the variational
formulation of the problem. We claim that if appropriate weighting functions are
introduced when computing the integral, giving a reduced weight to layers, the
numerical behavior of the method is greatly improved.

The final point we treat is the time integration in time-dependent problems.
Most stabilized finite element method require a link between the time step size of
classical finite difference schemes in time and the mesh size employed for the spatial
discretization. We show that this can be avoided by considering the subgrid-scales
as time dependent, and discretizing them in time as well. That allows us to perform
a complete numerical analysis which is not restricted by any condition on the time
step size, thus permitting anisotropic space-time discretizations.
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1 Two-scale approximation of the
convection-diffusion-reaction equation

The objective of this section is to summarize the basic stabilized finite element
method we use to solve the convection-diffusion-reaction equation (CDRE)
in the case in which diffusion is small, that is to say, convective effects are
dominant. It is not our intention here neither to describe the details of the
problem, which are well known, not to give a fair acknowledgment of the key
contributions to design the final method that can be found in the literature.
This is why, apart from our own work, only reference to the landmark paper
[11] is made. References to other contributions can be consulted in those cited
along this work.

Let us start with the problem we are interested in. For the purposes of
this section it is enough to consider the stationary CRDE with homogeneous
Dirichlet boundary conditions. The problem consists of finding u such that

Lu := −k∆u+ a · ∇u+ su = f in Ω

u = 0 on ∂Ω

where k > 0 is the diffusion coefficient, s ≥ 0 the reaction coefficient, a ∈ Rd
is the advection coefficient and f a given datum. The problem is posed in the
domain Ω ⊂ Rd (d = 2, 3). Constant coefficients will be assumed throughout,
for the sake of conciseness.

The variational form of the problem can be written as follows: find u ∈
V = H1

0 (Ω) such that

B(u, v) = 〈f, v〉 ∀v ∈ V (1)

where:

B(u, v) = k(∇u,∇v) + (a · ∇u, v) + s(u, v)

As usual, (·, ·) denotes the L2 inner product and 〈·, ·〉 the integral of the
product of two functions, including the duality pairing.

The conforming Galerkin finite element approximation of the problem is
standard. If Vh ⊂ V is a finite element space to approximate V , it consists of
finding uh ∈ Vh such that

B(uh, vh) = 〈f, vh〉 ∀vh ∈ Vh

Again for simplicity, we will consider that the finite element partition associ-
ated to Vh is uniform, h being the size of the element domains.

It is well known that this formulation lacks stability when k is small. To
justify the method we propose, it is interesting to start trying to elucidate
which is the stability it has with some more detail than what is usual. If we
take vh = uh it is readily seen that
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B(uh, uh) = k‖∇uh‖2 + s‖uh‖2 (2)

The question is, what control, if any, can be obtained over the convective
term? That is to say, is it possible to have a bound for ‖a · ∇uh‖? To answer
this fundamental question, we may obtain an improved stability estimate for
the Galerkin method in the form of an inf-sup condition. If we take the test
function as vh,0 = τPh(a · ∇uh), with the parameter τ to be defined and Ph
being the L2 projection onto Vh, we obtain:

B(uh, vh,0) & τ‖Ph(a · ∇uh)‖2

− k‖∇uh‖
Cinv

h
τ‖Ph(a · ∇uh)‖

− s‖uh‖τ‖Ph(a · ∇uh)‖

where & stands for ≥ up to positive constants and Cinv is the constant in
standard inverse inequalities . If the parameter τ is chosen such that τ ≤
min

{
h2

C2
invk

, 1
s

}
then

B(uh, vh,0) & τ‖Ph(a · ∇uh)‖2 − k‖∇uh‖2 − s‖uh‖2

The last two terms can be controled, according to (2). It is then easily seen
that B(uh, vh) & k‖∇uh‖2 + s‖uh‖2 + τ‖Ph(a · ∇uh)‖2, with vh = uh +βvh,0
(β sufficiently small), and that k‖∇vh,0‖2 + s‖vh,0‖2 + τ‖Ph(a · ∇vh,0)‖2 .
τ‖Ph(a · ∇uh)‖2, from where an inf-sup condition follows. Therefore, we may
conclude that only control over τ‖P⊥h (a · ∇uh)‖2 is missing, with P⊥h = I −
Ph, the projection orthogonal to the finite element space. This control is, at
least, what any stabilized method must provide.

Let us describe now the formulation we propose. It is based on the split-
ting of the unknown u in a component uh which can be resolved by the finite
element space, and a remainder, that will be called subgrid scale (SGS). An
approximation for the SGS is required to define a particular numerical for-
mulation. The framework we use in based on [11]. Let V = Vh ⊕ Ṽ , where
Ṽ is the space for the SGS. Then, problem (1) unfolds into two variational
equations: we have to seek uh ∈ Vh and ũ ∈ Ṽ such that

B(uh, vh) +B(ũ, vh) = 〈f, vh〉 ∀vh ∈ Vh
B(uh, ṽ) +B(ũ, ṽ) = 〈f, ṽ〉 ∀ṽ ∈ Ṽ

Suppose for a moment that Ṽ is made of smooth functions (which are anyhow
dense in the complement of Vh). Then we may write

B(uh, vh) + 〈ũ,L∗vh〉 = 〈f, vh〉 ∀vh ∈ Vh (3)

〈Luh, ṽ〉+ 〈Lũ, ṽ〉 = 〈f, ṽ〉 ∀ṽ ∈ Ṽ (4)

where second derivatives applied to finite element functions have to be under-
stood in the sense of distributions. The problem now can be stated as: how do
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we model ũ?. At this point is where approximations are required and different
methods may be devised according to the approximation chosen.

The first approximation we shall use is that

〈Lvh, ṽ〉 ≈
∑
K

(Lvh, ṽ)K ≡ (Lvh, ṽ)h (5)

This essentially means that jumps of derivatives of finite elements functions
across edges of the mesh are neglected. We shall stick to this assumption,
although it can be relaxed, as explained in [9].

The second approximation, which is definitely the most crucial, is

〈Lũ, ṽ〉 ≈ τ−1(ũ, ṽ) where τ−1 = c1
k

h2
+ c2

|a|
h

+ c3s (6)

where c1, c2 and c3 are numerical parameters. There are many ways to arrive
at this expression, which we shall not describe. For an overview, see [5].

Equation (6) can be understood as a lumping of the equation for the SGS.
This lumping is needed to make this equation directly solvable, without the
need to introduce additional degrees of freedom into the problem. Both (5) and
(6) can be justified from an approximate Fourier analysis requiring τ−1 ≈ ‖L‖
[7]. Having introduced them, the final problem to be solved is

B(uh, vh) + (ũ,L∗vh)h = 〈f, vh〉 ∀vh ∈ Vh (7)

(Luh, ṽ)h + τ−1(ũ, ṽ) = 〈f, ṽ〉 ∀ṽ ∈ Ṽ (8)

which has to be compared with (3)-(4).
At this point we may already check which is the stability of the two scales

introduced, namely, uh and ũ. Using standard inverse inequalities, we have
that

B(uh, uh) + (ũ,L∗uh)h + (Luh, ũ)h + τ−1(ũ, ũ)

= k‖∇uh‖2 + s‖uh‖2 + 2(ũ,−k∆uh + suh)h + τ−1‖ũ‖2

& k‖∇uh‖2 + s‖uh‖2 − 2
(
τ
k

h2
C2

inv

)
k‖∇uh‖2

− 2(τs)s‖uh‖2 −
τ−1

2
‖ũ‖2 + τ−1‖ũ‖2

& k‖∇uh‖2 + s‖uh‖2 + τ−1‖ũ‖2

where the last step holds for an adequate choice of the constants in (6). We
observe that we have the same control on the finite element component as for
the Galerkin method plus additional L2 control on the SGS.

The SGS is so far undefined. To choose the subspace Ṽ we consider non-
conforming approximations, and thus Ṽ might not be a subspace of H1

0 (Ω)
(see [9]). If P̃ is the L2 projection to Ṽ , we have from (8) that

ũ = τP̃ (f − Luh)

There are two obvious options:
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• Choice I:

Ṽ ⊂ LVh + span{f} ⇐⇒ ũ = τ(f − Luh)

In this case, P̃ is the identity when applied to the finite element residual
f − Luh. This option is the most common in the literature. It yields to
stable formulations, as we shall see. From the conceptual point of view,
the danger it has is that the assumption Vh ∩ Ṽ = {0}, crucial to derive
the method, may not hold.

• Choice II:

Ṽ = V ⊥h ⇐⇒ ũ = τP⊥h (f − Luh)

This option was proposed in [6, 7]. In fact, it can be shown that if the SGS
are further approximated as

ũ ≈ −τP⊥h (a · ∇uh) (9)

the method keeps the order of accuracy. Some care is needed though in
the treatment of boundary effects.

Once the two choices have been described, let us write down the final
finite element problem to be solved and obtain a simple stability estimate.
For choice I the final problem is

B(uh, vh) + τ(Luh,−L∗vh)h = 〈f, vh〉+ τ(f,−L∗vh)h

It is immediately checked that

B(uh, uh) + τ(Luh,−L∗uh)h & k‖∇uh‖2 + s‖uh‖2 + τ‖a · ∇uh‖2

Therefore, this method provides control over the whole convective term.
For choice II the finite element problem is

B(uh, vh) + τ(P⊥h (a · ∇uh), P⊥h (a · ∇vh))h = 〈f, vh〉

and now we have that

B(uh, uh) + τ(P⊥h (a · ∇uh), P⊥h (a · ∇uh))h
& k‖∇uh‖2 + s‖uh‖2 + τ‖P⊥h (a · ∇uh)‖2

Thus, this simple stability estimate shows that the method provides control
only in the component of the convective term orthogonal to the finite ele-
ment space. However, the term τ‖P⊥h (a · ∇uh)‖2 is precisely what the Galerkin
method lacks. It is not difficult to foresee that one can in fact obtain optimal
stability with choice II.

The results of the numerical analysis of the formulations arising both from
choice I and from choice II is summarized next. Let:
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|||v|||2 := k‖∇v‖2 + s‖v‖2 + τ‖a · ∇v‖2

E(h)2 :=
(
k

h2
+
|a|
h

+ s

)
h2(p+1)|u|2p+1 ≈ τ−1h2(p+1)|u|2p+1

where |u|p+1 is the Hp+1 seminorm of the exact solution u. If Bstab is the
bilinear form of any of the two stabilized methods introduced, it holds

inf
uh∈Vh

sup
vh∈Vh

Bstab(uh, vh)
|||uh||||||vh|||

≥ C > 0 Stability

|||u− uh||| . E(h) Optimal convergence

From these results, there are some remarks to be made:

• The stability and convergence estimates presented are optimal.
• These estimates remain meaningful for all values of the physical parame-

ters, which is the main goal of stabilized finite element methods.
• There is no need to refer to “hp+1/2” estimates.

2 Avoiding local instabilities

The methods proposed in the previous section yield stability and convergence
in global norms. However, local oscillations may still remain in regions where
the solution exhibits sharp layers. Even though these oscillations might be
considered acceptable in linear problems, in nonlinear situations they may
lead to a global failure of iterative schemes. Therefore, eliminating them in
linear problems is a required step to extend the formulation to nonlinear
equations. Methods aiming to avoid these local oscillations are often termed
“shock capturing” or “discontinuity capturing” (DC) techniques.

To start, let us describe the guidelines to design DC methods as presented
in [4] and references therein. Suppose that s = 0 and let

a‖ =
a · ∇uh
|∇uh|

if |∇uh| 6= 0, a‖ = 0 otherwise

The following observations are crucial:

• For regular P1 elements, the discrete maximum principle (DMP) holds if
an artificial diffusion kart is added, kart being of the form

kart =
1
2
αh|a‖|, α ≥ C − 1

Pe‖
, Pe‖ =

|a‖|h
2k

(10)

where C is a constant that depends on the shape of the elements.
• If the DMP holds, L∞ stability can be proved.
• If a numerical scheme is linear then it is at most first order accurate in

L∞ (a reformulation of Godunov’s theorem).
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In view of these facts, DC methods may be designed trying to satisfy the
DMP, at least in some simple situations, and need to be nonlinear.

The first family of DC methods proposed is that in which an artificial dif-
fusion depending on the finite element residual is added to the basic stabilized
formulation. The essential idea of these residual based DC methods is to design
the artificial diffusion in a way similar to (10) but computing kart with

|R(uh)|
|∇uh|

instead of |a‖| =
|a · ∇uh|
|∇uh|

where R(uh) = f − Luh = f − (−k∆uh + a · ∇uh + suh) (s ≥ 0 may be
considered now). The resulting method is consistent, in the sense that if it is
applied to the exact solution u the residual is zero.

The semilinear form of the problem is

Bdc(uh, vh) = Bstab(uh, vh) +
∑
K

(kdc∇uh,∇vh)K (11)

with

kdc =
1
2
αh
|R(uh)|
|∇uh|

(12)

Several DC methods of this type can be found in the literature (see references
in [4]).

A refinement of this approach was proposed in [4]. The idea is that the
diffusion introduced by the basic stabilization method can be shown to satisfy
the requirements posed by the DMP (in some model cases), but it is only
introduced along the streamlines. Therefore, kart needs to be added only in
the crosswind direction. This is accomplished by adding a diffusive term with
the diffusion tensor

kdc =
1
2
αh
|R(uh)|
|∇uh|

(
I − 1
|a|2

a⊗ a

)
to the basic stabilized finite element method, I being the second order identity
tensor.

Following the guidelines to design DC methods discussed above, a different
possibility to make the method consistent while introducing additional diffu-
sion is to make it proportional to the projection of the gradient orthogonal to
the finite element space. Thus, if kart is the diffusion to be added, in order to
make it active only in regions of sharp gradients which cannot be resolved by
the finite element mesh, it can be multiplied by

|P⊥h (∇uh)|
|∇uh|

(13)

The semilinear form of the resulting problem is again (11), but now with kdc

given by



8 Ramon Codina

kdc =
1
2
α(|a|h+ sh2)

|P⊥h (∇uh)|
|∇uh|

instead of (12). Note that, apart from the factor (13), the artificial diffusion
in this method is taken as 1

2α(|a|h + sh2), independent of the finite element
solution. As in the residual based DC methods, this diffusion can be introduced
only in the crosswind direction. Even though we have not published before
this proposal, we have used it routinely in applications requiring a resolution
of sharp gradients without local oscillations.

To conclude this section, let us describe another approach in which we
have been working even if it has not been published before. The idea is as
follows. Consider the problem Lu = f . The discrete problem can be formally
written as a “projection” of this equation onto the finite element space, using
the integral as “inner product”. If Ph is this projection, it is well known that
it is non-monotone, in the sense that if ϕ is discontinuous, Ph(ϕ) is oscillating.
Therefore, if local oscillations have to be avoided, a natural option seems to
be to modify the projection. If, moreover, these oscillations appear in regions
of sharp gradients, it seems reasonable to introduce a weighting function ρ in
the integral to lighten the weight of sharp layers. This intuitive idea has many
possible realizations. A possibility that we have successfully checked consists
of replacing

〈Luh, vh〉 = 〈f, vh〉 by 〈Luh, ρvh〉 = 〈f, ρvh〉

where ρ→ ρ0 � 1 as |∇uh| → ∞. An example of weight that we have tested
is ρ = ρ0 + (1 − ρ0) exp (−|∇uh|/G), where G is a reference gradient. It is
obvious that the method can be considered of Petrov-Galerkin type, with test
function ρvh.

This approach has the following properties:

• The diffusion term is non-symmetric.
• The partition-of-unity property is lost.
• The numerical performance that we have observed in several examples is

excellent.

3 Time dependent problems

Let us move our attention now to time dependent problems. The statement
of the initial and boundary problem we are interested in is:

∂tu+ Lu = f in Ω, t > 0
u = 0 on ∂Ω, t > 0

u = u0 in Ω, t = 0

Our approach consists in extending the scale splitting introduced in Section 1
to this problem. The time dependent counterpart of (3)-(4) is
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(∂tuh + ∂tũ, vh) +B(uh, vh) + 〈ũ,L∗vh〉 = 〈f, vh〉 ∀vh ∈ Vh
(∂tuh + ∂tũ, ṽ) + 〈Luh, ṽ〉+ 〈Lũ, ṽ〉 = 〈f, ṽ〉 ∀ṽ ∈ Ṽ

The approximations used to arrive at (7)-(8) now lead to

(∂tuh + ∂tũ, vh) +B(uh, vh) + (ũ,L∗vh)h = 〈f, vh〉 ∀vh ∈ Vh
(∂tuh + ∂tũ, ṽ) + (Luh, ṽ)h + τ−1(ũ, ṽ) = 〈f, ṽ〉 ∀ṽ ∈ Ṽ

If the space of SGS is chosen as orthogonal to the finite element space and
approximation (9) is used, the problem to be solved becomes

(∂tuh, vh) +B(uh, vh)− (ũ,a · ∇vh) = 〈f, vh〉 ∀vh ∈ Vh (14)

(∂tũ, ṽ) + (a · ∇uh, ṽ) + τ−1(ũ, ṽ) = 0 ∀ṽ ∈ V ⊥h (15)

The important point is that the SGS have been considered time dependent
[7, 10]. Their evolution equation can be written as

∂tũ+ τ−1ũ = −P⊥h (a · ∇uh)

If the time derivative of the SGS is neglected, they can be inserted into (14)
to obtain a closed problem for the finite element component alone. The full
analysis of the resulting formulation can be found in [1, 8].

It is interesting to analyze the dissipative structure of problem (14)-(15).
This was done in [12] in the more complex case of the Navier-Stokes equations.
Here we will apply the results of the cited reference to the CDRE.

If, for each fixed t, we take vh = uh and ṽ = ũ in (14)-(15) it is readily
checked that

d
dt
‖uh‖2 +Dh +T = Ph (16)

d
dt
‖ũ‖2 + D̃ −T = P̃ (17)

with

Dh = k‖∇uh‖2 + s‖uh‖2 Dissipation of the finite element scale

D̃ = τ−1‖ũ‖2 Dissipation of the SGS
T = (ũ,L∗uh)h = −(ũ,a · ∇vh) Energy transfer between scales

These definitions have been introduced thinking of the L2 norm of the un-
known as an energy. In this case, Ph and P̃ can be considered the external
power applied to the finite element scale and the SGS, respectively. From
(16)-(17), with the definition of the different terms introduced above, we may
draw an important conclusion. It is observed that the “energy balance” for
the finite element component is the same as for the Galerkin method plus the
addition of T , which on average can be shown to be positive. In turn, this
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additional dissipation is precisely injected with a negative sign in the energy
balance equation for the SGS. Therefore, the global energy is conserved, but
there is an energy transfer from the “large” scales to the “small” scales. This
is the correct dissipative structure for dissipative systems. In particular, it is
crucial for the correct modelling of turbulence.

Let us present some stability and convergence results for (14)-(15). If T
is the final time of analysis, let us start with stability estimates for T < ∞.
Suppose that s = 0 for simplicity. Taking vh = uh, ṽ = ũ and integrating on
[0, t′], t′ ≤ T in (14)-(15) we obtain

‖uh(t′)‖2 + ‖ũ(t′)‖2 +
∫ t′

0

k‖∇uh‖2dt+
∫ t′

0

τ−1‖ũ‖2dt

≤
∫ t′

0

1
k
‖f‖2−1dt+ ‖u0‖2

from where

‖uh‖ ∈ L∞(0, T ), k1/2‖∇uh‖ ∈ L2(0, T )

‖ũ‖ ∈ L∞(0, T ), τ−1/2‖ũ‖ ∈ L2(0, T )

These results indicate that the stability of (14)-(15) is the same as for the
Galerkin method plus additional stability on the SGS.

Let us move now to the long term behavior, that is to say T = ∞. The
results to be presented are proved in [3] for the incompressible Navier-Stokes
equations. Taking vh = uh, ṽ = ũ and using the classical Gronwall lemma it
is found that

‖uh‖ ∈ L∞(0,∞), ‖ũ‖ ∈ L∞(0,∞)

and also

lim
t→∞

sup (‖uh‖+ ‖ũ‖) ≤ C |Ω|
2/d

k
‖f‖L∞(0,∞;L2(Ω))

from where we conclude that there is a L2(Ω)⊕L2(Ω)-absorbing set in Vh⊕Ṽ ,
not only in Vh, as for the Galerkin method.

We may also obtain stronger stability estimates using additional regularity
assumptions. Using the uniform Gronwall lemma it is found that

k1/2‖∇uh‖ ∈ L∞(0,∞), τ−1/2‖ũ‖ ∈ L∞(0,∞)

and

lim
t→∞

sup
(
k‖∇uh‖2 + τ−1‖ũ‖2

)
≤ C

(
a1 +

a2

t̃

)
exp(a3)

for certain constants a1, a2 and a3 that behave as k−4. For the Navier-Stokes
equations, this leads to the existence of an attractor (see [3]).
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Finally, let us present a simple convergence result. Suppose that the time
interval is discretized using a uniform partition of size δt. Let us denote with
a superscript n the approximation to u and tn = nδt. If the backward Euler
scheme is used for the time integration, there holds

‖u(tN )− uNh ‖2 +
N∑
n=1

δtk‖∇un −∇unh‖2

+
N∑
n=1

δtτ‖a · ∇un − a · ∇unh‖2 ≤ Ih + Iδt

where Iδt and Ih are optimal interpolation errors in space and time (for a
proof for the Stokes problem, see [2]).

From the stability and convergence properties described, and also from
the design of the formulation itself, the following properties are particularly
relevant:

• No relationship between δt and h is required. Anisotropic space-time dis-
cretizations are possible.

• No instabilities for small δt can appear.
• τ is independent of δt. “Consistent” behavior is obtained for t → ∞ (the

steady state solution does not depend on δt).

These properties do not hold for the most popular stabilized finite element
methods for transient problems that can be found in the literature.

4 Conclusions

In this work we have summarized the formulation we have developed during
the last years to approximate flow problems and, in particular, the CDRE.
The most salient aspect we would like to stress is that in the splitting of
the unknown into finite element scales and SGS, the latter have their own
“personality” and, in particular, their own variational equation.

We favor the choice of taking the SGS orthogonal to the finite element
space. This leads to several advantages, in particular for transient problems.
In this case, dynamic SGS solve inconsistencies encountered in several stabi-
lized formulations (order of space and time discretization, link between h and
δt, steady-state dependence on δt, etc.) In general, stability properties of the
continuous problem are inherited by the finite element solution plus the SGS.
Extension to anisotropic meshes is possible, the approach relying on appro-
priate definitions of τ and, obviously, anisotropic interpolation estimates. In
applications, such estimates are usually not feasible. Methods with intrinsic
stability are mandatory.

We have also discussed discontinuity capturing techniques, which are re-
quired if local instabilities need to be avoided. This is important in nonlinear
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problems in which sharp layers my be developed. Classical residual based DC
methods have been reviewed, and two new ideas have been proposed.
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