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ABSTRACT 

In geosciences it is usual to deal with regionalized data such as percentages, concentrations, mg/kg (ppm), 

that is, compositional data; well-known problems have been pointed out with these kind of data, specially 

related to geostatistical analysis and kriging, because of the so-called constant sum constraint. From 

Aitchison’s research about compositional data (1986), any meaningful statement about a composition has 

to be expressed in terms of data transformation; several data transformations have been proposed to deal 

with compositional data: additive logratio (alr) and centered logratio (clr) are the most used 

transformations until now. Recently Egozcue and Pawlowsky have proposed a new data transformation 

with the aim to have an orthonormal basis in compositional space (simplex); this transformation is called 

isometric logratio (ilr).  

In this paper, we study these data transformations and the application of alr, clr and ilr transformations to 

a data set which consists in samples of compositional data from a bauxite deposit in Halimba II (Hungary) 

and we compare obtained results by kriging with those different transformations and applying the Fast 

Fourier Transform (FFT) methodology to calculate the spatial variance-covariance matrix. A previous 

work with the same data set can be found in Jarauta-Bragulat and others (2002). 

 

Introduction  

 

In Geosciences, a common goal is the estimation of unknown variable values in some points, usually a 

regular grid, from information given by samples in its surroundings. A particular and interesting case is 

when compositional variables are studied; those variables are characterised by their constant sum, that is, 

variables summing up to one (proportions), summing up to 100 (percentages) and so on. The main 

features of this compositional variables have been studied and described by many authors (Aitchison, 

Barceló, Egozcue, Pawlowsky and others) and have settled some specific methodologies to work with 

them. Those methodologies set up some transformation of data; the best-known ones are: the additive 

logratio transformation (ALR), the centered logratio transformation (CLR), and recently, the isometric 

logratio transformation (ILR), defined by Egozcue and others (2003).  

It seems sensible to apply all those methods and compare obtained results, in order to determine which 

one runs better to analyse data information and to obtain a better estimation in a grid. This is the goal of 

this paper: the use of all three transformations, finding out their difficulties and comparing their results 

with some well-known data; the Fast Fourier Transform (FFT) is applied to calculate the covariances 

matrix. The database is a set of compositional data from a bauxite deposit named Halimba, which is the 

largest one in Europe continuously mined since 1950. G. Bárdossy, Budapest, furnished the data.  

 

The data set 

 

The studied deposit is in Hungary (Europe) and its limits are East 117.6 - 114.0 North 13.0 - 8.8 

geographic coordinates in a topographic map. The deposit covers an area of more than 8 km
2
; Halimba II 

is the only sector in the deposit that is still under prospection. The database consists of 55 samples 

representing 55 boreholes, after getting off 3 incomplete samples. In these boreholes the thickness of 

bauxite varies from 0.8 to 36.1 m.  



Variables used are described in Table 1(a); in all cases, concentrations are expressed in percentages. The 

values of 1V  to 7V   represent weighted averages in a borehole taken from intervals of 0.5 to 1.0 meters 

length. Full database and histograms of the variables can be found at our website. Table 1(b) shows the 

descriptive statistics of data and Figure 1 illustrates the scatterplot of data location. 

 

 

Table 1 (a). Description of used variables. 

 

Variable Notation 

Eating X 
Northing Y 

Concentration of Al2O3 V1 
Concentration of SiO2 V2 

Concentration of Fe2O3 V3 

Concentration of TiO2 V4 
Concentration of H2O V5 

Concentration of CaO V6 
Concentration of MgO V7 

 

 

 

Table 1(b). Descriptive statistics of data set. 

 V1 V2 V3 V4 V5 V6 V7 

Mean 54.57 3.89 23.70 2.78 12.37 0.54 0.27 

Standard error 0.30 0.27 0.26 0.04 0.07 0.07 0.04 

Median 55.20 3.60 23.30 2.80 12.30 0.30 0.10 

Mode 56.00 1.70 27.30 2.90 12.50 0.20 0.10 

Standard deviation 2.23 2.01 1.90 0.33 0.50 0.55 0.33 

Variance 4.99 4.03 3.60 0.11 0.25 0.30 0.11 

Kurtosis -0.56 -0.88 -0.10 2.77 0.13 5.54 11.69 

Symmetry -0.65 0.33 0.52 -0.68 0.48 2.23 3.13 

Range 8.30 7.40 7.40 2.10 2.30 2.70 1.80 

Minimum 49.90 0.70 20.40 1.60 11.30 0.10 0.10 

Maximum 58.20 8.10 27.80 3.70 13.60 2.80 1.90 

 

 
Figure 1. Scatterplot of sample data locations. 
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Compositional variables and transformations. 

 

Classical applications of geostatistics are related to mapping the spatial distribution of the variables under 

study. They give emphasis to characterize the variogram model and use the kriging (error) variance as a 

measure of estimation accuracy. Nowadays, some problems have been reported with compositional data; 

those problems have been studied by many authors (Aitchison, J. (1997), Aitchison, J. (1986), Jarauta-

Bragulat and others (2002), Pawlowsky and others (1995)). The main problem when handling 

compositional data is the so-called constant sum ( CLK ) constraint; usually we have 1CLK =  if data are 

parts per unit,  100CLK =  if data are percentages, and 
610CLK =  if data are parts per milion (mg/kg). 

It is known that this sum constraint means that variables are not independent. Usually, the data 

information consists in a matrix of n columns (variables) and m rows (cases); so, if 1 2, ,..., nV V V  are the 

compositional studied variables, then we define the residual variable as follows:  

 

1 1 2( )R n CL nV V K V V V+= = − + + +⋯  

and now the data matrix has 1n+  columns. In any case, if 

1

1
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the reason why, from hereafter, we take as unit the constant sum CLK .  

 

The set of compositional data, called the (n+1)-dimensional simplex, is denoted by 1n+S ; it is a real 

vector space with the inner sum called perturbation and the external product called power transformation. 

To deal with compositional data and avoid the constant sum constraint, some transformations have been 

proposed: 

 

a) Additive logratio transformation.  

Given any element 1 2 1 1( , , , , )n n nx x x x x + += ∈… S  of the simplex, we consider the map 

1: n

nf + →ℝS  defined as follows: 
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(3.1) 

 

This map is an isomorphism of vector spaces, it is called additive logratio transforma-tion, and it is 

denoted by ALR.  

 

b) Centered logratio transformation.  

Given any element 1 2 1 1( , , , , )n n nx x x x x + += ∈… S  of the simplex, we define the map 

1

1: n

nϕ +
+ →ℝS  as following: 
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(3.2) 

 

This map is called centered logratio transformation, and it is denoted by CLR. Is easy to see that the 

image set 1( )nH ϕ += S  is the hyperplan of 
1n+

ℝ  given by the equation 1 2 1 0ny y y ++ + + =⋯ . 

 

c) Isometric logratio transformation.  

Given any element 1 2 1 1( , , , , )n n nx x x x x + += ∈… S  of the simplex, we consider the map 

1: nS Hψ + →  defined by: 
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where 1( ,..., )kg x x  indicates the geometric mean, as before. This map is called isometric logratio 

transformation, and it is denoted by ILR. 

 

 

Compositional variables and back-transformations. 

Once compositional data have been transformed according to one of the above expressions and kriging 

has been done, kriging results must be backtranformed to have the estimation of data values on a, usually, 

regular grid. So, we need the expressions of corresponding back-transformations as follows. 

 

a) Additive logratio back-transformation.  

If 1 2( , ,..., )ny y y  are the ALR coordinates of an element 1 2 1( , , , , )n nx x x x x += …  of the símplex, then 

back-transformations must be obtained by applying the following expression:  
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Values must be multiplied by the constant CLK when it is different than the unit.  

 

b) Centered logratio back-transformation.  

If 1 2 1( , ,..., )nz z z +  are the CLR coordinates of an element 1 2 1( , , , , )n nx x x x x += …  of the símplex, 

then back-transformations must be obtained by applying the following expression:  
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c) Isometric logratio back-transformation.  

If 1 2( , ,..., )nu u u  are the ILR coordinates of an element 1 2 1( , , , , )n nx x x x x += …  of the símplex, then 

back-transformations must be obtained by applying the following expression:  
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where: 
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(4.4) 

 

 



Results and discussion 

 

Transformations described in the before paragraph have been used on our data set; with these data 

transformed values we want to krige them on the same grid and compare obtained results. To avoid the 

modeling of variograms and crossvariograms, which may be very subjective, Yao and Journel (1998) 

have developed the so-called FFT method. This method can be applied to any kind of data. With FFT you 

do not need the independence of the variables and it builds up the covariance matrix, which can be used 

directly to krige. To do all this data processing, the following setps have been done: 

1) Find the normal score of all data transformations. This task is performed with NSCORE program of 

GSLIB. 

2) Generate an experimental correlogram map on a regular grid. The grid typically has multiple nodes 

without estimates. The user has to specify the minimum number of data to be considered in the 

estimates at every node. This task is performed by program CORRMAP.  

3) Program INTMAP fills in the blanks typically present in the grid generated in step 2 by using a 

smooth local interpolation. 

4) Program MULTSMTH corrects the smoothed grid to generate a third grid that is a tabulation of a 

positively semidefined correlogram. This condition is required to assure a unique solution for the 

kriging system of equations yielding a non-negative kriging variance. 

5) Convert the correlogram tabulation in step 4 to covariance tabulation by multiplying the 

correlogram grid by the sampling variance. 

6) As it was not possible to use KB2D to krige, because with this method we obtain the covariance 

matrix and not the variograms, we apply the program developed by Hervada-Sala and others (2001). 

7) Obtain the ALR, CLR and ILR kriged values with back normal score transformation. 

8) Back transformation of ALR, CLR and ILR kriged values to return to the simplex initial space. 

 

Table 2 shows descriptive statistics for the ALR, CLR and ILR back-transformation kriging values 

estimations. And table 3 shows the average kriging errors using all the three transformations. 

 

Conclusions. 

 

All estimations have been done using the same method: kriging on correlogram matrices calculated by 

FFT methodology, so this work can be used to compare the three transformations. The main conclusions 

of this work can be stated as follows: 

1. The transformation that fits the best the results seems to be ALR because its statistics are more 

alike the raw data statistics. 

2. The reason why ALR fits best is that residual values where very low. If residuals values were 

high, we expect ILR would fit the best.  

3. ALR is also the easiest of the transformations to be carried out. 
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Table 2.  Descriptive statistics of back transformation kriging values (on each row, first value is back-alr, 

second is back-clr and third is back-ilr). 

 V1 V2 V3 V4 V5 V6 V7 

Mean 54,60 3,91 23,65 2,77 12,36 0,51 0,25 

 52,78 3,80 22,93 2,68 11,94 0,49 0,24 

 54,51 3,94 23,73 2,78 12,35 0,52 0,25 

Standard error 0,09 0,09 0,08 0,02 0,02 0,02 0,01 

 0,10 0,08 0,08 0,01 0,02 0,02 0,01 

 0,11 0,09 0,08 0,02 0,02 0,02 0,01 

Median 55,19 3,80 23,35 2,82 12,35 0,30 0,10 

 53,34 3,69 22,72 2,73 11,87 0,29 0,10 

 55,17 3,79 23,34 2,85 12,23 0,30 0,10 

Mode 49,78 7,75 27,32 1,60 12,15 0,20 0,10 

 48,50 7,47 26,62 1,55 11,72 0,19 0,10 

 49,92 7,72 27,33 1,59 12,04 0,20 0,10 

Standard deviation 2,21 2,07 1,83 0,36 0,50 0,51 0,30 

 2,46 1,98 1,89 0,35 0,43 0,49 0,28 

 2,62 2,05 1,90 0,37 0,53 0,53 0,30 

Variance 4,86 4,27 3,35 0,13 0,25 0,26 0,09 

 6,05 3,93 3,56 0,12 0,19 0,24 0,08 

 6,84 4,22 3,62 0,14 0,28 0,28 0,09 

Kurtosis -0,53 -0,93 -0,04 2,06 -0,06 4,77 10,53 

 -0,13 -0,92 -0,05 1,73 0,13 4,91 10,99 

 36,71 -0,94 1,96 5,67 11,16 5,59 11,98 

Symmetry -0,64 0,33 0,53 -0,68 0,43 2,14 2,99 

 -0,70 0,31 0,41 -0,59 0,61 2,18 3,07 

 -3,49 0,30 0,84 -0,11 1,75 2,29 3,18 

Range 8,32 7,45 7,41 2,12 2,35 2,71 1,80 

 12,72 8,14 9,43 2,04 2,44 2,57 1,69 

 35,39 7,42 14,80 3,87 5,96 3,01 2,00 

Minimum 49,78 0,70 20,33 1,60 11,28 0,10 0,10 

 44,18 0,68 19,44 1,55 11,04 0,10 0,10 

 22,80 0,70 20,42 1,51 11,21 0,10 0,10 

Maximum 58,10 8,15 27,73 3,71 13,62 2,81 1,90 

 56,90 8,82 28,88 3,59 13,48 2,67 1,78 

 58,19 8,12 35,23 5,38 17,17 3,11 2,10 

 
Table 3. Average error estimates by kriging corresponding to ALR, CLR and ILR transformations.  

V1 V2 V3 V4 V5 V6 V7 

-0,94649 -0,93020 -0,94915 -0,95002 -0,94978 -0,91356 -0,93039 

1,08166 1,05306 1,18499 1,09415 1,11746 0,95566 1,18951 

1,05425 1,14255 1,01301 1,07581 0,98225 1,24854 1,07890 

 


