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Abstract 

Many dynamical systems of interest in natural resources studies, geosciences, economics 
and many other scientific fields are studied using different models of the so called growth 
curves. The most applied models are negative exponential, logistic, Gompertz, Richard’s, 
Weibull, Huber, etc. In general, growth (decay) can be thought of as evolution of a part of 
a system, growth curves describing the evolution of the absolute value of this part in time. 
Usually,   standard viewpoint does not take into account other components of the 
complete system. This may cause difficulties when interpreting the fitted model and 
makes the selection of it somewhat arbitrary. 
 
For instance, when exploiting an ore in a mining area, we can consider the total mass of 
ore in the deposit, decomposed into three parts, unknown mass, yet extracted mass, 
known but not extracted ore. The evolution on time of this system can be described as the 
evolution of total mass (constant in this case), and evolution of the proportions of the three 
parts. This kind of approach suggests modelling evolution of proportions from the 
compositional point of view, i.e. using dynamical systems modelled in the framework of 
Aitchison geometry and differential equations in the simplex. 
 
The study starts with simple but classical examples with two components (exponential 
and logistic growth) which share a common linear model in the simplex for the parts, and 
a different behaviour of the total mass. Next step consists of studying simple evolution 
compositional models with different hypothesis on the total mass. The models obtained 
are compared with some traditional well-known growth curves.  
 
Keywords: Simplicial dynamical systems, resources assessment, derivatives, 
compositional  processes. 
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1. INTRODUCTION 
 
A growth curve is an empirical model of the evolution of a quantity over time. Growth 
curves are widely used in natural resources studies, geosciences, economics or biology, 
and the studied quantities are diverse, e.g. population size, biomass, ore-mass, 
resources. Values of the measured property or variable are usually plotted on a graph as 
a function of time. When a mathematical function is fitted to the data it is called growth 
curve. There is an extensive literature on growth curves, frequently adapted to the specific 
field in which they are used. From a statistical point of view, the use of growth curves 
would require the following steps: (a) choice of the model adapted to the characteristics of 
the studied quantity and following the parsimony principle (simple models are preferred); 
(b) fitting the model by minimising-maximising some error criterion, leading to the 
estimation of parameters in the model; (c) validation of the fitted model and underlying 
hypotheses; (d) interpretation of the result taking into account statistical uncertainty in the 
estimation. These steps are seldom completely covered in practice and deeper sight is 
still needed. The present goal is to open up the range of usual models for growth curves 
(a). The main idea is to consider several parts of the system to be modelled in order to 
take into account their interactions. The system is viewed as a whole, here called total 
mass, decomposed into its parts or categories that can be described as proportions of the 
total mass. Both total mass and proportions may evolve in time. The model of total mass 
may be very simple (e.g. constant, exponential decay, etc.) and the evolution of 
proportions can be modelled using differential models in the simplex, where proportions 
take values. The kind of models to be used (total mass and proportions evolution) are also 
a hint for fitting the curve taking into account the characteristics and scale of proportions 
which are assumed compositional. 
 
As a typical example, Figure 1-1(a) shows the growth data corresponding to USA oil 
yearly production from 1900 to 2008; Figure 1-1(b) shows the cumulative growth curve.  
Figure 2, shows the fitting of the yearly production in Figure 1-1(b) of a growth curve by P. 
Cathaimer (2008). 
 
A motivating case is a classical example which has been controversial in the XIX century: 
the growth of a population in opinion of Thomas R. Malthus (1798), exponential growth,  
and Pierre F. Verhulst (1838), logistic growth, which represent the two most popular and 
ancient models. The equation of the exponential model (increasing if k > 0 and decreasing 
if k < 0) is = 0( ) ktp t p e , where ( )p t  is the population in time and 0p  is the population at 

t=0. The one-parameter logistic model is − −= +* 1( ) (1 )ktp t p e . Figure 3 shows an example 
of these growth curves. They are examined under the compositional or simplicial 
approach proposed here. 
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Fig.1. (a) USA oil production, 1900-2008. (b) Cumulative USA oil production, 1900-2008. (P. Cathaimer, 2008). 
 
 
 
 

 
 
Fig.2. USA oil production 1900-2008, with a mathematical function fitting the data. (P. Cathaimer, 2008). 
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Fig.3. Exponential (a) and one-parameter logistic (b) mathematical models. 
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2. COMPOSITIONAL GROWTH MODELS 
 
The classical approach of a growth curve typically does not consider all the components or 
parts of the problem. That is, evolution is studied as a single part of a system independently of 
the others parts. In some cases, this strategy may not make sense. In addition, the variables 
are studied "in mass" that is, in absolute units (number of individuals, number of oil barrels, 
number of trees in a forest). The alternative here presented is to consider the proportions 
between some observed or studied parts of the total mass changing in time. Additionally total 
mass may evolve in time as well. 
 
We consider a system of n parts defined by a vector valued function 

( )=
�

1 2( ) ( ), ( ),..., ( )nP t P t P t P t , (2.1) 

 
being the system total mass 
 

=

= + + + =∑⋯1 2
1

( ) ( ) ( ) ( ) ( )
n

n j
j

M t P t P t P t P t  
 

(2.2) 

 
The vector of proportions can be defined as 
 

( )  
= =  

 

�

1 2

( )
( ) ( ), ( ),..., ( ) ..., ,...

( )
j

n

P t
p t p t p t p t

M t
 

 
(2.3) 

 
The sum of proportions is then 
 

=

=∑
1

( ) 1
n

j
j

p t  
 

(2.4) 

 
Exponential and logistic growth illustrates the compositional approach. Consider a population 
with exponential growth consuming 1( )P t  resource units. We can complete the system with a 
second component 2( )P t  representing presently available resource units which is assumed 
constant in this case. The equations of this two part system are (model 1) 
 

( )=

= =
= +

�

1 2

1 1 2 2

1 2

( ) ( ), ( )

( ) (0)exp( ); ( ) (constant)

( ) ( ) ( )

P t P t P t

P t P kt P t C

M t P t P t

 

 
(2.5) 

 
Consider a second population consuming 1( )P t  resource units which evolves according to a 
one-parameter logistic model. Assuming that the total mass of resource units ( )M t  is constant 
in time, the system is described (model 2) 
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( )
−

=

= + − = −
=

�

1 2

* 1
1 1 2 1

( ) ( ), ( )

( ) (1 exp( )) ; ( ) ( ) ( )

( ) (constant)

P t P t P t

P t P kt P t M t P t

M t M

 

 
(2.6) 

 
Figure 4 shows the growth curves in mass of both systems: (a) exponential growth (model 1), 
(b) logistic growth (model 2). Clearly, the systems considered are different in mass (Fig. 4). 
When proportions of used and available resources are computed according Eq. (2.3), we get 
the compositional evolution of these models of growth. Figure 5 shows the compositional 
growth curves of both systems: (a) model 1, (b) model 2. As shown, the compositional model 
of growth curves for both systems are equal. This means that the Malthus-Verhulst 
controversy only relays on the total mass of resources and not on the mechanisms affecting 
the proportions of available-consumed resources. 
 
To proceed with the development of compositional models of growth curves, we need some 
concepts that are summarized in the following section. 
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Fig.4. Growth curves (in mass) of systems in the example. Green: total resources; Blue: used resources; Red: 
available resources. 
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Fig.5. Growth curves (in proportions) of systems in the example. Blue: proportion of used resources; Red: 
proportion of available resources. 
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3. SOME CONCEPTS ON CALCULUS IN THE SIMPLEX 
 
The simplex of n parts or n-part simplex, designated Sn, is the set of positive-component 
vectors of constant sum and it is defined as 
 

( ) +
=

 
= = ∈ ∀ = > = 
 

∑
�

ℝ1 2
1

, ,..., , 1,..., 0, 1
n

n n
n j j

j

S x x x x j n x x  
(3.1) 

 
The elements of the n-part simplex are called compositions. The sum of the components can 
be another constant different from one; for example is 106 if parts per million are considered. 
However, the sum can be reduced to one dividing each component by this constant. The 

operation of dividing by the sum of the components is called closure and it is denoted by C. 

 
Obviously, the operations of ordinary Euclidean space are not feasible in the simplex, so it 
must be furnished of a vector space structure by other operations (Aitchison, 1986; 
Pawlowsky-Glahn and Egozcue, 2001). These are the perturbation (⊕) and powering (⊙), 

defined as 
 

( )

( )
λ

λλ λ

 
⊕ = = +  

 

 
= =  
 

∑

∑

� � � �

� �
⊙

..., ,.... exp log( ) log( )

..., ,.... exp log( )

i i

j j

i

j

x y
x y x y

x y

x
x x

x

C

C

 

 
 

(3.2) 

 
In that expressions, exponential (exp) and natural logarithm (log) functions are applied 
componentwise. The neutral element of perturbation operation is the composition 
 

 = =  
 

� 1 1 1
1 (1,1,...,1) , ,...,n n n n
C  

(3.3) 

 
The opposite element of a composition is calculated by 
 

( )
 

= = −  
 ∑

� �
⊖

1/
..., ,.... exp ( 1)log( )

(1/ )
i

j

x
x x

x
C  

 
(3.4) 

 
The difference, i.e. the sum (perturbation) with the opposite element, is calculated 
 

( )
 

= = = −  
 ∑

� � � � � �/
( ) ..., ,.... exp log( ) log( )

( / )
i i

j j

x y
x y x y x y

x y
 C⊖ ⊖⊕  

(3.5) 
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With perturbation and power transformation operations, the n-part simplex has the structure of 
real vector space of dimension n−1. A structure of Euclidean space has been also studied 
(Pawlowsky-Glahn and Egozcue (2001)) thus providing a distance (Aitchison distance and the 
corresponding metrics). There are several isomorphisms between the simplex Sn and the 

ordinary Euclidean space 1n−
ℝ . The application of such an isomorphism allows us to work in 

the ordinary Euclidean space with the transformed values called coordinates. Then, well-
known methods and procedures can freely applied to coordinates. Finally, we can retrieve 
values in the simplex using the inverse transformation. Here the so-called isometric logratio 
transformation (ilr), defined by Egozcue et al. (2003) is used to get coordinates of vectors of 
proportions. In the case with n=3, ilr coordinates, also known as balances, are 
 

( ) ( ) ( )
 

= = = 
 
 

� 32
1 2 3 1 2

1 1 2

1 2
, , log , log ,

32

xx
ilr x ilr x x x u u

x x x
 

 
(3.6) 

 
The inverse ilr transformation is 
 

( )−  
= − − − =  

 

1
1 2 1 2 1 2 2 1 2 3

1 1 1 1 2
( , ) exp , , , ,

32 6 2 6
ilr u u u u u u u x x xC  

 
(3.7) 

 
Here we deal with positive-component vector-valued functions (mass of parts) of real variable 
(time), denoted f(t); and simplex-valued functions (proportions) of real variable (time) denoted 
F(t). The relationship between these two kinds of functions is the closure, this is 
 

=
� �
( ) ( )f t F tC  (3.8) 

 
The simplicial derivative of a simplex-valued function (Aitchison and Egozcue, 2005; Jarauta-
Bragulat and Egozcue, 2008) is defined as 
 

( )⊕

→

 = + 
 

� � �
⊙

0

1
( ) lim ( ) ( )

h
D f t f t h f t

h
⊖  

 
(3.9) 

 
The computation of simplicial derivatives of a function is done using 
 

⊕

 
  = =   

    
 

� � ( )
( ) exp log ( ) exp ..., ,...

( )

j

j

d
f td dtD f t f t

dt f t
C C  

 
 

(3.10) 

 
Similarly, higher order derivatives are computed as 
 

⊕  
= = 

 

� �
( ) exp log ( ) , 2,3,...

k
k

k

d
D f t f t k

dt
C  

 
(3.11) 
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An important property for the computation of simplicial derivatives is that simplicial derivative 
commute with the closure operation 
 

⊕ ⊕ ⊕ ⊕= = =
� � � �
( ) ( ) ( ) ( )D f t D F t D F t D F tC C  (3.12) 

 
At this point, we can express the property of exponential and logistic growth (models 1, 2, 
equations (2.5, 2.6)). Simplicial derivative is expressed in both cases as 
 

⊕  = − 
 

�
( ) exp ,

2 2
k k

D P t C  
(3.13) 

 
showing that both systems are compositionally identical. 
 
 
 
 

4. COMPOSITIONAL GROWTH MODEL FOR WORLD OIL 
 
As an illustration, we develop a compositional growth curve model to study the evolution of oil 
in the world. The data set on which we base our analysis consists of a series of world oil 
production data and world oil proven reserves; the series is 1980-2009 (source: British 
Petroleum, BP). Figure 6 shows this data set, and oil production is computed and represented 
cumulative. 
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Fig.6. World oil production and proven reserves, 1980-2009 (British Petroleum). 
 
 
To develop our model, we consider the vector-valued function ( )=

�

1 2 3( ) ( ), ( ), ( )P t P t P t P t  of real 

variable t, being 
t, time (years) from t = 0 (1980)   to   t = 30 (2009); 
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P1(t), cumulative world oil production (GBl/year), GBl = gigabarrels = 109 barrels oil; 
P2(t), world oil proven reserves (GBl/year); 
P3(t), unknown reserves (GBl/year) plus world oil consumed or stored at t = 0. 

 
For each year t, the sum = + +1 2 3( ) ( ) ( ) ( )M t P t P t P t  is the total mass of oil in the world, and it is 
assumed constant. The third component P3(t) is computed under different hypothesis on M(t), 
because it is unknown. Observed evolution of P1(t) and P2(t), and P3(t) under three 
hypotheses different hypothesis: (1) M = 4000 GBl, (2) M = 8000 GBl, (3) M = 12000 GBl are 
shown. 
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Fig.7. World oil evolution. Blue: consumed oil; Red: proven reserves; Green: unknown reserves under different 
hypothesis. 
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Fig.8. The second logarithmic derivatives of components under different hypothesis. 
 
 
The first and the second simplicial derivatives of data have been numerically computed (Fig. 
8). We conclude that the second derivative is approximately the neutral element of the 
simplex, that is ( )1,1,1C . Therefore, the first derivative is approximately ⊕ =

� �
( ) (constant)D P t a . 
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At this point, we remark that the first simplicial derivative should be interpreted as the 
multiplicative rate of increasing-decreasing of each part. The solution of this simple differential 
equation is 
 

= ∈
� � � � �

⊙
3

0 1 0 1( ) ( ); ,P t K t K K K SC ⊕  (4.1) 

 
which is readily identified with a linear function in the simplex being 

�

0K  a reference point and 
�

1K  the direction of the line. In order to estimate coefficients 
� �

0 1,K K  we fit a linear model to ilr-
coordinates of data values in the 2-dimensional Euclidean space. The ilr-coordinates are 
 

( ) ( ) ( )
 

= = = 
 
 

�
32

1 2 3 1 2
1 1 2

( )1 ( ) 2
( ) ( ), ( ), ( ) log , log ,

( ) 32 ( ) ( )

P tP t
ilr P t ilr P t P t P t U U

P t P t P t
 

 
(4.2) 

 
Note that the first ilr-coordinate U1 can be computed using actually observed data P1(t) and 
P2(t) while U2 contains P3(t) which is hypothetical. Figure 9 shows ilr-coordinates of data and 
the linear fitted model. Using standard least squares, the fitted linear regression models for ilr-
coordinates are 
 

 = − +


= − +

*
1

*
2

0.0301 1.2655

0.0503 2.0127

U t

U t
 

 
(4.3) 

 
where * *

1 2( , )U U  are the ilr-coordinates of the predictor. The R-squared values are, respectively, 
R2(U1) = 0.912, R2(U2) = 0.975. Note that standard statistical methods of regression can be 
used here to check the fitted model although they are not discussed here. Compositional 
constants 

� �

0 1,K K  in Eq(4.1) can be computed as 
 

( ) ( )
( ) ( )

−

−

 = =


= − − =

�

�

1
0

1
1

1.2655,2.0127 0.025,0.151,0.824

0.0301, 0.0503 0.347,0.333,0.320

K ilr

K ilr
 

 
(4.4) 
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Fig.9. Linear model fitted to ilr-coordinates of data. 
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Fig.10. Oil-data and recovered model applying ilr back-transformation. 
 

 
 
Fig.11. World oil components evolution prediction applying the fitted model. 
 
 
Also the predictor values * *

1 2,U U  can be back-transformed into the simplex using Eq(3.7). Oil 
estimated values for each component are recovered as follows: 
 

( ) ( )= =
�

* * * * * * *
1 2 3 1 2 3( ) ( ), ( ), ( ) ( ), ( ), ( )P t P t P t P t M p t M p t M p t  (4.5) 

 
These recovered values are represented together with data values in Figure 10, 
corresponding to the first hypothesis M = 4000 GBl. Using the fitted model, predictions can be 
done (statistical uncertainty has been ignored for simplicity). These predictions are 
represented in Figure 11, under the three hypotheses for total oil (Fig. 7). By definition, curves 
in Figure 10 are cumulative curves; yearly values are obtained computing numerically the 
derivative (ordinary sense) of cumulative mass curves. Yearly curves are shown in Figure 12. 
Yearly curves permit a prediction about peak oil, i.e. the time when the maximum yearly rate of 
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global petroleum extraction is reached and after which the rate of production enters terminal 
decline (Hubbert, 1956). Estimated peak oil ranges from year t = 48 (2028) to t = 70 (2050) 
under the three hypothesis about total oil. These estimations ignore statistical uncertainty and 
should be considered rough estimations.  
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Fig.12. Peak oil prediction applying the fitted model. 
 
 
 
 
 

5. CONCLUSIONS 
 

1. Growth curves models can be studied from compositional point of view separately of 
the total mass evolution. In the studied cases, growth compositional models are simple 
and interpretable. Simplicial derivatives provides a tool to check the validity of proposed 
models.  

 
2. Different growth curves models in mass may correspond to the same compositional 

model thus hiding simple common features of mass growth curves.  
 

3. World oil data can be studied under compositional point of view. The simplest 
compositional model, the linear one, seems to explain correctly the world oil 
production-consumption. 

 
4. In a preliminary estimation the Hubbert peak oil may range from 2028 to 2050. 
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