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Abstract 
One of the most important aspects associated with transformations of compositional data, consists of 

establishing the analytical expression of the data transformation and, specially, the inverse 

transformation; in that case, once data of the simplex have been transformed in elements of the ordinary 

Euclidian space to proceed to its treatment (for example, kriging), apply to them the back transformation 

that allows to obtain again the corresponding elements in the simplex. Compositional data 

transformations more commonly applied up to now, are the additive logratio transformation (ALR) and 

the centered logratio transformation (CLR), both defined by J. Aitchison. Recently it was established by J. 

J. Egozcue and others (2003), a new compositional data transformation, named isometric logratio (ILR), 

with the purpose of having an orthonormal basis of reference in the simplex. The proposed expression for 

the calculation of the data transformation and the inverse transformation are really complex and they are 

based on operations defined in the simplex: inner product of Aitchison, linear closure and power 

transformation. Furthermore, those expressions may present occasionally error problems by round and 

truncation. In this paper, a simple method for the calculation of the ILR data transformation and ILR 

inverse transformation is proposed, based on algebraic methods and it could be easily implemented into a 

spread-sheet.  

 

Introduction  

In the area of the Earth sciences, when we study n compositional characteristics, 1 2, , , nV V V… , then the 

data set is a matrix ( , )D p n∈
ℝ

M , that is, a set of p cases (rows), such that to each case correspond to 

its n compositional values (columns). In order to complete adequately the matrix data, we define the 

residual variable VR, through the relationship: 1 2( )R CL nV K V V V= − + + +⋯ , where KCL is the closure 

constant, that is, KCL = 1 if the data are proportions respect to unit and KCL = 100 if it is considered 

percentages, etc. Hence, considering the studied n variables and the residual variable, in this case each 

datum, 1 2( , , , , )n Rx x x x x= … , is a compositional vector of the simplex 1nS + , that it is a vector space 

on ℝ  of dimension n, with the ⊕ (closure) and ⊗ (power by scalar) operations. 
 

Consider the hyper plane H (vector subspace of dimension n in the 1n+
ℝ  ordinary Euclidean space) 

defined by the equation 1 2 1 0nα α α ++ + + =⋯ . A (natural) base of H is formed by the n vectors: 

 

1 2(1, 1,0,...,0), (0,1, 1,...,0), ..., (0,...,0,1, 1)nw w w= − = − = −� � �
 (1.1) 

 

Applying to this base the method of Gram-Schmidt orthogonalization, we obtain the orthogonal base: 

 

1 2

1 1 1 1
(1, 1,0,...,0), , , 1,...,0 , ..., ,..., , 1

2 2
nv v v

n n
   = − = − = −   
   

� � �
 

 

(1.2) 

 
Dividing each vector for its norm, we obtain the orthonormal base: 



( )1 2

1 2 1 1 1 1
1, 1,0,...,0 , , , 1,...,0 , ..., ,..., , 1

2 3 2 2 1
n

n
u u u

n n n
   = − = − = −   +   

� � �
 

 

(1.3) 

 

In these conditions, we define the isometric logratio transformation, denoted by ILR, as the mapping  

1: nS Hϕ + →  defined by: 

 

1

1

( ) ln( ), ,
n

k k n
k

y x x u u x Sϕ +
=

= = < > ∈∑
� � � � � �

 (1.4) 

 

where  < , >  indicates the ordinary Euclidean inner product; it is a simple exercise to verify that the ϕ  

mapping is an isomorphism of vector spaces. For the calculation of the inverse transformation, Egozcue 

and others (2003) establish the following methodology: if CL indicates the closure respect to the constant 

KCL and is designated through: 

 
1 2 1

1(exp( )) ( , ,..., ) , 1, 2,...,n
k k k k k ne CL u e e e S k n+

+= = ∈ =� �
 (1.5) 

then: 

 

1 21 1

1 1 2 1( ) ( ,..., ) (... , ( ) ( ) ( ) ,... ) , 1, 2,..., 1nyy yj j j
n n ny y y CL e e e S j nϕ ϕ− −

+= = ⋅ ⋅ ⋅ ∈ = +�
⋯  (1.6) 

 

Aside from the inherent operative difficulty to its definition, it has been proven by Jarauta-Bragulat and 

others (2003) that the expressions (1.4) and (1.6) present computacional problems for truncation errors. 

For this reason and with the objective to obtain a simplest and operative expression, in this article is 

proposed a methodology based on the matrix algebra. 

 

Methodology 

Developing the equation (1.4), it is obtained that the kth component of the vector ( )y xϕ=� �
 in the 

orthonormal base (1.3), is given by: 

 

1 2

1

( , ,..., )
ln , 1,2,...,

1

k
k

k

g x x xk
y k n

k x +

= =
+

 

 

(2.1) 

 

where 1 2( , ,..., )kg x x x  indicates the geometric mean of the corresponding elements. Developing in 

equation (2.1) the expression of the geometric mean and taking into account the properties of the natural 

logarithm, the result to be the following equations, that allows us to calculate the ILR transformation as 

linear combination of the components of the data vector: 

 

1 2 1

1 1 1 1
ln ln ln ln , 1,2,...,k k k

k
y x x x x k n

k k k k +
+ = + + + − =⋯  

 

(2.2) 

 

This allows us to write the equations of ILR transformation by a simple matricial equation, through: 

 

1
1
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(2.3) 



 

where 
* ( , 1)M n n∈ +

ℝ
M , ( 1,1)X n∈ +

ℝ
M  and ( ,1)Y n∈

ℝ
M . To obtain the compositional 

variables from ILR transformed values, the procedure would be immediate if the matrix 
*M  would be 

regular, since would be enough to multiply both members by its inverse matrix. Nevertheless, this matrix 

is not even squared. We propose the following methodology to apply this idea: define a new matrix M  by 

concatenation for rows of 
*M  and a new row matrix, so that the resulting matrix will be regular, to 

introduce a new variable and to obtain finally a matricial equation from which one could be obtained the 

wished solution. Below, we go to develop and to justify the methodology proposed. 

 

If 1 (0,0,...,0,1)ne + =�
 is the (n+1)-th vector of the natural base of  

1n+
ℝ , we can obtain a new matrix 

( 1)M n∈ +
ℝ

M  by concatenation of the rows from 
*M  with that vector and also a new matrix 

( 1,1)ZY n∈ +
ℝ

M  by concatenation of Y  with a new variable ln RZ x= ; that is: 
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(2.4) 

 

In this way, it can be written the matrix equation ZMX Y= , that gives cause for a system of n+1 linear 

equations whose first n equations are the same with those which are obtained from the equation (2.3). Our 
purpose is now to demonstrate that this new matricial equation allows us to obtain the wanted solution. 

 

Proposition 1. - The matrix M  is regular anyone that it will be n∈ℕ . 
 

Demonstration:  We will prove that det 0M ≠ , for all n∈ℕ ; in particular, we will show that 
det 1,M =  for all number n∈ℕ . It will be applied that the determinant of a triangular squared matrix 
by blocks equals to the product of the determinant of the blocks of the diagonal, it supposed squared 

matrices, and also that the determinant of a triangular squared matrix, upper and lower, is the product of 

the elements of the main diagonal. For this, it will be divided M  in a way convenient to be triangular by 

blocks and then it is triangularized one of the blocks through elemental transformations by rows. We 

proceed by induction on n. 
 

1) Case 2n = . In this case we have: 

 

2

2 2

1 1 0

1/ 2 1/ 2 1 ; det (det ).1 det 1
0 1
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 (2.5) 

 

2) Case 3n = . It is possible to show without difficulty that det 1M = . 

3) Induction hypothesis. We suppose that to 1n −  is satisfied: 
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 (2.6) 



 

4) General case. We decompose the matrix M  in blocs: 
0 1

nA B
M

 
=  
 

, being verified then that  

det det nM A= . Then, in this case it is satisfied: 
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(2.7) 

 

and that completes the demonstration. � 

 

As consequence, the matrix M  is regular and admits inverse, 
1M −
, that allows us to obtain the solution 

that were sought, that is: 

 
1

Z ZMX Y X M Y−= ⇔ =  (2.8) 

 

To develop thoroughly this equation, it must be obtained the general expression from the matrix 
1M −
, 

and this is what we do in the following proposition. 

 

Proposition 2. - The general expression of the matrix 
1M −
, inverse of ( 1)M n∈ +

ℝ
M , is: 
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(2.9) 

 

Demonstration:  It is a simple calculation showing that: 
 

0 if ; 1 if , , 1,2,..., 1k k
j jc r j k c r j k j k n= ≠ = = = +  (2.10) 

 

 

Algebraic equations of inverse ILR transformation 

Once it established the general form of the inverse matrix 
1M −
, we go to obtain the equations from the 

inverse from the ILR transformation. Developing the matrix product 
1M X−

, we obtain the system of 

linear equations:  



1 1 2 1

1 1

1 1 3 1 1 1 1
ln 2

2 3 2 1 1

1 1 1 1 1
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1 1 1
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R
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x Z
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(3.1) 

 

Applying the exponential function to both members of equations (3.1), it results finally: 

 

1 1 2 1

1 1

1 1 3 1 1 1 1
exp 2 ,
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=

⋯ ⋯

⋯
 (3.2) 

 

Usually the available information consists of the ILR coordinates 1 2( , ,..., )ny y y , and the Z  variable  is 
unknown. In such a case, we observe that in equation (3.2)  the first  n equations can be written as:  
 

1
exp( ) exp( ) exp( ) exp( ) ( 1,2,..., )

exp( )
k k k k kx S Z S Z S x k n

Z
= + = ⇔ = =  

Then, if we say 

1
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=∑ , we obtain: 
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1
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and we can get the expression of the Z  variable: 
 

1
ln ln ln(1 )

1
RZ x α

α
= = = − +

+
 (3.3) 

 

Finally, once Z  variable is obtained, equations (3.2) can be applied to obtain the remaining 
compositional coordinates 1 2, ,..., .nx x x  

 

An example 

To illustrate the proposed methodology, there is a simple example with four compositional variables 

1 2 3, , , RV V V V ; in Table 1 you can see the data and its ILR transformations 1 2 3, ,Y Y Y . The equations to 

compute the back transformed values are: 

 

1 1 2 3 2 1 2 3

3 2 3

1 1 4 1 1 4
exp ; exp ;

2 6 3 2 6 3

2 4
exp

3 3

x y y y Z x y y y Z

x y y Z
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= + + + = − + + +      

   

 
= − + +  

 

 
(4.1) 

 

From ILR transformed values, we can compute exp( ), 1, 2,3kS k =  and from those values, parameter 

α  can be also computed, as its sum. So, we can compute the Z  variable by applying equation (3.3) and 
finally, back transformed values can be computed applying equations (3.2). All those computations are 

shown in Table 2. 



Table 1. Data matrix (V1,V2,V3,VR) and ILR transformations (Y1,Y2,Y3) 

V1 V2 V3 VR Y1 Y2 Y3 

0,38200 0,10068 0,49650 0,02082 0,94290 -0,75844 2,21048 

0,02350 0,43210 0,12340 0,42100 -2,05885 -0,16542 -1,17976 

0,01450 0,40742 0,56430 0,01378 -2,35888 -1,62786 2,06383 

0,13858 0,24503 0,04547 0,57091 -0,40299 1,14255 -1,38325 

0,03238 0,16413 0,21961 0,58388 -1,14771 -0,90040 -1,48351 

0,01709 0,28504 0,34309 0,35478 -1,98989 -1,30020 -0,94839 

0,23460 0,35737 0,37184 0,03619 -0,29762 -0,20423 1,87313 

0,35560 0,09870 0,46602 0,07968 0,90632 -0,74405 1,00345 

0,02350 0,30390 0,32140 0,35120 -1,80999 -1,09070 -0,84802 

0,45120 0,09980 0,25626 0,19274 1,06684 -0,15405 0,13779 

 

 

Table 2. Intermediate computations and ILR back transformed values (V*1,V*2,V*3,V*R). 

exp(S1) exp(S2) exp(S3) α  Z V*1 V*2 V*3 V*R 

18,34841 4,83594 23,84812 47,03246 -3,872 0,38200 0,10068 0,49650 0,02082 

0,05582 1,02637 0,29311 1,37530 -0,865 0,02350 0,43210 0,12340 0,42100 

1,05186 29,56274 40,94588 71,56048 -4,284 0,01450 0,40742 0,56430 0,01378 

0,24274 0,42920 0,07965 0,75159 -0,561 0,13858 0,24503 0,04547 0,57091 

0,05546 0,28110 0,37612 0,71268 -0,538 0,03238 0,16413 0,21961 0,58388 

0,04817 0,80344 0,96705 1,81867 -1,036 0,01709 0,28504 0,34309 0,35478 

6,48232 9,87468 10,27438 26,63138 -3,319 0,23460 0,35737 0,37184 0,03619 

4,46283 1,23869 5,84856 11,55009 -2,530 0,35560 0,09870 0,46602 0,07968 

0,06691 0,86534 0,91516 1,84741 -1,046 0,02350 0,30390 0,32140 0,35120 

2,34103 0,51781 1,32961 4,18844 -1,646 0,45120 0,09980 0,25626 0,19274 

 

Conclusions 

1. The application of isometric logratio transformation (ILR) and its inverse to compositional data can 

become difficult in some cases, as well as to show numerical error problems of truncation. 

2. The methodology proposed in this article, based on standard algebraic methods, results notably 

simpler and it is easily implemented into a spread-sheet. 

3. The methodology proposed in this article operates correctly, according to what has been verified. 
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