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Abstract

In many coupled problems of practical interest the domain ofat least one of the prob-
lems evolves in time. The Arbitrary Eulerian Lagrangian (ALE) approach is a tool
very often employed to cope with this domain motion. However, in this work we aim
at describing numerical techniques that allow us to use a fixed mesh for the approxi-
mation of moving boundary problems, particularly using thefinite element approach.
This type of formulations is often termed embedded or immersed boundary methods.
Emphasis will be put in describing a particular version of the ALE formulation using
fixed meshes that we have developed, and that we call fixed-mesh ALE method (FM-
ALE). Methods able to deal with fixed meshes are closely linked to the approximate
imposition of boundary conditions. Some possibilities to do this approximation are
also described.

Keywords: moving domains, fixed mesh methods, ALE, approximate boundary con-
ditions

1 Introduction

In the classical ALE approach to solve problems in computational fluid dynamics, the
mesh in which the computational domain is discretized is deformed (see for example
[16, 33, 35]). This is done according to a prescribed motion of part of its boundary,
which is transmitted to the interior nodes in a way as smooth as possible so as to avoid
mesh distortion. The FM-ALE formulation has a different motivation. Instead of
assuming that the computational domain is defined by the meshboundary, we assume
that there is a function that defines the boundary of the domain where the flow takes
place. We will refer to it as the boundary function. It may be given, for example, by
the shape of a body that moves within the fluid, or it may need tobe computed, as in
the case of level set functions. It may be also defined discretely, by a set of points.
When this boundary function moves, the flow domain changes, and that must be taken
into account at the moment of writing the conservation equations that govern the flow,
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which need to be cast in the ALE format. However, our purpose here is to explain how
to use always a background fixed mesh. A review of the method will be presented.

Other possibilities to use a single grid in the whole simulation can be found in
the literature, each one having advantages and drawbacks. They were designed as
an alternative to body fitted meshes and can be divided into two main groups, corre-
sponding in fact to two ways of prescribing the boundary conditions on the moving
boundary [13]:

• Force term. The interaction of the fluid and the solid is takeninto account
through a force term, which appears either in the strong or inthe weak form
of the flow equations. Among this type of methods, let us cite for example the
Immersed Boundary method as a variant of the Penalty method,where punctual
forces are added to the momentum equation, and the Fictitious Domain method,
where the solid boundary conditions are imposed through a Lagrange multiplier.

• Approximate boundary conditions. Instead of adding a forceterm, these meth-
ods impose the boundary conditions in an approximate way once the discretiza-
tion has been carried out, either by modifying the differential operators near the
interface (in finite differences) or by modifying the unknowns near the interface.

The Immersed Boundary Method in its original form [48] consists in adding punctual
penalty forces in the domain boundary so that the boundary conditions are fulfilled.
The forces are computed from a fluid-structure (elastic) interaction problem at the in-
terface. The method is first order accurate even if second order approximation schemes
are used, although formal second order accuracy has been reported in [40]. The more
recent Immersed Interface Method achieves higher order accuracy by avoiding the use
of the Dirac delta distribution to define the forcing terms (see [41,42,56]).

The Penalty method is similar to the previous one in the sensethat a force term is
added to the momentum equations. The difference is due to thefact that the penalty
parameter is not computed from a fluid-structure interaction as in the original im-
mersed boundary method, but it is simply required to be largeenough to enforce the
boundary conditions approximately [53].

Another approach is the use of Lagrange multipliers to enforce the boundary con-
ditions. However, the finite element subspaces for the bulk and Lagrange multiplier
fields must satisfy the classical inf-sup condition, which usually leads to the need for
stabilization. Moreover, additional degrees of freedom must be added to the problem.
The use of Lagrange multipliers is the basis of the Fictitious Domain Method [23,26].

Another possibility for imposing boundary conditions is the use of preexisting grid
nodes to impose boundary conditions. This is the case of the FM-ALE method, which
applies a variant of the ALE method to a fixed mesh strategy [2,14, 15, 32] and the
hybrid Cartesian/immersed boundary methods for Cartesiangrids [19,45,57].

Most of these methods have been well tested in the literaturefor both steady and
moving interfaces. Generally, the last case is treated by applying directly the former
at each time step. In this work we review all these formulations from a unified point
of view.



The chapter is organized as follows. In Section 2 we present ageneral overview
of the physical problem and equations with which fixed mesh methods have to deal,
which we particularize for the finite element method. In Section 3 we describe sev-
eral existing possibilities for imposing Dirichlet boundary conditions in fixed mesh
methods. Imposing Dirichlet boundary conditions is an essential ingredient of any
fixed grid strategy, and it is very closely related to treatment of the ALE equations
in moving domains. In Section 4 we present different possibilities to treat moving
subdomains with fixed-mesh strategies. Finally, a summary of the methods described
closes the chapter in Section 5.

2 Problem statement

In this section we state the continuous problem to be solved.Fixed mesh methods
applied to problems in moving domains appear in different applications. However, to
fix ideas we will concentrate our developments to fluid-structure interaction problems
in which the solid (structure) either deforms or has rigid body motions. The fluid
domain will therefore change in time. Our main interest is todescribe strategies able
to deal with this situation. A more detailed description of the problem can be found
in [2,14].

2.1 Flow equations

Let us consider a regionΩ0 ⊂ R
d (d = 2, 3) where a flow will take place during a time

interval [0, T ]. However, we consider the case in which the fluid at timet occupies
only a subdomainΩ(t) ⊂ Ω0 (note in particular thatΩ(0) ⊂ Ω0). Suppose also that
the boundary ofΩ(t) is defined by part of∂Ω0 and a moving boundary that we call
Γfree(t) = ∂Ω(t) \ ∂Ω0 ∩ ∂Ω(t). This moving part of∂Ω(t) may correspond to the
boundary of a moving solid immersed in the fluid.

In order to cope with the time-dependency ofΩ(t), we may use the ALE approach,
with the particular feature of considering a variable definition of the domain velocity.
Let χt be a family of invertible mappings, which for allt ∈ [0, T ] map a pointX ∈
Ω(0) to a pointx = χt(X) ∈ Ω(t), with χ0 = I, the identity. Ifχt is given by
the motion of the particles, the resulting formulation would be Lagrangian, whereas if
χt = I for all t, Ω(t) = Ω(0) and the formulation would be Eulerian.

Let nowt′ ∈ [0, T ], with t′ ≤ t, and consider the mapping

χt,t′ : Ω(t′) −→ Ω(t)

x′ 7→ x = χt ◦ χ−1

t′ (x′).

Given a functionf : Ω(t) × (0, T ) −→ R we define

∂f

∂t

∣

∣

∣

∣

x
′

(x, t) :=
∂(f ◦ χt,t′)

∂t
(x′, t), x ∈ Ω(t), x′ ∈ Ω(t′).



In particular, the domain velocity taking as a reference thecoordinates ofΩ(t′) is
given by

udom :=
∂x

∂t

∣

∣

∣

∣

x
′

(x, t). (1)

The incompressible Navier-Stokes formulated inΩ(t), accounting also for the mo-
tion of this domain, can be written as follows: find a velocityu : Ω(t)×(0, T ) −→ R

d

and a pressurep : Ω(t) × (0, T ) −→ R such that

ρ

[

∂u

∂t

∣

∣

∣

∣

x
′

(x, t) + (u − udom) · ∇u

]

−∇ · (2µ∇Su) + ∇p = ρf , (2)

∇ · u = 0, (3)

where∇Su is the symmetrical part of the velocity gradient,ρ is the fluid density,µ is
the viscosity andf is the vector of body forces.

Initial and boundary conditions have to be appended to problem (2)-(3). The
boundary conditions onΓfree(t) can be of two different types: a)p (or the normal
stress) given,u unknown onΓfree; b) u given,p (or the normal stress) unknown on
Γfree. On the rest of the boundary ofΩ(t) the usual boundary conditions can be con-
sidered. In general, we consider these boundary conditionsof the form

u = ū onΓD,

n · σ = t̄ onΓN ,

wheren is the external normal to the boundary,σ = −pI + 2µ∇Su is the Cauchy
stress tensor and̄u andt̄ are the given boundary data. The components of the boundary
ΓD andΓN are obviously disjoint and such thatΓD ∪ ΓN = ∂Ω, and therefore time-
dependent.

We will also introduce the time and spatial discretization of the problem since some
of the methods we will describe are directly applied to the discrete problem. We will
focus in the finite element method, although other possibilities are obviously possible.

2.1.1 The time-discrete problem

Let us start introducing some notation. Consider a uniform partition of [0, T ] into N
time intervals of lengthδt. Let us denote byfn the approximation of a time dependent
functionf at time leveltn = nδt. We will also denote

δfn+1 = fn+1 − fn,

δtf
n+1 =

fn+1 − fn

δt
,

fn+θ = θfn+1 + (1 − θ)fn, θ ∈ [1/2, 1].



Suppose we are given a computational domain at timetn, with spatial coordinates
labeledxn, andun and pn are known in this domain. The velocityun+1 and the
pressurepn+1 can then be found as the solution to the problem

ρ
[

δtu
n+1

∣

∣

x
n

+ (un+θ − un+θ
dom

) · ∇un+θ
]

−∇ · (2µ∇Sun+θ) + ∇pn+1 = ρfn+1,

(4)

∇ · un+θ = 0, (5)

where nowδtu
n+1|

x
n = (un+1(x) − un(xn))/δt, beingx = χtn+θ,tn(xn) the spatial

coordinates inΩ(tn+θ). The domain velocity given by (1), withx′ = xn, is approxi-
mated as

un+θ
dom

=
1

θδt

(

χtn+θ,tn(xn) − xn
)

. (6)

2.1.2 The fully discrete problem

The next step is to consider the spatial discretization of problem (4)-(5). As for the
time discretization, different options are possible. For the sake of conciseness, here we
simply describe the straight-forward Galerkin finite element formulation, even though
there are instabilities that might appear due to dominant convective term or incompat-
ible velocity-pressure interpolations. In order to overcome these numerical problems
of the standard Galerkin method, a stabilized finite elementformulation can be ap-
plied. The formulation we use is presented in [11]. It is based on the subgrid scale
concept introduced in [34], although when linear elements are used it reduces to the
Galerkin/least-squares method described for example in [18].

Let {Ωe}n+1 be a finite element partition of the domainΩ(tn+1), with index e
ranging from 1 to the number of elementsnel (which may be different at different time
steps). We denote with a subscripth the finite element approximation to the unknown
functions, and byvh and qh the velocity and pressure test functions associated to
{Ωe}n+1, respectively.

The finite element discretized method consists of findingun+1

h andpn+1

h such that
∫

Ω

vh · ρ δtu
n+1

∣

∣

x
n

+

∫

Ω

2∇Svh : µ∇Sun+θ

+

∫

Ω

vh · (ρ (un+θ − un+θ
dom

) · ∇un+θ) −

∫

Ω

pn+1

h ∇ · vh

=

∫

Ω

vh · f
n+θ, (7)

∫

Ω

qh∇ · un+θ
h = 0. (8)

2.2 Solid body equations

Let us now consider the solid body domainΩs(t) ⊂ Ω0 , which also evolves in time.
The solid mechanics problem formulated in a purely Lagrangian approach inΩs(t)



can be written as follows:

ρs

d2d

dt2
= ∇ · σs + ρsb, (9)

ρsJ = ρs0, (10)

whereρs is the solid density,d is the displacement vector,σs is the Cauchy stress
tensor,b is the vector of body forces and

F =
∂x

∂X
, J = det(F ).

For linear elastic isotropic materials we haveσs = λs(∇·d)I+2µs∇
sd. Rigid bodies

could be treated as well in the methods to be described in the following.

The time discretization and finite element approximation ofthe above equations is
standard. We omit the details, which can be found for examplein [2].

3 Approximate imposition of boundary conditions

3.1 Motivation

As indicated previously, moving domain methods on fixed meshes are closely linked
to methods to approximate boundary conditions on non-matching meshes, since the
latter are a crucial ingredient of the former. For example, let us consider a fluid-
structure interaction problem as described above. A classical way to proceed is to
solve equations (7)-(8) coupled with the discretized version of equations (9)-(10) in
an iterative manner, using the continuity of velocities andstresses on the interface
boundary as transmission conditions between the fluid and the solid. In order to have
a stable scheme, stress conditions need to be applied to the solid (transmitting the
stresses exerted by the fluid) and velocity (Dirichlet) conditions to the fluid (fixing
the motion of the boundary of the fluid domain by the motion obtained in the solid).
The key point is precisely the prescription of these conditions on meshes that, as time
evolves, will not match the flow domain. We concentrate now onthe description of
methods to treat this problem, which can be stated for stationary problems as well.

3.2 Problem setting

Let us now focus in the solution of the flow problem, for which we will use a non-
matching finite element discretization. The ideas to be presented are extendable to
other numerical formulations and other physical problems.However, some of the
difficulties we shall mention are characteristic of flow problems. Likewise, we will
consider general non-structured meshes, the application to Cartesian meshes being
obvious.

An issue of special relevance when using non-matching gridsis the imposition of
Dirichlet boundary conditions. Let us describe the problemto be solved. Consider the



situation depicted in Fig. 1. A domainΩ ⊂ R
d, d = 2, 3, with boundaryΓ = ∂Ω (red

curve in Fig. 1), is covered by a mesh that occupies a domainΩh = Ωin ∪ ΩΓ, where
Ωin ⊂ Ω is formed by the elements interior toΩ andΩΓ is formed by a set of elements
cut byΓ. In turn, let us splitΩΓ = ΩΓ,in ∪ΩΓ,out, whereΩΓ,in = Ω ∩ΩΓ andΩΓ,out is
the interior ofΩΓ \ ΩΓ,in. Note thatΩ = Ωin ∪ ΩΓ,in. For simplicity, we will assume
that the intersection ofΓ with the element domains is a piecewise polynomial curve
(in 2D) or surface (in 3D) of the same order as the finite element interpolation.

Suppose we want to solve a boundary value problem for the unknownu in Ω with
the mesh ofΩh already created and boundary conditionsu = ū on Γ. The obvious
choice would be:

• Obtain the nodes ofΓ (circles in Fig. 1) from the intersection with the element
edges.

• Split the elements ofΩΓ,in so as to obtain a grid matching the boundaryΓ.

• Prescribe the boundary conditionuh = ū in the classical way, whereuh denotes
the approximate solution.

This strategy leads to a local remeshing close toΓ that is involved from the compu-
tational point of view. Obviously, the implementation of the strategy described is very
simple for unstructured simplicial meshes, but it is not so easy if one wants to use other
element shapes and, definitely, prevents from using Cartesian meshes. Moreover, if
the boundaryΓ evolves in time (a situation considered later) the number ofdegrees of
freedom changes at each time instant, thus modifying the structure and sparsivity of
the matrix of the final algebraic system. This is clearly an inconvenience even when
using unstructured simplicial meshes. There are several methods for imposing bound-
ary conditions which avoid the need for locally remeshing. Some of these methods
are described next.

3.3 Immersed boundary method

The immersed boundary method was introduced in 1972 by C. Peskin (see [39, 48]
and [49] for an overview), and since then it has been widely used to simulate fluid-
structure interaction problems in moving domains. The key point of the immersed
boundary method is how Dirichlet boundary conditions are imposed: in the immersed
boundary method boundary conditions are imposed through the introduction of a force
in the momentum equation. In principle this force is introduced only in the fluid-solid
interface by means of a Dirac-delta function, but in practice this function has to be
extended to the nodes surrounding the interface due to the discrete nature of finite
element meshes, and the Dirac-delta function is smoothed.

Suppose that the interface is represented by a set of Lagrangian points of coordi-
natesxΓ,i, i = 1, 2, ..., P (points on the red curve in Fig. 1), which typically corre-
spond to nodes in the Lagrangian solid body mesh, and that theforce to be added is



Figure 1: Setting

elastic. If the interface is considered a membrane, it should be computed from the cou-
pling of the membrane with the fluid, and this is what is described for example in [49].
However, a simpler option, often used in the applications, is to consider this force as
proportional to the deviation of the boundary value of the velocity to the boundary
condition, in a spring-like model. Ifk is the constant of proportionality, the punc-
tual force introduced by the immersed boundary method applied to the Navier-Stokes
equations would be of the form

f =

P
∑

i=1

k(u − ū)δ(|x − xΓ,i|),

where summation extends to all nodes representing the boundary. This force, when
smoothed and introduced in the weak form of the problem yields the right-hand-side
term

∫

Ω

vh · f =

∫

Ω

vh ·

P
∑

i=1

k(u − ū)δ̄(|x − xΓ,i|).

Theelastic/penaltyconstantk has to be large enough to guarantee that boundary con-
ditions are strongly enough imposed, andδ̄ is the smoothed Dirac-delta function which
controls the extent of the applied force.

In the continuous problem,k would be unbounded, and the Dirac-delta function
would not be smoothed at all. However, using very large values for k and very sharp
δ̄ functions highly ill-conditions the discrete system of equations to be solved, which
is the reason for the smoothing. Note that this force extendsnot only over the fluid-
solid interface, but over the whole computational domain and needs to be integrated.



However, thēδ function limits its extent to one or two layers of nodes at each side of
the interface. The immersed boundary method is qualified to be a diffusive method
in [44]. The reason stems from the discretization of the Dirac delta function which has
a finite support. Based on the same coupling principle, Wang and Liu [54] devised the
Extended Immersed Boundary method to allow volumetric deformation of the elastic
solid.

3.4 Penalty methods and Nitsche’s method

Penalty methods are similar to Peskin’s methods in that theyintroduce a force to im-
pose boundary conditions. The main difference is the definition of this force. While
in the immersed boundary method this force is many times understood as an elastic
spring, in penalty methods the nature of the force is purely numerical, and it even
depends on the discretization through a parameter which represents the element size.
Moreover, the extent of the penalty force in penalty methodsis only over the interface
surface and not over the whole computational domain. The expression for the penalty
force is:

f =
α

h
(u − ū),

which introduced in the discrete weak form of the problem yields
∫

Γ

vh · f =

∫

Γ

vh ·
α

h
(uh − ū), (11)

whereα is the penalty parameter andh is the element size. The largerα is the stronger
the boundary conditions are imposed, but also the more ill-conditioned the resulting
system of equations becomes. Note that, unlike in the immersed boundary method,
the integral extends only over the contour of the domain.

Nitsche’s method can be understood as an improvement of the original penalty
method. If the penalty forces (11) are added, there is no reason why the test function
associated to the boundary nodes must vanish, and thereforethis contribution must be
accounted for. If this is not done, a poor approximation of the unknowns close to the
interface is obtained, even if the boundary condition is well approximated.

If we define the operator

σ(v, q) := −2n · µ∇Sv + qn,

the term to be added to the right-hand-side of (7) is

−

∫

Γ

vh · σ(uh, ph) +

∫

Γ

vh ·
α

h
(uh − ū). (12)

Of course, terms involvinguh andph should be moved to the left-hand-side (LHS) of
(7), since they contribute to the system matrix. The problemwith (12) is that it yields
a non-symmetric problem, even in the Stokes case. In order toavoid this, the Dirichlet



conditionu = ū is weighted byσ(vh, qh). Thus, instead of adding only (11) to the
LHS of (7), the method consists in adding

−

∫

Γ

vh · σ(uh, ph) −

∫

Γ

uh · σ(vh, qh) +

∫

Γ

ū · σ(vh, qh) +

∫

Γ

vh ·
α

h
(uh − ū).

(13)

Again, terms involvinguh andph should be moved to the LHS of (7). The resulting
problem is symmetric if the Stokes problem is considered. Let us remark that both in
(11) and (13) it is important to evaluate the unknowns at the time step of consideration,
since explicit treatments are usually highly unstable. When added to (7), the natural
choice is to evaluate (11) and (13) atn + θ.

Nitsche’s method was proposed for the Poisson problem and analyzed in this case.
It can be shown that the higher the value ofα, the better the approximation to the
boundary condition at the expense of a poorer approximationto the differential equa-
tion. However, for any value ofα it is possible to show that the method is stable and
optimally convergent. See [37] for a proof, including more general boundary con-
ditions than used here (although for Poisson’s problem). The good performance of
Nitsche’s method has been exploited also in other contexts,such as the imposition of
boundary conditions for discontinuous finite element approximations (see the original
work in [1] and the extension in [29], for example), the imposition of transmission
conditions in domain decomposition with non-matching grids (as in [4, 28], among
many others) or also in some stabilized finite element methods for which this method
fits nicely [8].

3.5 Lagrange multiplier techniques

Another possibility to enforce boundary conditions, whichdoes not involve a large
penalty or elastic terms, is the use of Lagrange multipliers. Lagrange multipliers con-
sist of adding new equations to the global system of equations that enforce the bound-
ary conditions. New unknowns (the Lagrange multipliers) need also to be added to the
problem. The main advantage of this procedure is that the system does not become ill-
conditioned. On the other hand, the system of equations becomes larger, and the space
for the Lagrange multipliers has to be carefully chosen so that the final formulation is
stable (or stabilization techniques should be used, see forexample [3,17]).

Using Lagrange multipliers to impose boundary conditions to the Navier-Stokes
equations consists of adding the term

∫

Γ

vh · λh

to the LHS of the momentum equation (7) and to add the new equations for the La-
grange multipliers

∫

Γ

γh · (uh − ū) = 0,



whereλh are the Lagrange multipliers of the finite element problem and γh their
associated test functions. Note that the Lagrange multipliers contribution to the mo-
mentum equation corresponds exactly to that of the stressesthrough the boundary, that
is to say,λ = σ(u, p) for the continuous problem. In the discrete case, their intro-
duction avoids the need for post-processing the stresses inorder to compute the forces
exerted by the fluid on the solid body.

The Lagrange multiplier technique for imposing boundary conditions is associ-
ated to thefictitious domainmethod, in which the flow problem is solved over all the
computational domain, including the region occupied by thesolid body [22, 24]. We
describe it later as a method to treat problems in moving domains.

3.6 Minimization of boundary errors with external degrees of
freedom

Another possibility in order to avoid the ill-conditioningdue to penalty terms (which
appears in the immersed boundary and penalty methods), and the need of adding new
degrees of freedom to the system of equations (which appearsif Lagrange multipliers
are used) is to use currently existing degrees of freedom in order to enforce boundary
conditions. This involves replacing momentum equations innodes adjacent to the
fluid-solid interface with the equations that enforce boundary conditions.

There are several methods which use pre-existing degrees offreedom in order to
enforce boundary conditions but we will focus here in our ownapproach to the prob-
lem. We summarize next the strategy proposed in [12] to prescribe Dirichlet boundary
conditions on a generic immersed boundary, that we denote asbefore byΓ.

Let uh be the unknown solution of a problem posed inΩ ⊂ Ω0 for which we want
to prescribe a condition onΓ. Let ΩΓ be the set of elements cut byΓ, which is split as
ΩΓ = ΩΓ,in ∪ ΩΓ,out, whereΩΓ,in = Ω ∩ ΩΓ andΩΓ,out is the interior ofΩΓ \ ΩΓ,in.
Let alsoΩin be such thatΩ = Ωin ∪ ΩΓ,in. For simplicity, we will assume that the
intersection ofΓ with the element domains can be exactly represented by the classical
isoparametric mapping. For the notation to be used, see again Fig. 1.

Suppose that the unknownuh is interpolated as

uh(x) =

nin
∑

a=1

Ia
in(x)Ua

in +
nout
∑

b=1

Ib
out(x)U b

out

= I in(x)U in + Iout(x)U out,

whereIa
in(x) andIb

out(x) are the standard interpolation functions,nin is the number of
nodes inΩin, the domain where the problem needs to be solved (including layerL0)
andnout the number of nodes in layerL−1 (see Fig. 1).

The objective is to computeU out. Suppose thatuh needs to be prescribed to a given



functionū onΓ. The main idea is to computeU out by minimizing the functional

J2(U in, U out) =

∫

Γ

(uh(x) − ū(x))2 =

∫

Γ

(I in(x)U in + Iout(x)U out − ū(x))2 .

(14)

Suppose now that the problem foruh in Ωin leads to an algebraic equation of the form

K in,inU in + K in,outU out = F in. (15)

The domain integrals in matricesK in,in andK in,out extend only overΩ. The nodal
valuesU out are merely used as degrees of freedom to interpolateuh in the domain
Ω. If (15) is supplemented with the equation resulting from the minimization of func-
tional (14), the system to be solved is finally

[

K in,in K in,out

NΓ MΓ

] [

U in

U out

]

=

[

F in

fΓ

]

, (16)

where

MΓ =

∫

Γ

It
out(x)Iout(x), fΓ =

∫

Γ

It
out(x)ū(x), NΓ =

∫

Γ

It
out(x)I in(x).

It is important to note that this implementation maintains the connectivity of the back-
ground mesh.

4 Dealing with moving subdomains

In the previous section we have seen several possibilities to apply boundary conditions
when non-matching grids are used. However, we have not discussed yet how to deal
with moving subdomains. The most important issue in this type of problems is how
to compute temporal derivatives. This is clearly defined forALE strategies, but in
fixed mesh methods it is not that straight-forward, and thereare several possibilities
for computing temporal derivatives in regions close to the fluid-solid interface. Each
of these possibilities defines a family of methods.

Before starting to describe the various methods, let us state which is the key issue
when dealing with moving subdomains in fixed mesh strategies. Let us consider the
situation depicted in Fig. 2 attn, where we have a circular solid body immersed in
a fluid which we want to simulate using a fixed mesh strategy. Wehave depicted in
green nodes inside the fluid computational domain. Let us nowconsider the situation
at time steptn+1, where the circular body has been horizontally displaced. There
are nodes which were outside the flow computational domain attn, which are inside
the computational domain attn+1 (green nodes inside the red circle in Fig. 2). These
nodes are callednewly created nodes. Since the unknown values at these nodes attn is
not known, computing temporal derivatives is not immediate. The following sections
describe some of the proposed strategies to do so.
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Figure 2: Green: nodes and elements inside the computational domain. Left: domain
configuration attn. Right: domain configuration attn+1. The red circle corresponds
to the domain configuration attn.

4.1 The fictitious domain method

In the fictitious domain method [22,24] we work with a computational domain which
does not coincide with the physical flow domain. Instead, we use as computational
domain for the flow problem the whole region covered by the finite element mesh, that
is, we solve in both the green and black regions in Fig. 2. Obviously, we are not inter-
ested in the solution inside the solid body region, which is physically meaningless.

The key point of the fictitious domain method is that, since wesolve for the whole
computational domain, we can use the results attn for computing temporal derivatives
at tn+1 even for the newly created nodes. Let us say, however, that results attn for
newly created nodes attn+1 do not come from a physical problem but from afictitious
one, and that it is not clear how results in both the physical and the fictitious problem
are related.

The fictitious domain method has been extensively used to simulate two and three-
dimensional flow problems with moving boundaries having a known trajectory, and
in particular to the solution of a Couette problem and a helical ribbon mixer [7]. As
another example, it has been applied to the solution of the flow around a moving
disk [25]. In fictitious domain methods, the motion of the object needs not necessarily
to be known a-priori, and aerodynamic forces can be taken into account to couple the
fluid dynamics and the kinematics of the rigid body. Pan [46] predicts the path of a
ball falling in a viscous fluid (at low Reynolds numbers); in [20], the authors solve the
two-dimensional flow around an airfoil that is free to rotatearound its center of mass,
the sedimentation of particles in a box, and a three-dimensional case involving two
spherical particles. Using the same method, Juárez [36] simulates the sedimentation
of an elliptic body in a two-dimensional viscous fluid. This fictitious domain method
is also well-suited for shape optimization problems [21].



4.2 The fixed-mesh ALE method

The key point of the fixed-mesh ALE method is that, even if we are using a fixed-
mesh method, domain movement cannot be obviated, and it is necessary to take it
into account with an ALE method. However, since we are interested in using a fixed-
mesh, we develop a strategy which allows us to always work with the background
fixed mesh and, at the same time, includes the ALE terms which appear due to the
domain movement. We have developed this strategy in [2,14,15,32].

SupposeΩ0 is meshed with a finite element meshM0 and that at time leveltn

the domainΩ(tn) is meshed with a finite element meshMn (as we will see, close to
M0). Let un be the velocity already computed onΩ(tn). The purpose is to obtain
the fluid regionΩ(tn+1) and the velocity fieldun+1. The former may move according
to a prescribed kinematics, for example due to the motion of asolid, or can be an
unknown of the problem. If the classical ALE method is used,Mn would deform to
another mesh defined attn+1. The key idea is not to use this mesh to computeun+1

andpn+1, but to re-mesh in such a way that the new mesh is, essentially, M0 once
again.

The steps of the algorithm to achieve the goal described are the following:

1. DefineΓn+1

free
by updating the function that defines it.

2. Deformvirtually the meshMn to Mn+1

virt using the classical ALE concepts and
compute the mesh velocityun+1

m .

3. Write down the ALE Navier-Stokes equations onMn+1
virt .

4. Split the elementsof M0 cut byΓn+1

free
to define a mesh onΩ(tn+1), Mn+1.

5. Projectthe ALE Navier-Stokes equations fromMn+1

virt to Mn+1.

6. Solve the equations onMn+1 to computeun+1 andpn+1.

A global idea of the meshes involved in the process is represented in Fig. 3. Note
in particular that at each time steps two sets of nodes have tobe appropriately dealt
with, namely, the so called newly created nodes and the boundary nodes. Contrary
to other fixed grid methods, newly created nodes are treated in a completely natural
way using the FM-ALE approach: the value of the velocity there is directly given by
the projection step fromMn+1

virt to Mn+1. Boundary nodes require either additional
unknowns with respect to those of meshM0 or an appropriate imposition of boundary
conditions, as explained in the previous Section.

4.3 Chimera strategies

The Chimera method was first envisaged as a tool for simplifying the mesh generation
[5, 51, 52]. Independent meshes are generated for each component (object) of the



Figure 3: Two dimensional FM-ALE schematic. Top-left: original finite element
meshM0 of Ω0. Top-right: finite element meshMn of Ω(tn), with the elements
represented by a thick line and the elements ofM0 represented by thin line. The
blue line representsΓn

free and the red edges indicate the splitting ofM0 to obtainMn.
Bottom-left: updating ofMn to Mn+1

virt
using the classical ALE strategy. The position

of Γn+1

free
is again shown using a solid blue line and the previous positionΓn

free using a
dotted blue line. Bottom-right: MeshMn+1 of Ω(tn+1), represented by a thick line.
The edges that split elements ofM0 are again indicated in red. Boundary nodes, where
approximate boundary conditions need to be imposed, are drawn in green, whereas
newly created nodes are drawn in gray.



computational domain, enabling a flexibility on the choice of the type of element as
well as on their orientation that could not be possible when meshing complex three
dimensional geometries [6,27]. Then, as a direct application, the Chimera method has
also been used as a mesh refinement technique [47]. In addition, if it is implemented
efficiently, it is a very efficient tool to treat flows with moving components [9,50,55].

Through the simple example sketched in Figure 4, let us briefly explain the Chimera
method applied to the motion of moving objects inside a fluid domain:

• Independent meshes are generated for the so called background mesh and the
mesh around the solid, which is called thepatch mesh.

• The mesh around the solid is placed on the background mesh. The set of the
two overset grids is the so calledcomposite grid. Elements of the background
located inside the patch are removed, with the possibility of having a non-empty
intersection between the resulting mesh and the patch mesh.This process,
known ashole cutting, defines two interfaces, one of the domain attached to
the solid and the other, known asapparent interface, of the hole created in the
background mesh. Nodes on this last interface are calledfringe nodes. Nodes
between the apparent interface and the outer boundary of thepatch mesh are the
overlapping nodes.

• The problem defined on the patch mesh is again a fluid-structure interaction
problem. The main idea is to write the conservation equations on this domain in
a frame of reference that moves with the rigid body motion of the solid. Then,
the mesh deformation in the fluid region will be small, even ifthe solid deforms.
Of course, the patch mesh will remain constant if the solid isa rigid body. In
order to write the momentum conservation equation in the frame of reference
following the rigid body modes of the body, Coriolis, centrifugal forces and
acceleration forces have to be added to the Navier-Stokes equations. These are
of the form

2ρ ω × u, ρ ω × (ω × x) and − ρ as,

respectively, whereω is the angular velocity of the frame reference,x the posi-
tion vector andas the acceleration.

• The FSI problem on the patch mesh is then coupled to the flow problem on
the background mesh using adomain decomposition strategy. Typically, a
Dirichlet-Dirichlet coupling is used (this is the so calledSchwartz’s method).
This however requires a wide enough overlap to allow the associated iteration-
by-subdomain strategy converge. Nevertheless, it is shownin [30, 31] that it is
also possible to apply a Dirichlet condition on the apparent(non-smooth) inter-
face and a Neumann condition on the outer boundary of the patch domain. Note
that variables on the patch mesh and the background mesh willbe referred to
different reference systems, and thus the former need to be properly transformed
to the fixed reference where they are usually required.



Figure 4: Chimera method: principles.

The reader can see the details of this approach in [30], whereseveral examples
solved using this method can be found.

4.4 Other possibilities

As we have already seen, a special treatment is required for newly created nodes. In
many publications, the previous time step values are computed using ad hoc argu-
ments, that sometimes lead to good approximations from the practical point of view
when small time steps are used. As an example, in [43] the authors extrapolate the
velocity and pressure from the nearest fluid nodes at the previous time step. In [10],
the Navier-Stokes equations are correctly expressed in an ALE framework, but the
velocity is taken as the solid velocity. It is worth to note that if the solid is deformable
and has been solved together with the fluid in a coupled way (asin the original im-
mersed boundary method [48] or in the fluid-solid approach in[58]), this velocity is
physically meaningful. This is not the case, however, in thecase of rigid bodies or
bodies with rigid boundaries. A possibility to deal with this situation is to write the
Navier-Stokes equations in a non-inertial frame of reference attached to the body, as
in [38], where an immersed boundary method is used.

5 Summary

The purpose of this chapter has been to review some methods that allow to use fixed
meshes in problems with time dependent domains, with particular emphasis on those
in which the authors have been involved. The connection withthe approximate impo-
sition of boundary conditions has been highlighted.

Summarizing, the methods described herein are:

• Approximate imposition of Dirichlet boundary conditions:

– Introduction of forces on the boundaries.



– Penalization of the boundary conditions, including Nitsche’s method.

– Use of Lagrange multipliers to enforce boundary conditions.

– Use of inactive degrees of freedom to optimize the imposition of boundary
conditions.

• Treatment of time dependent domains:

– Solving in the whole physical domain, both the solid and the fluid, with
an appropriate modeling of the forces at the interface. Thisincludes the
original version of the immersed boundary method.

– Fictitious domain method, in which the solid is considered to be filled with
a fictitious fluid and boundary conditions are imposed through Lagrange
multipliers.

– Fixed-mesh ALE method, based on the classical ALE approach but pro-
jecting the equations always to a fixed mesh.

– Chimera strategies based on domain decomposition method, which at least
allow to remove the mesh deformation due to rigid body motions of the
solids inside the fluid.

Many variants of all these methods exist. Our purpose here has been to describe
the main ideas behind them, without entering the details that can be found in the
references.
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