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ABSTRACT 

Earth science studies deal in general with multivariate and regionalized observations which may be 

compositional. Sometimes, it is interesting to know whether these data have to be divided into different 

subpopulations, a task usually performed by cluster analysis. This problem cannot be studied with 

traditional methods because samples are not independent. In that case, an extension of Ward’s 

clustering method to spatially dependent samples can be used. This methodology is based on a 

generalized Mahalanobis distance, which uses the covariance and cross covariance (or variogram and 

cross-variogram) matrices. In its original version, the method was iterative and tedious, as it was 

necessary to re-estimate the spatial covariance structure at each step. In this work, we stay within the 

same theoretical framework, but we improve the methodology using the Fast Fourier Transform (FFT) 

method to find the covariance structure. Thus, we obtain a generalization to several variables of adapted 

Ward’s clustering method. 

 

 

1.  Introduction 

 

Earth sciences deal with great amounts of data which have to be analysed, organised and also cleaned 

up to obtain information about a given problem. There are many statistical techniques that allow finding 

similarities or differences among data and variables. Multivariate methods allow us to consider changes 

in several properties simultaneously. One of the most widely used multivariate procedures in Earth 

science is the discriminant function. The aim of discriminant analysis is to find a linear combination of 

the variables, which produces the maximum difference among the previously defined groups. However, 

when classifications of objects have to be done, cluster analysis is used. Cluster analysis is the name 

given to a bewildering assortment of techniques designed to perform classification by assigning 

observations to groups so each group is more or less homogeneous and distinct from other groups. 

There is no analytical solution to this problem, as it can be seen in [2]. 



 

Cluster analysis encompasses many diverse techniques for discovering structure within complex sets of 

data. In a typical example one has a sample of data each described by scores on some variables. The 

objective of cluster analysis is to group either the data or the variables into clusters such that the 

elements within a cluster have a high degree of “natural association” among themselves while clusters 

are “relatively distinct” from one another. The approach to this problem and the results achieved 

depend on how the investigator chooses to give operational meaning to the phrases “natural 

association” and “relatively distinct”. To do so, many criteria have been described: partitioning 

methods, arbitrary origin methods, mutual similarity procedures and hierarchical clustering techniques. 

One of the most widespread hierarchical clustering methods is the Ward’s method, described in [7], 

also known as method of the minimum variance. However, when this method is used to classify 

regionalized variables some difficulties arise, because variables are not independent.  A first step to 

solve them is to use a generalization of Ward’s method proposed in [3] and developed in [4]. This 

generalization is known as adapted Ward’s method, which can be used with spatially dependent 

variables, but its use is often difficult,  because it needs to model variograms and cross-variograms and 

it has been performed for two variables only. On top of that, variograms and cross-variograms models 

used must be the same.  

 

The aim of this work is to present a FORTRAN program in GSLIB-style that develops a new 

methodology to generalise adapted Ward’s method to be able in clustering of several regionalized 

variables. It is based on the use of the correlogram tables calculated using the Fast Fourier Transform 

(FFT) following [8]. 

 

 

 

2.  Ward’s and adapted Ward’s methods 
 

Ward’s clustering method is a hierarchical agglomerative method whose philosophy can be summarized 

as follows. Assuming that there are N elements to cluster, begin with N clusters consisting exactly of 

one entity, search the similarity matrix for the most similar pair of clusters and reduce the number of 

clusters by one through merger the most similar pair of clusters. Perform those steps until all clusters 

are merged. The Ward objective is to find at each stage those two clusters whose merger gives the 

minimum increase in the total within group error sum of squares (or distances between the centroids of 

the merged clusters).  

 

Total within group error sum of squares VT(K) in one stage with K groups, J variables and there are Ni 

elements in each group, is defined as: 
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Where xijk is the value of j-th variable, from i-th observations in k-th group, and ( )jkx i  is the average 

value inside this group. So, following summation order, the first sum corresponds to variability inside a 

group for a given variable, the second one summing up all variables and the last one is the total 

variability. 

 

To be able to apply Ward’s method to spatially dependent data, equation (1) has to be corrected. To do 

so, Mahalanobis distance defined in [5] has to be used. Euclidean distance between points zi, zj in a 

sample with N elements, is: 
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where z  means the average. Then, for regionalized variables distance has to be generalized following 

[5] so it is: 
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where C(0) is the sample variance-covariance matrix, and C(h) is the auto-covariance matrix at lag 

|| ||i jh z z= − . Using this approach total variability is, now 
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At each stage those two clusters that minimise the loss of variability are merged. Then, the total 

variability after having merged two groups is measured with: 
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So the loss of variability can be calculated as: 
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Figure 2.1.- Application of adapted Ward’s method into four groups. 
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Figure 2.2.- Application of adapted Ward’s method into eight groups. 
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Susana Jimenez (1999) published the adapted Ward’s method and wrote a program to apply it to a set 

of two regionalized variables [4]. The data she used is called Darss Sill data. Full data base description 

can be found in [4]. The data set consists of 1250 sandy surface samples taken from Darss Sill in the 

Baltic Sea. The sediments where dried and sieved into eight-weight percent size fractions. So, for each 

sample ten variables are known: two UTM coordinates (Easting and Northing) and eight fractions.  

 

Jiménez, transforms the eight percent variables into two, median and sorting, following Tauber’s 

methodology [6]. Those two variables describe fairly well and easily granulometric parameters. Median 

is a variable that measures the average size of the sample and sorting reflects the dispersion of grain 

size, it is quite similar to standard deviation. Those variables can be obtained adjusting the accumulated 

distribution function to a logistic distribution in median and sorting.  

 

Results obtained using those data are shown in figures 2.1 and 2.2. Figure 2.1 shows the classification 

into four groups and figure 2.2 into eight groups. Both of them show a strong weight of spatial 

coordinates. 

 
 
 
 
 
 
3.  Generalization of Ward’s adapted method. Application and discussion 
 
From our experience, we think that it is not much operative to calculate and model variograms and 

cross-variograms for more than two variables. To avoid modelling them at each stage, Jiménez uses the 

recurrent Lance and Williams’s formula; however, this is still too difficult to implement when there are 

more than two variables because it needs the variogram models for the initial step. Instead of using 

variogram models, we propose to calculate the correlogram tables using the FFT approach according to 

[8]. Using it, we are able to find C(h) and C(0) matrices, which will be summed and inverted. Using so, 

we are able to implement adapted Ward’s method given in [3].  

 

Once C(h) and C(0) are known, distances matrix can be defined using equation (3). At each stage the 

groups that merge are those which total variability increment is minimum. The program to perform 

adapted Ward’s method is written in FORTRAN language, with the same structure of GSLIB programs 

(see [1]); so, it is a modular structured program, which may be compiled and executed in any machine. 

The full program can be obtained from our website. A parameter file, which contains the information 

on input and output information, is needed to be able to run; such file is shown in Table 3.1. The output 

of the program is an ASCII file with a matrix where rows are the cases and columns are the groups 

which they belong to. It is similar to the output in [4] but more specified.  

 

 



Table 3.1.- The parameter file. 
 
Parameters for FFT Ward 
*********************** 
START OF PARAMETERS: 
darss.dat                  \file with data 
1 2                        \x column, y column 
3                          \debugging level 
darss.dbg                  \file for debug 
darss.out                  \file for output 
1.67E-3 1.67E-3            \inverse distance x nodes, y nodes 
2                          \number of variables 
31 31                      \number of x nodes, y nodes 
mapdarss                   \file for correlogram 
 
 

 

The corresponding parameter needs the following information: 

- Number of groups (or steps to compute), 

- Name of the data file (Geo-EAS format), 

- Number of cases to study, 

- Name of the initial correlogram file, 

- Number of grids in the correlogram matrix, 

- Distance between points in the correlogram matrix, 

- Output file name. 

 

To compare results obtained using the methodology proposed by Jimenez [4], we have used the same 

data set with the same variables. Results are shown in Figures 3.1 and 3.2 for four and eight groups, 

respectively. In both figures, we can see that there is not the strong correspondence among groups and 

position pointed out with adapted Ward’s method application, because in this case a variogram 

spherical model for all variables is forced, and even all variograms are forced to have same range and 

does not allow for nested structures.  

 



 

Figure 3.1.- Application of generalized Ward’s method into four groups. 
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Figure 3.2.- Application of generalized Ward’s method into eight groups. 
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4.  Conclusions 

 

As the most remarkable conclusions from this work, we can point out the following: 

a) Adapted Ward’s method described in [4] allows for the use of spatially dependent data, or 

regionalized variables. 

b) The drawbacks in the program described in [4] are: the restriction to the variogram model, the 

restriction of their parameters, the impossibility to assume nested variogram structures, the 

limitation to two variables and so the high dependence of the resulting groups to physical space.  

c) The best significant advantages of the methodology and program presented in this work are: its 

structure in the same form as GSLIB programs, the better specification of the parameter file and the 

output file, and that the drawbacks described in b) are avoided. At last, as we use FFT instead of 

modelling variograms it is less subjective.  
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