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Abstract
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1 Introduction

Let E = [eij ]
m n−1

i=1, j=0 be an m× n incidence matrix with entries eij equal to
0 or 1, with exactly n ones and with no rows composed only of zeros. Let D
and S be the subsets of Rm defined by D = {(x1, . . . , xm) : xi 6= xk if i 6= k}
and S = {(x1, . . . , xm) : x1 < · · · < xm}. A pair E,X with X ∈ D is said
to be regular or poised if the determinant D(E,X) of the matrix

A(E,X) =
[

x−j
i

(−j)!
x1−j

i
(1−j)!

x2−j
i

(2−j)! · · · xn−1−j
i

(n−1−j)!
; eij=1

]
,

is non-zero [5, 10]. Matrix E is called order regular when D(E,X) 6= 0 for
all X ∈ S. If E,X is regular then there exists a unique monic polynomial
P of degree n which is annihilated by E,X (see [8, 9]). That is, satisfying
P (j)(xi) = 0 for eij = 1. This polynomial is given explicitly by

P (t) = P (E,X; t) =
n!(−1)n

D(E,X)

[
1 t t2

2! · · · tn

n!

A′(E,X)

]
(1)

where A′(E,X) is the n× (n + 1) matrix obtained from A(E,X) by adding

the last column
[

xn−j
i

(n−j)! ; eij = 1
]
. In this way, every polynomial of degree n is

determined by n numbers chosen from its zeros or the zeros of its derivatives
if the pair E,X obtained from the n numbers is regular. Thus, the study of
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this polynomial is the study of polynomial P (t), and the distribution of its
zeros and the zeros of its derivatives is determined by these n numbers.

We are interested in studying the real zeros of polynomial (1) and the real
zeros of its derivatives when varying X. To this end, notice that we only need
to study the non-specified zeros in the pair E,X, since the specified zeros
in E,X are known. It may be that a non-specified zero, in its variation,
occupies the same place as a specified one, which will be detected by an
increase of multiplicity in the specified zero. These specified zeros which
show an increase of multiplicity will also be taken into account.

More precisely, we shall call virtual zero of order j of the pair E,X a
real zero z of P (j) non-specified in E,X (i.e. with z 6= xi for all i, or z = xi

for some i with eij = 0) or specified in E,X with q < q′, where q′ is the
multiplicity of z in polynomial P (j) and q is the specified multiplicity of z in
matrix E. That is, if z = xi, 1 ≤ i ≤ m, then q is the number that verifies
eij = ei,j+1 = · · · = ei,j+q−1 = 1, ei,j+q = 0. From what has been stated
above, we shall deal with the study of the virtual zeros.

On the other hand, in order to follow the variation of the virtual zeros,
we need their number to be independent from X. This condition is very
restrictive, since even for Pólya matrices with no odd supported sequences
(conservative Pólya matrices), all of them order regular, the number of vir-
tual zeros is not usually constant when X ∈ S, as is the case for example
with matrix

E =

 1 0 0
0 1 0
0 1 0


In fact, taking X = (0, a, 1) it is easy to see that if 0 < a < 1

3 then there are
two virtual zeros of order zero, when a = 1

3 there is just one virtual zero of
order zero, and if 1

3 < a < 1 there are no virtual zeros of order zero.

The paper is structured as follows. In Section 2 we introduce some
preliminary concepts about Birkhoff interpolation that we shall need later
on. In Section 3, Theorem 3, we establish that for a wide range of order
regular matrices, called strongly conservative Pólya matrices, the number of
virtual zeros of each order is constant. That is, it does not depend on X even
when X varies in D. In the results that follow we show some properties on
the distribution of the zeros of the polynomial annihilated by the pair E,X.
Finally, in Theorem 10 we establish the continuity of the virtual zeros as
functions of X with X ∈ D, when E is a strongly conservative Pólya matrix.

In Section 4 we state and prove the main results, which deal with the
behavior of the polynomial and the virtual zeros when E is a strongly con-
servative Pólya matrix and X tends to the boundary of D. In Theorem
12 we show that polynomial P (E,X; t) has a limit when X tends to the
boundary of D, and that limit polynomial is the polynomial annihilated by
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the coalesced pair Ē, X̄ (see Section 2). Regarding the virtual zeros we deal
with the following question: Do the virtual zeros have a limit when X tends
to the boundary of D? We obtain in Theorem 17 that the answer is affirma-
tive, by showing that the virtual zeros, considered as functions of X ∈ D,
can be continuously extended to every point of Rm. These extensions to the
whole Rm are obtained by means of the concept of latent zero, which allows
us to obtain the relationship between the limit of the virtual zeros and the
virtual zeros of the limit polynomial on the boundary.

2 Preliminary concepts

Let E = [eij ]
m n−1

i=1, j=0 be an incidence matrix with n ones. The (j + 1)-th
column of E contains the entries eij , 1 ≤ i ≤ m. The numbers m(j) =∑m

i=1 eij and M(j) =
∑j

k=0 m(k), defined for j = −1, 0, . . . , n−1 (m(−1) =
M(−1) = 0) are called Pólya constants of E. If E,X is regular for some
X ∈ D then E is a Pólya matrix [10]. That is, it satisfies the Pólya condition
M(j) ≥ j + 1 if j = 0, 1, . . . , n− 1.

A sequence of 1′s in the i-th row of E is supported if when (i, j) is the
position of the first 1 of the sequence, this implies that there exist two 1′s:
ei1,j1 = ei2,j2 = 1 with i1 < i < i2, j1 < j, and j2 < j. E is said to be
conservative if it contains no odd supported sequences. Then, we have [1]

Theorem 1 Each conservative Pólya matrix is order regular.

We call strongly conservative matrix a matrix such that all the sequences
having its first 1 in a column of E different from the first column, are even
sequences. If we permute the rows of a strongly conservative matrix we
obtain a strongly conservative matrix again and in particular conservative.
Therefore, strongly conservative Pólya matrices have the property that E,X
is regular for any X ∈ D.

To a point X in Rm corresponds a partition of the set I = {1, . . . ,m}
into classes of equivalence defined by the equivalence relation i ∼ k if xi = xk

(i, k ∈ I). We will denote the classes by letters ι, ι′, ι1, ι2, . . . Each class ι
determines a real number xι defined by xι = xi if i ∈ ι. If we arrange the
numbers xι in increasing order, we will obtain a point X̄ = (xι1 , . . . , xιq)
with xι1 < · · · < xιq , called coalescence of X.

The partition of the set I also gives a coalescence of E to a q×n matrix
Ē defined as follows. Let Ẽs be the matrix that consists of rows i, i ∈ ιs,
of E, we coalesce this matrix to one row, which will be the s-th row of
Ē. Let m(j) and M(j) be the Pólya constants of Ẽs, j = −1, . . . , n − 1,
and define values mo(j), j = 0, . . . , n − 1, that only take values 0 and 1 by
induction. We put mo(0) = 1 if and only if m(0) ≥ 1; if mo(k) and hence
Mo(k) =

∑k
r=0 mo(r) are known for k = 0, . . . , j, we define mo(j + 1) = 1

if M(j + 1) − Mo(j) ≥ 1, and mo(j + 1) = 0 otherwise. Values mo(j),
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j = 0, . . . , n−1, determine the so called level function of m and that satisfies
Mo(j) ≤ M(j) for j = 0, . . . , n − 1. The elements of the s-th row of Ē are
ēsj = mo(j), j = 0, . . . , n− 1.

The operation Ē of coalescence of E preserves the number n of ones, the
Pólya condition and strongly conservative matrices. If
X ∈ S̄ = {X : x1 ≤ · · · ≤ xm} then Ē is obtained by coalescing consecutive
rows of E, and Ē is conservative if E does. Notice that when X ∈ D, Ē and
X̄ are obtained from a permutation of the rows of E and the coordinates of
X according to the same permutation.

Given real numbers a < b, we define Sa,b = {X : a ≤ x1 < · · · < xm ≤ b}
and S̄a,b = {X : a ≤ x1 ≤ · · · ≤ xm ≤ b}. For a conservative Pólya matrix
E and a point X ∈ Sa,b, the interpolating polynomial of a function f ∈
C(n−1)([a, b]) is the unique polynomial P (t) of degree at most n − 1 that
satisfies P (j)(xi) = f (j)(xi) for eij = 1. We denote this polynomial by
P (f,E,X; t). There is a natural extension of this polynomial onto S̄a,b

given by P (f,E,X; t) = P (f, Ē, X̄; t). We have [2, 5]

Theorem 2 For a conservative Pólya matrix E and f ∈ C(n−1)([a, b]), the
natural extension of P (f,E,X; t) onto S̄a,b is continuous.

A review on univariate Birkhoff interpolation can be found in Lorentz,
et al. [5]. See also [1, 3, 4, 7].

3 First results

In this section some results concerning virtual zeros in the case when E is a
strongly conservative Pólya matrix are presented. We begin with

Theorem 3 Let E be a strongly conservative Pólya matrix with n ones
and with Pólya constants m(j) and M(j), and let X belong to D. Then
vj = M(j − 1) − j for j = 0, . . . , n − 1, where vj is the number of virtual
zeros of order j of the pair E,X. In particular vj does not depend on X.

Let P be the monic polynomial of degree n annihilated by E,X. Before
giving the proof of the theorem we state and prove the following lemma.

Lemma 4 A real number, z, is a virtual zero of order j of the pair E,X,
1 ≤ j ≤ n, if one of the following conditions is satisfied: (i) P (j−1)(z) = 0
and z is a specified virtual zero of order j − 1 of E,X, (ii) P (j−1)(z) 6= 0,
P (j)(z) = 0 and z has odd multiplicity in P (j).

Proof. If (i) holds, from the definition of virtual zero it follows that z is a
virtual zero of order j of E,X. Suppose that (ii) holds. If z is non-specified
in E,X as zero of order j then z is a virtual zero and we are done. Assume
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that z = xi for some i with eij = 1. It follows from P (j−1)(z) 6= 0 that
ei,j−1 = 0. Moreover, we have eij = · · · = ei,j+p−1 = 1 and ei,j+p = 0 being
p an even number, since E is strongly conservative. However, z has odd
multiplicity in P (j), and so P (j+p)(z) = 0. Hence, z is a virtual zero of order
j and lemma follows. �

Proof of Theorem 3. Let 1 ≤ j ≤ n. We claim that between two adjacent
zeros of polynomial P (j−1), there is a virtual zero of order j. Indeed, it
is well known that between two adjacent zeros of P (j−1) there is (counting
multiplicities) an odd number of zeros of P (j). We can select one of these
zeros having odd multiplicity as a zero of P (j). By Lemma 4, this zero is
a virtual zero of order j and the claim is proved. By applying the claim to
each couple of adjacent zeros of P (j−1), we obtain at least u−1 virtual zeros
of order j where u is the number of distinct real zeros of P (j−1).

Moreover, by Lemma 4 we have that if z is a specified virtual zero of
order j − 1 then z is also a virtual zero of order j. Hence, we have s new
virtual zeros of order j, where s is the number of specified virtual zeros of
order j − 1. Thus, vj ≥ u + s− 1. Since u = r + vj−1 and r + s = m(j − 1),
where r is the number of distinct real zeros of P (j−1) which are not virtual
zeros of order j− 1, we get that vj ≥ r + vj−1 + s− 1 = vj−1 +m(j− 1)− 1.
That is, vj = vj−1 + m(j − 1) − 1 + wj for some wj ≥ 0. By applying
successively this equality for j = 1, . . . , j0, where 1 ≤ j0 ≤ n, we get vj0 =
v0 + M(j0− 1)− j0 + w1 + · · ·+ wj0 , and from M(n− 1) = n and vn = 0 we
obtain that 0 = v0 + w1 + · · ·+ wn. Hence v0 = 0 and wj = 0, j = 1, . . . , n.
It follows that vj0 = M(j0− 1)− j0 for j0 = 0, . . . , n− 1, and this completes
the proof. �

Notice that the preceding theorem implies v0 = 0. In the next results
we show some properties on the distribution of the zeros of the polynomial
P annihilated by a pair E,X, where E is a strongly conservative Pólya
matrix and X ∈ D. We begin with a corollary that follows from the proof
of Theorem 3.

Corollary 5 Let z1 < z2 < · · · < zu be the distinct real zeros of P (j−1),
being 1 ≤ j ≤ n − 1. Between each couple of adjacent zeros zi < zi+1, we
select a zero ai of P (j) with odd multiplicity. Let zi1 < · · · < zis be the
specified virtual zeros of order j− 1 of the pair E,X. Then the virtual zeros
of order j of the pair E,X are the zeros a1, . . . , au−1, zi1 , . . . , zis.

The next two corollaries are a straightforward consequence of the pre-
vious one. We point out that the second one is the converse of Lemma
4.

Corollary 6 Between two adjacent zeros of P (j−1) there is a unique zero of
P (j) with odd multiplicity. However, if z is a zero of P (j) located on the right

5



of the greatest real zero (or on the left of the smallest real zero) of P (j−1),
then the multiplicity of z in P (j) is even.

Corollary 7 Let z be a virtual zero of order j of E,X, 1 ≤ j ≤ n − 1. If
P (j−1)(z) = 0 then z is a specified virtual zero of order j − 1 of E,X, and
if P (j−1)(z) 6= 0 the multiplicity of z as a zero of P (j) is odd; furthermore,
z is located between two adjacent zeros of P (j−1).

Now we state and prove a result that we shall need further on.

Lemma 8 The following statements hold.

(i) If eij = ei,j+1 = · · · = ei,j+p−1 = 1 and ei,j−1 = ei,j+p = 0, then xi can
not be a zero of P (j−1) and of P (j+p) simultaneously.

(ii) The multiplicity of each real zero of P (j) non-specified in E,X is odd.

Proof. (i) Suppose, on the contrary, that we have P (j−1)(xi) = P (j+p)(xi) =
0. By applying Corollary 7 we have that xi is a specified virtual zero of order
j − 1 of E,X, and this contradicts the fact that ei,j−1 = 0.

(ii) Let z be a real zero of P (j) non-specified in E,X. If P (j+1)(z) 6= 0
then the multiplicity of z in P (j) is 1 and we are done. If not, from Corollary
7 it follows that z is not a virtual zero of order j + 1 and in particular it
is specified in E,X as zero of order j + 1. By statement (i) of this lemma
and the fact that E is strongly conservative, the multiplicity of z in P (j+1)

is even, and hence the multiplicity of z in P (j) is odd. �

Next result gives an interval where the virtual zeros can be located.

Proposition 9 If z is a virtual zero of order j, then the inequalities
mini∈Aj{xi} < z < maxi∈Aj{xi} hold, where Aj is the set of all indices
i = 1, . . . ,m for which eis = 1 for some s < j.

Proof. We argue by induction in j. When j = 0 the inequalities are
true. Let the inequalities be true for any j with 0 ≤ j < j0. We will
see that they are true for j = j0. Let k ≤ j0 satisfy P (k−1)(z) 6= 0 and
P (k)(z) = P (k+1)(z) = · · · = P (j0)(z) = 0. From Corollary 7 we get that
z is a virtual zero of order k located between two adjacent zeros u < v of
P (k−1). If u is a virtual zero of order k − 1 then we apply the hypothesis
of induction with j = k − 1; if not, u is a zero of P (k−1) specified in E,X.
In both cases we have mini∈Ak

{xi} ≤ u < z. Proceeding in the same
way we will obtain that z < v ≤ maxi∈Ak

{xi} and since Ak ⊆ Aj0 , then
mini∈Aj0

{xi} < z < maxi∈Aj0
{xi}. This completes the proof. �

6



Let aj1 < aj2 < · · · < aj,vj be the virtual zeros of order j of the pair
E,X. Then each ajr depends on X, say ajr = ajr(X). We obtain in this
way functions

ajr : D → R; r = 1, . . . , vj ; j = 0, . . . , n− 1

that will be called functions of virtual zeros. We have,

Theorem 10 For a strongly conservative Pólya matrix, the functions of
virtual zeros are continuous on D.

Theorem 10 is a straightforward consequence of Lemma 11 stated below,
and which follows from the continuity of the zeros as functions of its coeffi-
cients [6] when it is applied to all successive derivatives of a real polynomial.
By ‖·‖ we denote any norm in the space Pn of real polynomials of degree at
most n.

Lemma 11 Let P be a real monic polynomial of degree n and let ε > 0.
There exists a real number r > 0 such that every real monic polynomial
P̃ of degree n with ||P̃ − P || < r, satisfies the following properties for any
j = 0, . . . , n− 1: (i) All the real zeros of P̃ (j) belong to intervals of the form
(z− ε, z + ε) being z a real zero of P (j), and (ii) If z is a real zero of P (j) of
multiplicity m, the number of real zeros of P̃ (j) in the interval (z − ε, z + ε)
counting its multiplicities is m− 2σ where σ ≥ 0 is a whole number.

If P is a real polynomial of degree n, we denote by εP the number
εP = min |z1−z2|

2 being z1 and z2 distinct real numbers such that P (j1)(z1) =
P (j2)(z2) = 0 for some j1 and j2 with 0 ≤ j1 ≤ j2 ≤ n − 1. In order to do
more readable the paper, now we give a proof of Theorem 10.

Proof of Theorem 10. From (1) it follows that polynomial P (E,X; t) is
a continuous function of X ∈ D. Let X = (x1, . . . , xm) ∈ D and let ε be
real with 0 < ε < εP , being P (t) = P (E,X; t). From the continuity of the
polynomial and the previous lemma, we get that there exists δ > 0 such that
if X̃ ∈ B(X, δ) (ball of center X and radius δ with the infinite norm) then
the perturbed polynomial P̃ (t) = P (E, X̃; t) satisfies conclusions (i) and (ii)
of the previous lemma. We can assume that 0 < δ < ε.

We claim that if X̃ = (x̃1, . . . , x̃m) ∈ B(X, δ) and ajr(X) is a virtual
zero of order j of E,X, then there is a virtual zero of order j of E, X̃
that belongs to the interval (ajr(X) − ε, ajr(X) + ε). Indeed, if ajr(X) is
non-specified in E,X as zero of order j, the multiplicity of ajr(X) in P (j)

is odd. From Lemma 11 it follows that P̃ (j) has at least one zero z̃ in
(ajr(X)− ε, ajr(X) + ε). Such zero can not be specified in E, X̃ as zero of
order j, since otherwise we would arrive to a contradiction with the fact that
δ < ε < εP . Hence, z̃ is a virtual zero of order j of E, X̃ and we are done.
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Now, we assume that ajr(X) is specified in E,X as zero of order j. We have
ajr(X) = xi for some i with eij = ei,j+1 = · · · = ei,j+p−1 = 1, ei,j+p = 0,
and P (j+p)(xi) = 0. Since xi is a non-specified virtual zero of order j + p of
E,X, and in particular xi has odd multiplicity in P (j+p), the multiplicity of
xi in P (j) is p + q with q an odd number. For some σ ≥ 0 polynomial P̃ (j)

has p + q − 2σ zeros in (xi − ε, xi + ε) counting its multiplicities. Since p of
these zeros are equal to x̃i, q is odd and 2σ is even, we get that P̃ (j) must
have a new zero, say z̃, which has not been counted in the p zeros equal to
x̃i and belongs to (xi − ε, xi + ε). If z̃ = x̃i then P̃ (j+p)(x̃i) = 0 and z̃ is a
virtual zero of order j of E, X̃. Hence, when z̃ = x̃i we are done. If z̃ 6= x̃i

then z̃ 6= x̃k for all k 6= i (this fact follows from δ < ε < εP ) and so z̃ is also
a virtual zero of order j of E, X̃. The claim is proved.

The claim implies that |ajr(X̃)− ajr(X)| < ε for r = 1, . . . , vj , and this
completes the proof. �

4 Main results

In this section we deal with the behavior of the virtual zeros on the boundary
of D. Especially, we are interested in the following fundamental question:
Have the virtual zeros a limit when X → X0 ∈ ∂D? or, in other words, Can
the functions of virtual zeros be continuously extended to the whole Rm? We
will give affirmative answers to these questions in Theorem 17.

First, we show an interesting consequence of Theorem 2 that we will
need further on. Let E be a conservative Pólya matrix. Then polyno-
mial P (E,X; t), defined for X ∈ S, can be extended to all points of S̄ by
P (E,X; t) = P (Ē, X̄; t). We have,

Theorem 12 If E is a conservative Pólya matrix, the natural extension of
P (E,X; t) onto S̄ is continuous.

Proof. Let a < b be given and let Sa,b = {X : a ≤ x1 < · · · < xm ≤ b}.
Consider the matrix E′ obtained from E by adding a last column of zeros
and the last row [0, . . . , 0, 1]. Note that E′ has n+1 ones and it is Pólya and
conservative. If X = (x1, . . . , xm) ∈ Sa,b we also define X ′ = (x1, . . . , xm, c),
where c is a fixed number with c > b. Clearly, the operations X ′ and E′ pre-
serve coalescences. That is, X ′ = X

′ and E′ = E
′. Let f ∈ C(n)(R) be such

that f (j) ≡ 0 in [a, b], j = 0, . . . , n− 1, and f (n)(c) = n!. When X ∈ Sa,b the
interpolating polynomial P = P (f,E′, X ′; t) is a monic polynomial of degree
n annihilated by E,X, since it satisfies P (j)(xi) = f (j)(xi) = 0 for eij = 1
and P (n)(c) = n!. This implies that P (E,X; t) = P (f,E′, X ′; t). This fact
remains valid to all points of S̄a,b, since if X ∈ ∂Sa,b then P (E,X; t) =
P (Ē, X̄; t) = P (f,E

′
, X

′; t) = P (f,E′, X ′; t) = P (f,E′, X ′; t). Therefore
P (E,X; t) = P (f,E′, X ′; t) for all X ∈ S̄a,b, and from Theorem 2 it follows
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the continuity of P (E,X; t) as function of X ∈ S̄a,b, for any a < b. We con-
clude that P (E,X; t) is a continuous function of X ∈ S̄, and this completes
the proof. �

For a strongly conservative Pólya matrix we can also extend polyno-
mial P (E,X; t), X ∈ D, to all points of Rm by P (E,X; t) = P (Ē, X̄; t).
By applying the previous theorem to each one of the matrices obtained by
rearranging the rows of E, we obtain the following

Corollary 13 If E is a strongly conservative Pólya matrix, the natural ex-
tension of P (E,X; t) onto Rm is continuous.

From now on, E = [eij ]
m n−1

i=1, j=0 is a strongly conservative Pólya matrix
with Pólya constants m(j) and M(j), and vj is defined by vj = M(j−1)−j,
j = 0, . . . , n− 1. Let X = (x1, . . . , xm) ∈ ∂D. In accordance with Theorem
3, the number of virtual zeros of order j of the coalesced pair Ē, X̄ is v̄j =
M̄(j − 1)− j where m̄(j) and M̄(j) are the Pólya constants of Ē. If xι1 <
xι2 < · · · < xιq are the coordinates of X̄, then M̄(j − 1) =

∑q
s=1 Mo

s (j − 1)
where ms(j) and Ms(j) are the Pólya constants of the matrix Ẽs consisting of
rows i of E with i ∈ ιs. In particular, M̄(j−1) ≤

∑q
s=1 Ms(j−1) = M(j−1),

and v̄j ≤ vj for j = 0, . . . , n − 1. Notice that if X is such that ms(j) ≥ 2
for some j and s, then Mo

s (j) < Ms(j) and so M̄(j − 1) < M(j − 1). It
follows that for this j we have v̄j < vj , and hence the number of virtual
zeros of order j of Ē, X̄ is smaller than vj . Thus, the process of coalescence
generates, in general, losses of virtual zeros.

Notice that the number of lost virtual zeros of order j is

vj − v̄j = M(j − 1)− M̄(j − 1) =
q∑

s=1

[Ms(j − 1)−Mo
s (j − 1)] (2)

This leads us to the following definition.

Definition 14 Let X ∈ ∂D and let P be the monic polynomial of degree n
annihilated by Ē, X̄. For each j = 0, . . . , n− 1 and each real zero z of P (j)

we define a number lj(z) as follows. If z is non-specified in Ē, X̄ as zero of
order j, we put lj(z) = 1; otherwise, if z is specified in Ē, X̄ and z = xιs,
1 ≤ s ≤ q, we define lj(z) = ∆ + Ms(j − 1) −Mo

s (j − 1) where ∆ = 1 if z
is a virtual zero of order j of Ē, X̄, and ∆ = 0 otherwise.

Lemma 15 If z1 < · · · < zu are the distinct real zeros of P (j), then the sum
lj(z1) + · · ·+ lj(zu) coincides with vj.

Proof. We have

lj(z1) + · · ·+ lj(zu) = v̄j +
∑
s∈J

[Ms(j − 1)−Mo
s (j − 1)] (3)
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where J is the set of all indices s = 1, . . . , q for which xιs is specified in
Ē, X̄ as zero of order j. From the definition of Ē, we have that s ∈ J if
and only if mo

s(j) = 1. For the other s’s we have mo
s(j) = 0, and hence

Ms(j − 1) −Mo
s (j − 1) = 0. This implies that we can replace the set J in

(3) by the set J ′ = {1, . . . , q}, and from (2) lemma follows. �

Under the same notations of the previous lemma, vector

Rj = (z1, . . . , z1︸ ︷︷ ︸
lj(z1)

, z2, . . . , z2︸ ︷︷ ︸
lj(z2)

, . . . . . . , zu, . . . , zu︸ ︷︷ ︸
lj(zu)

)

has exactly vj coordinates. We will denote the r-th coordinate of Rj by ājr.
That is, we put Rj = (āj1, āj2, . . . , āj,vj ). Observe that āj1 ≤ āj2 ≤ · · · ≤
āj,vj and P (j)(ājr) = 0 if 1 ≤ r ≤ vj .

Zeros ājr, r = 1, . . . , vj will be called latent zeros of order j of the pair
E,X, whenever X ∈ ∂D. Notice that the latent zeros of order j of E,X
contain the virtual zeros of order j of the pair Ē, X̄. In particular, if the
number of virtual zeros of order j of Ē, X̄ is equal to vj , then the latent zeros
of order j of E,X coincide with the virtual zeros of order j of Ē, X̄. From
Proposition 9 it is easily seen that min1≤i≤m{xi} ≤ ājr ≤ max1≤i≤m{xi} for
all j and r.

Definition 16 Functions ājr : Rm → R (1 ≤ r ≤ vj, 0 ≤ j ≤ n−1) defined
by ājr(X) = ajr(X) if X ∈ D, and ājr(X) = ājr if X ∈ ∂D, will be called
functions of latent zeros.

Observe that the previous functions are indeed extensions onto Rm of
the functions of virtual zeros. We have,

Theorem 17 For a strongly conservative Pólya matrix E, the functions of
latent zeros are continuous functions on Rm.

In order to prove the theorem it suffices to prove that

lim
D3X̃→X

ajr(X̃) = ājr(X) (4)

for X ∈ ∂D, 0 ≤ j ≤ n− 1 and 1 ≤ r ≤ vj , since D is an open dense subset
of Rm. In what follows we fix X = (x1, . . . , xm) ∈ ∂D and P is defined to be
the monic polynomial of degree n annihilated by Ē, X̄. In the next lemma,
B(X, δ) denotes the ball of center X and radius δ with the infinite norm,
and the numbers lj(z) are given in Definition 14.

Lemma 18 For each ε > 0, there exists δ > 0 such that if 0 ≤ j ≤ n − 1,
z is a real zero of P (j) and X̃ belongs to B(X, δ) ∩ D, then the number of
virtual zeros of order j of E, X̃ in the interval (z− ε, z + ε) is at least lj(z).
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Proof. We can assume that 0 < ε < εP . Consider the number r obtained
from Lemma 11 when it is applied to P and ε. Corollary 13 guarantees
the existence of δ > 0 such that if X̃ ∈ B(X, δ) then ||P̃ − P || < r, where
P̃ (t) = P (E, X̃; t). In particular P̃ satisfies conclusions (i) and (ii) of Lemma
11. Number δ can be assumed to be with 0 < δ < ε. We will see that for
this δ lemma holds. Let X̃ = (x̃1, . . . , x̃m) ∈ B(X, δ) ∩ D and consider a
real zero z of P (j). In what follows P̃ is the monic polynomial of degree n
annihilated by E, X̃. If z is non-specified in Ē, X̄ as zero of order j, then
lj(z) = 1 and we have to see that there exists some virtual zero of order
j of E, X̃ in (z − ε, z + ε). Proceeding in the same way as in the proof of
Theorem 10 (when zero ajr(X) was non-specified in E,X), we obtain a zero
z̃ of P̃ (j) in (z − ε, z + ε) and non-specified in E, X̃. Hence z̃ is a virtual
zero and we are done.

Suppose that z is specified in Ē, X̄ as zero of order j. In this case we
have z = xι for some class ι = ιs of the set I = {1, 2, . . . ,m}. Moreover,
ēsj = mo

s(j) = 1 where ms(j) and Ms(j) are the Pólya constants of the
matrix Ẽs consisting of rows i of E with i ∈ ιs. We have to see that the
number of virtual zeros of order j of E, X̃ in (xι − ε, xι + ε) is at least
lj(xι). Recall that lj(xι) = ∆ + Ms(j − 1) − Mo

s (j − 1) being ∆ = 1
if xι is a virtual zero of order j of Ē, X̄ and ∆ = 0 otherwise. We put
mo

s(−1) = Mo
s (−1) = 0. Let j0 ≥ 0 be such that mo

s(j0 − 1) = 0 and
mo

s(j0) = mo
s(j0 +1) = · · · = mo

s(j) = 1. From mo
s(j0−1) = 0 it follows that

Ms(j0 − 1)−Mo
s (j0 − 1) = 0. Therefore

lj(xι) = ∆ +
∑j−1

k=j0
ms(k)−

∑j−1

k=j0
mo

s(k) (5)

= ∆ +
∑j−1

k=j0
ms(k)− (j − j0)

We claim that a coordinate of X̃, say x̃i, 1 ≤ i ≤ m, belongs to (xι−ε, xι+ε)
if and only if i ∈ ι. Indeed, if i ∈ ι then x̃i−xι = x̃i−xi ∈ (−δ, δ) ⊆ (−ε, ε),
and if i /∈ ι and we consider the class ι′ such that i ∈ ι′, then |x̃i − xι| ≥
|xι′ − xι| − |x̃i − xι′ | ≥ 2εP − δ > ε.

For k = 0, . . . , n − 1 let v∗k be the number of virtual zeros of order k of
E, X̃ in (xι − ε, xι + ε). If we repeat the proof of Theorem 3 to the pair
E, X̃, but only considering those zeros located in the interval (xι−ε, xι +ε),
we will obtain that v∗k ≥ v∗k−1 + ms(k − 1) − 1, k = 1, . . . , n. By applying
successively this inequality for k = j0 + 1, . . . , j, we get

v∗j = v∗j0 +
∑j−1

k=j0
ms(k)− (j − j0) (6)

By (5) and (6), in order to see the lemma it suffices to prove that v∗j0 ≥ ∆.
When ∆ = 0 there is nothing to prove and we are done. Suppose ∆ = 1,
that is, xι is a virtual zero of order j of Ē, X̄, and we have to prove that
v∗j0 ≥ 1. This fact follows from the following considerations. Since xι is a
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virtual zero of order j of Ē, X̄, by applying Corollary 7 several times we
obtain that xι is also a virtual zero of order j0 of Ē, X̄ (in particular j0 ≥ 1)
and P (j0−1)(xι) 6= 0. By applying Corollary 7 again, we get that xι has odd
multiplicity in P (j0). By Lemma 11 we know that there exists some real zero
z̃ of P̃ (j0) with odd multiplicity and located in the interval (xι − ε, xι + ε).
If z̃ is non-specified in E, X̃ as zero of order j0 then z̃ is a virtual zero and
we are done, since v∗j0 ≥ 1. Otherwise, we have z̃ = x̃i for some i with
eij0 = 1. Note that i ∈ ι since x̃i ∈ (xι − ε, xι + ε). This implies that the
i-th row of E is contained in Ẽs, and from mo

s(j0 − 1) = 0 (in particular
ms(j0−1) = 0) it follows that ei,j0−1 = 0. Since E is a strongly conservative
matrix and j0 ≥ 1, the specified multiplicity in E of the entry eij0 = 1 is
even, but however x̃i has odd multiplicity in P̃ (j0). This implies that z̃ = x̃i

is a virtual zero of order j0 of E, X̃, and hence v∗j0 ≥ 1. This completes the
proof. �

Proof of Theorem 17. Let ε be real with 0 < ε < εP and consider
the number δ > 0 obtained from Lemma 18. In order to see (4) it suffices
to prove that if X̃ ∈ B(X, δ) ∩ D then |ajr(X̃) − ājr(X)| < ε for all j
and r. Let X̃ and j be fixed, and let z1 < · · · < zu be the real zeros of
P (j). By lemmas 15 and 18, the number of virtual zeros of order j of E, X̃
in (zi − ε, zi + ε) is exactly lj(zi), i = 1, . . . , u. Thus, in the sequence of
virtual zeros aj1(X̃), aj2(X̃), . . . , aj,vj (X̃), the lj(z1) first of them belong to
(zi − ε, zi + ε), and since ājr(X) = z1 for 1 ≤ r ≤ lj(z1) then |ajr(X̃) −
ājr(X)| < ε for 1 ≤ r ≤ lj(z1). Similarly we get |ajr(X̃) − ājr(X)| < ε
for lj(z1) + 1 ≤ r ≤ lj(z1) + lj(z2), and so on. In this way we obtain
|ajr(X̃)− ājr(X)| < ε for any r, and theorem follows. �

Acknowledgements. The authors are partially supported by Ministerio de
Educación y Ciencia through grants DPI2005-08668-C03-01 and MTM2006-
03040.

References

[1] Atkinson, K., and Sharma, A., A partial characterization of poised
Hermite-Birkhoff interpolation problems, SIAM J. Numer. Anal. 6
(1969), 230–235.

[2] Dyn, N., Lorentz, G.G., and Riemenschneider, S. D., Continuity of the
Birkhoff interpolation, SIAM J. Numer. Anal. 19 (1982), 507-509.
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