
1. Introduction

Many different physical phenomena affect the vertical
and horizontal temperature distributions, and they
interact in a non-linear way. Thus, complex atmospheric
equations have to be solved numerically to forecast the
weather. Models for different scales of motion have to
take into account different physical phenomena. The
best-tested and most reliable models are the synoptic
ones, which take into account only large-scale motion
and so neglect mesoscale factors, which are of great
importance at a regional scale, as in the Mediterranean
zone. Therefore, there is wide interest in downscaling
weather forecasts. All the existing techniques, including
mesoscale numerical models, need powerful computers
or have operationally limited time constraints. Hayden
& Purser (1995) developed a recursive filter objective
analysis that allows the downscaling of variable fields; it
is not difficult to apply, but it needs long calculations. In
this paper a new method is presented for downscaling
forecasts to give a value for each region (or zone). It is
easy to apply and, once preliminary multivariate calcula-
tions are made, forecasts can be produced with a pocket
calculator.

2. Methodology

The proposed methodology consists in combining
multivariate statistical clustering techniques with geo-

statistical techniques. Cluster analysis is a standard
method in multivariate statistics (Anderberg, 1973),
while geostatistics is an approach that has been seldom
used in fields other than mining or the geological sci-
ences. Therefore, a brief resume of geostatistics has
been included in the Appendix. Readers not acquainted
with the basic hypothesis and purpose, as well as with
the standard terminology of this field, should refer to it
whenever necessary.

Clustering techniques are used to divide a large area
into homogeneous meteorological regions, as well as to
classify meteorological situations into weather types
(Steps 1 and 2; see later). Those techniques need pow-
erful computers and involve a large number of calcula-
tions. However, meteorological regions and weather
types do not change frequently, so clustering could be
applied once and then the results updated whenever it
seems necessary. 

Geostatistical techniques are used to determine each
region’s meteorological behaviour and to forecast the
daily temperature in each region (Steps 3, 4 and 5; see
later). Geostatistical tools used to characterise each
region’s meteorological behaviour also need a large
amount of data and a good graphics device, but they
can be produced once and then updated if necessary.
Daily forecasts of weather type are based on the output
of a numerical model. Finally the daily temperature
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forecast is obtained as the solution to an equation
depending on temperature and weather type.

There are five steps that have to be followed.

• Step 1. Divide a large area into homogeneous meteo-
rological regions and find their representative sta-
tions.

• Step 2. Group meteorological situations into weather
types.

• Step 3. For each representative station and weather
type, find the average temperature (called the expected
temperature), and construct the real series (i.e. a time
series of daily temperature) and the expected series
(i.e. a time series of expected temperature).

• Step 4. For each representative station, describe the
behaviour of the two time series through the semi-
variograms.

• Step 5. Predict the next day’s temperature at each
representative station by solving an equation involv-
ing the real temperature and expected temperature
(the next day’s expected temperatures are inferred
from forecasts given by numerical models).

Steps 1 to 4 are seldom used so their results need only
be updated whenever it seems necessary.

3. Cluster analysis

3.1. Dividing a large area (Step 1)

To divide the whole region into thermally homoge-
neous zones, a classical clustering method has been
applied to histograms of maximum (Tmax), minimum
(Tmin), average {(Tmax + Tmin)/2} and oscillation (Tmax –
Tmin) temperatures. No geographical restriction (such
as height above sea level or other orographic features)
has been imposed. This allows for the presence of geo-
graphically dispersed points inside a group. 

Regionalisation, or clustering, of different stations on
the basis of their temperatures allows the division of a
synoptic zone into smaller regions – at the mesoscale –
that are thermally homogeneous. To do this, five-day
temperature histograms are built for each station. The
temperature data used are daily maximum, minimum,
average and oscillation values. Then all observatories
are grouped to obtain smaller regions with a homoge-
neous meteorological behaviour. This method has been
used in France by SCAB (1987) and in Catalonia by
Hervada et al. (1990). 

Then, representative stations for each temperature
region have to be identified.

3.2. Identifying weather types (Step 2)

As there are many synoptic variables (i.e. temperature,
wet bulb temperature, wind components, pressure and

sky cover) and they are not independent of each other,
a principal component analysis was performed to give a
smaller number of independent factors prior to classi-
fying synoptic situations into weather types. The basic
idea is that days with similar factor scores will be mete-
orologically alike. Then, Euclidean distance and aver-
age linkage are used to cluster them into weather types.
Using this analysis it has been possible to determine 13
different types of winter weather in Catalonia (see
Hervada & Fernandez-Mills, 1989).

4. Geostatistical techniques

4.1. Building two time series (Step 3)

All days have been grouped according to weather
types, and then the average temperature for each
weather type and station has been calculated. Then,
two time series of average temperatures have to be con-
structed for each station:

• The first series, referred to as the real one, assigns to
every day its average temperature.

• The second series, referred to as the expected one,
assigns to every day the average temperature for the
station based on its type of weather. 

The real and expected series show the behaviour of
temperature in every zone by means of their semivari-
ogram and cross-semivariogram models. 

4.2. Modelling the behaviour (Step 4)

Three semivariograms have to be built for each region
for each year: two belong to the real and expected
series, and the last is the cross-semivariogram between
the two series. The first two semivariograms account
for the auto-correlation inside each series and the last
one accounts for the cross-correlation between them.
The semivariogram function must be modelled from
experimental data, as described in the Appendix.

To prove that semivariogram models are the correct
ones, cross-validation is used. Cross-validation takes
away a known value and estimates it with neighbouring
values and the chosen semivariogram model.

Deutsch & Journel (1992) give a program to construct
and validate semivariograms; the models have to be
adjusted by experience and by trial and error (Clark,
1982; Olea, 1995). If a model for all semivariograms is
known, then it is possible to estimate the temperature
value from values at neighbouring points.

4.3. Forecasting (Step 5)

To forecast the temperature for each of the next four
days in every zone, ordinary cokriging has been used.
Cokriging (Deutsch & Journel, 1992) is a geostatistical
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tool consisting of a set of generalised linear regression
techniques for minimising an estimation variance
defined from a prior model for semivariograms using
more than one variable. In our case, temperature will be
estimated from past temperature values (‘real data’) and
past and future weather types (‘expected data’).

To solve ordinary cokriging equations, real data for the
last five days, and expected data for the last three and
next four days are required. The main reasons for using
cokriging are that, assuming stationarity of the incre-
ments, it produces a linear, unbiased estimator with
minimum error variance which, performed on a regular
grid, keeps the same coefficients for each prediction. In
addition, cokriging optimises the use of available infor-
mation because it uses not only semivariograms but
also cross-semivariograms to account for the auto-cor-
relation as well as for the cross-correlation in time of
the two variables.

Then, to forecast temperature T, the following first-
order equation has to be solved:

where Ri and Ej are the real and expected series 
and λi and µj are weights.

Cokriging consists in finding the weights by using the
information contained in the semivariograms. Weights
used in equation (1) must satisfy two conditions. They
must be such that:

• The estimate given by equation (1) is unbiased.
• The estimation error variances are the smallest

possible.

Therefore, this is a classical minimisation problem sub-
ject to two constraints. The Lagrange multiplier
method may be used to minimise a function with two
constraints. For a detailed explanation see Isaaks &
Srivastava (1989). Some subroutines to solve the equa-
tions are given by Deutsch & Journel (1992).

5. Case study

5.1. Database

Naturally, the accuracy of this method increases with
the number of data, so to begin with, as many measur-
ing points as possible are needed. For each station, the
maximum and minimum temperatures and other mete-
orological variables are registered daily. Once they
have been grouped, just representative points (i.e. one
for each cluster) are used. Each representative point is
the station whose thermal histogram is closest to the
average histogram for the group. A synoptic station,
where temperature, humidity, pressure, sky cover and

wind are registered four times per day, is also needed to
characterise the meteorological situations. The data
from every measuring point has to cover a period of
30–50 years. The period has to be the same for all sta-
tions and taken at the same time and height (Conrad &
Pollak, 1950; Baker, 1975; Edwards, 1982). Every season
is analysed separately to avoid seasonal cycles. To group
the stations and the meteorological situations five days’
average values have been used because they allow the
simplification of the data records and do not add much
error – the average cyclone life is more than five days.

The available database consists of data from 54 obser-
vatories spread over Catalonia (the north-eastern part
of the Iberian peninsula) plus information from the
synoptic station at Barcelona’s airport (see Figure 1).
These observatories belong to the INM, the Spanish
Institute of Meteorology. Daily maximum and mini-
mum temperatures have been recorded from 1957 to
1986. Missing data have not been considered because
they were less than 5% of the total. If days without
data had been significant, Alexanderson’s method
would have been used (see Hanssen-Bauer & Forland,
1994). To avoid periodicities, only winter temperatures
have been considered in the present study.

5.2. Results

The weights used in equation (1) have been found for
each of the nine regions by solving the cokriging equa-
tions. They are shown in Table 1. For example, the
equation for the cool coastal region takes the form:

T1 = 0.119R–4 + 0.004R–3 + 0.138R–2 – 0.031R–1 +
0.771R0 – 0.175E–2 – 0.005E–1 – 0.466E0 +
0.589E1 + 0.021E2 + 0.031E3 – 0.003E4

where T is the forecast temperature, R and E are the
real and expected series, and the numbers are the
weights. The subscripts indicate chronological posi-
tion: 1 stands for the day for which temperature is
going to be estimated and 2, 3, and 4 refer to the fol-
lowing days; 0, –1, –2, –3, and –4 refer to the previous
days.

These weights have been used to reconstruct all 29
studied winters and to compare the results with real
temperatures. Forecasting errors, as shown in Table 2,
provide evidence that cokriging is a better estimator for
daily temperature than the classic statistical technique
based on the prediction of weather types (i.e. estimat-
ing daily temperature as the average belonging to the
type of weather that is forecast). In fact, cokriging
accounts for the type of weather expected as well as for
the atmospheric temperature from some previous days.
Cokriging errors – the differences between real and
forecast temperatures – depend mainly on the observ-
ing site. On the other hand, errors using the classic sta-
tistical method can be large, and they depend on both
the weather type and the observing site.
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Table 2. Forecasting errors for the cokriging technique
using the NWP forecast of weather type and the classic
statistical method which assigns average temperature
for each kind of types of weather for every region.

Region Cokriging error Types of
(°C) weather error (°C)

High mountain 2.6 4.9 to 3.2
Mean mountain 2.2 3.6 to 2.7
Plateau 2.1 4.0 to 2.4
Central basin 1.6 10.9 to 2.2
Hollow 1.9 4.0 to 1.7
Prelittoral basin 1.8 3.2 to 1.7
Cool coast 1.9 3.1 to 2.0
Mean coast 1.7 3.1 to 1.5
Warm coast 1.6 3.1 to 1.8

Sometimes it is not possible to receive the forecasts from
an NWP model. Therefore the cokriging technique has
been tested using the previous day’s weather in place of
the NWP forecast to assess whether this change
increases the error of the prediction. These errors have
also been compared with those found using the classic
statistical method based on types of weather; the results
are shown in Figure 2. There is evidence that:

• The classic statistical method always gives a greater
error than use of the cokriging technique with NWP
forecasts.

• Cokriging using the previous day’s synoptic situa-
tion gives a larger error, but not significantly so.

These conclusions are supported by the errors at a
cumulative frequency of 50% and 90% for the three
methods given in Table 3.
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Table 1. Weights for the real series (λi) and for the expected series (µj) for each region to be used in equation (1).

Region Weights

λ –4 λ –3 λ –2 λ –1 λ 0 µ –2 µ –1 µ 0 µ 1 µ 2 µ 3 µ 4

High mountain 0.127 –0.035 0.019 0.021 0.868 –0.146 –0.069 –0.716 0.839 0.051 0.050 –0.008
Mean mountain 0.145 0.027 0.150 –0.044 0.722 –0.145 –0.047 –0.288 0.456 0.049 –0.010 –0.014
Plateau 0.128 0.035 0.153 –0.004 0.688 –0.145 –0.047 –0.288 0.456 0.049 –0.010 –0.014
Central basin 0.098 0.012 0.156 –0.033 0.766 –0.200 0.018 –0.630 0.833 0.003 –0.009 –0.014
Hollow 0.121 0.017 0.156 –0.017 0.724 –0.190 –0.020 –0.232 0.352 0.044 0.053 –0.007
Prelittoral basin 0.097 0.010 0.180 –0.003 0.716 –0.270 –0.016 –0.385 0.575 0.040 0.070 –0.014
Cool coast 0.119 0.004 0.138 –0.031 0.771 –0.175 –0.005 –0.466 0.598 0.021 0.031 –0.003
Mean coast 0.111 0.010 0.164 –0.017 0.732 –0.153 –0.049 –0.370 0.518 0.053 0.004 –0.004
Warm coast 0.114 0.032 0.185 –0.002 0.672 –0.193 –0.047 –0.283 0.449 0.055 0.024 –0.006

Figure 1. Location of the 55 observing stations in Catalonia.



6. Conclusions

The main conclusions from this study are:

• The methodology proposed in this paper allows the
downscaling of forecasts.

• The cokriging technique is a good method for fore-
casting temperatures because it takes into account
past temperatures as well as past and expected types
of weather.

• If the weather type of the previous day is used to
forecast, errors do not affect significantly the predic-
tion values.

• Multivariate calculations and meteorological behav-
iour, which determine the weights in the cokriging
equations, have to be calculated just once and then
updated if necessary.

• Once weights for cokriging have been determined at
each region, the forecast of temperatures at any other
time can easily be computed.

However, there is a restriction: as semivariograms
show a short-term range (maximum range is five days),
only short-term forecasts will be improved. It is not
advisable to use geostatistical tools to make predictions
for more than a semivariogram’s range. So this method-
ology can be applied to temperature forecasts over a
four-day period.
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Appendix. Basic concepts in geostatistics

A1. Definitions

(a) Regionalised variables and random functions

Geostatistics (or surface pattern analysis) are used to
study continuously varying phenomena (i.e. phenom-
ena that take a value at each point of space or time).
These phenomena are termed regionalised variables in
geostatistics.

A regionalised variable can be defined as a function tak-
ing a value z(x) at each point of the space Rn, where z(x)
depends only on x (the geographical-time location). In
this paper n = 1; that is we consider only one dimension
of time per station. 

The set of realisations of z(x) is called a random func-
tion {Z(x), x ∈ A} (Journel & Huijgbregts, 1978), which
is defined by its distribution function: 

FZ(x) = P[Z(x1) ≤ z1, …, Z(xn) ≤ zn]

It is not possible to make a statistical inference with a
single realisation of the random function because its
distribution function cannot, in general, be known.
Thus some assumptions about the statistical behaviour
of the random function have to be made in order to
proceed with the statistical analysis. Geostatistical
models can become increasingly elaborate by increas-
ing the number of assumptions, but it is better to keep
to the minimum set of assumptions in order to describe
in a realistic way the analysed phenomenon.

Most assumptions suppose that the regionalised vari-
able repeats itself in space-time and that the sampling is
representative of the regionalised variable; i.e. if we
were able to repeat the sampling over the same study
area A we would obtain the same results (statistically).
In linear geostatistics the assumptions made are sta-
tionarity and isotropy.
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Figure 2. Cumulative frequency of the forecasting errors for
the cokriging technique using the NWP forecast of weather
type (full line), the cokriging technique using the previous
day’s weather type (dashed line) and the classic statistical
method (dotted line).

Table 3. Error at the 50% and 90% levels of cumulative frequency for the three techniques tested.

Technique Error at various levels of cumulative frequency (°C)

50% 90%

Cokriging using the NWP forecast of weather type 1.4 3.8
Cokriging using the previous day’s weather type 1.5 4.0
Classic statistical method 2.5 5.0



(b) Semivariogram

The semivariogram γ(h) is an alternative to the auto-
covariance function and is calculated as half the vari-
ance of the difference between temperature at two days,
separated by a lag h:

2γ(h) = Var[T(u + h) – T(u)]

The alternative to the cross-covariance function
between two different random functions is known as
the cross-semivariogram and measures the cross-vari-
ability of the two functions.

Traditionally, the semivariogram has been used for
modelling spatial variability rather than temporal vari-
ability and is the key to any geostatistical study. In
essence, the semivariogram replaces the Euclidean dis-
tance h by a structural distance 2γ(h) that is specific to
the attribute and the field under study. The semivari-
ogram distance measures the average degree of dissimi-
larity between an unsampled value T(u) and a nearby
data value. The more ‘dissimilar’ sample value should
receive a lesser weight in the estimation of T(u).

(c) Stationarity

The stationarity assumptions are taken on the first- and
second-order moments of the distribution function
(Journel & Huijgbregts, 1978).

• The first-order moment does not depend on location: 

E[Z(x)] = m ∀ x ∈ A

• For the second-order moments, the variance, covario-
gram function and semivariogram function are given
by:

Var[Z(x)] = E[(Z(x) – m(x))2]

C(h) = E[ Z(x) Z(x + h)] – m2

γ(h) = 1⁄2E[(Z(x) – Z(x + h) )2]

• The following identities are useful:

Var[Z(x)] = C(0)

γ(h) = C(0) – C(h).

Both γ(h) and C(h) can be used to characterise the
structure of spatial variability of Z(x) by means of their
estimators (see below). Variations of these functions are
also employed in the geostatistical literature, such as
correlogram, relative variogram and madogram (Cressie,
1991; Maynou et al., 1996).

The function γ(h) is more general than C(h) because it
only assumes that the variance of the increments is

finite. The concept of finite variance of the increments
in the semivariogram is called the intrinsic hypothesis
(Matheron, 1971). This hypothesis is weaker than the
assumption of second-order stationarity and includes it.

A2. Structure functions

(a) Experimental semivariogram

The underlying autocorrelation function of the random
function Z(x) is often unknown, but under the station-
arity conditions (see above) it can be estimated from
the observations Z(xi). Experimental semivariograms
γ−(h) are computed and later fitted to a theoretical semi-
variogram model. The spatial auto-correlation descrip-
tor is computed as follows:

where N(h) = card{(xi, xj): xi – xj = h; i, j = 1, …, n} is
the number of pairs used to compute the experimental
semivariogram for each distance class.

(b) Experimental cross-semivariogram

This measure of cross-variability is defined as half of
the average product of h increments relative to two dif-
ferent functions:

where N(h) is the number of pairs used to compute the
experimental semivariogram, zi is the value of function
Z at the tail of the pair, zj is the corresponding head
value, and (yi – yj) is the corresponding increment of the
other function Y.

(c) Semivariogram models

To proceed with the geostatistical modelling the exper-
imental semivariogram – or cross-semivariogram –
needs to be fitted to a theoretical semivariogram model.
The latter has to comply with some mathematical con-
ditions (Matheron, 1971). Some models grow continu-
ously up to a certain range a where they stabilise
around the sill C(0). The range a is the distance beyond
which there is no spatial correlation between samples. 

The function γ(h) reaches the sill asymptotically only in
the exponential model and oscillates around the sill in
the wave (or hole-effect) model.

There exist a number of methods for fitting the experi-
mental semivariogram to a theoretical model. The most
common consists in graphically fitting the two or three
parameters that define the theoretical model. This
simple method is very useful for well-defined experi-
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mental semivariograms that easily suggest the semivar-
iogram function to use.

(c) Nugget effect

Although strictly γ(0) = 0, the function γ(h) often shows
a discontinuity at the origin owing to small-scale phe-
nomena: this is the so-called nugget effect. It is due to
the fact that, at a scale smaller than the minimum dis-
tance between samples, γ(h) cannot be studied from the
experimental data set. It can be interpreted in a number
of ways, depending on the phenomenon under study,
as white noise, measurement error, or the existence of
spatial structure at distances smaller than minimum
value of |h| (Cressie, 1991). When the nugget effect is
observed over the entire range of h (flat semivari-
ogram), the absence of spatial structure at the scale of
study can be assumed.

A3. Spatial prediction

One of the most important aspects of spatial modelling
concerns the possibility of making a statistical inference
of a spatial autocorrelated variable. The process of esti-
mating the value of Z(x) at unknown locations is called
kriging. The predictor (estimator) of Z(x) at x0 is taken
to be Z*(x0).

If Z(x) is a stationary random function, then the differ-
ence R(x) = Z(x0) – Z*(x0) is also a random function. As
Z(x0) is unknown, R(x) is also unknown, but under the
stationary hypothesis (see above) the computation of
its two first moments becomes possible: mR = E[R(x)]
= 0 and the estimation variance Var[R(x)] is small.

A linear unbiased estimator Z*(x0) of Z(x0) from the
observed values Z(xi) is proposed. This estimator can
be computed analytically with:

where λi are the weights attributed to each Z(xi) from 
i = 1, 2, ..., n, subject to Σi λi = 1, in order to guarantee
the weights are unbiased. The vector of weights to be
given to each observed value is obtained by solving a
linear kriging system of equations. Kriging is then an
optimised weighting of the samples using its autocorre-
lation structure (Matheron, 1971). This system is:

where µ is a Lagrange parameter and γ(a, b) is the value
of the fitted semivariogram model from point a to
point b. The kriging (or estimation) variance is:

and can be used to give a precision index to the point
estimates or to construct confidence intervals for the
estimate, under the assumption of normality of the
data.

The term cokriging is used for linear regression that
also uses data defined on different attributes. In the case
of a single secondary variable y, the ordinary cokriging
estimator of Z(u) is written as follows:

where the λi are the weights applied to the N1
z-samples and the λ′j are the weights applied to the N2
y-samples. The sum of the weights applied to the
primary variable is set to 1, and the sum of the weights
applied to any other variable is set to 0. In the case of
two variables, these two conditions are:

While kriging requires a model for the Z covariance,
cokriging requires a joint model for the matrix of
covariance. That is, it needs both Z and Y semivari-
ograms and the cross-semivariogram. 
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