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Abstract

In this paper elementary numerical inequalities are used to obtain
some additive inequalities related to the classical Cauchy-Bunyakowsky-
Schwarz inequality.
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1 Introduction

Cauchy-Bunyakowsky-Schwarz inequality, for short CBS inequality, plays
a very important role in some branches of Mathematics such as Real and
Complex Analysis, Probability and Statistics, Hilbert Spaces Theory, Nu-
merical Analysis and Differential Equations. Many discrete inequalities are
connected in some way with CBS inequality as it has been extensively do-
cumented by Mitrinovic ([1], [2]) and more recently by Dragomir [3] among
others. In this paper we derive some real additive inequalities, related to
classical CBS, using elementary numerical inequalities similar the ones ob-
tained in ([4],[5]). Furthermore, their complex companions are also given.

2 Main results

In the sequel we present some additive counterparts to CBS inequality that
will be derived using elementary numerical inequalities. We begin with a
generalization of CBS inequality extending the one appeared in [4].
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Theorem 1 Let a1, a2, . . . , an; b1, b2, . . . , bn; c1, c2, . . . , cn and d1, d2, . . . , dn

be positive real numbers and let r1, r2, . . . , rn and s1, s2, . . . , sn be nonne-
gative numbers. Then, for all integer p, holds:
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Proof. Applying mean inequalities to positive numbers a and b, we have

ap + bp ≥ 2ap/2bp/2

valid for all integer p. Therefore, for 1 ≤ i, j ≤ n, we have
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Multiplying up by risj ≥ 0, (1 ≤ i, j ≤ n), both sides of the preceding
inequalities yields
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Adding up the above inequalities, we obtain:
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and this completes the proof.
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Notice that when p = 2, rk = sk = 1 and ck = bk, dk = ak, (1 ≤ k ≤ n), we
get CBS inequality.

In what follows the same key idea is used to obtain some related results to
CBS inequality. We start with

Theorem 2 Let a1, a2, . . . , an and b1, b2, . . . , bn be positive numbers and
let c1, c2, . . . , cn and d1, d2, . . . , dn be nonnegative numbers. Then, for all
integer p, holds:
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Proof. Applying mean inequalities to positive numbers a and b, we have

ap + bp ≥ 2ap/2bp/2

valid for all positive integer p. Therefore, for 1 ≤ i, j ≤ n, we have
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Multiplying both sides by cidj ≥ 0, (1 ≤ i, j ≤ n), we obtain
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Adding up the preceding inequalities, yields
n∑

i=1

n∑
j=1

(
cidja

p
i + cidjb

p
j

)
=

n∑
k=1

dk

n∑
k=1

cka
p
k +

n∑
k=1

ck

n∑
k=1

dkb
p
k

≥ 2
n∑

i=1

n∑
j=1

(
cidja

p/2
i b

p/2
j

)
= 2

(
n∑

k=1

cka
p/2
k

)(
n∑

k=1

dkb
p/2
k

)
and this completes the proof. 2

The complex version of the preceding result is stated in the following

Corollary 1 Let a1, a2, . . . , an and b1, b2, . . . , bn be complex numbers and
let c1, c2, . . . , cn and d1, d2, . . . , dn be nonnegative numbers. Then, for all
integer p, holds:
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Now, we state and proof our second main result.

Theorem 3 Let a1, a2, . . . , an and b1, b2, . . . , bn be positive numbers and
let c1, c2, . . . , cn and d1, d2, . . . , dn be nonnegative numbers. Then, for all
integer p ≥ 1, holds:
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Proof. To prove the preceding inequality we need the following

Lemma 1 Let a, b be positive real numbers. Then, for every integer p ≥ 1,
holds:

ap + bp ≥ ap−1b + abp−1

Proof. We will argue by mathematical induction. The cases when p = 1
and p = 2 trivially hold. Suppose that the given inequality holds for p− 1,
that is, it holds that ap−1 + bp−1 ≥ ap−2b + abp−2. Writing now

ap + bp = a
(
ap−1 + bp−1

)
+ bp − abp−1

and taking into account the inductive hypotheses, we get

ap + bp ≥ a
(
ap−2b + abp−2

)
+ bp − abp−1 = ap−1b + a2bp−2 + bp − abp−1

Since a2bp−2 + bp − abp−1 = bp−2
(
a2 + b2 − ab

)
≥ bp−2(ab) = abp−1, then

ap + bp ≥ ap−1b + abp−1 as desired. We observe that equality holds if, and
only if, a = b and the proof is complete.
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From the previous lemma, we have for 1 ≤ i, j ≤ n,
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The complex counterpart of the previous result is given in the next
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Corollary 2 Let a1, a2, . . . , an and b1, b2, . . . , bn be complex numbers and
let c1, c2, . . . , cn and d1, d2, . . . , dn be nonnegative numbers. Then, for all
integer p ≥ 1, holds:
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Finally, we will use a constrained elementary inequality to obtain the fol-
lowing result.

Theorem 4 Let a1, a2, . . . , an and b1, b2, . . . , bn be positive numbers and let
c1, c2, . . . , cn and d1, d2, . . . , dn be nonnegative numbers. If α, β are positive
numbers such that α = 1 + β, then
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Proof. We begin with a Lemma.

Lemma 2 Let a, b, α and β be real numbers such that a ≥ 0, b, α, β > 0
and α = 1 + β. Then,

aα + βbα ≥ αabβ

with equality if, and only if, a = b.

Proof. The inequality claimed can be written in the equivalent form

bβ(αa− βb) ≤ aα

When a = 0 the inequality is strict, and when a = b the inequality becomes
equality. Hence, we can assume that a > 0 and a 6= b. Set λ = a/b. Then,
the inequality is equivalent to αλ− β < λα for λ 6= 1. Therefore, we have
to prove that holds λα − αλ + α− 1 > 0 for any 0 < λ 6= 1. Indeed, let f
be the function defined by f(λ) = λα − αλ + α − 1. It is easy to see that
f ′(1) = 0, f ′(λ) < 0 on (0, 1) and f ′(λ) > 0 on (1,+∞). This implies that
f(λ) > f(1) = 0 if λ 6= 1 and this completes the proof. 2

Now carrying out the same procedure as in the previous results, we can
write for 1 ≤ i, j ≤ n,

aα
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j ≥ αaib
β
j

Multiplying up both sides for cidj > 0, 1 ≤ i, j ≤ n, yields
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Adding up those inequalities, we get
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from which the result immediately follows and the proof is complete.
2

Likewise, the complex version of the about inequality is presented in

Corollary 3 Let a1, a2, . . . , an and b1, b2, . . . , bn be complex numbers and
let c1, c2, . . . , cn and d1, d2, . . . , dn be nonnegative numbers. If α, β are pos-
itive numbers such that α = 1 + β, then
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