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Abstract

A general description of a fluid flow is given by the compressible Navier-Stokes equations,
a very complex problem whose mathematical structure is not well understood. Therefore,
simplified models are derived by asymptotic analysis, under some assumptions made
in terms of dimensionless parameters that measure the relative importance of different
physical processes. Low speed flows can be described by the incompressible Navier Stokes
equations whose mathematical structure is much better understood. However, many
important flows cannot be considered as incompressible, even at low speed, due to the
presence of thermal effects. In these cases another class of simplified equations can be
derived: the Boussinesq equations and the Low Mach number equations.

The complexity of these problems makes their numerical solution very difficult as
the standard finite element method is unstable. In the incompressible Navier Stokes
equations, two well known sources of numerical instabilities are the incompressibility
constraint and the presence of the convective term. Many stabilization techniques used
nowadays are based on scale separation, splitting the unknown into a coarse part induced
by the discretization of the domain and a fine subgrid part. The modelling of the subgrid
scale and its influence leads to a modified coarse scale problem providing stability.

Although stabilization techniques are nowadays widely used, important problems
remain open. Contributing to their understanding, several aspects of the subgrid scale
modelling are analyzed in this work. For second order scalar problems, the dependence
of the subgrid scale on the mesh size, in the general anisotropic case, is clarified. These
ideas are extended to systems of equations to consider the Oseen problem. The modelling
of the subgrid scales in transient problems is also analyzed, leading to an improved time
discretization scheme for the coarse scale problem. To consider low speed flow models, the
extension of these techniques to nonlinear and coupled problems is presented, something
that is intimately related to the problem of turbulence modelling, which a entire subject
on its own right.

Thermally coupled flow problems are important from an engineering point of view.
An accurate solution of a flow problem is needed to define thermal loads on structures
which, in many cases have a strong response, making the problem coupled. This kind of
problems, that motivated this work, include the problem of a structural response in the
case of fires.
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Chapter 1
Introduction

The general description of a fluid flow involves the solution of the compressible Navier
Stokes equations. It is widely accepted that these equations provide an accurate
description of any problem in fluid mechanics. This set of equations, the mathematical
formulation of the physical principles of mass, momentum and energy conservation coupled
with a state equation, is very complex and very little is known about its mathematical
structure. Results on the boundary conditions that make the problem well posed, on
the existence of a solution and on uniqueness can be found in [I04]. The mathematical
complexity of the problem is the manifestation of the also complex physical behavior of
these flows. Many different non linear physical mechanisms are coupled in fluid mechanics
problems. For these reasons, depending on the physics of the problem under consideration,
different models can be derived from the compressible Navier Stokes equations [104) [T4§].
The derivation of these reduced sets of equations is based on some assumptions on the
problem, usually made in terms of some dimensionless parameters that measure the
relative importance of different physical processes, like the Mach or Reynolds numbers.
The most important of these models is described by the incompressible Navier Stokes
equations. This set of equations is smaller than the compressible one and its mathematical
structure is much better understood. Furthermore, two physical effects that are difficult to
predict, shock waves and sound waves, are not found in incompressible problems. However
many important flows cannot be considered as incompressible due to the presence of
thermal effects. In such kind of problems another class of simplified equations can be
derived: the Boussinesq equations and the Low Mach number equations.

The complexity of the mathematical problems found in fluid mechanics makes their
numerical solution very difficult. Special techniques are needed because when the
standard Galerkin method is used, numerical instabilities appear. The nature of these
instabilities depends on the problem under consideration but the manifestation is usually
a solution that presents node to node oscillations of numerical (non physical) nature.
In the incompressible case, two well known sources of numerical instabilities are the

incompressibility constraint and the presence of the convective terms. The convective
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instability is also present in the convection diffusion reaction problem (CDR) and was
early understood as a lack of diffusion of the discrete problem. The first attempts to
remedy the situation consisted in the addition of an extra stabilizing term of diffusive
type and were called artificial viscosity methods. These methods are not consistent, i.e.
the exact solution of the continuous problem does not satisfy the perturbed equation,
what results in a loss of accuracy. The first consistent method, the streamline upwind
Petrov Galerkin method (SUPG), was developed in the late seventies [76], 93] [18]. This
method and many of its successors consist then in the addition of a stabilizing term to
the original Galerkin formulation which is proportional to the residual and we refer to

[24] for a comparison of different methods of this type.

The incompressibility constraint gives rise to a instability of the pressure and can
be also found in the Stokes problem. The standard Galerkin method applied to solve
this problem is stable provided the Ladyzhenskaya-Babuska-Brezzi (LBB) condition is
satisfied, which requires a compatibility of the spaces where the velocity and pressure
belong. It is satisfied in the case of the continuous problem but it may not hold in the
discrete case depending on the interpolation used. In particular, equal order interpolations
do not satisfy this condition. It is important to mention that the compressible Navier
Stokes equations, as well as the simplified equations derived from them , can be written
as a system of second order convection diffusion reaction (CDR) equations and that
the pressure gradient and incompressibility appear in the first order convective term.
This observation was exploited in [79] to apply a technique similar to SUPG to obtain a

stabilized formulation allowing the use of equal order interpolations.

The way of understanding these methods has changed since the introduction of the
variational multiscale method (VMM) in [75) [78]. This method is based on the split
of the unknown into a coarse scale resolvable part and a fine scale subgrid part. This
split corresponds to a decomposition of the space in which the solution of the problem
is sought as a direct sum of a coarse scale space and a fine scale one. The coarse scale
space is the one induced by the discretization of the domain and the fine scale space is
any complement to yield the continuous space. In this way, the problem is decomposed
into a resolvable coarse scale problem induced by the discretization and a small scale
problem that cannot be exactly solved because it is as complex as the original continuous
problem. The subgrid scale problem is approximately solved and the influence of the
subgrid scale on the coarse scale problem is approximately taken into account. The final
result is a modified discrete problem that now can be shown to be stable. This technique
has been extended to incompressible Navier Stokes equations (see for example [28]) and
has been used to solve many different kind of problems. Its extension to general CDR
systems has been analyzed in [25] where it is shown that the natural extension cannot be
performed in general. In particular a general expression for the stabilization parameters

is still unknown. This fact implies that a stabilized finite element formulation needs to
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be developed for each set of equations separately.

Although stabilization techniques are nowadays widely used, there are important
questions that have not been answered. In the first place we have the definition of
the stabilization parameters. We know how these parameters depend on the equation
coefficients but they also depend on some measure of the mesh size, whose precise
definition is open, and on some constants, whose values are known from numerical
experiments only. Then, we have the question of how these parameters depend on the
size of the time discretization what, in fact, gives rise to the question of how to extend
the stabilization techniques to consider transient problems. When this formulation is
applied to the incompressible Navier Stokes equations, apart from the definition of the
stabilization parameters for this system we also face the problem of extending stabilization
techniques to nonlinear problems. The answer to these questions is implicit in the subgrid
scale model finally used. In particular, the subgrid scale modelling in the case of nonlinear
problems is intimately related to the problem of turbulence modelling which is an entire
subject on its own right.

After a discrete formulation of the problem considered has been defined, a discrete
algebraic problem needs to be solved. Apart from the potential numerical instabilities,
another manifestation of the complexity of the problems considered is the highly nonlinear
nature of the associated discrete system. Therefore the numerical solution also requires
a proper linearization strategy which can be written, in general, as a fixed point scheme.
Several possibilities can be considered, from fully coupled Newton type to segregated
Picard type linearization schemes.

Thermally coupled flow problems, despite the intrinsic interest they deserve, are
important from an engineering point of view. Many structural problems, for example,
involve the solution of a flow problem to define the loads. It is also common to have a
strong response from the structure, what makes the problem coupled. This is the kind of
problems we have in mind for the application of the developed model. We are specially
concerned with the problem of a thermal load on a structure due to a fire which is an

example of strongly thermally coupled flow that will be described in the following section.

1.1 An application problem: fire in tunnels

The results of these work will be applied to the problem of a fire in a tunnel. This problem
is of great interest, particularly in the European Union, due to the recent fires occurred
in European tunnels in the last years [I31]. As fires cause loss of human beings and have
a strong impact in economy due to the high reparation costs, big efforts are carried out
to understand this problem.

The problem is geometrically and physically very complex and its numerical solution

challenging. An important aspect that needs to be determined is the structural response
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of the tunnel construction. As mentioned in [I31], structural damage can be attributed to
two main factors: spalling of concrete and excessive temperatures attained in the concrete
and steel components. In turn the temperature field inside the concrete depends on the
temperature on the walls of the tunnel which is a result of a fluid mechanics problem.
Actually both problems are coupled trough the boundary conditions on the walls. A
complete model to predict the concrete behavior of the structure is presented in [I31].

In order to model the flow problem, several physical phenomena should be taken
into account. The problem of simulating flow dynamics due to a fire can be stated
as the dynamics of several fluids into a domain 2 with a chemical interaction between
them. That chemical reaction, which transforms elements, defines the type of fire. In the
case of fire in tunnels, the detailed mechanism is unknown except in some experiments
specially designed. Therefore, the model should include the appropriate balances of mass,
momentum and energy and a combustion model that define the species to be considered
and the relation between them. It is to be noted that the mass balance should be
performed for all the species, what is usually done through the inclusion of transport
equations for the species concentration. Due to the high temperatures attained, the
model for the heat flux on the flow should contain a radiative mechanism apart from the
usual convective one. The radiation properties of the medium may depend, of course, on
the species concentration. Different approaches to fire modelling can be found in [108§]
and the references therein.

The simplest combustion model that can be considered is the volumetric heat source
(VHS) model where it is considered that the combustion is a source of heat that does not
depend on any species concentration. However, the concentration of the smoke, which is
a product of the combustion, needs to be determined as it greatly affects the radiation
problem. In [144] a comparison of different combustion models, including the VHS, is
presented as well as their performance on the simulation of a room fire, a shopping mall
fire and a tunnel fire.

This application problem is a motivation for the objectives posed in this work.
The problem of a fire is that of a fluid with strong thermal coupling and the usual
Boussinesq approximation cannot be used as the temperature variation can be higher
than the mean temperature. The low Mach number model discussed in chapter [2]is much
more appropriate. To accurately solve this problem we need to define a robust discrete
approximation in order to avoid numerical instabilities. Finally, a good strategy for the

solution of the whole thermally coupled fluid-solid problems is needed.

1.2 Objectives and organization

Let us close this introduction describing the organization of the work according to the

objectives defined.
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The first objective of this work is to understand the derivation of the simplified models
that describe low speed flows as well as the relation between them. This will be done in
chapter [2| where a unified asymptotic approach is proposed and all these models, whose
justification was separately known, are recovered. This approach enables us to go further
and, in particular, to predict the range of applicability of each model in terms of the
dimensionless parameters already mentioned.

The second and most important objective of this work is to develop a subgrid scale
stabilized finite element formulation for the kind of problems we are considering. To
achieve this goal we follow a natural way, starting from the scalar convection diffusion
equation in chapter [3, where a new definition of the stabilization parameters is presented.
Then we extend these results to the incompressible Navier Stokes problem. This extension
involves two main aspects, the definition of the stabilization parameters, which is treated
in chapter 4} and the extension of the stabilization techniques to transient nonlinear
problems, which is teated in chapter 5] Finally we extend these results to thermally
coupled flows in chapter [6], where the final discrete formulation is presented.

The third objective is to develop a finite element code to solve this problems. Apart
from the discrete formulation of the problems, the final ingredient that we need is an
algorithm for the solution of the discrete problem. In chapter [7] different linearization
strategies are compared and the final algorithm is presented.

The fourth and last objective of this work is to apply the developed code to the
problem of thermal coupling of fluids and solids. To achieve this goal, a coupling strategy
based on a domain decomposition approach has been developed. This strategy implies
the development of a small code to manage the coupling between the solid and the fluid.
This development was applied to the problem of a fire in a tunnel described above. Both,
the strategy and the application are described in chapter [§

We close the work with chapter [9) where conclusions and further possible research
lines are summarized. Let us finally mention that chapters are quite self contained even
if this implies the need of repeating some information. This is due to the fact that each

chapter is based on the following publications:

e Chapter2: ”On the low Mach number and the Boussinesq approximations for low

speed flows”, J. Principe and R. Codina, Submitted.

e Chapter3: ”"The modelling of subgrid scales in the finite element approximation of
convection diffusion reaction problems on anisotropic meshes”, J. Principe and R.

Codina, In preparation.

e Chapter 4:”" The modelling of subgrid scales in the finite element approximation of

incompressible flows”, J. Principe and R. Codina, In preparation.

e Chapter 5: ”Time dependent subscales in the stabilized finite element approximation
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of incompressible flow problems”, R. Codina, J. Principe, O. Guasch and S. Badia,
Computer Methods in Applied Mechanics and Engineering, 196 (2007), 2413-2430.

Chapter 6: ”"Dynamic subscales in the finite element approximation of thermally
coupled incompressible flows”, R. Codina and J. Principe, International Journal for
Numerical Methods in Fluids, 54 (2007), 707-730.

Chapter 7: 7 A stabilized finite element approximation of low speed thermally
coupled flows”, J. Principe and R. Codina, International Journal of Numerical
Methods for Heat € Fluid Flow, Accepted.

Chapter 8: ” A numerical approximation of the thermal coupling of fluids and solids”,
J. Principe and R. Codina, Submitted.



Chapter 2

Physical problems

In this chapter we present an asymptotic analysis of the compressible Navier Stokes
equations at low speeds. Compressible flows at low speeds behave as incompressible
in a sense that we make precise. In the absence of heat exchange (the isentropic regime)
this limit is well understood and rigorous results are available. When heat exchange is
considered, different simplified models can be obtained. These models have been used
during the years for different applications (usually on different academic environments)
the most famous being the Boussinesq approximation. Here a unified formal justification
of these models, based on an asymptotic analysis, is presented. Special attention is paid

to the relation between the low Mach number and the Boussinesq approximations.

2.1 Introduction

Many flows of interest can be considered as incompressible. This assumption is useful as
it makes the problem much simpler than if a full compressible flow is considered. The
compressible flow equations have different structure depending on the Mach number. If
the Mach number is of the order of or greater than one, shock waves may be present.
A number of issues have to be considered when numerically solving compressible flows,
such as the set of variables to be used and the prediction of such shock waves. In the
incompressible case, the system of equations is smaller and shocks as well as sound waves
are absent. Furthermore, the mathematical structure of incompressible equations is much
better understood than the general one. For ideal fluids, in the absence of heat sources
(the isentropic case), solutions of the incompressible Navier Stokes equations can be found
as the limit of solutions of the compressible ones as the Mach number tends to zero under
certain assumptions on the initial data. Rigorous mathematical results were established
in [96] (see also [105]).

When heat exchange is taken into account, the limit is quite different, since the energy

equation is not uncoupled and one needs to keep the state equation to close the system.



20 Physical problems

The zero Mach number limit gives rise to a splitting of the pressure into a constant-in-
space thermodynamic pressure p'*' and a mechanical pressure p that has to be used in the
momentum equation. This leads to a removal of the acoustic modes and the flow behaves
as incompressible, in the sense that the mechanical pressure is determined by the mass
conservation equation and not by the state equation. However, large variations of density
due to temperature variations are allowed. This limit has been studied first in [126] in the
inviscid case, and generalized to the viscous case in [I19]. A rigorous derivation including
combustion was presented in [I06]. This zero Mach number model has also been presented
in [47] and [145]. The numerical implications of this limit have been studied in [97] and
[113], for example.

However the most widely used model in the context of thermally coupled flows is
the so called Boussinesq approximation. In 1903, based on his observations on the
behavior of thermal flows, J. Boussinesq [14] proposed to ignore the variations of density
except where they multiply the gravity acceleration (historical issues can be found in
[149]). Since that moment, many authors have looked for a formal justification of the
Boussinesq approximation. In [I35] the Boussinesq approximation is found expressing
the thermodynamic variables as a constant and an static part plus a fluctuating part
resulting from the motion. It is showed that for a thin layer of fluid (compared to the scale
of variation of the static fields), the Boussinesq approximation follows. However density
variations are retained in the momentum equation even when they are of higher order
based on physical arguments and not on a limiting process. The first attempt to present
a rigorous derivation of the Boussinesq approximation was performed in [I10],where an
expansion in two parameters, £; and &5, of the full compressible equations is proposed.
The Boussinesq approximation is found to the lowest order in both £; and e,. Several
problems of this approach are described in [I120]. On the one hand, the two parameters
introduced in [I10] are of order &1 ~ 10™* and g5 ~ 107! for typical fluids in a standard
Rayleigh Bénard experiment, indicating a second order approximation for £; to have
the same order as a first order approximation for €. On the other hand, the starting
point of Mihaljan’s approach is the compressible equations but using an equation of
state that relates temperature to density only. According to [120] this assumption and
the selection of the parameters “destroyed the self-consistency of the scheme” making
second order approximations meaningless. It is interesting to note some thermodynamic
consequences of an state equation of the form p = p (1)) , where p is the density and
¥ is the temperature. Although they result from classical thermodynamics, they were
only noted in two articles. In [I2] it is mentioned that the constant volume specific heat
diverges whereas in [7] it is shown that convexity inequalities are violated. The Mihaljan’s
approach was improved first by Malkus (in an unpublished work mentioned in [120]) and
in [I120]. The new ingredient was the selection of an appropriate reference state. In [63] a

derivation of the Boussinesq equations was presented taking a reference state into account
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and allowing temperature and pressure dependent properties. We note that all these works
are concerned with natural convection as the velocity is made dimensionless using another
variable as scale (viscosity or gravity, for example). An asymptotic justification of the
Boussinesq approximation was developed in the works of Zeytounian [146] 148, [149] and
Bois [12], [13]. These developments dealt first with polytropic gases (in [146] and [12]) and
the main conclusion was that the Mach number is a small parameter in the Boussinesq
approximation. An asymptotic derivation of the Boussinesq approximation for liquids was
then presented in [I47]. Finally a unified approach for liquids and gases was presented in
[13]. Another widely used model, the anelastic approximation, was proposed in [5] and
[115] and has been used for a long time in the context of atmospheric flows (see also [44]
and [61]). This approximation removes the height limitation present in the Boussinesq’s

one.

The formal justification of these models has been developed but the connection
between them has not been fully analyzed. Although the Boussinesq approximation was
considered in [126] and [I19] it was not found following the same asymptotic procedure
used to derive the low Mach number model. In this work we present the zero Mach
number model, the anelastic and the Boussinesq approximations, the density dependent
incompressible Navier Stokes equations and the usual incompressible equations in a unified
asymptotic setting. As a consequence we show that the Boussinesq and the anelastic
approximations are found in the limit of small Mach and small Froude numbers with some
restrictions. Particular attention is paid to way in which the asymptotic justification of

the Boussinesq approximation is related to that of the other models.

2.2 Equations of motion

The flow of a compressible fluid in a domain €2 is described in terms of the velocity
(u), pressure (p), density (p), and temperature (¢) fields (bold characters are used to
denote vectors and tensors). These fields are solutions of the equations that describe the
dynamics of the system and that are statements of conservation of mass, momentum and
energy and a state equation relating the thermodynamic variables. They can be found,

for example, in [6] and [104] and can be written as

Dp
Dt +pV.-u=0
Du
P TVP=V- (2per(w)) + pg (2.1)
D9 D

p=F(p,9)
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where D% = % + u - V is the material derivative, g the external source of momentum,
@ the external source of energy, e/(u) = € — 5(V - u)I the deviatoric part of the

rate of deformation tensor (e is the symmetric part of the velocity gradient, e(u) =
% (Vu + V'u,t)), i the viscosity, ¢, the constant pressure specific heat, k& the thermal
conductivity, 3 the thermal expansion coefficient and ® (the Rayleigh dissipation function)
is a non-negative contribution due to mechanical dissipation of energy in sheared motion
defined as

O =2uel(u) : e(u)

When an isentropic flow is considered a state equation of the form p = F (p) can be
assumed (where F' could depend on the initial distribution of entropy) and the equations

to be solved simplify to
Dp

Du
Py T VP =V (2uel(u)) +pg

These equations of motion can be written in dimensionless form in different ways.
The process depends on the choice of reference values in a way stated by the 7 theorem
proved in [19]. Having in the system r different units and taking n reference values for the
adimensionalization process, the system will have n — r dimensionless numbers defining
classes of similar solutions. The system to be solved in a compressible flow is given by
. In this system we have r = 4 different units (length, time, mass and temperature).
Different choices for reference values have been found in the literature and different non-
dimensional numbers result. Our approach is based on taking different scales for each field
and for dependent properties. To this end, we introduce the Strouhal, Mach, Reynolds,

Péclet, Froude and a heat release rate number, defined as

lo Ug potiolo
uoto v/ Po/ o 1o
PoCpyUolo U toQo AY
p = Pl - g , H= L e=20
ko vV golo PoCpo Yo o

where ly, to, po, Po, Yo, Uo, fo, Ko, Cpys Go, Qo and AU are the scales of length, time,
density, pressure, temperature, velocity, viscosity, conductivity, specific heat, external
acceleration and external heat and temperature variation respectively. The choice of
viscosity and conductivity reference values is needed to allow variable physical properties
(temperature dependent, for example) whereas the choice of a temperature variation scale
is needed to define dimensionless boundary conditions. The dimensionless numbers are
defined in terms of 12 parameters but, thanks to the state equation py = F (pg,v), we
have 11 reference values, giving rise to the seven dimensionless numbers already defined.

We would like to stress that we do not assume the existence of 11 reference scales because,
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as it will be shown in the particular cases considered, if a reference scale is not available, its
value can be defined eliminating a dimensionless number. For example, if an independent
time scale is not available for a particular problem, we can define it from the velocity
scale taking S = 1.

The dimensionless variables we take (denoted by ™) are

x=1E, t=td, p=pp, Dp=pd, V=710

u = Uoﬂa g = 9057 Q = Q0©7 n = #’OZ’Z? k= k’ok, Cp = CPOé;U

and the thermal expansion coefficient can be written in dimensionless form using its

definition
g LOp| 1 Omp| 1105 14
p OV,  pop A,  Yob Adl; Vo
The dimensionless equations are (omitting™)
dp
ET +V . (pu)=0 (2.2)
ou 1 1 1
p (Sa +u- Vu) + WVP = }—{V - (2uer(u)) + 729 (2.3)
oY op
M? 1
fcb + §V - (kVY) + HSQ (2.4)

The state equation is made dimensionless using that py = F' (pg,Jp). In the case of

an ideal gas it reads
p=pv
The parameter S; depends on the state equation and is defined by

S, = Do _ Po
Pocpoﬁo F <p07190>cp0190

which for an ideal gas becomes

-1
g = 1=1
v

Finally, for each particular problem, the boundary conditions have to be written in
dimensionless form. For example, the boundary conditions for the momentum equations

are of the form

u=up on Iy

(—pI 4+ 2uel(u))-n=t on I'Y

where T'¥ (I'%) is the part of the domain boundary where Dirichlet (Neumann) boundary

conditions for the velocity are given, I' = 9Q = T'% UT¥ is the boundary of the domain
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and n its exterior normal. We can introduce the dimensionless form of the data as

Up = UoﬁD

t= po:z
and the dimensionless form of the boundary conditions is

w=up on I'Y¥ (2.5)

(——ﬁI+ —2,75/(1’1)> n=-—-t on T} (2.6)

In the same way the boundary conditions for the energy equation are of the form
J = 1+elp on IY (2.7)
kn-VY = § on ry, (2.8)

where I'Y, (I'%) is the part of the domain boundary where Dirichlet (Neumann) boundary
conditions for the temperature are given, and I' = 9Q = T2 UT%. The parameter ¢
appears when the given function v/p is rescaled to satisfy 0 < Jp < 1. In order to close

the definition of the problem, initial conditions need also to be specified.

Having defined the equations of the motion and rather general boundary conditions,
let us consider some particular problems we are interested in that will also help us
to illustrate the application of the asymptotic scheme. We are interested in natural
convection problems and we consider two examples. The first one is the differentially
heated cavity studied in [23] and [102] that consists of a rectangular cavity whose left
(hot) wall has a fixed temperature 1, and whose right (cold) wall has a fixed temperature
J.. Upper and lower walls are adiabatic and initially the gas is at rest with a temperature
Yy and density py. The second one is the well known Rayleigh-Bénard problem (see [99])
which consists in a layer of fluid between two infinite horizontal walls. On the lower wall
a higher temperature () is imposed whereas on the upper one a lower temperature is
imposed (¥.) and again, initially the gas is at rest with temperature ¥y and density pg

depending linearly on the vertical coordinate.

However, we want also to consider the case in which a velocity field is prescribed on
the boundary and therefore the Poiseuille-Rayleigh-Bénard (PRB) problem (see [114]) is
also taken into account. Although several boundary conditions can be applied, we assume
a prescribed Poiseuille velocity profile on the inlet and prescribed temperatures on the
upper (9.) and lower walls (¢5,). We assume initially a Poiseuille velocity distribution in
the whole channel and, as in the Rayleigh Bénard problem, an initial temperature ¥y and

density pog depending linearly on the vertical coordinate.
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2.3 The small Mach number limit

The limit when the Mach number tends to zero can be found using standard procedures
of asymptotic analysis described for example in [95]. The first step is to expand all flow

variables in power series of the small parameter considered
& (a6, M) = €9 (a, 1) + M*P (2, 1) + O(MY) (2.9)

for £ = u, £ =p, € = p, & =1J. The second step is to substitute this expansion into
equations to and to require that all terms in the expanded equations that are
multiplied by the same power of M? vanish to obtain a hierarchy of equations. The limit
is carried out considering that the remaining parameters that appear in the equations are
fixed.

This asymptotic setting cannot be used in any situation and in particular we have to
mention the problem of the behavior near the initial time. In this case it is necessary to

introduce a fast time scale 7 = ¢/M and assume an expansion of the form
§ (.t M) = €9 (@, t,7) + MEW (.1, 7) + O(M?)

This is done in [148] and [113], for example. We also have to mention the problem of the
behavior of the flow in the far field when unbounded domains are considered. In this case
it is necessary to introduce a long space variable n = M that "looks” to the infinity and

to assume an expansion of the form
& (. t,M) =9 (,m, 1) + MW (a,m, 1) + O(M?)

This is done in [97] and [109], for example. The objective of these variables is to separate
scales and to perform a multiple scale analysis of the problem. The multiple scale analysis
of the compressible Navier Stokes equations is of crucial importance to analyze acoustic
phenomena. Since we are not interested in the acoustic problem we restrict ourselves to a
single scale analysis assuming an asymptotic expansion of the form [2.9] The selection of
M? as the expansion parameter is due to the fact that this is the parameter that appears
in the system of equations, as well as in the boundary conditions (a single scale expansion
in terms of M gives the same result).

Any physical property x (where x can be p, k, ¢,, or 3) can be considered to depend
on the temperature and pressure. Using the expansion for the temperature and pressure
defined above it follows that

24

Ox
=x (0, p) =x (W, p?) 4+ == 9 — 9@y 4 ZA& ()
X =x(0p) =x (0,p?) + 55 (50,50) ( ) 9 | () (»—p")

10 ((19 — 9O (p —p(o))2>
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Considering that the derivatives of the physical properties are bounded we have
x (0,p) = x (0, p?) + O(M?)
The following notation will be used

O =y (19(0)719(0))
To order zero in M?, the mass conservation equation gives

op0
ot

The momentum conservation equation gives

S v (pOu®) =

O (M™?): vp© =0

oul® 1 1
om: p© <s o T Vu<0>> +Vp? = =V (2uer(u®)) + ﬁp<°>g

The first equation implies p® = p©(¢). This is a very important result: the pressure
splits into p, a reference thermodynamic pressure and p(® a mechanical pressure. The
first one, constant over the whole domain, changes its value only by global heating or mass

() is determined

adding, as will be shown below. The mechanical pressure component p
from a velocity constraint playing the same role as in incompressible equations.

The zero order energy equation is
o) dp® 1
p Vel <S7 +ul. V19<0>) - Stﬁmm@s7 =5V- (kOw9) + HSQ

In the zero Mach number limit a system of equations for p(@, ¥ p® and u(® has to be
solved. The reference pressure pl?, also called thermodynamic pressure, depends on the
boundary conditions of the problem. If I'{ # ) the thermodynamic pressure is determined
by the boundary condition. This can be seen introducing the asymptotic expansion 2.9

in the dimensionless boundary condition [2.6] from where
O (M) : p©@ =t® . p

1
O(1): (—p(2)I + }—{2u5/(u(0))> .n=t®

This justifies what was noted in [126]: if the domain is “open” to the atmosphere, the
reference pressure is determined by the external pressure. In a “closed” domain (I'% = ()
the thermodynamic pressure is determined by a global balance. Using the zero order
mass and energy conservation equations and the state equation an equation relating the
velocity divergence and the thermodynamic pressure can be found. In the case of an ideal

gas, this constraint is

1,dp® 1
“sT 4 _v . (KOV9©) 4 HSQ (2.10)

Oy . ©® — _
b v voodt P
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This equation, integrated over the domain, gives an ordinary differential equation for the

reference pressure. In the case of an ideal gas this equation is explicit and given by

Vo . dp@®@ 1
ﬁm/zmxn__ﬁsp +_/"¢Wn+H§/Q (2.11)
o0 vooodt P Jaq Q

where Vg, = meas () is the volume of the domain and q(® is the zero order term of the

heat flux on the boundary (either prescribed as boundary condition or computed from
the temperature). In general this equation will be an implicit equation for the reference
pressure. In the case of an ideal gas, a physical interpretation is possible. The constant-
in-space thermodynamic pressure changes in time due to the addition or subtraction of
mass (left hand side term) or to heat addition or subtraction either by the boundary

(second right hand side term) or by volumetric sources (last right hand side term).

2.3.1 The incompressible Navier Stokes equations

Let us consider a non-conducting fluid in absence of heat sources. In the case of open

flows the thermodynamic pressure is constant. In the case of closed flows, if there is no

/ u®.n=0
Gle}

For closed flows this depends on the boundary conditions of the problem. In this case
equation [2.11] gives

addition of mass, we have

dp® B
dt

Therefore, for open flows or closed flows without addition of mass, in absence of heating

effects, we have a constant thermodynamic pressure. In such a case equation [2.10] gives
V-u® =0

and the system to be solved, called the non-homogeneous Navier Stokes equations in [104],

is given by
V-u”=0
op
S 0. w0 =
ot +u P
ou® 1 1
¢m@j§_+¢mxm@>+V¢m_§v.@pgmmn+ﬁw@g

The temperature is recovered from the state equation

p="F(p?,9)
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If the temperature (or density) distribution is initially constant, it remains constant for

all times and we have the homogeneous incompressible Navier Stokes equations, given by
V-u® =0

o (0u” (0) @ _ 1 0) (1, (0) L)
p Sw—l—u -Vu + Vp :EV-(2M e(u ))—f—ﬁp g

2.3.2 The zero Mach number equations

The system to be solved in this case is given by

500
S 4w (pOu®) =0
ot
ou® 1 1
PONES +u® . vu® ) + Vp = v (24Ver(u®)) + —p0g
ot R F
dpl® 1

P00 (S%(O) O Vﬁ(o)) S50

o ==V (KOwv9©) + HSQ

dt P

which has to be completed with a state equation of the form
p="F(p",0)

where the thermodynamic pressure p(® is either given by or determined by the
boundary conditions.

This system of equations does not present acoustic phenomena that are present in a
compressible flow as shown in [126], [119] and [113]. Acoustic phenomena are pressure
and density waves of small amplitude and fast propagation velocity (the sound speed c)
that satisfy the system of equations. It is easy to see that a wave equation for the pressure
can be deduced from the full compressible equations to 2.4, When the Mach number
is small the hyperbolic wave equation for the pressure becomes an elliptic equation for
the first order pressure p(®, thus showing the implicit (“incompressible” or “mechanical”)
character of this pressure component. It is not an evolving variable but can be understood

as an implicit Lagrange multiplier determined by the mass conservation.

2.4 The small Mach number and small Froude

number limit

The low Mach number approximation developed in the previous section was carried out
considering the rest of the dimensionless numbers fixed. In this section the possibility of a
low Froude number is taken into account and the Boussinesq and anelastic approximations
are presented. As previously mentioned, successive improvements of the derivation of

the Boussinesq approximation have been made in [120] and [63] introducing a reference
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state about which a perturbative scheme is developed. An asymptotic derivation of the
Boussinesq approximation was considered in [12, 13] and [1406, 148, [149]. In order to study

this limit it is useful to introduce the Boussinesq number, defined as

B— poglo _ %2

Po F2
This number was defined first in [146] but its importance in vertically stratified flows was
already noted in [5]. When M — 0 and F — 0, the Boussinesq number can be finite, tend
to zero or tend to infinity depending on the relation between F and M. The external force
will be considered due to gravity and supposed in the (—2) direction where 2 = (0,0, 1)".
Depending on the Boussinesq number, the external force will be different in the hierarchy
of equations obtained after the introduction of the low Mach number expansion. Two

different cases can be considered.

1. If B—0asB =0 (M) when M — 0, we have

M
ik 0(1)
and (under some conditions to be given below) the Boussinesq approximation is

found.

2. If B40,B=0(1) when M — 0, we have

M
001
T O (1)

and the anelastic or the quasistatic approximations are found.

Let us mention that the condition of small Boussinesq number is a restriction on
the height of the flow analyzed, as the quantity pogo/po is the height scale of the
thermodynamic field. This is the reason why it is usually mentioned that the anelastic
approximation removes the height limitation of the Boussinesq one (see [115], [44] and
[61].

2.4.1 The Boussinesq approximation

In the case of M ~ F? (here and below the symbol ~ denotes “of the same order”) we
have that when M — 0, M = gF? where g is a constant (when dimensions are restored it

will be the gravity modulus) and the equations of motion become

dp
E + V(pu) =0
ou 1 1 1 .
P (SE +u- VU) + va = }—{V . (2#6/(’11,)) — Mpgz

2

o dp M 1
PCp (SE +u- VQ?) — S50 (SE +u- Vp) = E(ID + §V - (kVY) + HSQ



30 Physical problems

The analysis is carried out assuming an asymptotic expansion of the form
¢ (x,t, M) = £O (1) + MW (2, 1) + M2 P (x,t) + O(M?) (2.12)

for £ =u, £ =p, £ = pand £ = 9. The choice of M as the parameter expansion is due
to the fact that it is the parameter that appears in the system of equations. We also

consider that the heat sources are small that is H ~ M when M — 0 or, more precisely,
H=cM

where ¢ is a constant that is absorbed redefining ). Introducing the expansion into the

equations and considering M— 0 the following hierarchy of equations is obtained:

op©)
oM’ : S o TV (P Vu®) =0 (2.13)
OM™2): vp® =0 (2.14)
oM™ : vpl) = —pOgz (2.15)

ou®
ot

oM : p© (S +u® . Vu(o)) +Vpl? = %{V : (2ual(u(0))) —pWgz (2.16)

0
OM°) : p@c® (s ANCY w@)) — 5,809 (s 0 L . Vp“’))

v ot ot
1
=5V (kv9©) (2.17)
FIey (1)
oMY pOc0) <sa o +u® . wm) —8,309© <sagt +u® . vpu))

9(0)

ot

op®
—S, (8O 4 gOYO) <s g I ON pr))
t

—|—p(0)61()0)’u,(1) VIO — 8,509 . g p©

8
+ (pVe® + pOcD) (S NON V19<o>)

1
=5V- (kOW9D + EOWTY0) +8Q (2.18)

Under the assumptions considered, the pressure evolution equation [2.10]is written as

0
YOV . — _Lg®?”
v odt

1
+ 5V (HOV0) (2.19)

From equation it follows that p©@ = p©(¢) and from equation [2.15 that
p = pW(z,t) and p©®@ = p©(z,¢). Then, from the state equation we have that

9@ = 9O (2 ). The form of the zero order thermodynamic variables depends on the
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(boundary conditions of the) particular problem under consideration. Introducing the
asymptotic expansion [2.12]in the boundary condition 2.7] and 2.8 we obtain

O (M) : 9O =1 (2.20)
O (M) : 90 =9 (2.21)
and
O (M) : %kn V9 =0 (2.22)
o (M) : %kn VI = §¢© (2.23)

The solution ¥(® = 1 satisfies and its boundary conditions and . Therefore
if the initial temperature perturbations are small (meaning order ¢ or higher), 9 = 1.
Otherwise, the evolution problem of the zero order fields must be solved. In the first case,
thanks to the state equation p(®) = p(® (¢) and in the case of open flows or closed flows
without addition of mass, the thermodynamic pressure equation implies that p(® and
therefore p(® are constants. Finally, equation implies p = p() (z) and the system
to be solved (given by [2.13||2.16| and [2.18]) reads

V-u® =0
(0) 1
p (s agt +u®. Vu<0>) + VP = 2V - (2uer(u?)) — pMgz
o9 dp® 1
p(O)CI()O) (W + 0. Vﬁ(l)) + Stﬁ(o)ﬁ(o)w(o)% — ﬁv . (/{;(O)Vg(l)) +SQ

where w is the component of u in the 2z direction.

This system has to be completed with a state equation. For an ideal gas we have that

and the first order pressure is determined from [2.15 as

1) —

p = —p®

gz

to obtain . .
(1):_p() p() @

—_— = —

P B TORENIO)
The first term can be absorbed by the pressure gradient through a redefinition of the
second order pressure and the Boussinesq equations are obtained.
Let us mention that the derivation of the Boussinesq approximation given in [12], [13]

and [146], (148, [149] is somewhat different. First a fixed Boussinesq number is considered
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and the expansion on powers of the Mach number is performed, to obtain, to the first

order in the momentum equation
vp» = —Bp¥2 (2.24)
from where it follows that

p(O) = p(O) (Za t)
P =p9 (z,1)

and using a state equation
9O = 9O (2t

The first hypothesis made in [12, [13] and [146], 148 [149] is that this reference state is
independent of time. The second hypothesis, motivated by equation [2.24] is that the zero
order thermodynamic fields depend on z only trough the variable ( = Bz . Under these

assumptions

PO =pO () =p (¢)
5O Z 0 () = p

from where

dp©) B gdp(o) B de(o)

iz dz dd
and equation becomes
dpl® o
dc ‘

Next the limit of small Boussinesq number is considered taking B — 0 as B ~ M and
the Boussinesq approximation is recovered. For example, as p(*) = p(® (¢) the continuity
equation [2.13] will give

0 0 0 0 0) 2 dp(o) 0 0 0) 2 dp(o) 0 0
z
that gives
V-ul® =0
when B — 0.

In this way, taking the limits consecutively, a reference state that depends weakly
on z is obtained instead of a constant one. Let us stress that, through this reasoning,
the gravity term, that naturally should appear modifying the first order pressure (as it
was presented above), appears modifying the zero order pressure and this is what makes
possible to deal with the dependence of the reference state on z. What is actually shown
in [12], 13] and [146], 148| 149] is that the Boussinesq approximation is found in the limit
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of small Mach number and small Boussinesq number assuming an asymptotic expansion
of the form

¢ (m, t, M) =0 (¢) + MEW (@, ) + M*¢P) (x,8) + O(M?)

that is to say, assuming that the reference state depends weakly on z through (. Note
that as B — 0 this variable represents a very small scale compared to the scale given by
z. As it has been mentioned in the previous section, this type of variable is introduced to
separate scales when a multiple scale analysis is performed, something that only makes
sense when an unbounded domain is considered.

Finally, let us also stress that in any case some hypothesis on the zero order
thermodynamic fields are needed. — Although the derivation given by [12, 13] and
[146], 148, 149] can explain the dependence of the reference state with respect to z, it

is still necessary to assume that they do not depend on time.

2.4.2 The anelastic and quasistatic approximations

In the case of M ~ F the equations of motion are

S% +V:(pu) =0

ot
ou 1 1 B .
p (SE +u- Vu) + WVP = }—{V - (2uet(u)) — Welka
oY dp M?2 1
PCp (SE +u- VQ?) — 500 (SE +u- Vp) = E(ID + §V - (kVY) + HSQ

and the analysis is carried out assuming an asymptotic expansion of the form
§ (.1, M) = £ (1) + M€ (2, 1) + O(M) (2.25)

for £ =u, £ =p, £ = p, £ = 1. The hierarchy of equations obtained is similar to the one

obtained for the case M ~ F? in the previous section except for the momentum equation,

and reads:
0)
OM°) : s% + V- (pQu?) =0 (2.26)
OM™2): Vp®» = —BpVz (2.27)

0) 1
01): SpO—— + pOu® . vul + vp® = =V (2uer(u'™)) — BpPz  (2.28)
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OM) : p(O)cg’) (8819(0) I ON Vﬁ(o)) — 38,3090 (Sap<0> +u0. Vp(O))

ot ot
= %V - (KOW9?) +5Q (2.29)
o9 op?
2 . (0) 4(0) 0. wy® | _ g g0 g0 0) . v, @
O(M?) : ey ( g +u” - VY ) S5 ( Ay +u"™ - Vp )
(o2 4 pO) (% L. Vf,mo))

op®)
_ 8, (809 4+ pOYO) (7 L u®. me))

+ pO 0y . TP — 8,500y C) . 70

1

_ly. (kOWVY9P 4+ kw9 ©) + E(D(O) (2.30)

p

From equation it follows that p(® = p©(z,¢) and that p© = p(®(2,¢). Then,
from the state equation 9(© = 9O (2 t). Now If p©, 9O and p© are independent of
time we have that gives

49©) dpO7  1d ([ d0O
) | 0O g 50)90) _ 19 (L0 g 931
u? |00 s 00| - L (0 hse eay

Two different cases are found:
e If the reference state is such that

dv© dp®
p(O)céO)? — 8,890 o £0 (2.32)

then
iv. (kOVﬁO)JrSQ

p( 'ﬂ(o) o St/g dp(o

or, for an ideal fluid in absence of external heating

w® —

w® =0

This case is called in [12], 13] and [1406], 148, [149] the quasi-static approzimation.
The vertical velocity is constrained by an hydrostatic equilibrium in the vertical
direction and only plane motions can occur. Further details can be found in the
references already mentioned.

e [f the reference state is such that

0 0
0) di —S B(O)g(o)dp_()

- ~ 2.
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the anelastic approrimation follows. This condition, together with the zero order

momentum and energy equations define the reference (zero order) state

0 0
CRCLUANY 3OO p® _

e & 23
1d dy©®
5 (k:“)) = ) +5Q =0 (2.35)
dp®
- = Bp® (2.36)

where also the zero order state equation needs to be considered. For an ideal gas
P = p0yO  The final set of equations to be solved, using this reference state, is

given by
Vv - (p(O)u(O)) -0

ou® 1
q p<o>% POMONS O VO =V (2pen(u®)) — Bp®z

2
00 <S‘979( ey W(z))

P ot
dy(©) dp(©®
+ (p(2) c}()o) + p© 01(92)) w® - S, ( 3PP L 5(0)19(2)) Zz
op® 1d dy® dy® 1
—8,3090) [g 0. vp@ ) = Z = (O k2 —pO
0 o tuVP P dz e " )R

which also need to be closed by the state equation that in the case of an ideal gas is
p? = pOyR) 4 Y0 )2

This set of equations was presented in [I19], where it is mentioned that they were
written in this form in [I00] and that they are a generalization of those obtained
in [44] and [61]. As noted in [I19], in the case of an ideal gas with constant c,
equations [2.34H2.35]{2.36] can be solved and the reference state can be written as

90 _ (1 B 7__132)
v

1
-1 -1
p© = (1 _ ’V_Bz)
gl

~

P = (1— 7_1132)7_1
v

If now the limit of B — 0 is taken, the Boussinesq approximation is recovered
following the same steps as [12, [13] and [146], 148, 149] that is, taking the limits
consecutively. In a bounded domain this also gives a constant reference state. The
reference state defined by equations [2.34] and is the one introduced in

[120] to improve the derivation of the Boussinesq approximation proposed in [110].
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Let us close this section noting that condition [2.33| can be written as

0 0 0
A 00 _ 003

(0) .(0) _
“p dz t dz Pt dz

p

As shown in [101] the condition for the thermomechanical equilibrium of a fluid is

ds
E>0

A medium having % = 0 is neutrally stratified and a medium having % < 0 is unstably
stratified. Then, the two cases to be considered when the Boussinesq number is not small,
defined in and [2.33] correspond to a neutral reference state or a stratified one (stable
or unstable). If the reference state is stratified, the vertical velocity is constrained by the
hydrostatic equilibrium. If the reference state is neutral, the anelastic approximation can

be used. This is the first condition required in [I15] to derive the anelastic approximation.

2.4.3 Applications

In this subsection we apply the developed framework to the problems defined at the end of
section[2.2] Let us start considering the case of natural convection problems. We consider
S = 1, that is to say that we take ly/ug as a reference time and we have the scales ly, po, Vo,
Lo, ko, Cpys go and Ad. Therefore these problems are described in terms of five parameters:
M, F, R, P and €. In the natural convection context, the Rayleigh-Bénard problem and
the differentially heated cavity, it is common to consider the Rayleigh number Ra and the
Prandt]l number Pr, defined as
gly Av Vo

Ra = , Pr=—
Voo Yo &%)

where vy is the kinematic viscosity (vg = o/ po), which satisfy

£

Ra = 2

R?Pr, R =PPr

and to describe the problems in terms of M, F, Ra, Pr, and €. A definition of the velocity
scale eliminates one of these numbers. The problem of the differentially heated cavity
has been analyzed by [23] and the Rayleigh Bénard problem has been analyzed in [110]
in both cases defining the velocity scale of the problem as the diffusive speed, given by

ko %)

Un = =
" pocwlo o

where g is the thermal diffusivity scale (ag = ko/pocp,lo), what corresponds to make
P = 1. The differentially heated cavity problem has also been analyzed by [136] assuming

that the velocity scale problem is the viscous speed, given by ug = v/ly, what corresponds
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to make R = 1. However, in our view, the most appropriate scaling for the velocity is the

one used by [120] in the context of the Rayleigh Bénard problem and by [63], given by
uo = (BoAVgly) '/
that we may call ” "buoyancy speed”, that is obtained from
F?=¢

The low Mach number approximation is valid when the Mach number is small, what
physically means the velocity scale of the problem smaller than the sound speed. With
our choice of the velocity scale we have M? = Be and this happens for thin layers or small
temperature differences. The Boussinesq approximation requires also F and ¢ small with
the restrictions F2 = O(M) and ¢ = O(M). The first one is equivalent to B = O(M)
and, with our choice of the velocity scale, the second condition is automatically satisfied.
Therefore, it will be valid for thin layers and small temperature difference.

Another important aspect of the proposed approach is the possibility of analyzing
mixed convection problems. In the case of the Poiseuille-Rayleigh-Bénard problem we have
a velocity ug defined by the boundary condition. The low Mach number approximation
is valid when the velocity ug is small compared to the sound speed. The Boussinesq
approximation also requires F? = O(M), what is equivalent to B = O(M), and implies a
restriction on the height, and ¢ = O(F?), what implies a velocity uy of the order of the
buoyancy speed or, equivalently, small temperature differences (i.e. € = O(M)). However,
if the velocity prescribed on the boundary is much smaller than the buoyancy speed, the
problem will be similar to the Rayleigh-Bénard problem and the fluid motion will be
driven by temperature differences. Therefore, when F? < ¢ we redefine the velocity
scale by F2 = ¢ and the case of natural convection is recovered. If F? > ¢ we keep the
velocity scale given by the boundary conditions and the validity of the low Mach number
approximation will depend directly on the Mach number. The Boussinesq approximation
will be valid if the Froude number is also small, as the asymptotic analysis shows. Note

that, in this case, the temperature difference is small because F2 > ¢,

2.5 Summary and conclusions

The zero Mach number limit of the compressible flow equations yields different sets of
equations depending on the type of flow analyzed. If an isentropic flow is considered, the
incompressible Navier Stokes equations are recovered. When heat exchange is taken into
account, different sets of equations are found. This limit was obtained using an expansion
of the unknowns in series of the Mach number, which according to [134] is valid (i.e. yields
a convergent solution) in the near field (see also [141]). When the Froude number is also

small several situations can be found. On the one hand, the anelastic and the quasistatic
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approximations are found when M, F — 0 and M ~ F, if a reference state depending on
z is assumed. On the other hand, the Boussinesq approximation is found when M, F — 0
and M ~ F? H ~ F? and ¢ ~ F? assuming appropriate initial and boundary conditions.
This approximation is also valid in an unbounded domain if the reference state depends
weakly on z through ¢ = Bz as shown by [12] [13] and [146 148, 149]. All these limits have
been obtained under the same asymptotic setting proposed here. The physical meaning
of the similarity rules introduced in the asymptotic analysis has been made precise in the
case of bounded domains for both natural and mixed convection problems.

The three approximations considered when heat exchange is taken into account (the
zero Mach number model, the anelastic approximation and the Boussinesq approximation)
describe the basic mechanism of thermal coupling which is due to the dependence of the
density on the temperature. When a fluid element is heated, it expands and moves up.
None of the three approximations describe acoustic phenomena, what is certainly desirable
from a numerical point of view. The main difference between them is how they take
into account the compressibility of the medium. While in the Boussinesq approximation
the flow is incompressible, in the zero Mach number model the density distribution is
predicted and the velocity field is affected by expansions or contractions due to heating.
Between them, the anelastic approximation (mainly used in atmospheric sciences) takes

into account the density of the medium in the mass balance.



Chapter 3

The convection diffusion reaction

problem

In this chapter we revisit the definition of the stabilization parameters for the convection
diffusion reaction equation. We restrict ourselves to scalar problems and we focus our
attention on the extension of the well known one dimensional case to the multidimensional
one, considering also an anisotropic diffusion coefficient. The new definition of the
parameter also takes into account anisotropy of the mesh used, what is possible thanks to
a precise definition of the element size. The proposal is based on an approximation of the
subgrid scale equation in the context of the variational multiscale method. The constants
involved in the definition of the parameters arise naturally from the approximations

performed. Some numerical experiments illustrating the contributions are also presented.

3.1 Introduction

The convection diffusion reaction (CDR) equation is a simple equation that describes
several physical phenomena like, for example, heat transfer. In the development of
numerical methods this simplicity is important because the problems found when solving
more complex transport equations can be reproduced using this simplified model.

When attempting the numerical solution of the CDR equation, the first problem
identified is the lack of stability of the Galerkin formulation when the convective term
is important which manifest itself as numerical oscillations that pollute the solution in
the whole domain and specially near boundary layers. After understanding this problem
as a lack of diffusion in the discrete problem, the first solution was to add numerical
dissipation developing upwind techniques in the context of the finite difference method.
The inconsistent extra terms implied a loss of accuracy and the situation was fixed with
the introduction of the SUPG method in [76, 03, 18], which was analyzed in [91]. This

method depends on a parameter called the stabilization parameter and denoted usually by
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7. This parameter is also present in the Galerkin least squares method (GLS), introduced
in [80] and analyzed in [50] as well as the Douglas-Wang method introduced in [43] in
the context of the Stokes problem. These methods were related to the introduction of
bubble functions in [15, 4, 17, 49], where it was shown that a choice of the bubble implies
a choice of the stabilization parameter. The optimal bubble is given by the solution of
a local subproblem driven by the residual [54], and is therefore named residual free. A
general approach to the development of stabilized formulations is the variational multiscale
method (VMM) introduced in [75, [78], based on a decomposition of the space into a coarse
scale resolvable part and a fine scale subgrid part that, after some approximations, is
found as the solution a local problems driven by the residual through the Green function
approach. The equivalence between the residual free bubble and the variational multiscale
method was established in [I6]. Other methods introduced to solve this problem are the
Characteristic Galerkin method [42] and the Taylor Galerkin method [41]. A comparison
of all these methods was performed in [24]. A recent review of stabilization techniques
for the CDR equation can be found in [51].

Another problem identified is the lack of stability when the reaction term is important
which manifest itself as numerical oscillations localized near boundary layers. The
methods mentioned lead to a stable discrete formulation but some of them (VMM) are
much more accurate than others (GLS). The expression of the stabilization parameter
needs to be modified to take reaction into account. An expression based on the satisfaction
of the discrete maximum principle was proposed in [24]. If we denote the diffusion

coefficient by ¢ the norm of the advective velocity by a and the reaction by s, this

-1
_(as e ]
T—(h2+h+s> (3.1)

where h is a characteristic element length and c¢; and cy are constants whose values,

expression reads

determined by numerical experiments, are 4 and 2 respectively. The expression proposed
in [50] for the convection diffusion case, based on the error analysis, was extended to the
reactive case in [55], obtaining an expression that behaves asymptotically as , what
means that the limits of the expression with respect to any of the coefficients and with
respect to mesh size are the same.

The dependence of the stabilization parameters with respect to the equation
coefficients and the mesh size is determined by the error analysis. However, as pointed
out in [67], convergence proofs are performed using functional analysis inequalities which
depend on unknown constants what is sufficient as the error bounds are obtained up
to a constant. Therefore constants appearing in cannot be determined by error
analysis except in particular problems. At the same time, the analysis is performed under
strong assumptions on the mesh such as regularity of the elements or quasi-uniformity and

general definitions of the mesh size parameter h are used (like the maximum or minimum
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element length for example). On the other hand, precise definitions of the constants and
the mesh parameter h are implemented in finite element codes, which are then used to
solve application problems in meshes that are far from satisfying these constrains. The
performance of the stabilized method presented in [140] (which is similar to the variational
multiscale method in the context of the Navier Stokes equations) when high aspect ratio
elements are used was analyzed in [ITI] and the need of incorporating the stretching of
the grid in the definition of the stabilization parameter was emphasized.

An important effort in this direction is reported in [48] and the references therein,
where anisotropic error estimates are developed for the convection diffusion equation using
linear elements. Still some assumptions on the mesh are needed and the final error bound
depends on a stretching factor that diverges when only one side of the element is reduced.
In particular, the definition of the stabilization parameter using the minimum element
length, as the analysis of [48] suggest, is not the most convenient as will be shown here.
Another way in which the element length has been incorporated into the definition of the
stabilization parameter is through the Jacobian of the isoparametric transformation, as
in [T, 133]. A completely different approach, based on the calculation of norm of the
element matrices and vectors, is presented in [I39]. We can finally mention the finite
calculus (FIC) method, based on expressing the equation of balance of fluxes in a domain
of finite size, originally proposed in [I17, [116] and modified in [118] by the introduction
of a nonlinear stabilization parameter.

Although stabilization techniques have been extended to consider many different kinds
of problems, a general definition of the stabilization parameters is still an open problem.
In this work the definition of the stabilization parameters for scalar convection diffusion
equations is revisited. The purpose of this chapter is to present a new definition of the
stabilization parameters that can be directly implemented in a finite element code and
that contains a precise definition of the element length and the values of the constants.
The chapter is organized as follows. In section 3.2 we state the problem to be solved
including the discrete formulation which is based on the variational multiscale method
of [75, [7§]. In section 3.3, the method to find an approximate solution of the fine scale
problem is presented and the functional form of the stabilization parameter is defined.
In section 3.4 the choice of the constants and the definition of the element length is
discussed to arrive to the proposed definition of the stabilization parameters. In section
3.5 we will present a quite standard error analysis of the method wvalid in the anisotropic
case in which we obtain an error estimate that depends on the interpolation error without
considering anisotropic interpolation estimates. The analysis will pose a condition on the
stabilization parameters due to the use of the inverse estimate. Numerical experiments
illustrating the benefits of the method are presented in section 3.6 and final conclusions

are drawn in section 3.7.
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3.2 Problem statement

3.2.1 Continuous problem
We consider a convection diffusion reaction problem consisting of finding u such that

Lu = —0; (g;;0;u) + a;0;u+su = f in Q
u = 0 on 0N

Here Q C R is an open domain in (d = 2,3 is the number of space dimensions) and
011 its boundary, ¢;; is the constant (positive definite) diffusion tensor, a; the solenoidal
advection velocity, s > 0 the constant reaction coefficient and f a given internal force (the
index summation convention is used here and in what follows). We restrict ourselves to
the case of positive reaction, which corresponds to the exponential regime, and we refer
to [71], 68| for the case of negative reaction, which corresponds to the propagation regime.

As usual, the space of functions whose p power (1 < p < 00) is integrable in a domain
w, denoted by LP(w) and when p = 2 the inner product is denoted by (-,-)_. The space
of functions whose distributional derivatives of order up to m > 0 (integer) belong to
L*(w) is denoted by H™(w). The space Hj(w) consists of functions in H'(w) vanishing
on dw. The topological dual of H}(w) is denoted by H~'(w) and (-, -),, is used to denote
the duality pairing between them.

The problem can be written in a weak form as follows: given f € H~'(Q) and
a€ L>(Q) find u €V := Hj () such that

Bluv)=L{w) YweV
where
B (u,v) = (9, 25;0u) + (v, a:0iu)g + (v, 51)q
L(v) = (v, flq

The discretization of the problem is based on a finite element partition of the domain,
Py = {K}, of size h > 0, which is a set of ne elements K such that they cover the domain
and their are either disjoint or share a complete edge (face). Based on this partition, the

space V' is approximated by a finite dimensional space V}, defined as

Vh:{wGV:woF’1|K€Pp(I?>,1§p§oo}

where P, (I? ) denotes the set of polynomials of degree at most p (on each space variable
if tetrahedral /hexahedral elements are used) and F' the affine mapping from the reference
element K to the physical element K. Then, the Galerkin discrete problem consists in
finding u;, € V}, such that

B (Uh, ’Uh) =L (’Uh) Y, € Vb,h (32)
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This formulation is not stable if diffusive terms are small compared either to convective

or reactive ones.

3.2.2 Multiscale decomposition

Different stabilization techniques are used depending on the instability of the problem
under consideration. A rather general method (that can be used in many cases) is the
variational multiscale method. It is based on a decomposition of the unknown wu into
a resolvable part u;, and a subgrid scale part u which cannot be captured by the finite

element mesh, what corresponds to a decomposition of the space V as
V=V,aV.
The above decomposition, applied to the weak form of the problem, leads to
B (up,v) + B (w,v) = L (vy) Yo, €V} (3.3)
B(up,0)+B@v)=L@) YoeV (3.4)

The first equation is the equation for the resolvable scale u; and has two terms: the first
one is the Galerkin contribution and the second one takes into account the influence of
the subgrid scale on uy. The second one is an equation for the subgrid scale contribution.
Let us introduce the following notation

"= U K and Th= U 0K
KePpy, Kepy,

('7'>h: Z ('7')1(7 ('7')8h: Z ('7')8K and ”Hi: Z ||||§(

KePy KePy KePy,

and

Integrating by parts within each element, equations [3.3] and can be written as
B (up,vp) + (L0p, 1), 4 (1565050, 0) 5, = L (v)  Vop € V),
(@, LU, + (7, 1:64;0;0) 5, = ¥, (f — Lun)), — (T, mie;05un),, Vo€V
where L£* is the adjoint of the operator £ (with Dirichlet boundary conditions) given by
—L* (v) = 0; (6;;0;u) + 0; (a;u) — su

As the normal fluxes of the exact solution are continuous across any surface, it follows
that

(i’ niaijaju)h = (@/, niéijﬁjﬁ)h + (g, nieijajuh)h =0
Then, the second equation is equivalent to: find u € V such that
Li=f—Luy+v" in Q (3.5)

U=uge on I"
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where uge is a function defined on the element boundaries and 9+ is any function in
VL (the orthogonal complement of V in the L2 (Qh) sense). The function wug, must be
such that the normal fluxes of u are continuous across element boundaries. In turn, the

function v+

is responsible for guaranteeing that u € V. A modelling step is necessary to
solve the system what means a choice of uge, 0 and an approximate solution of .

Note that is posed in Q" which consists of the union of the elements of the mesh.
Therefore, any choice of ug leads to ne uncoupled problems posed on each element K. As
a discrete approximation that gives exact nodal values would be optimal, one may ask the
subscales to vanish at the nodes. In one dimensional problems, this gives homogeneous
boundary conditions for problems [3.5{ which are now decoupled and can be solved on each
element. This has been done for the convection diffusion and Helmholtz equations (see
[78] and the references therein). In more than one space dimension the choice uge = 0 is
an approximation.

The approximated solution that will be constructed in the following section can be

written as
Ul = Lt [(f — Luy,) +’17l] |K ~ Ti [(f — Luy,) +'17l]

This equation emphasizes that 7x is an approximation to the (formal) inverse of the
differential operator on each element K, a fact that will be used to construct an expression
for it.

Finally we have to impose u € V which is equivalent to
0= (w,a') vateV*
To this end let us consider the inner product

('7')7 = Z (TK'v')K

KePy,
and let us consider the projection ﬁf onto V1 associated to the product (-,-)_. We have
0= (T, a%) = (f - Lup, @*) + (@, @") Vot eVt

what implies
vt = =P (f - Lup)

The projection P+ differs from the L2 (Q") projection P+ in the element-by-element
weights 7. If the stabilization parameter is the same for all elements we have ]5} = pL.

In this simple case u € Vv if
0= PYa=PL[(f - Lup) + 7]
from where o+ = — Pt (f — Luy). The final approximation is

U=1P (f — Luy)
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where P, = I — ﬁf is the projection onto the subscale space V (1 is the identity in V). A
typical choice of the subscales space is given by P, = I which is called in [29] the Algebraic
Subgrid-Scale formulation (ASGS) and consists simply in taking o+ = 0 to obtain

ulg =7 (f = Lup)

In that reference the choice ﬁf =1-P, = PhL is advocated, P, being the L? (Qh)
projection onto the finite element space. The resulting formulation is called Orthogonal
Subscales Stabilization (OSS) because when 7 is the same for all elements this choice
corresponds to take V as the orthogonal complement of Vj. If the element-by-element
variation of the stabilization parameter is to be considered, in order to have V = V- we
need to take 157 = I — P, where Py, is the projection onto the finite element space in the
sense of (-, -)_. However, as the L? (Qh) projection is very convenient from a computational

point of view, the first choice is always considered and in this case we have
Ul = TPy (f = Lun)

Neglecting boundary terms, the final stabilized discrete problem is: find u;, € V}, such
that
B, (uh, Uh) =L, (Uh) Yu, € Vj, (36)

where the stabilized forms are

B (un,vp) = B (un, vp) — (Lo, 7Lup),
Ly (n) = L (vn) — (C*on7F),

3.3 Approximate solution of the subscale equation

In this section an approximate solution of equation is presented. This equation for
the subscale can be thought as an equation for the error and it is the equation used for
the derivation of a posteriori error estimators[l], a fact already noted in [7§]. In fact, it
is used as error estimator in [45], [69] [70]. Two approaches are typical in a posteriori error
estimation: an explicit expression for the error based on the residuals (derived from this
equation) or the numerical solution of this equation (the so called implicit methods) [1J.
In this case the first approach is followed because the problem is actually solved a priori
and this relation between the subscale (the error) and the residual is used to stabilize the
finite element problem.

The approximate solution is based on two properties that will be presented in the
following subsections. The first is how the subgrid scale depends on the element size and
will be determined by transforming the fine scale equation to the reference domain. The

isoparametric transformation to the reference domain as a tool to define the stabilization
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parameters was used first in [81) 133] but only for implementation purposes and it has
not been related to the fine scale equation in the variational multiscale context that was
developed later on in [78]. The second property is how the subgrid scale depends on
the coefficients of the equation and will be determined by a heuristic argument already
presented in [29] that will be revisited and extended. In this section we consider v = 0

as it does not affect the discussion.

3.3.1 Transformation to the reference domain

Instead of directly solving

Lu=f—Luy:=7r in K
u=0 on 0K

on each element K, we will transform this equation to the reference domain. The
isoparametric transformation is defined by a mapping x =F (§), relating the element
K (with coordinates ) to the reference element K (with coordinates £€) whose Jacobian

(J) verifies

oz O
Jy = —, Jt=2
kl afk’ kl aiL‘l
Therefore, we can write the fine scale problem as
J ( , ou Lo . -
~ o (5”6—@) +a; o€, +su=r in K (3.7)

where the modified velocity and diffusion coefficients are defined by

T _ —t 7t
€ = Jii i€

, 0Jy;' -
a, = < aél €ij +CL]'> kat

Note that the term in aj, that depends on the spatial derivatives of the Jacobian would not

be present if the weak form of the problem is considered. Therefore another possibility

that could be considered is to take

€2l = Jl;té“ijt]k_jt (38)

a = a;J;} (3.9)

3.3.2 A Fourier analysis of the subscale problem

As in [29], let us consider the Fourier transform of a function v defined in K as

D) = [ <o)

K
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where 1 = v/—1 and k is the vector wave number. If n denotes the normal to the element
K we have that

/a_v
&

When this transform is applied to functions that vanish on the element boundary, the

(k) = ik;v (k) +/ nje * € pdé

oK

second term on the right hand side vanishes and we have

o
0¢;
Transforming equation [3.7] we arrive to

(k) = ik;5 (k)

T k) u="7

where

T_l (k) = (k;ikjggj + s+ 1]{3](1,;)

Using the inverse Fourier transform the subgrid scale can be written as

i(n) = /R et 1 T (k)7 (k) dk

It is to be noted that the exact solution to the problem will depend on the element domain
and the integration on the wave number space will be replaced by a sum over the values of
k that make boundary conditions to be satisfied. In the above expression we can identify

the Fourier representation of the Green function of the subscale problem [75] given by

a(n)z/me,n)r(s)ds

where

G(&m) = /R (Kikjel, + s + ikah) " e ™€ ) dke (3.10)

Up to this point no approximation has been performed except for the use of Fourier
transforms in a bounded domain (and the assumption of @ = 0 on the element boundary).
This expression, with the appropriate replacement of the integral on the wave number
space by a sum, can be used to exactly calculate the subscale. However, this sum
contains an infinite number of terms and must be truncated at some point. Doing this
is equivalent to solving the fine scale problem with a discrete formulation, what has
already been done in [53, 52] using a finite element or finite difference formulation instead
of a spectral one. Apart from efficiency considerations such approach has a conceptual
problem: the fine scale problem will suffer the same numerical instability as the problem
defined in V},. Although in this problem the mentioned instability will not manifest when

the submesh is fine enough, this is not the case when other problems (i.e. Stokes) are
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solved and the extension of the method will be difficult. Our main concern here is to find

an approximation of [3.10]
It is well known [24] [75] that the use of a stabilization parameter 7 corresponds to

the approximation
G(&mn) =716 —n)

where 0 denotes the Dirac distribution. From expression [3.10] it is quite clear that this

corresponds to the approximation

G (éa "7) ~ ‘ (kikjé“zj + s+ ikja;)_l‘ / e~k (€ =) JL
Rd

—-1/2

= (K= + )+ (Wap)®) a6 —m)

for some k° to be defined, and then

r = ((KOR0er; +5)" + (K0ar)") o (3.11)

L)Y

A justification for this approximation was presented in [29] and is briefly recalled here.

Thanks to Plancharel’s formula, the subgrid scale norm is given by

2 1 )
T R) P
e L AL

_ #é |T(k)?|2dk:ﬁ/Rd T (k) 7P dk

sy = [

and thanks to the mean value theorem, there exists k° for which

/Rd T (k)2 [FRdk =|T (k0)|2/Rd P2 ke = |7 (k) [ [712a

Therefore, using again the Plancharel’s formula
1 ~12 2
W H7’||L2(Rd) = ||7"||Lz(f<)
from where

ey = |7 (Rl lZ iy

It follows that if we approximate the subscale as
u® =7R

and 7 is defined as
T=|T (k)]
then

~12 ~ap |2
112 1) = 17124
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3.4 Definition of the stabilization parameter

Having established the functional form of the stabilization parameters let us finally
consider the definition of k°, whose superscript will be omitted in this section. It will be
shown that its magnitude is related to the constant factors involved in the definition of
the parameter whereas its direction is related to the definition of the element length, thus

answering the question posed in [67]: what are ¢ and h?

3.4.1 The one dimensional problem

Let us first consider the problem in one space dimension without reaction. In this case
the stabilization parameter presented above (see [3.11)) is given by

VNG 2+ AN
= h? h

where h,,; is the size of the reference domain and using the Péclet number defined as

—-1/2

p_ ot
2¢e

it can be written in dimensionless form as

—1/2
2ar B2, k2\° [ hoatk\” /
o= — = _— +
h 4p? 2

The advective limit of this expression is

lim o = 2h_ Lkt
p—0o0
The analytic solution to the problem can be used to obtain the function a°P* that

guarantees exact nodal values [24] which is given by

1
Pt = coth (P) — =
a coth (P)

The advective limit is of a®P! is 1 and therefore we conclude that

k=2h_}

nat

must be taken. Both expressions are compared in figure for this choice of k.
Note that the final expression for the stabilization parameter does not depend on the
reference domain, as expected. Just to simplify the notation, we consider h,,; = 2 in

what follows.
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Figure 3.1: Upwind funtions
3.4.2 Extension to several dimensions: an isotropic
approximation

The definition of the stabilization parameter given in depends on the constant vector
k. It is therefore invariant under transformations of the reference system. In order
to preserve this invariance, an invariant approximation needs to be performed. This is
possible if it is assumed that the products k;ja} and k;k;ej; depend on the invariants of
a” and €. In the first case the only invariant available is ||a”"|| whereas in the second

we have three possible invariants. Considering the first invariant we can perform the

approximations

kja; ~ ||k|| [|a”]] (3.12)
and

kikjer, ~ ||k e, (3.13)
From the previous subsection we know that to obtain exact results in a one dimensional
problem we need ||k|| = 1 and therefore we arrive to the expression

r 2 ry2 _1/2
7= ((e+s)"+a"|]%) (3.14)

When s = 0 and the diffusion coefficient ¢;; is isotropic (given by ¢;; = £4;;) we have

PR 0&; 0¢;
r p— t t = v ’
€ = &fw J” € Dz, Oz,
and 9%, o¢
, _ _ k O&k
a7l = awlitag i) = a5 ay

and we arrive to
~1/2
7 = (gij9i; + aigija;) (3.15)
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where
_ 06 98

Yij = 8:[1 aiL’j

is the metric tensor related to the isoparametric mapping.
The stabilization parameter defined by was proposed first in [133] in the context

of compressible flow equations and has been used in several applications [137) [143] 21].

It is clear that the approximations [3.12| and [3.13] do not take into account the angle

between the equation coefficients and the vector k. It is due to these approximations,
based on invariant quantities only, that the information on the anisotropy of the mesh is

lost. Another possibility is analyzed in the next subsection.

3.4.3 Extension to several dimensions: an anisotropic

approximation.

In order to extend the one dimensional definition to several space dimensions an intrinsic

definition of the vector k is needed.

General considerations

Let us first consider a pure convection diffusion problem (s = 0). If we move from one
to several space dimensions, the same argument that was used to pass from the artificial
diffusion method to the streamline diffusion method [76] 03] can be used here. If a
constant velocity is considered and the problem is written in a reference system such that
one direction coincides with the streamlines, we actually obtain a one dimensional problem
in this direction and a pure diffusion problem in the orthogonal ones. This implies that
the diffusion that needs to be considered to define the Péclet number is the diffusion along

the streamlines, what immediately suggest to take k = IIg—:H’ arriving to

. ) ~1/2
- (—) Jar? (3.16)
ol

Remark 1 The subgrid problem solved in the reference domain in many cases
will present an anisotropic diffusion. As an example we may consider a two
dimensional convection diffusion problem defined on the unit square with an isotropic
diffusion € and a velocity of the form a = (a, O)t. If the discretization is performed using
rectangular elements of sizes hy = 1/ny and hy = 1/ny, ny and ny being the number of
elements along each side of the domain, we have that

4
2 2 4
0 h—2 0 ¢ 0 h_2 0 %8
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and
Then gives

This simple example shows that expression takes into account the fact that refining
the mesh in the direction orthogonal to a will not have any effect on the solution and
only refining along the direction of a makes sense. We could say, roughly speaking, that
refining the mesh is like adding diffusion (what is clearly seen in the factor 4c/h?) and as
this example shows that if the mesh is refined only in one direction the added diffusion s

anisotropic.

Remark 2 The selection of the vector k implies a definition of the element
length used in the definition of the stabilization parameter. As an example we

may consider the problem of the previous remark but with a general velocity a = (ay, ag)t.

wo|m 0 a_(%@)t
10 h% ki hy
2

a? a3
ol =4 %+ 2]
CANE

In the case

from where

and expression gives

_ ) —1/2
1 ror_r ror_r (2
T = (W (ajatel; + a2a2522)> + [la”|| ]
- ~1/2
— ( 16e (a% +a%))2+||ar||2 /
\lar|* \i = h3
This expression can be written as
—1/2
142\ [2]lal\?
T = [(h_g) ‘I— (—ha (317)
where . .
1 a? a2\ a? a2l [(a® a2\~
B2 == ||a"|? (—1+—2) = [—1+—2} (—1+—2> (3.18)
4 hi  h3 h? = h3 hi " hj
and
[all
h, = a7 (3.19)

are length scales that depend on the wvelocity direction. As mentioned before, natural

candidates for the definition of the element length are the mazimum element length (Ruyax ),
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the minimum element length (hmin) and the streamline element length (h,). The definition
of the element length in the direction of the flow[3.19 was considered in [34] and in [111).
Let us emphasize that neither the minimum nor the maximum element length can be used.
If the minimum element length is used refining the mesh in the direction orthogonal to
the velocity would make h — 0 and 7 — 0 without eliminating the instability. If the
mazimum element length is used and the mesh in the direction orthogonal to the velocity
is too coarse would give a non zero value of T even if the instability has been eliminated.

In any case, the convergence analysis presented below tmposes a condition on the choice

of the element length that needs to be satisfied (see .

Expression [3.16| presents an important conceptual problem: the definition of the
stabilization parameter will depend on the velocity direction even when [la|| — 0, a
fact that is seen in the definition of the element length [3.18 This problem is not shared
by the isotropic expression of the previous section, which can also be written in the
form [3.17] using the streamline length for h, but taking

1 1\
BR==+-—=
: <h% ' h3>
which is similar to Ap;,.

In any case, neither definition [3.16] nor definition can be used when reaction
is present and the mesh anisotropic. Consider a convection diffusion reaction problem
defined on the unit square with an isotropic diffusion € and a velocity of the form

a = (a,0)" solved using a mesh of rectangular elements whose sizes are such that

ahy sh? sh?
— <1, —x1 d —>1 2
9% < 1 i < an 9% > (3.20)

that is, a mesh that is fine in direction 1 and coarse in direction 2. In this case the

stabilization parameter using either [3.16|or [3.14] would be
L le 2 (2 2
T ~ 75 7
h? hy
16e2 sh2\ ahy 2
14 2271 -
() ()

4
hl
2

lim 7= lim -+ =0
h1—0 h1—0 4€

giving in the limit

and will not take into account the reactive instability of the problem.

The choice of the direction

In order to get an insight of how the vector k should be taken let us consider two directions
ky = (1,0) and ky = (0, 1), and compare the stabilization parameter obtained using each

of them in the following two examples.
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Example 1 Let us consider a convection diffusion problem defined on the unit square

with an isotropic diffusion € and a velocity of the form a = (a,0)". We have

=[G ()] - G)

Let us consider a convection dominated problem in a uniform mesh of size hy = hy = h.

We have that

ah
2e
and ) 12
7 (k1) ~ %’ 7 (ko) = P

In this case
7 (k1) < 7 (k2)

and the stabilization parameter should be given by 7 (ki), what suggest to take the
minimum of T (k1) and 7 (ks). As shown before, this is equivalent to take k in the direction
of the velocity.[]

Example 2 Let us consider a diffusion reaction problem (a = 0) defined on the unit

square with an isotropic diffusion €. We have

(k) = (%H)l, (k) = (2—2—!—&)1

Let us consider a reaction dominated problem (small diffusion) and the two cases of
anisotropic refinement. First if the mesh in direction 1 is very fine but is coarse in

direction 2 then

h? h2
5 <1 and il >1
4e 2e
and we have that
(b))~ ()
TR 4e TR S

what 1mplies
7 (k1) < 7 (k2)

In this case the stabilization parameter should be given by T (ks). Second, if the mesh in

the direction 1 is fine enough but coarse in the direction 2 then

h? h2
s >1 and ] <1
4e 2e

and we have that
(K1) ! (K2) "y
T\R1 e T \R2 e

what implies

T (ko) < 7 (k)
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In this case the stabilization parameter should be given by T (k1). Therefore, in the case
of a pure reactive problem we could consider the mazimum of T (k1) and 7 (k) or simply
their sum. This is equivalent to consider the direction k of mazximum element length or,
in other words, the direction of minimum diffusivity, i.e. direction k that makes k;k;ei;

manimum.]

The situation is similar in the two examples in a sense that gives rise to an important
conclusion: k depends on the direction in which the instability of the problem appears. It
is clear that in these examples the way to determine which is the correct definition of the
stabilization parameter was by determining the direction in which the instability appears
and this was done by comparing the dimensionless numbers defined on each direction.

These numbers are ) )
ahy  ahy  shi  shj

2¢7 2 de’ 2
and the one that is dominant defines the direction that needs to be considered.

In a general case, these numbers naturally appear if we consider the dimensionless

S 2 kja; 2
1 2 l
( " kik’jffj) ! <’fikj5§j> ]

which immediately suggests the definitions

parameter
-1/2

k’il{?jé‘:jT (k) =

_ |kyaj p, — "
kikjggj k?z‘k’jfr

]

P,

Then, the direction of maximum instability, that of the maximum P, and D, , will be given
by the minimum of k;k;ej;7 (k). Equivalently, we can define the direction of maximum
instability (k') as

71 k:
k' = arg maxj|, ||=1 —kikfe{j) (3.21)
and the stabilization parameter we propose is given by 7 (k:l), that is,
I 1.1 2 12\ Y2
=7 (k) = ((kkler, + )" + (Ka))?) (3.22)

The computation of the direction

Definition [3.21] implies the maximization of the function

I 2+ kjaj i
kikjggj k'ikj‘g;‘nj

but, as the square root is a monotone function, we may solve the equivalent problem

Hik) = The =
=

)

of maximizing H? (k). This optimization problem will be approximately solved. After
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multiplying its gradient by (l{:ik:jefj)3 we arrive to the equation
— [(sa) + (kiksegy + 5) | V7 (ki) + (kiksely) (ki) ¥ (Kjap) = 0

As the minimization is performed under the restriction ||k|| = 1, in 2D we can take
k = (cosf,sinf) and after a change of variables of the form z = tanf we arrive to a
fourth order polynomial equation whose solution can be explicitly found. Let us consider

some particular cases in two dimensions
e When s = 0 the problem simplifies to
— (kja;f) \Y (kik:jszj) + (kikje;"j) \Y (kja;) =0
and after taking k = (cos#,sinf) we arrive to a third order polynomial equation
— ay (1o + €31) + azely + [ajely — 2aies, — 2a5 (€1, + 5] @
+ [2abe], — abehy] 4 + [aj (€5, + €5) — ajehy) 2 =0

where x = tan@. If we further assume the situation of remark [I} this equation
simplifies to

€11 — 2ep,] @ — 532353 =0

and we have two possible solutions that can be found as illustrated in figure [3.2

Figure 3.2: The definitiion of the instability direction in cases a (left) and b (right)

a When the mesh is such that

4e

4
e < 2sgz@h—§ <22 & b < 2h}
1 2
or, equivalently
ho
A=—=<vV2
h

we have the solution 8 = 0.
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b When the mesh is such that

, , 4e 4e
1 2
or, equivalently
h
A=2>V2
hy
we also have the solution
fan? — ST %m o
€59

and the stabilization parameter is given by

2 2\ ~1/2
= 4—60089—%%811129 + @0089
T\ 12 I

e When a = 0 the problem simplifies to
\Y% (k‘zk‘]d}) =0
that corresponds to find the direction of minimum diffusion. We can follow the same
procedure used before to show that when " is diagonal the solutions are § = 0 or
0 = w/2 and if it is not we have

r r r r \2 1/2
(11 — €5y) + ((511 — €h9) )

tanf = — +1
(€72 + €51) (€7, +&hy)”
As these particular cases illustrate the maximum of H (k) will occur somewhere
between the direction of minimum diffusion and the direction of a”. Therefore, in practice,
we find this maximum simply evaluating the function on a given number of points between

these two directions.

3.5 Error analysis

In this section we present the error analysis of the method in the case of ¢;; = €d;;,
following a standard approach. We start by proving stability in a discrete norm to be
defined and then we obtain a bound in terms of the interpolation error. A key ingredient
is the anisotropic inverse estimate [2] which can be derived from a scaling argument

2

C"
IV2unllfe < 252 IVunllie Vn € Vi (3.23)

min

The important result of this section is that, due to the need of using the inverse estimate
3.23] the stabilization parameter must satisfy the following condition

SR e LA (3.24)
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In the case of linear elements Ci,, = 0 and the condition is automatically satisfied by
and [3.1} If higher order elements are used, only taking hy, in [3.1] will satisfy it. In
this case, the direction of instability used in [3.22] should take this condition into account.
An estimation of the constant Ci,, can be found in [67]. Defining 5 = s(1 — 7s) and the
discrete norm

lanll? = & [ Vunll2 + |32, + ||7%a - V|,

we have the following

Lemma 1 (stability) Assume that the stabilization parameter satisfies condition m
Then, there exists a constant C' > 0 such that

B (un, up) = C |lup|?

Proof. Taking v, = wu in [3.6| and taking into account the skewsymmetry of the

convective term we have
By (un, up) > €| Vunl3, + s ||lunllz, + H71/2a : VuhHi — H7'1/2 (—eV2uy + suy,) Hi

As

|—eV?un + suhHi{ < H€V2uhH§( + ||sunll% + 2 eV 2un|| . llsunll

using the inverse estimate and that for any o > 0 we have —2zy > —L2? — ay?, we

arrive to

By (up,up) > ¢

2
02 1 1/2
<1 — 7'8 5 — TSE> Vuy,

min

2h
+s (1 — T8 — on’ggi) v upll + HTI/Qa . VuhHi(
min b
Note that o .
1-— Tﬁ — TSE >4
it eC? 1
1-C)rt> hQ—mV—i—as

what is implied by when €7 =1 —1/a and a = 2. In the same way

2

eCiy
l—1s—ar—5= >Cy(1 —7s)

min

if )
(1—0C%) (7"1 — s) > 048621#

what is again implied by when Cy < 1/2. Therefore, the result holds for C' =
min (C1,Cs,1). ®
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Let us now consider u;, an interpolant of the solution of the continuous problem u
and define the interpolation error n = u — uy,. We will present now a bound of B (1, v;)

in terms of a function of the interpolation error E (1) defined by

E(n) = 6”2HV'rth+2HT”QwVn||h+2}|§1/2th
#2720, + (- 9+

In turn, this function can be bounded relying on some result from interpolation theory,

although we will not consider this type of bound here.

Lemma 2 Assume that the stabilization parameter satisfies condition|3.24. Then

Inll. < E(n)

and
B:(n,vn) < E(n) [lvall,

Proof. The first inequality is evident. To prove the second one we start from the

definition
B:(n,vn) = (eVn,Vu,), 3.25
+ (@ - Vn,vp), 3.26
+ (81, 0n)), 3.27

+ (—8V277, T€V2vh)h
+ (—eV?n,7a - Vvh)h
(—5V2n, TSUh>

h

(
(
(
(
(
h (3.
(
(
(
(
(
(

In order to bound these 12 terms we will use that

/21720,
hmin
and that
1/20,
1/2/28 Ciny < $12(1 = 7s)'/? (3.38)

min
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which are implied by Also as 0 < 1 — 75 < 1 we have
1—7s < (1—78)/2 = 712 (71 = 5) (3.39)
Term [3.25 can be bounded as
(eVn, Vo), <[Vl Vol <29l [oall,

Term [3.32] can be bounded as

(a-Vn,ta-Vu,), < HTl/Qa : Vn”h HTl/za : VvhHh < HTl/za : Vth lonll,
Terms [3.27] and [3.36] can be bounded as

(sm,0n)y, = 7 (s, 50n), = (0, 50n), < (|52l (|52 0n ], < [[3n]], llonll,
Term [3.28| can be bounded using [3.37] as

(—5V277,7'5V2vh)h < H71/25V277Hh ||7‘1/25V21)hHh

7—1/2€Cinv
h h
< |72l [l Vo, < (|72 V0], lloall,

Term [3:29] can be bounded as

IN

I 2ev2n],

VUh

(~<Vin.7a- V), <[220, |20 - Tul, < [|7225%], ol

Term [3.31] can be bounded using [3.37] as

T1/2€Oinv

(a, -Vn, Tgv%h)h N

IN

Ia- |, [72eVul, < [|7%a - V|,

V?Jh

K

N

- 9l |l < [7a - ] el
Term can be bounded using [3.38 as
(sn,7eV?0y), < Z 75 [nllx || V?on]|

KePpy,
1/2 172
< 2(73)1/2(78) ; Cinw ||77||K||51/2VU’1HK
KePpy,
< Y =79 R il [l < 5], e,
KePy

Terms and are bounded integrating by parts the convective term [3.26] and
using [3.39 as
(@-Vn,u)g + (sn,7a-Vu,), = —(n,a-Vu,)g + (sn,7a - Vuy),
= — (7_1/2 (1 —7s)n, 2q . Vvh)h

< |7 =], [I7a- Vo,
— /

< [t = 9], I72a- Vol

< [ @ =9, flenl,
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Term [B.33] can be bounded as

TS ~
—(a-Vn,1sv), = —<Nl—/2a-V77,sl/2vh> <H~l/2a VnH Hsl/thHh
< | Za- ) lienl,

The result is obtained grouping terms. m
Using these results we can prove convergence using Céa’s lemma. The result is the

following
Theorem 1 Assume that the stabilization parameter satisfies condition|3.24). Then
lu = unll, < E(n) = E(u—up)
where E is the function defined above.
Let us close this section with the following

Remark 3 The only condition needed to prove convergence in the anisotropic case is
(3.2 After satisfying this condition, there is still some freedom for the selection of the
stabilization parameter (and in the case of linear elements this condition is satisfied for
any definition). Therefore, the difference between the deﬁnition 07’ s the norm
in which this convergence is proved and the form of the function E (n) (which depends
on 7). In the isotropic case this estimate is optimal (see the discussion of [28] about the
norm ||-||, ). In the anisotropic case we would need appropriate interpolation estimates to

decide about this optimality. However, numerical experiments will show the convenience

of choosing[3.23,

3.6 Numerical examples

In this section we present numerical examples illustrating the behavior of the method
proposed. The first two of them illustrate the behavior of the method on anisotropic
meshes, the third one shows the importance of satisfying the restriction imposed by the
error analysis when elements of order higher than one are used and the last one how the

method behaves on isotropic but unstructured meshes.

3.6.1 Convection diffusion under anisotropic refinement

In this subsection we consider a convection diffusion problem (s = 0) on the domain
2 =[0,1] x [0, 1] with zero Dirichlet boundary conditions on 2 and a force f = 1. We

consider a diffusion coefficient ¢;; = €d;; where € = 10~ and three different velocities

1. a=(1,0)
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2. a=(0,1)
3. a=(v2/2,V2/2)

A reference solution of this problem was found using a mesh of 100 x 100 elements
refined according to the velocity. In case 1 it was refined in the direction x near the right
wall and was uniform in the direction y; in the second case it was uniform in the direction
x and refined in the direction y near the upper wall and in the third case it was refined
in both directions near the right and upper walls. The smallest element size is about
2.5 x 1075, The results for the three cases are shown in figure Note the presence of
a strong boundary layer on the right wall in the case 1, on the upper wall in the case 2

and on both the upper and right walls in the case 3.

0.,9083 0,9093
I 0.82871 I 0.88871
0. 77762 0. 77762
- 0.66652 - 0.66652
- 0,55544 - 0,595544
- 0,.33327 - 0,33327

0.22215 0.22215
0.11109 0.11109
0 0

1.3886
I 1.2343
1.08

- 0.92574
- 0.77145

0.61716
- 0.46287

0.30238
0.15429
0

Figure 3.3: Reference solutions

For each case, the problem was also solved using a uniform mesh of 10 x 10 elements
using the definition of the stabilization parameter given by taking h as hpp, (the
minimum element length), as hp.x (the maximum element length) and as h, (the
streamline element length) and also using expression which is what we propose here.
When the elements of the mesh are squares the definition given by yields the same
result taking h as hpiy OF hpax OF by (when hy = hy = h expressions and give

he = hy = h). In these cases also expression m gives a similar result. These results are
shown in figure
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1.1293 1,1293

I 1.0033 I 1.0033
0.87835 0.87835
- 0.75287 - 0.75287
- 0.62739 - 0.62739
- 0.50192 - 0.50192
- 0.37644 - 0.37644
0.23096 0.23096
0.12548 0.12548

0 0

1.8278
I 1.6247
14217

- 1.21386

- 1.0135

- 0.81237

- 0.60928
0.40619
0.20=209
o

Figure 3.4: Solutions obtained using a mesh of 10 x 10 elements

Then the behavior of the method with respect to the mesh aspect ratio was analyzed.
To this end, the problem was solved using meshes of 10 x 10 and also 100 x 10, 1000 x 10,
10000 x 10 giving aspect ratios A = 10°,10',10?%,103. To analyze the results we plot the
unknown along the line y = 0.5 in the case 1, along the line x = 0.5 in the case 2 and
along the lines x = 0.9 and y = 0.9 in the case 3. The results using the stabilization
parameter defined by taking h as hp, are shown in figure [3.5] those obtained taking
h as hmax are shown in figure [3.6, those obtained using h, are shown in figure and
those obtained using the stabilization parameter defined by are shown in figure 3.8

The minimum requirement we should pose to evaluate the behavior of a method is
that the solution obtained using any anisotropic grid cannot be worse than the solution
obtained using the 10 x 10 grid, or in other words, we should require that the solution can
not get worse when the dimension of the finite element space is increased in a nested way.
This is what happens if we use the stabilization parameter defined by taking h as Apin
or as h,. In the first case, the solution obtained in case 1 is improved but in cases 2 and 3
numerical oscillations appear when the stretching factor increases. In the second case the
solution obtained in cases 1 and 2 is improved but in case 3 numerical oscillations appear
when the mesh is anisotropically refined. On the other hand, the solution obtained using
the stabilization parameter defined by taking h as hyax or the solution obtained using

the expression [3.22 satisfy this requirement. Both methods give similar results in cases
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Figure 3.5: Solutions obtained using with Amin in the case 1 (top left), in the case 2 (top
right) and in the case 3 (bottom).
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Figure 3.6: Solutions obtained using with Amax in the case 1 (top left), in the case 2 (top
right) and in the case 3 (bottom).
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Figure 3.7: Solutions obtained using with hg in the case 1 (top left), in the case 2 (top right)
and in the case 3 (bottom).
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Figure 3.8: Solutions obtained using in the case 1 (top left), in the case 2 (top right) and
in the case 3 (bottom).
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2 and 3 but only when the stabilization parameter proposed here is used the solution in
case 1 is improved when the grid is refined. The method defined by with h as hpax
does take advantage of the new points added in the direction z even if the solution has
a boundary layer on the right wall. Let us finally remark that in some cases the solution

obtained using taking h as hyy, or as h, can give a better solution than the method
proposed here, as occurs in case 1, even if they present numerical oscillations in other

cases.

3.6.2 Diffusion reaction under anisotropic refinement

In this subsection we consider a diffusion reaction problem on the domain Q = [0, 1] x [0, 1]
with zero Dirichlet boundary conditions on 0f2 and a force f = 40. We consider again
gi; = €0;; where e = 107" and a reaction s = 40. The problem is solved using meshes of
10 x 10 elements and also 100 x 10, 1000 x 10, 10000 x 10 elements, giving aspect ratios
A =10°,10% 102, 10%. To analyze the results, we plot the unknown along the line y = 0.5

and along the line z = 0.5. In this case, the results obtained using the stabilization

parameter defined by taking h as hpax and those obtained using [3.22] are the same.
Therefore, we compare the results obtained using taking h as hyi, shown in figure 3.9
to those obtained taking h as hy.x shown in figure [3.10]

1.2 1.4
1 12}
“/ I
/ 1t
0.8 /
0.6
“‘ A=10"0 A=10"0
0.2t/ \
| A=10"2 \‘ } A=10"2
0 i ‘ ‘ A=10"3 \ 0 i ‘ ‘ A=10"3
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 3.9: Solution obtained using with Ay, along the lines y = 0.5 and z = 0.5.
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Figure 3.10: Solution obtained using with hmax along the lines x = 0.5 and y = 0.5.
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As in the convection diffusion problem shown in the previous subsection, the result
obtained using taking h as hp;, shows numerical oscillations when the mesh is
anisotropically refined whereas the results obtained using taking h as hpax do not
change. Both results are compared in figure where the solutions obtained using the

mesh of 100 x 10 elements are shown.

Figure 3.11: Solution obtained using with Apin (left) and using with Apax (right)

3.6.3 The Poisson problem using quadratic elements

In this subsection we consider a pure diffusive Poisson problem which corresponds to the
CDR problem in the limit of vanishing convection and reaction. The domain considered
is 2 = [0, 1] x [0, 1] and zero Dirichlet boundary conditions on 0f2 are prescribed. In order

to activate instabilities we introduce a forcing term that gives a solution of the form
u(x)y) = (1 Lo 0w _ ea(asfl)) (1 e e _ ea(y71))

which presents boundary layers on the domain boundary whose width can be controlled
using the parameter . We solve the problem using a uniform mesh of 10 x 10 biquadratic
elements and expression |3.1| for different values of ¢;. The results are shown in figure(3.12]

For biquadratic elements Ci,, = 24 [67] and it can be observed that when condition
is not satisfied numerical oscillations appear. Note that the Galerkin method is

recovered when ¢; — 00

3.6.4 A convection diffusion reaction problem on isotropic

meshes.

In this subsection we consider a convection diffusion problem on the domain 2 =
[0,1] x [0,1] with zero Dirichlet boundary conditions on 92 and a force f = 20. The
equation coefficients are e;; = £d;; where ¢ = 1072, s = 20 and a = (3,2). We solve the

problem on different meshes:

e Case 2 structured triangular elements of size 0.1 titled to the right /
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Figure 3.12: Solution to the Poisson problem obtained using with ¢; = 16 (top left), with
c1 = 24 (top right), with ¢; = 48 (bottom left) and with ¢; = 96 (bottom right).

Case 3: structured triangular elements of size 0.1 titled to the left \

Case 4: unstructured triangular elements of size 0.1

Case 5 structured 10 x 10 square elements

Case 6: unstructured square elements of size 0.1

In any of these cases the mesh size is around 0.1 but it varies slightly according to
the mesh design. In the case of triangular elements the element lengths are calculated as

hy = J;lJ and hy = Jy'J,;t . The dimensionless numbers of the problem are given by

sh?
D=—=5
4e
ah
P=—~18
2e

A reference solution (case 1) was computed on a 200 x 200 mesh for which these numbers
are

D =0.0125

P=09
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11
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0.83556
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0.43889
- 0.366587

0,24444
0,12222
0

Figure 3.13: Reference solution

The result is shown in figure |[3.13] The maximum value obtained is . = 0.99807.

For each of these cases we compare the results obtained using the multiscale
formulation using four possible definitions of the stabilization parameter. The first three
are given by taking the length h as the minimum, the maximum and the length in
the velocity direction. The fourth is the definition given by [3.22 Table shows the
maximum values obtained for each case and method.

Case 2 (ST /) | Case 3 (ST \) | Case 4 (UT) | Case 5 (SQ) | Case 6 (UQ)
3.1| using Ay | 1.3841 1.2712 1.2052 1.2973 1.3543
3.1| using hpax | 1.1915 1.1486 1.1318 1.2973 1.2332
3.1| using h, 1.0281 1.3154 1.2437 1.2973 1.4191
3.22 0.9639 0.9762 0.9773 1.0828 1.0248

Table 3.1: Maximum values obtained

Figures to show contours for each case and method, all given in the same
scale as figure [3.13

3.7 Conclusions

The definition of the stabilization parameters in the case of the scalar convection diffusion
reaction problem has been revisited. The variational multiscale method provides a
natural framework to understand the problem. Starting from this point and introducing
a transformation of the fine scale problem to the reference domain the dependence of
the stabilization parameters on the equation coefficients and element length (through
the Jacobian of such transformation) has been identified. A deeper inspection of the

Fourier argument presented in [29] permitted to obtain an exact representation of the
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Figure 3.14: Results obtained in case 2 using with Amax (top left), with hpi, (top right),
with h, (bottom left) and using |3.22| (bottom right).
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Figure 3.16: Results obtained in case 4 using with Amax (top left), with Api, (top right),
with h, (bottom left) and using |3.22| (bottom right).
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Figure 3.17: Results obtained in case 5 using with Amax (top left), with Api, (top right),
with h, (bottom left) and using |3.22| (bottom right).
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Figure 3.18: Results obtained in case 6 using with Amax (top left), with hpi, (top right),
with h, (bottom left) and using (bottom right).

Green function [3.10] and a first approximation to it. The well known exact solution to
the one dimensional problem has been used to find the constants of the parameter in a
very natural way. Finally, the direction of the wave vector k has been identified as the
direction of the maximum instability of the problem as the one of maximum

The expression proposed gives excellent results as numerical experiments have shown.
In the case of linear elements, these experiments have also shown that when the usual
expression [3.I] with A = Ay is used numerical oscillations do not appear. This conclusion
is important for more complex problems where the direction of the instability could be
difficult to find. When higher order elements are used condition must be satisfied for
the error analysis to be valid. This is confirmed by the results obtained in the case of the
Poisson problem that present numerical oscillations if the condition is not satisfied. This
also implies that it is not possible to stabilize reaction when higher order elements are
used, at least in the anisotropic case. Although desirable, this stability is not essential as

the oscillations are local thanks to the L? stability provided by the reactive term.



Chapter 4
The Oseen problem

In this chapter we present a new subgrid scale model for the Oseen equations in the context
of the variational multiscale method. We extend the method of the previous chapter to
systems of second order equations and two possible approximations of the solution of the
fine scale problem are presented. Following the line of the previous chapter we evaluate
the proposed model when anisotropic meshes are used. The stability of the linearized
problem is proved and numerical examples illustrating the behavior of the method are

provided.

4.1 Introduction

Although the incompressible Navier Stokes equations have been extensively studied,
several points remain unclear. At the continuous level these problems involve uniqueness
of weak solutions or global existence of strong solutions and are summarized in the Clay
Institute Prize Problem. At the discrete level many different approximations have been
proposed and several results have been established. All of them involve, in a way or
another, the solution of the linearized problem. It is well known that these equations
present different types of numerical instabilities.

In the first place we have the instability due to the dominance of the convective term
over the viscous one in the high Reynolds number regime. This instability is also present
in the scalar convection diffusion problem and it is well understood. A stable and accurate
approximation to this problem has been presented in the previous chapter, where a new
definition of the stabilization parameters has proven to give excellent results.

As a second problem, we have the pressure instability that may appear if the
compatibility of the velocity and pressure spaces posed by the inf-sup condition is not
satisfied. This instability is also present in the Stokes problem and is also well understood.
It is not related to the dominance of a term in the equations but rather to the vectorial

structure of the problem. When the Navier Stokes equations are written as a system
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of second order equations, the pressure appears in the first order term and the diffusion

matrix is not positive definite, but only semidefinite.

In this work we present a stabilized finite element formulation based on the subgrid-
scale approach introduced in [75], [78] for the scalar convection—diffusion equation. The
idea is to split the solution of the continuous problem ¢ into a finite element component ¢y,
and the difference ¢ = ¢ — ¢y, called subscale, which cannot be reproduced by the finite
element mesh. This splitting corresponds to a decomposition of the continuous space V
as a direct sum of the finite element space V}, and a subgrid space V to be defined. The
approximation of the problem projected onto ‘7, which is driven by the strong residual
of the finite element problem, will give an approximated subscale ©*" whose effect on the
discrete problem for ¢, will be taken into account. Hopefully, this approximation will
enhance the stability properties of the discrete problem projected on V;, allowing the use
of equal order velocity-pressure interpolations and the solution of convection dominated
problems. This approach is a general framework in which it is possible to design different
stabilized formulations depending on the approximation performed for solving the fine
scale problem and on the selection of the space of subscales. After stating the problem in
section the approximation of the fine scale problem in presented in section 4.3l The

whole process can be divided in three steps.

The first one consists in approximating the boundary conditions of the small scale
problem on the edges of the finite element mesh in order to obtain uncoupled local
problems posed on each element. It is common to assume that the subscales vanish
on the element boundaries, but other possibilities could be considered and are currently

under investigation.

The second step consists of some approximation of the inverse differential operator
to write the subscales in terms of the residual of the finite element component. In the
case of the scalar convection diffusion problem the inverse of the differential operator £
is replaced by an algebraic operator 7 that depends on the equation coefficient and on
the finite element mesh, including its stretching, as shown in the previous chapter. In the
case of the Stokes or Oseen equations the differential operator is of vectorial character
and therefore so is its inverse. Nevertheless a diagonal matrix of stabilization parameters
is commonly employed, although some efforts to understand the vectorial structure of the
equations have been recently made in [I21], where a stabilization matrix has been derived
by dimensional analysis and the stability of the final method has been proved. Non
diagonal approximations have also been proposed to consider anisotropic finite element
approximations in [9, [8 [I0] but they do not result from the approximation of the fine
scale problem in the variational multiscale context and are rather ad hoc.

In this chapter we present two approximations to the inverse of the Oseen operator

using ideas that can be applied to any second order system of equations. Both are

extensions of the ideas presented in the previous chapter applied in different ways. The
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first one deals with the whole operator and results in a condition for the design of the
stabilization matrix. This permits to define a stabilization matrix taking into account
the simplicity of the final method. Using this approach we recover the standard matrix
diag (1, ,7.) (7, and 7. are defined in section . The second approximation deals with
each equation separately and naturally takes into account the coupling between variables.
The result is not a stabilization matrix but a stabilization operator that consists in the
usual algebraic term diag (7,,I,7.) and some extra differential terms that couple equations.
In both cases the anisotropy of the grid is incorporated in the definition of the scalar
parameters as in chapter 3 and not in the coupling between equations as done before in
[9, 8, 10].

The third step consists in imposing that the approximated subscale belongs to the
selected subspace ‘N/, what is done by a projection. The approach followed originally in
[75], [78] and described also in [28], consists in taking the subscales directly proportional
to the residual of the finite element component. In this case the space of subscales is the
space of the residuals £V}, (when the force is a finite element function) and no projection
is needed. Another approach, described in [29], is to take only the component of these
residuals L? orthogonal to the finite element space. This idea was first introduced in [26]
as an extension of a stabilization method originally introduced for the Stokes problem in
[30].

In section we also prove stability of the formulation and we will show that the
extra differential terms in the second approximation, which are of high order, do not
provide any extra stability (except for some control of V2V - u;,) and must be controlled
by the usual diagonal terms. Therefore, they can only be considered if a high order
polynomial approximation is employed. How important these terms are is something that
needs further research and that we leave for a future work. The point we want to evaluate
here is how the anisotropy of the grid has to be taken into account and to do that we
need to clarify how the relation between variables should be.

Finally, numerical experiments are presented in section 4.5 and conclusions are drawn
in section

4.2 Problem Statement

Let us start writing the Oseen equations with zero Dirichlet boundary conditions. To this
end, let us consider the space of functions whose p power (1 < p < o0) is integrable in a
domain w, denoted by LP(w), and the space of bounded functions in w, denoted by L*(w).
The space of functions whose distributional derivatives of order up to m > 0 (integer)
belong to L*(w) is denoted by H™(w). The space Hj(w) consists of functions in H'(w)
vanishing on dw. The topological dual of Hj(w) is denoted by H!(w). A bold character

is used to denote the vector counterpart of all these spaces. If f and g are functions (or
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distributions) such that f g is integrable in the domain w under consideration, we denote

rg)e = /wfgdw,

so that, in particular, (-,-), is the duality pairing between H !(w) and H}(w). When
f,g9 € L*(w), we write the inner product as (f,g)., = (f,9). and the norm (g,g)}/Q is
denoted by ||g|| . Using this notation, the Oseen problem consists in finding the velocity

field w € V := H(f2), and the pressure field p € Q := L?(Q2)/R such that

—vWu+a-Vu+Vp = f in Q (4.1)
Vou = 0 in Q (4.2)
u = 0 on T (4.3)

where T' = 09 is the boundary of the domain Q@ € RY, (d = 2,3), f € H ™ (Q) is the
external force, v is the kinematic viscosity and @ € L*°(€2) is the given solenoidal advection
velocity. This problem can be written in a weak form as follows: find (u,p) € V x @
such that

B(w,piv,q) = L(v,g) ¥(v,q)€V xQ (4.4)

where
B(“vPQ'”aQ) = (V,U7VVU>Q+(’070"VU’)Q_ (V,vap)Q+(V’u’7q)Q
L (U7Q) - <U7 .f>Q
Let us consider the multiscale decomposition of the space V' and @)

V=V,eV, Q=0Q,®Q

where h is used to indicate spaces (and functions) constructed using a finite element
partition of the domain P, = {K} as

VvV, = {vh eV vhoF_1|K cpP, ([?)}

Qn = {wh €Q:woF !, €Pp (I?)}
where P, K ) denotes the set of polynomials of degree at most p (on each space variable if
quadrilateral /hexahedral elements are used) and F' the affine mapping from the reference
clement K to the physical element K. In the same way  is used to indicate subgrid spaces

(and functions) which are any completion of the finite element spaces to the continuous

spaces. Applied to the weak form of the problem, this decomposition leads to

B (W, pn; On, qn) + B (W, p;vn,qn) = L(vn,qn) Y (0n,qn) €V xQn  (4.5)
B (up,pr;v,q) + B(uw,p;v,q) = L(v,q) V(v,q) €V xQ (4.6)
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The first equation is the equation for the resolvable scales (the functions of the spaces V7,
and @Q),) and has two terms: the first one is the Galerkin contribution and the second one
takes into account the influence of the subgrid scale on the finite element components.

Let us introduce the following notation

Q"= U K and Thr= U 0K

KePy, KePy,

and

('7')h: Z ('7')K7 ('7')6h: Z ('7')81( and HH?LZ Z HH?(

KePy, KePy, KePpy,
Integrating by parts within each element we have
(Vh,a -V (up+u))g = (v, a-Vuy)g + (vp,a-nu),, — (a- Vo, u), — (v, V- au),

and

(Vv vVa), = (vn- Vo, ), — (vVoy, w),

(q}u \A ’E’)Q = (q}w n- a)@h - (VQh, ﬁ)h
Then, we can write the first equation [4.5 as

(Von, vVug)g + (vh,a - Vu)g — (V- vr,n)g + (an, V - up)g

+ (L = V), = (V- op,p), — (v, V - an), (4.7)
1
+(vp,vn - V) g4 (vp, - att) g, + (gm0, = (Un, flg
2 3 1

for any (vp,qn) € Vi X Qp, where L* is the adjoint of the convection diffusion operator
L, defined as

L = —vW'+a-V
£ = —vV?—a-V

Let us remark that, up to this point, no approximation has been performed. Term 1 in
[4.7] vanishes because a is assumed to be solenoidal. Terms 3 and 4 in 4.7 also vanishes
thanks to the continuity of the subscales and test functions across interelement boundaries.
Finally term 2 does not vanish and could be accounted for but will be neglected in this
work.

Integrating again by parts within each element we have

(Vo,vVu), = (v,vn-Vu),, + (0,—vV?u),

(V ’ vap)Q = (67pn)8h - (:67 Vp)h
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Then, we can write the second equation [4.6] as
(v,Lu+ VD), +(V-u,q), + (v,—pnt+vn - Vu),, = (v,R,,), + (¢, R.),
for any (¥,3) € V x Q where

Rm = f_ﬁuh—Vph
RC = —V~'ll,h

are the residuals of the momentum and continuity equations. As the continuous tractions
o = —pn—+vn - Vu are continuous across any surface, the last term on the left hand side

vanishes and the problem is equivalent to find (u,p) € V x Q such that

L44+VD) = R,+7" in Q (4.8)
V-u = R +q¢g- in Q (4.9)
U = uge on I (4.10)

where ug. is a function defined on the element boundaries and ¥* and gt are any
functions on the orthogonal complement of V and @ respectively (in the L2 (Qh) sense).
The function ug,. must be such that the exact tractions are continuous across element
boundaries. In turn functions ¥ and §* are responsible for guaranteeing that u € 1%
and p € @ A modelling step is necessary to solve the system, what means a choice of
Ugke and of ¥ and ¢+ and an approximate solution of . Note that 4.8 is posed
in Q" which consists in the union of the elements of the mesh. Therefore, any choice of
Uge leads to uncoupled problems posed on each element K. In turn, a choice of v+ and

g is a choice of the spaces where the subscales belong.

4.3 Approximate solution of the subscale equation

In this section we present two approximated solutions to the fine scale problem. The
first one is based on an extension of the ideas of chapter 3 to systems of second order
equations. This rather general approach, that permits to motivate the standard use of
a diagonal stabilization matrix, is presented the next subsection. However, in the case
of the Oseen problem, a better argument can be developed based on the same ideas but
treating the coupling exactly as shown in subsection m The choice of o and ¢+ is
discussed in subsection m (we consider the simple case o7 = 0 and ¢- = 0 in the
first two subsections) and we finally summarize the possibilities for discrete problem in

subsection [4.3.4l
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4.3.1 Approximating the Oseen equations as a system

Let us consider the generic problem of n equations for n unknowns U € V of the form

where K;;, A; and S (forl < i,j < d) are square coefficient matrices of n x n components
and F € W = L (V) is the vector of external forces. Several systems can be written in
this form with an appropriate definition of the matrices K;;, A; and S. In particular,

when d = 2, the Oseen problem is obtained taking

100 a, 0 da
Kiji=vé;|010]|, A=|0 a 62|, S=0
000 di1 iz O

and U = (uy, uy,p)". The fine scale 4.9 problem is now written as
LU=F—-LU, =R (4.11)

where U = (U1, Ty, p)' and Uy, = (upy, unz, pr)'. As in the scalar case of chapter 3, we first
determine the dependence of the solution with respect to the mesh size by transforming
to a unitary reference domain. To this end let us define an isoparametric mapping F'

relating the element K (with coordinates @) to a reference element K (with coordinates

£)

x = F(§)
The Jacobian of the mapping F', J, verifies
i = %, o = %
&y, 0w
and transforming we obtain
U = -, (K'gjajf]) +AOU+SU=R (4.12)

where now 0; stands for 0/9¢; and
T —t 7—t
K = Jipt‘]jq Ky,
A} = J'A,

The next step is to Fourier transform equation and to this end we consider [29)

the Fourier transform of a function v defined in K as

D) = [ <o)

K
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where 1 = v/—1 and k is the wave number. If n denotes the normal to the element K we
have that

o
¢

Applying this transform is applied to functions that vanish on the element boundary, the

(k) = ik;0 (k) + / nje * € udl;

oK

second term on the right hand side vanishes and we have the classical Fourier derivation
formula. Transforming we obtain

~

T '(k)U =R (4.13)

where

T (k) = (ki K7, + 8™ + ik A7)

if 77! (k) is assumed to be invertible. Using the inverse Fourier transform the subgrid

scale can be written as

U(n)z/Rdeik'"T(k)ﬁ(k)dk

As in the scalar case, in the above expression we can identify the Fourier representation

of the Green function of the subscale problem [75] given by

ﬁ<n>=/G<e,n>R<s)ds

where

GEn)=[ Tke™ )ik (4.14)

Rd

If we approximate [24) [75]

G(&n)=1)(€—n) —T/d ek (¢ =) gk
R
expression [£.14] permits us to identify the stabilization matriz as some norm of T (ko) for
certain k. In the scalar case it is possible to show that if we consider the approximated
subscale as u*® = 7R then
1@l Z2 () = 131172z

provided 7 is defined as 7 = |7 (k)| and the existence of kg of is guaranteed by the mean
value theorem [29].

In order to extend this argument to systems of equations, we need to define appropriate
norms of U and R. In general neither U'U nor F'F are dimensionally meaningful. Only
the product U'F, that represents the work done by U against F is defined, because
we assume the duality paring (,) : ¥V X W —R to be defined. Therefore, we introduce
a positive definite scaling matrix M such that the product (Fi, Fs),, := F{MF, is



The Oseen problem 81

pointwise well defined and we define the corresponding norm |-|,, and [|-]|,, the L? (Q)-

norm of |-|,,. We will also write (U1, Us),, 1 := U} M 'U, and the corresponding norms

|-|y—1 and ||| ;-1 Using these norms we can define the scaling of an operator as
7-'ul,, U'T*MT'U

vey Uy vey UMU

for any U € V. The choice of the scaling M is equivalent to choose the way the equations

are written in dimensionless form, if this is the option adopted.
Taking the M-norm of we have that

il f

and by the mean value theorem

~

T (k)U

~

|7, - U

< | TR,
]Rd

M

|&] <7 ko, H?f

‘M—l
Now if we approximate the subscale as U ap= TR, and we perform the same steps we

arrive to

Therefore we impose the condition
77 =T (ko)| (4.15)

which means that the approximated subscale bounds the residual in the same way the
exact subscale does. In the scalar case this means that the approximated and exact
subscales have the same norm. In practice we impose condition by computing the
spectrum with respect to M ™' of 77 !M7 ™" and of T—* (ko) MT ' (ko) and imposing
the equality of the largest eigenvalues. Actually, the ideal situation is found when both

matrices have the same spectrum so 77!

is a better approximation of 7! (ko). We omit
the subscript in k¢ in what follows.

In the case of the Oseen problem we have

ve? +ikja; 0 ir
T (k)™ = kik; K}, + 8" + ik; A} = 0 VK +ikja; ik (4.16)
ilil ilig 0

where k; = k;jJ];t. Taking a scaling matrix M = diag (b, pu, ptp) the eigenvalues of

T*MT " with respect to M~ ! are
A= A, )\2:%A+B+C, )\3:%A+B—C
A=l (Ve + (k- a)Q)
B = K i

1

= gy (10 (201 4 (- )+ (200 + -0
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and assuming T = diag (i, T, 7c) those of 77 M7 ~" are p2/72, p2 /72, and p2/72. 1t
can be easily shown that taking the scaling p, = (V?£* + (K - a)2)_1 and p, = 2k~2 the
spectrum of both matrices is identical (a condition stronger than [4.15)) and in this case

we have

T (k) = (6 + (k- a)?) (4.17)
and
7. (k) = 2f2 (4.18)

This argument determines the functional form of the stabilization parameters. Let us
finally consider the definition of k. As discussed in chapter 3, its magnitude is related to
the constant factors involved in the definition of the parameter whereas its direction is
related to the definition of the element length. In order to reproduce the exact solution
of the one dimensional convection diffusion equation we need | k|| = 2h,,;. On the other
hand, the optimal choice of the direction is that of the instability presented by the problem,
defined as
T (k)

m

(4.19)

I
k' = arg max 5
= |I=1 VK

Note that
1

T k-a\?\ |k - al p

Tm_ _ (1 ( ) ~ _

VK2 ( * VK2 ) VK2 "

where P, is the Péclet number in the direction of k. Therefore, this definition of the

instability direction is meaningless when a = 0. In the case of the scalar CDR equation

this is not a problem because in this case it reduces to the Poisson equation that needs not
to be stabilized and any direction can be taken provided the stability condition implied
by the use of the inverse estimate is satisfied. In particular, for linear elements, any
direction can be considered. In the case of the Stokes problem, however, numerical
experiments presented in the following section show that when the minimum element
length is used numerical instabilities may appear. The direction of the maximum element
length corresponds to the direction of minimum diffusion in the reference domain, what
is an intuitive way to understand the problem. Therefore, when P, < 1 we consider k'

in the direction of the maximum element length.

An isotropic approximation to the parameters in and [4.18] as shown in chapter

3, is given by
v\ 2 Coa\ 2 ~1/2
Tm = ((ﬁ) +(5) ) (4.20)

Te=c7,'h2 (4.21)
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4.3.2 Approximating each equation

After transforming the problem to the reference domain and applying the Fourier
transform we arrive to which exactly inverted gives

(Vl€2 —+ i/ﬁj@j)il P11 (1/52 + ilﬁjaj)il P12 —1:—21
T (k)= | (v +inja;) " Pu (ve?+ikja;) P —23 (4.22)
iKq iro (wi2+if-€jaj)
iz T R2 TR
where
RiKj
Py (k) = 0 — =5

In [4.22) we identify the Fourier transform of the convection diffusion reaction operator
L (k) = (vk* +ikja;)

and that of the Laplace operator, k2. The solution of the fine scale problem in the Fourier

space is given by

W = L' (K)PyjRm, — R, (4.23)
K
P = 52 Rc — ?Rmﬂ (424)

The residual of the momentum equation is multiplied by F;;, the projector onto the
direction orthogonal to . This projection implies the satisfaction of the continuity
equation as
ik 0 — %] d; = [ir; —irj]d; =0 vd (4.25)
Therefore, if we multiply by ix; and we use [4.25| continuity is exactly recovered.
The main idea presented in this section is to approximate the scalar operators L (k)
and 2 and to exactly account for the coupling between equations. To do that we use the

inverse Fourier transform to obtain
U (z) = / e 4 (k) dk
r—1

. -~ —_— . E —_— . 1 Z —
= /e”‘ .m ﬁilRmﬂ'dk — /elk w —2/€i/€ij7jdk - /le ‘m %Rcdk
K K
where the integrals extend over the wave number space. Next we approximate the operator
£! by T, (defined below) and the Fourier transformed Laplace operator (k~2) by 7, (also
defined below). We have

w(x) ~ T, / ek e En:idk — T Tp / ek = Hi/{j}?m\,jdk — T / ek @ i/{j%\cdk
= TmRm,i + Tme@-aij,j — TPQRC
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In the same way
pl@) = [ bk

K2

and performing the same approximations
plx) ~ 7.'7, / el @ ]/%\Cdk -7 / ek @ miﬁn:idk:
= Tprlec — Tp&Rm’i

Finally, the same argument of the previous section applied to the scalar case permits to

define 7, and 7, as

T = ((um%f + (Ko - a)2)_1/2

and

2
Tp = Ky

Let us conclude this section with a different view of the approximation performed.
Assuming u and p regular enough, taking the divergence of the momentum equation

and using the continuity equation we find a Poisson equation for the pressure subscale
V’p=V-R, — LR,
We can formally solve this equation to obtain
p=V7?(V-R,) -V LR,

where V2 must satisfy appropriate boundary conditions. Introducing this solution into

the first equation we have
Lu=R, -VV?(V-R,)+VV LR,
We can formally solve this equation as
u=L"'R, - L'VV (V- -R,)+L'VV LR,
Finally approximating £~! by 7, and —V~2 by 7, we arrive to

v = 7, R+, V(V-R,)—17,VR, (4.26)

p = —17,V-R,+7,7.'R, (4.27)

The approximated solution obtained can be written as
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but the usual matrix of stabilization parameters 7 defined in the previous section as

Tmd 0
0 7.
has to be replaced by a stabilization operator of the form

[ T +77,7,VV.- -7,V ]

—1
-7, V- TpTom

For appropriate definitions of 7, and 7, this operator is positive and gives rise to a stable
scheme as will be shown in the following section. Neglecting the differential terms we
recover the standard approach.

Remark 4 If we define on each element the spaces of the residuals as

R = {v :QhHR:v:a(f—Euh—thﬂK,uhEVh,qhth,aER}
R {q:QheR:q:aV-uﬂK,uhEVh,aeR}

the solution implies

V = R+V(V-R +VR
Q = V-R+R
which can be written as

V=R+VQ
It is immediately clear that theses spaces satisfy the inf-sup condition

inf sup M >03>0
o 2 Tal Vs

because Vq € é, Vq e V.

4.3.3 The choice of the space of subscales

Let us finally consider the choice of the space of subscales or, equivalently, the definition
of o+ and ¢+. The diagonal approximation developed in subsection can be obtained
neglecting differential terms in [£.26}/4.27] and we restrict the discussion to this case.
Considering the general case of o # 0 and ¢+ # 0 instead of we have

@ = T (Rt 8") 4705,V (V- (R +0°)) =7V (Re+")  (4.28)

7= —1,V. (Rm + ’rEl) + 77t (Re+q") (4.29)
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To simplify the discussion that follows let us consider (only in the remaining part
of this subsection) that the stabilization parameters are the same for all elements. This
point is not essential and the reader is referred to the previous chapter for the general
case. If we denote by P the projection onto the orthogonal complement of @ we have
Pp =0 and Pg* = ¢* and therefore from we obtain

i =1, PV - (Rm + #) _ PR, (4.30)

In the same way, if we denote by P the projection onto the orthogonal complement of 1%
we have P = 0 and Pv" = v and therefore from we obtain

o' = ~7u PRy — 1PV (V- Ry + V5" ) + 7PV (R + )
After some manipulation we arrive to
%' = —PR,, — 7PV (I - P) (V ‘R, +V- %L> 4+ PV (I~ P)R.  (4.31)

where I is the identity operator in Q. This gives an implicit definition of o+ (as a
differential equation) in terms of projections of the residuals. However, we do not need

to explicitly compute ¥ and ¢ to impose & € V and pE @ but only to write
@ = P[rRn+ 77V (V-R,)—1,VR] (4.32)
p = P[-7,V- R, +71,m.'R] (4.33)
where P =1 — P and P = I — P are the projections onto the spaces of subscales V and

@. Equating with |4.32| and |4.29| with |4.33| we obtain conditions and
Two possibilities have been considered for the choice of the spaces of subscales. The

easier approach is to take P = 0 and P = 0 which is equivalent to take 7 =0and g-=0
and is called in [29] the Algebraic Subgrid-Scale formulation (ASGS). In that reference
the choice P = P, (and P = Pp},) is advocated, P, being the L? (Qh) projection onto
the finite element space @5, (and V). The resulting formulation is called Orthogonal
Subscales Stabilization (OSS) because it corresponds to take Q (V) as the orthogonal
complement of @, (V'1,) (in the L* (Q") sense).

4.3.4 The final discrete problem

Let us summarize the possibilities for the discrete problem. It consists in finding
(un,pr) € Vi, X @, such that

B, (UhaphS'Uhth) =L, (vhth) v(”hth) eV, xQy (4-34)

where the bilinear form B, and the linear form L, are given by
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e Diagonal approximation:

B; (up,pr;vn, qn) = (Vo,,vVuy)g + (vh,a - Vuy), (4.35)
- (V : Uhvph) + (wa V. ’U,h)
— (E*'Uh — th, Tmﬁ (Euh + Vph))h

+ (V - Up, TpTrzlﬁ (V- uh)>h

and N
Ly (wn, pn) = (v, o — (E*'Uh -V, TmPf)h (4.36)

e Coupled approximation

By (up, pn; v, qn) = (Vo vVuy)g + (v, a - V), (4.37)
= (V v, pp) + (qn, V - up)
E*'vh — th, TmP (,C’Ulh + Vph))h

Lvn = Van 7ty P [V (V - (Lo + Vpu)])

+

h

~(
~(
(£'von = Vau, 7P [V (V- w)))
— (V- vn7,P (ﬁuh+Vph)]>h
(

+ (V- vp, 7 P(V - uh)>h

and

Lo (unp) = (on Flg = (£0n = Va7 PF) (4.38)
~(Lon = Va7, PIV (V- )])
- (V con, P (V- f))h

4.4 Stability analysis

In this section we present a stability analysis of the final discrete problem in the case
of P =1 and P = I for the coupled approximation to the subscales. The stability of
the diagonal approximation has already been shown in [28]. The stability in the cases of
pP= P; and P= P require the bound of the finite element component of a-Vuy, + Vpy,
and this should be done using the techniques of [30]. We will make use of the following

anisotropic inverse estimates [2], which can derived from a scaling argument

CK 2 CIQ( 2
UhHK — h2 HVUhHKv HV : 'Uh”}( S h2_ ||'Uh”K (4.39)

min min

Iv?
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We will also need an inverse trace estimate [142] of the form

Cg
lonllgs < -~ lonll% (4.40)

In both cases the constants depend on the order of the polynomial approximation and
estimates of their values are given in |67, [142] and references therein. In this section we
will omit the min subscript and will denote the minimum element length by h unless
otherwise specified and, just to simplify the notation, we will consider the parameters 7,,

and 7, constant on each element and satisfying

> ﬁ x (C%, C}) (4.41)
and .
> 53 max (Ck,CR) (4.42)

Note that when the isotropic definitions [4.20| and 4.21| are used, these conditions are

satisfied when the constant ¢; is such that
¢; > 8max (Cg, Cf)

We will also make use of the following algebraic inequality

ry < 2i$ + 2y
with a > 0. Defining the discrete norm
lunl? = = |2 Vunl[; + |72 (@ Vs + V)|,

+|Jur 2V ) (|72 AV |
we have the following

Theorem 2 (stability) Assume that conditions and[{.43 are valid. Then, there exists
a constant C' > 0 such that

B (wh, pui wn, o) > C llug|?
Proof. Taking v;, = u;, and g, = p;, in |4.37| we have

By (un, pr; wn, o) = v | Vg + (=L + Vi, 7o (L + Vin)),, (4.43)
+(—=L*up + Vpp, 7,7,V (V- (Lup + V),

—(=Lup + Vpp, 7,V (V- up)),

—(V - up,, 7,V - (Lup + V),

)

+(V'Uh,TpTT; V - uy b
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As usual, the second term on the left hand side of provides stability of the convective
term and the pressure gradient. Integrating by parts the third and fourth terms in [4.43]

we have

B, (wp, piwn,pn) > v ||V, (4.44)

+ (=L up, + Vpp, T (Lup + V), (4.45)

— (V- (=L + Vpp) . 77V - (Luy + V), (4.46)

+(n - (=Lup + Vpp) , 77V - (Lup + Vpp))y,  (4.47)

+(V - (=Lup + V), 7,V - wy), (4.48)

— (- (=L + Vpu), 5,V -up)y, (4.49)

—(V -up,, 7,V - (Luy + V), (4.50)

S e AW (4.51)

Using the inverse estimate in we have

T (=L up, LUp) e = T ((VV2 +a- V) uy, (—I/V2 +a- V) uh)K

= 1 [V [ + T @ - V|
2

h2|

v

~T 5 [V unl g + 7 la - Va3

We also have
T (Vpn, (L — L%)up) e = 27, (Vpp,a - Vuy,)

and therefore

2

C’
(—L*up + Vpp, Luy, + V) > vy KNVunll5 4 7 @ - V|5

+27, (Vph, a- Vuh)K + Tm ”VthK
CQ
= 7—m’/_HVUhHK“’Tm |a - Vuh"’VthK

In the same way is bounded as

~TnTp (Vo (=L7un) V- L) e = ~707 (V- 0V + @ V)u,, V- (-vVi+a-V)u,)

2
= TuTp HVVZV . uhHK — T ||V - (a- Vuh)Hi

and

—TnTp (Vopn, V - (L = LY wp) o = 27007, (VPP V - (@ - Vuy,))

K K

so using the inverse estimate
— (V . (—,C*’U,h + Vph) ,TmTpV . (,C'U,h + Vph))K
= 77y vV [ — T Hv (@ Vu, + V)%

>Tm7'pHVV V. ’u,hHK la - Vuh‘f‘VthK

Tphg ‘
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The product of the pressure gradient and velocity divergence in [4.48| cancels with the
same product in [4.50l The remaining parts of and are bounded as

T, (V- (=L = L)up, V- -up)p = 7 (2VV2V ~uy, V- uh)K

> =7 [|[20VPV | |V |
vC%
2 2 p h2 ||V uh“K

It remains to bound the boundary terms. To this end, if y, z are finite element

functions or derivatives of finite element functions we have

]_ 2 (e 2
(y>Z)8K > = Hy”aK ||ZHaK > “on H?JHaK D) HZ“aK

and using the inverse estimate [4.40] we arrive to

C 1 o
0 2Jow 2 S (=5 Il = 5 115 (152

for any o > 0. For each contribution to [4.47] we have

(n- (=Lup + Vpu), V- (Lup + Vpu)) g
= (n- (Wup+a-Vu, +Vp,), V- (=Vu, +a-Vu, + V),

= — ( . (I/V2uh) V. (VVzuh))aK (4.53)
+(n- (vVu), V- (a-Vu, + Vph))aK (4.54)
— ( (CL Vuy, + Vph) V. (VVQ’U,h))aK (455)
(n-(a-Vu,+Vp,),V-(a - Vu,+ Vp))sx (4.56)
Using and the inverse estimate we have
C 1
- V) V) e = (g Tl - § e )

C 1 C? o
> & (_%h_g B e uhH;)

and taking a = h/ (2Cg) we have a bound for [4.53]

2 2
—(n- (vViu), V- (V). > CiCi

1
oK = 4 ”VVWZH?( Ty H’/v2v ) uhHi{

In the same way

(n . (VVQUJh) ,V:(a-Vu, + Vph))BK

C 1
RN

Cy [ 1 C2 a Cf 2
> == (_Zh_g lvVunf = 575 la- YV, + VPh”K)
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and taking o = h/ (2Cg) we have a bound for [4.54]

2 CRCk > Ok 2
(n- (vVPu), V- (a-Vuy+Vpy)),, > — i vV — T la - Vu, + V%
Using again and the inverse estimate we have
— (n (a-Vu,+Vp,), V- (VV2uh))8K
CE 1 2 (@) 2 2
> - (—% la-Vu, + V| — 5 |vV?V - [

and taking o = h/ (2Cg) we have a bound for [£.55]

2

C 1
— (n (a-Vu,+Vp,), V- (szuh)) > _h_s lla - Vuy, + Vthi_Z HI/V2V . uhHi{

oK

In the case of [4.56 we have

(n-(a-Vu,+Vp,),V-(a-Vu,+Vp))ox
C 1 a

> TE (_% la- Vuy, + Vth%{ -3 |V - (a-Vuy, + Vph)”?()

aCE

C 1
> = (—— la- Vun + Vil — She

E
h 200
and taking again « = h/ (2Cg) we have a bound for

||a . V'u,h + Vth?()

(n-(a-Vu,+Vp,),V-(a-Vu,+ V)

Ck C2
Z =7y la - Vuy, + V|7 — ﬁ la - Vuy, + Vi %

Finally for each contribution to we have

— (n (VV2uh+a-Vuh—|—Vph) 7V'uh)aK = — (n-uV2uh,V-uh)aK
—(n-(a-Vu, +Vp,), V- up),,

and we have

C 1 a
2 E 2 2 2
— (n -vViu,,, V - uh)(’)K > o (_% HVV uhHK ) |V - Uh”K)
CE 1 CIQ( 2 «
> (- vl - § 19wl
so taking o = vCg/h we have
vC?% vC%
= (n vV, Vo) e > =0 V|7 — A uy %

Also

C 1 o
(@ Y+ V) Vw2 G (<ol Vet Il - 519wl
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and taking o = h/ (7,,Cg) we have

TmC ﬂibl
—(n- (@ Vur+ V), V- wn)oye > =5 la- Vun + Vil = 5= [V - e

Grouping terms we arrive to

vC? 20CECE CZ
B‘r (uhaph;uhaph) 2 Z v (1 _Tmh_QK — TmTp hIi p2h2) ||V h”K
KePy,

C2 C2 202 C2
+ Z Tm (1 — Tph—I; — Tp2—hK2 — Tph—f — Tp2—hE2) la - Vuy, + Vth?{

KePy,
2002 vC2 1
-1 K “YE 2
+ Z TpTm (1_77”7_ moR2 _5) IV - [
KePy,

1
+ Z éTmTp ||VV2V . uhHi(
KePy

and using conditions and we have

By (wn, Do pn) = luulﬂmui+ D a~Vuh+Vph 1K

T AT P [E e AP

that immediately implies the result. =

4.5 Numerical examples

In this section we present two numerical examples both of them using the diagonal
approximation to the subscales, with the objective of studying the influence of the
anisotropic mesh refinement and the influence of the choice of the space of subscales. The
performance of the coupled approximation needs further research. The first example is the
simple problem of a 2D Stokes flow in a channel and the superior performance of the OSS
method will be clearly demonstrated. The second example is an anisotropic refinement
study using an analytic solution. Again, the OSS method gives better results. Numerical
instabilities are found when the classical expression for the stabilization parameter using

the minimum element length is used.

4.5.1 Stokes flow in a channel

In this subsection we consider the Stokes problem on the domain © = [0, 10] x [0, 1] with
Dirichlet boundary conditions. The boundary of the domain can divided into an inflow
part at x = 0, an outflow part at x = 10 and two walls at y = 0 and y = 1. On the inflow

and outflow part a Poiseuille (quadratic) velocity profile is imposed and on the walls the
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non slip condition is prescribed. The flow is driven by an external force f = (2,0) (which

is equivalent to an imposed pressure gradient). The exact solution of the problem is

u=(y(1-y),0), p=0

The problem was solved using a uniform mesh of 10 x 10 bilinear elements whose
aspect ratio is only 10. The problem was solved using the ASGS and OSS formulations
in which the differential terms of the stabilization operator are neglected (they differ in
the projection of the residual, see section 3). For each formulation the results obtained
defining the stabilization parameter with A = hy;, and h = hy,, are compared.

In the case of the ASGS formulation, the impact of the choice of the element length
in the definition of the stabilization parameters is very important, as can be seen in figure
4.1 where the velocity field obtained is shown. This difference can also be seen in figure
[4.2] where the y component of the velocity, that should vanish, is more than one order of
magnitude bigger when h = hy. than when A = h,;,. The same consideration can be
made about the pressure field, shown in figure .3 where the maximum pressure difference
of 1.05 in the case of h = hy, and of 15.52 in the case of h = hp. can be seen. Let
us note that when quadratic elements are used the exact solution is found for any mesh
regardless of the stabilization parameter taken because this solution belongs to the finite

element space.

==

—

=== .

}

=3
=

Y
AT
HHHY
Y
HHH
TH
U
|

Figure 4.1: Velocity fields obtained using the ASGS formulation with A = hyi, (top) and
h = hpax (bottom).

On the contrary, in the case of the OSS formulation the impact of the choice of
the element length is smaller. In fact, the velocity fields, shown in figure [4.4, are
indistinguishable. However, some differences between the solution with h = h,;, and
h = hmax can be found, as can be seen in figure [4.5], where the y component of the velocities
are shown, and in figure [£.6], where the pressure fields are shown. When h = hy,, is used
the exact result is obtained and when h = Ay, is used still a non zero y component
of the velocity and a non zero pressure are obtained. Note, however, that the result
obtained using the OSS formulation using h = hy,., is better than the result obtained
using the ASGS formulation and h = hy;,. The explanation we give for these results

is that when the projection is included, the stabilizing term added to the Galerkin one
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WELDC Y

— 0.00015866
= 0.0001234
= 8.81432-05
5.28856-05
1.76282-05
-1.7632-05
-5.20887-05
= -9.8145e-05
= -0.0001234
= -0.00015866

— 0.0026211
0.0015785
0.00052621
-0.00052621
-0.0015726
-0.0026311
-0.0036835
-0.0047359

Figure 4.2: y component of the velocities obtained using the ASGS formulation with h = Ay
(top) and h = hyax (bottom).
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u]
-0.11672
-0,23345
-0,35017
-0.4669
-0.583562
-0,70034
-0.81707
-0,93370
-1.0305

PRESS

-1.7237
-3.4475
-5.1712
-6.8949
-8.6187
-10.342
-12.066
-13.79

-153.514

Figure 4.3: Pressure fields obtained using the ASGS formulation with h = hpyi, (top) and
h = hmax (bottom).
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is smaller (because the projection vanishes when h — 0) although it is enough to have
optimal convergence. This term vanishes when A — 0 because it is proportional to the
residual of the finite element component. In the case of linear elements the approximation
of the residual is quite poor (the Laplacians of finite element functions vanish) even if it

is of the correct order. The inclusion of the projection remedies the situation.

SIS

=

SIS

=

Figure 4.4: Velocity fields obtained using the OSS formulation with A = Ay, (top) and h = hpax
(bottom).

WELOC Y

— 4.8254e-08
= 3.7551e-08
= 2.68492-08
1.61462-08
5.4427e-09
-5.2603e-03
-1.5963e-08
-2.6666e-08
-3.736%-08
-4.8072e-08

0.00010092

3.363%-05

-3.3638e-05
-0.00010091
-0.00016219
-0.00023547
-0.00030274

Figure 4.5: y component of the velocities obtained using the OSS formulation with h = Ay
(top) and h = hpyax (bottom).

Two main conclusions can be drawn from this example: the choice h = hy;, gives
better results than the choice h = hy,., and the OSS formulation gives better results than
the ASGS one, in particular being much less sensitive to the definition of the stabilization
parameter. However, the choice h = hy,;, can give rise to numerical oscillations as shown

in the next example.
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PRESS

— 4.06752-06
= 3.16092-06
— 2.25432-06
1.34762-06
4.40965e-07
-4.65602-07
-1.3723e-06
-2.2792-06

-3.1856e-06
-4.0923e-06

PRESS
—0

= -0.019374

(@ mE

-0.11624
= -0.13562
= -0.15439
= .0.17436

Figure 4.6: Pressure fields obtained using the ASGS formulation with h = hpyi, (top) and
h = hmax (bottom).

4.5.2 An anisotropic convergence test

In this subsection we consider the Oseen problem in the domain 2 = [0, 1] x [0, 1] with zero
Dirichlet boundary conditions on 0f€2. A forcing term is prescribed to have the solution
given by

w=(us () 1y (z)) = (L+ @ —e ™ — WD 14 e —em07 — (D))

and
p=1+z+2°

which presents boundary layers on the domain boundary whose width can be controlled
using the parameter . We consider a = 100 and the advection velocity is given by
the exact solution for Reynolds numbers of 0 (Stokes) and 10%. We solve the problem
using meshes of 10 x 10 and also 100 x 10, 1000 x 10, 10000 x 10 giving aspect ratios
A = hy/hy = 10°,10%,10% 103, As in the case of the scalar convection diffusion problem,
the impact of the choice of the element length is very important. We plot the pressure
along the line y = 0.9 and the y component of the velocity along the line y = 0.5. The
results of the Stokes problem are shown in figures [4.7] [4.8] 4.9 and When h = huyin
is used to define the stabilization parameter numerical oscillations show up, specially in
the pressure but also in the velocity. When h = hp,., is used to define the stabilization
parameter the solution is free of such oscillations and in this case the results are much
better when the OSS method is used.

The results of the Oseen problem for Re = 10? are shown in figures [4.11] 4.12] 4.13|
and [4.14] Similar conclusions can be obtained in this case. The only important point
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y component of the velocities obtained using the ASGS formulation with h = hpyiy

(left) and h = hpax (right) at Re= 0.
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(right) at Re= 0.

to mention is that the new definition of the stabilization parameter does not improve
the results with respect to those obtained using h = hpyay as it does in the case of the
CDR equation, although more numerical experiments are needed to clarify the point. The
difference in the behavior could be due to the terms present in the coupled approximation

and neglected in the diagonal one. Again, this is a point that needs further research.

4.6 Conclusions

We have presented a procedure to derive stabilized formulations for systems of equations.

In the general case the steps to be performed are

e Fourier transform the system of equation.

e Compute the spectrum of 7* (ko) MT ! (ko) and of 7-'M7 " with respect to
the scaling matrix M and impose (at least) the equality of the largest eigenvalue.

The optimal situation is when the spectrum of both matrices is identical.

In the particular case of the Oseen problem (but hopefully in other systems as well)

the following alternative procedure can be followed

e Fourier transform the system of equation
e Invert the algebraic matrix.

e Apply the inverse Fourier transform approximating the scalar operators but keeping

the differential operators for the coupling.

e Perform a stability analysis to show that the resulting formulation provides stability.
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The second procedure highlights the vectorial structure of the Navier Stokes equations
and does not give rise to a matrix of stabilization parameters, but to a stabilization
operator of the form

T d 47,7, VV- -7,V
—7, V- TpT;Ll
Although the extra terms could be important when anisotropic finite element meshes are
used, the mesh information is taken into account only in the definition of the stabilization
parameters 7, and 7,. This is an important point since formulations of anisotropic
stabilized approximations of the Navier Stokes equations in which the stabilization
parameters where replaced by matrices that depend on the stretching of the grid have
been used in the past[d, 8, [10]. As shown here, a formulation of this type is rather ad hoc
and does not naturally follow from the multiscale concept.

It has been also proved that under some conditions on the parameters 7,,, and 7, the
resulting scheme is stable. In principle the proof of the stability bound is valid for any
mesh (isotropic or anisotropic) provided the conditions on the stabilization parameters
are satisfied. However, in the limit of vanishing advection that would imply the need of
using the minimum element length in the definition of the stabilization parameters. In
the case of the diagonal approximation this choice gives rise to spurious oscillations as
shown in the numerical examples.

The results of the numerical examples presented show that the OSS method performs
much better than the ASGS method as it is much less sensitive to the choice of the
element length. As mentioned, the standard definition taking h = hy;, results in an
unstable scheme even for the Stokes problem. The results obtained using the standard
definition taking A = hyax and those obtained using and are almost identical.
Both deteriorate when the mesh is anisotropically refined. This odd behavior might be
due to the neglect of the differential terms of the stabilization operator but it might be
also due to the definition of the direction of instability. This definition has been made in
the previous chapter for the convection diffusion reaction equation but it might be not
the correct one for the Oseen problem. In fact, for the Stokes problem the arguments of
the previous chapter do not permit to select any direction. Further research is needed to

clarify the situation.
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Chapter 5

The incompressible Navier Stokes

problem

In this chapter we extend the stabilized finite element approximation developed in the
previous chapters for the CDR and Oseen problems to the incompressible Navier-Stokes
equations. Two aspects of the problem make it different from the ones considered in
previous chapters: it is a time dependent problem and it is non linear. We explore
the properties of the discrete formulation that results allowing the subgrid-scales to
depend on time. This apparently “natural” idea avoids several inconsistencies of previous
formulations. Likewise, we consider the complete multiscale decomposition of the
nonlinear term, following the variation of the subscale along the iterative process. This

also "natural” idea gives rise to a discrete formulation with enhanced properties.

5.1 Introduction

Let us start by writing the incompressible Navier-Stokes equations. Consider a domain
Q in RY, where d = 2,3 is the number of space dimensions, with boundary I' = 9, in
which we want to solve an incompressible flow problem in the time interval [0, 7. If u is
the velocity of the fluid and p the pressure, the incompressible Navier-Stokes equations

are

Ou—vAu+u-Vu+Vp=f inQ, te(0,7T) (5.1)
V-u=0 inQ, te(0,T) (5.2)

where v is the kinematic viscosity and f is the force vector. These equations must be
supplied with an initial condition of the form w = u® in ©, t+ = 0, and a boundary
condition which, for simplicity, will be taken asu =0on T', ¢t € (0,7).

Let us introduce some standard notation. The space of functions whose p power

(1 < p < ) is integrable in a domain w is denoted by LP(w), L*°(w) being the space of
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bounded functions in w. The space of functions whose distributional derivatives of order
up to m > 0 (integer) belong to L?(w) is denoted by H™(w). The space H}(w) consists
of functions in H'(w) vanishing on dw. The topological dual of Hj(w) is denoted by
H~'(w). A bold character is used to denote the vector counterpart of all these spaces. If
f and g are functions (or distributions) such that f g is integrable in the domain w under

consideration, we denote

<f,g>w=/wfgdw

so that, in particular, (-,-), is the duality pairing between H '(w) and H}(w). When
f,9 € L*(w), we write the inner product as {f,g)., = (f,9).. The norm in a Banach
space X is denoted by |-||, and LP(0,T; X) is the space of time dependent functions
such that their X-norm is LP(0,7"). This notation is simplified in some cases as follows:
(e =) (e =) and ([l 2 = 1]

Using this notation, the velocity and pressure finite element spaces for the continuous
problem are L*(0,7; V™) and L'(0,T;Q%), respectively, where V™ := H(), Q% :=
L*(Q)/R. The weak form of the problem consists in finding [u,p] € L*(0,T; V™) x
LY(0,T; Q%) such that

(Ou,v) + v(Vu,Vv) + (u - Vu,v) — (p, V- v) = (f,v) (5.3)
(¢, V-u)=0 (5.4)

for all [v,q] € V*' x @, and satisfying the initial condition in a weak sense.

The Galerkin finite element approximation of problem [5.345.4] consists in seeking the
unknowns in finite dimensional spaces V;, C V* and Q, C Q® and taking the test
functions also in these spaces. Using the method of lines, the problem discretized in space,
but still continuous in time, consists in finding [ (t), pn(t)] € L*(0,T; V) x L'(0,T; Qy)
such that

(Opun, vy) +v(Vup, Vop) + (uy - Vup,vp) — (pr, V- vp) = (f, vg) (5.5)
(qn, V-up) =0 (5.6)

for all [vy, qn] € Vi X Q.

Once discretized in time (using for example a finite difference scheme), it is well
known that problem suffers from different types of numerical instabilities. Two of
them are inherited from the stationary problem, namely, the dominance of the (nonlinear)
convective term over the viscous one when v is small and the compatibility required for
the velocity and pressure finite element spaces posed by the inf-sup condition. There are
also numerical instabilities encountered when the time step size of the time discretization
is small, particularly in early stages of the time integration.

A vast literature exists dealing with the instabilities due to the dominance of

convection and to the velocity-pressure compatibility condition. In this work we adopt a
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stabilized finite element formulation based on the subgrid-scale concept and, in particular,
in the approach introduced by Hughes in [75] [78] for the scalar convection—diffusion
equation. The basic idea is to approximate the effect of the component of the continuous
solution which can not be resolved by the finite element mesh, which we will call subscale,
on the discrete finite element solution. This approach is a general framework in which
it is possible to design different stabilized formulations. We will restrict our attention to
two approaches, described in [28] and [29]. In the first case, the velocity and pressure
subscales are taken proportional to the residual of the finite element component in the
momentum and in the continuity equations, respectively. The bottom line of the second
approach is to take only the component of these residuals L? orthogonal to the finite
element space. This idea was first introduced in [28] as an extension of a stabilization
method originally introduced for the Stokes problem in [30] and fully analyzed for the

stationary Navier-Stokes equations in [31].

However, the main interest of this chapter is not how to stabilize convection-dominated
flows or how to be able to use equal velocity-pressure interpolation, thus avoiding the
need to satisfy the inf-sup condition that problem demands. Our objective in
this chapter is to analyze the formulation that stems from considering time dependent
subscales. In fact, the idea we will follow is not new, and was already introduced in [29].

In this sense, the present work can be considered as a continuation of this reference.

The chapter is organized as follows. The numerical formulation is described in
Section 5.2, and its main features are presented in Sections 5.3 where we detail the benefits
of considering the subscales time dependent, and how some of the misbehaviors of classical
stabilized finite element methods are overcome. We also end Section 5.3 with a speculative
subsection considering the tracking of subscales along the nonlinear process as a way to
model turbulence. This idea was also pointed out in [29]. In Section 5.4 we present the
results of three simple numerical examples that show the benefits of our approach and we

conclude with some final remarks in Section 5.5.

5.2 Stabilized finite element problem

Let us consider a finite element partition P, = { K} of the domain € with n elements. We
will assume that all the finite element spaces constructed are continuous and of the same
order for the velocity and the pressure. The starting idea of the formulation we propose is
the variational multiscale formulation proposed in [75, [78]. Let V™' =V, @ V, where V,

is the velocity finite element space and 1% any space to complete V', in V™. Similarly, let

Qs = Qh@@ . The original continuous problem is equivalent to find [w(t), pr(t)] €
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L*(0,T; V) x L'(0,T;Qy), as well as [u(t),p(t)] € L*(0,T; 17) x LY(0,T; @), such that

(O(up, +u),v) +v(V(u, +u), Vo)
+((up + ) - V(u, +u),v) — (pp +p,V-v) = (f,v) (5.7)
(¢,V-(up,+u))=0 (5.8)

for all [v,q] € V* x @Q**. These equations can be split into two systems by taking first
[v,q] = [vn,qn] € VI, X @ and then [v,¢] = [v,q] € V x Q. Denoting by n the exterior
unit normal to an integration domain, after integrating some terms by parts the first

choice leads to

(O(up, +u),vp) + v(Vuy, Vop)
—i—uz (u, Avy) ik + (u, n-Vup)ox]

—i—((uh +u) - Vup,vy) — (u, (up +u) - Vor) — (pp +p, V-vp) = (f,vn)  (5.9)
(qn, V - un) = (Van, u) =0 (5.10)

where we have used the fact that V - (u, + u) = 0, that the sum of the integral of
n - (u, + u) on the boundaries of two adjacent elements (and thus with opposite normal
n) must be zero and that u, =u =0on I

The second system is obtained by taking [v,q] = [9,¢] € V x Q in Of course,
the resulting system, together with [5.9H5.10] is exactly equivalent to [5.3H5.4l A stabilized
finite element method is obtained if w and p are approximated and their expression inserted
into 5.10, However it is not our purpose in this chapter to emphasize how to obtain
the approximations for w and p because this problem has been considered in previous

chapters (and still needs further research). Our purpose here is

e To allow u to be time dependent, and therefore to keep its time dependency in [5.9,

e To note that the advection velocity in [5.9)is u; + @, and not only wy,.

In fact, we will not explore in detail the second item. Some comments about this point
will be made later on. Our main concern will be to study the properties of the numerical
formulation that emanates from considering w time dependent. For this purpose, it is

enough to make some simplifying assumptions:

e The term involving integrals over interelement boundaries will be neglected. This
can be understood as considering the velocity subscales as bubble functions,
vanishing on the boundaries of the elements (see, e.g., [4 [16]). Even though its
consideration can bring important stabilization properties, it is not essential for

what follows.
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e The approximation of the subgrid-scales is performed as follows. The system for the
subscales [@(t), p(t)], obtained taking [v,¢] = [0,q] € V x Q, can be understood as

0% + (up + @) - Vi — vAT + Vj= R,y
V- u=R.

where R,, and R. are appropriate residuals of the finite element components u,
and pj, adequately projected onto the space of subscales (V for the first equation and
@ for the second). Using the arguments of chapter 4, the following approximation

to the previous equations can be motivated:
1

D, + T_,& - R, (5.11)

1 _
T—p = RC + TmatRc (512)

where
~q -1

v u, +u

Tm = Clﬁ + 02—‘ hh | (5.13)
h2

- 5.14
K C1Tm ( )
R,, = —P 0wy + (up + @) - Vuy, — vAuy, + Vp, — f] (5.15)

This formulation is obtained if the differential terms of the stabilization operator
presented in chapter 4 are neglected and the isotropic approximation to the
stabilization parameters, in which ¢; = 4 and ¢y = 2, is considered. As in chapter 4,
the projection P can be either the identity for “classical” stabilized finite element
methods (which can be traced back to [1§], for example) or the projection orthogonal
to the finite element space (we have used the same symbol for the scalar and
vector counterparts of this operator). As in previous chapters, we will refer to
the choice P = I (identity) as the Algebraic Subgrid Scale formulation (ASGS),
whereas P = II;-, II;, being the L? projection onto the appropriate finite element
space (of velocities or of pressures), will lead to the so called Orthogonal Subscales
Stabilization (OSS).

As is shown in [83], the fine-scale component of the solution is related to the residual
of the coarse scales through so-called small-scale Green’s function. It was also shown
in [83] that the small-scale Green’s function is highly localized for the right choice
of the projector, rendering local algebraic approximations |5.11H5.12] a viable model

for the fine scales.

Again, let us stress that the two assumptions described are not essential for our

discussion and could be modified. The important point is that J,u appears in the
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approximate equation for the velocity subscale. In our case, this approximation turns

out to be the differential equation in time [5.11]

Remark 5 Observe that equation|5. 11 must hold at each point, and therefore it is in fact

an ordinary differential equation rather than a partial differential equation.

Remark 6 Neglecting the time derivative in|5.11| could be understood as considering that
the subscales adapt automatically to the finite element residual. The subscales obtained

from this assumption were defined in [29] as quasi-static.

Remark 7 Observe that[5.11] is a nonlinear equation, due to the dependence of T, and
R,, on u. Obviously, this does not depend on whether the subscales vary in time or not,
and was also noticed in [21)] for what we have called quasi-static subscales. In this case, it
is possible to tackle directly the resulting nonlinear algebraic equation and solve for w in
terms of R, accounting for this nonlinearity. However, in our case this is not possible,
and we will have to linearize to integrate it in time.

The formulation we want to analyze is now complete. It consists of solving [5.915.10
together with for uy,, w, p, and p, neglecting the integrals over interelements
boundaries, as it has been mentioned. Although it does not introduce any particular
complication, as it can be observed from the analysis in [28, 29], we will take p = 0
for the sake of simplicity (in fact, we have used expression with 7, given by
in the numerical examples of Section 5) . Therefore, the final problem we have to
solve can be written as a single variational equation as follows: find [u,(t),ps(t)] €
L*(0,T;V}) x L'(0,T; Q) such that

(Oyup,vy) + v(Vuy, Voy) + (uy - Vug, vy) — (pr, V - vp)

+(qh, V- ’U,h) — Z<1~L, VA’Uh +uy, - Vo, + VQh>K
K

+ (O, vp) + (- Vuy,vy) — (w, - Vo) = (v, f) (5.17)

for all [vy, qn] € Vi, X Qp, where u is solution of the nonlinear differential equation [5.11],
with 7, given by and R, by [5.15 In what follows, we will rename 7,,, = 7.

Remark 8 From the point of view of the implementation of the method, it is clear from
that w is needed at the numerical integration points within each element. Therefore,
has to be integrated in time at each integration point. In this sense, w acts as what

would be called internal variable in solid mechanics.

Remark 9 If the subscales are assumed to be orthogonal to the finite element space, the
term (Oyu, vp,) vanishes and, as explained in [29], the term Y . (w, vAvy+up-Vor+Vau) k

can be replaced by > (w, wp- Vo, +Van) i and still keep the same accuracy of the method.
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Remark 10 Problem[5.45.10 and[5.11{5.19 needs to be completed with initial conditions

wp, = u) andw =’ att = 0, where the functions u) and @’ depend on the way to choose

the space of subscales. We assume that the projections onto the finite element space and
the space of subscales are L? continuous (this is obvious if P = II;- in , and therefore

|ud|| < Cllul|, |a°| < C||u’|| for a certain constant C.

5.3 Main features of the formulation

The left-hand-side of the discrete variational form of the problem given by consists

of the following terms:

(Oyun, vy) + v(Vuy, Voy) + (uy, - Vuy, vy)

— (pn, V- vp) + (qn, V - up) — (vp, f) Galerkin terms (5.18)

— Z(ﬁ, vAvy, + uy - Vo, + Vi) i Stabilization terms (5.19)
K

(Oyu,vp) + (u - Vuy, vy) — (u,u - Vo) Effect of u(t) (5.20)

The stabilization terms appear also in the stationary and linearized problem, and it is now
well known that they allow to overcome the instability problems of the classical Galerkin
formulation, which in this case are the instabilities found in convection dominated flows
and the need to satisfy an inf-sup condition for the velocity and pressure interpolations.

The terms associated to the effect of w in the material derivative are precisely those

that come from accepting the decomposition u;, + w in the expression of

Du = 2w, + @)
DI T DR T
= Oy + 0w +u - Vuy, +uy, - Vuy, +u - Vu + uy, - V. (5.21)

Only the last of these terms where u appears contributes to the stabilization terms. Our

objective is to discuss precisely the effect of the other terms contributed by .

5.3.1 Commutation of space and time discretization

Let us start our discussion on the properties of the method just presented by noting that
we have been able to formulate a stabilized finite element method without any reference to
the time discretization. Usually, the problem of formulating stabilized methods for time

dependent problems has been tackled using two main approaches:

e By using space-time finite element formulations, and considering the temporal
derivative in the same way as the first order spatial derivatives of the convective

term. This is the approach adopted for example in the early papers on this subject
[91], 132].
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e By discretizing first in time, and then using a stabilized finite element method
for the resulting spatially-continuous problem. This is perhaps the most popular
approach in the literature. The design of the time integration scheme is in principle
independent of the stabilization formulation used, but can be adapted to improve

the behavior in time of the solution (see, e.g., [88]).

Space time formulations of order higher than one require predictor-corrector strategies
to avoid an unacceptable increase in the number of unknowns treated at once (see, e.g.
[132]). On the other hand, first order methods, with piecewise constant interpolations in
time, lead to very poor schemes, that need to be modified a posteriori to improve their
accuracy [87]. In particular, it turns out to be essential to include an approximation of the
time derivative in the residual given by [5.15] This comes out naturally if the equations
are first discretized in time using a finite difference scheme.

Nevertheless, in the subgrid scale formulation we are analyzing, the fact of considering
the subscales time dependent allows us either to start from the time discrete problem, as
n [29], or to use a method of lines, discretizing first in space and then in time, which
is the approach we are following here. Both methods will lead exactly to the same fully
discrete scheme, that is to say, space and time discretization commute, even when using
finite difference schemes in time. In general, this property is trivial only for stabilized
methods that do not involve the residual of the equations to be solved, as the method
proposed in [20] or even the stabilization with quasi-static orthogonal subscales [29].

Let us consider now which would be a finite difference time discretization of problem
5.17, with @ solution of To fix ideas, let us apply the generalized trapezoidal
rule. Consider a uniform finite element partition of [0,7] of size d¢, and for a time
dependent function f let f™ denote an approximation to it at t* = ndt, 6 f* = fott — fm,
S f" == 6f"/ot and frt? = Qf”“ + (1 —6)f", with 1/2 < 6 < 1. The generalized
trapezoidal rule applied to [5.17] leads to the following fully discrete variational problem:

~nd1 .
given uy and ", find u} !, pZ“ and u"*" by solving

(6w}, vp) + v(Vur™ Vo) + (upt? - Vurt? vy) — (7 V- vy)

+(qn, V - ul ) — Z( " vAvy, + Ul Vo, + V) g

K
+ (6", vp) + @ Vurt? wv,) — @ a"t? Vo) = (v, ) (5.22)

_ 1 N
s + ——au"t’ = R? (5.23)
Tn

for all [vp, qn] € Vi X @ (we have assumed f continuous in time, otherwise £+ has to
be understood as a time average between ¢" and t"*1). In it is understood that the
time derivative in R™"™ is already discretized. From this equation we can obtain at
and insert it into [5.22] Obviously, the result will depend on @", and thus the subscales

need to be tracked in time.
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Equation [5.23| can be considered the “natural” choice for the time integration of the
equation for the subscales, in the sense that they are integrated using the same scheme
as the finite element component of the velocity. Likewise, if we had first discretized the
continuous Navier-Stokes equations in time and then applied the splitting v = u} + u"
we would have arrived also to (with the adequate modeling of the subscales).
However, there is also the possibility of using a different time integration for w; and w.

. . 1 L.
For example, assuming given a guess for w"*' to evaluate 7"*' and R™" within the

time interval [t", t"*1] we could consider the time continuous equation for u

with 0 < a <1, which can be integrated to yield

_ _ t
o't = (" — 7" R exp (_ ) R (5.24)

TnJroz

Remember that both 7%+ and R™" depend on """, and therefore is a nonlinear
algebraic equation for this subscale (except if a = 0, of course), which can be solved for

example using the strategy proposed in [21], or simply linearized and solved iteratively.

Remark 11 FEven though we are considering % <0<1, makes sense also for 6 =0
(eaplicit integration of the subscales), case in which it yields "™ = (1 — 6t/7™)u" +
5t R, This expression corresponds also to with a« = 0 and expanding the

exponential to first order in §t/T".

5.3.2 Why 7 must depend on 6t (but this is not enough)

Let us consider equation [5.23 and re-write it as

art = (= L B R g (5.25)
06t Tnto " 0ot '
From this expression we see that the residual of the momentum equation is multiplied by
1 1 \"!
=l—=+—— 5.26
K (9525 * T”+9) (5.26)

This is what can be considered the stabilization parameter for the transient incompressible
Navier-Stokes equations. Expressions with asymptotic behavior similar to [5.26[in terms
of h, v, |uy| and §t can be often found in the literature (see, e.g. [132, [138]). The way to
motivate it can be explained in a simplified way by saying that the temporal derivative
of the velocity is considered as a reaction-like term (with a zero order derivative) with
factor 1/(0dt), after considering for a given time step the equations discretized in time.
This explanation can be found for example in [58], or in [85], where it motivates a careful

design of the stabilization parameters for reaction dominated problems.
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In reference [I1] there is a study of the instability encountered when the ASGS method
is used and is replaced by the simplified equation

ﬁn-&-e _ 7_n+0 R;@n-‘r@ (527)

that corresponds to what we have called quasi-static subscales. It is shown in the reference
mentioned that for the Stokes time continuous problem the Schur complement matrix for
the pressure is not uniformly invertible, and this property is inherited as 0t — 0 if A, and

0

therefore 777 remains fixed (the case § = 1 is considered in [I1]).

It is easily shown that the instability described disappears if
6t > O™ (5.28)

where C' is a positive constant. This is a condition that appears very often and about
which there are several remarks to be made:

e As it has been mentioned, under condition the instability problems described
in [I1] for the ASGS method do not appear. This condition prevents the possibility
of letting 0t — 0 while keeping h fixed.

e In fact, if holds it is irrelevant from the analysis point of view if the residual in
is multiplied by 7; defined in or simply by 7", since this parameter and
7, have the same asymptotic behavior in terms of h, v and |uy|.

e Condition [5.28] was needed in the analysis of the stabilization with orthogonal
subscales for the convection-diffusion equation analyzed in [32], also considering

time dependent subscales.

From this discussion it seems clear that the stabilization parameter and the time step
size must be related in classical stabilized finite element methods. This is clear from the
heuristic arguments presented in the references mentioned above, the instability described
in [T1] for the ASGS method and the reasons found to comply with condition just
mentioned. However, we have not mentioned yet the fact that in|5.25 we are tracking the
subscales in time. This has two major benefits, which justifies why taking the stabilization
parameter as indicated by 18 not enough:

e If, as it is done in [58, [132] [138], among other references, the stabilization parameter
adopted has an expression similar to but the subscales are not considered time
dependent, the steady-state solution depends on the time step size. This is clearly
not an optimal situation. The amount of stabilization will depend on the way the
equations are integrated to the steady-state. This does not happen if expression
is used. It can be easily checked that, when the steady-state is reached,

(now without any superscript) is recovered.
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e Stability for all 6t and h, without any need to satisfy[5.28 can be obtained for the
linearized Navier Stokes equations[36]. Further, a complete convergence analysis
of the transient approximation to the Stokes problem can be found in [3]. This is
particularly relevant, since it allows us to use arbitrary combinations of h and dt. In
other words, we may use what could be called anisotropic space-time discretizations.
Of course, it is possible to use directly without considering time-dependent
subscales, and in that case is automatically verified. However, that would lead

to stability estimates that become meaningless in space when 6t — 0.

5.3.3 Tracking of subscales along the nonlinear process

Up to now we have considered the effect of the term (0,u,wv;,) in and of Ju
in (.11l In this subsection we describe the effect of the other two terms in [B.I8
Summarizing, (u - Vuy, vy) allows us to guarantee global conservation of momentum,
whereas —(u,u - Vvp,) may be understood as the term coming from the subgrid scale

tensor in a LES approach.

Conservation of momentum

Let us start by analyzing the effect of (w - Vuy,v,). The purpose of what follows is to
present a version of the results in [84], simplified and adapted to the present setting.

Let VZ the velocity finite element space without imposing the Dirichlet boundary
conditions, that is, with degrees of freedom also associated to the boundary nodes. Let t

be the stress vector (traction) on the boundary I" and consider the following augmented
problem instead of |5.17}

(8t’u,h, ’Uh) + V(Vuh, V’Uh) + ('u,h . Vuh, ’Uh> — (ph, V- Uh)

+(qh, V- 'u,h) — Z('ﬂ, vAwvy, +uy, - Voy, + th>K
K

+ (O, vp) + (@ - Vup, vp) — (W, w-Vop) = (vs, f)+ (vn, t)r

where now v, € V¢ (not just V). Considering d = 3 and taking for example v;, = (1,0,0)
and ¢, = 0, this equation yields

/ Or(up,1 + 0y)dQ + / Up1 Wy, - ndl — / up 1V - updQ
Q r Q

—i—/ﬁ-Vuh,ldQ - /f1d9+/t1df
Q Q r

where now the zero Dirichlet condition for the velocity is not explicitly required. This

statement provides global momentum conservation if

— / thV . uth + / u - VthdQ = 0. (529)
Q Q
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This is implied by the continuity equation obtained by taking v, = 0

(g, V- wn) = > (@, Van)x =0, (5.30)
K

provided Vi, /R C @y, that is to say, the velocity component uy; belongs to the pressure
space (up1 can be considered modulo constants, since they do not affect neither the
first nor the second terms in . This holds, in particular, for the “natural” choice
Vi/R = Qp, that is to say, equal velocity-pressure interpolations. For the standard
Galerkin method, this condition is impossible to be satisfied, since equal interpolation
does not satisfy the inf-sup condition. As a conclusion, the term (@ - Vuy,v,) provides

global momentum conservation, since without it in the discrete momentum equation, we
would have obtained — [, us,1V - u,dQ = 0 instead of [5.29] which is not implied by [5.30|

A door to turbulence

Let us conclude this section with some speculative comments on the contribution of the
term —(u,w - Vv,). In the standard large eddy simulation (LES) approach to solve
turbulent flows (see e.g., [122], [130]) an equation is obtained for the large, filtered scales
of the flow, which we will denote with an overbar. This equation includes an extra term
when compared with the incompressible Navier-Stokes equations [5.1}5.2} the divergence
of the so-called residual stress tensor or subgrid scale tensor R := u ® u —u ®u. Tensor
R has to be modeled in terms of w to obtain a self-contained equation, a problem known
as the closure problem, and, once this is done, the resulting LES equation can be solved
numerically.

The residual stress tensor, R, is often decomposed into the so-called Reynolds, Cross
and Leonard stresses to keep the Galilean invariance of the original Navier-Stokes equation
in the LES equation. This invariance is automatically inherited by the formulation
presented in this work and we observe that analogous terms to the various stress types
are recovered in a “natural” way from our pure numerical approach (this was also the
case in [82]). Let us have a look at this point. We first consider the last four terms in
the material derivative |5.21| as they appear in the variational equation |5.17. The term

—(u,u - Vvy) can be rewritten as
—(17, ’Zi : V’Uh> = —<’le ® ﬁ, V’Uh>

and can be identified with the Reynolds stress. The addition of the other three terms

becomes, after integration by parts,
(uy, - Vuy, vy) — (@, up, - Vo) + (- Vuy, vi) = —(up @up, Vo) — (u, @u+u Q@ uy, Vo)

and we can identify the second term on the right hand side with the cross stress. If we

now pay attention to the convective term of the residual in the subscale equation [5.11
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and take, for simplicity, P = I, we observe that
((up +u) - Vuy, v) = — (up ® up, Vo) — (u, @ u, Vo)

and the first term on the right hand side can be identified with the Leonard stress.
Hence, we can effectively conclude that the modifications introduced by the presence of
the divergence of R in the LES equations are somehow automatically included in our
subgrid scale stabilized finite element approach.

How good our formulation will work as a turbulent model will mainly depend on the
validity of the approximation made to derive the evolution equation for the subscales
.11} being the ASGS or the OSS methods two available possibilities. In order to check
this performance, benchmark problems for turbulent flows should be used. A widely used
benchmark problem is the decay of isotropic turbulence. Our model should be able to
reproduce the Kolmogorov energy cascade in the wavenumber Fourier space that displays
an inertial range, where E(k,t) ~ Cxe?/3k=>/3 (£ being the energy dissipation rate, k the
wavenumber modulus, Cx the Kolmogorov constant in energy space and E the kinetic
energy). The model should be also able to capture the appropriate decay in time of
energy, enstrophy and other related statistical variables. Other more intricate questions
such as if the model allows for backscatter or if the dimension of the global attractor is
properly reproduced could be also addressed. We remind that the heuristic estimate for
this dimension is N ~ (L/Ag)® ~ Rei (where A is the Kolmogorov length scale) and
that the closest estimate analytically proved is (roughly) (L/Ag)*® (see [59]). Another
standard test for turbulence is the turbulent channel flow. In this case the model should
be able to approximate the turbulent boundary layer that, according to Prandtl theory,
exhibits a log behavior after the laminar sublayer. Finally, we should mention that in an
attempt to find a more mathematical foundation for the LES approach to turbulence, the
concept of suitable approrimations to the Navier-Stokes equations has been introduced in
[65], 66]. It is expected that approximate solutions converge (in a weak sense) to suitable
solutions. This seems to be the case for low order finite elements and the standard Galerkin
method [64]. Hopefully, our enhanced formulations will have this property.

The original idea of using the multiscale formulation with local approximation to the
fine scales to compute turbulent flows was already pointed out in [29] and elaborated in
[77, 21]. Very good results were obtained for fully developed and transitional turbulent
flows. In fact, some promising results of numerical simulation of turbulent flows only with

stabilization can be found in [73, 39](see also [62] for a review).

5.4 Numerical examples

In this section we present three simple numerical examples that illustrate the performance

of the method. The first is a convergence test that shows that for solutions with a smooth
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behavior in time both quasi-static and transient subscales lead to the same optimal
convergence rate. In the second example we demonstrate the improvement obtained
when the subscales are tracked in time in the example introduced in [I1]. Finally, the
last example is the classical flow over a cylinder, for which considering transient subscales
leads to better results, both in terms of accuracy (with higher amplitudes and frequencies,
that is, less numerical dissipation) and of stability, eliminating some pressure oscillations
in time encountered when the subscales are considered quasi-static. In all the cases we
have used the ASGS method, that is, P = I (identity) in 5.16]

5.4.1 A convergence test

In this example, already presented in [27], we consider the time dependent Navier-Stokes
equations in the unit square with homogeneous Dirichlet boundary conditions and taking

the force f and boundary and initial values to have the exact solution defined by

w = 100A(t) (f(2)f'(y), ' (x)f(y)),  p=100a",

where
h(t) = cos(mt) e, f(z) =2*(1 — x)%

Uniform meshes of 10 x 10, 20 x 20, 40 x 40 and 80 x 80 bilinear elements have been used
to discretize the computational domain. The time interval of the analysis is [0, 1] and the
viscosity is 0.1.

The objective of this test is to check the convergence of the time approximation
to the exact solution using the method proposed here. To this end we compare the
results obtained using transient subscales (TRS) to those obtained using quasi-static
subscales (QSS) (see Remark 2). We compute the error as the discrete approximation to
the L? norm of the difference between the exact and the approximated solution at time
t = 1 and we normalize it using the discrete approximation to the L? norm of the exact
solution. Numerical experiments have been performed using a first and a second order
temporal discretization (Crank Nicolson scheme) and several time step sizes. In the case
of the second order approximation we have also considered a first and second order time
integration of equation [5.23] The convergence of the velocity approximation is shown
in figure from where it is seen that stabilized approximation converges to the exact
solution at the expected rate either using the time dependent or the quasi-static subscales
(see Remark 9). We also note that the integration of the subgrid scale equation using

a first or a second order method has little influence on the results.

5.4.2 Stability in the small time step limit

The second example, presented in [I1], shows the instability of the approximation to the

Stokes problem when quasi-static subscales are considered (recall that we are using the
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Figure 5.1: Convergence of the time approximation using quasi-static subscales (QSS) and

transient subscales (TRS). First order approximation on the left and second order

approximation on the right. In the second order approximation first order (FO) or

second order (SO) subscales are considered. From top to bottom meshes of sizes
h = 1/20, h = 1/40 and h = 1/80. Note that the convergence curves loose the

optimal slope in time (1 or 2) when the error becomes dominated by the spatial

component.



118 The incompressible Navier Stokes problem

ASGS method in all the examples). It consists again of an exact solution problem in which
the time dependent Navier-Stokes equations are solved in the unit square with Dirichlet
boundary conditions taking the force f and boundary and initial values to have the exact

(steady state) solution defined by

u = (sin(mz — 0.7) sin(my + 0.2) , cos(mx — 0.7) cos(my + 0.2)) ,
p = sin(mx)cos(my) + (cos(1) — 1)sin(1).

Numerical examples presented in [11] show that spurious oscillations in the pressure are
found when the time step is small enough and that this effect is more dramatic when the
order of the polynomial approximation is increased. We have solved this problem using
different meshes for time step sizes dt” = 10~" using a first order time approximation.

Figure shows the convergence of the approximation using bilinear elements at the
first time step, while figure [5.3| shows the same results corresponding to the second time
step. The instability mentioned can be seen in figure 5.2 as for a given mesh size the error
increases when the time step is decreased. As a first order approximation is being used
and the solution of the problem is steady, the error should decrease linearly with the time
step size. This is not the case in the first step, neither using the quasi-static subscales as
shown in [11], nor using transient subscales. However, as shown in figure [5.3} when the
transient subscales are considered the instability is eliminated at the second time step.
This behavior leads to consider the practical problem of the initial conditions for the
subgrid scale (we have taken them to be zero), which has not been considered here. It has
to be noted that, in any case, the instability observed disappears as time advances and,
obviously, the stationary solution is equally approximated using quasi-static and transient
subscales.

The situation is different when higher order elements are used. Figure shows the
convergence of the approximation using biquadratic elements while figure [5.5| shows the
convergence of the approximation using bicubic elements, both at the first time step.
Similar results are found for the second time step. From figures [5.4 and [5.5]it is seen that
when quasi-static subscales are considered the method could not converge as the mesh
is refined for small time steps. This is even more dramatic than the result presented in
[11], where only a fixed mesh of 10 x 10 elements was considered. In the case of transient
subscales, although some dependence of the error on the time step size is still observed,
convergence under mesh refinement is always achieved. This effect is seen in figure [5.6)
where pressure contours for different mesh sizes obtained using quasi-static and transient

subscales are compared.

5.4.3 Flow past a cylinder

The last example is the flow past a cylinder at Re = 100, a well known benchmark. The
domain is [0, 16] x [0, 8]\ D, where the cylinder D has a diameter 1 and is located at (4, 4).
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Figure 5.2: Convergence of the approximation using bilinear elements at the first time step.
Quasi-static subscales on the left and transient subscales on the right. Velocity

error at the top and pressure error at the bottom.
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5

!

Figure 5.6: Pressure contours for §¢ = 107% and (from top to bottom) h = 1/20, h = 1/40

and h = 1/80 using biquadratic elements. Quasi-static subscales on the left and

ik

transient subscales on the right.
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A uniform velocity is prescribed at the inlet, zero y component is prescribed at y = 0
and y = 8 and zero traction is prescribed at the outlet. Two meshes have been used to
test the behavior of the method, a coarse one of 1360 nodes and a fine one of 5280. The
results will be compared to those obtained using a reference mesh of 20800 nodes.

The initial condition is w = (1,0) except at the cylinder surface. From this initial
condition the flow evolves to a symmetric solution that becomes unstable around ¢ = 100
and the characteristic vortex shedding appears. To visualize the problem setting, a
pressure distribution snapshot in the fully developed regime is shown in figure A
second order method has been used with time step size 6t = 0.2 and 10 Euler time steps
have been performed at the beginning of the calculations for all the meshes. A convergence
tolerance of 1078 was required at each step, which was achieved typically after 8 to 10

Picard iterations.

Figure 5.7: Pressure distribution at ¢ = 160

Figures and [5.9|show the evolution of the z-velocity at point (6.15,4), figures
and that of the y-velocity and figures and that of the pressure, always
at the same point and for the two meshes considered, comparing the results obtained
using quasi-static subscales and transient subscales to those obtained using the reference
mesh. It can be seen from figures [5.8 and how the use of the transient subscales
gives a better mean value of the x-velocity when the flow is fully developed, specially in
the coarse mesh. From [£.10 and B.11] it can be observed how the use of the transient
subscales gives a higher amplitude and a higher frequency of the oscillation, that is to say,
less numerical dissipation. Finally, in figure [5.12| some time step-to-time step oscillations
can be observed when the quasi-static subscales are used and how these oscillations do
not appear when transient subscales are considered. These oscillations, already reported
in [29], depend on the length used in the definition of the stabilization parameters. They
appear when there is a variation of the element size from one element to another and they
disappear if a fixed mesh size is used to define the stabilization parameter. From figure
5.13| it is seen that they also disappear in the fine mesh. In this case there is almost no

gain in the pressure using transient subscales (but there is in the velocity, as shown in

figures and .
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Figure 5.8: Horizontal velocity evolution at (6.15,4.0) using the coarse mesh (left) and its detail
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Figure 5.12: Pressure evolution at (6.15,4.0) using the coarse mesh (top) and its detail (bottom).
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5.5 Conclusions

The main conclusion of this chapter is simple: we believe it is worth to track the subscales
in time in a variational multiscale approach to the transient incompressible Navier-Stokes
equations and to take into account all their contributions in the convective term.

The first and very simple reason is that it leads to global momentum conservation, a
rare property. A second reason can be the door opened to turbulence modeling, although
we have touched this point only marginally. What has been the main focus of this chapter
is the study of the advantages of tracking the subscales from the point of view of the time
integration scheme. First, we have remarked that the resulting formulation leads in a
natural way to the correct behavior of the stabilization parameters with the time step
while steady-state solutions do not depend on it. Moreover, the conflict about the design
of the stabilization terms for time dependent problems (either at the semi-discrete or
the fully discrete level) disappears, since space and time discretization can be commuted.
The numerical experiments show that the gain with respect to quasi-static subscales is

notorious.



126 The incompressible Navier Stokes problem



Chapter 6

Thermally coupled flow problems

In this chapter we propose a variational multiscale finite element approximation of
thermally coupled flows. We consider the thermal coupling in the context of the
Boussinesq approximation but the same formulation is used to solve the low Mach number
equations with minor modifications (we refer the reader to the next chapter, in which some
implementation details are discussed). The main feature of the formulation in contrast to
other stabilized methods is that we consider the subscales as time dependent. They are
solution of a differential equation in time that needs to be integrated. Likewise, we keep
the effect of the subscales both in the nonlinear convective terms of the momentum and

temperature equations and, if required, the coupling between them.

6.1 Introduction

Thermally coupled incompressible flows are of particular interest from the numerical point
of view for different reasons. Apart from their obvious practical interest, very often these
flows exhibit instabilities and even transition to turbulence in situations simpler than for
isothermal flows. The numerical modeling of these instabilities that take place in rather
simple cases is an excellent test for numerical formulations.

In this chapter we propose a finite element formulation for thermally coupled flows
based on the variational multiscale formalism [78]. The basic idea is to split the unknowns,
velocity, pressure and temperature, into their finite element component and a subgrid scale
component, hereafter referred to as subscale. The particular approximation used for these
subscales defines the numerical model. The main feature of the model we propose is that
we consider the subscales time dependent and that we keep their effect in all the terms
of the equations to be solved, both the nonlinear convective terms of the momentum and
the heat equation and in the coupling term due to the Boussinesq model.

The basic formulation for isothermal incompressible flows was described in [36] and

chapter[p] As it is explained there, considering the subscales time dependent and tracking
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them along the iterative process to deal with the nonlinear terms has several benefits, such
as a better performance in time of the final formulation, the conservation of momentum
or the possibility to model turbulence. In this chapter we extend the formulation to

thermally coupled flows using the Boussinesq approximation.

The need to stabilize the standard Galerkin finite element approximation comes from
two main sources, namely, the wish to use equal velocity-pressure interpolations and to
deal with convection dominated flows. As it is now well known, both sources of instability
can be overcome by using stabilized formulations. However, the main interest of this
chapter is not to explain how the stabilized formulation employed here allows to use equal
interpolations or is able to avoid convection instabilities. Our main concern is to explain
how to consider dynamic subscales, how to integrate them in time and how to track them
along the iterative process, accounting in particular for the coupling of the heat and the

momentum equations.

The chapter is organized as follows. In the following section we define the problem
and in section 6.3 we consider the multiscale formulation extended to thermally coupled
flows and we present the time integration scheme in section 6.4, summarizing its main
properties in section 6.5. Two numerical examples are presented in Section 6.6, both
of them two-dimensional. They involve two situations of thermally coupled flows that
display a bifurcation of the solution due to the instability of the basic flow. One of them
is the classical Rayleigh-Bénard instability coupled with a Poiseuille flow, which leads
to a transient flow even if the bifurcation is of stationary type. The second example is
the classical flow in a cavity with differentially heated vertical walls. When the Prandtl
number is small, the flow exhibits a Hopf bifurcation that leads to an oscillating flow

pattern. The chapter concludes in Section 6.7 with some final remarks and comments.

6.2 Physical problem

Let Q C RY, with d = 2,3, be the computational domain in which the flow takes place
during the time interval [0,7], and let " be its boundary. The initial and boundary

value problem to be considered consists in finding a velocity field u, a pressure p and a
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temperature 9 such that

ou+u-Vu—vAu+ Vp+ gl = f + Bgiy in Q, te(0,7)
Vou=0 inQ, te(0,7)
00 +u-Vi—alAd =Q inQ, te€(0,7)
u=20 onI', te€(0,7)
u=u’ inQ, t=0
V=0 onI, t e (0,7)
9 = 19° in ), t=

In these equations, v is the kinematic viscosity, a the thermal diffusivity, § the thermal
expansion coefficient, f the external body forces, ¥y the reference temperature, g the
gravity acceleration vector, () the heat source and u’ and ¥° the initial conditions for
velocity and temperature, respectively. For simplicity in the exposition, we have assumed
homogeneous Dirichlet boundary conditions for both velocity and temperature.

To define the functional setting, let H'(Q2) be the space of functions such that they and
their first derivatives belong to L?(Q2) (that is, they are square integrable), and let Hj ()
be the subspace of functions in H'() vanishing on the boundary. Let also V' = H}(Q)?,
Q* = L*(Q)/R, ¥ = HI(Q) and define V. = L*(0,T; V™), Q = L*0,T;Q*) (for
example) and ¥ = L?(0, T; U*"), where L?(0,T; X) stands of the space of functions such
that their X norm in the spatial argument is an L”(0,7) function in time, that is, its p-th
power is integrable if 1 < p < oo or bounded if p = cc.

The weak form of the problem consists in finding (u,p,d) € V x Q x ¥ such that

(Oyu,v) + (u - Vu,v) + v(Vu, Vo) — (p, V- v) + 5(gd,v) = (f,v) + B(gd,v) (6.1)
(¢, V-u)=0 (6.2)
(D0, 9) + (w - V9, 8) + a(VO, Vi) = (Q, ) (6.3)
for all (v,q,v) € V™ x Q% x U where (-,-) denotes the L?(2) inner product and
(f,9) = fQ fgd€Q) whenever functions f and ¢ are such that the integral is well defined.
The dimensionless numbers relevant in this problem are those already defined in chapter
and the Grashof number given by
_ Blgla
2
where [y is a characteristic length of the problem and AvY a characteristic temperature
difference. Note the relation Ra = Gr Pr.

Gr

6.3 Multiscale approximation

Let us consider a finite element partition P, = {K} of the computational domain  of

ne elements, from which we can construct finite element spaces for the velocity, pressure
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and temperature in the usual manner. We will denote them by V;, C V**, @, C Q** and
U, C WSt respectively, and, to simplify the exposition, we will assume that they are all
built from continuous piecewise polynomials of the same degree k. The basic idea of the

multiscale approach we will follow [78] is to split the continuous unknowns as

u=u,+u (6.4)
p=pntp (6.5)
Y=, + ’5 (66)

where the components with subscript A belong to the corresponding finite element spaces.
The components with a tilde belong to any space such that its direct sum with the finite
element space yields the functional space where the unknown is sought. For the moment,
we leave it undefined. These additional components are what we will call subscales.
Each particular variational multiscale method will depend on the way the subscales are
approximated. However, our main focus in this work is not how to choose the space
of subscales (in our case for velocity, pressure and temperature), but to explain the
consequences of considering these subscales time dependent, and therefore requiring to
be integrated in time. Likewise, we will keep the previous decomposition [6.446.6| in all
the terms of The only approximation we will make for the moment is to assume
that the subscales vanish on the interelement boundaries, K. This happens for example
if they are approximated using bubble functions [4], or if one assumes that their Fourier
modes correspond to high wave numbers, as it is explained in [29)].

Substituting [6.4H6.6] into [6.1}{6.3] taking the test functions in the corresponding finite

element spaces and integrating some terms by parts, it is found that

(Opun, v1) + (up, - Vug,vy) +v(Vuy, Vo) — (pn, V - v) + B(gdn, vp)
— (17, vALv, +upV - ’Uh) + (8@, ’Uh> + (ﬁ -Vuy, ’Uh) - (ﬁ, u - V'vh)
— (B, V- vp) + B(gd, vp) = (£.01) + Blgdo. o) (6.7)

(gn, V- up) — (u,Vagn) =0 (6.8)
(On, ) + (wp - VO, ) + a(VIy, Viby) — (57 alphy, 4wy, - th)
+ (O, ) + (- Vi, un) = (9.3 Ven ) = (Qu4) (6.9)

which must hold for all test functions (v, qn, ¥n) € Vi X Qn X ¥y, The subindex A in
the Laplacian denotes that it is evaluated elementwise.

The first row in corresponds to the terms arising from the classical Galerkin
approximation of the momentum equation (except for the term due to external forces).
Once the velocity subscale is approximated, the first term of the second row provides
stability of convection as usual in classical methods (see, for example, [28]). The rest of

the terms in the second row and those in the third row are non-standard terms, in the sense
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that they are usually neglected. One of our purposes here is to discuss the implications
of these terms. The last row in [6.7] comes from the contribution of the pressure and
temperature subscale and the contribution from the external forces. It is rather standard
to take the pressure subscale into account, but to study the effect of the temperature
subscale is one of the objectives of one of our numerical experiments.

In the left-hand-side of |6.8|the first term is the classical Galerkin contribution, whereas
the second provides (pressure) stability once the velocity subscale is approximated.

Similar comments to those made for apply to The first three terms of the
first row correspond to the classical Galerkin approximation (except for the heat source),
the last term of the first row provide stability in convection dominated flows when the
temperature subscale is approximated and, finally, the three terms in the left-hand-side
of the second row are non-standard, and come from the fact that subscales are never
neglected in the previous equations (except for the fact that they are assumed to vanish
on the interelement boundaries, as it has been already mentioned).

Equations [6.7H6.9| can be understood as the projection of the original equations onto
the finite element spaces of velocity, pressure and temperature. The equations for the
subscales are obtained by projecting onto their corresponding spaces. If P denotes this

projection onto any of these spaces, these equations are

2 {ata 4 (up + @) - Vi — vAT + VP + 595] — PR, (6.10)
P[V -4 = PR, (6.11)
P [aﬂ%r (wy + @) - VI — aA{ﬁ] — PR, (6.12)

where

<
3
|

= f + B9V — [Oyup + (up + ) - Vuy, — vApuy + Vpy, + 8g04]
Rc = —V s Up
Re = Q - [aﬂ?h + ('U:h + '171) : V??h — CKAhﬂh],

are the residuals of the finite element unknowns in the momentum, continuity and energy
equation, respectively. Equations [6.10 need to be solved within each element and, as
we have assumed, considering homogeneous velocity and temperature Dirichlet boundary
conditions.

It is not our purpose here to discuss how to approximate [6.10) which, in fact, is
the essence of the different stabilized finite element methods that can be found in the
literature. We will adopt a simple approximation that can be found, for example, in [29]
and references therein. Our main concern, as in the reference just mentioned, is to keep
the time dependence of the subscales, as well their nonlinear effects. When their time
derivative is neglected, we will call them quasi-static, whereas otherwise we will call them

dynamic.
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Following the line of chapters 3, 4 and 5 now extended to thermally coupled flows, we
propose to compute the subscales within each element of the finite element partition as
solution to

du+71.'u= PR, (6.13)
770 = P (Re + 7O Ry) (6.14)
00 + 70 = PR, (6.15)
where the isotropic stabilization parameters 7,,, 7. and 7, are computed as
~\ -1
v up, +u
Tm = (Clﬁ + C2|h—h|> (6.16)
h? ~
T, = =v+ 2h|uh + ul (6.17)
C1Tm 1
~\ -1
«Q u, +u
Te = (Clﬁ + 02|h—h’> (6.18)

where h is the element size and ¢; and ¢y are algorithmic constants (we have adopted
¢ =4 and ¢ = 2 in the numerical experiments).

The approximation adopted for the subscales could certainly be improved, for example
by trying to relax the assumption that they vanish on the interelement boundaries or by
trying to model the coupling between the three equations in play (momentum, continuity
and heat) as done in chapter 4 for the Oseen equations. However, our interest here
is only to analyze the effect of considering the subscales time dependent and taking
into account their contribution in the nonlinear terms. In particular, it is important
to remark that is nonlinear, both because the velocity subscale contributes to the
advection velocity and because the stabilization parameter 7,, depends also on the velocity
subscale, as equation [6.15) and the stabilization parameter 7. Likewise, depends on
the temperature subscale, and therefore the velocity-temperature coupling is naturally
accounted for.

Even though it is not our purpose to use an “accurate” approximation to the subscales
like the one introduced in chapter 4, in some case we have found convenient to include
the time derivative of R, in the approximation of the pressure subscale. This
term was neglected in the previous chapter and in |29 36], but in some situations it
is crucial to improve pressure stability. This time derivative arises naturally if the second
approximation to the subscales of chapter 5 is considered.

It is observed that in we have kept the projections P in the right-hand-
side terms. Basically, two different options can be considered. Classical stabilized finite
element methods are recovered by taking P=1 (the identity), whereas if P = Pl =
I — P,, P, being the L2-projection onto the appropriate finite element space, the subscales
turn out to be orthogonal to this finite element space. The resulting formulation is termed

as orthogonal subscales stabilization (OSS) in [29)].
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The space-discrete formulation is now complete. However, contrary to what happens
with quasi-static subscales and neglecting their nonlinear effects, now it is not possible to
obtain a closed-form expression for these subscales and insert them into in order to
obtain a problem for the finite element components of velocity, pressure and temperature.

Prior to discretizing in time, we cannot go any further than saying that the problem

consists in solving 6.9 together with

6.4 Temporal discretization

Any finite difference scheme can now be applied to discretize in time both equations
and equations [6.13}6.15] Obviously, space-time finite element discretizations are also
possible. In order to make the exposition concise, we will restrict our attention to the
trapezoidal rule.

Let dt be the time step size of a uniform partition of the time interval [0, 7],
0=1t"<t' <.. <tV =T. Functions approximated at time t” will be identified with
the superscript n. For a generic function f, we will use the notation §f™ := fr+t — fn,
Sift=0f/ot, frf =0+ (1-0)f" 0<0<1.

The time discretization of is standard and does not need any further

explanation. Given u}, ¥}, u" and 5”, it consists of solving the problem
(Geuy, vp) + (upt? - Vupt? o) + v(Vu ™, Vo) — (ppt, V- vp) + B(g0) e op)
- <’l~l,n+9, VAh’Uh + UZ+0V . ’Uh> + ((5{17,71, ’Uh> + <’Q~1,n+9 . VUZ+0, ’Uh> — (’ﬂ,n—w, ’E,n+9 . V’Uh>

— (", V o) + B(g0 0 vy) = (£, v1) + B(gVo, vp) (6.19)

(qn, V - ul*?) — (@' V) = 0 (6.20)
(0, on) + (™ - VO n) + a( VI, V) — (5””, alpy + upt? - wh)
+ (8,9", ) + (ﬁn+9 : WZ*Wh) — <1§"+9,’l~tn+6 . V@/)h) = (Q,vYn), (6.21)

which must hold for all test functions (v, qn, ¥n) € Vi, x Qp X Wy, Note that the pressure
is considered approximated at time n 4 1. This avoids the need to deal with the pressure
at a previous time step and does not modify the velocity approximation. As it is well
known, the scheme is expected to be of second order if § = 1/2 and of first order otherwise.

Equations [6.13 need also to be integrated in time. The simplest option is to use

the same time discretization as for the finite element equations, which yields

~n 1 ~n D PN
S + T 0 — pRH (6.22)
Fﬁ”*l =P (R + 0P 5, RY) (6.23)
~ 1 ~ ~
S0 + —— "t = PRt (6.24)

+0
e
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However, we will consider two additional options. The first is that the time integration
for the subscales could be less accurate than for the finite element equations [6.7H6.9
and still keep the same order of accuracy in time of the finite element solution. The
formal idea to justify this is the following. From the expression of the stabilization
parameters 7, and 7, in [6.16] and [6.18], respectively, it follows that they behave as the
critical time steps of an explicit integration in time of the momentum and the heat
equation [37]. Therefore, we may assume that they are of order O(dt). From [6.22]
it follows that O(1)0u""™ + @™ = O(6t)P(R™?), and thus we may conclude that
a'tt = O(ét)ﬁ(an“). If the residual of the finite element component is bounded,
[a" " —a"| = O(6t?), and therefore evaluating the subscale at n+ 1, for example, in
instead of at n+6 introduces an error of order O(dt?), which is the optimal error that can
be reached with the trapezoidal rule (for 8 = 1/2). The same comments apply to for

the temperature subscale.

Considering the subscale equations integrated to first order and the finite element
equations to second (or higher) is not particularly relevant in the case of the trapezoidal
rule. However, if, for example, the second order backward-differencing (BDF') scheme is
used, a first order integration of the equation for the subscales avoids the need to store
them in two previous time steps. This storage is the most important cost of integrating the
subscales in time. Another aspect to take into account is that the subscale approximation
is not smooth, since the residual of the finite element components will be discontinuous
across interelement boundaries. Thus, it seems reasonable to use a scheme as dissipative
as possible to integrate the subscales in time. Further comments about this point are
made in Section 4.

A first order time integration for the subscales is straightforward. Equations and
have to be replaced by their counterparts for 6 = 1.

A third and final possibility that can be considered to integrate |6.1346.15 in time
is a combination of exact integration and approximation of the stabilization parameters

tn+9

and residuals at . If this approximation is done, the equations for the velocity and

temperature subscales are

1 ~
Ou + —ngau = PR},

~ 1 ~ ~
_ n—+60
0 + —0 = PR

e

which can be integrated exactly, yielding

B . _ ot >

@t = (@ - PR ) exp (_ﬁ) + PR (6.25)
I

_ - - ot 5

It = (" = PRI exp <_ +e) + 75 PR (6.26)
7
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6.5 Main features of the formulation

The method described so far is an extension of the formulation proposed in chapter 5
to the case of thermally coupled flows using the Boussinesq approximation and therefore
it is not necessary to repeat the same arguments again. Therefore, referring the redear
to chapter 5 for their justification, let us briefly recall the fundamental features of the

formulation and remark the differences that appear in the thermal case.

e The first point is the effect of considering the subscales dynamic, and therefore to
deal with their time variation. Doing that the effect of time integration is now
clear. Suppose for example that we are using to integrate the subscales.
Certainly, the effective stabilization parameters have to be modified (as it is done

for example in [I32] [138]), but when the steady-state is reached the subscale u that

1 1\ - 1

is obtained satisfies

from where

u = TmRma

so that the usual expression employed for stationary problems is recovered.
Numerical experiments also show that the temporal time integration is significantly
improved eliminating oscillations originated by initial transients and minimizing
numerical dissipation. The use of dynamic subscales also leads to the commutation
of space discretization (understood as scale splitting) and time discretization. That
is time discretization + stabilization (scale splitting) = stabilization (scale splitting)
+ time discretization. In what respects the time integration properties, the situation

is similar for the energy equation.

e The second point is the effect of tracking the subscales along the nonlinear process
and in the case of thermal problems along the coupling. On the one hand the
tracking results in conservation properties. In the case of the incompressible
Navier Stokes equations considered in chapter 5, this leads to global momentum
conservation thanks to the term (w - Vuy,v,). As shown in chapter 5 global

momentum conservation holds if [84]

- / thv : ’Ll,th + / u - VumdQ =0.
Q Q
what is implied by the continuity equation provided V,; & Q. This holds, in
particular, for the “natural” choice Vj,; = Q. For the standard Galerkin method,
this condition is impossible to be satisfied, since equal interpolation does not satisfy

the inf-sup condition. In the same way if we consider ), = 1 in and ¢ is the
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normal heat flux on the boundary I' that results from considering the augmented

problem [84] we have

/atﬁh—/ﬁhV'uh—i‘/aﬂ;—i‘/a'Vﬁh‘i‘/ﬁhun'ndr—/Q+/qdru
Q Q Q Q r Q r

As in the case of the momentum equation, global energy conservation is obtained
from the continuity equation provided ¥, € @, what holds if the temperature is
interpolated in the same way as the pressure. As a conclusion, the term (@-Vuy, vp,)
provides global momentum conservation and the term (@™ N9y, ) provides global

energy conservation.

On the other hand the tracking of subscales along the nonlinear and coupling
processes opens the possibility of modelling turbulence. Some comments about this
possibility have been made in chapter 5 where the reader is referred. Let us only
mention that the formulation we propose would account for thermal turbulence
in a very natural way. The traditional approach is to relate thermal turbulence
to the mechanical one through the introduction of a turbulent Prandtl number
whose physical meaning and adequate value are not well understood. This would

be unnecessary with the approach presented here.

6.6 Numerical examples

In this section we present the results of two numerical tests involving two-dimensional
thermally coupled flows. In both cases we have used P = I in , which corresponds
to the most classical stabilized finite element methods.

In both numerical examples, our purpose is to compare the numerical performance of
quasi-static subscales (QSS) and dynamic subscales (DS). To this end, we will proceed as
follows. T'wo meshes will be considered in both examples, one that we will call “coarse”
and another finer one. On both meshes we will present the results obtained using QSS
and, only in the coarse mesh, the results obtained considering dynamic subscales. The
goal is to show that DS yield better results than QSS on the coarse meshes by comparing
both to the QSS results on the fine mesh, that we will call reference results. We anticipate

that the conclusions of the following numerical experiments are

e The accuracy is higher using DS. This is reflected in particular by less damping of

frequencies and amplitudes in the oscillating response of the flows considered.

e Stability is improved by using DS, particularly when subscales are integrated in time

with a first order scheme. Some oscillations encountered with QSS are removed.

A full description of the iterative scheme developed for solving thermally coupled

flows is presented in chapter 7, including different possibilities for the treatment of the
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nonlinearities. In the examples presented here, the velocity-temperature coupling has
been achieved using a block-iterative strategy, using also a nested iterative loop to solve
the nonlinear Navier-Stokes equations within each coupling iteration. After solving for
the finite element component of the velocity (temperature) the subgrid scale velocity
iterating . When the flow is fully developed, it converges very well, yielding
fully converged subscales (with relative residuals of the order of 107%) with four or five
iterations. Concerning the time integration schemes, the equations for the finite element
unknowns have been integrated using the second order Crank-Nicolson scheme (0 = 1/2
in , whereas the equations for the subscales have been integrated either using
this same scheme or the first order version described in Section 3.1.

6.6.1 Thermoconvective instability of plane Poiseuille flow

The problem consists of a two-dimensional laminar flow in a horizontal channel occupying
the domain [0, 10]x [0, 1] and suddenly heated from below. A parabolic inlet velocity profile
is prescribed at x = 0, whereas the outlet is left free, i.e., the associated natural boundary
condition is zero traction. The temperature is prescribed to ¥ = 1 at the bottom wall
y = 0 and to ¥ = 0 at the top wall y = 1. The inlet and outlet are considered adiabatic.

This problem was solved in [46] as a benchmark for open boundary flows using a finite
difference method and a fine grid. It can be considered as a model for several relevant
engineering problems, such as the fabrication of microelectronic circuits using the chemical

vapor deposition process (cf. [46], see references therein).

Figure 6.2: Temperature contours at two different time steps for the plane Poiseuille flow

example.
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Figure 6.3: Pressure contours at two different time steps for the plane Poiseuille flow example.

The dimensionless parameters of the problem have been taken as Re = 10, Fr? = 1/150
and Pe = 40/9 (the average inlet velocity, the height of the channel and the temperature
difference between the top and bottom walls have been chosen as reference values for
velocity, length and temperature, respectively). These parameters are the same as in
[46] except for the Péclet number, which is slightly higher in that work (Pe = 20/3). In
both cases, these values result in a thermoconvective instability of the basic Poiseuille
flow. The linear stability analysis of unstable stratified plane Poiseuille flow in a infinite
horizontal channel can be found in [56]. It is shown there that the form of the instability
could vary from traveling transverse waves to longitudinal rolls, with axes parallel to
the main flow direction and thus leading to a three-dimensional flow pattern. Traveling
transverse waves are found for small values of the Rayleigh number. This is the situation
for the dimensionless parameters used here and therefore a two-dimensional calculation
is possible. It should be remarked, however, that three-dimensional effects are in general

very important for thermally coupled flows [94].

The domain [0, 10] x [0, 1] has been discretized using two uniform meshes of 16 x 40
and 50 x 100 bilinear elements, respectively. For the length of the channel considered, it
is concluded in [46] that the numerical solution is not affected by the artificial boundary
conditions for 2 < x < 8.

Some results of the calculation on the fine mesh are shown in Figures[6.1] 6.2 and [6.3]
They display the streamlines, temperature contours and pressure contours obtained at
two time steps (roughly) half-a-period apart. The bad influence of the artificial boundary
conditions can be observed, especially in what concerns the outlet wall. It is clear that
the zero traction prescription does not reproduce the effect of an infinitely long channel.
The proper evaluation of boundary conditions necessary for the numerical simulation of

flows in infinite domains is an area that still deserves further of research.

The important point is the comparison of the results obtained using QSS and DS. To
do this, we compare the evolution in time of velocity and pressure at the central point of
the computational domain, (z,y) = (5,0.5). Results using dt = 0.02 on the fine mesh and
0t = 0.1 on the coarse mesh are shown in Figure For the DS case, two options have

been considered, namely, a second order time integration of the subscales, labeled DS2 in
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Figure 6.4: Time evolution at the central point for the plane Poiseuille low example. Time step
0t = 0.1. Top: horizontal velocity; Middle: Vertical velocity; Bottom: Pressure.
REF: Reference solution; QSS: Solution with quasi-static subscales; DS2: Dynamic
subscales with second order time integration; DS1: Dynamic subscales with first

order time integration.
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" REF ——

\ DS1dt=0.02 ——
| DS1-c dt=0.02 ——

Figure 6.5: Pressure evolution in time at the central point for the plane Poiseuille flow. REF:
Reference solution; DS1: Dynamic subscales with first order time integration without
0¢R) in the pressure subscale. DSl-c: Same as DS1 but including §;R) in the

pressure subscale.

Figure[6.4] and a first order time integration, labeled DS1. From Figure [6.4] the following

observations can be made:

e Results using DS1 and DS2 are very similar. This confirms the discussion
of Section 2.3 about the feasibility of using DS1 and keeping the order of

approximation.

e DS2 has spurious high frequency oscillations that are removed using DS1. This
is to be expected, since it is known that the Crank-Nicolson scheme is unable to
remove high frequencies. Our approximation to the subscales is non-smooth (they
are discontinuous from element to element), and those high frequency components

will be probably present.

e DS results are much more accurate than QSS, since they are closer to the reference

results (obtained using QSS on the fine mesh).

e (QSS results have some spurious oscillations in velocity that do not appear using
DS. This is an important fact, since QSS are the results obtained with what can be

considered a standard stabilized finite element method.

As a conclusion, results using DS1 seem to be excellent. Nevertheless, it is interesting
to show in this example the effect of the term d R} in . When 6t = 0.1, this term is not
important, but when 6t = 0.02 its omission leads to a very important pressure oscillation
from time step to time step using DS1. Figure|6.5[shows this oscillation, together with the
results obtained including 0 R} in , which are completely free of spurious oscillations.
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6.6.2 Transient natural convection of low-Prandtl-number fluids

In this example, the transient convective motion of a fluid enclosed in a unit square cavity
driven by a temperature gradient will be numerically analyzed. The left vertical wall is
suddenly heated and maintained at a constant temperature, while the right vertical wall is
maintained at the initial temperature. Horizontal walls are assumed to be adiabatic, i.e.,
the zero heat flux boundary condition is prescribed. Homogeneous Dirichlet boundary
conditions are prescribed everywhere on the boundary for the velocity.

The only dimensionless parameters involved in the problem are the Prandtl number
Pr and the Rayleigh number Ra or, equivalently, the Grashof number Gr. Numerical
results will be presented for Pr = 0.005 and the value Gr = 5 x 106.

L

Figure 6.6: General streamline pattern (left) and temperature contours (right) for the flow in

cavity at low Prandtl number.

The value Pr = 0.005 is very small and not often encountered in common fluids. For
example, the Prandtl number is 0.71 for air, 7.03 for water and 0.0249 for mercury (at
293 K). Small values of Pr are typical of liquid metals and semiconductors. The problem
to be studied now is relevant to the solidification of ingots and casting, crystal growth
from melts, material processing, nuclear reactor safety and other applications (cf. [112]).

Although the problem just described is a very popular test for thermally coupled flows
when Pr is high, the interest for solving low-Prandtl-number flows is that this problem
is not yet well understood. It is found that the flow exhibits a periodic oscillation when
the Grashof number exceeds a critical value. In particular, for Pr = 0.005 a steady-state
solution is obtained for Gr = 3 x 10° but the solution bifurcates and for Gr = 5 x 10°
an oscillatory flow field is found. For further information about this problem the reader
is referred to [112], from where this problem has been taken. Our purpose here is to
demonstrate the efficiency of the numerical method proposed in this work.

Two meshes of bilinear finite elements have been used in the calculations. The
“coarse” one is made of 60 x 60 elements, refined near the walls of the cavity. The “fine”
mesh is made of 180 x 180 elements, and it is also refined near the walls. The time step has

been taken as 6t = 0.002 in both cases. A remark is needed concerning the consequence of
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Figure 6.7: Evolution (from left to right and from top to bottom) of the streamlines at the rop

right corner of the cavity for the flow in cavity at low Prandtl number.

Figure 6.8: Velocity norm at two different time steps separated half a period for the flow in

cavity at low Prandtl number.
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Figure 6.9:
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this choice for the time integration of the Navier-Stokes and the temperature equations.
The critical time step of the backward Euler scheme, obtained by taking # = 0 in|6.1946.21],
is approximately 7, for and 73 for [37]. Due to the low Prandtl number of the flow,
the temperature equation is dominated by thermal diffusivity, whereas convective effects
are important only in the Navier-Stokes equations. It turns out that the ratio dt/m is 4.77
for the coarse mesh and 15.35 for the fine one, indicating that 6t is comparable with 7.
However, the ratio §t /73 is 222 for the coarse mesh and 2000 for the fine one. Therefore, the
time step 0t = 0.002 is very “large” for the time integration of the temperature equation
and, as a consequence, not much influence is to be expected between quasi-static and
dynamic subscales, particularly when diffusive effects dominate, as in boundary layers.

Numerical results confirm this fact, as we shall show.

Let us discuss now the results of the numerical simulation. The general flow pattern
is shown in Figure at a time step when the flow is fully developed. It is observed
that there is a main central vortex and also that vortices appear at each corner of the
cavity. These small vortices move in clockwise sense, being created from flow detachment
at the walls, growing and then collapsing against the walls. This evolution for the top
right vortex can be observed in Figure [6.7] It is seen how the vortex is originated from

the top wall, moves in the clockwise sense while grows, and then decreases until it reaches
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the right wall. Before it completely disappears, a new vortex appears at the top wall.
The contours of the velocity norm are plotted in Figure [6.8] These results correspond to
time steps separated by half a period (approximately). They show that the main vortex
pulsates, increasing and decreasing the flow magnitude periodically. All these results have
been obtained with the fine mesh and QSS.

To compare the performance of QSS and DS we have considered three representative
points. Point 1 is located at (0.006, 0.5), point 2 at (0.0438,0.5) and point 3 at
(0.773,0.773). The first two points lie inside the boundary layer formed at the left wall,
whereas the third one is placed at the top right position of the main vortex. Figures[6.9]
and show the evolution in time of the flow variables (horizontal velocity, vertical
velocity, pressure and temperature) at points 1, 2 and 6, respectively. From these pictures
it is observed that all flow variables are more accurate using DS than QSS at points 1 and
6, whereas the results are inconclusive at point 2, where temperature seems to be slightly
better using QSS (although the differences with DS are very small). The rest of flow
variables are slightly better reproduced using DS. The explanation we give to this fact
relies on the previous discussion about the size of the time step. As mentioned earlier, this
time step is large for the heat equation, and thus QSS and DS should perform similarly,
as it is observed in the numerical experiments. This is particularly so in boundary layers,
since diffusive effects dominate there. At other sampling points of the computational
domain, QSS performs consistently better than DS, in accordance with the results of the
previous example. In this particular example, both the finite element equations and the

equations for the subscales have been integrated in time with second order accuracy.

6.7 Conclusions

The aim of this chapter has been to explain how to deal with dynamic subscales
in the finite element approximation of thermally coupled flows using the Boussinesq
approximation. The space variation of the subscales is approximated in terms of the
residual of the finite element unknowns in the classical way used in stabilized finite element
methods, but now they are integrated in time.

From the conceptual point of view, the formulation presented has several benefits,
inherited from the formulation applied to isothermal flows in chapter 5. In particular,
global momentum conservation and global energy conservation is obtained. Additionally,
in the case of thermally coupled flows the coupling of velocity and temperature subscales is
dealt with in a natural way. The results of the numerical experiments conducted confirm
the conclusions drawn for isothermal flows and that make the formulation particularly

appealing:

e The formulation is more accurate than considering the subscales quasi-static.
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e Some oscillations encountered using quasi-static subscales are removed.

The last item is especially significant when the subscales are integrated in time using
a first order scheme, which avoids high frequency spurious oscillations in the tracking of

the subscales in time.



Chapter 7

Numerical implementation aspects

In this chapter we present the strategy developed for the numerical solution of the
stabilized finite element approximation of thermally coupled flows. The implementation
algorithm is developed considering several possibilities for the solution of the discrete
nonlinear problem. The full Newton linearization strategy gives rise to monolithic
treatment of the coupling of variables whereas some fixed point schemes permit the
segregated treatment of velocity-pressure and temperature. The first one turns out to
be very efficient for steady-state problems and very robust when it is combined with a
line search strategy that has been developed based on the Armijo rule. A segregated
treatment of velocity-pressure and temperature happens to be more appropriate for

transient problems.

7.1 Introduction

The approximated models considered in previous chapters can be written in a unified

manner as a system of nonlinear convection-diffusion-reaction equations of the form

M(Uo)aa—rj—i—ﬁ(U; U)=F inQ (7.1)

where

ou 0 (K ou

o (K, ) +SIWOU

and U = (u,p,?) is the vector of unknowns (velocity w, pressure p and temperature
¥), F is a known vector of nyw = d + 2 components and M, A;, K,; and S are
Nunk X Nyunk matrices (4,7 = 1,...;d). The usual summation convention is implied in
the last expression, with indices running from 1 to the number of space dimensions d and
bold characters are used to denote vectors. When the arguments used to evaluate the
matrices M, A; and S are clear we will omit them as well as the first argument in L.
We shall refer to the terms of the left-hand-side (LHS) of this equation as the temporal,
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the convective, the diffusive and the reactive terms. The physical models presented in

chapter 1 are written for the two-dimensional case (d = 2) as

e Incompressible Navier Stokes equations:

p 00 pu; 0 da
0 00 di1 02 0

10;5 + (10;1041 + 27”5115]'1 10i2051 + %“51'15]'2 0
K;; = 10102 + 23“51'253‘1 HOi5 + 102052 + 2@”51'25]'2 0
0 0 0

where p is the density and p the viscosity.

e Boussinesq equations:

p 00 0 pui 0 61 0
i 0
M — 0 p 0 O AU = 0 pu 0
000 O din 02 O 0
0 0 0 pc 0 0 0 pou
/Léij‘i‘ﬂéiléjl‘i‘%{iéiléjl N5i26j1+23,&5i15j2 0 0
K. — 161050 + 20i2b 1 pij + pbindjo + %6285 0 0
Y 0 0 00
0 0 0 k
000 pbo 0
0 0
S(U) = 0 0 pBys F-
000 O 0
000 0 0

where 3 is the thermal expansion coefficient, ¢, is the constant pressure specific heat

and @ is a given external source of heat.

e Low Mach number model: we consider an ideal gas
pih

P = R

what permits to write the continuity equation (see chapter 1) as

pd9  pdp™  p
L P P VY4 pV e u=0
GOt T pm g gt YU TV
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This is used to write the matrices that define the problem as

p 00 0 pu; 0 d0q 0
0 p 0 0 0 pu;i 02 0
M (U) = 1 ) Al (U> = 1
000 —5 onp 02 0 —Fu
0 0 0 pc 0 0 0 pcu;
Wiy + 16105 + 26165 162051 + 26:10; 0 0
K. 101050 + 27“51'25]'1 pOi5 + f10;2052 + 27“51'2@'2 00
Y 0 0 00
0 0 0 k
0 0 0 pg 0
0 00 0
S(U) = PRy F=| e
000 0 .
d th
000 0 w4 Q

Note that it is also possible to use the energy equation to write the continuity

equation as

1 dp* -1
. = — ° k 19 .
V-u o di +7pth [V (EVY) + Q]

and that, as the density is temperature dependent, the temporal term is nonlinear.

The boundary conditions of these problems are

u = ug onl

9 = ¥ onT?Y
o-n = (—pl+2ue/(u))n=t only
g-n = —kn-Vl=g¢q, onT%

where I'?, (I'%) is the part of the domain boundary where Dirichlet (Neumann) boundary
conditions are given and T' = 9Q = '}, UTY,, where «a is either the velocity u or the
temperature 9. In order to write boundary conditions in a unified manner we split
matrices A; as A; = AS + AL where AS is the part of the convection matrices which is
not integrated by parts and Ag the part that ¢s integrated by parts. This matrix contains
pressure terms and in the case of the incompressible Navier Stokes equations is given by

0 0
0 0 O

This permits to define the vector of fluxes in terms of the matrices K;; and A! so in the
simple case in which T% = T'% := Ty C 9. we can write Neumann conditions as

ou

J

-nAlU=T in Ty
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Initial conditions have to be appended to close the problem.

Let us denote by W the functional space where the solution is to be sought, by
W™ (w) the usual Sobolev spaces and, in particular H™ (w) := W™? (w) and by L? (w)
the space of square integrable functions in a domain w. In a steady state case, the velocity
belongs to the space V™ = {u € [H (2)]™ : u = uyinT }, the pressure to the space
Q" = L*(Q)/R and the temperature to the space U = { € H' (Q) : ¥ = J4inT'% }.
When a transient problem defined in the interval [0,77] is considered, the space of time
dependent functions defined in a space X whose norm is L (0,7") will be denoted by
LP(0,T;X). Then the space W is defined as W = L* (0,7, V*™") x L' (0,T, L* (Q)) x
L?(0,T,¥%) and W, the corresponding space of test functions which is given by
Wy = Vo x L(Q) x Uy where Vy = {ue [H'(Q)]™* :u=0nl%} and ¥, =
{9 € H' (Q) : ¥ = 0inI'},}.Then, the weak form of the problem consists in finding U €
W such that

B{U:U,V)-L(V)=0 VYV €W, (7.2)

where the nonlinear form B and the linear form L are defined as

B(UyU,V) ::/VtM (U,) —+/VtAC (U,) gg (7.3)
Q 7
o, . % t
_/Qa_xi(VAi)UJr o K (U 8% /VS Uy U
= / V'F+ / ViTdr (7.4)
Q T

Note that the second term in could be written as an integral over 'Y, U T}, because
V' = 0 in the rest of the domain boundary.

7.2 Discrete problem

We consider a finite element partition P, = { K} of the computational domain © of ng
elements, from which we can construct finite element spaces for the velocity, pressure and
temperature. We assume that they are all built from continuous piecewise polynomials
of the same degree k. We denote by W, C W the approximating space, by Wq, C W,
the space of test functions and by W the space of subscales. We also consider a uniform
partition of the time interval [0, 7] of time step size ¢t. Functions approximated at time
t" will be identified with the superscript n. For a generic function f, we will use the
notation §f" = frtl — fr 6" = §fn/ot, 10 =B+ (1—-0)f" 0 <0 < 1.
Using this notation the fully discrete problem obtained using the variational multiscale

formulation of [75] developed in the previous chapters can be written as follows. Given
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order | 1 2 Exact
=T -
T T(l—i-%) T<1+91At) (1—exp[ Mt])
PT PT
1 T
p & oA - (1-7)

Table 7.1: Integration parameters

» and U, find U and U™ such that

aUnJrG aV UTL+9
ViM&U; + | Vi, A5—" K; / Vi, SU*’
/Q h ! h+/gz T O, + q Or; i 0z;

- / aa (viAh Ut + / ViMsU +>° / e (vrot = / VIF™? (75)
Q 0T Q x VK Q

for any V', € Wy, Here and in what follows it is understood that matrices M, A;, S
~ n+0

are evaluated using UZ“LH +U I L* is the adjoint of the differential operator £

with homogeneous Dirichlet conditions given by

o [4wou] - o (K003 ) + s'wou

E*(Uo; U) = —

~ 140 ~ n+4-0
(evaluated using Uy = Uy + U " in . The subscale U is found as the solution

of nonlinear problem

ol = R + uTtINJn (7.6)

driven by the residual
R .= F"Y — MU — L(U)
The temporal derivative of the subscale is calculated as
U =pr, R — pr'7,U"

and the parameters p and 7; depend on the time integration scheme used for the subscales
evolution equations as explained in chapter [0 where three options are considered. They

are defined as

Ty = diag(Ttla Tt1, T2, Tt3)
r = diag(ulv M1, 0, /Lg)

where 741 and 733 as well as 7 and us are defined in table
The parameters 7, 7 and 73 are computed as in previous chapters. In the case of an
isotropic mesh they are given by
pluy+al]™ h? k pep | +ul] ™

I
TI=|Cl5 +teo————| , To=—, T3=|C175 +C .

h? h ot h?
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where ¢; = 4 and ¢ = 2 for linear elements. Using these definitions the final problem to
be solved can be written as follows. Given U} and U, find U™ such that

Vt Un+9 Vt AC Un+9 8 Vt Af Un+0
651& o ani( »Ai) Uj

av oute
2 Vt Un+6
Q (91:2 g (91‘] /

3 [ Fumv, - o )l MUy s o)

_ / VIE S / C MV, — L5 (V)] 7 B (77)
Q K K
1 t 1 t
— MU+ =3 [ [-uMV, - £ MU

- Z/ [T MV, + L (Vh)}t prU"
— JK

for any V), € Wy and find U™ such that

~ 0 ~n
0" = 7R 4 pur,U

Note that the explicit dependence of the subscales on the residual of the finite element
component has been explicitly taken into account and has been assembled on the left hand
side of the equation. However, the problem still depends on the subscales (and therefore
on the residual of the finite element component) through the matrices M, A;, S and
the operators £ and L£* and also through the stabilization parameters. The non linear

treatment of this system is described in the following section.

7.2.1 Linearization and line search strategy

The discrete approximation described in the previous section leads to a highly nonlinear
system of algebraic equations for the nodal values of U}, which are denoted by the

same character (but without the subscript k). This nonlinear problem can be written as
L+ NU)|U =R

where L is the linear part of the operator and IN the nonlinear one and R the force

vector. Therefore we look for the roots of the function
HU)=[L+NU)|U-R
and we consider fixed points linearizations of the form

Ut =G (U (7.8)
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where

G(U)=D' (DU - H (U))

for some matrix D to be defined in the following and which may depend on the iteration

step. Then, using a superscript for the iteration counter the iterative scheme reads
DU -U)+H(U')=0

or

DU -U)+[L+N@U)U -R=0

Different choices of D led to different schemes:

e The classical Picard scheme is obtained by taking
D =[L+ N (U)
from where the problem to be solved is

[L+ N (U)|U™ =R

e The Newton scheme is obtained taking
D =H'(U)
where H' is the Jacobian of H, from where
H (U) (U -U)+H{U')=0
Sometimes a modified Newton scheme is obtained by taking

D =H'(U")

e In the case of a steady state problem (just to fix ideas) another option is to take

1
D =-M
€

to obtain
1

-M (U™ -U)+[L+N(U)|U =R

€

This scheme produces the same iterates that an explicit temporal integration of the
equations, what shows how a temporal evolution can be considered as a fixed point

scheme for the solution of a nonlinear problem.
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e In a similar way, if we take
1 )
D =-M+ [L+ N (U]
we obtain a semi-implicit temporal evolution

The convergence rate of the method depends on how contractive the mapping G is.
Precisely [98], if there exists a < 1 such that

IGU) -G (V)| <allU-V|
the mapping G has only one fixed point U, and the iterative scheme
Ut - @ (Uz)
converges at a rate given by the estimator

«

U -u.) < -2 ot - v
—

<

1

In particular, if the Jacobian of G is bounded we can take
a=|GU)
and using [7.8 we have (for a fixed D)
G (U)=1-D'H'(U)

The Newton method is based on a choice that makes G highly contractive but only in some
neighborhood of the solution, which is the reason why it requires a good initial condition.
If a temporal evolution is used to solve the problem, we have that D™ = eM ™!, which
shows that, when ¢ — 0, |G’ (U)|| — 1 making the iterative procedure very slow. Note
that if
D :%M + H'(U)

when & — 0 we have that D™' — e M~ and if ¢ — 0o we have D™' — [H' (U)]™" as in
the Newton method.

The problem of the sensitivity of the Newton method with the initial condition can
be partially solved using globally convergent methods (methods that converge for almost
any initial guess) which can be developed by adding a line search strategy [123, 40} 02].

As a root of H is a minimum of the function

f(U) = JH (U) - H () (7.9
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one may be tempted to apply a minimization algorithm to find the solution, but this is
not a good idea because there could be a local minimum of f that is not a root of H.
However, this function is used to find the optimal parameter of advance. The direction

of advance P is found solving the linear system
DP=-H (U')

and the next iterate is taken as
Ut =U"+sP

where s is the advancing parameter whose calculation is as follows. The step is accepted
if the function f decreases at least a small fraction of the decrease given by a linear

approximation at s = 0. This condition, known as Armijo rule, can be written as

where ¢ is a parameter of the method taken to be 107%, and prevents the algorithm to
find a local minimum of f. This criterion is applied when a Newton type linearization of
the problem is used because in this case D = H' (U) and then

V/-P=|H(U)-H (U)-P=|H(U)-H U)-[-DH (U)] = —H (U)-H (U)

In this case, one first tries s = 1 since if we are close to the solution using a Newton
type linearization we will have a high rate of convergence (quadratic if the exact Jacobian
is used). If the step is not accepted, a new value of s is tested. This value is found using
a cubic model based on the values of f (U ],3 + sP) previously computed [123] 40} ©92] but
it can be simply taken as a fraction of the previous one. This method can select a step
that is too small (this happens when a local minimum of f has been found). In such a
case, the method has to be restarted. We do so performing a Picard step, i.e. changing
the searching direction.

When a Picard type scheme is used we accept the step when
f (Uk—i-l) S f (Uk)

Again we first try s = 1 and if the step is not accepted some smaller values of s are tested

and the one that gives the minimum value of f is kept.

7.2.2 Linearized equations

In the previous development, matrix D is taken as an approximation to the exact
derivative of the function H. When we apply this to the flow equations we consider,
we always evaluate the stabilization parameters as well as the adjoint operator using the

previous iterate, but a full linearization of the operator L is considered. This linearization
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can be written in terms of the linearized advection and reaction matrices, A (U,) and
S"(U,), as well as of the resulting forcing vector F'™(U,). The expression of these
matrices and vector is given below for different flow cases. Here we have explicitly
displayed their dependency with respect to the known iterate Uﬁfl of Uy. Having
introduced these terms, the linearized differential operator applied to the finite element

unknown is

Ehn(UO;U) = Aiin (Uy) oy 4 (K ou

Ox; 0wy \" 0w,
The fully discrete stabilized problem is given by replacing £ by £, A; by Al* S
by 8" and F by F'"™. In this system it is understood that the stabilization parameters
in matrix 7 and matrices M, A™, 8" and F"™ are calculated using U, = UZJre’i_l +
U nw’iil. After the discrete problem is solved the subscale U o is computed and
stored. Note that the subgrid problem is also nonlinear and has to be iterated (at

each point).

) + 8" (U)U

It remains to give the expression for A, §"™ and F™. To this end, let us define a
set of parameters \;; that can take the value 0 or 1. For i = 1 we will use them to write
the linearized momentum equation, for ¢+ = 2 the continuity equation and for ¢ = 3 the

energy equation. The linearized matrices are given for each flow model as follows:

e Navier Stokes equations

. pu; 0 0n
A;m (U) == 0 PU; 51’2 5
(57;1 5, 0

A1 pdiur A1pOeu; O
Shn (U) = )\Hp@lug /\11,082UQ 0 ;
0 0 0

[ Aipu - Vuy + gy
F™U) = | Mipu- Vus + g

e Boussinesq equations

i 0 i 0iz 0
argy=| 0P |
01 G2 0 0
0 0 0 py
A1poiur Aipdour 0 AizpBgr
S (U) = Apdiug A11pdaus 0 Ai13pBga
0 0 0 0 ’
A31p010  A31p020 0 0
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Aipu - Vug — (1 — Aig)pBar9 + pBdog
A1pu - Vug — (1 — Ai3)pBar0 + pBoga

Flin U) =
) ;
)\31pu -V + Q
e Low Mach number equations
PU; 0 5@'1 0
- 0 i 0 0
AP (U) = e |
5z1 622 0 _%uz

Apdiur Aupdouy 0 5 (=Apu - Vug + Aizgr)
Sin(U) = )\HAiaWQ >\11\p82U2 0 % (—>\12>’\M - Vg + Aizg2) 7
)\31[)8119 )\31,08219 0 —g)\gg’u . V’l9
(A1 = Ai2)pu - Vug + (1+ Ais)pgy
Fin () — (A1 = Ai2)pu - Vug + (14 Aiz)pge

(1 — )\21 — )\22 + )\23)%9111 -V
(As1 — Az2)pu - VI + @

The parameters A\;; and Ao correspond to the linearization of the convective term in
the momentum equation (A\j; = A;2 = 1 would be Newton’s method, whereas other options
would be fixed point methods), whereas A3 is used to decide whether the buoyancy term
is treated in a coupled or in a block iterative way. Likewise, A\y;,j = 1,2, 3, determine
both the linearization of the term Ju - V¥ (Ay; = 1 would be full Newton’s method) and
the possibility to treat this term in a staggered way (Ag; = 0). Finally, As;,j = 1,2, play

the same role for the energy equation as Ay, j = 1,2, for the momentum equation.

7.3 Numerical examples

In this section we present two examples. This first one is the natural convection in a two
dimensional closed cavity and, as it is a well known benchmark for thermally coupled flows,
we use it to test different numerical strategies proposed here. The second one is a two
dimensional time dependent heated channel presented in [I07] as a simplified version of
what occurs in a chemical vapor deposition (CVD) reactor. CVD flow problems, reviewed
in [90], present much of the physics of the Poiseuille-Rayleigh-Bénard (PRB) flow problem
reviewed in [I14], that consists of a channel with a prescribed Poiseuille velocity profile
on the inlet and prescribed temperatures on the upper and lower walls. This example
is included to illustrate the models considered as well as to point out the importance of

outflow boundary conditions.
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7.3.1 Natural convection in a cavity

The natural convection in a cavity is a standard benchmark for numerical methods on
thermally coupled flows. It was initially devised for Boussinesq flows [38] and later for
low Mach number flows [103]. The problem is sketched in Figure [7.1]

q=0

Figure 7.1: Geometry and boundary conditions of the natural convection in a cavity

First of all, let us mention the conditions for the validity of the approximations in
this example. As this is a natural convection problem, a velocity scale must be chosen.
Taking for example the viscous scale and using the benchmark specifications (see [103])
gives a Mach number of 2.2 x 107°, allowing the use of the zero Mach number equations.
The conditions of applicability of the Boussinesq approximation need some care. In this
case, the zero order temperature and density must be constants. In order to have this
reference state, the (dimensionless) temperature difference between vertical walls must
vanish. Finally, the Boussinesq number must tend to zero as fast as the Mach number
(which is a restriction of the vertical scale of the problem). In the conditions of the
benchmark, the Boussinesq number is 5.7 x 107° and is of the same order as the Mach

number. Thus, the dimensionless parameters that define the problem are

= H
e T

Tt L
Cplh gL?
Pr= ?, Ra = Pr7€

where Pr is the Prandtl number and Ra is the Rayleigh number.

Let us first present results that show the physical behavior of the problem (see [23]
for a full description of the physics of the problem). They have been obtained using a
fine grid of 160 x 160 Q1 (bilinear) elements refined towards the walls. The steady state
problem has been directly solved (without time advancing) with a convergence tolerance

for the nonlinear process of 1078.
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Figure shows the streamline and temperature distribution obtained using the
Boussinesq approximation for different Rayleigh numbers. For a Rayleigh number of 10?
there is only one vortex that covers the whole domain. When the Rayleigh number is
increased this vortex splits first in two and then the vortex distribution becomes more
complex and the boundary layers on hot and cold walls become thinner.

When the low Mach number approximation is used similar results are obtained, but
some differences are found. For a fixed Rayleigh number of 103, when the temperature
increases, the central vortex moves to the right. This effect can be seen in table [7.2]
where the position of the center of the vortex as a function of temperature difference is
presented. For higher Rayleigh numbers the effect is similar: the flow is qualitatively

similar although some differences appear when quantifying magnitudes.

€ x coord.
0.0 0.50
0.2 0.54
0.4 0.58
0.6 0.63

Table 7.2: Evolution of the z-coordinate of the central vortex for Ra = 103 in terms of €

An important difference between the Boussinesq and the low Mach number
approximations is that the latter can describe phenomena related to the expansion of the
flow. If a gas in a closed cavity is heated, basic thermodynamics implies that the pressure
level should increase and this cannot be predicted using the Boussinesq approximation. In
the case of the differentially heated cavity at ¢ = 0.6, the mean thermodynamic pressure
normalized using the initial pressure is 0.856. This case was considered to test the mesh
convergence of the proposed algorithm using graded meshes of 10 x 10, 20 x 20, 40 x 40
and 80 x 80 Q1 elements. Table presents the thermodynamic pressure as a function of
the mesh size. It is seen that the behavior is as expected and the results agree with those
found in the literature. It is to be noted that the results presented in [72] correspond to

a discretization with 855556 degrees of freedom obtained by an adaptive procedure.

h Ra=10° | Ra=10* | Ra=10° | Ra = 108
0.1000 0.8646791 | 0.8585644 | 0.8681438 -
0.0500 0.8603283 | 0.8497187 | 0.8567441 | 0.8670059
0.0250 0.8582884 | 0.8460002 | 0.8534048 | 0.8579742
0.0125 0.8574004 | 0.8445817 | 0.8524585 | 0.8567541

Reference[72] - - - 0.856337

Table 7.3: h convergence of the thermodynamic pressure.
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Figure 7.2: Streamline (left) and temperature (right) distribution obtained using the Boussinesq
approximation at Ra = 10% (top), Ra = 10° (middle) and Ra = 107 (bottom).
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Let us now describe the non linear convergence of the iterative scheme when a direct
steady state calculation is performed. A set of experiments were performed using the
Boussinesq model for the different possible linearizations on a uniform mesh of 10 x 10

Q1 elements. Figure shows the convergence of the algorithm for different Rayleigh
numbers.
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Figure 7.3: Non linear convergence for the 10 x 10 uniform mesh. From left to right and top to
bottom Ra = 103, 104, 10° and 10%. The curves corresponding to the linearization
parameters A1, Ao and Az are given as follows

000 —— 010 -~ -~ 110 (I p—
100 001 101 111

From these experiments we conclude that the Newton scheme (A; = 1, A3 = 1,
As1 = 1) is fastest, as expected, and the linearization A\;; = 0, \;3 = 1, A3; = 0 is
the most robust for this example (in the sense that it converges for higher values of the
Rayleigh number). When the buoyancy term is treated in a coupled way (taking Ay 3 = 1)
the convergence becomes monotone for Ra = 10% and Ra = 10* but it is also seen that
what makes a big difference is to combine this treatment with a full Newton linearization
of the convective term in the temperature equation (that is to take also A\3; = 1). Let us
stress that although a Picard type linearization could be more robust when incompressible
Navier Stokes are considered (which is also observed here when comparing A\;; = 0,

Ms=1 A1 =0and \;; =1, \y3 =1, \31 = 1), a Newton type linearization of the
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velocity to the temperature coupling (in this case through the convective term in the
temperature equation) is more robust.

Next we performed a set of experiments to test the behavior of the line search process
described in section For the full Newton linearization we performed computations for
uniform meshes of 10 x 10, 20 x 20, 40 x 40 and 80 x 80 Q1 elements without a line search
and using the Armijo rule described in section (the experiments using the Armijo rule
were also run on a uniform mesh of 160 x 160 Q1 elements). Tables and [7.5] show
the behavior of the iterative scheme by indicating the number of iterations needed when

convergence is achieved.

elem. | Ra=10% | Ra=10* | Ra=10° | Ra=10° | Ra= 107 | Ra = 108
10 7 10 18 - - -
20 6 14 20 - -
40 6 14 - - -
80 6 13 - - -

Table 7.4: Number of iterations for the linearization A\ = 1, Ay = 1, A3 = 1, without line search.

The dash indicates divergence

elem. | Ra =103 | Ra=10* | Ra=10° | Ra=10° | Ra= 10" | Ra = 10®
10 8 13 17 22 96 64
20 8 12 13 17 34 162
40 8 12 13 14 17 *
80 9 12 13 14 16 24
160 7 13 14 16 17 26

Table 7.5: Number of iterations for the linearization Ay = 1, Ao = 1, A3 = 1, using the Armijo

rule. The star indicates lack of convergence

Very similar results are obtained for the linearization that corresponds to A;; = 0,
A3 =1, A31 = 1. The conclusion to be drawn is that the use of the line search greatly
improves the robustness of the iterative scheme. It is also to be mentioned that, although
when a line search is not performed the linearization that corresponds to A\;; = 0,
A3 = 1, A31 = 1 converges for some cases where the full Newton does not, when using
the Armijo rule both linearizations behave identically. Moreover, the calculations where
the scheme fails to converge are on coarse meshes and convergence is achieved for finer
meshes (especially when refined meshes are used). The linearization scheme for the low
Mach number model has also been tested in detail and the same behavior was observed:
the full Newton scheme together with the Armijo rule converges for almost any case. In

[107] difficulties to obtain convergence when performing calculations using the low Mach
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number model have been reported even for a low Rayleigh number (Ra = 10*). In this
reference, an ad hoc linearization of the system was performed to overcome this problem.
We did not find this problems for low Rayleigh number. In [107] the problem is solved
using a mixed finite element formulation, what could be the reason behind the difference
in the behavior of the iterative algorithms.

We next consider the behavior of the line search process when a time dependent
calculation is performed. A set of experiments were performed using the full Newton
linearization and the Boussinesq model on a uniform mesh of 10 x 10 Q1 elements with

and without line search. The number of iterations needed are shown in tables [7.6] and [T.7]

ot |Ra=10° | Ra=10* | Ra=10° | Ra=10° | Ra= 10" | Ra = 10®
10° 7 10 18 35 - -
1071 6 9 16 22 - -
1072 5 8 12 20 - -
1073 5 6 11 23 33 -
1074 4 5 7 13 53 204

Table 7.6: Number of iterations at the first time step for the linearization Ay =1, Aa = 1, A3 =1,

without line search. The dash indicates divergence

ot |Ra=10° | Ra=10* | Ra=10° | Ra=10° | Ra= 10" | Ra = 10®
10° 7 13 17 22 118 *
101 6 12 16 22 * *
102 5 8 13 22 45 *
1073 5 11 23 40 60
10~4 4 7 13 53 52

Table 7.7: Number of iterations at the first time step for the linearization Ay = 1, Ao = 1, A3 = 1,

using the Armijo rule. The star indicates lack of convergence

As it could be expected, and these experiments confirm, less nonlinear iterations are
required to achieve convergence when the time step is reduced. These experiments also
show that still the line search algorithm is important when time steps are big and the non
linearity is important. When the time step is reduced convergence is achieved without
the need of relaxation.

We next consider the non linear convergence of the iterative scheme when a time
dependent calculation is performed. A set of experiments were performed using the
linearization that corresponds to (A;; =0, A\;3 =0, A3; = 0) and the Boussinesq model

on a uniform mesh of 10 x 10 Q1 elements.
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ot |Ra=10° | Ra=10* | Ra=10° | Ra=10° | Ra = 10" | Ra = 10®
10° 23 166 - - - -
1071 17 85 - - - -
1072 9 14 39 * 200 -
1073 6 8 13 32 * *
10~4 5) 6 7 13 48 *

0, A2 =0,

A3 = 0, without line search. The dash indicates lack of convergence and the star lack

Table 7.8: Number of iterations at the first time step for the linearization A\ =

of convergence on the first steps.

The main conclusion of these experiments is that when the time step is small, the
number of iterations required by a Picard type linearization (A1; =0, A3 =0, A\31 =0)
or those required by a Newton type one (A1 =1, A\;3 =1, A\31 = 1) are similar. In this
cases the Picard type linearization is preferred because it allows a splitting of the algebraic
problem into a mechanical problem and a thermal problem. Note that this is interesting
because it permits to modify an incompressible code to take thermal coupling into account
and because it permits to reduce memory requirements storing smaller matrices (but note
also that the time required to solve the linear system will be the same). This leads to
three types of iterative coupling: the one that corresponds to A\;; =0, A3 =0, A3; =0,
that permits the parallel solution of the mechanical and the thermal problem, and those
that correspond to A1 = 0, \i3 = 0, A31 = 1 and \;; = 0, \y3 = 1, A3; = 0 which
result in a Gauss Seidel type scheme. The difference between the last two of them is
which problem is solved first. It can be observed in figure that the linearization that
corresponds to A\j; = 0, A; 3 =1, A3; = 0, that is the one in which the thermal problem
is solved first, is more robust than the one that corresponds to A\j1 = 0, A3 =0, A31 =1,
that is the one in which the mechanical problem is solved first. Respect to this point let
us also mention that in the case of the low Mach number system, it is quite important to
solve for the temperature first because of the term J,p in the continuity equation. If the
mechanical problem is solved first, in the first iteration of the time step, the approximation
to Oyp is zero as the initial guess is the temperature at the previous step and this needs
to be corrected by the iterative coupling. This effect has been observed while solving the

problem presented in the following section.

7.3.2 Time dependent heated channel

The problem studied here, sketched in Figure is a channel whose length (L) is 5 times
its height (H).

The inlet boundary conditions are given by a Poiseuille velocity profile and uniform
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ot |Ra=10° | Ra=10* | Ra=10° | Ra=10° | Ra= 10" | Ra = 10®
10° 14 132 - - - -
107! 11 47 - - - -
102 8 11 25 - - -
103 7 8 12 33 - -
10~4 5 5) 7 13 79 *

165

Table 7.9: Number of iterations at the first time step for the linearization A\; = 0, Ay = 0,
A3 = 1, without line search. The dash indicates lack of convergence and the star lack

of convergence on the first steps.

Figure 7.4: Geometry and boundary conditions of the time dependent heated channel (not to

scale)

temperature. A non slip condition is prescribed on the upper and lower walls. Zero heat
flux is prescribed on the upper wall and on the part of the lower wall where temperature
is not prescribed, as indicated in Figure[7.4] A time dependent temperature is prescribed
on a part of the lower wall of length H/2 located at a distance H/2 from the inlet. The
prescribed (dimensionless) temperature rises from 1 at time ¢t = 0 to 1.5 at time ¢ = 0.01

and remains constant after that. The dimensionless parameters of the problem are

_puL _

R 10, pr=28_
1 k
AT L3
e=22 05 Ra=Pric=5x10!
T() V2

The initial conditions are a Poiseuille velocity profile and a constant temperature on the
whole domain. When the flow starts to heat (near the zone where the temperature is
imposed) it goes up by buoyancy forces giving rise to two vortices, one before and the
other after the heating zone. This is illustrated in Figure [7.5 where streamlines and
temperature distribution obtained using the Boussinesq approximation are presented for
different (early) times.

After this initial transient, the flow after the heating zone gradually rises its

temperature and the second vortex (the one located after the heating zone) gradually
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(@ =\

Figure 7.5: Streamlines and temperature distribution obtained using the Boussinesq
approximation at times t =0.2,t=04,t=0.6,t =08 and ¢t = 1.0

disappears. The final steady state is reached around ¢t = 12. This behavior is also
observed when the low Mach number approximation is used.
The first point we want to illustrate here is the influence of the output boundary

condition. One possibility is to consider simply
t-n=0 (7.10)

but it seems to be better to consider an ”atmospheric stress condition” as the one

suggested in [107], given by
ton=t,= —plgly (7.11)

The final steady state obtained using these conditions is shown in figure

7.4 Conclusions

We have implemented the discrete approximation to problems defined in chapter 1 as
systems of second order equations. Different linearizations have been considered for the
solution of the algebraic nonlinear problem. Using the well known example of the flow in a
differentially heated cavity, we have shown that fully coupled schemes, in which a Newton
type linearization is performed, are the best option for the solution of stationary problems
or when the time step is large. In this cases, a line search strategy is very important to

enhance the robustness of the scheme. Its cost is higher to that of forming the system of
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Figure 7.6: Steady state streamlines, temperature and pressure distributions obtained using
boundary conditions on the left and using boundary conditions on the righ

\

—

equations and for this reason it is not convenient when small time steps are considered.
In this case there is also a small difference between the full Newton linearization and the
staggered approach in which the problem is split into a mechanical problem and a thermal
one. It has also been shown that in this case it is better to solve the thermal problem
first. A fractional step scheme, splitting also momentum and continuity equations, could
be considered in this case, but this is a point that needs further research.

The zero Mach number model and the Boussinesq approximation have been considered
to solve low speed thermally coupled flows. Both describe the basic mechanism of thermal
coupling which is due to the dependence of the density on the temperature: when a fluid
element is heated, it expands and moves up. However, they differ in the way they take into
account the compressibility of the medium. While in the Boussinesq approximation the
flow is incompressible, in the zero Mach number model the density distribution is predicted
and the velocity field is affected by expansions or contractions due to heating. They also
have different ranges of applicability: while the low Mach number approximation only
requires a small Mach number, the Boussinesq model requires also a small Froude number

and small heat sources.
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Chapter 8

Thermal coupling of fluids and solids

In this chapter we analyze the problem of the thermal coupling of fluids and solids through
a common interface. We state the global thermal problem in the whole domain, including
the fluid part and the solid part. This global thermal problem presents discontinuous
physical properties that depend on the solution of auxiliary problems on each part of
the domain (a fluid flow problem and a solid state problem). We present a domain
decomposition strategy to iteratively solve problems posed in both subdomains and discuss
some implementation aspects of the algorithm. This domain decomposition framework is

also used to revisit the use of wall function approaches used in this context.

8.1 Introduction

The problem we analyze in this chapter is that of the thermal coupling of fluids and solids.
This problem is found in any engineering design in which a fluid is used to extract heat
from a solid (refrigeration, ventilation, etc.). In fact many experimental correlations are
available [86] in the form of convection coefficients. The objective of the present chapter
is to present a domain decomposition approach that permits the separated treatment
of a problem in the solid domain and of a problem in the fluid one. Let us emphasize
that it is not our intention to use a domain decomposition strategy to perform parallel
computations but to treat problems with different physics separately. Moreover, this
domain decomposition approach will allow us to implement the thermal coupling problem
in a master-slave algorithm (discussed below).

The model presented in section is based on the solution of the thermal problem
in the whole domain 2 that includes the solid subdomain €2g and the fluid subdomain
Qp. The differential operators that describe the evolution of the temperature () are
different as a result of different physics and they depend on other variables that describe
the state of each medium. On each subdomain the thermal problem could be coupled

to other differential problems depending on the physical model used for the fluid and for
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the solid. In the first case we may have a compressible flow or an incompressible one, a
mix of species, chemical reactions, etc. In the second case we may have a purely thermal
problem, a thermomechanical one or even a thermo-hygro-mechanical one as in [57]. Any
model can be used on each subdomain but we will assume that the coupling between
the fluid and solid is only due to heat exchange. This condition, in the case in which
mechanical problems are solved on each subdomain, will be written explicitly indicating

precisely the assumptions needed.

The numerical approximation of the fluid and solid problems is in general different.
One important feature of our approach is that different numerical approximations could
be used to solve each problem. In the case of the fluid we use a stabilized finite element
formulation based on the subgrid scale concept. Each field is decomposed into a resolvable
and a subgrid scale part according to the finite element partition, and the effect of the
subgrid scale on the coarse scale is taken into account by an algebraic approximation. This
approach allows us to deal with convection dominated problems and to use equal order
interpolation of velocity and pressure which would lead to numerical instabilities when a
standard Galerkin formulation is used. The Galerkin approximation is used to solve the
solid problem. We describe the discrete formulation in section but we emphasize once

again that any other possibility could be used.

The possibility of using different models and different discrete approximations is not
only theoretical but also practical. The coupling through the common interface between
the solid and the fluid is accomplished by the transmission conditions, which we consider
of Dirichlet/Neumann type. This leads to a non-overlapping domain decomposition
problem that we implement in an iteration-by-subdomain strategy. The solution of each
thermal problem, in the fluid and in the solid regions, and the transmission of boundary
conditions from one domain to the other is done by a relatively small master code. This
code, developed following the MPI 2 standard, is in charge of managing the subdomain
iterative coupling and the time marching loops. In this way, each dedicated code acts as
a slave and can be updated separately as only minor modifications are needed to change
the information with the master code. These implementation aspects are described in
section 8.4l The domain decomposition framework for the thermal coupling described,
together with its implementation aspects and an interpretation of the use of wall function

approaches, is the main contribution of this work.

Finally, the approach is illustrated in a simple one dimensional example and is applied

to the simulation of a fire in a tunnel in section 8.5l Some conclusions are drawn in section

B.6



Thermal coupling of fluids and solids 171

8.2 Continuous problem

We consider a thermal problem in a domain €2 composed of two subdomains (2g and
Qp, as illustrated in Figure (left and center). We present first the problem in the
whole domain considering discontinuous physical properties, which include the density
(p), the specific heat (¢,) and the diffusion coefficient (k = %, where k is the thermal
conductivity), as well as a velocity field (v). This velocity field will be assumed to be
solution of a mechanical problem defined also in the whole domain and having also
discontinuous properties. The constitutive relations in the fluid and in the solid are
different, the former relating the stress tensor (o) to the velocity gradients and the latter
relating the stress tensor to the deformation gradient.

Once the problem in the whole domain has been written, we will present two different
strategies for a domain decomposition approach to this problem. The first strategy
presented consists of a standard non-overlapping domain decomposition of the problem
into the fluid and solid subdomains. We will assume that the mechanical problem in the
solid does not depend on that in the fluid, in a sense to be made precise later on. We will
refer to this approach as the full resolution strategy.

The second strategy consists of a non-overlapping domain decomposition of the
problem in three subdomains, one in the solid region and two in the fluid region, as
illustrated in Figure (right). One of the fluid subdomains will be a thin region of
thickness 0 near the solid surface and the other will be the rest of the fluid domain. The
purpose of this second approach is to consider the problem of the strong boundary layers
present in a turbulent flow using the wall function approach. An approximated solution
of the problem in this thin region is written in terms of the wall function and an iteration
strategy between the remaining subdomains is proposed. Therefore this second approach
will also involve two subdomains. We again assume that the mechanical problems are

uncoupled. We will refer to this approach as the wall function strategy.

SE BF BS

Figure 8.1: Domain of the problem

8.2.1 Problem definition in the whole domain
Strong form of the problem

The problem to be solved in €, an open domain in R? (d = 2,3 is the number of space

dimensions) during the time interval (0, ;) is described by the equations of continuous
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media. These equations could also be used as basis for more complex models [57]. These
sets always contain an energy conservation statement that, under suitable assumptions,
reads

pcy (0 +v-VI)+V.q=0Q in Qx(0,t) (8.1)

Here @) is the external source of energy source per unit of mass and q is the internal heat

flux vector. The velocity field v is the solution of a mechanical problem of the form
p(Ov+v:-Vv)—V-o=pg in Qx(0,t)

Here g is the external source of momentum per unit of mass and o the internal stress
tensor. The parameters present in these equations (p and ¢,) may be discontinuous across
the surface I'sp (t), which is a moving surface separating the fluid and the solid. The

constitutive equation for the internal heat flux is
q=—kVYv (8.2)

where k£ may also be discontinuous across ['sp (). The constitutive equation for the
internal stress tensor will in general be different in both regions. In the case of the solid it
will be related to the deformation tensor. In the case of an incompressible fluid it will be
related to the velocity gradient and to another variable, the pressure (p), that will involve
the solution of another equation, the conservation of mass.

The problem must be supplemented with appropriate boundary and initial conditions.
Let us split the boundary 9 of Q into two parts as 9Q = 'Y, U T, where ') and T'%
represent the part of the boundary where Dirichlet and Neumann boundary conditions
for the temperature are prescribed, respectively (see Figure .

RN
(2

L'p

Figure 8.2: Boundary conditions of the problem

The initial and boundary conditions for the thermal problem can thus be written as
v = Yy in Qx{0}
¥ = 191) on F% X (O, tf>
n-q = g on L% x(0,t)

where m is the normal exterior to the domain 2. In turn, the initial and boundary

conditions for the mechanical problem depend on the constitutive relation considered. In
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the case of a solid they are usually written in terms of the displacement and in the case
of the fluid in terms of the velocity. The purpose of writing the mechanical problem is to
clearly specify the conditions under which it is uncoupled. Nevertheless, we will consider

the weak form and the numerical approximation of the thermal problem only.

Weak form of the problem

In order to write the weak form of the problem we will not consider the mechanical problem
and we will assume the velocity field to be given. Let us introduce some notation. We

start introducing the functional spaces

H(Q) = {v cr2): ez, - 1,...,nsd}
(9mj

VO (Q) = {ve B (Q):v="1p in T}
V@) ={veH' (Q):v=0inTh}

The scalar product in L?(2) will be denoted by

(u,v)q ::/ude
0

and we will use the notation

amuFlmm

when the functions f and g are not necessarily square integrable and w is either a
subdomain of €2 or part of the boundary 0f2.

A weak formulation of the problem is obtained by integrating by parts the diffusive
term in Equation[8.1]and using the constitutive Equation[8.2] Let us introduce the bilinear

form

a(9,v) = (pcy 00, v)g, + (pepv - VI, 0) + (EVI, Vo),

(in fact, a is affine in the first argument, but we will omit this precision in the following)

and the linear form
L(v) == (Q,v)q + (an, U)pg
The weak form of the problem consists in finding ¥ € L%(0,t;; V¥) N L>(0, t¢; L2(92)) such

that
a(@v)=1(w) YveV’® (8.3)

where L?(0, t¢; V) is the set of functions whose norm in V? (which is the norm in H(2))
is square integrable in time, and L>(0, t;; L?(Q)) the set of functions whose norm in L?(£2)

is bounded in time.



174 Thermal coupling of fluids and solids

8.2.2 The full resolution strategy

Let us split the domain €2 into the solid and fluid subdomains, Q25 and Qp, as illustrated
in Figure (center) and let I'sp (¢) be the interface between them. Let us also define

ry, = IYnoQ; i=S,F
g, = Ir¥noQ; i=S,F
Strong form of the problem

The strong form of the problem consists in finding temperatures s and Jp, as well as
velocities vg and v, such that

PSCps (8t195 + US-Vﬁs) +V. qs = Qs in Qg X (O, tf)
Ps (8,5’03 + ’US'V'US) -V os = pg in QS X (0, tf)

and

PFCpF (atlgp + T)F'Vﬁp) + V- qgr = QF n QF X (0, tf)
PF (at’UF + 'l)F'V’UF) —V-.or = pg in Qp X (0, tf)

As it has been mentioned, the mechanical problem is written in abstract form, only for
the purpose of presenting the assumptions required to have a coupled problem only for
heat transfer.

The initial conditions of this problem are

195 = 190|S in QSX{O}
191:‘ = 190|F in QFX{O}

and its boundary conditions are

193 = 19D|S on F%SX(O,tf)

ns-gs = quls on I'Rg X (0,t)
19F = ?9D|F on F%F X (O,tf)
Np-gp = (nlp oOn F%F x (0, t¢)

The conditions to be satisfied at the interface are the continuity of the temperatures

and velocities as well as the normal components of heat fluxes and tractions, that read

’UF‘FSF - US|FSF - iLS|FSF

L2 O-F‘FSF =N US’FSF
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and

19F|FSF - §S|FSF

ns- qF’FSF = —MNg- qSlFSF

where now mg (np) is the normal exterior to the domain Qg (Qg). At this point we

introduce the following assumptions:

1. The time derivative of the displacements of the solid is expected to be small

compared to the dimensions of the solid itself and the fluid velocities, that is
’l.l,s ~0

2. The mechanical traction produced by the fluid on the solid is expected to be small,
so that

nr - O-F’FSF ~0
With these approximations the interface conditions become

UF’FSF =

ng - US’FSF =0
and

0F|FSF - 198|FSF

ng - qF‘FSF = MNng- qS|FSF

and therefore the mechanical problems are uncoupled.

Weak form of the problem

Let us introduce the bilinear form ag defined on the solid subdomain {2g
as (0,v) = (pscpgf)tﬁs,v)ﬂs + (ks Vs, VU)QS

We have assumed that the advection term in the heat transport equation is negligible in
the solid phase. Likewise, we define the bilinear form ar defined on the fluid subdomain

Qr as
ar (’19, U) = (chpFatﬁF, U)QF + (ppchvF-VﬁF, U)QF + (kﬁFV’l?F, VU)QF
We also introduce the linear forms

Is (v) = (@, v)qq + (an, Vrg,
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and
Ip (v) = (Q,v) o + (an, V)pg

The weak form of the problem consists in finding

¥s € L*0,ty; V) N L2(0, t; L))
Ip € L*0,t:; V) N L0, tg; L2 (Qp))

such that

as (V,v) — (ksns - Vs, v)p - = [(v) Yve Ve

ap (0,v) — (kpng - Vip,v)p = 1(v) Yo € Ve (8.4)
?91:‘ = 193 on FSF
anF : VﬁF|FSF = — ksns : VﬁS’FSF on FSF

where the spaces V& and V§ (resp. V¥ and V) are defined in the same way as V¥ and

VO but considering I'Yq (resp. T'3y) instead of T'Y.

8.2.3 The wall function strategy

Let us split the domain €2 into the solid subdomain {25, a boundary layer in the fluid
Qp and the rest of the fluid subdomain Qf, as illustrated in Figure (right). Let also
[sg (t) be the interface between Qg and g, and I'gp () be the interface between Qg and
Qp. Apart from the equations given in the previous subsection for the solid and the fluid
subdomain, we now need to solve the problem on the boundary layer subdomain, which

consists in finding a temperature ¥g and a velocity vy such that

PCp (aﬂ?B -+ ’UB'VﬁB) + V- dg = (B (85)
p (Oywp + vp-Vug) — V.05 = pg (8.6)

Under the same assumptions as in the previous subsection the interface conditions are
'UB|FSB =

Nng - O-S|FSB =0

19B|FSB - §S|FSB

ng - qB|FSB = MNs- qS‘FSB

and

vF|FBF - UBlFBF

ng - UF|I‘BF = np- UB|FBF
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Q9F|FBF - 19B|FBF

ng - qF|FBF = —np- QB’FBF

If the boundary layer is of constant width, one may assume that its normal satisfies

nB|FSB - nB‘FBF

The problem on the boundary layer subdomain is now approximately solved using the
wall function approach, which is described next.

Wall function revisited

The so called wall function approach is a method for the approximate solution of the fluid
mechanics problems with strong boundary layers. These boundary layers are removed
from the computational domain and universal velocity profiles are used to define the
boundary condition in terms of the boundary conditions on the solid surface, as shown in

Figure [3.3

Computational domain

Boundary layer r‘r

Wall l

Universal profile
Figure 8.3: Wall function approach

This approximated solution is found assuming negligible inertial terms and external
forces. From [8.5] and [8.6] it is seen that this yields

Vogg = 0
V.o B = 0
which imply constant stresses and heat fluxes across the boundary layer. We denote now

by ¢ the normal component of the heat flux (not to be confused with the heat sources
introduced before)

g=mng- qB|FSB

and by t the tangential stress

t=n-op—(n-op -n)n|
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evaluated at the wall. The mechanical problem is solved selecting a local coordinate
system such that the first local direction is t. If we denote by o the norm of the
tangential component of the stress (not to be confused with the full stress tensor), by
ug the component of the velocity in this system and by y the coordinate normal to the

solid surface, the constitutive equations are

B ~ dUp

g = (k+k&) m (8.7)
. t duB

o = (p+u) m (8.8)

where p! and k! are the turbulent viscosity and conductivity. Given the turbulent viscosity
and conductivity we can integrate [8.7] and to obtain the velocity and temperature
profiles. The definition of the turbulent viscosity and conductivity is the definition of the
model we are using to approximate the problem and is based on experimental correlations
[89]. One of these models is the one that results in the logarithmic profiles for the velocity
and temperature. This model is based on the existence of a zone near the wall, called
laminar sublayer, in which the velocity is small and therefore also the local Reynolds

number is. In the laminar sublayer the turbulent viscosity is neglected and we have

o pdug
ppdy
that is written in dimensionless form introducing the friction velocity u, = \/o|y=o/p. As

the stress is constant across the boundary layer, we have

ug _ pusy
Uy u

On the other hand, in the turbulent region we may approximate u' = pkyu,, k being the
Von Karman constant, and integrating 8.8 we have

1
us _uo L (g)
Use Use K Yo

where 1y is the width of the laminar sublayer and wug the value of the velocity at this
point. Defining the dimensionless velocity uj; = up/u, and distance y™ = pyu*/p and

taking yg = 11.6 the final solution reads
L yT it y™<ys
B Lln(y*)+55 if yt >y,

In the same way, integrating [3.7| we arrive to

ot = Pry™ if yt<ys
Pr[fIn(y*) +Pg]  if yt >y
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where Pr := x/v is the Prandtl number, Pr is the turbulent Prandtl number (which is
part of the constitutive model), Py a function that gives the temperature jump across the

laminar sublayer and the dimensionless temperature is defined as
PCHUs

Vg = Ty (0 — O8lp,)

Strong form of the problem

Having an analytical solution to the problem in the boundary layer domain we can rewrite
the complete problem in terms of two subdomains, the fluid (excluding the boundary
layer) and the solid. To this end, let us remark that the solution of the thermal problem

obtained using the wall function method is a constant heat flux and therefore

q=mngs- (IS|FSB = —np- (IB|FSB = ngp- QB|FBF = - MNg- QF|FBF

This flux is proportional to the temperature jump across the layer

q9 = « (§B|FBF o ﬁB|FsB)
= (ﬂF|rBF - 798|FSB)
where

_ PCpUs«

I+

and 91 = 9 (67) is defined in terms of 5, the dimensionless boundary layer thickness.

This parameter depends finally on the particular choice of the turbulent viscosity and
conductivity of the wall function method. In the same way, as the tangential stress is

constant across the boundary layer, we have
t|FSB - t‘FBF - ﬁ vFlFBF
for a certain parameter 3, and the normal component of the velocity is set to zero
n-vply =0

We can finally state the strong form of the problem as finding s and ¥y, as well as

vg and v, such that

pscpsOils +V -qg = qs in Qg x (0,t)
psﬁtvs -V os = pg in QS X (O,tf)

and

psCps (O0p + vpVUp) +V -qp = qr in Qp x (0,1)
Ps (8{01: —+ ’UF'V’UF) -V Or = pg in QF X (O, tf)
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and now the interface conditions become

t|FBF = ﬁ vF|FBF
nr - ’UF’FBF = 0
ng - US‘FSB =0
and
q = Mns- QS|rSB = —np- QB|FSB = np- (IB|I‘BF = My~ QF|FBF

= (§B|FBF — 19B|FSB) = (19F|FBF — ﬁS|FSB)

Finally, assuming the boundary layer thin we can write the final approximation as

qg = MNns- qS|rSF = Ng- qF|FSF
= «a (,ﬁF|FSF - ﬁs‘l—‘sp)

which is a surface-convection-type boundary condition. As in [33], we have derived an
expression for o based on the physical model being used (with a completely different

meaning with respect to the mentioned reference).

Weak form of the problem

As in the previous subsection, let us introduce the bilinear form ag defined on the solid

subdomain g

as (19, ’U) = (pscpsﬁtﬁs, U)Qs + (k’sVﬂs, VU)QS
and the bilinear form ar defined on the fluid subdomain Qg
ap (9,v) := (prc,pdiip, U)QF + (prcppvr: Vg, U>QF + (kp Vg, VU)QF
as well as the linear forms
Is (v) = {4, Vg + {an, g,
le (v) = (4, V) + (an Oy
The weak form of the problem consists in finding
Ps € L*0,t; V) N L2(0, t; L2(9g))
Ip € L*(0,t5; ViY) N L(0, t; L2 (Qp))

such that
as (V,v) — (ksms - Vs, v)p - = [(v) Vve Ve
ap (0,0) — (kgnp - Vip,v)p . = 1(v) Yoe Vg
kF’I'LF . VQ?F’FSF = « (ﬂF‘FSF — §S|FSF) on FSF

kp’nF : V19F|FSF = — k‘sns . VﬁleSF on FSF
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Comparing the weak form of this problem to the only difference is a jump on the
temperature proportional to the heat flux between domains. Our derivation allows us to
give an interpretation to the surface convection coefficient « in terms of the wall function

model used on the boundary layer subdomain.

8.3 Numerical approximation

Three different continuous problems have been described in section but the first one,
that consists of the solution of a global problem in the whole domain, was presented
to define the problem we are facing and has not been actually implemented. The
other two possibilities imply the solution of local thermal problems as well as local
mechanical problems for the fluid and the solid. In this section we present the numerical
approximation to the problem and we will concentrate on the thermal problem only.
In the first subsection we will present the finite element discretization of the problem
considering generically the domain §2. This approximation could be applied on the whole
domain but will be actually applied on each subdomain. A similar scheme is used to solve
the mechanical problem on the fluid. Details on the finite element approximation to the
Navier Stokes equation can be found in [29, 35, [36]. In the second subsection we describe
an iterative strategy to solve the global thermal problem iteratively solving local problems

on each subdomain.

8.3.1 Finite element approximation

The Galerkin finite element approximation of this problem is standard. Based on a
partition of the domain P, = { K} in ng elements K, the space V¥ where the temperature
is sought is approximated by a finite dimensional space V;? (built using polynomials). If
the space of test functions V? is approximated by V), defined in a similar way, the semi-
discrete problem consists in finding ¥, € L?(0, t¢; V,”) such that

a (19h, Uh) = (Uh) VU}L < V;?

It is well known that this formulation is unstable when the convection dominates and
therefore we employ a stabilized finite element formulation based on the subgrid scale
method with an algebraic approximation to the subscales [75]. This method is based on a
decomposition of the continuous space of the form (for simplicity consider homogeneous

Dirichlet boundary conditions):
V=Vl eV

where V? can be in principle any space to complete V,? in V?. To fix ideas we may think
V¥ as the orthogonal complement of V;V with respect to the L? inner product. Since V?

represents the component of V¥ which is not reproduced by the finite element space, we
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call it the space of subscales or subgrid scales. The continuous Equation [8.3| can now be

written as the system

a(On,vn) + a(d,vp) =1 (vy) Vo, € VP (8.9)
a(V,7) + a(0,0) =1(7) VoeVo (8.10)

After integration by parts within each element domain Equation [8.10]is equivalent to
finding ¢ € V¥ such that

pc, (at{i to. v&’) — kY = Ry + Opore in K, (8.11)

9= Eske on 0K, (8.12)
for any K € Py, where
Ry, := Q — pc, (09, + v - V) + kY20,

is the residual of the finite element component. The function 9}, o is obtained from the
condition that ¥ must belong to Vo (and not to the whole space V?) and the function
zike, that we call the skeleton of 5, is defined on the element boundaries such that the
normal component of the fluxes of ¥ is continuous across these boundaries [29]. Problem
8.9H8.10] is exactly equivalent to|8.948.11 The approximate problem is defined by the
way in which Problem [8.1118.12] is solved as well as by the way in which the functions
Up ory and 5Ske are taken.

The simplest way to approximately solve Problem [8.11H8.12 is to neglect the time
variation of 9 and to approximate the spatial differential operator (pc,v - V — kV?) by a

parameter 77! that depends on the coefficients as [29]

-1
pep V]l

k+c
2 h )

T = Clﬁ
where ¢; and ¢y are algorithmic constants that we take ¢; = 4 and ¢ = 2 for linear

elements. These approximations give

I~ TRy, (8.13)

Another possibility [35], 36] is to approximate the spatial differential operator but to
allow the subscales to be time dependent. In this case, instead of we have, at each

point, an ordinary differential equation for the subscales evolution given by
pcp(’?tl;qt 9 =R, (8.14)

where the same expression for the stabilization parameter 7 is used.
The approximation given by and that given by both have an implicit

assumption on the function Yy, and the space V7, and therefore on the function ¥y, ort.
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This is not the only possibility as suggested in a previous work [29] where, in particular,
the subscales are taken orthogonal to the finite element space. After integrating by
parts within each element those terms that involve spatial derivatives of ¥ in and

neglecting boundary terms, the final semi-discrete weak form of the problem reads: find
U € C°(0,t; V)Y) such that

a (O, vp) + (pcpatg, Uh)Q — Z (pcp'v - Vo, + kEV3u, 5)}( =1(vy) Vo, eV
K

where ¥ is given either by or by [8.14] (in the first case A = 0 is assumed).

The time discretization of the problem will be performed using the generalized
trapezoidal rule, that is to say, a finite difference scheme. The fully discrete problem
will be obtained by discretizing in time the semi-discrete problem. Obviously, it is also
possible to start by discretizing first in time and then in space. We will use the first
option but let us point out that if the subscales problem is solved using the scheme
is commutative [36]. Let us consider a uniform partition of the time interval (0, ¢) of size

0t and let us introduce the following notation

o= 0t e (1-0) f
o ft = (fT = f) fot=(f0 — ) [ (06t)

where 0 < 6 < 1. For # = 1 we obtain the backward Euler scheme, of first order, and
for § = 1/2 the Crank-Nicolson scheme, of second order. Both are unconditionally stable.
Let us define

CLh (191}:+17 'Uh) — (pn+962+95t z’ U)Q + (pn+ecz+9vn+9.vﬁz+9’ U)Q + (k”+9V19Z+9, VUh)Q

n+0 n+95 ,@% ) o < n+60 n+0 n—l—G.V k,n—i—@vQ §n+9>
+(,0 Cp Ot ,UhQ ZP ¢, v (A Uh, «

p
K
where 9"+ is given by

e Quasi-static subscales:
ﬁn—k@ ~ 7‘”+9RZ+6

e Dynamic subscales:

pn+6’ CZ+9 dﬁn + TflgnJrG _ RZ+9
The fully discrete problem consists in: for n = 1,2, ..., find 192“ € V¥ such that

a" (97t vy) = (¢, Un)g + <q§+07vh>rg Yo, € V)2
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8.3.2 Coupling strategy

As mentioned before, we consider a geometric domain decomposition of the problem
by means of a non-overlapping subdomain approach. Therefore, at each time step, we
expect to construct the solution of the problem from the solution of local problems for
the fluid and the structure using the interface conditions already described. This is
carried out by iteratively solving local problems on each domain until convergence on
the interface conditions is satisfied, that is to say, we use an iteration-by-subdomain
strategy [74]. The choice of the boundary conditions of the local problems should be
such that interface conditions presented in section are satisfied when convergence
is achieved. It is well known from the theory of domain decomposition methods that
in the case of non-overlapping subdomains we can choose Dirichlet-Neumann(Robin),
Neumann(Robin)-Dirichlet or Robin-Robin. Let us define a% and af in the same way as
a" was defined in the previous subsection.

If we use the full resolution strategy and we apply Dirichlet boundary conditions to
the solid and Neumann boundary conditions to the fluid, which according to [60] 127] is

the most stable option, the coupling algorithm can be written as: for each time step n

and each iteration ¢ find ﬁg;l’i’q € V¢, and ﬁg;l’iﬂ € Vi), such that
n+1,i4+1 n n
a}Sl (198,-; * avh) = <q +67 Uh>Q + <qN+97 Uh>1-§ (815)

a (79;;17241’%) - <qn+9’vh>9 + <Q1731+9>Uh>rﬂ a <k?sns . Vﬁgf’i, Uh>

where vy, € Vg, in and in v, € VR, in|8.16] It is understood that now these spaces

V¢, and V&, are constructed including Iy in the Dirichlet part of the boundary in order

(8.16)

INS

to satisfy
ﬁg:;l,i—i-l _ ﬁ;j;llk on FSF
We can take k =1+ 1 or k£ = ¢. In the first case the solution of this problems is sequential,
that is, we solve first for the fluid and then for the solid, whereas in the second one it can
be parallel.
If we use the wall function strategy, the coupling algorithm can be written as: for

each time step and each iteration 7 find 19781;1’”1 € ‘/Sl?h and ﬁg;lﬁl € V}%% » such that
Lt Lit1 Li
ag (?9;7'; i+ ,Uh) = <qn+97 Uh>Q + <q§+eavh>l“§ + <Oé (ﬁg:; e+l 19;:2 Z) 7Uh>FSF (817)

o (U5 00) = (0w + (a8 )+ (o (05 =055 ) (818)
where v, € Vg, in and in v, € Vg, in . Again we can take k =i+ 1 or k =i.
Apart from the fact that the physical models represented by System [8.15 and by
System [8.17H8.18|are different, some conceptual differences have to be remarked. Firstly, it
is observed that the imposition of the transmission conditions is “symmetric” for the fluid
and the solid, contrary to the Dirichlet-Neumann conditions in [8.I5{8.16] Secondly,
does not require the calculation of the normal heat fluxes from the solid to the fluid,
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as needed in[8.16] This calculation is always involved in a finite element code, particularly
for non-matching meshes between the fluid and the solid (see next section). Finally, in
the limit & — oo it can be shown that the solution of System converges to the
solution of system [8.15H8.16] the convergence rate being a~'. This can be proved using
the analysis developed in [22]. Nevertheless, in our approach a has a physical meaning

and, moreover, taking « large leads to ill-conditioning problems.

8.4 Implementation aspects

8.4.1 A master slave algorithm

One important point of the iteration-by-subdomain strategy proposed is that we already
had programs that solve the fluid dynamics problem and the structural problem. Then
a master/slave algorithm was implemented by developing a third code (the master code)
in order to control the iterative process. The MPICH2 library, an implementation of
the MPI-2 standard, provides functions for process communications that are used to
interchange the data needed to apply boundary conditions on each dedicated (slave) code.
Some minor modifications on these codes are needed in order to exchange data with the
master. In order to perform a calculation, input data for each subproblem needs to be
generated and the master code starts the calculation by starting the slave process (this
is only possible under MPI-2 standard). During the calculation the master code needs
to define the boundary conditions to be applied on each subproblem. The situation is

illustrated in Figure (8.4}

Master

read data

l— spawn slaves —l

Solid slave Fluid slave
read data read data
send data to master | — | get slave data +—— | send data to master

build interface

Time loop Time loop n Time loop n
Non linear loop ¢ Non linear loop ¢ Non linear loop ¢
generate b.c.
geth.c. — send b.c. —_— geth.c.
solve solve
send gntiit: _— get grrnitt — send grtuit:
End End End

Figure 8.4: Master slave implementation
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8.4.2 Boundary data interpolation

Another aspect of the implementation that deserves a comment is the interpolation of
the boundary conditions to be applied in one subdomain from the results obtained in
the other subdomain. For each interface node, this interpolation is performed finding, in
the mesh of the other subdomain, the element in which it is located, the so called host

element. The process is illustrated in Figure [8.5

Figure 8.5: Boundary data interpolation

The element search strategy used in this work [74] is based on a quad-tree (oct-tree
in 3D) algorithm. It consists of two steps: the preprocess in which a tree-like structure
is built and a process in which the search is performed. In the preprocess the host
computational domain is embedded in a box taking the maximum and minimum nodes
coordinates to define its coordinates. This box is then subdivided recursively into 4 boxes
(eight boxes in 3D) until each box contains a prescribed (small) number of elements. Once
this preprocess has been performed, the process to search the host element of a given point
is faster. Given the test point coordinates & we recursively locate the boxes it belongs
to and we find a small number of elements in which the point must be. Then on each
element we perform a local coordinates test. If the coordinates on the parent domain of

the standard isoparametric mapping are denoted by &, we have
x = Z N (&) x®

and starting with & we solve this equation for & using a Newton-Raphson procedure. The
solution permits us to determine if the point belongs to the element and if it is the case
we already have the shape functions on the host mesh evaluated at that point. They are

then used to interpolate the needed boundary data.
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8.5 Numerical examples

In this section we present two numerical examples. The first one is a very simple one-
dimensional example intended to show the role played by the wall function approach when
very thin boundary layers are created. The second example is a practical application of

the thermal coupling described in this chapter.

8.5.1 A one dimensional example

Assume we have two different materials F and S on domains Qp = [—1, 0] and g = [0, 1],

with conductivities kg and kg, respectively defined by

1—e™7
kp =
I —e 7 +er
1 —e
ks — ¢

Il —e 7 +ye ™

where C' and v are constants. Both coefficients have a boundary layer near x = 0 and

the constant 7 is a measure of the boundary layer width. The coefficients are shown in

Figure [8.6] for v = 10 and v = 100 and C = 1.

1 : : : : 1—
09 | | 09 |
0.8 | 08 | |
07t | 07t |
06 | . 06 | |
x 05 | 1 x 057}
0.4t | 0.4 | |
03} | 03 t|
02t ¥ 02} ]
0.1t g:lOO e ‘\‘, 0.1 y=100 - |
0 ‘ ‘ 0 ‘ ‘
1 08 06 04 -02 0 0 02 04 06 08 1
X X

Figure 8.6: Thermal conductivity

The problem can be written as

dx dx
d dd
| ke— ] = in
dx ( Sd:v) @s in S
with the transmission conditions
dy dd
—kp— = —kgq— at =
Fda Sdx at o =0

Or (0) = Vs (0)
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and the boundary conditions

Ie(~1) = 1
Is(1) = 0

The exact solution to this problem is

1 1— e
1915‘ (ZL’) = 5 (—LB + 1——6'Y)

1 1—e*
Is(@) = 3 (—x - 1_—)

We have solved this problem in the case of v = 100 using the first domain
decomposition strategy using three different meshes of 10, 20 and 40 elements. The
solution is compared to the analytical one in Figure 8.7 We have also solved this problem
using the second approach using a mesh of 10 elements and the result is compared to the

one obtained by the previous method and to the analytical solution in Figure [8.8

1 1

. " n=10 ——
— —
~ o — N=40 e
05 | \\ S 05 | T
\\\
- 0 ~— - 0
i
™ 1
0.5 t =10 —— \ 05 P,
n=40Q - \x\ x TR .
T ——— L
4 LT® ‘ ‘ ‘ 1 ‘ ‘ S i, 2 S
1 08 -06 -04 02 0 0 02 04 06 08 1
X X

Figure 8.7: Finite element solution obtained using domain decomposition with two subdomains

compared to the analytic one

1 — ‘ ‘ ‘ 1 T T " DD1 .
\\\ - T Koo
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N X 05t
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02 S L T
1 ‘ ‘ ‘ ‘ -1 ‘ ‘ - 0
14 08 -06 04 02 0 0 02 04 06 08 1
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Figure 8.8: Finite element solution obtained using domain decomposition with three subdomains

compared to the analytical one

It is clearly seen how the second method gives much better results in the case of

a coarse discretization. The accuracy of this approach depends on the choice of the
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coefficient a. The optimal value used here is found noting that, when v — oo, the exact

solution tends to

1 1
1 1

and the conductions coefficients tend to 1 (except at x = 0 where both are 0) from where

we obtain o = 1/2.

8.5.2 A fire in a tunnel

A fire is a complex phenomenon whose detailed simulation involves many different aspects
that we are not considering in this work. Here we have used a simple model that considers
the fire as a source of heat, without taking into account the exact reactive mechanism,
as this would imply a precise knowledge of the chemical components of the fuel. The
heat released during a fire, which is between 1 MW and 100 MW, is partially dissipated
by the flow and partially transported towards the concrete structure where it is finally
dissipated. Thus, the heat transfer involves both the behavior of the fluid inside the
tunnel and the structural behavior of the concrete and it is therefore necessary to solve a
coupled problem.

We solve the problem using the low Mach number approximation to the compressible
flow equations. This model takes into account the compressibility of the fluid but removes
the acoustic modes [124]. Unlike the Boussinesq approximation, strong temperature and
density gradients are allowed. The numerical treatment of the low Mach number equations
is described in previous chapters.

The high Reynolds number of the problem implies the need of taking turbulence into
account. We do this introducing a Smagorinsky eddy [130], which is defined by

ph = peA [er(u) : er(w)]'?,

where ¢, is an empirical constant, A a characteristic length usually taken as the mesh
size and e/(u) is the deviatoric part of the rate of deformation tensor. A subgrid thermal

conductivity is also added. It is defined in terms of the subgrid viscosity as

Pr’
where Pr’ is the turbulent Prandtl number, which is assumed to be constant (and taken
to be 0.5).
Two simulations were carried out considering heat sources of 10 MW and 30 MW,
which correspond to a small size fire (a car for example) distributed in a volume of 8 m?.

Based on experimental results, a typical wind in a tunnel in absence of fire has a velocity
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of about 0.5 m/s. A preliminary calculation was performed to reproduce the initial state
of a wind flowing through the tunnel which was obtained applying a pressure difference
between the tunnel inlet and outlet. On the tunnel walls Neumann boundary conditions
based on universal profiles were applied (wall laws). Boundary conditions for temperature
were defined to reproduce the real situation as close as possible. On the tunnel walls a
Robin type condition as in [8.17{8.18| was applied using a convection coefficient suggested
by laboratory experiments and the temperature on the concrete walls was fixed. On the

entrance and exit of the tunnel Neumann boundary conditions were considered.

The physics of the flow is quite complex and the temporal evolution is chaotic.
When the heating starts, strong buoyancy forces determine the formation of a plume and
recirculation zones that now, in contrast to the previous example, are fully tridimensional
and of complex structure. In Figure the velocity field at 3 minutes after the starting
of the heating is shown and in Figure the corresponding temperature field is shown.
Both figures show a detail of the fire zone introducing cutting planes that intersect the
fire zone. The heat source generates the plume that can be clearly observed in Figure
B.9] where an expansion of the flow is also apparent. This expansion is better shown in
Figure [8.11] where contour lines of divergence of the velocity are shown. They have been

obtained by projecting velocity gradients on the finite element space.

In both calculations we used a time step 6t = 1 s. The nonlinear equations describing
the flow are solved using two nested loops, an external global loop and internal loops for
the momentum equations and for the temperature equation (which is non linear in the
low Mach number case because of the dependence of the density on the temperature).
The external loop is also used to account for the domain decomposition coupling. A
maximum number of 5 iterations in the external loop were performed with a convergence
tolerance of 1072 for the velocity and of 10~ for the temperature. In most steps 3
iterations were enough to achieve convergence and only in few steps the temperature
residual after 5 iterations was around 0.2 x 1073 (the velocity residual was always under
the prescribed tolerance). The linear system has been solved using a GMRES method
[129] preconditioned using an ILUT(nfill,thres) strategy described in [12§8], where nfill
denotes the level of filling and acts as a memory limiter and thres is a threshold for the
choice of filling elements and acts as a cpu time limiter. Several combinations of nfill
and thres have been tested for the first time step of the problem and it was observed
that, as expected, increasing the filling and reducing the threshold reduces the number of
GMRES iterations needed to achieve convergence. The optimal compromise depends on
the particular problem considered (including mesh size, initial and boundary conditions,
etc.). Let us only point out that this method is more efficient for higher time steps. This
is shown in figure 8.12] where the residuals after 100 iterations of GMRES as a function

of the nfill parameter are shown for a threshold of 1072.
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8.6 Conclusions

In this chapter we have described different aspects related to the numerical approximation
of the thermal coupling between a fluid and a solid. Our basic strategy has been to pose
the problem in a domain decomposition framework. This has allowed us to propose two
alternatives to treat the interface coupling, namely, a classical one considering a perfect
thermal contact (continuity of temperatures and heat flux) and another one based on
the use of wall functions, which leads to a heat flux proportional to the temperature
jump between the fluid and the solid. This surface-convection like transmission condition
depends on a coefficient to which we have given an expression in terms of the parameters
of the wall function approach. When this coefficient increases the perfect thermal contact
condition is recovered.

We have discussed also the iteration-by-subdomain strategy we have implemented
using a master-slave strategy. Again, the domain decomposition framework turns out to
be crucial to formulate this (otherwise standard) iterative strategy.

From the practical point of view, we have found the algorithmic frame presented here
very handful, easy to implement once the basic dedicated codes are available and, what
is more important, robust (in accordance with results known from the literature). An

application example of the overall formulation has been presented.



Chapter 9
Conclusions

In this chapter we present the conclusions and the possible research lines that could be

followed starting from this thesis.

9.1 Achievements

The first objective of this work, to understand the derivation of the simplified models
that describe low speed flows as well as the relation between them, has been achieved.
The unified asymptotic approach presented in chapter [2f permits us to derive simplified
models whose justification was separately known. Using these results we are in position of
determining, a priori and in terms of dimensionless parameters, the range of applicability
of each model. An important conclusion is that for the kind of problems we have in
mind the Boussinesq approximation cannot be used and the low Mach number model is
necessary.

The second and most important objective of this work was to develop a subgrid scale
stabilized finite element formulation for the kind of problems we are considering. We
started from the scalar convection diffusion reaction equation and we arrived to thermally

coupled flows. The main conclusions are the following

e In chapter 3 the main contribution is the definition of a new stabilization parameter
that improves the robustness of the numerical scheme when the mesh is anisotropic.
It was also clearly demonstrated that the numerical scheme obtained using the

standard definition with the minimum element length is unstable.

e In chapter 4 the contribution is the extension of results of chapter 3 to systems of
equations. Two possible approximations of the solution of the fine scale problem
have been proposed. The first one results in the usual diagonal approximation to
the stabilization matrix whereas the second one results in a stabilization operator

that consists in the usual term plus extra differential terms. The stability analysis
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of the resulting scheme obtained has been performed. Numerical experiments for
the diagonal approximation show that the OSS method performs much better than
the ASGS method as it is much less sensitive to the choice of the element length.
They also indicate that defining the stabilization paramters with the minimum
element length results in an unstable scheme even for the Stokes problem. Using
the maximum element length for this definition numerical oscilation are not found

but the result deteriorates when the mesh is anisotropically refined.

e In chapter 5 the main contribution is to consider the subscale time dependent
tracking it along the temporal evolution. This apparently natural approach leads
to important improvements in the numerical scheme (stability for any time step,
commutation of space and time discretizations). Tracking of subscales along
nonlinear process permits global conservation of momentum. It also opens the door

to the possibility of modelling turbulence.

e In chapter 6 the main contribution is the extension of the ideas of chapter 5 to
thermally coupled flow tracking the subscales along the iterative coupling between
equations leading to global energy conservation. The possibility of modelling
turbulence is particularly appealing in this case due to the performance of turbulence

models for thermal problems.

The third objective is to develop a finite element code to solve this problems. Apart
from the discrete formulation of the problems, the final ingredient that we need is an
algorithm for the solution of the discrete problem. In chapter [7] different linearization
strategies are compared and the final algorithm is presented.

The fourth and last objective of this work is to apply the developed code to the
problem of thermal coupling of fluids and solids. To achieve this goal, a coupling strategy
based on a domain decomposition approach has been developed. This strategy implies
the development of a small code to manage the coupling between the solid and the fluid.
This development was applied to the problem described of a fire in a tunnel described
above. Both the strategy and the application were described in chapter [§ As mentioned
in the introduction, the work developed during this theses is the base for the following

publications:

e Chapter2: ”On the low Mach number and the Boussinesq approximations for low

speed flows”, J. Principe and R. Codina, Submitted.

e Chapter3: ”The modelling of subgrid scales in the finite element approximation of
convection diffusion reaction problems on anisotropic meshes”, J. Principe and R.

Codina, In preparation.
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e Chapter 4:”" The modelling of subgrid scales in the finite element approximation of

incompressible flows”, J. Principe and R. Codina, In preparation.

e Chapter 5: " Time dependent subscales in the stabilized finite element approximation
of incompressible flow problems”, R. Codina, J. Principe, O. Guasch and S. Badia,
Computer Methods in Applied Mechanics and Engineering, 196 (2007), 2413-2430.

e Chapter 6: "Dynamic subscales in the finite element approximation of thermally
coupled incompressible flows”, R. Codina and J. Principe, International Journal for
Numerical Methods in Fluids, 54 (2007), 707-730.

e Chapter 7: 7A stabilized finite element approximation of low speed thermally

coupled flows”, J. Principe and R. Codina, International Journal of Numerical
Methods for Heat € Fluid Flow, Accepted.

e Chapter 8: 7 A numerical approximation of the thermal coupling of fluids and solids”,
J. Principe and R. Codina, Submitted.

9.2 Future work

Several research lines emerge from this thesis. In the first important line is the modelling
of the subgrid scales, what has been the main subject of this thesis but that is still not
mature. As mentioned in chapters 3 and 4, three steps can be followed to build such a

model

1. uncoupling of the fine scale problem into local (element) problems
2. approximation of the differential operator

3. choice of the space of subscales

The contribution of chapters 3 and 4 focus on step 2 and further research is needed to
numerically evaluate the second approximation proposed for the Oseen problem. Stability
of the resulting scheme has been shown but numerical results were only presented for the
diagonal approximation. The better performance of the OSS method over the ASGS one
has been shown but still several points need further examination such as, for example, the
definition of the instability direction. Another point to investigate is the comparison of
the projections ﬁT (the 7 weighted projection) and Pit. Actually, the choice of the space
of subscales could be performed a priori, that is, before step 1 and in this case the choice
would influence the locality of the fine scale problem. In [83] it is shown that the H] (Q)
projection leads to a local problem without any further approximation. A particular choice

of the space of subscales is the space of bubble functions that also introduce a particular
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projection. The equivalence of the variational multiscale method and the bubble function
stabilization has been shown in [16] for the steady state problem. The concept of transient
subgrid scale gives rise to the concept of transient bubble, something that, surprisingly,
has not been considered up to date. When bubble functions are used, several terms
defined as integrals over the element boundaries vanish. This is not the case if a general
subgrid function is used although these terms are usually neglected. Considering these
terms implies a definition of the subscale on the element boundaries something that we
are currently investigating.

The second important line is the evaluation of the subgrid models for the solution of
turbulent flow problems using the incompressible Navier Stokes equations as a continuous
model without the use of a physical model for the turbulence effects. This line is intimately
related to the previous one because the requirements the model should satisfy, detailed
in chapter 5, can depend on the modelling of the fine scale problem. We already started
research in this direction analyzing the dissipative structure of the orthogonal subscale
model and showing it is capable of predicting backscatter [I125]. Certainly much more
numerical evidence is needed to analyze the performance of numerical methods in the
solution of turbulent flow problem, specially regarding the prediction of mean flow features
such as approximation of boundary layers, separation, etc. However we call the attention
of the reader to other (more qualitative) features as well, such as the dimension of the
global attractor or the prediction of transition and relaminarization. Finally let us also
mention the potential of this approach for the analysis of thermal turbulence.

The third important line is the application of the techniques developed in this thesis
to the class of problems that motivated it, the problem of simulation of fires. Although the
physical mechanisms involved in a fire a really complex, a simulation with some degree
of accuracy needs at least three ingredients. The first one is the simulation thermal
turbulence that must be based on the solution of the low Mach number equations and
not on the solution of the Boussinesq model. Needless to say that this point is related to
the second research line mentioned above. The second ingredient is the simulation of the
combustion process and third one the simulation of the radiative heat flux . The last two

problems have not been even considered in this work and certainly need research.
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