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ABSTRACT 

 
Environmental pollution by heavy metals is a red-hot issue. It is being studied from many 

points of view, as it is not only an environmental problem but also a public health matter. 

The effect of pollution by heavy metals can be assessed directly, that is measuring heavy 

metal concentration in soils, or using indirect methods, that is measuring heavy metal 

contents on living beings of regional ecosystem, in particular on plants. One of the 

organisms that have proved to be the most faithfully and useful to do so are moss. So, heavy 

metal environmental pollution can be studied by taking moss samples and measuring their 

heavy metal contents. 

 

The aim of this work is to show the use of geostatistical tools in environmental pollution 

analysis applied to a case study of environmental pollution by heavy metals in Galicia 

(north west of Spain). To do so, two different information in that zone are available: on one 

hand, measures of heavy metal concentration in moss (Scleropodium purum), whose 

location points are known, also their level. On the other hand, situation of polluting sites 

(industrial areas and towns) and their classification taking into account their polluting 

capacity. This information allows assessing not only for the regional pollution, but also for 

its scattering. From this and using geostatistical tools, sampling network is being improved. 

Data set consists of 71 sample points where concentration of ten elements (Al, As, Co, Cr, 

Cu, Fe, Hg, Ni, Pb and Zn) is measured. For each of them classical statistical analysis is 

done. Furthermore, spatial variability is studied using a new methodology based on Fast 

Fourier Transform (FFT), which allows finding covariance matrix using all variables at the 

same time. FFT methodology improves the classical and tedious geostatistical methodology 

based on variogram and cross-variogram modelling to find data spatial variability. Finally 

contour maps of environmental pollution by heavy metals in Galicia are presented. 

 

 

1. Introduction and objectives 
 

Galicia is a region located at the northwest of Spain. It is about 29434 km
2
 large. It 

ranges, approximately, between 7
º 
and 9

º
 western meridians and 40

º
 and 42

º
 northern 

parallels. The outline of this region is gently undulated, with hills and valleys; this 

smoothness defines its landscape with a series of high and low regions at several levels. 

So Galicia’s landscape is full of high and low areas. The highest areas are in its east 

border.  
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Forests, however original man has regularly modified vegetation, cover the most part 

of Galicia. The most widespread trees are oak, chestnut, birch, cork and ilea. From 

some time on there have been also planted pine and eucalyptus. Another interesting 

aspect in Galicia is that their towns are small and scattered all over the whole country. 

Recently some of the towns have grown due to the enlargement of some industrial 

zones. The main industrial activities are cars (located at the north), woodwork, textiles, 

and craftsmanship. 

 

As it is well known, the increasing of industrial activities implies a pollutant impact on 

the environment. Nevertheless, our society demands a quality of life compatible with 

technical progress, without renouncing to it. One of the most important contributions 

the environment pollution caused by industry is the presence of heavy metals in the air, 

which fall down when it rains and then are incorporated by leaving beings. In this 

article the presence of heavy metals from industrial origin are studied, in fact samples 

of them are measured on some moss: Scleropodium purum (Hedw.) Limpr. The metals 

that are measured are aluminium, cobalt, chromium, copper, iron, mercury, nickel, lead 

and zinc, and also the metalloid arsenic.  

 

Accumulation of heavy metals over large areas and long periods causes damage to 

living organisms and it must be carefully controlled; it is also important to know the 

effects of these contaminants. To assess the pollution caused by metals there are two 

different methods: the direct one, which consists of measuring their concentration in 

the air or in soil, and the indirect one, which consists of studying their presence in some 

living beings. If previous monitoring is correctly done, indirect method can be useful in 

environmental assessment, because it is easiest and cheapest.  This monitoring has been 

done in Galicia with moss (see reference [2]).  

 

The aim of this work is to build up contouring level maps of pollution by heavy metals 

using geostatistical methods; to do so, we take into account measures in several moss 

samples. The method used is kriging on a regular grid with correlogram tables obtained 

by applying the Fast Fourier Transform (FFT) methodology (see reference [5]). 

 

 

 

2. Data set: description and analysis 
 

Full database can be found in our website. Professor J.A. Fernández, from Universidad 

de Santiago de Compostela, has supplied data. Data consists of 71 samples of all ten 

(see above) elements’ concentration (ppm). The number of sampling sites was the 

equivalent to a density of 2.6-samples/1000 km
2
, higher than the density recommended 

for such studies at a regional scale. Sampling was carried out in 1995 (April-July) and 

covered almost all Galicia, with a higher density at most industrial areas. The 

concentration of Al, Co, Cr, Cu, Fe, Ni, Pb and Zn in moss extracts were determined 

using flame absorption spectrophotometry and Hg and As were determined using 

atomic fluorescence. Figure 2.1 shows a scatter plot of the location points; the co-

ordinates are UTM scaled and in kilometres. Sampling points were taken at different 

levels, between 72 m and 1014.5 m high. In the light of sampling points and Galicia’s 

dimension, a kriging grid of 9x9 nodes has been built. Distances between nodes are 

21x23 km.  
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To be able to carry out a bidimensional geostatistical study, we tried to find out a 

possible functional relation between data and altitude. The conclusion is that this 

dependence does not exist. Figure 2.2 shows, as an example of that, the scatterplots for 

Al and Cu concentration versus altitude (ALT); this figure shows also the regression 

line, which is quite horizontal. The corresponding hypothesis test shows that it is not 

possible to reject the fact that correlation between data and altitude does not exist.  

 

 

 

Figure 2.1.- Scatterplot of sample locations. 
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Figure 2.2.- Scatterplots: Al (a) and Cu (b) versus altitude (ALT).  

(a) 

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000 1100

ALT

A
l

 
 

(b) 

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000 1100

ALT

C
u

 
 

 



4                                                  Optimal regional sampling network .... 

 

 

 

 

Table 2.1 shows the average concentration distributed at different levels, at altitude 

intervals of 100 m; the ALT values are the averages in the corresponding interval. In 

table 2.2, there is a statistical descriptive analysis of data. In table 2.3, correlation 

coefficients of the ten elements and altitude are shown. Finally, in figure 2.3 there are 

shown the variable histograms (element concentration). For additional information 

about this data set, see reference [2]. 

 

 

Table 2.1.- Concentration averages (ppm) at different altitude levels (m) for each 

element. 

ALT Al As Co Cr Cu Fe Hg Ni Pb Zn 

77.8 454.4 0.298 0.422 1.190 10.287 175.0 0.076 2.178 3.26 59.7 

165.4 723.8 0.447 0.709 1.545 6.202 769.0 0.074 2.313 7.90 54.3 

265.6 850.6 0.317 0.616 1.605 5.740 580.4 0.028 1.775 5.23 57.3 

358.4 571.3 0.166 0.500 1.663 6.177 502.2 0.039 1.981 3.25 48.1 

440.3 553.7 0.230 0.411 1.455 5.870 539.8 0.034 1.948 7.87 59.9 

533.7 453.4 0.272 0.297 1.171 5.740 459.2 0.037 1.602 4.20 61.1 

655.9 508.2 0.260 0.442 1.216 4.563 398.4 0.039 1.489 4.71 52.0 

723.5 712.1 0.148 0.169 1.232 8.098 1218.6 0.033 1.610 14.54 69.7 

885.2 810.6 0.432 0.298 1.133 6.547 435.4 0.045 1.629 2.74 64.1 

 
Table 2.2.- Descriptive statistics of sample data set (ppm). 

 Al As Co Cr Cu Fe Hg Ni Pb Zn 
Mean 596.6 0.277 0.419 1.364 6.229 541.9 0.041 1.820 5.766 58.66 

Median 436.5 0.204 0.307 1.105 5.553 388.4 0.034 1.722 3.658 57.27 
Minimum 156.6 0.005 0.060 0.176 3.316 139.8 0.002 0.539 0.04 31.22 

Maximum 2740.7 1.276 2.498 4.769 25.352 4028.9 0.203 5.018 60.42 117.67 
Standard Dev. 548.3 0.263 0.413 0.833 3.122 580.9 0.030 0.845 8.637 18.14 

 

Table 2.3.- Correlation coefficients of elements concentration and altitude (ALT). 

 ALT Al As Co Cr Cu Fe Hg Ni Pb Zn 

ALT 1.000           

Al -0.047 1.000          

As -0.049 0.347 1.000         

Co -0.290 0.696 0.283 1.000        

Cr -0.174 0.634 0.185 0.605 1.000       

Cu -0.116 0.337 0.036 0.254 0.200 1.000      

Fe 0.021 0.768 0.219 0.511 0.521 0.381 1.000     

Hg -0.217 0.243 0.233 0.414 0.209 0.107 0.175 1.000    

Ni -0.267 0.525 0.253 0.643 0.395 0.662 0.400 0.208 1.000   

Pb -0.002 0.127 -0.087 0.035 0.135 0.213 0.361 -0.083 0.198 1.000  

Zn 0.139 0.062 0.063 -0.061 -0.226 0.264 -0.003 0.061 0.176 0.124 1.000 
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Figure 2.3.- Histograms of elements’ concentration (ppm): (a) Al,  (b) As,  (c) Co,   

(d) Cr,  (e) Cu,  (f) Fe,  (g) Hg,  (h) Ni,  (i) Pb,  (j) Zn.  
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Figure 2.3 (Cont.) 
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3. Geostatistical analysis: pollution maps  
 

The first step in the geostatistical study, which is the most important goal of this work, 

is to calculate the data Normal Score Transform (NSCT), according to the GSLIB 

procedure (see reference [1]). In this transformation, as Al and Fe do not have a 

Gaussian cumulative distribution function, some adjustments of their ties have had to 

be done. Parameters used in this program are shown in table 3.1. 

 

The second step, which is the equivalent to calculate and model variograms in classical 

geostatistics, is the building of the initial correlogram matrix using Fast Fourier 

Transform (FFT) following the methodology established by Yao and Journel (1998) 

and Ma and Yao (2001); see references [5] and [4]. This matrix consists of a 10×10-
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block matrix, which has in its diagonal the auto-correlations and the remaining the 

cross-correlations. So, we obtain 55 different correlation maps. The number of grid 

points in each map has to be of 1+2
n
; in this case n = 5, that is, we have a 33×33 

element matrix. The correlations have been interpolated using a size 10 smooth 

window and then multismoothing using all correlations and variables with size 3 

maximum half window has been carried out to have the final correlation. Some of those 

55 maps are hanged at our website. Corresponding parameters are shown in tables 3.2, 

3.3 and 3.4. 

 
The third step is to krige on a regular grid using those correlation maps. Kriging has 

been done using the program KB2D modified by Hervada-Sala and Jarauta-Bragulat 

(2001) see reference [3]. After kriging, coordinates must be added taking in mind grid 

parameters; they are shown in tables 3.5 and 3.6. At last, back transformations of all 

results must be computed to recover original space and units. Parameters for that back 

transformation are shown in table 3.7. Figure 3.1 shows the contour maps obtained 

from the kriging grid with the right back transformed values.  

 

 

 

Table 3.1: Parameters for NSCORE 

molsagal.dat      \file with data 
13  0             \columns for variable and weight 
-900   900        \trimming limits 
0                 \1=transform according to specified ref. dist. 
hist1.out         \file with reference dist. 
1   0             \columns for variable and weight 
nsgal10.dat       \file for output 
nsgal10.trn       \file for output transformation table 

 

 

 

Table 3.2: Parameters for CORRMAP 

molsagal.dat               \file with data 
10 4 5 6 7 8 9 10 11 12 13 \number of variables: column numbers 
-999 999                   \trimming limits 
0                          \1=regular grid, 0=scattered values 
33   33                    \if =1: nx,     ny 
1 1                        \xsiz, ysiz 
1 2                        \if =0: columns for x,y coordinates 
corgal                     \file for correlogram output 
16 16                      \nxlagl, nylag  
5250 5750                  \dxlag, dylag 
1 1                        \xtol, ytol (in the grid unit) 
1 \minimum number of pairs 
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Table 3.3: Parameters for INTPMAP 

10                   -number of variables 
33 33                -num. of nodes in x and y directions 
corgal               -file with sample corr 
intpgal              -output file with interpolated correlogram 
indbg                -debug file 
10                   -smooth window 
0.1 0.01             -ratio of the inner and outer radius of fan 
4 

 

 

 

 

Table 3.4: Parameters for MULTSMTH 

10                 -number of coregionalized variables 
33 33              -number of nodes in x and y dir. 
intpgal            -input file with original corr.map 
mapagal            -output file of permissible corr.map 
3                  -maximum half smoothing window size 
0              -minimum number of data for smooth. 

 

 

 

Table 3.5: Parameters for KB2D 
molsagal.dat      \file with data 
1   2   4         \columns for X, Y, and variable 
-999 999          \trimming limits 
3                 \debugging level: 0,1,2,3 
kb2d.dbg          \file for debugging output 
krigal01.out      \file for kriged output 
9 300   21000     \nx,xmn,xsiz 
9 550  23000      \ny,ymn,ysiz 
1 1               \x and y block discretization 
1    8            \min and max data for kriging 
2.11e4            \maximum search radius 
1    2.302        \0=SK, 1=OK,  (mean if SK) 
mapagal.1         \cov file 
31 31 

 
 
 
Table 3.6: Parameters for ADDCOORD 
krigal10.out       \file with data 
krigal10.dat       \file for output 
1                  \realization number 
9 300    21000     \nx,xmn,xsiz 
9  550   23000     \ny,ymn,ysiz 
1      1     0     \nz,... 
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Table 3.7: Parameters for BACKTRANS 

krigal10.dat     \file with data 
4                \column with Gaussian variable 
-900 900         \trimming limits 
bacgal10.out     \file for output 
nsgal10.trn      \file with input transformation table 
31.20 117.7      \minimum and maximum data value 
1    0.05        \lower tail option and parameter 
1  2             \upper tail option and parameter 

 
 
 
 
Figure 3.1.- Contour maps of kriging results:  (a) Al,  (b) As,  (c) Co,  (d) Cr,   

(e) Cu,  (f) Fe,  (g) Hg,  (h) Ni,  (i) Pb,  (j) Zn.  
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Figure 3.1   (Cont.) 
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4. Conclusions 

The main conclusions of this work are the following: 

1) It is possible to improve the statistical analysis of environmental pollution by 

heavy metals in Galicia done in [1], using a two-dimensional geostatistical 

analysis. 

2) Sample density used in this study in not enough to reflect variability of 

environmental pollution, due to geography of Galicia; it is not possible to employ 

parameters fitted for a regional scale in that case. 

3) Great problems arise with the use of classical geostatistical tools, based on 

variograms and cross variograms modeling. However, the use of modern FFT 

techniques allows for finding the full correlogram maps and so it is possible to 

krige adequately on a regular grid. 

4) Finally, it has been possible to build contouring maps of all variables that reflect 

quite adequately the distribution and concentration of heavy metal pollution. This 

allows the design of a better sampling grid to control more accurately heavy 

metal pollution in that region.  
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