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Abstract

In many coupled problems of practical interest the domaiat ¢¢ast one of the prob-
lems evolves in time. The Arbitrary Eulerian Lagrangian Blapproach is a tool
very often employed to cope with this domain motion. Howeirethis work we aim
at describing numerical techniques that allow us to use d fixesh for the approxi-
mation of moving boundary problems, particularly usingfihée element approach.
This type of formulations is often termed embedded or imeeitzoundary methods.
Emphasis will be put in describing a particular version & &LE formulation using
fixed meshes that we have developed, and that we call fixet-fes method (FM-
ALE). Methods able to deal with fixed meshes are closely linieethe approximate
imposition of boundary conditions. Some possibilities totlis approximation are
also described.

Keywords: moving domains, fixed mesh methods, ALE, approximate baynotan-
ditions

1 Introduction

In the classical ALE approach to solve problems in compoiedi fluid dynamics, the
mesh in which the computational domain is discretized ipeéd (see for example
[16, 33, 35]). This is done according to a prescribed motibpaot of its boundary,
which is transmitted to the interior nodes in a way as smosthossible so as to avoid
mesh distortion. The FM-ALE formulation has a different mation. Instead of
assuming that the computational domain is defined by the im@shdary, we assume
that there is a function that defines the boundary of the domaere the flow takes
place. We will refer to it as the boundary function. It may peeg, for example, by
the shape of a body that moves within the fluid, or it may nedeetoomputed, as in
the case of level set functions. It may be also defined dislgrdiy a set of points.
When this boundary function moves, the flow domain changesbtlaat must be taken
into account at the moment of writing the conservation equatthat govern the flow,



which need to be cast in the ALE format. However, our purp&se Is to explain how
to use always a background fixed mesh. A review of the methtdevpresented.

Other possibilities to use a single grid in the whole simatattan be found in
the literature, each one having advantages and drawbadksy Were designed as
an alternative to body fitted meshes and can be divided inbonta&in groups, corre-
sponding in fact to two ways of prescribing the boundary ¢mas on the moving
boundary [13]:

e Force term. The interaction of the fluid and the solid is tak#n account
through a force term, which appears either in the strong ahénweak form
of the flow equations. Among this type of methods, let us @teskample the
Immersed Boundary method as a variant of the Penalty mettioete punctual
forces are added to the momentum equation, and the Fidibomain method,
where the solid boundary conditions are imposed througlysdreye multiplier.

e Approximate boundary conditions. Instead of adding a foece, these meth-
ods impose the boundary conditions in an approximate wag trediscretiza-
tion has been carried out, either by modifying the diffel@rdperators near the
interface (in finite differences) or by modifying the unknuswnear the interface.

The Immersed Boundary Method in its original form [48] catsin adding punctual
penalty forces in the domain boundary so that the boundangitions are fulfilled.
The forces are computed from a fluid-structure (elasti@ration problem at the in-
terface. The method is first order accurate even if secorefr aggproximation schemes
are used, although formal second order accuracy has beareaeén [40]. The more
recent Immersed Interface Method achieves higher orderacg by avoiding the use
of the Dirac delta distribution to define the forcing termsg$41, 42, 56]).

The Penalty method is similar to the previous one in the sthadea force term is
added to the momentum equations. The difference is due tiathé¢hat the penalty
parameter is not computed from a fluid-structure interactis in the original im-
mersed boundary method, but it is simply required to be largrigh to enforce the
boundary conditions approximately [53].

Another approach is the use of Lagrange multipliers to eefdihe boundary con-
ditions. However, the finite element subspaces for the butklaagrange multiplier
fields must satisfy the classical inf-sup condition, whichiaily leads to the need for
stabilization. Moreover, additional degrees of freedonsifue added to the problem.
The use of Lagrange multipliers is the basis of the FictgiD@main Method [23, 26].

Another possibility for imposing boundary conditions ig tlise of preexisting grid
nodes to impose boundary conditions. This is the case ofMr& EE method, which
applies a variant of the ALE method to a fixed mesh strateg¥4215, 32] and the
hybrid Cartesian/immersed boundary methods for Cartegids [19, 45, 57].

Most of these methods have been well tested in the literétureoth steady and
moving interfaces. Generally, the last case is treated plyaq directly the former
at each time step. In this work we review all these formutairom a unified point
of view.



The chapter is organized as follows. In Section 2 we presgeinaral overview
of the physical problem and equations with which fixed meskthows have to deal,
which we particularize for the finite element method. In 88tB8 we describe sev-
eral existing possibilities for imposing Dirichlet boumgaconditions in fixed mesh
methods. Imposing Dirichlet boundary conditions is an esakingredient of any
fixed grid strategy, and it is very closely related to treattn&f the ALE equations
in moving domains. In Section 4 we present different pokt#és to treat moving
subdomains with fixed-mesh strategies. Finally, a summiityeomethods described
closes the chapter in Section 5.

2 Problem statement

In this section we state the continuous problem to be solV@ded mesh methods
applied to problems in moving domains appear in differepliaptions. However, to
fix ideas we will concentrate our developments to fluid-streesinteraction problems
in which the solid (structure) either deforms or has rigidiypenotions. The fluid
domain will therefore change in time. Our main interest isléscribe strategies able
to deal with this situation. A more detailed description loé pproblem can be found
in[2,14].

2.1 Flow equations

Let us consider a regian® ¢ R? (d = 2, 3) where a flow will take place during a time
interval [0, T]. However, we consider the case in which the fluid at tineecupies
only a subdomai2(¢t) c Q° (note in particular tha®(0) c Q°). Suppose also that
the boundary of2(¢) is defined by part 06Q° and a moving boundary that we call
Cree(t) = 00(t) \ 0Q° N OQ(t). This moving part oDQ(¢) may correspond to the
boundary of a moving solid immersed in the fluid.

In order to cope with the time-dependency it ), we may use the ALE approach,
with the particular feature of considering a variable défmi of the domain velocity.
Let x, be a family of invertible mappings, which for dlle [0, 7] map a pointX €
2(0) to a pointx = x,(X) € Q(t), with x, = I, the identity. Ifx, is given by
the motion of the particles, the resulting formulation wbbe Lagrangian, whereas if
x; = I for all ¢, Q(t) = Q(0) and the formulation would be Eulerian.

Let nowt’ € [0, T, with ¢ < ¢, and consider the mapping
Xt - Q(t/) — Q(2)
' —x=x,0x," ().
Given a functionf : Q(t) x (0,7") — R we define

a_f (@,1) = o(f OXt,t/)

ot 5 (x',t), xeQt), 2 Q).



In particular, the domain velocity taking as a referencedberdinates of2(¢') is
given by

ox
Udom ‘= E

(x,1). 1)

m/

The incompressible Navier-Stokes formulatedlift), accounting also for the mo-
tion of this domain, can be written as follows: find a veloaity Q(¢) x (0, T) — R¢
and a pressurg: Q(t) x (0,7) — R such that

ou
P ot

(x,t) + (u — Ugom) - V'u} — V- (2uV®u) + Vp = pf, (2)

m/

V-u=0, (3)

whereV7u is the symmetrical part of the velocity gradiepiis the fluid density;: is
the viscosity andf is the vector of body forces.

Initial and boundary conditions have to be appended to prob{2)-(3). The
boundary conditions ofis..(t) can be of two different types: &) (or the normal
stress) givenu unknown onls..; b) w given, p (or the normal stress) unknown on
[iee- ON the rest of the boundary 6X(¢) the usual boundary conditions can be con-
sidered. In general, we consider these boundary conditibtie form

wheren is the external normal to the boundasy,= —pI + 2uV°u is the Cauchy
stress tensor anglandt are the given boundary data. The components of the boundary
I'p andI'y are obviously disjoint and such thRp, U I'y = 02, and therefore time-
dependent.

We will also introduce the time and spatial discretizatibthe problem since some
of the methods we will describe are directly applied to trecdite problem. We will
focus in the finite element method, although other possi#slare obviously possible.

2.1.1 The time-discrete problem

Let us start introducing some notation. Consider a unifoantifon of [0, 7] into N
time intervals of lengtldt. Let us denote by" the approximation of a time dependent
function f at time levelt” = ndt. We will also denote

5fn+1 — fnJrl . fn’
n+1 n

n+l __ f B f
5tf - 5t )

=0t (1 —-0)f", 0el1/2,1]



Suppose we are given a computational domain at timwith spatial coordinates
labeledz™, andu™ andp” are known in this domain. The velocity"™! and the
pressure™*! can then be found as the solution to the problem

p [5tun+1}mn + (un+€ . ug;rnel) . VunJr@} B v (2MVSun+€) + Vanrl _ pfn-i—l’
(4)
V.utt =0, (5)

where nowdu™ |, = (u"t!(x) — u"(x"))/dt, beingx = xn+0 . (z") the spatial
coordinates if2(¢"?). The domain velocity given by (1), with’ = =", is approxi-
mated as

1
ug:rg — @ (Xt”+9,t7‘ (IE”) — :IZ”) . (6)

2.1.2 The fully discrete problem

The next step is to consider the spatial discretization obl@m (4)-(5). As for the
time discretization, different options are possible. lhersake of conciseness, here we
simply describe the straight-forward Galerkin finite eletfermulation, even though
there are instabilities that might appear due to dominami@ctive term or incompat-
ible velocity-pressure interpolations. In order to oveneothese numerical problems
of the standard Galerkin method, a stabilized finite elenfi@mhulation can be ap-
plied. The formulation we use is presented in [11]. It is lobbse the subgrid scale
concept introduced in [34], although when linear elemergsused it reduces to the
Galerkin/least-squares method described for example8h [1

Let {Q¢}"! be a finite element partition of the domain(¢"*!), with index e
ranging from 1 to the number of elemenis (which may be different at different time
steps). We denote with a subscripthe finite element approximation to the unknown
functions, and byv, and g, the velocity and pressure test functions associated to
{Qe} L respectively.

The finite element discretized method consists of findifig" andp; ™ such that

n+1
/ v - p Ou N
Q

i / vn - (p (™ — w9 . Ty t0) / Y oy
Q Q

N /Q v - f, (7)
/Qth ~upt? = 0. (8)

; +/2V%h Vo
Q

2.2 Solid body equations

Let us now consider the solid body domain(t) c Q° , which also evolves in time.
The solid mechanics problem formulated in a purely Lagramgipproach inf),(t)



can be written as follows:

d*d
Pz =V s T s, (9)
sz = Ps05 (10)

wherep; is the solid densityd is the displacement vectos;, is the Cauchy stress
tensorpb is the vector of body forces and

ox
For linear elastic isotropic materials we haxe= \,(V-d)I+2u,V*d. Rigid bodies
could be treated as well in the methods to be described irotlmning.

The time discretization and finite element approximatiothefabove equations is
standard. We omit the details, which can be found for exammgi2).

3 Approximate imposition of boundary conditions

3.1 Motivation

As indicated previously, moving domain methods on fixed raesre closely linked
to methods to approximate boundary conditions on non-nmajameshes, since the
latter are a crucial ingredient of the former. For exampdt,us consider a fluid-
structure interaction problem as described above. A dabksiay to proceed is to
solve equations (7)-(8) coupled with the discretized wersif equations (9)-(10) in
an iterative manner, using the continuity of velocities atreésses on the interface
boundary as transmission conditions between the fluid aaddhd. In order to have
a stable scheme, stress conditions need to be applied tolide(tsansmitting the
stresses exerted by the fluid) and velocity (Dirichlet) gbads to the fluid (fixing
the motion of the boundary of the fluid domain by the motioragixd in the solid).
The key point is precisely the prescription of these condgion meshes that, as time
evolves, will not match the flow domain. We concentrate novitandescription of
methods to treat this problem, which can be stated for statioproblems as well.

3.2 Problem setting

Let us now focus in the solution of the flow problem, for whicle will use a non-
matching finite element discretization. The ideas to begmeesl are extendable to
other numerical formulations and other physical problerdlawever, some of the
difficulties we shall mention are characteristic of flow geobs. Likewise, we will
consider general non-structured meshes, the applicati@@attesian meshes being
obvious.

An issue of special relevance when using non-matching ggittse imposition of
Dirichlet boundary conditions. Let us describe the problerne solved. Consider the



situation depicted in Fig. 1. A domain c R?, d = 2, 3, with boundanyt = 9 (red
curve in Fig. 1), is covered by a mesh that occupies a dofagis 2, U Qr, where

Qi C Qis formed by the elements interior fband(2r is formed by a set of elements
cut byI'. In turn, let us splifly = Qp;, U Qp out, WhereQp s, = QN Qp andQp o, IS

the interior ofQr \ Qr,. Note that2 = €, U Qr;,. For simplicity, we will assume
that the intersection af with the element domains is a piecewise polynomial curve
(in 2D) or surface (in 3D) of the same order as the finite eldrimgarpolation.

Suppose we want to solve a boundary value problem for theavmkin in © with
the mesh of?,, already created and boundary conditiens- w onI'. The obvious
choice would be:

e Obtain the nodes df (circles in Fig. 1) from the intersection with the element
edges.

e Split the elements dfr-;, SO as to obtain a grid matching the boundBry

e Prescribe the boundary conditiop = w in the classical way, wherg, denotes
the approximate solution.

This strategy leads to a local remeshing closE tbat is involved from the compu-
tational point of view. Obviously, the implementation oétstrategy described is very
simple for unstructured simplicial meshes, but it is notasydaf one wants to use other
element shapes and, definitely, prevents from using Carteseshes. Moreover, if
the boundary evolves in time (a situation considered later) the numbelegfees of
freedom changes at each time instant, thus modifying thetstre and sparsivity of
the matrix of the final algebraic system. This is clearly azbmvenience even when
using unstructured simplicial meshes. There are severdflads for imposing bound-
ary conditions which avoid the need for locally remeshingm® of these methods
are described next.

3.3 Immersed boundary method

The immersed boundary method was introduced in 1972 by kiPésee [39, 48]

and [49] for an overview), and since then it has been widegdus simulate fluid-

structure interaction problems in moving domains. The keintpof the immersed
boundary method is how Dirichlet boundary conditions arpased: in the immersed
boundary method boundary conditions are imposed througimtroduction of a force
in the momentum equation. In principle this force is introéld only in the fluid-solid

interface by means of a Dirac-delta function, but in practiais function has to be
extended to the nodes surrounding the interface due to suoeetie nature of finite
element meshes, and the Dirac-delta function is smoothed.

Suppose that the interface is represented by a set of Lagrapgints of coordi-
natesxr;, : = 1,2,..., P (points on the red curve in Fig. 1), which typically corre-
spond to nodes in the Lagrangian solid body mesh, and thdotbe to be added is



Figure 1: Setting

elastic. If the interface is considered a membrane, it shbelcomputed from the cou-
pling of the membrane with the fluid, and this is what is ddssmtifor example in [49].
However, a simpler option, often used in the applicatiogs$oiconsider this force as
proportional to the deviation of the boundary value of thioeky to the boundary
condition, in a spring-like model. I is the constant of proportionality, the punc-
tual force introduced by the immersed boundary method egpd the Navier-Stokes
equations would be of the form

P
F=2 ku—w)(|z -,
=1
where summation extends to all nodes representing the laoyind@his force, when
smoothed and introduced in the weak form of the problem gigié right-hand-side
term

/th-f:/th-izp;k(u—ﬂ)éﬂm—mmD.

Theelastic/penaltyconstant: has to be large enough to guarantee that boundary con-
ditions are strongly enough imposed, &rid the smoothed Dirac-delta function which
controls the extent of the applied force.

In the continuous problenk would be unbounded, and the Dirac-delta function
would not be smoothed at all. However, using very large \&afoek and very sharp
§ functions highly ill-conditions the discrete system of ations to be solved, which
is the reason for the smoothing. Note that this force exted®nly over the fluid-
solid interface, but over the whole computational domaid aeeds to be integrated.



However, they function limits its extent to one or two layers of nodes atreside of
the interface. The immersed boundary method is qualifieceta diffusive method
in [44]. The reason stems from the discretization of the ®dralta function which has
a finite support. Based on the same coupling principle, Wanld_&u [54] devised the
Extended Immersed Boundary method to allow volumetric heédion of the elastic
solid.

3.4 Penalty methods and Nitsche’s method

Penalty methods are similar to Peskin’s methods in that ititeyduce a force to im-
pose boundary conditions. The main difference is the defmuf this force. While
in the immersed boundary method this force is many timesnstaled as an elastic
spring, in penalty methods the nature of the force is pureiynerical, and it even
depends on the discretization through a parameter whiclesepts the element size.
Moreover, the extent of the penalty force in penalty methedsly over the interface
surface and not over the whole computational domain. Theesson for the penalty
force is:

f: E(U’_ﬁ)7

which introduced in the discrete weak form of the problendge

/th-f:/th-%(uh—ﬂ), (11)

whereq is the penalty parameter ahds the element size. The largeiis the stronger
the boundary conditions are imposed, but also the moreiidiioned the resulting
system of equations becomes. Note that, unlike in the imedeb®undary method,
the integral extends only over the contour of the domain.

Nitsche’s method can be understood as an improvement ofrigmal penalty
method. If the penalty forces (11) are added, there is n@reaty the test function
associated to the boundary nodes must vanish, and thetbieontribution must be
accounted for. If this is not done, a poor approximation eftnknowns close to the
interface is obtained, even if the boundary condition id wpproximated.

If we define the operator
o(v,q) = —2n-uV°v +qn,
the term to be added to the right-hand-side of (7) is

«Q
~ [onotwnm) + [ o S - w. 12)
r r h
Of course, terms involving,;, andp;, should be moved to the left-hand-side (LHS) of
(7), since they contribute to the system matrix. The probhath (12) is that it yields
a non-symmetric problem, even in the Stokes case. In oragaiad this, the Dirichlet



conditionu = wu is weighted byo (v, g,). Thus, instead of adding only (11) to the
LHS of (7), the method consists in adding

_ a _
—/th"f(uh,ph)—/Fuh'o'(vh,%)+/FU‘U(’Uh,qh)+/th'E(“h—U)-
(13)

Again, terms involvingu, andp; should be moved to the LHS of (7). The resulting
problem is symmetric if the Stokes problem is considered.usaemark that both in
(11) and (13) itis important to evaluate the unknowns atithe step of consideration,
since explicit treatments are usually highly unstable. Waeéded to (7), the natural
choice is to evaluate (11) and (13)yat- 6.

Nitsche’s method was proposed for the Poisson problem aalgized in this case.
It can be shown that the higher the valuecgfthe better the approximation to the
boundary condition at the expense of a poorer approximaidime differential equa-
tion. However, for any value af it is possible to show that the method is stable and
optimally convergent. See [37] for a proof, including morengral boundary con-
ditions than used here (although for Poisson’s problem)e gdod performance of
Nitsche’s method has been exploited also in other conteutd) as the imposition of
boundary conditions for discontinuous finite element agipnations (see the original
work in [1] and the extension in [29], for example), the imiios of transmission
conditions in domain decomposition with non-matching grfds in [4, 28], among
many others) or also in some stabilized finite element metifimdwhich this method
fits nicely [8].

3.5 Lagrange multiplier techniques

Another possibility to enforce boundary conditions, whaibes not involve a large
penalty or elastic terms, is the use of Lagrange multiplieagrange multipliers con-
sist of adding new equations to the global system of equstiwet enforce the bound-
ary conditions. New unknowns (the Lagrange multipliergdalso to be added to the
problem. The main advantage of this procedure is that thteisydoes not become ill-
conditioned. On the other hand, the system of equationshestarger, and the space
for the Lagrange multipliers has to be carefully chosen abttie final formulation is
stable (or stabilization techniques should be used, se=xample [3, 17]).

Using Lagrange multipliers to impose boundary conditiamshie Navier-Stokes
equations consists of adding the term

/vh'Ah
r

to the LHS of the momentum equation (7) and to add the new mnsator the La-
grange multipliers

/thwuh—a):o,



where \;, are the Lagrange multipliers of the finite element problerd &p their
associated test functions. Note that the Lagrange mutgtontribution to the mo-
mentum equation corresponds exactly to that of the stréissmsyh the boundary, that
is to say,A = o(u,p) for the continuous problem. In the discrete case, theipintr
duction avoids the need for post-processing the stressedén to compute the forces
exerted by the fluid on the solid body.

The Lagrange multiplier technique for imposing boundamditions is associ-
ated to thdictitious domaimmethod, in which the flow problem is solved over all the
computational domain, including the region occupied bydblkd body [22, 24]. We
describe it later as a method to treat problems in moving dosna

3.6 Minimization of boundary errors with external degrees d
freedom

Another possibility in order to avoid the ill-conditionirye to penalty terms (which
appears in the immersed boundary and penalty methods)hameed of adding new
degrees of freedom to the system of equations (which apgeaagrange multipliers
are used) is to use currently existing degrees of freedomderdo enforce boundary
conditions. This involves replacing momentum equationsddes adjacent to the
fluid-solid interface with the equations that enforce baamyatonditions.

There are several methods which use pre-existing degrefeseafom in order to
enforce boundary conditions but we will focus here in our @approach to the prob-
lem. We summarize next the strategy proposed in [12] to ptesDirichlet boundary
conditions on a generic immersed boundary, that we dendiefase byl".

Let u;, be the unknown solution of a problem posedirc Q° for which we want
to prescribe a condition on. Let Q1 be the set of elements cut by which is split as
Qr = Qrn U Qr out, WhereQr;, = QN Qr andQr ¢ is the interior ofQp \ Qr .
Let also(;,, be such thaf2 = €, U Qr;,. For simplicity, we will assume that the
intersection of” with the element domains can be exactly represented by assichl
isoparametric mapping. For the notation to be used, see &igil.

Suppose that the unknowy is interpolated as

Nin Nout

un(@) = L@ UL+ Y Lo (@)Ul
a=1 b=1

= Iin(m)Uin + Iout(w)Uouta

wherel? () andI® () are the standard interpolation functions, is the number of
nodes in(;,, the domain where the problem needs to be solved (includiyey.,)

andn,,; the number of nodes in layér_; (see Fig. 1).
The objective is to compu .. Suppose that; needs to be prescribed to a given



functionuz onT'. The main idea is to compul&,,; by minimizing the functional

T (Ui, Unt) = /F (un(@) — a())? = /F (Tn(@)Usn + Lo (@)U — (@))?
(14)

Suppose now that the problem fay in 2;,, leads to an algebraic equation of the form
Kin,inUin + Kin,outUout = Fin- (15)

The domain integrals in matrices’;, ;, and K, ., extend only ovef). The nodal
valuesU ,; are merely used as degrees of freedom to interpalaie the domain
Q. If (15) is supplemented with the equation resulting from thinimization of func-
tional (14), the system to be solved is finally

Kin in Kin out Uin Fin
: : = 16
e S o] - ) a5

where
M= [ Ly@lu(@), fo= [ @@, Ne= [ L@l

It is important to note that this implementation maintaims tonnectivity of the back-
ground mesh.

4 Dealing with moving subdomains

In the previous section we have seen several possibildiapply boundary conditions
when non-matching grids are used. However, we have notsisduyet how to deal
with moving subdomains. The most important issue in thig tgpproblems is how
to compute temporal derivatives. This is clearly definedAQE strategies, but in
fixed mesh methods it is not that straight-forward, and tlaeeeseveral possibilities
for computing temporal derivatives in regions close to thealfsolid interface. Each
of these possibilities defines a family of methods.

Before starting to describe the various methods, let us sthitch is the key issue
when dealing with moving subdomains in fixed mesh stratedies us consider the
situation depicted in Fig. 2 dt', where we have a circular solid body immersed in
a fluid which we want to simulate using a fixed mesh strategy.hée depicted in
green nodes inside the fluid computational domain. Let uscmwgider the situation
at time stept™*!, where the circular body has been horizontally displaceterd
are nodes which were outside the flow computational domait, athich are inside
the computational domain &t*! (green nodes inside the red circle in Fig. 2). These
nodes are calledewly created nodes§ince the unknown values at these nodes &t
not known, computing temporal derivatives is not immedidiee following sections
describe some of the proposed strategies to do so.



Figure 2: Green: nodes and elements inside the computatdonain. Left: domain
configuration at™. Right: domain configuration &t*!. The red circle corresponds
to the domain configuration &t.

4.1 The fictitious domain method

In the fictitious domain method [22, 24] we work with a comgiaiaal domain which
does not coincide with the physical flow domain. Instead, we as computational
domain for the flow problem the whole region covered by thedialement mesh, that
is, we solve in both the green and black regions in Fig. 2. Qimsly, we are not inter-
ested in the solution inside the solid body region, whichhiggically meaningless.

The key point of the fictitious domain method is that, sincesetve for the whole
computational domain, we can use the result8 &r computing temporal derivatives
att"*! even for the newly created nodelset us say, however, that resultstatfor
newly created nodes &t do not come from a physical problem but frorficitious
one, and that it is not clear how results in both the physigéltae fictitious problem
are related.

The fictitious domain method has been extensively used tolateitwo and three-
dimensional flow problems with moving boundaries having avkm trajectory, and
in particular to the solution of a Couette problem and a kaélibbon mixer [7]. As
another example, it has been applied to the solution of tive dilmund a moving
disk [25]. In fictitious domain methods, the motion of theexdijneeds not necessarily
to be known a-priori, and aerodynamic forces can be takenaotount to couple the
fluid dynamics and the kinematics of the rigid body. Pan [4@dtcts the path of a
ball falling in a viscous fluid (at low Reynolds numbers); #9], the authors solve the
two-dimensional flow around an airfoil that is free to rotateund its center of mass,
the sedimentation of particles in a box, and a three-dinomasicase involving two
spherical particles. Using the same method, Juarez [8@}laies the sedimentation
of an elliptic body in a two-dimensional viscous fluid. Thistifious domain method
is also well-suited for shape optimization problems [21].



4.2 The fixed-mesh ALE method

The key point of the fixed-mesh ALE method is that, even if we @sing a fixed-
mesh method, domain movement cannot be obviated, and itcessgary to take it
into account with an ALE method. However, since we are irsteekin using a fixed-
mesh, we develop a strategy which allows us to always work Wié background
fixed mesh and, at the same time, includes the ALE terms wipplea due to the
domain movement. We have developed this strategy in [25,82].

Suppose&® is meshed with a finite element mesi® and that at time level”
the domair)(t") is meshed with a finite element mesf* (as we will see, close to
MP°). Letu™ be the velocity already computed 6X{¢"). The purpose is to obtain
the fluid region2(t"*1) and the velocity field:"**. The former may move according
to a prescribed kinematics, for example due to the motion sblal, or can be an
unknown of the problem. If the classical ALE method is useéd, would deform to
another mesh defined #t™!. The key idea is not to use this mesh to compuite:!
andp™*!, but to re-mesh in such a way that the new mesh is, essentidflyonce
again.

The steps of the algorithm to achieve the goal describechartotiowing:

1. Definel>"! by updating the function that defines it.

free

2. Deformvirtually the mesh\/™ to M%!! using the classical ALE concepts and
compute the mesh velocity™ ™.

. Write down the ALE Navier-Stokes equations .

irt

. Projectthe ALE Navier-Stokes equations from™ ! to /"1,

virt

3
4. Split the elementsf M° cut by'f:! to define a mesh oft(t"+1), M+,
5
6

. Solve the equations anW™*! to computeu™*! andp™**.

A global idea of the meshes involved in the process is repteden Fig. 3. Note
in particular that at each time steps two sets of nodes halse tppropriately dealt
with, namely, the so called newly created nodes and the lmymbdes. Contrary
to other fixed grid methods, newly created nodes are treatadcompletely natural
way using the FM-ALE approach: the value of the velocity éisrdirectly given by
the projection step frond/;t! to M"*!. Boundary nodes require either additional
unknowns with respect to those of me&H or an appropriate imposition of boundary
conditions, as explained in the previous Section.

4.3 Chimera strategies

The Chimera method was first envisaged as a tool for simptffhe mesh generation
[5, 51, 52]. Independent meshes are generated for each cemp(object) of the



Figure 3: Two dimensional FM-ALE schematic. Top-left: ongl finite element
meshM° of Q°. Top-right: finite element mesh/™ of Q(t"), with the elements
represented by a thick line and the elements\Bf represented by thin line. The
blue line represents? . and the red edges indicate the splittingléf to obtaini/™.
Bottom-left: updating of\/™ to A/™! using the classical ALE strategy. The position

virt
of ;! is again shown using a solid blue line and the previous mosit}: . using a
dotted blue line. Bottom-right: Mesh/™*! of Q(¢"!), represented by a thick line.
The edges that split elements/a are again indicated in red. Boundary nodes, where
approximate boundary conditions need to be imposed, arendragreen, whereas

newly created nodes are drawn in gray.



computational domain, enabling a flexibility on the choi¢ehe type of element as
well as on their orientation that could not be possible whasimmg complex three
dimensional geometries [6,27]. Then, as a direct apptioathe Chimera method has
also been used as a mesh refinement technique [47]. In additibis implemented

efficiently, it is a very efficient tool to treat flows with maxg components [9, 50, 55].

Through the simple example sketched in Figure 4, let us prxfblain the Chimera
method applied to the motion of moving objects inside a fldchdin:

¢ Independent meshes are generated for the so called baokignoesh and the
mesh around the solid, which is called thetch mesh

e The mesh around the solid is placed on the background mesh sdthof the
two overset grids is the so calledmposite grid Elements of the background
located inside the patch are removed, with the possibifihawing a non-empty
intersection between the resulting mesh and the patch m&sis process,
known ashole cutting defines two interfaces, one of the domain attached to
the solid and the other, known apparent interfacgof the hole created in the
background mesh. Nodes on this last interface are céiiege nodes Nodes
between the apparent interface and the outer boundary pitise mesh are the
overlapping nodes

e The problem defined on the patch mesh is again a fluid-stri¢hieraction
problem. The main idea is to write the conservation equattmnthis domain in
a frame of reference that moves with the rigid body motiorhefsolid. Then,
the mesh deformation in the fluid region will be small, evethé solid deforms.
Of course, the patch mesh will remain constant if the solid igyid body. In
order to write the momentum conservation equation in thexéaf reference
following the rigid body modes of the body, Coriolis, cefitgal forces and
acceleration forces have to be added to the Navier-Stokestieqs. These are
of the form

2pw X u, pwX(wxzxz) and - pas,

respectively, where is the angular velocity of the frame referenaethe posi-
tion vector andz, the acceleration.

e The FSI problem on the patch mesh is then coupled to the flowlgmo on
the background mesh usingdmain decomposition strategyTypically, a
Dirichlet-Dirichlet coupling is used (this is the so call8¢hwartz's method).
This however requires a wide enough overlap to allow thecaatad iteration-
by-subdomain strategy converge. Nevertheless, it is shoy80, 31] that it is
also possible to apply a Dirichlet condition on the appaeah-smooth) inter-
face and a Neumann condition on the outer boundary of thé pimimain. Note
that variables on the patch mesh and the background mesbewvtferred to
different reference systems, and thus the former need tadpepy transformed
to the fixed reference where they are usually required.
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overlap
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interfaces

Figure 4. Chimera method: principles.

The reader can see the details of this approach in [30], wémreral examples
solved using this method can be found.

4.4 Other possibilities

As we have already seen, a special treatment is requirecefolyrcreated nodes. In
many publications, the previous time step values are comgpusing ad hoc argu-
ments, that sometimes lead to good approximations from rhetipal point of view
when small time steps are used. As an example, in [43] theoeutxtrapolate the
velocity and pressure from the nearest fluid nodes at thequevime step. In [10],
the Navier-Stokes equations are correctly expressed inldh flamework, but the
velocity is taken as the solid velocity. It is worth to notatif the solid is deformable
and has been solved together with the fluid in a coupled wayn(d#e original im-
mersed boundary method [48] or in the fluid-solid approac}b)}), this velocity is
physically meaningful. This is not the case, however, indhase of rigid bodies or
bodies with rigid boundaries. A possibility to deal withdlsituation is to write the
Navier-Stokes equations in a non-inertial frame of refeeeattached to the body, as
in [38], where an immersed boundary method is used.

S5 Summary

The purpose of this chapter has been to review some methatialkbw to use fixed
meshes in problems with time dependent domains, with pgati@mphasis on those
in which the authors have been involved. The connection thighapproximate impo-
sition of boundary conditions has been highlighted.

Summarizing, the methods described herein are:

e Approximate imposition of Dirichlet boundary conditions:

— Introduction of forces on the boundaries.



— Penalization of the boundary conditions, including Niesshmethod.
— Use of Lagrange multipliers to enforce boundary conditions

— Use of inactive degrees of freedom to optimize the impasisibboundary
conditions.

e Treatment of time dependent domains:

— Solving in the whole physical domain, both the solid and thelflwith
an appropriate modeling of the forces at the interface. ukides the
original version of the immersed boundary method.

— Fictitious domain method, in which the solid is considereté filled with
a fictitious fluid and boundary conditions are imposed thiolggrange
multipliers.

— Fixed-mesh ALE method, based on the classical ALE approatiprio-
jecting the equations always to a fixed mesh.

— Chimera strategies based on domain decomposition methoch at least
allow to remove the mesh deformation due to rigid body matiohthe
solids inside the fluid.

Many variants of all these methods exist. Our purpose hesébban to describe
the main ideas behind them, without entering the details ¢ha be found in the
references.
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