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Abstract

In this paper elementary numerical inequalities are used to obtain
some additive inequalities related to the classical Cauchy-Bunyakowsky-
Schwarz inequality.
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1 Introduction

Cauchy-Bunyakowsky-Schwarz inequality, for short CBS inequality, plays
a very important role in some branches of Mathematics such as Real and
Complex Analysis, Probability and Statistics, Hilbert Spaces Theory, Nu-
merical Analysis and Differential Equations. Many discrete inequalities are
connected in some way with CBS inequality as it has been extensively do-
cumented by Mitrinovic ([1], [2]) and more recently by Dragomir [3] among
others. In this paper we derive some real additive inequalities, related to
classical CBS, using elementary numerical inequalities similar the ones ob-
tained in ([4],[5]). Furthermore, their complex companions are also given.

2 Main results

In the sequel we present some additive counterparts to CBS inequality that
will be derived using elementary numerical inequalities. We begin with a
generalization of CBS inequality extending the one appeared in [4].



Theorem 1 Letaj,as,...,an;b1,ba,...,by;c1,C2,...,¢q anddy,da, ..., dy

be positive real numbers and let r1,r9,...,1r, and $1,S89,...,S, be nonne-
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gative numbers. Then, for all integer p, holds:
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Proof. Applying mean inequalities to positive numbers a and b, we have
aP + P > 2aP/2pP/2
valid for all integer p. Therefore, for 1 < 14,5 < n, we have
APt + b > 2a0 P P

Multiplying up by r;s; > 0,(1 < i,5 < n), both sides of the preceding
inequalities yields

msjafbg + Tisjcfd§ > 2risjaf/zb§/20f/2d§/2

Adding up the above inequalities, we obtain:
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and this completes the proof.

Notice that when p =2, r, = s = 1 and ¢ = by, dy = ag, (1 < k <n), we
get CBS inequality.

In what follows the same key idea is used to obtain some related results to
CBS inequality. We start with

Theorem 2 Let ay,a9,...,a, and by,ba, ..., b, be positive numbers and
let ci1,co,...,¢n and dy,ds,...,d, be nonnegative numbers. Then, for all
integer p, holds:

(;dkgcka +;ck§dkbp/2> (Zc ap/2> <édkbi/2>



Proof. Applying mean inequalities to positive numbers a and b, we have
aP + bP > 2aP/2pP/?
valid for all positive integer p. Therefore, for 1 <, j < n, we have
a? —|—b§-’ > Zaf/2b§/2
Multiplying both sides by ¢;d; > 0, (1 <4,j < n), we obtain
cidjal + cidjbg > QCidjaf/2b§/2
Adding up the preceding inequalities, yields
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and this completes the proof. O
The complex version of the preceding result is stated in the following

Corollary 1 Let ay,a9,...,a, and by, bo,..., b, be complexr numbers and
let ci1,co,...,¢n and dy,ds,...,d, be nonnegative numbers. Then, for all
integer p, holds:
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Now, we state and proof our second main result.

Theorem 3 Let ay,a9,...,a, and by,ba, ..., b, be positive numbers and
let c1,co,...,¢cn and dy,ds,...,d, be nonnegative numbers. Then, for all
integer p > 1, holds:
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Proof. To prove the preceding inequality we need the following

Lemma 1 Let a,b be positive real numbers. Then, for every integer p > 1,
holds:
a? + b > aP7 o+ abP !

Proof. We will argue by mathematical induction. The cases when p = 1
and p = 2 trivially hold. Suppose that the given inequality holds for p — 1,
that is, it holds that a?~! 4+ 6P~ > aP~2b + abP~2. Writing now

a? + b =a (apfl +bp71) + b — abP!
and taking into account the inductive hypotheses, we get
a’ +bP > a (ap_2b + abp_Q) + 0P —abP P =aP o+ aPPT2 4 B — abP !

Since a?bP~2 + b — abP~! = bP72 (a® 4 b* — ab) > bP2(ab) = abP~!, then
aP 4+ b > aP~ b + abP~! as desired. We observe that equality holds if, and
only if, @ = b and the proof is complete.

O

From the previous lemma, we have for 1 <i,j < n,
af + b8 > al b+ abh
Multiplying both sides by ¢;d; > 0, (1 <4,j < n), we obtain
cidjay + cid;bl > cidja? b + cidjaibg-’_l
Adding up those inequalities yields:

n n n n n n
Z Z (cidjaf + cidjbg) = Z dy, Z ckaz + Z Cr, Z dkbﬁ
1
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The complex counterpart of the previous result is given in the next



Corollary 2 Let ay,a2,...,a, and bi,ba, ..., b, be compler numbers and
let c1,co,...,¢p and dy,do, ..., d, be nonnegative numbers. Then, for all
integer p > 1, holds:

Dok Y dplbrlP + Y di Y crlarlf > <ZCk|ak|p_Ide\bk|>
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Finally, we will use a constrained elementary inequality to obtain the fol-
lowing result.

Theorem 4 Letay,ao,...,a, and by, bs,. .., b, be positive numbers and let
€1,C2,...,Cn and dy,ds, ..., d, be nonnegative numbers. If o, B are positive
numbers such that o =1+ 3, then

1 n n n n n n
p (Z CL. Z cray + B Z Ck Z dkbk> > (Z ckak> <Z dkb’g)

k=1 k=1 k=1 k=1 k=1 k=1
Proof. We begin with a Lemma.

Lemma 2 Let a,b,a and G be real numbers such that a > 0, b,a, 3 > 0
and o =1+ 3. Then,
a® + Bb* > aab’®

with equality if, and only if, a = b.
Proof. The inequality claimed can be written in the equivalent form
Y (aa — Bb) < a®

When a = 0 the inequality is strict, and when a = b the inequality becomes
equality. Hence, we can assume that a > 0 and a # b. Set A\ = a/b. Then,
the inequality is equivalent to aX — 8 < A% for A # 1. Therefore, we have
to prove that holds \* —aA+a —1> 0 for any 0 < A # 1. Indeed, let f
be the function defined by f(\) = A* —aX+ a — 1. It is easy to see that
f(1)=0, f(\) <0on (0,1) and f/(A\) >0 on (1,+00). This implies that
f(A) > f(1) =01if A # 1 and this completes the proof. O

Now carrying out the same procedure as in the previous results, we can
write for 1 <14,7 <n,
aj + ﬁb‘;‘ > aaibf

Multiplying up both sides for ¢;d; > 0,1 <4, j < n, yields

cidjaf‘ + ﬂcidjb? > Ozcidjaib?
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Adding up those inequalities, we get
n n n n
Z Z (cz-dja? + ﬁcidjb?) >« Z Z cidjaibf
i=1 j=1 i=1 j=1

from which the result immediately follows and the proof is complete.

O
Likewise, the complex version of the about inequality is presented in
Corollary 3 Let ay,a2,...,a, and bi,bo, ..., b, be compler numbers and
let c1,co,...,¢n and dy, do, . . ., d, be nonnegative numbers. If a, 5 are pos-

itive numbers such that o = 1+ 3, then

1 n n N n n n n
- > B
" (Z%Z%Iakl +B8Y ek > dilbrl | = (D eularl | [ D dilbal

k=1 k=1 k=1 k=1 k=1 k=1
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