Some Additive Counterparts of CBS Inequality

José Luis Díaz-Barrero and Eusebi Jarauta-Bragulat
Dept. Applied Mathematics III
Universitat Politècnica de Catalunya
Jordi Girona 1-3, C2, 08034 Barcelona. Spain
jose.luis.diaz@upc.edu, eusebi.jarauta@upc.edu

Abstract

In this paper elementary numerical inequalities are used to obtain some additive inequalities related to the classical Cauchy-BunyakowskySchwarz inequality.

Keywords and phrases: Finite sums, discrete inequalities, inequalities in the complex plane, CBS inequality.

2000 Mathematics Subject Classification: 26C15, 26D15.

1 Introduction

Cauchy-Bunyakowsky-Schwarz inequality, for short CBS inequality, plays a very important role in some branches of Mathematics such as Real and Complex Analysis, Probability and Statistics, Hilbert Spaces Theory, Numerical Analysis and Differential Equations. Many discrete inequalities are connected in some way with CBS inequality as it has been extensively documented by Mitrinovic ([1], 2]) and more recently by Dragomir [3] among others. In this paper we derive some real additive inequalities, related to classical CBS, using elementary numerical inequalities similar the ones obtained in $(4,[5)$. Furthermore, their complex companions are also given.

2 Main results

In the sequel we present some additive counterparts to CBS inequality that will be derived using elementary numerical inequalities. We begin with a generalization of CBS inequality extending the one appeared in (4).

Theorem 1 Let $a_{1}, a_{2}, \ldots, a_{n} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{n}$ and $d_{1}, d_{2}, \ldots, d_{n}$ be positive real numbers and let $r_{1}, r_{2}, \ldots, r_{n}$ and $s_{1}, s_{2}, \ldots, s_{n}$ be nonnegative numbers. Then, for all integer p, holds:

$$
\begin{aligned}
& \frac{1}{2}\left(\sum_{k=1}^{n} r_{k} a_{k}^{p} \sum_{k=1}^{n} s_{k} b_{k}^{p}+\sum_{k=1}^{n} r_{k} c_{k}^{p} \sum_{k=1}^{n} s_{k} d_{k}^{p}\right) \\
& \geq\left(\sum_{k=1}^{n} r_{k} a_{k}^{p / 2} c_{k}^{p / 2}\right)\left(\sum_{k=1}^{n} s_{k} b_{k}^{p / 2} d_{k}^{p / 2}\right)
\end{aligned}
$$

Proof. Applying mean inequalities to positive numbers a and b, we have

$$
a^{p}+b^{p} \geq 2 a^{p / 2} b^{p / 2}
$$

valid for all integer p. Therefore, for $1 \leq i, j \leq n$, we have

$$
a_{i}^{p} b_{j}^{p}+c_{i}^{p} d_{j}^{p} \geq 2 a_{i}^{p / 2} b_{j}^{p / 2} c_{i}^{p / 2} d_{j}^{p / 2}
$$

Multiplying up by $r_{i} s_{j} \geq 0,(1 \leq i, j \leq n)$, both sides of the preceding inequalities yields

$$
r_{i} s_{j} a_{i}^{p} b_{j}^{p}+r_{i} s_{j} c_{i}^{p} d_{j}^{p} \geq 2 r_{i} s_{j} a_{i}^{p / 2} b_{j}^{p / 2} c_{i}^{p / 2} d_{j}^{p / 2}
$$

Adding up the above inequalities, we obtain:

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n}\left(r_{i} s_{j} a_{i}^{p} b_{j}^{p}+r_{i} s_{j} c_{i}^{p} d_{j}^{p}\right)=\sum_{k=1}^{n} r_{k} a_{k}^{p} \sum_{k=1}^{n} s_{k} b_{k}^{p}+\sum_{k=1}^{n} r_{k} c_{k}^{p} \sum_{k=1}^{n} s_{k} d_{k}^{p} \\
\geq & \sum_{i=1}^{n} \sum_{j=1}^{n}\left(2 r_{i} s_{j} a_{i}^{p / 2} b_{j}^{p / 2} c_{i}^{p / 2} d_{j}^{p / 2}\right)=2\left(\sum_{k=1}^{n} r_{k} a_{k}^{p / 2} c_{k}^{p / 2}\right)\left(\sum_{k=1}^{n} s_{k} b_{k}^{p / 2} d_{k}^{p / 2}\right)
\end{aligned}
$$

and this completes the proof.

Notice that when $p=2, r_{k}=s_{k}=1$ and $c_{k}=b_{k}, d_{k}=a_{k},(1 \leq k \leq n)$, we get CBS inequality.

In what follows the same key idea is used to obtain some related results to CBS inequality. We start with

Theorem 2 Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be positive numbers and let $c_{1}, c_{2}, \ldots, c_{n}$ and $d_{1}, d_{2}, \ldots, d_{n}$ be nonnegative numbers. Then, for all integer p, holds:

$$
\frac{1}{2}\left(\sum_{k=1}^{n} d_{k} \sum_{k=1}^{n} c_{k} a_{k}^{p / 2}+\sum_{k=1}^{n} c_{k} \sum_{k=1}^{n} d_{k} b_{k}^{p / 2}\right) \geq\left(\sum_{k=1}^{n} c_{k} a_{k}^{p / 2}\right)\left(\sum_{k=1}^{n} d_{k} b_{k}^{p / 2}\right)
$$

Proof. Applying mean inequalities to positive numbers a and b, we have

$$
a^{p}+b^{p} \geq 2 a^{p / 2} b^{p / 2}
$$

valid for all positive integer p. Therefore, for $1 \leq i, j \leq n$, we have

$$
a_{i}^{p}+b_{j}^{p} \geq 2 a_{i}^{p / 2} b_{j}^{p / 2}
$$

Multiplying both sides by $c_{i} d_{j} \geq 0,(1 \leq i, j \leq n)$, we obtain

$$
c_{i} d_{j} a_{i}^{p}+c_{i} d_{j} b_{j}^{p} \geq 2 c_{i} d_{j} a_{i}^{p / 2} b_{j}^{p / 2}
$$

Adding up the preceding inequalities, yields

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n}\left(c_{i} d_{j} a_{i}^{p}+c_{i} d_{j} b_{j}^{p}\right)=\sum_{k=1}^{n} d_{k} \sum_{k=1}^{n} c_{k} a_{k}^{p}+\sum_{k=1}^{n} c_{k} \sum_{k=1}^{n} d_{k} b_{k}^{p} \\
& \geq 2 \sum_{i=1}^{n} \sum_{j=1}^{n}\left(c_{i} d_{j} a_{i}^{p / 2} b_{j}^{p / 2}\right)=2\left(\sum_{k=1}^{n} c_{k} a_{k}^{p / 2}\right)\left(\sum_{k=1}^{n} d_{k} b_{k}^{p / 2}\right)
\end{aligned}
$$

and this completes the proof.
The complex version of the preceding result is stated in the following
Corollary 1 Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be complex numbers and let $c_{1}, c_{2}, \ldots, c_{n}$ and $d_{1}, d_{2}, \ldots, d_{n}$ be nonnegative numbers. Then, for all integer p, holds:

$$
\begin{gathered}
\frac{1}{2}\left(\sum_{k=1}^{n} d_{k} \sum_{k=1}^{n} c_{k}\left|a_{k}\right|^{p / 2}+\sum_{k=1}^{n} c_{k} \sum_{k=1}^{n} d_{k}\left|b_{k}\right|^{p / 2}\right) \\
\geq\left(\sum_{k=1}^{n} c_{k}\left|a_{k}\right|^{p / 2}\right)\left(\sum_{k=1}^{n} d_{k}\left|b_{k}\right|^{p / 2}\right)
\end{gathered}
$$

Now, we state and proof our second main result.
Theorem 3 Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be positive numbers and let $c_{1}, c_{2}, \ldots, c_{n}$ and $d_{1}, d_{2}, \ldots, d_{n}$ be nonnegative numbers. Then, for all integer $p \geq 1$, holds:

$$
\begin{gathered}
\sum_{k=1}^{n} c_{k} \sum_{k=1}^{n} d_{k} b_{k}^{p}+\sum_{k=1}^{n} d_{k} \sum_{k=1}^{n} c_{k} a_{k}^{p} \\
\geq\left(\sum_{k=1}^{n} c_{k} a_{k}^{p-1} \sum_{k=1}^{n} d_{k} b_{k}\right)+\left(\sum_{k=1}^{n} c_{k} a_{k} \sum_{k=1}^{n} d_{k} b_{k}^{p-1}\right)
\end{gathered}
$$

Proof. To prove the preceding inequality we need the following
Lemma 1 Let a, b be positive real numbers. Then, for every integer $p \geq 1$, holds:

$$
a^{p}+b^{p} \geq a^{p-1} b+a b^{p-1}
$$

Proof. We will argue by mathematical induction. The cases when $p=1$ and $p=2$ trivially hold. Suppose that the given inequality holds for $p-1$, that is, it holds that $a^{p-1}+b^{p-1} \geq a^{p-2} b+a b^{p-2}$. Writing now

$$
a^{p}+b^{p}=a\left(a^{p-1}+b^{p-1}\right)+b^{p}-a b^{p-1}
$$

and taking into account the inductive hypotheses, we get

$$
a^{p}+b^{p} \geq a\left(a^{p-2} b+a b^{p-2}\right)+b^{p}-a b^{p-1}=a^{p-1} b+a^{2} b^{p-2}+b^{p}-a b^{p-1}
$$

Since $a^{2} b^{p-2}+b^{p}-a b^{p-1}=b^{p-2}\left(a^{2}+b^{2}-a b\right) \geq b^{p-2}(a b)=a b^{p-1}$, then $a^{p}+b^{p} \geq a^{p-1} b+a b^{p-1}$ as desired. We observe that equality holds if, and only if, $a=b$ and the proof is complete.

From the previous lemma, we have for $1 \leq i, j \leq n$,

$$
a_{i}^{p}+b_{j}^{p} \geq a_{i}^{p-1} b_{j}+a_{i} b_{j}^{p-1}
$$

Multiplying both sides by $c_{i} d_{j} \geq 0,(1 \leq i, j \leq n)$, we obtain

$$
c_{i} d_{j} a_{i}^{p}+c_{i} d_{j} b_{j}^{p} \geq c_{i} d_{j} a_{i}^{p-1} b_{j}+c_{i} d_{j} a_{i} b_{j}^{p-1}
$$

Adding up those inequalities yields:

$$
\begin{aligned}
\sum_{i=1}^{n} & \sum_{j=1}^{n}\left(c_{i} d_{j} a_{i}^{p}+c_{i} d_{j} b_{j}^{p}\right)=\sum_{k=1}^{n} d_{k} \sum_{k=1}^{n} c_{k} a_{k}^{p}+\sum_{k=1}^{n} c_{k} \sum_{k=1}^{n} d_{k} b_{k}^{p} \\
& \geq \sum_{i=1}^{n} \sum_{j=1}^{n}\left(c_{i} d_{j} a_{i}^{p-1} b_{j}+c a_{i} d_{j} a_{i} b_{j}^{p-1}\right) \\
& =\left(\sum_{k=1}^{n} c_{k} a_{k}^{p-1} \sum_{k=1}^{n} d_{k} b_{k}\right)+\left(\sum_{k=1}^{n} c_{k} a_{k} \sum_{k=1}^{n} d_{k} b_{k}^{p-1}\right)
\end{aligned}
$$

The complex counterpart of the previous result is given in the next

Corollary 2 Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be complex numbers and let $c_{1}, c_{2}, \ldots, c_{n}$ and $d_{1}, d_{2}, \ldots, d_{n}$ be nonnegative numbers. Then, for all integer $p \geq 1$, holds:

$$
\begin{aligned}
\sum_{k=1}^{n} c_{k} \sum_{k=1}^{n} d_{k}\left|b_{k}\right|^{p}+\sum_{k=1}^{n} d_{k} \sum_{k=1}^{n} c_{k}\left|a_{k}\right|^{p} & \geq\left(\sum_{k=1}^{n} c_{k}\left|a_{k}\right|^{p-1} \sum_{k=1}^{n} d_{k}\left|b_{k}\right|\right) \\
& +\left(\sum_{k=1}^{n} c_{k}\left|a_{k}\right| \sum_{k=1}^{n} d_{k}\left|b_{k}\right|^{p-1}\right)
\end{aligned}
$$

Finally, we will use a constrained elementary inequality to obtain the following result.

Theorem 4 Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be positive numbers and let $c_{1}, c_{2}, \ldots, c_{n}$ and $d_{1}, d_{2}, \ldots, d_{n}$ be nonnegative numbers. If α, β are positive numbers such that $\alpha=1+\beta$, then

$$
\frac{1}{\alpha}\left(\sum_{k=1}^{n} c_{k} \sum_{k=1}^{n} c_{k} a_{k}^{\alpha}+\beta \sum_{k=1}^{n} c_{k} \sum_{k=1}^{n} d_{k} b_{k}\right) \geq\left(\sum_{k=1}^{n} c_{k} a_{k}\right)\left(\sum_{k=1}^{n} d_{k} b_{k}^{\beta}\right)
$$

Proof. We begin with a Lemma.
Lemma 2 Let a, b, α and β be real numbers such that $a \geq 0, b, \alpha, \beta>0$ and $\alpha=1+\beta$. Then,

$$
a^{\alpha}+\beta b^{\alpha} \geq \alpha a b^{\beta}
$$

with equality if, and only if, $a=b$.
Proof. The inequality claimed can be written in the equivalent form

$$
b^{\beta}(\alpha a-\beta b) \leq a^{\alpha}
$$

When $a=0$ the inequality is strict, and when $a=b$ the inequality becomes equality. Hence, we can assume that $a>0$ and $a \neq b$. Set $\lambda=a / b$. Then, the inequality is equivalent to $\alpha \lambda-\beta<\lambda^{\alpha}$ for $\lambda \neq 1$. Therefore, we have to prove that holds $\lambda^{\alpha}-\alpha \lambda+\alpha-1>0$ for any $0<\lambda \neq 1$. Indeed, let f be the function defined by $f(\lambda)=\lambda^{\alpha}-\alpha \lambda+\alpha-1$. It is easy to see that $f^{\prime}(1)=0, f^{\prime}(\lambda)<0$ on $(0,1)$ and $f^{\prime}(\lambda)>0$ on $(1,+\infty)$. This implies that $f(\lambda)>f(1)=0$ if $\lambda \neq 1$ and this completes the proof.

Now carrying out the same procedure as in the previous results, we can write for $1 \leq i, j \leq n$,

$$
a_{i}^{\alpha}+\beta b_{j}^{\alpha} \geq \alpha a_{i} b_{j}^{\beta}
$$

Multiplying up both sides for $c_{i} d_{j}>0,1 \leq i, j \leq n$, yields

$$
c_{i} d_{j} a_{i}^{\alpha}+\beta c_{i} d_{j} b_{j}^{\alpha} \geq \alpha c_{i} d_{j} a_{i} b_{j}^{\beta}
$$

Adding up those inequalities, we get

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left(c_{i} d_{j} a_{i}^{\alpha}+\beta c_{i} d_{j} b_{j}^{\alpha}\right) \geq \alpha \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} d_{j} a_{i} b_{j}^{\beta}
$$

from which the result immediately follows and the proof is complete.

Likewise, the complex version of the about inequality is presented in
Corollary 3 Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be complex numbers and let $c_{1}, c_{2}, \ldots, c_{n}$ and $d_{1}, d_{2}, \ldots, d_{n}$ be nonnegative numbers. If α, β are positive numbers such that $\alpha=1+\beta$, then
$\frac{1}{\alpha}\left(\sum_{k=1}^{n} c_{k} \sum_{k=1}^{n} c_{k}\left|a_{k}\right|^{\alpha}+\beta \sum_{k=1}^{n} c_{k} \sum_{k=1}^{n} d_{k}\left|b_{k}\right|\right) \geq\left(\sum_{k=1}^{n} c_{k}\left|a_{k}\right|\right)\left(\sum_{k=1}^{n} d_{k}\left|b_{k}\right|^{\beta}\right)$
Acknowledgements: Authors thank to Ministerio de Educación y Ciencia of Spain that has partially supported this research by grant MTM200603040.

References

[1] Mitrinovic, D. S. Analytic Inequalities, Springer-Verlag, Berlin/Heidelberg/New York, 1970.
[2] Mitrinovic, D. S., Pecc̆arić and A. M. Fink Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrech/Boston/London, 1993.
[3] Dragomir, S. S. A Survey on Cauchy-Buniakowsky-Schwartz Type Discrete Inequalities, RGMIA Monographs, Victoria University, 2000. (ONLINE: http://rgmia.vu.edu.au/monographs/).
[4] Dragomir, S. S. "On some inequalities." Caite Metodico Ştiinţifice, No. 13, (1984), pp. 20. Faculty of Matematics, Timişoara University, Romania.
[5] Dragomir, S. S. "On Cauchy-Buniakowski-Schwartz's Inequality for Real Numbers." Caite Metodico Ştiinţifice, No. 57, (1989), pp. 24. Faculty of Matematics, Timişoara University, Romania.

